]> gcc.gnu.org Git - gcc.git/blob - gcc/tree.c
# Fix misspellings in comments.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* This file contains the low level primitives for operating on tree nodes,
22 including allocation, list operations, interning of identifiers,
23 construction of data type nodes and statement nodes,
24 and construction of type conversion nodes. It also contains
25 tables index by tree code that describe how to take apart
26 nodes of that code.
27
28 It is intended to be language-independent, but occasionally
29 calls language-dependent routines defined (for C) in typecheck.c.
30
31 The low-level allocation routines oballoc and permalloc
32 are used also for allocating many other kinds of objects
33 by all passes of the compiler. */
34
35 #include "config.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "function.h"
39 #include "obstack.h"
40 #include "gvarargs.h"
41 #include <stdio.h>
42
43 #define obstack_chunk_alloc xmalloc
44 #define obstack_chunk_free free
45
46 /* Tree nodes of permanent duration are allocated in this obstack.
47 They are the identifier nodes, and everything outside of
48 the bodies and parameters of function definitions. */
49
50 struct obstack permanent_obstack;
51
52 /* The initial RTL, and all ..._TYPE nodes, in a function
53 are allocated in this obstack. Usually they are freed at the
54 end of the function, but if the function is inline they are saved.
55 For top-level functions, this is maybepermanent_obstack.
56 Separate obstacks are made for nested functions. */
57
58 struct obstack *function_maybepermanent_obstack;
59
60 /* This is the function_maybepermanent_obstack for top-level functions. */
61
62 struct obstack maybepermanent_obstack;
63
64 /* The contents of the current function definition are allocated
65 in this obstack, and all are freed at the end of the function.
66 For top-level functions, this is temporary_obstack.
67 Separate obstacks are made for nested functions. */
68
69 struct obstack *function_obstack;
70
71 /* This is used for reading initializers of global variables. */
72
73 struct obstack temporary_obstack;
74
75 /* The tree nodes of an expression are allocated
76 in this obstack, and all are freed at the end of the expression. */
77
78 struct obstack momentary_obstack;
79
80 /* The tree nodes of a declarator are allocated
81 in this obstack, and all are freed when the declarator
82 has been parsed. */
83
84 static struct obstack temp_decl_obstack;
85
86 /* This points at either permanent_obstack
87 or the current function_maybepermanent_obstack. */
88
89 struct obstack *saveable_obstack;
90
91 /* This is same as saveable_obstack during parse and expansion phase;
92 it points to the current function's obstack during optimization.
93 This is the obstack to be used for creating rtl objects. */
94
95 struct obstack *rtl_obstack;
96
97 /* This points at either permanent_obstack or the current function_obstack. */
98
99 struct obstack *current_obstack;
100
101 /* This points at either permanent_obstack or the current function_obstack
102 or momentary_obstack. */
103
104 struct obstack *expression_obstack;
105
106 /* Stack of obstack selections for push_obstacks and pop_obstacks. */
107
108 struct obstack_stack
109 {
110 struct obstack_stack *next;
111 struct obstack *current;
112 struct obstack *saveable;
113 struct obstack *expression;
114 struct obstack *rtl;
115 };
116
117 struct obstack_stack *obstack_stack;
118
119 /* Obstack for allocating struct obstack_stack entries. */
120
121 static struct obstack obstack_stack_obstack;
122
123 /* Addresses of first objects in some obstacks.
124 This is for freeing their entire contents. */
125 char *maybepermanent_firstobj;
126 char *temporary_firstobj;
127 char *momentary_firstobj;
128 char *temp_decl_firstobj;
129
130 /* Nonzero means all ..._TYPE nodes should be allocated permanently. */
131
132 int all_types_permanent;
133
134 /* Stack of places to restore the momentary obstack back to. */
135
136 struct momentary_level
137 {
138 /* Pointer back to previous such level. */
139 struct momentary_level *prev;
140 /* First object allocated within this level. */
141 char *base;
142 /* Value of expression_obstack saved at entry to this level. */
143 struct obstack *obstack;
144 };
145
146 struct momentary_level *momentary_stack;
147
148 /* Table indexed by tree code giving a string containing a character
149 classifying the tree code. Possibilities are
150 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
151
152 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
153
154 char *standard_tree_code_type[] = {
155 #include "tree.def"
156 };
157 #undef DEFTREECODE
158
159 /* Table indexed by tree code giving number of expression
160 operands beyond the fixed part of the node structure.
161 Not used for types or decls. */
162
163 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
164
165 int standard_tree_code_length[] = {
166 #include "tree.def"
167 };
168 #undef DEFTREECODE
169
170 /* Names of tree components.
171 Used for printing out the tree and error messages. */
172 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
173
174 char *standard_tree_code_name[] = {
175 #include "tree.def"
176 };
177 #undef DEFTREECODE
178
179 /* Table indexed by tree code giving a string containing a character
180 classifying the tree code. Possibilities are
181 t, d, s, c, r, e, <, 1 and 2. See tree.def for details. */
182
183 char **tree_code_type;
184
185 /* Table indexed by tree code giving number of expression
186 operands beyond the fixed part of the node structure.
187 Not used for types or decls. */
188
189 int *tree_code_length;
190
191 /* Table indexed by tree code giving name of tree code, as a string. */
192
193 char **tree_code_name;
194
195 /* Statistics-gathering stuff. */
196 typedef enum
197 {
198 d_kind,
199 t_kind,
200 b_kind,
201 s_kind,
202 r_kind,
203 e_kind,
204 c_kind,
205 id_kind,
206 op_id_kind,
207 perm_list_kind,
208 temp_list_kind,
209 vec_kind,
210 x_kind,
211 lang_decl,
212 lang_type,
213 all_kinds
214 } tree_node_kind;
215
216 int tree_node_counts[(int)all_kinds];
217 int tree_node_sizes[(int)all_kinds];
218 int id_string_size = 0;
219
220 char *tree_node_kind_names[] = {
221 "decls",
222 "types",
223 "blocks",
224 "stmts",
225 "refs",
226 "exprs",
227 "constants",
228 "identifiers",
229 "op_identifiers",
230 "perm_tree_lists",
231 "temp_tree_lists",
232 "vecs",
233 "random kinds",
234 "lang_decl kinds",
235 "lang_type kinds"
236 };
237
238 /* Hash table for uniquizing IDENTIFIER_NODEs by name. */
239
240 #define MAX_HASH_TABLE 1009
241 static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
242
243 /* 0 while creating built-in identifiers. */
244 static int do_identifier_warnings;
245
246 /* Unique id for next decl created. */
247 static int next_decl_uid;
248
249 extern char *mode_name[];
250
251 void gcc_obstack_init ();
252 static tree stabilize_reference_1 ();
253 \f
254 /* Init the principal obstacks. */
255
256 void
257 init_obstacks ()
258 {
259 gcc_obstack_init (&obstack_stack_obstack);
260 gcc_obstack_init (&permanent_obstack);
261
262 gcc_obstack_init (&temporary_obstack);
263 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
264 gcc_obstack_init (&momentary_obstack);
265 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
266 gcc_obstack_init (&maybepermanent_obstack);
267 maybepermanent_firstobj
268 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
269 gcc_obstack_init (&temp_decl_obstack);
270 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
271
272 function_obstack = &temporary_obstack;
273 function_maybepermanent_obstack = &maybepermanent_obstack;
274 current_obstack = &permanent_obstack;
275 expression_obstack = &permanent_obstack;
276 rtl_obstack = saveable_obstack = &permanent_obstack;
277
278 /* Init the hash table of identifiers. */
279 bzero (hash_table, sizeof hash_table);
280 }
281
282 void
283 gcc_obstack_init (obstack)
284 struct obstack *obstack;
285 {
286 /* Let particular systems override the size of a chunk. */
287 #ifndef OBSTACK_CHUNK_SIZE
288 #define OBSTACK_CHUNK_SIZE 0
289 #endif
290 /* Let them override the alloc and free routines too. */
291 #ifndef OBSTACK_CHUNK_ALLOC
292 #define OBSTACK_CHUNK_ALLOC xmalloc
293 #endif
294 #ifndef OBSTACK_CHUNK_FREE
295 #define OBSTACK_CHUNK_FREE free
296 #endif
297 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
298 (void *(*) ()) OBSTACK_CHUNK_ALLOC,
299 (void (*) ()) OBSTACK_CHUNK_FREE);
300 }
301
302 /* Save all variables describing the current status into the structure *P.
303 This is used before starting a nested function. */
304
305 void
306 save_tree_status (p)
307 struct function *p;
308 {
309 p->all_types_permanent = all_types_permanent;
310 p->momentary_stack = momentary_stack;
311 p->maybepermanent_firstobj = maybepermanent_firstobj;
312 p->momentary_firstobj = momentary_firstobj;
313 p->function_obstack = function_obstack;
314 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
315 p->current_obstack = current_obstack;
316 p->expression_obstack = expression_obstack;
317 p->saveable_obstack = saveable_obstack;
318 p->rtl_obstack = rtl_obstack;
319
320 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
321 gcc_obstack_init (function_obstack);
322
323 function_maybepermanent_obstack
324 = (struct obstack *) xmalloc (sizeof (struct obstack));
325 gcc_obstack_init (function_maybepermanent_obstack);
326
327 current_obstack = &permanent_obstack;
328 expression_obstack = &permanent_obstack;
329 rtl_obstack = saveable_obstack = &permanent_obstack;
330
331 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
332 maybepermanent_firstobj
333 = (char *) obstack_finish (function_maybepermanent_obstack);
334 }
335
336 /* Restore all variables describing the current status from the structure *P.
337 This is used after a nested function. */
338
339 void
340 restore_tree_status (p)
341 struct function *p;
342 {
343 all_types_permanent = p->all_types_permanent;
344 momentary_stack = p->momentary_stack;
345
346 obstack_free (&momentary_obstack, momentary_firstobj);
347 obstack_free (function_obstack, 0);
348 obstack_free (function_maybepermanent_obstack, 0);
349 free (function_obstack);
350
351 momentary_firstobj = p->momentary_firstobj;
352 maybepermanent_firstobj = p->maybepermanent_firstobj;
353 function_obstack = p->function_obstack;
354 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
355 current_obstack = p->current_obstack;
356 expression_obstack = p->expression_obstack;
357 saveable_obstack = p->saveable_obstack;
358 rtl_obstack = p->rtl_obstack;
359 }
360 \f
361 /* Start allocating on the temporary (per function) obstack.
362 This is done in start_function before parsing the function body,
363 and before each initialization at top level, and to go back
364 to temporary allocation after doing end_temporary_allocation. */
365
366 void
367 temporary_allocation ()
368 {
369 /* Note that function_obstack at top level points to temporary_obstack.
370 But within a nested function context, it is a separate obstack. */
371 current_obstack = function_obstack;
372 expression_obstack = function_obstack;
373 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
374 momentary_stack = 0;
375 }
376
377 /* Start allocating on the permanent obstack but don't
378 free the temporary data. After calling this, call
379 `permanent_allocation' to fully resume permanent allocation status. */
380
381 void
382 end_temporary_allocation ()
383 {
384 current_obstack = &permanent_obstack;
385 expression_obstack = &permanent_obstack;
386 rtl_obstack = saveable_obstack = &permanent_obstack;
387 }
388
389 /* Resume allocating on the temporary obstack, undoing
390 effects of `end_temporary_allocation'. */
391
392 void
393 resume_temporary_allocation ()
394 {
395 current_obstack = function_obstack;
396 expression_obstack = function_obstack;
397 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
398 }
399
400 /* While doing temporary allocation, switch to allocating in such a
401 way as to save all nodes if the function is inlined. Call
402 resume_temporary_allocation to go back to ordinary temporary
403 allocation. */
404
405 void
406 saveable_allocation ()
407 {
408 /* Note that function_obstack at top level points to temporary_obstack.
409 But within a nested function context, it is a separate obstack. */
410 expression_obstack = current_obstack = saveable_obstack;
411 }
412
413 /* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
414 recording the previously current obstacks on a stack.
415 This does not free any storage in any obstack. */
416
417 void
418 push_obstacks (current, saveable)
419 struct obstack *current, *saveable;
420 {
421 struct obstack_stack *p
422 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
423 (sizeof (struct obstack_stack)));
424
425 p->current = current_obstack;
426 p->saveable = saveable_obstack;
427 p->expression = expression_obstack;
428 p->rtl = rtl_obstack;
429 p->next = obstack_stack;
430 obstack_stack = p;
431
432 current_obstack = current;
433 expression_obstack = current;
434 rtl_obstack = saveable_obstack = saveable;
435 }
436
437 /* Save the current set of obstacks, but don't change them. */
438
439 void
440 push_obstacks_nochange ()
441 {
442 struct obstack_stack *p
443 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
444 (sizeof (struct obstack_stack)));
445
446 p->current = current_obstack;
447 p->saveable = saveable_obstack;
448 p->expression = expression_obstack;
449 p->rtl = rtl_obstack;
450 p->next = obstack_stack;
451 obstack_stack = p;
452 }
453
454 /* Pop the obstack selection stack. */
455
456 void
457 pop_obstacks ()
458 {
459 struct obstack_stack *p = obstack_stack;
460 obstack_stack = p->next;
461
462 current_obstack = p->current;
463 saveable_obstack = p->saveable;
464 expression_obstack = p->expression;
465 rtl_obstack = p->rtl;
466
467 obstack_free (&obstack_stack_obstack, p);
468 }
469
470 /* Nonzero if temporary allocation is currently in effect.
471 Zero if currently doing permanent allocation. */
472
473 int
474 allocation_temporary_p ()
475 {
476 return current_obstack != &permanent_obstack;
477 }
478
479 /* Go back to allocating on the permanent obstack
480 and free everything in the temporary obstack.
481 This is done in finish_function after fully compiling a function. */
482
483 void
484 permanent_allocation ()
485 {
486 /* Free up previous temporary obstack data */
487 obstack_free (&temporary_obstack, temporary_firstobj);
488 obstack_free (&momentary_obstack, momentary_firstobj);
489 obstack_free (&maybepermanent_obstack, maybepermanent_firstobj);
490 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
491
492 current_obstack = &permanent_obstack;
493 expression_obstack = &permanent_obstack;
494 rtl_obstack = saveable_obstack = &permanent_obstack;
495 }
496
497 /* Save permanently everything on the maybepermanent_obstack. */
498
499 void
500 preserve_data ()
501 {
502 maybepermanent_firstobj
503 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
504 }
505
506 void
507 preserve_initializer ()
508 {
509 temporary_firstobj
510 = (char *) obstack_alloc (&temporary_obstack, 0);
511 momentary_firstobj
512 = (char *) obstack_alloc (&momentary_obstack, 0);
513 maybepermanent_firstobj
514 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
515 }
516
517 /* Start allocating new rtl in current_obstack.
518 Use resume_temporary_allocation
519 to go back to allocating rtl in saveable_obstack. */
520
521 void
522 rtl_in_current_obstack ()
523 {
524 rtl_obstack = current_obstack;
525 }
526
527 /* Temporarily allocate rtl from saveable_obstack. Return 1 if we were
528 previously allocating it from current_obstack. */
529
530 int
531 rtl_in_saveable_obstack ()
532 {
533 if (rtl_obstack == current_obstack)
534 {
535 rtl_obstack = saveable_obstack;
536 return 1;
537 }
538 else
539 return 0;
540 }
541 \f
542 /* Allocate SIZE bytes in the current obstack
543 and return a pointer to them.
544 In practice the current obstack is always the temporary one. */
545
546 char *
547 oballoc (size)
548 int size;
549 {
550 return (char *) obstack_alloc (current_obstack, size);
551 }
552
553 /* Free the object PTR in the current obstack
554 as well as everything allocated since PTR.
555 In practice the current obstack is always the temporary one. */
556
557 void
558 obfree (ptr)
559 char *ptr;
560 {
561 obstack_free (current_obstack, ptr);
562 }
563
564 /* Allocate SIZE bytes in the permanent obstack
565 and return a pointer to them. */
566
567 char *
568 permalloc (size)
569 int size;
570 {
571 return (char *) obstack_alloc (&permanent_obstack, size);
572 }
573
574 /* Allocate NELEM items of SIZE bytes in the permanent obstack
575 and return a pointer to them. The storage is cleared before
576 returning the value. */
577
578 char *
579 perm_calloc (nelem, size)
580 int nelem;
581 long size;
582 {
583 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
584 bzero (rval, nelem * size);
585 return rval;
586 }
587
588 /* Allocate SIZE bytes in the saveable obstack
589 and return a pointer to them. */
590
591 char *
592 savealloc (size)
593 int size;
594 {
595 return (char *) obstack_alloc (saveable_obstack, size);
596 }
597 \f
598 /* Print out which obstack an object is in. */
599
600 void
601 debug_obstack (object)
602 char *object;
603 {
604 struct obstack *obstack = NULL;
605 char *obstack_name = NULL;
606 struct function *p;
607
608 for (p = outer_function_chain; p; p = p->next)
609 {
610 if (_obstack_allocated_p (p->function_obstack, object))
611 {
612 obstack = p->function_obstack;
613 obstack_name = "containing function obstack";
614 }
615 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
616 {
617 obstack = p->function_maybepermanent_obstack;
618 obstack_name = "containing function maybepermanent obstack";
619 }
620 }
621
622 if (_obstack_allocated_p (&obstack_stack_obstack, object))
623 {
624 obstack = &obstack_stack_obstack;
625 obstack_name = "obstack_stack_obstack";
626 }
627 else if (_obstack_allocated_p (function_obstack, object))
628 {
629 obstack = function_obstack;
630 obstack_name = "function obstack";
631 }
632 else if (_obstack_allocated_p (&permanent_obstack, object))
633 {
634 obstack = &permanent_obstack;
635 obstack_name = "permanent_obstack";
636 }
637 else if (_obstack_allocated_p (&momentary_obstack, object))
638 {
639 obstack = &momentary_obstack;
640 obstack_name = "momentary_obstack";
641 }
642 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
643 {
644 obstack = function_maybepermanent_obstack;
645 obstack_name = "function maybepermanent obstack";
646 }
647 else if (_obstack_allocated_p (&temp_decl_obstack, object))
648 {
649 obstack = &temp_decl_obstack;
650 obstack_name = "temp_decl_obstack";
651 }
652
653 /* Check to see if the object is in the free area of the obstack. */
654 if (obstack != NULL)
655 {
656 if (object >= obstack->next_free
657 && object < obstack->chunk_limit)
658 fprintf (stderr, "object in free portion of obstack %s.\n",
659 obstack_name);
660 else
661 fprintf (stderr, "object allocated from %s.\n", obstack_name);
662 }
663 else
664 fprintf (stderr, "object not allocated from any obstack.\n");
665 }
666
667 /* Return 1 if OBJ is in the permanent obstack.
668 This is slow, and should be used only for debugging.
669 Use TREE_PERMANENT for other purposes. */
670
671 int
672 object_permanent_p (obj)
673 tree obj;
674 {
675 return _obstack_allocated_p (&permanent_obstack, obj);
676 }
677 \f
678 /* Start a level of momentary allocation.
679 In C, each compound statement has its own level
680 and that level is freed at the end of each statement.
681 All expression nodes are allocated in the momentary allocation level. */
682
683 void
684 push_momentary ()
685 {
686 struct momentary_level *tem
687 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
688 sizeof (struct momentary_level));
689 tem->prev = momentary_stack;
690 tem->base = (char *) obstack_base (&momentary_obstack);
691 tem->obstack = expression_obstack;
692 momentary_stack = tem;
693 expression_obstack = &momentary_obstack;
694 }
695
696 /* Free all the storage in the current momentary-allocation level.
697 In C, this happens at the end of each statement. */
698
699 void
700 clear_momentary ()
701 {
702 obstack_free (&momentary_obstack, momentary_stack->base);
703 }
704
705 /* Discard a level of momentary allocation.
706 In C, this happens at the end of each compound statement.
707 Restore the status of expression node allocation
708 that was in effect before this level was created. */
709
710 void
711 pop_momentary ()
712 {
713 struct momentary_level *tem = momentary_stack;
714 momentary_stack = tem->prev;
715 expression_obstack = tem->obstack;
716 obstack_free (&momentary_obstack, tem);
717 }
718
719 /* Call when starting to parse a declaration:
720 make expressions in the declaration last the length of the function.
721 Returns an argument that should be passed to resume_momentary later. */
722
723 int
724 suspend_momentary ()
725 {
726 register int tem = expression_obstack == &momentary_obstack;
727 expression_obstack = saveable_obstack;
728 return tem;
729 }
730
731 /* Call when finished parsing a declaration:
732 restore the treatment of node-allocation that was
733 in effect before the suspension.
734 YES should be the value previously returned by suspend_momentary. */
735
736 void
737 resume_momentary (yes)
738 int yes;
739 {
740 if (yes)
741 expression_obstack = &momentary_obstack;
742 }
743 \f
744 /* Init the tables indexed by tree code.
745 Note that languages can add to these tables to define their own codes. */
746
747 void
748 init_tree_codes ()
749 {
750 tree_code_type = (char **) xmalloc (sizeof (standard_tree_code_type));
751 tree_code_length = (int *) xmalloc (sizeof (standard_tree_code_length));
752 tree_code_name = (char **) xmalloc (sizeof (standard_tree_code_name));
753 bcopy (standard_tree_code_type, tree_code_type,
754 sizeof (standard_tree_code_type));
755 bcopy (standard_tree_code_length, tree_code_length,
756 sizeof (standard_tree_code_length));
757 bcopy (standard_tree_code_name, tree_code_name,
758 sizeof (standard_tree_code_name));
759 }
760
761 /* Return a newly allocated node of code CODE.
762 Initialize the node's unique id and its TREE_PERMANENT flag.
763 For decl and type nodes, some other fields are initialized.
764 The rest of the node is initialized to zero.
765
766 Achoo! I got a code in the node. */
767
768 tree
769 make_node (code)
770 enum tree_code code;
771 {
772 register tree t;
773 register int type = TREE_CODE_CLASS (code);
774 register int length;
775 register struct obstack *obstack = current_obstack;
776 register int i;
777 register tree_node_kind kind;
778
779 switch (type)
780 {
781 case 'd': /* A decl node */
782 #ifdef GATHER_STATISTICS
783 kind = d_kind;
784 #endif
785 length = sizeof (struct tree_decl);
786 /* All decls in an inline function need to be saved. */
787 if (obstack != &permanent_obstack)
788 obstack = saveable_obstack;
789 /* PARM_DECLs always go on saveable_obstack, not permanent,
790 even though we may make them before the function turns
791 on temporary allocation. */
792 else if (code == PARM_DECL)
793 obstack = function_maybepermanent_obstack;
794 break;
795
796 case 't': /* a type node */
797 #ifdef GATHER_STATISTICS
798 kind = t_kind;
799 #endif
800 length = sizeof (struct tree_type);
801 /* All data types are put where we can preserve them if nec. */
802 if (obstack != &permanent_obstack)
803 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
804 break;
805
806 case 'b': /* a lexical block */
807 #ifdef GATHER_STATISTICS
808 kind = b_kind;
809 #endif
810 length = sizeof (struct tree_block);
811 /* All BLOCK nodes are put where we can preserve them if nec. */
812 if (obstack != &permanent_obstack)
813 obstack = saveable_obstack;
814 break;
815
816 case 's': /* an expression with side effects */
817 #ifdef GATHER_STATISTICS
818 kind = s_kind;
819 goto usual_kind;
820 #endif
821 case 'r': /* a reference */
822 #ifdef GATHER_STATISTICS
823 kind = r_kind;
824 goto usual_kind;
825 #endif
826 case 'e': /* an expression */
827 case '<': /* a comparison expression */
828 case '1': /* a unary arithmetic expression */
829 case '2': /* a binary arithmetic expression */
830 #ifdef GATHER_STATISTICS
831 kind = e_kind;
832 usual_kind:
833 #endif
834 obstack = expression_obstack;
835 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
836 if (code == BIND_EXPR && obstack != &permanent_obstack)
837 obstack = saveable_obstack;
838 length = sizeof (struct tree_exp)
839 + (tree_code_length[(int) code] - 1) * sizeof (char *);
840 break;
841
842 case 'c': /* a constant */
843 #ifdef GATHER_STATISTICS
844 kind = c_kind;
845 #endif
846 obstack = expression_obstack;
847
848 /* We can't use tree_code_length for INTEGER_CST, since the number of
849 words is machine-dependent due to varying length of HOST_WIDE_INT,
850 which might be wider than a pointer (e.g., long long). Similarly
851 for REAL_CST, since the number of words is machine-dependent due
852 to varying size and alignment of `double'. */
853
854 if (code == INTEGER_CST)
855 length = sizeof (struct tree_int_cst);
856 else if (code == REAL_CST)
857 length = sizeof (struct tree_real_cst);
858 else
859 length = sizeof (struct tree_common)
860 + tree_code_length[(int) code] * sizeof (char *);
861 break;
862
863 case 'x': /* something random, like an identifier. */
864 #ifdef GATHER_STATISTICS
865 if (code == IDENTIFIER_NODE)
866 kind = id_kind;
867 else if (code == OP_IDENTIFIER)
868 kind = op_id_kind;
869 else if (code == TREE_VEC)
870 kind = vec_kind;
871 else
872 kind = x_kind;
873 #endif
874 length = sizeof (struct tree_common)
875 + tree_code_length[(int) code] * sizeof (char *);
876 /* Identifier nodes are always permanent since they are
877 unique in a compiler run. */
878 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
879 }
880
881 t = (tree) obstack_alloc (obstack, length);
882
883 #ifdef GATHER_STATISTICS
884 tree_node_counts[(int)kind]++;
885 tree_node_sizes[(int)kind] += length;
886 #endif
887
888 /* Clear a word at a time. */
889 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
890 ((int *) t)[i] = 0;
891 /* Clear any extra bytes. */
892 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
893 ((char *) t)[i] = 0;
894
895 TREE_SET_CODE (t, code);
896 if (obstack == &permanent_obstack)
897 TREE_PERMANENT (t) = 1;
898
899 switch (type)
900 {
901 case 's':
902 TREE_SIDE_EFFECTS (t) = 1;
903 TREE_TYPE (t) = void_type_node;
904 break;
905
906 case 'd':
907 if (code != FUNCTION_DECL)
908 DECL_ALIGN (t) = 1;
909 DECL_IN_SYSTEM_HEADER (t)
910 = in_system_header && (obstack == &permanent_obstack);
911 DECL_SOURCE_LINE (t) = lineno;
912 DECL_SOURCE_FILE (t) = (input_filename) ? input_filename : "<built-in>";
913 DECL_UID (t) = next_decl_uid++;
914 break;
915
916 case 't':
917 {
918 static unsigned next_type_uid = 1;
919
920 TYPE_UID (t) = next_type_uid++;
921 }
922 TYPE_ALIGN (t) = 1;
923 TYPE_MAIN_VARIANT (t) = t;
924 break;
925
926 case 'c':
927 TREE_CONSTANT (t) = 1;
928 break;
929 }
930
931 return t;
932 }
933 \f
934 /* Return a new node with the same contents as NODE
935 except that its TREE_CHAIN is zero and it has a fresh uid. */
936
937 tree
938 copy_node (node)
939 tree node;
940 {
941 register tree t;
942 register enum tree_code code = TREE_CODE (node);
943 register int length;
944 register int i;
945
946 switch (TREE_CODE_CLASS (code))
947 {
948 case 'd': /* A decl node */
949 length = sizeof (struct tree_decl);
950 break;
951
952 case 't': /* a type node */
953 length = sizeof (struct tree_type);
954 break;
955
956 case 'b': /* a lexical block node */
957 length = sizeof (struct tree_block);
958 break;
959
960 case 'r': /* a reference */
961 case 'e': /* an expression */
962 case 's': /* an expression with side effects */
963 case '<': /* a comparison expression */
964 case '1': /* a unary arithmetic expression */
965 case '2': /* a binary arithmetic expression */
966 length = sizeof (struct tree_exp)
967 + (tree_code_length[(int) code] - 1) * sizeof (char *);
968 break;
969
970 case 'c': /* a constant */
971 /* We can't use tree_code_length for this, since the number of words
972 is machine-dependent due to varying alignment of `double'. */
973 if (code == REAL_CST)
974 {
975 length = sizeof (struct tree_real_cst);
976 break;
977 }
978
979 case 'x': /* something random, like an identifier. */
980 length = sizeof (struct tree_common)
981 + tree_code_length[(int) code] * sizeof (char *);
982 if (code == TREE_VEC)
983 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
984 }
985
986 t = (tree) obstack_alloc (current_obstack, length);
987
988 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
989 ((int *) t)[i] = ((int *) node)[i];
990 /* Clear any extra bytes. */
991 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
992 ((char *) t)[i] = ((char *) node)[i];
993
994 TREE_CHAIN (t) = 0;
995
996 TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
997
998 return t;
999 }
1000
1001 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1002 For example, this can copy a list made of TREE_LIST nodes. */
1003
1004 tree
1005 copy_list (list)
1006 tree list;
1007 {
1008 tree head;
1009 register tree prev, next;
1010
1011 if (list == 0)
1012 return 0;
1013
1014 head = prev = copy_node (list);
1015 next = TREE_CHAIN (list);
1016 while (next)
1017 {
1018 TREE_CHAIN (prev) = copy_node (next);
1019 prev = TREE_CHAIN (prev);
1020 next = TREE_CHAIN (next);
1021 }
1022 return head;
1023 }
1024 \f
1025 #define HASHBITS 30
1026
1027 /* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1028 If an identifier with that name has previously been referred to,
1029 the same node is returned this time. */
1030
1031 tree
1032 get_identifier (text)
1033 register char *text;
1034 {
1035 register int hi;
1036 register int i;
1037 register tree idp;
1038 register int len, hash_len;
1039
1040 /* Compute length of text in len. */
1041 for (len = 0; text[len]; len++);
1042
1043 /* Decide how much of that length to hash on */
1044 hash_len = len;
1045 if (warn_id_clash && len > id_clash_len)
1046 hash_len = id_clash_len;
1047
1048 /* Compute hash code */
1049 hi = hash_len * 613 + (unsigned)text[0];
1050 for (i = 1; i < hash_len; i += 2)
1051 hi = ((hi * 613) + (unsigned)(text[i]));
1052
1053 hi &= (1 << HASHBITS) - 1;
1054 hi %= MAX_HASH_TABLE;
1055
1056 /* Search table for identifier */
1057 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1058 if (IDENTIFIER_LENGTH (idp) == len
1059 && IDENTIFIER_POINTER (idp)[0] == text[0]
1060 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1061 return idp; /* <-- return if found */
1062
1063 /* Not found; optionally warn about a similar identifier */
1064 if (warn_id_clash && do_identifier_warnings && len >= id_clash_len)
1065 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1066 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1067 {
1068 warning ("`%s' and `%s' identical in first %d characters",
1069 IDENTIFIER_POINTER (idp), text, id_clash_len);
1070 break;
1071 }
1072
1073 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1074 abort (); /* set_identifier_size hasn't been called. */
1075
1076 /* Not found, create one, add to chain */
1077 idp = make_node (IDENTIFIER_NODE);
1078 IDENTIFIER_LENGTH (idp) = len;
1079 #ifdef GATHER_STATISTICS
1080 id_string_size += len;
1081 #endif
1082
1083 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1084
1085 TREE_CHAIN (idp) = hash_table[hi];
1086 hash_table[hi] = idp;
1087 return idp; /* <-- return if created */
1088 }
1089
1090 /* Enable warnings on similar identifiers (if requested).
1091 Done after the built-in identifiers are created. */
1092
1093 void
1094 start_identifier_warnings ()
1095 {
1096 do_identifier_warnings = 1;
1097 }
1098
1099 /* Record the size of an identifier node for the language in use.
1100 SIZE is the total size in bytes.
1101 This is called by the language-specific files. This must be
1102 called before allocating any identifiers. */
1103
1104 void
1105 set_identifier_size (size)
1106 int size;
1107 {
1108 tree_code_length[(int) IDENTIFIER_NODE]
1109 = (size - sizeof (struct tree_common)) / sizeof (tree);
1110 }
1111 \f
1112 /* Return a newly constructed INTEGER_CST node whose constant value
1113 is specified by the two ints LOW and HI.
1114 The TREE_TYPE is set to `int'.
1115
1116 This function should be used via the `build_int_2' macro. */
1117
1118 tree
1119 build_int_2_wide (low, hi)
1120 HOST_WIDE_INT low, hi;
1121 {
1122 register tree t = make_node (INTEGER_CST);
1123 TREE_INT_CST_LOW (t) = low;
1124 TREE_INT_CST_HIGH (t) = hi;
1125 TREE_TYPE (t) = integer_type_node;
1126 return t;
1127 }
1128
1129 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1130
1131 tree
1132 build_real (type, d)
1133 tree type;
1134 REAL_VALUE_TYPE d;
1135 {
1136 tree v;
1137
1138 /* Check for valid float value for this type on this target machine;
1139 if not, can print error message and store a valid value in D. */
1140 #ifdef CHECK_FLOAT_VALUE
1141 CHECK_FLOAT_VALUE (TYPE_MODE (type), d);
1142 #endif
1143
1144 v = make_node (REAL_CST);
1145 TREE_TYPE (v) = type;
1146 TREE_REAL_CST (v) = d;
1147 return v;
1148 }
1149
1150 /* Return a new REAL_CST node whose type is TYPE
1151 and whose value is the integer value of the INTEGER_CST node I. */
1152
1153 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1154
1155 REAL_VALUE_TYPE
1156 real_value_from_int_cst (i)
1157 tree i;
1158 {
1159 REAL_VALUE_TYPE d;
1160 #ifdef REAL_ARITHMETIC
1161 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i));
1162 #else /* not REAL_ARITHMETIC */
1163 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
1164 {
1165 d = (double) (~ TREE_INT_CST_HIGH (i));
1166 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1167 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1168 d += (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
1169 d = (- d - 1.0);
1170 }
1171 else
1172 {
1173 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
1174 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1175 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1176 d += (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
1177 }
1178 #endif /* not REAL_ARITHMETIC */
1179 return d;
1180 }
1181
1182 /* This function can't be implemented if we can't do arithmetic
1183 on the float representation. */
1184
1185 tree
1186 build_real_from_int_cst (type, i)
1187 tree type;
1188 tree i;
1189 {
1190 tree v;
1191 REAL_VALUE_TYPE d;
1192
1193 v = make_node (REAL_CST);
1194 TREE_TYPE (v) = type;
1195
1196 d = REAL_VALUE_TRUNCATE (TYPE_MODE (type), real_value_from_int_cst (i));
1197 /* Check for valid float value for this type on this target machine;
1198 if not, can print error message and store a valid value in D. */
1199 #ifdef CHECK_FLOAT_VALUE
1200 CHECK_FLOAT_VALUE (TYPE_MODE (type), d);
1201 #endif
1202
1203 TREE_REAL_CST (v) = d;
1204 return v;
1205 }
1206
1207 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1208
1209 /* Return a newly constructed STRING_CST node whose value is
1210 the LEN characters at STR.
1211 The TREE_TYPE is not initialized. */
1212
1213 tree
1214 build_string (len, str)
1215 int len;
1216 char *str;
1217 {
1218 register tree s = make_node (STRING_CST);
1219 TREE_STRING_LENGTH (s) = len;
1220 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1221 return s;
1222 }
1223
1224 /* Return a newly constructed COMPLEX_CST node whose value is
1225 specified by the real and imaginary parts REAL and IMAG.
1226 Both REAL and IMAG should be constant nodes.
1227 The TREE_TYPE is not initialized. */
1228
1229 tree
1230 build_complex (real, imag)
1231 tree real, imag;
1232 {
1233 register tree t = make_node (COMPLEX_CST);
1234 TREE_REALPART (t) = real;
1235 TREE_IMAGPART (t) = imag;
1236 return t;
1237 }
1238
1239 /* Build a newly constructed TREE_VEC node of length LEN. */
1240 tree
1241 make_tree_vec (len)
1242 int len;
1243 {
1244 register tree t;
1245 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1246 register struct obstack *obstack = current_obstack;
1247 register int i;
1248
1249 #ifdef GATHER_STATISTICS
1250 tree_node_counts[(int)vec_kind]++;
1251 tree_node_sizes[(int)vec_kind] += length;
1252 #endif
1253
1254 t = (tree) obstack_alloc (obstack, length);
1255
1256 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1257 ((int *) t)[i] = 0;
1258
1259 TREE_SET_CODE (t, TREE_VEC);
1260 TREE_VEC_LENGTH (t) = len;
1261 if (obstack == &permanent_obstack)
1262 TREE_PERMANENT (t) = 1;
1263
1264 return t;
1265 }
1266 \f
1267 /* Return 1 if EXPR is the integer constant zero. */
1268
1269 int
1270 integer_zerop (expr)
1271 tree expr;
1272 {
1273 STRIP_NOPS (expr);
1274
1275 return (TREE_CODE (expr) == INTEGER_CST
1276 && TREE_INT_CST_LOW (expr) == 0
1277 && TREE_INT_CST_HIGH (expr) == 0);
1278 }
1279
1280 /* Return 1 if EXPR is the integer constant one. */
1281
1282 int
1283 integer_onep (expr)
1284 tree expr;
1285 {
1286 STRIP_NOPS (expr);
1287
1288 return (TREE_CODE (expr) == INTEGER_CST
1289 && TREE_INT_CST_LOW (expr) == 1
1290 && TREE_INT_CST_HIGH (expr) == 0);
1291 }
1292
1293 /* Return 1 if EXPR is an integer containing all 1's
1294 in as much precision as it contains. */
1295
1296 int
1297 integer_all_onesp (expr)
1298 tree expr;
1299 {
1300 register int prec;
1301 register int uns;
1302
1303 STRIP_NOPS (expr);
1304
1305 if (TREE_CODE (expr) != INTEGER_CST)
1306 return 0;
1307
1308 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1309 if (!uns)
1310 return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
1311
1312 prec = TYPE_PRECISION (TREE_TYPE (expr));
1313 if (prec >= HOST_BITS_PER_WIDE_INT)
1314 {
1315 int high_value, shift_amount;
1316
1317 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1318
1319 if (shift_amount > HOST_BITS_PER_WIDE_INT)
1320 /* Can not handle precisions greater than twice the host int size. */
1321 abort ();
1322 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
1323 /* Shifting by the host word size is undefined according to the ANSI
1324 standard, so we must handle this as a special case. */
1325 high_value = -1;
1326 else
1327 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1328
1329 return TREE_INT_CST_LOW (expr) == -1
1330 && TREE_INT_CST_HIGH (expr) == high_value;
1331 }
1332 else
1333 return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
1334 }
1335
1336 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1337 one bit on). */
1338
1339 int
1340 integer_pow2p (expr)
1341 tree expr;
1342 {
1343 HOST_WIDE_INT high, low;
1344
1345 STRIP_NOPS (expr);
1346
1347 if (TREE_CODE (expr) != INTEGER_CST)
1348 return 0;
1349
1350 high = TREE_INT_CST_HIGH (expr);
1351 low = TREE_INT_CST_LOW (expr);
1352
1353 if (high == 0 && low == 0)
1354 return 0;
1355
1356 return ((high == 0 && (low & (low - 1)) == 0)
1357 || (low == 0 && (high & (high - 1)) == 0));
1358 }
1359
1360 /* Return 1 if EXPR is the real constant zero. */
1361
1362 int
1363 real_zerop (expr)
1364 tree expr;
1365 {
1366 STRIP_NOPS (expr);
1367
1368 return (TREE_CODE (expr) == REAL_CST
1369 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0));
1370 }
1371
1372 /* Return 1 if EXPR is the real constant one. */
1373
1374 int
1375 real_onep (expr)
1376 tree expr;
1377 {
1378 STRIP_NOPS (expr);
1379
1380 return (TREE_CODE (expr) == REAL_CST
1381 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1));
1382 }
1383
1384 /* Return 1 if EXPR is the real constant two. */
1385
1386 int
1387 real_twop (expr)
1388 tree expr;
1389 {
1390 STRIP_NOPS (expr);
1391
1392 return (TREE_CODE (expr) == REAL_CST
1393 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2));
1394 }
1395
1396 /* Nonzero if EXP is a constant or a cast of a constant. */
1397
1398 int
1399 really_constant_p (exp)
1400 tree exp;
1401 {
1402 /* This is not quite the same as STRIP_NOPS. It does more. */
1403 while (TREE_CODE (exp) == NOP_EXPR
1404 || TREE_CODE (exp) == CONVERT_EXPR
1405 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1406 exp = TREE_OPERAND (exp, 0);
1407 return TREE_CONSTANT (exp);
1408 }
1409 \f
1410 /* Return first list element whose TREE_VALUE is ELEM.
1411 Return 0 if ELEM is not it LIST. */
1412
1413 tree
1414 value_member (elem, list)
1415 tree elem, list;
1416 {
1417 while (list)
1418 {
1419 if (elem == TREE_VALUE (list))
1420 return list;
1421 list = TREE_CHAIN (list);
1422 }
1423 return NULL_TREE;
1424 }
1425
1426 /* Return first list element whose TREE_PURPOSE is ELEM.
1427 Return 0 if ELEM is not it LIST. */
1428
1429 tree
1430 purpose_member (elem, list)
1431 tree elem, list;
1432 {
1433 while (list)
1434 {
1435 if (elem == TREE_PURPOSE (list))
1436 return list;
1437 list = TREE_CHAIN (list);
1438 }
1439 return NULL_TREE;
1440 }
1441
1442 /* Return first list element whose BINFO_TYPE is ELEM.
1443 Return 0 if ELEM is not it LIST. */
1444
1445 tree
1446 binfo_member (elem, list)
1447 tree elem, list;
1448 {
1449 while (list)
1450 {
1451 if (elem == BINFO_TYPE (list))
1452 return list;
1453 list = TREE_CHAIN (list);
1454 }
1455 return NULL_TREE;
1456 }
1457
1458 /* Return nonzero if ELEM is part of the chain CHAIN. */
1459
1460 int
1461 chain_member (elem, chain)
1462 tree elem, chain;
1463 {
1464 while (chain)
1465 {
1466 if (elem == chain)
1467 return 1;
1468 chain = TREE_CHAIN (chain);
1469 }
1470
1471 return 0;
1472 }
1473
1474 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1475 We expect a null pointer to mark the end of the chain.
1476 This is the Lisp primitive `length'. */
1477
1478 int
1479 list_length (t)
1480 tree t;
1481 {
1482 register tree tail;
1483 register int len = 0;
1484
1485 for (tail = t; tail; tail = TREE_CHAIN (tail))
1486 len++;
1487
1488 return len;
1489 }
1490
1491 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1492 by modifying the last node in chain 1 to point to chain 2.
1493 This is the Lisp primitive `nconc'. */
1494
1495 tree
1496 chainon (op1, op2)
1497 tree op1, op2;
1498 {
1499 tree t;
1500
1501 if (op1)
1502 {
1503 for (t = op1; TREE_CHAIN (t); t = TREE_CHAIN (t))
1504 if (t == op2) abort (); /* Circularity being created */
1505 if (t == op2) abort (); /* Circularity being created */
1506 TREE_CHAIN (t) = op2;
1507 return op1;
1508 }
1509 else return op2;
1510 }
1511
1512 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1513
1514 tree
1515 tree_last (chain)
1516 register tree chain;
1517 {
1518 register tree next;
1519 if (chain)
1520 while (next = TREE_CHAIN (chain))
1521 chain = next;
1522 return chain;
1523 }
1524
1525 /* Reverse the order of elements in the chain T,
1526 and return the new head of the chain (old last element). */
1527
1528 tree
1529 nreverse (t)
1530 tree t;
1531 {
1532 register tree prev = 0, decl, next;
1533 for (decl = t; decl; decl = next)
1534 {
1535 next = TREE_CHAIN (decl);
1536 TREE_CHAIN (decl) = prev;
1537 prev = decl;
1538 }
1539 return prev;
1540 }
1541
1542 /* Given a chain CHAIN of tree nodes,
1543 construct and return a list of those nodes. */
1544
1545 tree
1546 listify (chain)
1547 tree chain;
1548 {
1549 tree result = NULL_TREE;
1550 tree in_tail = chain;
1551 tree out_tail = NULL_TREE;
1552
1553 while (in_tail)
1554 {
1555 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1556 if (out_tail)
1557 TREE_CHAIN (out_tail) = next;
1558 else
1559 result = next;
1560 out_tail = next;
1561 in_tail = TREE_CHAIN (in_tail);
1562 }
1563
1564 return result;
1565 }
1566 \f
1567 /* Return a newly created TREE_LIST node whose
1568 purpose and value fields are PARM and VALUE. */
1569
1570 tree
1571 build_tree_list (parm, value)
1572 tree parm, value;
1573 {
1574 register tree t = make_node (TREE_LIST);
1575 TREE_PURPOSE (t) = parm;
1576 TREE_VALUE (t) = value;
1577 return t;
1578 }
1579
1580 /* Similar, but build on the temp_decl_obstack. */
1581
1582 tree
1583 build_decl_list (parm, value)
1584 tree parm, value;
1585 {
1586 register tree node;
1587 register struct obstack *ambient_obstack = current_obstack;
1588 current_obstack = &temp_decl_obstack;
1589 node = build_tree_list (parm, value);
1590 current_obstack = ambient_obstack;
1591 return node;
1592 }
1593
1594 /* Return a newly created TREE_LIST node whose
1595 purpose and value fields are PARM and VALUE
1596 and whose TREE_CHAIN is CHAIN. */
1597
1598 tree
1599 tree_cons (purpose, value, chain)
1600 tree purpose, value, chain;
1601 {
1602 #if 0
1603 register tree node = make_node (TREE_LIST);
1604 #else
1605 register int i;
1606 register tree node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
1607 #ifdef GATHER_STATISTICS
1608 tree_node_counts[(int)x_kind]++;
1609 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
1610 #endif
1611
1612 for (i = (sizeof (struct tree_common) / sizeof (int)) - 1; i >= 0; i--)
1613 ((int *) node)[i] = 0;
1614
1615 TREE_SET_CODE (node, TREE_LIST);
1616 if (current_obstack == &permanent_obstack)
1617 TREE_PERMANENT (node) = 1;
1618 #endif
1619
1620 TREE_CHAIN (node) = chain;
1621 TREE_PURPOSE (node) = purpose;
1622 TREE_VALUE (node) = value;
1623 return node;
1624 }
1625
1626 /* Similar, but build on the temp_decl_obstack. */
1627
1628 tree
1629 decl_tree_cons (purpose, value, chain)
1630 tree purpose, value, chain;
1631 {
1632 register tree node;
1633 register struct obstack *ambient_obstack = current_obstack;
1634 current_obstack = &temp_decl_obstack;
1635 node = tree_cons (purpose, value, chain);
1636 current_obstack = ambient_obstack;
1637 return node;
1638 }
1639
1640 /* Same as `tree_cons' but make a permanent object. */
1641
1642 tree
1643 perm_tree_cons (purpose, value, chain)
1644 tree purpose, value, chain;
1645 {
1646 register tree node;
1647 register struct obstack *ambient_obstack = current_obstack;
1648 current_obstack = &permanent_obstack;
1649
1650 node = tree_cons (purpose, value, chain);
1651 current_obstack = ambient_obstack;
1652 return node;
1653 }
1654
1655 /* Same as `tree_cons', but make this node temporary, regardless. */
1656
1657 tree
1658 temp_tree_cons (purpose, value, chain)
1659 tree purpose, value, chain;
1660 {
1661 register tree node;
1662 register struct obstack *ambient_obstack = current_obstack;
1663 current_obstack = &temporary_obstack;
1664
1665 node = tree_cons (purpose, value, chain);
1666 current_obstack = ambient_obstack;
1667 return node;
1668 }
1669
1670 /* Same as `tree_cons', but save this node if the function's RTL is saved. */
1671
1672 tree
1673 saveable_tree_cons (purpose, value, chain)
1674 tree purpose, value, chain;
1675 {
1676 register tree node;
1677 register struct obstack *ambient_obstack = current_obstack;
1678 current_obstack = saveable_obstack;
1679
1680 node = tree_cons (purpose, value, chain);
1681 current_obstack = ambient_obstack;
1682 return node;
1683 }
1684 \f
1685 /* Return the size nominally occupied by an object of type TYPE
1686 when it resides in memory. The value is measured in units of bytes,
1687 and its data type is that normally used for type sizes
1688 (which is the first type created by make_signed_type or
1689 make_unsigned_type). */
1690
1691 tree
1692 size_in_bytes (type)
1693 tree type;
1694 {
1695 tree t;
1696
1697 if (type == error_mark_node)
1698 return integer_zero_node;
1699 type = TYPE_MAIN_VARIANT (type);
1700 if (TYPE_SIZE (type) == 0)
1701 {
1702 incomplete_type_error (NULL_TREE, type);
1703 return integer_zero_node;
1704 }
1705 t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
1706 size_int (BITS_PER_UNIT));
1707 force_fit_type (t);
1708 return t;
1709 }
1710
1711 /* Return the size of TYPE (in bytes) as an integer,
1712 or return -1 if the size can vary. */
1713
1714 int
1715 int_size_in_bytes (type)
1716 tree type;
1717 {
1718 unsigned int size;
1719 if (type == error_mark_node)
1720 return 0;
1721 type = TYPE_MAIN_VARIANT (type);
1722 if (TYPE_SIZE (type) == 0)
1723 return -1;
1724 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1725 return -1;
1726 if (TREE_INT_CST_HIGH (TYPE_SIZE (type)) != 0)
1727 {
1728 tree t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
1729 size_int (BITS_PER_UNIT));
1730 return TREE_INT_CST_LOW (t);
1731 }
1732 size = TREE_INT_CST_LOW (TYPE_SIZE (type));
1733 return (size + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
1734 }
1735
1736 /* Return, as an INTEGER_CST node, the number of elements for
1737 TYPE (which is an ARRAY_TYPE) minus one.
1738 This counts only elements of the top array. */
1739
1740 tree
1741 array_type_nelts (type)
1742 tree type;
1743 {
1744 tree index_type = TYPE_DOMAIN (type);
1745 return (tree_int_cst_equal (TYPE_MIN_VALUE (index_type), integer_zero_node)
1746 ? TYPE_MAX_VALUE (index_type)
1747 : fold (build (MINUS_EXPR, integer_type_node,
1748 TYPE_MAX_VALUE (index_type),
1749 TYPE_MIN_VALUE (index_type))));
1750 }
1751 \f
1752 /* Return nonzero if arg is static -- a reference to an object in
1753 static storage. This is not the same as the C meaning of `static'. */
1754
1755 int
1756 staticp (arg)
1757 tree arg;
1758 {
1759 switch (TREE_CODE (arg))
1760 {
1761 case VAR_DECL:
1762 case FUNCTION_DECL:
1763 case CONSTRUCTOR:
1764 return TREE_STATIC (arg) || DECL_EXTERNAL (arg);
1765
1766 case STRING_CST:
1767 return 1;
1768
1769 case COMPONENT_REF:
1770 case BIT_FIELD_REF:
1771 return staticp (TREE_OPERAND (arg, 0));
1772
1773 case INDIRECT_REF:
1774 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1775
1776 case ARRAY_REF:
1777 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1778 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1779 return staticp (TREE_OPERAND (arg, 0));
1780 }
1781
1782 return 0;
1783 }
1784 \f
1785 /* This should be applied to any node which may be used in more than one place,
1786 but must be evaluated only once. Normally, the code generator would
1787 reevaluate the node each time; this forces it to compute it once and save
1788 the result. This is done by encapsulating the node in a SAVE_EXPR. */
1789
1790 tree
1791 save_expr (expr)
1792 tree expr;
1793 {
1794 register tree t = fold (expr);
1795
1796 /* We don't care about whether this can be used as an lvalue in this
1797 context. */
1798 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1799 t = TREE_OPERAND (t, 0);
1800
1801 /* If the tree evaluates to a constant, then we don't want to hide that
1802 fact (i.e. this allows further folding, and direct checks for constants).
1803 However, a read-only object that has side effects cannot be bypassed.
1804 Since it is no problem to reevaluate literals, we just return the
1805 literal node. */
1806
1807 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
1808 || TREE_CODE (t) == SAVE_EXPR)
1809 return t;
1810
1811 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1812
1813 /* This expression might be placed ahead of a jump to ensure that the
1814 value was computed on both sides of the jump. So make sure it isn't
1815 eliminated as dead. */
1816 TREE_SIDE_EFFECTS (t) = 1;
1817 return t;
1818 }
1819
1820 /* Stabilize a reference so that we can use it any number of times
1821 without causing its operands to be evaluated more than once.
1822 Returns the stabilized reference.
1823
1824 Also allows conversion expressions whose operands are references.
1825 Any other kind of expression is returned unchanged. */
1826
1827 tree
1828 stabilize_reference (ref)
1829 tree ref;
1830 {
1831 register tree result;
1832 register enum tree_code code = TREE_CODE (ref);
1833
1834 switch (code)
1835 {
1836 case VAR_DECL:
1837 case PARM_DECL:
1838 case RESULT_DECL:
1839 /* No action is needed in this case. */
1840 return ref;
1841
1842 case NOP_EXPR:
1843 case CONVERT_EXPR:
1844 case FLOAT_EXPR:
1845 case FIX_TRUNC_EXPR:
1846 case FIX_FLOOR_EXPR:
1847 case FIX_ROUND_EXPR:
1848 case FIX_CEIL_EXPR:
1849 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
1850 break;
1851
1852 case INDIRECT_REF:
1853 result = build_nt (INDIRECT_REF,
1854 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
1855 break;
1856
1857 case COMPONENT_REF:
1858 result = build_nt (COMPONENT_REF,
1859 stabilize_reference (TREE_OPERAND (ref, 0)),
1860 TREE_OPERAND (ref, 1));
1861 break;
1862
1863 case BIT_FIELD_REF:
1864 result = build_nt (BIT_FIELD_REF,
1865 stabilize_reference (TREE_OPERAND (ref, 0)),
1866 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
1867 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
1868 break;
1869
1870 case ARRAY_REF:
1871 result = build_nt (ARRAY_REF,
1872 stabilize_reference (TREE_OPERAND (ref, 0)),
1873 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
1874 break;
1875
1876 /* If arg isn't a kind of lvalue we recognize, make no change.
1877 Caller should recognize the error for an invalid lvalue. */
1878 default:
1879 return ref;
1880
1881 case ERROR_MARK:
1882 return error_mark_node;
1883 }
1884
1885 TREE_TYPE (result) = TREE_TYPE (ref);
1886 TREE_READONLY (result) = TREE_READONLY (ref);
1887 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
1888 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
1889 TREE_RAISES (result) = TREE_RAISES (ref);
1890
1891 return result;
1892 }
1893
1894 /* Subroutine of stabilize_reference; this is called for subtrees of
1895 references. Any expression with side-effects must be put in a SAVE_EXPR
1896 to ensure that it is only evaluated once.
1897
1898 We don't put SAVE_EXPR nodes around everything, because assigning very
1899 simple expressions to temporaries causes us to miss good opportunities
1900 for optimizations. Among other things, the opportunity to fold in the
1901 addition of a constant into an addressing mode often gets lost, e.g.
1902 "y[i+1] += x;". In general, we take the approach that we should not make
1903 an assignment unless we are forced into it - i.e., that any non-side effect
1904 operator should be allowed, and that cse should take care of coalescing
1905 multiple utterances of the same expression should that prove fruitful. */
1906
1907 static tree
1908 stabilize_reference_1 (e)
1909 tree e;
1910 {
1911 register tree result;
1912 register int length;
1913 register enum tree_code code = TREE_CODE (e);
1914
1915 /* We cannot ignore const expressions because it might be a reference
1916 to a const array but whose index contains side-effects. But we can
1917 ignore things that are actual constant or that already have been
1918 handled by this function. */
1919
1920 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
1921 return e;
1922
1923 switch (TREE_CODE_CLASS (code))
1924 {
1925 case 'x':
1926 case 't':
1927 case 'd':
1928 case 'b':
1929 case '<':
1930 case 's':
1931 case 'e':
1932 case 'r':
1933 /* If the expression has side-effects, then encase it in a SAVE_EXPR
1934 so that it will only be evaluated once. */
1935 /* The reference (r) and comparison (<) classes could be handled as
1936 below, but it is generally faster to only evaluate them once. */
1937 if (TREE_SIDE_EFFECTS (e))
1938 return save_expr (e);
1939 return e;
1940
1941 case 'c':
1942 /* Constants need no processing. In fact, we should never reach
1943 here. */
1944 return e;
1945
1946 case '2':
1947 /* Recursively stabilize each operand. */
1948 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
1949 stabilize_reference_1 (TREE_OPERAND (e, 1)));
1950 break;
1951
1952 case '1':
1953 /* Recursively stabilize each operand. */
1954 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
1955 break;
1956 }
1957
1958 TREE_TYPE (result) = TREE_TYPE (e);
1959 TREE_READONLY (result) = TREE_READONLY (e);
1960 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
1961 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
1962 TREE_RAISES (result) = TREE_RAISES (e);
1963
1964 return result;
1965 }
1966 \f
1967 /* Low-level constructors for expressions. */
1968
1969 /* Build an expression of code CODE, data type TYPE,
1970 and operands as specified by the arguments ARG1 and following arguments.
1971 Expressions and reference nodes can be created this way.
1972 Constants, decls, types and misc nodes cannot be. */
1973
1974 tree
1975 build (va_alist)
1976 va_dcl
1977 {
1978 va_list p;
1979 enum tree_code code;
1980 register tree t;
1981 register int length;
1982 register int i;
1983
1984 va_start (p);
1985
1986 code = va_arg (p, enum tree_code);
1987 t = make_node (code);
1988 length = tree_code_length[(int) code];
1989 TREE_TYPE (t) = va_arg (p, tree);
1990
1991 if (length == 2)
1992 {
1993 /* This is equivalent to the loop below, but faster. */
1994 register tree arg0 = va_arg (p, tree);
1995 register tree arg1 = va_arg (p, tree);
1996 TREE_OPERAND (t, 0) = arg0;
1997 TREE_OPERAND (t, 1) = arg1;
1998 if ((arg0 && TREE_SIDE_EFFECTS (arg0))
1999 || (arg1 && TREE_SIDE_EFFECTS (arg1)))
2000 TREE_SIDE_EFFECTS (t) = 1;
2001 TREE_RAISES (t)
2002 = (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
2003 }
2004 else if (length == 1)
2005 {
2006 register tree arg0 = va_arg (p, tree);
2007
2008 /* Call build1 for this! */
2009 if (TREE_CODE_CLASS (code) != 's')
2010 abort ();
2011 TREE_OPERAND (t, 0) = arg0;
2012 if (arg0 && TREE_SIDE_EFFECTS (arg0))
2013 TREE_SIDE_EFFECTS (t) = 1;
2014 TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
2015 }
2016 else
2017 {
2018 for (i = 0; i < length; i++)
2019 {
2020 register tree operand = va_arg (p, tree);
2021 TREE_OPERAND (t, i) = operand;
2022 if (operand)
2023 {
2024 if (TREE_SIDE_EFFECTS (operand))
2025 TREE_SIDE_EFFECTS (t) = 1;
2026 if (TREE_RAISES (operand))
2027 TREE_RAISES (t) = 1;
2028 }
2029 }
2030 }
2031 va_end (p);
2032 return t;
2033 }
2034
2035 /* Same as above, but only builds for unary operators.
2036 Saves lions share of calls to `build'; cuts down use
2037 of varargs, which is expensive for RISC machines. */
2038 tree
2039 build1 (code, type, node)
2040 enum tree_code code;
2041 tree type;
2042 tree node;
2043 {
2044 register struct obstack *obstack = current_obstack;
2045 register int i, length;
2046 register tree_node_kind kind;
2047 register tree t;
2048
2049 #ifdef GATHER_STATISTICS
2050 if (TREE_CODE_CLASS (code) == 'r')
2051 kind = r_kind;
2052 else
2053 kind = e_kind;
2054 #endif
2055
2056 obstack = expression_obstack;
2057 length = sizeof (struct tree_exp);
2058
2059 t = (tree) obstack_alloc (obstack, length);
2060
2061 #ifdef GATHER_STATISTICS
2062 tree_node_counts[(int)kind]++;
2063 tree_node_sizes[(int)kind] += length;
2064 #endif
2065
2066 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
2067 ((int *) t)[i] = 0;
2068
2069 TREE_TYPE (t) = type;
2070 TREE_SET_CODE (t, code);
2071
2072 if (obstack == &permanent_obstack)
2073 TREE_PERMANENT (t) = 1;
2074
2075 TREE_OPERAND (t, 0) = node;
2076 if (node)
2077 {
2078 if (TREE_SIDE_EFFECTS (node))
2079 TREE_SIDE_EFFECTS (t) = 1;
2080 if (TREE_RAISES (node))
2081 TREE_RAISES (t) = 1;
2082 }
2083
2084 return t;
2085 }
2086
2087 /* Similar except don't specify the TREE_TYPE
2088 and leave the TREE_SIDE_EFFECTS as 0.
2089 It is permissible for arguments to be null,
2090 or even garbage if their values do not matter. */
2091
2092 tree
2093 build_nt (va_alist)
2094 va_dcl
2095 {
2096 va_list p;
2097 register enum tree_code code;
2098 register tree t;
2099 register int length;
2100 register int i;
2101
2102 va_start (p);
2103
2104 code = va_arg (p, enum tree_code);
2105 t = make_node (code);
2106 length = tree_code_length[(int) code];
2107
2108 for (i = 0; i < length; i++)
2109 TREE_OPERAND (t, i) = va_arg (p, tree);
2110
2111 va_end (p);
2112 return t;
2113 }
2114
2115 /* Similar to `build_nt', except we build
2116 on the temp_decl_obstack, regardless. */
2117
2118 tree
2119 build_parse_node (va_alist)
2120 va_dcl
2121 {
2122 register struct obstack *ambient_obstack = expression_obstack;
2123 va_list p;
2124 register enum tree_code code;
2125 register tree t;
2126 register int length;
2127 register int i;
2128
2129 expression_obstack = &temp_decl_obstack;
2130
2131 va_start (p);
2132
2133 code = va_arg (p, enum tree_code);
2134 t = make_node (code);
2135 length = tree_code_length[(int) code];
2136
2137 for (i = 0; i < length; i++)
2138 TREE_OPERAND (t, i) = va_arg (p, tree);
2139
2140 va_end (p);
2141 expression_obstack = ambient_obstack;
2142 return t;
2143 }
2144
2145 #if 0
2146 /* Commented out because this wants to be done very
2147 differently. See cp-lex.c. */
2148 tree
2149 build_op_identifier (op1, op2)
2150 tree op1, op2;
2151 {
2152 register tree t = make_node (OP_IDENTIFIER);
2153 TREE_PURPOSE (t) = op1;
2154 TREE_VALUE (t) = op2;
2155 return t;
2156 }
2157 #endif
2158 \f
2159 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2160 We do NOT enter this node in any sort of symbol table.
2161
2162 layout_decl is used to set up the decl's storage layout.
2163 Other slots are initialized to 0 or null pointers. */
2164
2165 tree
2166 build_decl (code, name, type)
2167 enum tree_code code;
2168 tree name, type;
2169 {
2170 register tree t;
2171
2172 t = make_node (code);
2173
2174 /* if (type == error_mark_node)
2175 type = integer_type_node; */
2176 /* That is not done, deliberately, so that having error_mark_node
2177 as the type can suppress useless errors in the use of this variable. */
2178
2179 DECL_NAME (t) = name;
2180 DECL_ASSEMBLER_NAME (t) = name;
2181 TREE_TYPE (t) = type;
2182
2183 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2184 layout_decl (t, 0);
2185 else if (code == FUNCTION_DECL)
2186 DECL_MODE (t) = FUNCTION_MODE;
2187
2188 return t;
2189 }
2190 \f
2191 /* BLOCK nodes are used to represent the structure of binding contours
2192 and declarations, once those contours have been exited and their contents
2193 compiled. This information is used for outputting debugging info. */
2194
2195 tree
2196 build_block (vars, tags, subblocks, supercontext, chain)
2197 tree vars, tags, subblocks, supercontext, chain;
2198 {
2199 register tree block = make_node (BLOCK);
2200 BLOCK_VARS (block) = vars;
2201 BLOCK_TYPE_TAGS (block) = tags;
2202 BLOCK_SUBBLOCKS (block) = subblocks;
2203 BLOCK_SUPERCONTEXT (block) = supercontext;
2204 BLOCK_CHAIN (block) = chain;
2205 return block;
2206 }
2207 \f
2208 /* Return a type like TYPE except that its TYPE_READONLY is CONSTP
2209 and its TYPE_VOLATILE is VOLATILEP.
2210
2211 Such variant types already made are recorded so that duplicates
2212 are not made.
2213
2214 A variant types should never be used as the type of an expression.
2215 Always copy the variant information into the TREE_READONLY
2216 and TREE_THIS_VOLATILE of the expression, and then give the expression
2217 as its type the "main variant", the variant whose TYPE_READONLY
2218 and TYPE_VOLATILE are zero. Use TYPE_MAIN_VARIANT to find the
2219 main variant. */
2220
2221 tree
2222 build_type_variant (type, constp, volatilep)
2223 tree type;
2224 int constp, volatilep;
2225 {
2226 register tree t, m = TYPE_MAIN_VARIANT (type);
2227 register struct obstack *ambient_obstack = current_obstack;
2228
2229 /* Treat any nonzero argument as 1. */
2230 constp = !!constp;
2231 volatilep = !!volatilep;
2232
2233 /* If not generating auxiliary info, search the chain of variants to see
2234 if there is already one there just like the one we need to have. If so,
2235 use that existing one.
2236
2237 We don't do this in the case where we are generating aux info because
2238 in that case we want each typedef names to get it's own distinct type
2239 node, even if the type of this new typedef is the same as some other
2240 (existing) type. */
2241
2242 if (!flag_gen_aux_info)
2243 for (t = m; t; t = TYPE_NEXT_VARIANT (t))
2244 if (constp == TYPE_READONLY (t) && volatilep == TYPE_VOLATILE (t))
2245 return t;
2246
2247 /* We need a new one. */
2248 current_obstack
2249 = TREE_PERMANENT (type) ? &permanent_obstack : saveable_obstack;
2250
2251 t = copy_node (type);
2252 TYPE_READONLY (t) = constp;
2253 TYPE_VOLATILE (t) = volatilep;
2254 TYPE_POINTER_TO (t) = 0;
2255 TYPE_REFERENCE_TO (t) = 0;
2256
2257 /* Add this type to the chain of variants of TYPE. */
2258 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2259 TYPE_NEXT_VARIANT (m) = t;
2260
2261 current_obstack = ambient_obstack;
2262 return t;
2263 }
2264
2265 /* Create a new variant of TYPE, equivalent but distinct.
2266 This is so the caller can modify it. */
2267
2268 tree
2269 build_type_copy (type)
2270 tree type;
2271 {
2272 register tree t, m = TYPE_MAIN_VARIANT (type);
2273 register struct obstack *ambient_obstack = current_obstack;
2274
2275 current_obstack
2276 = TREE_PERMANENT (type) ? &permanent_obstack : saveable_obstack;
2277
2278 t = copy_node (type);
2279 TYPE_POINTER_TO (t) = 0;
2280 TYPE_REFERENCE_TO (t) = 0;
2281
2282 /* Add this type to the chain of variants of TYPE. */
2283 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2284 TYPE_NEXT_VARIANT (m) = t;
2285
2286 current_obstack = ambient_obstack;
2287 return t;
2288 }
2289 \f
2290 /* Hashing of types so that we don't make duplicates.
2291 The entry point is `type_hash_canon'. */
2292
2293 /* Each hash table slot is a bucket containing a chain
2294 of these structures. */
2295
2296 struct type_hash
2297 {
2298 struct type_hash *next; /* Next structure in the bucket. */
2299 int hashcode; /* Hash code of this type. */
2300 tree type; /* The type recorded here. */
2301 };
2302
2303 /* Now here is the hash table. When recording a type, it is added
2304 to the slot whose index is the hash code mod the table size.
2305 Note that the hash table is used for several kinds of types
2306 (function types, array types and array index range types, for now).
2307 While all these live in the same table, they are completely independent,
2308 and the hash code is computed differently for each of these. */
2309
2310 #define TYPE_HASH_SIZE 59
2311 struct type_hash *type_hash_table[TYPE_HASH_SIZE];
2312
2313 /* Here is how primitive or already-canonicalized types' hash
2314 codes are made. */
2315 #define TYPE_HASH(TYPE) ((HOST_WIDE_INT) (TYPE) & 0777777)
2316
2317 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2318 with types in the TREE_VALUE slots), by adding the hash codes
2319 of the individual types. */
2320
2321 int
2322 type_hash_list (list)
2323 tree list;
2324 {
2325 register int hashcode;
2326 register tree tail;
2327 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2328 hashcode += TYPE_HASH (TREE_VALUE (tail));
2329 return hashcode;
2330 }
2331
2332 /* Look in the type hash table for a type isomorphic to TYPE.
2333 If one is found, return it. Otherwise return 0. */
2334
2335 tree
2336 type_hash_lookup (hashcode, type)
2337 int hashcode;
2338 tree type;
2339 {
2340 register struct type_hash *h;
2341 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
2342 if (h->hashcode == hashcode
2343 && TREE_CODE (h->type) == TREE_CODE (type)
2344 && TREE_TYPE (h->type) == TREE_TYPE (type)
2345 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
2346 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
2347 TYPE_MAX_VALUE (type)))
2348 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
2349 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
2350 TYPE_MIN_VALUE (type)))
2351 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
2352 || (TYPE_DOMAIN (h->type)
2353 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
2354 && TYPE_DOMAIN (type)
2355 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
2356 && type_list_equal (TYPE_DOMAIN (h->type), TYPE_DOMAIN (type)))))
2357 return h->type;
2358 return 0;
2359 }
2360
2361 /* Add an entry to the type-hash-table
2362 for a type TYPE whose hash code is HASHCODE. */
2363
2364 void
2365 type_hash_add (hashcode, type)
2366 int hashcode;
2367 tree type;
2368 {
2369 register struct type_hash *h;
2370
2371 h = (struct type_hash *) oballoc (sizeof (struct type_hash));
2372 h->hashcode = hashcode;
2373 h->type = type;
2374 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
2375 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
2376 }
2377
2378 /* Given TYPE, and HASHCODE its hash code, return the canonical
2379 object for an identical type if one already exists.
2380 Otherwise, return TYPE, and record it as the canonical object
2381 if it is a permanent object.
2382
2383 To use this function, first create a type of the sort you want.
2384 Then compute its hash code from the fields of the type that
2385 make it different from other similar types.
2386 Then call this function and use the value.
2387 This function frees the type you pass in if it is a duplicate. */
2388
2389 /* Set to 1 to debug without canonicalization. Never set by program. */
2390 int debug_no_type_hash = 0;
2391
2392 tree
2393 type_hash_canon (hashcode, type)
2394 int hashcode;
2395 tree type;
2396 {
2397 tree t1;
2398
2399 if (debug_no_type_hash)
2400 return type;
2401
2402 t1 = type_hash_lookup (hashcode, type);
2403 if (t1 != 0)
2404 {
2405 struct obstack *o
2406 = TREE_PERMANENT (type) ? &permanent_obstack : saveable_obstack;
2407 obstack_free (o, type);
2408 #ifdef GATHER_STATISTICS
2409 tree_node_counts[(int)t_kind]--;
2410 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
2411 #endif
2412 return t1;
2413 }
2414
2415 /* If this is a new type, record it for later reuse. */
2416 if (current_obstack == &permanent_obstack)
2417 type_hash_add (hashcode, type);
2418
2419 return type;
2420 }
2421
2422 /* Given two lists of types
2423 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
2424 return 1 if the lists contain the same types in the same order.
2425 Also, the TREE_PURPOSEs must match. */
2426
2427 int
2428 type_list_equal (l1, l2)
2429 tree l1, l2;
2430 {
2431 register tree t1, t2;
2432 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
2433 {
2434 if (TREE_VALUE (t1) != TREE_VALUE (t2))
2435 return 0;
2436 if (TREE_PURPOSE (t1) != TREE_PURPOSE (t2))
2437 {
2438 int cmp = simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2));
2439 if (cmp < 0)
2440 abort ();
2441 if (cmp == 0)
2442 return 0;
2443 }
2444 }
2445
2446 return t1 == t2;
2447 }
2448
2449 /* Nonzero if integer constants T1 and T2
2450 represent the same constant value. */
2451
2452 int
2453 tree_int_cst_equal (t1, t2)
2454 tree t1, t2;
2455 {
2456 if (t1 == t2)
2457 return 1;
2458 if (t1 == 0 || t2 == 0)
2459 return 0;
2460 if (TREE_CODE (t1) == INTEGER_CST
2461 && TREE_CODE (t2) == INTEGER_CST
2462 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
2463 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
2464 return 1;
2465 return 0;
2466 }
2467
2468 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
2469 The precise way of comparison depends on their data type. */
2470
2471 int
2472 tree_int_cst_lt (t1, t2)
2473 tree t1, t2;
2474 {
2475 if (t1 == t2)
2476 return 0;
2477
2478 if (!TREE_UNSIGNED (TREE_TYPE (t1)))
2479 return INT_CST_LT (t1, t2);
2480 return INT_CST_LT_UNSIGNED (t1, t2);
2481 }
2482
2483 /* Compare two constructor-element-type constants. */
2484 int
2485 simple_cst_list_equal (l1, l2)
2486 tree l1, l2;
2487 {
2488 while (l1 != NULL_TREE && l2 != NULL_TREE)
2489 {
2490 int cmp = simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2));
2491 if (cmp < 0)
2492 abort ();
2493 if (cmp == 0)
2494 return 0;
2495 l1 = TREE_CHAIN (l1);
2496 l2 = TREE_CHAIN (l2);
2497 }
2498 return (l1 == l2);
2499 }
2500
2501 /* Return truthvalue of whether T1 is the same tree structure as T2.
2502 Return 1 if they are the same.
2503 Return 0 if they are understandably different.
2504 Return -1 if either contains tree structure not understood by
2505 this function. */
2506
2507 int
2508 simple_cst_equal (t1, t2)
2509 tree t1, t2;
2510 {
2511 register enum tree_code code1, code2;
2512 int cmp;
2513
2514 if (t1 == t2)
2515 return 1;
2516 if (t1 == 0 || t2 == 0)
2517 return 0;
2518
2519 code1 = TREE_CODE (t1);
2520 code2 = TREE_CODE (t2);
2521
2522 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
2523 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR || code2 == NON_LVALUE_EXPR)
2524 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2525 else
2526 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
2527 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
2528 || code2 == NON_LVALUE_EXPR)
2529 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
2530
2531 if (code1 != code2)
2532 return 0;
2533
2534 switch (code1)
2535 {
2536 case INTEGER_CST:
2537 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
2538 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
2539
2540 case REAL_CST:
2541 return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
2542
2543 case STRING_CST:
2544 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
2545 && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
2546 TREE_STRING_LENGTH (t1));
2547
2548 case CONSTRUCTOR:
2549 abort ();
2550
2551 case SAVE_EXPR:
2552 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2553
2554 case CALL_EXPR:
2555 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2556 if (cmp <= 0)
2557 return cmp;
2558 return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
2559
2560 case TARGET_EXPR:
2561 /* Special case: if either target is an unallocated VAR_DECL,
2562 it means that it's going to be unified with whatever the
2563 TARGET_EXPR is really supposed to initialize, so treat it
2564 as being equivalent to anything. */
2565 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
2566 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
2567 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
2568 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
2569 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
2570 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
2571 cmp = 1;
2572 else
2573 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2574 if (cmp <= 0)
2575 return cmp;
2576 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
2577
2578 case WITH_CLEANUP_EXPR:
2579 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2580 if (cmp <= 0)
2581 return cmp;
2582 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
2583
2584 case COMPONENT_REF:
2585 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
2586 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2587 return 0;
2588
2589 case BIT_FIELD_REF:
2590 return (simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
2591 && simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1))
2592 && simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2)));
2593
2594 case VAR_DECL:
2595 case PARM_DECL:
2596 case CONST_DECL:
2597 case FUNCTION_DECL:
2598 return 0;
2599
2600 case PLUS_EXPR:
2601 case MINUS_EXPR:
2602 case MULT_EXPR:
2603 case TRUNC_DIV_EXPR:
2604 case TRUNC_MOD_EXPR:
2605 case LSHIFT_EXPR:
2606 case RSHIFT_EXPR:
2607 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2608 if (cmp <= 0)
2609 return cmp;
2610 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
2611
2612 case NEGATE_EXPR:
2613 case ADDR_EXPR:
2614 case REFERENCE_EXPR:
2615 case INDIRECT_REF:
2616 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2617
2618 default:
2619 #if 0
2620 return lang_simple_cst_equal (t1, t2);
2621 #else
2622 return -1;
2623 #endif
2624 }
2625 }
2626 \f
2627 /* Constructors for pointer, array and function types.
2628 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
2629 constructed by language-dependent code, not here.) */
2630
2631 /* Construct, lay out and return the type of pointers to TO_TYPE.
2632 If such a type has already been constructed, reuse it. */
2633
2634 tree
2635 build_pointer_type (to_type)
2636 tree to_type;
2637 {
2638 register tree t = TYPE_POINTER_TO (to_type);
2639 register struct obstack *ambient_obstack = current_obstack;
2640 register struct obstack *ambient_saveable_obstack = saveable_obstack;
2641
2642 /* First, if we already have a type for pointers to TO_TYPE, use it. */
2643
2644 if (t)
2645 return t;
2646
2647 /* We need a new one. If TO_TYPE is permanent, make this permanent too. */
2648 if (TREE_PERMANENT (to_type))
2649 {
2650 current_obstack = &permanent_obstack;
2651 saveable_obstack = &permanent_obstack;
2652 }
2653
2654 t = make_node (POINTER_TYPE);
2655 TREE_TYPE (t) = to_type;
2656
2657 /* Record this type as the pointer to TO_TYPE. */
2658 TYPE_POINTER_TO (to_type) = t;
2659
2660 /* Lay out the type. This function has many callers that are concerned
2661 with expression-construction, and this simplifies them all.
2662 Also, it guarantees the TYPE_SIZE is permanent if the type is. */
2663 layout_type (t);
2664
2665 current_obstack = ambient_obstack;
2666 saveable_obstack = ambient_saveable_obstack;
2667 return t;
2668 }
2669
2670 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
2671 MAXVAL should be the maximum value in the domain
2672 (one less than the length of the array). */
2673
2674 tree
2675 build_index_type (maxval)
2676 tree maxval;
2677 {
2678 register tree itype = make_node (INTEGER_TYPE);
2679 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
2680 TYPE_MIN_VALUE (itype) = build_int_2 (0, 0);
2681 TREE_TYPE (TYPE_MIN_VALUE (itype)) = sizetype;
2682 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
2683 TYPE_MODE (itype) = TYPE_MODE (sizetype);
2684 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
2685 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
2686 if (TREE_CODE (maxval) == INTEGER_CST)
2687 {
2688 int maxint = (int) TREE_INT_CST_LOW (maxval);
2689 /* If the domain should be empty, make sure the maxval
2690 remains -1 and is not spoiled by truncation. */
2691 if (INT_CST_LT (maxval, integer_zero_node))
2692 {
2693 TYPE_MAX_VALUE (itype) = build_int_2 (-1, -1);
2694 TREE_TYPE (TYPE_MAX_VALUE (itype)) = sizetype;
2695 }
2696 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
2697 }
2698 else
2699 return itype;
2700 }
2701
2702 /* Just like build_index_type, but takes lowval and highval instead
2703 of just highval (maxval). */
2704
2705 tree
2706 build_index_2_type (lowval,highval)
2707 tree lowval, highval;
2708 {
2709 register tree itype = make_node (INTEGER_TYPE);
2710 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
2711 TYPE_MIN_VALUE (itype) = convert (sizetype, lowval);
2712 TYPE_MAX_VALUE (itype) = convert (sizetype, highval);
2713 TYPE_MODE (itype) = TYPE_MODE (sizetype);
2714 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
2715 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
2716 if ((TREE_CODE (lowval) == INTEGER_CST)
2717 && (TREE_CODE (highval) == INTEGER_CST))
2718 {
2719 HOST_WIDE_INT highint = TREE_INT_CST_LOW (highval);
2720 HOST_WIDE_INT lowint = TREE_INT_CST_LOW (lowval);
2721 int maxint = (int) (highint - lowint);
2722 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
2723 }
2724 else
2725 return itype;
2726 }
2727
2728 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
2729 Needed because when index types are not hashed, equal index types
2730 built at different times appear distinct, even though structurally,
2731 they are not. */
2732
2733 int
2734 index_type_equal (itype1, itype2)
2735 tree itype1, itype2;
2736 {
2737 if (TREE_CODE (itype1) != TREE_CODE (itype2))
2738 return 0;
2739 if (TREE_CODE (itype1) == INTEGER_TYPE)
2740 {
2741 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
2742 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
2743 || ! simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2))
2744 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
2745 return 0;
2746 if (simple_cst_equal (TYPE_MIN_VALUE (itype1), TYPE_MIN_VALUE (itype2))
2747 && simple_cst_equal (TYPE_MAX_VALUE (itype1), TYPE_MAX_VALUE (itype2)))
2748 return 1;
2749 }
2750 return 0;
2751 }
2752
2753 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
2754 and number of elements specified by the range of values of INDEX_TYPE.
2755 If such a type has already been constructed, reuse it. */
2756
2757 tree
2758 build_array_type (elt_type, index_type)
2759 tree elt_type, index_type;
2760 {
2761 register tree t;
2762 int hashcode;
2763
2764 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
2765 {
2766 error ("arrays of functions are not meaningful");
2767 elt_type = integer_type_node;
2768 }
2769
2770 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
2771 build_pointer_type (elt_type);
2772
2773 /* Allocate the array after the pointer type,
2774 in case we free it in type_hash_canon. */
2775 t = make_node (ARRAY_TYPE);
2776 TREE_TYPE (t) = elt_type;
2777 TYPE_DOMAIN (t) = index_type;
2778
2779 if (index_type == 0)
2780 return t;
2781
2782 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
2783 t = type_hash_canon (hashcode, t);
2784
2785 if (TYPE_SIZE (t) == 0)
2786 layout_type (t);
2787 return t;
2788 }
2789
2790 /* Construct, lay out and return
2791 the type of functions returning type VALUE_TYPE
2792 given arguments of types ARG_TYPES.
2793 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
2794 are data type nodes for the arguments of the function.
2795 If such a type has already been constructed, reuse it. */
2796
2797 tree
2798 build_function_type (value_type, arg_types)
2799 tree value_type, arg_types;
2800 {
2801 register tree t;
2802 int hashcode;
2803
2804 if (TREE_CODE (value_type) == FUNCTION_TYPE
2805 || TREE_CODE (value_type) == ARRAY_TYPE)
2806 {
2807 error ("function return type cannot be function or array");
2808 value_type = integer_type_node;
2809 }
2810
2811 /* Make a node of the sort we want. */
2812 t = make_node (FUNCTION_TYPE);
2813 TREE_TYPE (t) = value_type;
2814 TYPE_ARG_TYPES (t) = arg_types;
2815
2816 /* If we already have such a type, use the old one and free this one. */
2817 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
2818 t = type_hash_canon (hashcode, t);
2819
2820 if (TYPE_SIZE (t) == 0)
2821 layout_type (t);
2822 return t;
2823 }
2824
2825 /* Build the node for the type of references-to-TO_TYPE. */
2826
2827 tree
2828 build_reference_type (to_type)
2829 tree to_type;
2830 {
2831 register tree t = TYPE_REFERENCE_TO (to_type);
2832 register struct obstack *ambient_obstack = current_obstack;
2833 register struct obstack *ambient_saveable_obstack = saveable_obstack;
2834
2835 /* First, if we already have a type for pointers to TO_TYPE, use it. */
2836
2837 if (t)
2838 return t;
2839
2840 /* We need a new one. If TO_TYPE is permanent, make this permanent too. */
2841 if (TREE_PERMANENT (to_type))
2842 {
2843 current_obstack = &permanent_obstack;
2844 saveable_obstack = &permanent_obstack;
2845 }
2846
2847 t = make_node (REFERENCE_TYPE);
2848 TREE_TYPE (t) = to_type;
2849
2850 /* Record this type as the pointer to TO_TYPE. */
2851 TYPE_REFERENCE_TO (to_type) = t;
2852
2853 layout_type (t);
2854
2855 current_obstack = ambient_obstack;
2856 saveable_obstack = ambient_saveable_obstack;
2857 return t;
2858 }
2859
2860 /* Construct, lay out and return the type of methods belonging to class
2861 BASETYPE and whose arguments and values are described by TYPE.
2862 If that type exists already, reuse it.
2863 TYPE must be a FUNCTION_TYPE node. */
2864
2865 tree
2866 build_method_type (basetype, type)
2867 tree basetype, type;
2868 {
2869 register tree t;
2870 int hashcode;
2871
2872 /* Make a node of the sort we want. */
2873 t = make_node (METHOD_TYPE);
2874
2875 if (TREE_CODE (type) != FUNCTION_TYPE)
2876 abort ();
2877
2878 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
2879 TREE_TYPE (t) = TREE_TYPE (type);
2880
2881 /* The actual arglist for this function includes a "hidden" argument
2882 which is "this". Put it into the list of argument types. */
2883
2884 TYPE_ARG_TYPES (t)
2885 = tree_cons (NULL_TREE,
2886 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
2887
2888 /* If we already have such a type, use the old one and free this one. */
2889 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
2890 t = type_hash_canon (hashcode, t);
2891
2892 if (TYPE_SIZE (t) == 0)
2893 layout_type (t);
2894
2895 return t;
2896 }
2897
2898 /* Construct, lay out and return the type of methods belonging to class
2899 BASETYPE and whose arguments and values are described by TYPE.
2900 If that type exists already, reuse it.
2901 TYPE must be a FUNCTION_TYPE node. */
2902
2903 tree
2904 build_offset_type (basetype, type)
2905 tree basetype, type;
2906 {
2907 register tree t;
2908 int hashcode;
2909
2910 /* Make a node of the sort we want. */
2911 t = make_node (OFFSET_TYPE);
2912
2913 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
2914 TREE_TYPE (t) = type;
2915
2916 /* If we already have such a type, use the old one and free this one. */
2917 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
2918 t = type_hash_canon (hashcode, t);
2919
2920 if (TYPE_SIZE (t) == 0)
2921 layout_type (t);
2922
2923 return t;
2924 }
2925
2926 /* Create a complex type whose components are COMPONENT_TYPE. */
2927
2928 tree
2929 build_complex_type (component_type)
2930 tree component_type;
2931 {
2932 register tree t;
2933 int hashcode;
2934
2935 /* Make a node of the sort we want. */
2936 t = make_node (COMPLEX_TYPE);
2937
2938 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
2939 TYPE_VOLATILE (t) = TYPE_VOLATILE (component_type);
2940 TYPE_READONLY (t) = TYPE_READONLY (component_type);
2941
2942 /* If we already have such a type, use the old one and free this one. */
2943 hashcode = TYPE_HASH (component_type);
2944 t = type_hash_canon (hashcode, t);
2945
2946 if (TYPE_SIZE (t) == 0)
2947 layout_type (t);
2948
2949 return t;
2950 }
2951 \f
2952 /* Return OP, stripped of any conversions to wider types as much as is safe.
2953 Converting the value back to OP's type makes a value equivalent to OP.
2954
2955 If FOR_TYPE is nonzero, we return a value which, if converted to
2956 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
2957
2958 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
2959 narrowest type that can hold the value, even if they don't exactly fit.
2960 Otherwise, bit-field references are changed to a narrower type
2961 only if they can be fetched directly from memory in that type.
2962
2963 OP must have integer, real or enumeral type. Pointers are not allowed!
2964
2965 There are some cases where the obvious value we could return
2966 would regenerate to OP if converted to OP's type,
2967 but would not extend like OP to wider types.
2968 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
2969 For example, if OP is (unsigned short)(signed char)-1,
2970 we avoid returning (signed char)-1 if FOR_TYPE is int,
2971 even though extending that to an unsigned short would regenerate OP,
2972 since the result of extending (signed char)-1 to (int)
2973 is different from (int) OP. */
2974
2975 tree
2976 get_unwidened (op, for_type)
2977 register tree op;
2978 tree for_type;
2979 {
2980 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
2981 /* TYPE_PRECISION is safe in place of type_precision since
2982 pointer types are not allowed. */
2983 register tree type = TREE_TYPE (op);
2984 register unsigned final_prec
2985 = TYPE_PRECISION (for_type != 0 ? for_type : type);
2986 register int uns
2987 = (for_type != 0 && for_type != type
2988 && final_prec > TYPE_PRECISION (type)
2989 && TREE_UNSIGNED (type));
2990 register tree win = op;
2991
2992 while (TREE_CODE (op) == NOP_EXPR)
2993 {
2994 register int bitschange
2995 = TYPE_PRECISION (TREE_TYPE (op))
2996 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
2997
2998 /* Truncations are many-one so cannot be removed.
2999 Unless we are later going to truncate down even farther. */
3000 if (bitschange < 0
3001 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
3002 break;
3003
3004 /* See what's inside this conversion. If we decide to strip it,
3005 we will set WIN. */
3006 op = TREE_OPERAND (op, 0);
3007
3008 /* If we have not stripped any zero-extensions (uns is 0),
3009 we can strip any kind of extension.
3010 If we have previously stripped a zero-extension,
3011 only zero-extensions can safely be stripped.
3012 Any extension can be stripped if the bits it would produce
3013 are all going to be discarded later by truncating to FOR_TYPE. */
3014
3015 if (bitschange > 0)
3016 {
3017 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
3018 win = op;
3019 /* TREE_UNSIGNED says whether this is a zero-extension.
3020 Let's avoid computing it if it does not affect WIN
3021 and if UNS will not be needed again. */
3022 if ((uns || TREE_CODE (op) == NOP_EXPR)
3023 && TREE_UNSIGNED (TREE_TYPE (op)))
3024 {
3025 uns = 1;
3026 win = op;
3027 }
3028 }
3029 }
3030
3031 if (TREE_CODE (op) == COMPONENT_REF
3032 /* Since type_for_size always gives an integer type. */
3033 && TREE_CODE (type) != REAL_TYPE)
3034 {
3035 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
3036 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
3037
3038 /* We can get this structure field in the narrowest type it fits in.
3039 If FOR_TYPE is 0, do this only for a field that matches the
3040 narrower type exactly and is aligned for it
3041 The resulting extension to its nominal type (a fullword type)
3042 must fit the same conditions as for other extensions. */
3043
3044 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
3045 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
3046 && (! uns || final_prec <= innerprec
3047 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
3048 && type != 0)
3049 {
3050 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
3051 TREE_OPERAND (op, 1));
3052 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
3053 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
3054 TREE_RAISES (win) = TREE_RAISES (op);
3055 }
3056 }
3057 return win;
3058 }
3059 \f
3060 /* Return OP or a simpler expression for a narrower value
3061 which can be sign-extended or zero-extended to give back OP.
3062 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
3063 or 0 if the value should be sign-extended. */
3064
3065 tree
3066 get_narrower (op, unsignedp_ptr)
3067 register tree op;
3068 int *unsignedp_ptr;
3069 {
3070 register int uns = 0;
3071 int first = 1;
3072 register tree win = op;
3073
3074 while (TREE_CODE (op) == NOP_EXPR)
3075 {
3076 register int bitschange
3077 = TYPE_PRECISION (TREE_TYPE (op))
3078 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
3079
3080 /* Truncations are many-one so cannot be removed. */
3081 if (bitschange < 0)
3082 break;
3083
3084 /* See what's inside this conversion. If we decide to strip it,
3085 we will set WIN. */
3086 op = TREE_OPERAND (op, 0);
3087
3088 if (bitschange > 0)
3089 {
3090 /* An extension: the outermost one can be stripped,
3091 but remember whether it is zero or sign extension. */
3092 if (first)
3093 uns = TREE_UNSIGNED (TREE_TYPE (op));
3094 /* Otherwise, if a sign extension has been stripped,
3095 only sign extensions can now be stripped;
3096 if a zero extension has been stripped, only zero-extensions. */
3097 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
3098 break;
3099 first = 0;
3100 }
3101 /* A change in nominal type can always be stripped. */
3102
3103 win = op;
3104 }
3105
3106 if (TREE_CODE (op) == COMPONENT_REF
3107 /* Since type_for_size always gives an integer type. */
3108 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
3109 {
3110 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
3111 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
3112
3113 /* We can get this structure field in a narrower type that fits it,
3114 but the resulting extension to its nominal type (a fullword type)
3115 must satisfy the same conditions as for other extensions.
3116
3117 Do this only for fields that are aligned (not bit-fields),
3118 because when bit-field insns will be used there is no
3119 advantage in doing this. */
3120
3121 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
3122 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
3123 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
3124 && type != 0)
3125 {
3126 if (first)
3127 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
3128 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
3129 TREE_OPERAND (op, 1));
3130 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
3131 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
3132 TREE_RAISES (win) = TREE_RAISES (op);
3133 }
3134 }
3135 *unsignedp_ptr = uns;
3136 return win;
3137 }
3138 \f
3139 /* Return the precision of a type, for arithmetic purposes.
3140 Supports all types on which arithmetic is possible
3141 (including pointer types).
3142 It's not clear yet what will be right for complex types. */
3143
3144 int
3145 type_precision (type)
3146 register tree type;
3147 {
3148 return ((TREE_CODE (type) == INTEGER_TYPE
3149 || TREE_CODE (type) == ENUMERAL_TYPE
3150 || TREE_CODE (type) == REAL_TYPE)
3151 ? TYPE_PRECISION (type) : POINTER_SIZE);
3152 }
3153
3154 /* Nonzero if integer constant C has a value that is permissible
3155 for type TYPE (an INTEGER_TYPE). */
3156
3157 int
3158 int_fits_type_p (c, type)
3159 tree c, type;
3160 {
3161 if (TREE_UNSIGNED (type))
3162 return (!INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
3163 && !INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
3164 && (TREE_INT_CST_HIGH (c) >= 0 || TREE_UNSIGNED (TREE_TYPE (c))));
3165 else
3166 return (!INT_CST_LT (TYPE_MAX_VALUE (type), c)
3167 && !INT_CST_LT (c, TYPE_MIN_VALUE (type))
3168 && (TREE_INT_CST_HIGH (c) >= 0 || !TREE_UNSIGNED (TREE_TYPE (c))));
3169 }
3170
3171 /* Return the innermost context enclosing DECL that is
3172 a FUNCTION_DECL, or zero if none. */
3173
3174 tree
3175 decl_function_context (decl)
3176 tree decl;
3177 {
3178 tree context;
3179
3180 if (TREE_CODE (decl) == ERROR_MARK)
3181 return 0;
3182
3183 if (TREE_CODE (decl) == SAVE_EXPR)
3184 context = SAVE_EXPR_CONTEXT (decl);
3185 else
3186 context = DECL_CONTEXT (decl);
3187
3188 while (context && TREE_CODE (context) != FUNCTION_DECL)
3189 {
3190 if (TREE_CODE (context) == RECORD_TYPE
3191 || TREE_CODE (context) == UNION_TYPE)
3192 context = TYPE_CONTEXT (context);
3193 else if (TREE_CODE (context) == TYPE_DECL)
3194 context = DECL_CONTEXT (context);
3195 else if (TREE_CODE (context) == BLOCK)
3196 context = BLOCK_SUPERCONTEXT (context);
3197 else
3198 /* Unhandled CONTEXT !? */
3199 abort ();
3200 }
3201
3202 return context;
3203 }
3204
3205 /* Return the innermost context enclosing DECL that is
3206 a RECORD_TYPE or UNION_TYPE, or zero if none.
3207 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
3208
3209 tree
3210 decl_type_context (decl)
3211 tree decl;
3212 {
3213 tree context = DECL_CONTEXT (decl);
3214
3215 while (context)
3216 {
3217 if (TREE_CODE (context) == RECORD_TYPE
3218 || TREE_CODE (context) == UNION_TYPE)
3219 return context;
3220 if (TREE_CODE (context) == TYPE_DECL
3221 || TREE_CODE (context) == FUNCTION_DECL)
3222 context = DECL_CONTEXT (context);
3223 else if (TREE_CODE (context) == BLOCK)
3224 context = BLOCK_SUPERCONTEXT (context);
3225 else
3226 /* Unhandled CONTEXT!? */
3227 abort ();
3228 }
3229 return NULL_TREE;
3230 }
3231
3232 void
3233 print_obstack_statistics (str, o)
3234 char *str;
3235 struct obstack *o;
3236 {
3237 struct _obstack_chunk *chunk = o->chunk;
3238 int n_chunks = 0;
3239 int n_alloc = 0;
3240
3241 while (chunk)
3242 {
3243 n_chunks += 1;
3244 n_alloc += chunk->limit - &chunk->contents[0];
3245 chunk = chunk->prev;
3246 }
3247 fprintf (stderr, "obstack %s: %d bytes, %d chunks\n",
3248 str, n_alloc, n_chunks);
3249 }
3250 void
3251 dump_tree_statistics ()
3252 {
3253 int i;
3254 int total_nodes, total_bytes;
3255
3256 fprintf (stderr, "\n??? tree nodes created\n\n");
3257 #ifdef GATHER_STATISTICS
3258 fprintf (stderr, "Kind Nodes Bytes\n");
3259 fprintf (stderr, "-------------------------------------\n");
3260 total_nodes = total_bytes = 0;
3261 for (i = 0; i < (int) all_kinds; i++)
3262 {
3263 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
3264 tree_node_counts[i], tree_node_sizes[i]);
3265 total_nodes += tree_node_counts[i];
3266 total_bytes += tree_node_sizes[i];
3267 }
3268 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
3269 fprintf (stderr, "-------------------------------------\n");
3270 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
3271 fprintf (stderr, "-------------------------------------\n");
3272 #else
3273 fprintf (stderr, "(No per-node statistics)\n");
3274 #endif
3275 print_lang_statistics ();
3276 }
This page took 0.177619 seconds and 5 git commands to generate.