]> gcc.gnu.org Git - gcc.git/blob - gcc/tree.c
86fe2bb3b623914c3e1827e8d7a63809ce30b38f
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-inline.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54 #include "fixed-value.h"
55 #include "tree-pass.h"
56 #include "langhooks-def.h"
57 #include "diagnostic.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62 #include "intl.h"
63
64 /* Tree code classes. */
65
66 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
67 #define END_OF_BASE_TREE_CODES tcc_exceptional,
68
69 const enum tree_code_class tree_code_type[] = {
70 #include "all-tree.def"
71 };
72
73 #undef DEFTREECODE
74 #undef END_OF_BASE_TREE_CODES
75
76 /* Table indexed by tree code giving number of expression
77 operands beyond the fixed part of the node structure.
78 Not used for types or decls. */
79
80 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
81 #define END_OF_BASE_TREE_CODES 0,
82
83 const unsigned char tree_code_length[] = {
84 #include "all-tree.def"
85 };
86
87 #undef DEFTREECODE
88 #undef END_OF_BASE_TREE_CODES
89
90 /* Names of tree components.
91 Used for printing out the tree and error messages. */
92 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
93 #define END_OF_BASE_TREE_CODES "@dummy",
94
95 const char *const tree_code_name[] = {
96 #include "all-tree.def"
97 };
98
99 #undef DEFTREECODE
100 #undef END_OF_BASE_TREE_CODES
101
102 /* Each tree code class has an associated string representation.
103 These must correspond to the tree_code_class entries. */
104
105 const char *const tree_code_class_strings[] =
106 {
107 "exceptional",
108 "constant",
109 "type",
110 "declaration",
111 "reference",
112 "comparison",
113 "unary",
114 "binary",
115 "statement",
116 "vl_exp",
117 "expression"
118 };
119
120 /* obstack.[ch] explicitly declined to prototype this. */
121 extern int _obstack_allocated_p (struct obstack *h, void *obj);
122
123 #ifdef GATHER_STATISTICS
124 /* Statistics-gathering stuff. */
125
126 int tree_node_counts[(int) all_kinds];
127 int tree_node_sizes[(int) all_kinds];
128
129 /* Keep in sync with tree.h:enum tree_node_kind. */
130 static const char * const tree_node_kind_names[] = {
131 "decls",
132 "types",
133 "blocks",
134 "stmts",
135 "refs",
136 "exprs",
137 "constants",
138 "identifiers",
139 "perm_tree_lists",
140 "temp_tree_lists",
141 "vecs",
142 "binfos",
143 "ssa names",
144 "constructors",
145 "random kinds",
146 "lang_decl kinds",
147 "lang_type kinds",
148 "omp clauses",
149 };
150 #endif /* GATHER_STATISTICS */
151
152 /* Unique id for next decl created. */
153 static GTY(()) int next_decl_uid;
154 /* Unique id for next type created. */
155 static GTY(()) int next_type_uid = 1;
156 /* Unique id for next debug decl created. Use negative numbers,
157 to catch erroneous uses. */
158 static GTY(()) int next_debug_decl_uid;
159
160 /* Since we cannot rehash a type after it is in the table, we have to
161 keep the hash code. */
162
163 struct GTY(()) type_hash {
164 unsigned long hash;
165 tree type;
166 };
167
168 /* Initial size of the hash table (rounded to next prime). */
169 #define TYPE_HASH_INITIAL_SIZE 1000
170
171 /* Now here is the hash table. When recording a type, it is added to
172 the slot whose index is the hash code. Note that the hash table is
173 used for several kinds of types (function types, array types and
174 array index range types, for now). While all these live in the
175 same table, they are completely independent, and the hash code is
176 computed differently for each of these. */
177
178 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
179 htab_t type_hash_table;
180
181 /* Hash table and temporary node for larger integer const values. */
182 static GTY (()) tree int_cst_node;
183 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
184 htab_t int_cst_hash_table;
185
186 /* Hash table for optimization flags and target option flags. Use the same
187 hash table for both sets of options. Nodes for building the current
188 optimization and target option nodes. The assumption is most of the time
189 the options created will already be in the hash table, so we avoid
190 allocating and freeing up a node repeatably. */
191 static GTY (()) tree cl_optimization_node;
192 static GTY (()) tree cl_target_option_node;
193 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
194 htab_t cl_option_hash_table;
195
196 /* General tree->tree mapping structure for use in hash tables. */
197
198
199 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
200 htab_t debug_expr_for_decl;
201
202 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
203 htab_t value_expr_for_decl;
204
205 static GTY ((if_marked ("tree_priority_map_marked_p"),
206 param_is (struct tree_priority_map)))
207 htab_t init_priority_for_decl;
208
209 static void set_type_quals (tree, int);
210 static int type_hash_eq (const void *, const void *);
211 static hashval_t type_hash_hash (const void *);
212 static hashval_t int_cst_hash_hash (const void *);
213 static int int_cst_hash_eq (const void *, const void *);
214 static hashval_t cl_option_hash_hash (const void *);
215 static int cl_option_hash_eq (const void *, const void *);
216 static void print_type_hash_statistics (void);
217 static void print_debug_expr_statistics (void);
218 static void print_value_expr_statistics (void);
219 static int type_hash_marked_p (const void *);
220 static unsigned int type_hash_list (const_tree, hashval_t);
221 static unsigned int attribute_hash_list (const_tree, hashval_t);
222
223 tree global_trees[TI_MAX];
224 tree integer_types[itk_none];
225
226 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
227
228 /* Number of operands for each OpenMP clause. */
229 unsigned const char omp_clause_num_ops[] =
230 {
231 0, /* OMP_CLAUSE_ERROR */
232 1, /* OMP_CLAUSE_PRIVATE */
233 1, /* OMP_CLAUSE_SHARED */
234 1, /* OMP_CLAUSE_FIRSTPRIVATE */
235 2, /* OMP_CLAUSE_LASTPRIVATE */
236 4, /* OMP_CLAUSE_REDUCTION */
237 1, /* OMP_CLAUSE_COPYIN */
238 1, /* OMP_CLAUSE_COPYPRIVATE */
239 1, /* OMP_CLAUSE_IF */
240 1, /* OMP_CLAUSE_NUM_THREADS */
241 1, /* OMP_CLAUSE_SCHEDULE */
242 0, /* OMP_CLAUSE_NOWAIT */
243 0, /* OMP_CLAUSE_ORDERED */
244 0, /* OMP_CLAUSE_DEFAULT */
245 3, /* OMP_CLAUSE_COLLAPSE */
246 0 /* OMP_CLAUSE_UNTIED */
247 };
248
249 const char * const omp_clause_code_name[] =
250 {
251 "error_clause",
252 "private",
253 "shared",
254 "firstprivate",
255 "lastprivate",
256 "reduction",
257 "copyin",
258 "copyprivate",
259 "if",
260 "num_threads",
261 "schedule",
262 "nowait",
263 "ordered",
264 "default",
265 "collapse",
266 "untied"
267 };
268
269
270 /* Return the tree node structure used by tree code CODE. */
271
272 static inline enum tree_node_structure_enum
273 tree_node_structure_for_code (enum tree_code code)
274 {
275 switch (TREE_CODE_CLASS (code))
276 {
277 case tcc_declaration:
278 {
279 switch (code)
280 {
281 case FIELD_DECL:
282 return TS_FIELD_DECL;
283 case PARM_DECL:
284 return TS_PARM_DECL;
285 case VAR_DECL:
286 return TS_VAR_DECL;
287 case LABEL_DECL:
288 return TS_LABEL_DECL;
289 case RESULT_DECL:
290 return TS_RESULT_DECL;
291 case DEBUG_EXPR_DECL:
292 return TS_DECL_WRTL;
293 case CONST_DECL:
294 return TS_CONST_DECL;
295 case TYPE_DECL:
296 return TS_TYPE_DECL;
297 case FUNCTION_DECL:
298 return TS_FUNCTION_DECL;
299 default:
300 return TS_DECL_NON_COMMON;
301 }
302 }
303 case tcc_type:
304 return TS_TYPE;
305 case tcc_reference:
306 case tcc_comparison:
307 case tcc_unary:
308 case tcc_binary:
309 case tcc_expression:
310 case tcc_statement:
311 case tcc_vl_exp:
312 return TS_EXP;
313 default: /* tcc_constant and tcc_exceptional */
314 break;
315 }
316 switch (code)
317 {
318 /* tcc_constant cases. */
319 case INTEGER_CST: return TS_INT_CST;
320 case REAL_CST: return TS_REAL_CST;
321 case FIXED_CST: return TS_FIXED_CST;
322 case COMPLEX_CST: return TS_COMPLEX;
323 case VECTOR_CST: return TS_VECTOR;
324 case STRING_CST: return TS_STRING;
325 /* tcc_exceptional cases. */
326 case ERROR_MARK: return TS_COMMON;
327 case IDENTIFIER_NODE: return TS_IDENTIFIER;
328 case TREE_LIST: return TS_LIST;
329 case TREE_VEC: return TS_VEC;
330 case SSA_NAME: return TS_SSA_NAME;
331 case PLACEHOLDER_EXPR: return TS_COMMON;
332 case STATEMENT_LIST: return TS_STATEMENT_LIST;
333 case BLOCK: return TS_BLOCK;
334 case CONSTRUCTOR: return TS_CONSTRUCTOR;
335 case TREE_BINFO: return TS_BINFO;
336 case OMP_CLAUSE: return TS_OMP_CLAUSE;
337 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
338 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
339
340 default:
341 gcc_unreachable ();
342 }
343 }
344
345
346 /* Initialize tree_contains_struct to describe the hierarchy of tree
347 nodes. */
348
349 static void
350 initialize_tree_contains_struct (void)
351 {
352 unsigned i;
353
354 #define MARK_TS_BASE(C) \
355 do { \
356 tree_contains_struct[C][TS_BASE] = 1; \
357 } while (0)
358
359 #define MARK_TS_COMMON(C) \
360 do { \
361 MARK_TS_BASE (C); \
362 tree_contains_struct[C][TS_COMMON] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_MINIMAL(C) \
366 do { \
367 MARK_TS_COMMON (C); \
368 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_COMMON(C) \
372 do { \
373 MARK_TS_DECL_MINIMAL (C); \
374 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WRTL(C) \
378 do { \
379 MARK_TS_DECL_COMMON (C); \
380 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_WITH_VIS(C) \
384 do { \
385 MARK_TS_DECL_WRTL (C); \
386 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
387 } while (0)
388
389 #define MARK_TS_DECL_NON_COMMON(C) \
390 do { \
391 MARK_TS_DECL_WITH_VIS (C); \
392 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
393 } while (0)
394
395 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
396 {
397 enum tree_code code;
398 enum tree_node_structure_enum ts_code;
399
400 code = (enum tree_code) i;
401 ts_code = tree_node_structure_for_code (code);
402
403 /* Mark the TS structure itself. */
404 tree_contains_struct[code][ts_code] = 1;
405
406 /* Mark all the structures that TS is derived from. */
407 switch (ts_code)
408 {
409 case TS_COMMON:
410 MARK_TS_BASE (code);
411 break;
412
413 case TS_INT_CST:
414 case TS_REAL_CST:
415 case TS_FIXED_CST:
416 case TS_VECTOR:
417 case TS_STRING:
418 case TS_COMPLEX:
419 case TS_IDENTIFIER:
420 case TS_DECL_MINIMAL:
421 case TS_TYPE:
422 case TS_LIST:
423 case TS_VEC:
424 case TS_EXP:
425 case TS_SSA_NAME:
426 case TS_BLOCK:
427 case TS_BINFO:
428 case TS_STATEMENT_LIST:
429 case TS_CONSTRUCTOR:
430 case TS_OMP_CLAUSE:
431 case TS_OPTIMIZATION:
432 case TS_TARGET_OPTION:
433 MARK_TS_COMMON (code);
434 break;
435
436 case TS_DECL_COMMON:
437 MARK_TS_DECL_MINIMAL (code);
438 break;
439
440 case TS_DECL_WRTL:
441 MARK_TS_DECL_COMMON (code);
442 break;
443
444 case TS_DECL_NON_COMMON:
445 MARK_TS_DECL_WITH_VIS (code);
446 break;
447
448 case TS_DECL_WITH_VIS:
449 case TS_PARM_DECL:
450 case TS_LABEL_DECL:
451 case TS_RESULT_DECL:
452 case TS_CONST_DECL:
453 MARK_TS_DECL_WRTL (code);
454 break;
455
456 case TS_FIELD_DECL:
457 MARK_TS_DECL_COMMON (code);
458 break;
459
460 case TS_VAR_DECL:
461 MARK_TS_DECL_WITH_VIS (code);
462 break;
463
464 case TS_TYPE_DECL:
465 case TS_FUNCTION_DECL:
466 MARK_TS_DECL_NON_COMMON (code);
467 break;
468
469 default:
470 gcc_unreachable ();
471 }
472 }
473
474 /* Basic consistency checks for attributes used in fold. */
475 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
476 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON]);
477 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
478 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
479 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
480 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
481 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
482 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
483 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
484 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
485 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
486 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
487 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
488 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
489 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
490 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
491 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
492 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
493 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
494 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
495 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
496 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
498 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
499 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
500 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
501 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
502 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
503 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
504 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
505 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS]);
506 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
507 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
508 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
509 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
510 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
511 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
512 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
513 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
514 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
515 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
516
517 #undef MARK_TS_BASE
518 #undef MARK_TS_COMMON
519 #undef MARK_TS_DECL_MINIMAL
520 #undef MARK_TS_DECL_COMMON
521 #undef MARK_TS_DECL_WRTL
522 #undef MARK_TS_DECL_WITH_VIS
523 #undef MARK_TS_DECL_NON_COMMON
524 }
525
526
527 /* Init tree.c. */
528
529 void
530 init_ttree (void)
531 {
532 /* Initialize the hash table of types. */
533 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
534 type_hash_eq, 0);
535
536 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
537 tree_map_eq, 0);
538
539 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
540 tree_map_eq, 0);
541 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
542 tree_priority_map_eq, 0);
543
544 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
545 int_cst_hash_eq, NULL);
546
547 int_cst_node = make_node (INTEGER_CST);
548
549 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
550 cl_option_hash_eq, NULL);
551
552 cl_optimization_node = make_node (OPTIMIZATION_NODE);
553 cl_target_option_node = make_node (TARGET_OPTION_NODE);
554
555 /* Initialize the tree_contains_struct array. */
556 initialize_tree_contains_struct ();
557 lang_hooks.init_ts ();
558 }
559
560 \f
561 /* The name of the object as the assembler will see it (but before any
562 translations made by ASM_OUTPUT_LABELREF). Often this is the same
563 as DECL_NAME. It is an IDENTIFIER_NODE. */
564 tree
565 decl_assembler_name (tree decl)
566 {
567 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
568 lang_hooks.set_decl_assembler_name (decl);
569 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
570 }
571
572 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
573
574 bool
575 decl_assembler_name_equal (tree decl, const_tree asmname)
576 {
577 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
578 const char *decl_str;
579 const char *asmname_str;
580 bool test = false;
581
582 if (decl_asmname == asmname)
583 return true;
584
585 decl_str = IDENTIFIER_POINTER (decl_asmname);
586 asmname_str = IDENTIFIER_POINTER (asmname);
587
588
589 /* If the target assembler name was set by the user, things are trickier.
590 We have a leading '*' to begin with. After that, it's arguable what
591 is the correct thing to do with -fleading-underscore. Arguably, we've
592 historically been doing the wrong thing in assemble_alias by always
593 printing the leading underscore. Since we're not changing that, make
594 sure user_label_prefix follows the '*' before matching. */
595 if (decl_str[0] == '*')
596 {
597 size_t ulp_len = strlen (user_label_prefix);
598
599 decl_str ++;
600
601 if (ulp_len == 0)
602 test = true;
603 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
604 decl_str += ulp_len, test=true;
605 else
606 decl_str --;
607 }
608 if (asmname_str[0] == '*')
609 {
610 size_t ulp_len = strlen (user_label_prefix);
611
612 asmname_str ++;
613
614 if (ulp_len == 0)
615 test = true;
616 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
617 asmname_str += ulp_len, test=true;
618 else
619 asmname_str --;
620 }
621
622 if (!test)
623 return false;
624 return strcmp (decl_str, asmname_str) == 0;
625 }
626
627 /* Hash asmnames ignoring the user specified marks. */
628
629 hashval_t
630 decl_assembler_name_hash (const_tree asmname)
631 {
632 if (IDENTIFIER_POINTER (asmname)[0] == '*')
633 {
634 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
635 size_t ulp_len = strlen (user_label_prefix);
636
637 if (ulp_len == 0)
638 ;
639 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
640 decl_str += ulp_len;
641
642 return htab_hash_string (decl_str);
643 }
644
645 return htab_hash_string (IDENTIFIER_POINTER (asmname));
646 }
647
648 /* Compute the number of bytes occupied by a tree with code CODE.
649 This function cannot be used for nodes that have variable sizes,
650 including TREE_VEC, STRING_CST, and CALL_EXPR. */
651 size_t
652 tree_code_size (enum tree_code code)
653 {
654 switch (TREE_CODE_CLASS (code))
655 {
656 case tcc_declaration: /* A decl node */
657 {
658 switch (code)
659 {
660 case FIELD_DECL:
661 return sizeof (struct tree_field_decl);
662 case PARM_DECL:
663 return sizeof (struct tree_parm_decl);
664 case VAR_DECL:
665 return sizeof (struct tree_var_decl);
666 case LABEL_DECL:
667 return sizeof (struct tree_label_decl);
668 case RESULT_DECL:
669 return sizeof (struct tree_result_decl);
670 case CONST_DECL:
671 return sizeof (struct tree_const_decl);
672 case TYPE_DECL:
673 return sizeof (struct tree_type_decl);
674 case FUNCTION_DECL:
675 return sizeof (struct tree_function_decl);
676 case DEBUG_EXPR_DECL:
677 return sizeof (struct tree_decl_with_rtl);
678 default:
679 return sizeof (struct tree_decl_non_common);
680 }
681 }
682
683 case tcc_type: /* a type node */
684 return sizeof (struct tree_type);
685
686 case tcc_reference: /* a reference */
687 case tcc_expression: /* an expression */
688 case tcc_statement: /* an expression with side effects */
689 case tcc_comparison: /* a comparison expression */
690 case tcc_unary: /* a unary arithmetic expression */
691 case tcc_binary: /* a binary arithmetic expression */
692 return (sizeof (struct tree_exp)
693 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
694
695 case tcc_constant: /* a constant */
696 switch (code)
697 {
698 case INTEGER_CST: return sizeof (struct tree_int_cst);
699 case REAL_CST: return sizeof (struct tree_real_cst);
700 case FIXED_CST: return sizeof (struct tree_fixed_cst);
701 case COMPLEX_CST: return sizeof (struct tree_complex);
702 case VECTOR_CST: return sizeof (struct tree_vector);
703 case STRING_CST: gcc_unreachable ();
704 default:
705 return lang_hooks.tree_size (code);
706 }
707
708 case tcc_exceptional: /* something random, like an identifier. */
709 switch (code)
710 {
711 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
712 case TREE_LIST: return sizeof (struct tree_list);
713
714 case ERROR_MARK:
715 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
716
717 case TREE_VEC:
718 case OMP_CLAUSE: gcc_unreachable ();
719
720 case SSA_NAME: return sizeof (struct tree_ssa_name);
721
722 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
723 case BLOCK: return sizeof (struct tree_block);
724 case CONSTRUCTOR: return sizeof (struct tree_constructor);
725 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
726 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
727
728 default:
729 return lang_hooks.tree_size (code);
730 }
731
732 default:
733 gcc_unreachable ();
734 }
735 }
736
737 /* Compute the number of bytes occupied by NODE. This routine only
738 looks at TREE_CODE, except for those nodes that have variable sizes. */
739 size_t
740 tree_size (const_tree node)
741 {
742 const enum tree_code code = TREE_CODE (node);
743 switch (code)
744 {
745 case TREE_BINFO:
746 return (offsetof (struct tree_binfo, base_binfos)
747 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
748
749 case TREE_VEC:
750 return (sizeof (struct tree_vec)
751 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
752
753 case STRING_CST:
754 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
755
756 case OMP_CLAUSE:
757 return (sizeof (struct tree_omp_clause)
758 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
759 * sizeof (tree));
760
761 default:
762 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
763 return (sizeof (struct tree_exp)
764 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
765 else
766 return tree_code_size (code);
767 }
768 }
769
770 /* Return a newly allocated node of code CODE. For decl and type
771 nodes, some other fields are initialized. The rest of the node is
772 initialized to zero. This function cannot be used for TREE_VEC or
773 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
774
775 Achoo! I got a code in the node. */
776
777 tree
778 make_node_stat (enum tree_code code MEM_STAT_DECL)
779 {
780 tree t;
781 enum tree_code_class type = TREE_CODE_CLASS (code);
782 size_t length = tree_code_size (code);
783 #ifdef GATHER_STATISTICS
784 tree_node_kind kind;
785
786 switch (type)
787 {
788 case tcc_declaration: /* A decl node */
789 kind = d_kind;
790 break;
791
792 case tcc_type: /* a type node */
793 kind = t_kind;
794 break;
795
796 case tcc_statement: /* an expression with side effects */
797 kind = s_kind;
798 break;
799
800 case tcc_reference: /* a reference */
801 kind = r_kind;
802 break;
803
804 case tcc_expression: /* an expression */
805 case tcc_comparison: /* a comparison expression */
806 case tcc_unary: /* a unary arithmetic expression */
807 case tcc_binary: /* a binary arithmetic expression */
808 kind = e_kind;
809 break;
810
811 case tcc_constant: /* a constant */
812 kind = c_kind;
813 break;
814
815 case tcc_exceptional: /* something random, like an identifier. */
816 switch (code)
817 {
818 case IDENTIFIER_NODE:
819 kind = id_kind;
820 break;
821
822 case TREE_VEC:
823 kind = vec_kind;
824 break;
825
826 case TREE_BINFO:
827 kind = binfo_kind;
828 break;
829
830 case SSA_NAME:
831 kind = ssa_name_kind;
832 break;
833
834 case BLOCK:
835 kind = b_kind;
836 break;
837
838 case CONSTRUCTOR:
839 kind = constr_kind;
840 break;
841
842 default:
843 kind = x_kind;
844 break;
845 }
846 break;
847
848 default:
849 gcc_unreachable ();
850 }
851
852 tree_node_counts[(int) kind]++;
853 tree_node_sizes[(int) kind] += length;
854 #endif
855
856 if (code == IDENTIFIER_NODE)
857 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_id_zone);
858 else
859 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
860
861 memset (t, 0, length);
862
863 TREE_SET_CODE (t, code);
864
865 switch (type)
866 {
867 case tcc_statement:
868 TREE_SIDE_EFFECTS (t) = 1;
869 break;
870
871 case tcc_declaration:
872 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
873 {
874 if (code == FUNCTION_DECL)
875 {
876 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
877 DECL_MODE (t) = FUNCTION_MODE;
878 }
879 else
880 DECL_ALIGN (t) = 1;
881 }
882 DECL_SOURCE_LOCATION (t) = input_location;
883 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
884 DECL_UID (t) = --next_debug_decl_uid;
885 else
886 DECL_UID (t) = next_decl_uid++;
887 if (TREE_CODE (t) == LABEL_DECL)
888 LABEL_DECL_UID (t) = -1;
889
890 break;
891
892 case tcc_type:
893 TYPE_UID (t) = next_type_uid++;
894 TYPE_ALIGN (t) = BITS_PER_UNIT;
895 TYPE_USER_ALIGN (t) = 0;
896 TYPE_MAIN_VARIANT (t) = t;
897 TYPE_CANONICAL (t) = t;
898
899 /* Default to no attributes for type, but let target change that. */
900 TYPE_ATTRIBUTES (t) = NULL_TREE;
901 targetm.set_default_type_attributes (t);
902
903 /* We have not yet computed the alias set for this type. */
904 TYPE_ALIAS_SET (t) = -1;
905 break;
906
907 case tcc_constant:
908 TREE_CONSTANT (t) = 1;
909 break;
910
911 case tcc_expression:
912 switch (code)
913 {
914 case INIT_EXPR:
915 case MODIFY_EXPR:
916 case VA_ARG_EXPR:
917 case PREDECREMENT_EXPR:
918 case PREINCREMENT_EXPR:
919 case POSTDECREMENT_EXPR:
920 case POSTINCREMENT_EXPR:
921 /* All of these have side-effects, no matter what their
922 operands are. */
923 TREE_SIDE_EFFECTS (t) = 1;
924 break;
925
926 default:
927 break;
928 }
929 break;
930
931 default:
932 /* Other classes need no special treatment. */
933 break;
934 }
935
936 return t;
937 }
938 \f
939 /* Return a new node with the same contents as NODE except that its
940 TREE_CHAIN is zero and it has a fresh uid. */
941
942 tree
943 copy_node_stat (tree node MEM_STAT_DECL)
944 {
945 tree t;
946 enum tree_code code = TREE_CODE (node);
947 size_t length;
948
949 gcc_assert (code != STATEMENT_LIST);
950
951 length = tree_size (node);
952 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
953 memcpy (t, node, length);
954
955 TREE_CHAIN (t) = 0;
956 TREE_ASM_WRITTEN (t) = 0;
957 TREE_VISITED (t) = 0;
958 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
959 *DECL_VAR_ANN_PTR (t) = 0;
960
961 if (TREE_CODE_CLASS (code) == tcc_declaration)
962 {
963 if (code == DEBUG_EXPR_DECL)
964 DECL_UID (t) = --next_debug_decl_uid;
965 else
966 DECL_UID (t) = next_decl_uid++;
967 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
968 && DECL_HAS_VALUE_EXPR_P (node))
969 {
970 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
971 DECL_HAS_VALUE_EXPR_P (t) = 1;
972 }
973 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
974 {
975 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
976 DECL_HAS_INIT_PRIORITY_P (t) = 1;
977 }
978 }
979 else if (TREE_CODE_CLASS (code) == tcc_type)
980 {
981 TYPE_UID (t) = next_type_uid++;
982 /* The following is so that the debug code for
983 the copy is different from the original type.
984 The two statements usually duplicate each other
985 (because they clear fields of the same union),
986 but the optimizer should catch that. */
987 TYPE_SYMTAB_POINTER (t) = 0;
988 TYPE_SYMTAB_ADDRESS (t) = 0;
989
990 /* Do not copy the values cache. */
991 if (TYPE_CACHED_VALUES_P(t))
992 {
993 TYPE_CACHED_VALUES_P (t) = 0;
994 TYPE_CACHED_VALUES (t) = NULL_TREE;
995 }
996 }
997
998 return t;
999 }
1000
1001 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1002 For example, this can copy a list made of TREE_LIST nodes. */
1003
1004 tree
1005 copy_list (tree list)
1006 {
1007 tree head;
1008 tree prev, next;
1009
1010 if (list == 0)
1011 return 0;
1012
1013 head = prev = copy_node (list);
1014 next = TREE_CHAIN (list);
1015 while (next)
1016 {
1017 TREE_CHAIN (prev) = copy_node (next);
1018 prev = TREE_CHAIN (prev);
1019 next = TREE_CHAIN (next);
1020 }
1021 return head;
1022 }
1023
1024 \f
1025 /* Create an INT_CST node with a LOW value sign extended. */
1026
1027 tree
1028 build_int_cst (tree type, HOST_WIDE_INT low)
1029 {
1030 /* Support legacy code. */
1031 if (!type)
1032 type = integer_type_node;
1033
1034 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1035 }
1036
1037 /* Create an INT_CST node with a LOW value zero extended. */
1038
1039 tree
1040 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
1041 {
1042 return build_int_cst_wide (type, low, 0);
1043 }
1044
1045 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1046 if it is negative. This function is similar to build_int_cst, but
1047 the extra bits outside of the type precision are cleared. Constants
1048 with these extra bits may confuse the fold so that it detects overflows
1049 even in cases when they do not occur, and in general should be avoided.
1050 We cannot however make this a default behavior of build_int_cst without
1051 more intrusive changes, since there are parts of gcc that rely on the extra
1052 precision of the integer constants. */
1053
1054 tree
1055 build_int_cst_type (tree type, HOST_WIDE_INT low)
1056 {
1057 unsigned HOST_WIDE_INT low1;
1058 HOST_WIDE_INT hi;
1059
1060 gcc_assert (type);
1061
1062 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
1063
1064 return build_int_cst_wide (type, low1, hi);
1065 }
1066
1067 /* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
1068 and sign extended according to the value range of TYPE. */
1069
1070 tree
1071 build_int_cst_wide_type (tree type,
1072 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
1073 {
1074 fit_double_type (low, high, &low, &high, type);
1075 return build_int_cst_wide (type, low, high);
1076 }
1077
1078 /* These are the hash table functions for the hash table of INTEGER_CST
1079 nodes of a sizetype. */
1080
1081 /* Return the hash code code X, an INTEGER_CST. */
1082
1083 static hashval_t
1084 int_cst_hash_hash (const void *x)
1085 {
1086 const_tree const t = (const_tree) x;
1087
1088 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1089 ^ htab_hash_pointer (TREE_TYPE (t)));
1090 }
1091
1092 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1093 is the same as that given by *Y, which is the same. */
1094
1095 static int
1096 int_cst_hash_eq (const void *x, const void *y)
1097 {
1098 const_tree const xt = (const_tree) x;
1099 const_tree const yt = (const_tree) y;
1100
1101 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1102 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1103 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1104 }
1105
1106 /* Create an INT_CST node of TYPE and value HI:LOW.
1107 The returned node is always shared. For small integers we use a
1108 per-type vector cache, for larger ones we use a single hash table. */
1109
1110 tree
1111 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1112 {
1113 tree t;
1114 int ix = -1;
1115 int limit = 0;
1116
1117 gcc_assert (type);
1118
1119 switch (TREE_CODE (type))
1120 {
1121 case POINTER_TYPE:
1122 case REFERENCE_TYPE:
1123 /* Cache NULL pointer. */
1124 if (!hi && !low)
1125 {
1126 limit = 1;
1127 ix = 0;
1128 }
1129 break;
1130
1131 case BOOLEAN_TYPE:
1132 /* Cache false or true. */
1133 limit = 2;
1134 if (!hi && low < 2)
1135 ix = low;
1136 break;
1137
1138 case INTEGER_TYPE:
1139 case OFFSET_TYPE:
1140 if (TYPE_UNSIGNED (type))
1141 {
1142 /* Cache 0..N */
1143 limit = INTEGER_SHARE_LIMIT;
1144 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1145 ix = low;
1146 }
1147 else
1148 {
1149 /* Cache -1..N */
1150 limit = INTEGER_SHARE_LIMIT + 1;
1151 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1152 ix = low + 1;
1153 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1154 ix = 0;
1155 }
1156 break;
1157
1158 case ENUMERAL_TYPE:
1159 break;
1160
1161 default:
1162 gcc_unreachable ();
1163 }
1164
1165 if (ix >= 0)
1166 {
1167 /* Look for it in the type's vector of small shared ints. */
1168 if (!TYPE_CACHED_VALUES_P (type))
1169 {
1170 TYPE_CACHED_VALUES_P (type) = 1;
1171 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1172 }
1173
1174 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1175 if (t)
1176 {
1177 /* Make sure no one is clobbering the shared constant. */
1178 gcc_assert (TREE_TYPE (t) == type);
1179 gcc_assert (TREE_INT_CST_LOW (t) == low);
1180 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1181 }
1182 else
1183 {
1184 /* Create a new shared int. */
1185 t = make_node (INTEGER_CST);
1186
1187 TREE_INT_CST_LOW (t) = low;
1188 TREE_INT_CST_HIGH (t) = hi;
1189 TREE_TYPE (t) = type;
1190
1191 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1192 }
1193 }
1194 else
1195 {
1196 /* Use the cache of larger shared ints. */
1197 void **slot;
1198
1199 TREE_INT_CST_LOW (int_cst_node) = low;
1200 TREE_INT_CST_HIGH (int_cst_node) = hi;
1201 TREE_TYPE (int_cst_node) = type;
1202
1203 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1204 t = (tree) *slot;
1205 if (!t)
1206 {
1207 /* Insert this one into the hash table. */
1208 t = int_cst_node;
1209 *slot = t;
1210 /* Make a new node for next time round. */
1211 int_cst_node = make_node (INTEGER_CST);
1212 }
1213 }
1214
1215 return t;
1216 }
1217
1218 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1219 and the rest are zeros. */
1220
1221 tree
1222 build_low_bits_mask (tree type, unsigned bits)
1223 {
1224 unsigned HOST_WIDE_INT low;
1225 HOST_WIDE_INT high;
1226 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
1227
1228 gcc_assert (bits <= TYPE_PRECISION (type));
1229
1230 if (bits == TYPE_PRECISION (type)
1231 && !TYPE_UNSIGNED (type))
1232 {
1233 /* Sign extended all-ones mask. */
1234 low = all_ones;
1235 high = -1;
1236 }
1237 else if (bits <= HOST_BITS_PER_WIDE_INT)
1238 {
1239 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
1240 high = 0;
1241 }
1242 else
1243 {
1244 bits -= HOST_BITS_PER_WIDE_INT;
1245 low = all_ones;
1246 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
1247 }
1248
1249 return build_int_cst_wide (type, low, high);
1250 }
1251
1252 /* Checks that X is integer constant that can be expressed in (unsigned)
1253 HOST_WIDE_INT without loss of precision. */
1254
1255 bool
1256 cst_and_fits_in_hwi (const_tree x)
1257 {
1258 if (TREE_CODE (x) != INTEGER_CST)
1259 return false;
1260
1261 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1262 return false;
1263
1264 return (TREE_INT_CST_HIGH (x) == 0
1265 || TREE_INT_CST_HIGH (x) == -1);
1266 }
1267
1268 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1269 are in a list pointed to by VALS. */
1270
1271 tree
1272 build_vector (tree type, tree vals)
1273 {
1274 tree v = make_node (VECTOR_CST);
1275 int over = 0;
1276 tree link;
1277
1278 TREE_VECTOR_CST_ELTS (v) = vals;
1279 TREE_TYPE (v) = type;
1280
1281 /* Iterate through elements and check for overflow. */
1282 for (link = vals; link; link = TREE_CHAIN (link))
1283 {
1284 tree value = TREE_VALUE (link);
1285
1286 /* Don't crash if we get an address constant. */
1287 if (!CONSTANT_CLASS_P (value))
1288 continue;
1289
1290 over |= TREE_OVERFLOW (value);
1291 }
1292
1293 TREE_OVERFLOW (v) = over;
1294 return v;
1295 }
1296
1297 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1298 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1299
1300 tree
1301 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1302 {
1303 tree list = NULL_TREE;
1304 unsigned HOST_WIDE_INT idx;
1305 tree value;
1306
1307 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1308 list = tree_cons (NULL_TREE, value, list);
1309 return build_vector (type, nreverse (list));
1310 }
1311
1312 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1313 are in the VEC pointed to by VALS. */
1314 tree
1315 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1316 {
1317 tree c = make_node (CONSTRUCTOR);
1318 TREE_TYPE (c) = type;
1319 CONSTRUCTOR_ELTS (c) = vals;
1320 return c;
1321 }
1322
1323 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1324 INDEX and VALUE. */
1325 tree
1326 build_constructor_single (tree type, tree index, tree value)
1327 {
1328 VEC(constructor_elt,gc) *v;
1329 constructor_elt *elt;
1330 tree t;
1331
1332 v = VEC_alloc (constructor_elt, gc, 1);
1333 elt = VEC_quick_push (constructor_elt, v, NULL);
1334 elt->index = index;
1335 elt->value = value;
1336
1337 t = build_constructor (type, v);
1338 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1339 return t;
1340 }
1341
1342
1343 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1344 are in a list pointed to by VALS. */
1345 tree
1346 build_constructor_from_list (tree type, tree vals)
1347 {
1348 tree t, val;
1349 VEC(constructor_elt,gc) *v = NULL;
1350 bool constant_p = true;
1351
1352 if (vals)
1353 {
1354 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1355 for (t = vals; t; t = TREE_CHAIN (t))
1356 {
1357 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1358 val = TREE_VALUE (t);
1359 elt->index = TREE_PURPOSE (t);
1360 elt->value = val;
1361 if (!TREE_CONSTANT (val))
1362 constant_p = false;
1363 }
1364 }
1365
1366 t = build_constructor (type, v);
1367 TREE_CONSTANT (t) = constant_p;
1368 return t;
1369 }
1370
1371 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1372
1373 tree
1374 build_fixed (tree type, FIXED_VALUE_TYPE f)
1375 {
1376 tree v;
1377 FIXED_VALUE_TYPE *fp;
1378
1379 v = make_node (FIXED_CST);
1380 fp = GGC_NEW (FIXED_VALUE_TYPE);
1381 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1382
1383 TREE_TYPE (v) = type;
1384 TREE_FIXED_CST_PTR (v) = fp;
1385 return v;
1386 }
1387
1388 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1389
1390 tree
1391 build_real (tree type, REAL_VALUE_TYPE d)
1392 {
1393 tree v;
1394 REAL_VALUE_TYPE *dp;
1395 int overflow = 0;
1396
1397 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1398 Consider doing it via real_convert now. */
1399
1400 v = make_node (REAL_CST);
1401 dp = GGC_NEW (REAL_VALUE_TYPE);
1402 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1403
1404 TREE_TYPE (v) = type;
1405 TREE_REAL_CST_PTR (v) = dp;
1406 TREE_OVERFLOW (v) = overflow;
1407 return v;
1408 }
1409
1410 /* Return a new REAL_CST node whose type is TYPE
1411 and whose value is the integer value of the INTEGER_CST node I. */
1412
1413 REAL_VALUE_TYPE
1414 real_value_from_int_cst (const_tree type, const_tree i)
1415 {
1416 REAL_VALUE_TYPE d;
1417
1418 /* Clear all bits of the real value type so that we can later do
1419 bitwise comparisons to see if two values are the same. */
1420 memset (&d, 0, sizeof d);
1421
1422 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1423 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1424 TYPE_UNSIGNED (TREE_TYPE (i)));
1425 return d;
1426 }
1427
1428 /* Given a tree representing an integer constant I, return a tree
1429 representing the same value as a floating-point constant of type TYPE. */
1430
1431 tree
1432 build_real_from_int_cst (tree type, const_tree i)
1433 {
1434 tree v;
1435 int overflow = TREE_OVERFLOW (i);
1436
1437 v = build_real (type, real_value_from_int_cst (type, i));
1438
1439 TREE_OVERFLOW (v) |= overflow;
1440 return v;
1441 }
1442
1443 /* Return a newly constructed STRING_CST node whose value is
1444 the LEN characters at STR.
1445 The TREE_TYPE is not initialized. */
1446
1447 tree
1448 build_string (int len, const char *str)
1449 {
1450 tree s;
1451 size_t length;
1452
1453 /* Do not waste bytes provided by padding of struct tree_string. */
1454 length = len + offsetof (struct tree_string, str) + 1;
1455
1456 #ifdef GATHER_STATISTICS
1457 tree_node_counts[(int) c_kind]++;
1458 tree_node_sizes[(int) c_kind] += length;
1459 #endif
1460
1461 s = ggc_alloc_tree (length);
1462
1463 memset (s, 0, sizeof (struct tree_common));
1464 TREE_SET_CODE (s, STRING_CST);
1465 TREE_CONSTANT (s) = 1;
1466 TREE_STRING_LENGTH (s) = len;
1467 memcpy (s->string.str, str, len);
1468 s->string.str[len] = '\0';
1469
1470 return s;
1471 }
1472
1473 /* Return a newly constructed COMPLEX_CST node whose value is
1474 specified by the real and imaginary parts REAL and IMAG.
1475 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1476 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1477
1478 tree
1479 build_complex (tree type, tree real, tree imag)
1480 {
1481 tree t = make_node (COMPLEX_CST);
1482
1483 TREE_REALPART (t) = real;
1484 TREE_IMAGPART (t) = imag;
1485 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1486 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1487 return t;
1488 }
1489
1490 /* Return a constant of arithmetic type TYPE which is the
1491 multiplicative identity of the set TYPE. */
1492
1493 tree
1494 build_one_cst (tree type)
1495 {
1496 switch (TREE_CODE (type))
1497 {
1498 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1499 case POINTER_TYPE: case REFERENCE_TYPE:
1500 case OFFSET_TYPE:
1501 return build_int_cst (type, 1);
1502
1503 case REAL_TYPE:
1504 return build_real (type, dconst1);
1505
1506 case FIXED_POINT_TYPE:
1507 /* We can only generate 1 for accum types. */
1508 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1509 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1510
1511 case VECTOR_TYPE:
1512 {
1513 tree scalar, cst;
1514 int i;
1515
1516 scalar = build_one_cst (TREE_TYPE (type));
1517
1518 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1519 cst = NULL_TREE;
1520 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1521 cst = tree_cons (NULL_TREE, scalar, cst);
1522
1523 return build_vector (type, cst);
1524 }
1525
1526 case COMPLEX_TYPE:
1527 return build_complex (type,
1528 build_one_cst (TREE_TYPE (type)),
1529 fold_convert (TREE_TYPE (type), integer_zero_node));
1530
1531 default:
1532 gcc_unreachable ();
1533 }
1534 }
1535
1536 /* Build a BINFO with LEN language slots. */
1537
1538 tree
1539 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1540 {
1541 tree t;
1542 size_t length = (offsetof (struct tree_binfo, base_binfos)
1543 + VEC_embedded_size (tree, base_binfos));
1544
1545 #ifdef GATHER_STATISTICS
1546 tree_node_counts[(int) binfo_kind]++;
1547 tree_node_sizes[(int) binfo_kind] += length;
1548 #endif
1549
1550 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1551
1552 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1553
1554 TREE_SET_CODE (t, TREE_BINFO);
1555
1556 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1557
1558 return t;
1559 }
1560
1561
1562 /* Build a newly constructed TREE_VEC node of length LEN. */
1563
1564 tree
1565 make_tree_vec_stat (int len MEM_STAT_DECL)
1566 {
1567 tree t;
1568 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1569
1570 #ifdef GATHER_STATISTICS
1571 tree_node_counts[(int) vec_kind]++;
1572 tree_node_sizes[(int) vec_kind] += length;
1573 #endif
1574
1575 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1576
1577 memset (t, 0, length);
1578
1579 TREE_SET_CODE (t, TREE_VEC);
1580 TREE_VEC_LENGTH (t) = len;
1581
1582 return t;
1583 }
1584 \f
1585 /* Return 1 if EXPR is the integer constant zero or a complex constant
1586 of zero. */
1587
1588 int
1589 integer_zerop (const_tree expr)
1590 {
1591 STRIP_NOPS (expr);
1592
1593 return ((TREE_CODE (expr) == INTEGER_CST
1594 && TREE_INT_CST_LOW (expr) == 0
1595 && TREE_INT_CST_HIGH (expr) == 0)
1596 || (TREE_CODE (expr) == COMPLEX_CST
1597 && integer_zerop (TREE_REALPART (expr))
1598 && integer_zerop (TREE_IMAGPART (expr))));
1599 }
1600
1601 /* Return 1 if EXPR is the integer constant one or the corresponding
1602 complex constant. */
1603
1604 int
1605 integer_onep (const_tree expr)
1606 {
1607 STRIP_NOPS (expr);
1608
1609 return ((TREE_CODE (expr) == INTEGER_CST
1610 && TREE_INT_CST_LOW (expr) == 1
1611 && TREE_INT_CST_HIGH (expr) == 0)
1612 || (TREE_CODE (expr) == COMPLEX_CST
1613 && integer_onep (TREE_REALPART (expr))
1614 && integer_zerop (TREE_IMAGPART (expr))));
1615 }
1616
1617 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1618 it contains. Likewise for the corresponding complex constant. */
1619
1620 int
1621 integer_all_onesp (const_tree expr)
1622 {
1623 int prec;
1624 int uns;
1625
1626 STRIP_NOPS (expr);
1627
1628 if (TREE_CODE (expr) == COMPLEX_CST
1629 && integer_all_onesp (TREE_REALPART (expr))
1630 && integer_zerop (TREE_IMAGPART (expr)))
1631 return 1;
1632
1633 else if (TREE_CODE (expr) != INTEGER_CST)
1634 return 0;
1635
1636 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1637 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1638 && TREE_INT_CST_HIGH (expr) == -1)
1639 return 1;
1640 if (!uns)
1641 return 0;
1642
1643 /* Note that using TYPE_PRECISION here is wrong. We care about the
1644 actual bits, not the (arbitrary) range of the type. */
1645 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1646 if (prec >= HOST_BITS_PER_WIDE_INT)
1647 {
1648 HOST_WIDE_INT high_value;
1649 int shift_amount;
1650
1651 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1652
1653 /* Can not handle precisions greater than twice the host int size. */
1654 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1655 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1656 /* Shifting by the host word size is undefined according to the ANSI
1657 standard, so we must handle this as a special case. */
1658 high_value = -1;
1659 else
1660 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1661
1662 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1663 && TREE_INT_CST_HIGH (expr) == high_value);
1664 }
1665 else
1666 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1667 }
1668
1669 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1670 one bit on). */
1671
1672 int
1673 integer_pow2p (const_tree expr)
1674 {
1675 int prec;
1676 HOST_WIDE_INT high, low;
1677
1678 STRIP_NOPS (expr);
1679
1680 if (TREE_CODE (expr) == COMPLEX_CST
1681 && integer_pow2p (TREE_REALPART (expr))
1682 && integer_zerop (TREE_IMAGPART (expr)))
1683 return 1;
1684
1685 if (TREE_CODE (expr) != INTEGER_CST)
1686 return 0;
1687
1688 prec = TYPE_PRECISION (TREE_TYPE (expr));
1689 high = TREE_INT_CST_HIGH (expr);
1690 low = TREE_INT_CST_LOW (expr);
1691
1692 /* First clear all bits that are beyond the type's precision in case
1693 we've been sign extended. */
1694
1695 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1696 ;
1697 else if (prec > HOST_BITS_PER_WIDE_INT)
1698 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1699 else
1700 {
1701 high = 0;
1702 if (prec < HOST_BITS_PER_WIDE_INT)
1703 low &= ~((HOST_WIDE_INT) (-1) << prec);
1704 }
1705
1706 if (high == 0 && low == 0)
1707 return 0;
1708
1709 return ((high == 0 && (low & (low - 1)) == 0)
1710 || (low == 0 && (high & (high - 1)) == 0));
1711 }
1712
1713 /* Return 1 if EXPR is an integer constant other than zero or a
1714 complex constant other than zero. */
1715
1716 int
1717 integer_nonzerop (const_tree expr)
1718 {
1719 STRIP_NOPS (expr);
1720
1721 return ((TREE_CODE (expr) == INTEGER_CST
1722 && (TREE_INT_CST_LOW (expr) != 0
1723 || TREE_INT_CST_HIGH (expr) != 0))
1724 || (TREE_CODE (expr) == COMPLEX_CST
1725 && (integer_nonzerop (TREE_REALPART (expr))
1726 || integer_nonzerop (TREE_IMAGPART (expr)))));
1727 }
1728
1729 /* Return 1 if EXPR is the fixed-point constant zero. */
1730
1731 int
1732 fixed_zerop (const_tree expr)
1733 {
1734 return (TREE_CODE (expr) == FIXED_CST
1735 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1736 }
1737
1738 /* Return the power of two represented by a tree node known to be a
1739 power of two. */
1740
1741 int
1742 tree_log2 (const_tree expr)
1743 {
1744 int prec;
1745 HOST_WIDE_INT high, low;
1746
1747 STRIP_NOPS (expr);
1748
1749 if (TREE_CODE (expr) == COMPLEX_CST)
1750 return tree_log2 (TREE_REALPART (expr));
1751
1752 prec = TYPE_PRECISION (TREE_TYPE (expr));
1753 high = TREE_INT_CST_HIGH (expr);
1754 low = TREE_INT_CST_LOW (expr);
1755
1756 /* First clear all bits that are beyond the type's precision in case
1757 we've been sign extended. */
1758
1759 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1760 ;
1761 else if (prec > HOST_BITS_PER_WIDE_INT)
1762 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1763 else
1764 {
1765 high = 0;
1766 if (prec < HOST_BITS_PER_WIDE_INT)
1767 low &= ~((HOST_WIDE_INT) (-1) << prec);
1768 }
1769
1770 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1771 : exact_log2 (low));
1772 }
1773
1774 /* Similar, but return the largest integer Y such that 2 ** Y is less
1775 than or equal to EXPR. */
1776
1777 int
1778 tree_floor_log2 (const_tree expr)
1779 {
1780 int prec;
1781 HOST_WIDE_INT high, low;
1782
1783 STRIP_NOPS (expr);
1784
1785 if (TREE_CODE (expr) == COMPLEX_CST)
1786 return tree_log2 (TREE_REALPART (expr));
1787
1788 prec = TYPE_PRECISION (TREE_TYPE (expr));
1789 high = TREE_INT_CST_HIGH (expr);
1790 low = TREE_INT_CST_LOW (expr);
1791
1792 /* First clear all bits that are beyond the type's precision in case
1793 we've been sign extended. Ignore if type's precision hasn't been set
1794 since what we are doing is setting it. */
1795
1796 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1797 ;
1798 else if (prec > HOST_BITS_PER_WIDE_INT)
1799 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1800 else
1801 {
1802 high = 0;
1803 if (prec < HOST_BITS_PER_WIDE_INT)
1804 low &= ~((HOST_WIDE_INT) (-1) << prec);
1805 }
1806
1807 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1808 : floor_log2 (low));
1809 }
1810
1811 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1812 decimal float constants, so don't return 1 for them. */
1813
1814 int
1815 real_zerop (const_tree expr)
1816 {
1817 STRIP_NOPS (expr);
1818
1819 return ((TREE_CODE (expr) == REAL_CST
1820 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1821 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1822 || (TREE_CODE (expr) == COMPLEX_CST
1823 && real_zerop (TREE_REALPART (expr))
1824 && real_zerop (TREE_IMAGPART (expr))));
1825 }
1826
1827 /* Return 1 if EXPR is the real constant one in real or complex form.
1828 Trailing zeroes matter for decimal float constants, so don't return
1829 1 for them. */
1830
1831 int
1832 real_onep (const_tree expr)
1833 {
1834 STRIP_NOPS (expr);
1835
1836 return ((TREE_CODE (expr) == REAL_CST
1837 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1838 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1839 || (TREE_CODE (expr) == COMPLEX_CST
1840 && real_onep (TREE_REALPART (expr))
1841 && real_zerop (TREE_IMAGPART (expr))));
1842 }
1843
1844 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1845 for decimal float constants, so don't return 1 for them. */
1846
1847 int
1848 real_twop (const_tree expr)
1849 {
1850 STRIP_NOPS (expr);
1851
1852 return ((TREE_CODE (expr) == REAL_CST
1853 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1854 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1855 || (TREE_CODE (expr) == COMPLEX_CST
1856 && real_twop (TREE_REALPART (expr))
1857 && real_zerop (TREE_IMAGPART (expr))));
1858 }
1859
1860 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1861 matter for decimal float constants, so don't return 1 for them. */
1862
1863 int
1864 real_minus_onep (const_tree expr)
1865 {
1866 STRIP_NOPS (expr);
1867
1868 return ((TREE_CODE (expr) == REAL_CST
1869 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1870 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1871 || (TREE_CODE (expr) == COMPLEX_CST
1872 && real_minus_onep (TREE_REALPART (expr))
1873 && real_zerop (TREE_IMAGPART (expr))));
1874 }
1875
1876 /* Nonzero if EXP is a constant or a cast of a constant. */
1877
1878 int
1879 really_constant_p (const_tree exp)
1880 {
1881 /* This is not quite the same as STRIP_NOPS. It does more. */
1882 while (CONVERT_EXPR_P (exp)
1883 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1884 exp = TREE_OPERAND (exp, 0);
1885 return TREE_CONSTANT (exp);
1886 }
1887 \f
1888 /* Return first list element whose TREE_VALUE is ELEM.
1889 Return 0 if ELEM is not in LIST. */
1890
1891 tree
1892 value_member (tree elem, tree list)
1893 {
1894 while (list)
1895 {
1896 if (elem == TREE_VALUE (list))
1897 return list;
1898 list = TREE_CHAIN (list);
1899 }
1900 return NULL_TREE;
1901 }
1902
1903 /* Return first list element whose TREE_PURPOSE is ELEM.
1904 Return 0 if ELEM is not in LIST. */
1905
1906 tree
1907 purpose_member (const_tree elem, tree list)
1908 {
1909 while (list)
1910 {
1911 if (elem == TREE_PURPOSE (list))
1912 return list;
1913 list = TREE_CHAIN (list);
1914 }
1915 return NULL_TREE;
1916 }
1917
1918 /* Returns element number IDX (zero-origin) of chain CHAIN, or
1919 NULL_TREE. */
1920
1921 tree
1922 chain_index (int idx, tree chain)
1923 {
1924 for (; chain && idx > 0; --idx)
1925 chain = TREE_CHAIN (chain);
1926 return chain;
1927 }
1928
1929 /* Return nonzero if ELEM is part of the chain CHAIN. */
1930
1931 int
1932 chain_member (const_tree elem, const_tree chain)
1933 {
1934 while (chain)
1935 {
1936 if (elem == chain)
1937 return 1;
1938 chain = TREE_CHAIN (chain);
1939 }
1940
1941 return 0;
1942 }
1943
1944 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1945 We expect a null pointer to mark the end of the chain.
1946 This is the Lisp primitive `length'. */
1947
1948 int
1949 list_length (const_tree t)
1950 {
1951 const_tree p = t;
1952 #ifdef ENABLE_TREE_CHECKING
1953 const_tree q = t;
1954 #endif
1955 int len = 0;
1956
1957 while (p)
1958 {
1959 p = TREE_CHAIN (p);
1960 #ifdef ENABLE_TREE_CHECKING
1961 if (len % 2)
1962 q = TREE_CHAIN (q);
1963 gcc_assert (p != q);
1964 #endif
1965 len++;
1966 }
1967
1968 return len;
1969 }
1970
1971 /* Returns the number of FIELD_DECLs in TYPE. */
1972
1973 int
1974 fields_length (const_tree type)
1975 {
1976 tree t = TYPE_FIELDS (type);
1977 int count = 0;
1978
1979 for (; t; t = TREE_CHAIN (t))
1980 if (TREE_CODE (t) == FIELD_DECL)
1981 ++count;
1982
1983 return count;
1984 }
1985
1986 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
1987 UNION_TYPE TYPE, or NULL_TREE if none. */
1988
1989 tree
1990 first_field (const_tree type)
1991 {
1992 tree t = TYPE_FIELDS (type);
1993 while (t && TREE_CODE (t) != FIELD_DECL)
1994 t = TREE_CHAIN (t);
1995 return t;
1996 }
1997
1998 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1999 by modifying the last node in chain 1 to point to chain 2.
2000 This is the Lisp primitive `nconc'. */
2001
2002 tree
2003 chainon (tree op1, tree op2)
2004 {
2005 tree t1;
2006
2007 if (!op1)
2008 return op2;
2009 if (!op2)
2010 return op1;
2011
2012 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2013 continue;
2014 TREE_CHAIN (t1) = op2;
2015
2016 #ifdef ENABLE_TREE_CHECKING
2017 {
2018 tree t2;
2019 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2020 gcc_assert (t2 != t1);
2021 }
2022 #endif
2023
2024 return op1;
2025 }
2026
2027 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2028
2029 tree
2030 tree_last (tree chain)
2031 {
2032 tree next;
2033 if (chain)
2034 while ((next = TREE_CHAIN (chain)))
2035 chain = next;
2036 return chain;
2037 }
2038
2039 /* Reverse the order of elements in the chain T,
2040 and return the new head of the chain (old last element). */
2041
2042 tree
2043 nreverse (tree t)
2044 {
2045 tree prev = 0, decl, next;
2046 for (decl = t; decl; decl = next)
2047 {
2048 next = TREE_CHAIN (decl);
2049 TREE_CHAIN (decl) = prev;
2050 prev = decl;
2051 }
2052 return prev;
2053 }
2054 \f
2055 /* Return a newly created TREE_LIST node whose
2056 purpose and value fields are PARM and VALUE. */
2057
2058 tree
2059 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2060 {
2061 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2062 TREE_PURPOSE (t) = parm;
2063 TREE_VALUE (t) = value;
2064 return t;
2065 }
2066
2067 /* Build a chain of TREE_LIST nodes from a vector. */
2068
2069 tree
2070 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2071 {
2072 tree ret = NULL_TREE;
2073 tree *pp = &ret;
2074 unsigned int i;
2075 tree t;
2076 for (i = 0; VEC_iterate (tree, vec, i, t); ++i)
2077 {
2078 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2079 pp = &TREE_CHAIN (*pp);
2080 }
2081 return ret;
2082 }
2083
2084 /* Return a newly created TREE_LIST node whose
2085 purpose and value fields are PURPOSE and VALUE
2086 and whose TREE_CHAIN is CHAIN. */
2087
2088 tree
2089 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2090 {
2091 tree node;
2092
2093 node = (tree) ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
2094
2095 memset (node, 0, sizeof (struct tree_common));
2096
2097 #ifdef GATHER_STATISTICS
2098 tree_node_counts[(int) x_kind]++;
2099 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2100 #endif
2101
2102 TREE_SET_CODE (node, TREE_LIST);
2103 TREE_CHAIN (node) = chain;
2104 TREE_PURPOSE (node) = purpose;
2105 TREE_VALUE (node) = value;
2106 return node;
2107 }
2108
2109 /* Return the elements of a CONSTRUCTOR as a TREE_LIST. */
2110
2111 tree
2112 ctor_to_list (tree ctor)
2113 {
2114 tree list = NULL_TREE;
2115 tree *p = &list;
2116 unsigned ix;
2117 tree purpose, val;
2118
2119 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), ix, purpose, val)
2120 {
2121 *p = build_tree_list (purpose, val);
2122 p = &TREE_CHAIN (*p);
2123 }
2124
2125 return list;
2126 }
2127
2128 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2129 trees. */
2130
2131 VEC(tree,gc) *
2132 ctor_to_vec (tree ctor)
2133 {
2134 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2135 unsigned int ix;
2136 tree val;
2137
2138 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2139 VEC_quick_push (tree, vec, val);
2140
2141 return vec;
2142 }
2143 \f
2144 /* Return the size nominally occupied by an object of type TYPE
2145 when it resides in memory. The value is measured in units of bytes,
2146 and its data type is that normally used for type sizes
2147 (which is the first type created by make_signed_type or
2148 make_unsigned_type). */
2149
2150 tree
2151 size_in_bytes (const_tree type)
2152 {
2153 tree t;
2154
2155 if (type == error_mark_node)
2156 return integer_zero_node;
2157
2158 type = TYPE_MAIN_VARIANT (type);
2159 t = TYPE_SIZE_UNIT (type);
2160
2161 if (t == 0)
2162 {
2163 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2164 return size_zero_node;
2165 }
2166
2167 return t;
2168 }
2169
2170 /* Return the size of TYPE (in bytes) as a wide integer
2171 or return -1 if the size can vary or is larger than an integer. */
2172
2173 HOST_WIDE_INT
2174 int_size_in_bytes (const_tree type)
2175 {
2176 tree t;
2177
2178 if (type == error_mark_node)
2179 return 0;
2180
2181 type = TYPE_MAIN_VARIANT (type);
2182 t = TYPE_SIZE_UNIT (type);
2183 if (t == 0
2184 || TREE_CODE (t) != INTEGER_CST
2185 || TREE_INT_CST_HIGH (t) != 0
2186 /* If the result would appear negative, it's too big to represent. */
2187 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2188 return -1;
2189
2190 return TREE_INT_CST_LOW (t);
2191 }
2192
2193 /* Return the maximum size of TYPE (in bytes) as a wide integer
2194 or return -1 if the size can vary or is larger than an integer. */
2195
2196 HOST_WIDE_INT
2197 max_int_size_in_bytes (const_tree type)
2198 {
2199 HOST_WIDE_INT size = -1;
2200 tree size_tree;
2201
2202 /* If this is an array type, check for a possible MAX_SIZE attached. */
2203
2204 if (TREE_CODE (type) == ARRAY_TYPE)
2205 {
2206 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2207
2208 if (size_tree && host_integerp (size_tree, 1))
2209 size = tree_low_cst (size_tree, 1);
2210 }
2211
2212 /* If we still haven't been able to get a size, see if the language
2213 can compute a maximum size. */
2214
2215 if (size == -1)
2216 {
2217 size_tree = lang_hooks.types.max_size (type);
2218
2219 if (size_tree && host_integerp (size_tree, 1))
2220 size = tree_low_cst (size_tree, 1);
2221 }
2222
2223 return size;
2224 }
2225
2226 /* Returns a tree for the size of EXP in bytes. */
2227
2228 tree
2229 tree_expr_size (const_tree exp)
2230 {
2231 if (DECL_P (exp)
2232 && DECL_SIZE_UNIT (exp) != 0)
2233 return DECL_SIZE_UNIT (exp);
2234 else
2235 return size_in_bytes (TREE_TYPE (exp));
2236 }
2237 \f
2238 /* Return the bit position of FIELD, in bits from the start of the record.
2239 This is a tree of type bitsizetype. */
2240
2241 tree
2242 bit_position (const_tree field)
2243 {
2244 return bit_from_pos (DECL_FIELD_OFFSET (field),
2245 DECL_FIELD_BIT_OFFSET (field));
2246 }
2247
2248 /* Likewise, but return as an integer. It must be representable in
2249 that way (since it could be a signed value, we don't have the
2250 option of returning -1 like int_size_in_byte can. */
2251
2252 HOST_WIDE_INT
2253 int_bit_position (const_tree field)
2254 {
2255 return tree_low_cst (bit_position (field), 0);
2256 }
2257 \f
2258 /* Return the byte position of FIELD, in bytes from the start of the record.
2259 This is a tree of type sizetype. */
2260
2261 tree
2262 byte_position (const_tree field)
2263 {
2264 return byte_from_pos (DECL_FIELD_OFFSET (field),
2265 DECL_FIELD_BIT_OFFSET (field));
2266 }
2267
2268 /* Likewise, but return as an integer. It must be representable in
2269 that way (since it could be a signed value, we don't have the
2270 option of returning -1 like int_size_in_byte can. */
2271
2272 HOST_WIDE_INT
2273 int_byte_position (const_tree field)
2274 {
2275 return tree_low_cst (byte_position (field), 0);
2276 }
2277 \f
2278 /* Return the strictest alignment, in bits, that T is known to have. */
2279
2280 unsigned int
2281 expr_align (const_tree t)
2282 {
2283 unsigned int align0, align1;
2284
2285 switch (TREE_CODE (t))
2286 {
2287 CASE_CONVERT: case NON_LVALUE_EXPR:
2288 /* If we have conversions, we know that the alignment of the
2289 object must meet each of the alignments of the types. */
2290 align0 = expr_align (TREE_OPERAND (t, 0));
2291 align1 = TYPE_ALIGN (TREE_TYPE (t));
2292 return MAX (align0, align1);
2293
2294 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2295 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2296 case CLEANUP_POINT_EXPR:
2297 /* These don't change the alignment of an object. */
2298 return expr_align (TREE_OPERAND (t, 0));
2299
2300 case COND_EXPR:
2301 /* The best we can do is say that the alignment is the least aligned
2302 of the two arms. */
2303 align0 = expr_align (TREE_OPERAND (t, 1));
2304 align1 = expr_align (TREE_OPERAND (t, 2));
2305 return MIN (align0, align1);
2306
2307 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2308 meaningfully, it's always 1. */
2309 case LABEL_DECL: case CONST_DECL:
2310 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2311 case FUNCTION_DECL:
2312 gcc_assert (DECL_ALIGN (t) != 0);
2313 return DECL_ALIGN (t);
2314
2315 default:
2316 break;
2317 }
2318
2319 /* Otherwise take the alignment from that of the type. */
2320 return TYPE_ALIGN (TREE_TYPE (t));
2321 }
2322 \f
2323 /* Return, as a tree node, the number of elements for TYPE (which is an
2324 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2325
2326 tree
2327 array_type_nelts (const_tree type)
2328 {
2329 tree index_type, min, max;
2330
2331 /* If they did it with unspecified bounds, then we should have already
2332 given an error about it before we got here. */
2333 if (! TYPE_DOMAIN (type))
2334 return error_mark_node;
2335
2336 index_type = TYPE_DOMAIN (type);
2337 min = TYPE_MIN_VALUE (index_type);
2338 max = TYPE_MAX_VALUE (index_type);
2339
2340 return (integer_zerop (min)
2341 ? max
2342 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2343 }
2344 \f
2345 /* If arg is static -- a reference to an object in static storage -- then
2346 return the object. This is not the same as the C meaning of `static'.
2347 If arg isn't static, return NULL. */
2348
2349 tree
2350 staticp (tree arg)
2351 {
2352 switch (TREE_CODE (arg))
2353 {
2354 case FUNCTION_DECL:
2355 /* Nested functions are static, even though taking their address will
2356 involve a trampoline as we unnest the nested function and create
2357 the trampoline on the tree level. */
2358 return arg;
2359
2360 case VAR_DECL:
2361 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2362 && ! DECL_THREAD_LOCAL_P (arg)
2363 && ! DECL_DLLIMPORT_P (arg)
2364 ? arg : NULL);
2365
2366 case CONST_DECL:
2367 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2368 ? arg : NULL);
2369
2370 case CONSTRUCTOR:
2371 return TREE_STATIC (arg) ? arg : NULL;
2372
2373 case LABEL_DECL:
2374 case STRING_CST:
2375 return arg;
2376
2377 case COMPONENT_REF:
2378 /* If the thing being referenced is not a field, then it is
2379 something language specific. */
2380 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2381
2382 /* If we are referencing a bitfield, we can't evaluate an
2383 ADDR_EXPR at compile time and so it isn't a constant. */
2384 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2385 return NULL;
2386
2387 return staticp (TREE_OPERAND (arg, 0));
2388
2389 case BIT_FIELD_REF:
2390 return NULL;
2391
2392 case MISALIGNED_INDIRECT_REF:
2393 case ALIGN_INDIRECT_REF:
2394 case INDIRECT_REF:
2395 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2396
2397 case ARRAY_REF:
2398 case ARRAY_RANGE_REF:
2399 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2400 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2401 return staticp (TREE_OPERAND (arg, 0));
2402 else
2403 return NULL;
2404
2405 case COMPOUND_LITERAL_EXPR:
2406 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2407
2408 default:
2409 return NULL;
2410 }
2411 }
2412
2413 \f
2414
2415
2416 /* Return whether OP is a DECL whose address is function-invariant. */
2417
2418 bool
2419 decl_address_invariant_p (const_tree op)
2420 {
2421 /* The conditions below are slightly less strict than the one in
2422 staticp. */
2423
2424 switch (TREE_CODE (op))
2425 {
2426 case PARM_DECL:
2427 case RESULT_DECL:
2428 case LABEL_DECL:
2429 case FUNCTION_DECL:
2430 return true;
2431
2432 case VAR_DECL:
2433 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2434 && !DECL_DLLIMPORT_P (op))
2435 || DECL_THREAD_LOCAL_P (op)
2436 || DECL_CONTEXT (op) == current_function_decl
2437 || decl_function_context (op) == current_function_decl)
2438 return true;
2439 break;
2440
2441 case CONST_DECL:
2442 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2443 || decl_function_context (op) == current_function_decl)
2444 return true;
2445 break;
2446
2447 default:
2448 break;
2449 }
2450
2451 return false;
2452 }
2453
2454 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2455
2456 bool
2457 decl_address_ip_invariant_p (const_tree op)
2458 {
2459 /* The conditions below are slightly less strict than the one in
2460 staticp. */
2461
2462 switch (TREE_CODE (op))
2463 {
2464 case LABEL_DECL:
2465 case FUNCTION_DECL:
2466 case STRING_CST:
2467 return true;
2468
2469 case VAR_DECL:
2470 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2471 && !DECL_DLLIMPORT_P (op))
2472 || DECL_THREAD_LOCAL_P (op))
2473 return true;
2474 break;
2475
2476 case CONST_DECL:
2477 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2478 return true;
2479 break;
2480
2481 default:
2482 break;
2483 }
2484
2485 return false;
2486 }
2487
2488
2489 /* Return true if T is function-invariant (internal function, does
2490 not handle arithmetic; that's handled in skip_simple_arithmetic and
2491 tree_invariant_p). */
2492
2493 static bool tree_invariant_p (tree t);
2494
2495 static bool
2496 tree_invariant_p_1 (tree t)
2497 {
2498 tree op;
2499
2500 if (TREE_CONSTANT (t)
2501 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2502 return true;
2503
2504 switch (TREE_CODE (t))
2505 {
2506 case SAVE_EXPR:
2507 return true;
2508
2509 case ADDR_EXPR:
2510 op = TREE_OPERAND (t, 0);
2511 while (handled_component_p (op))
2512 {
2513 switch (TREE_CODE (op))
2514 {
2515 case ARRAY_REF:
2516 case ARRAY_RANGE_REF:
2517 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2518 || TREE_OPERAND (op, 2) != NULL_TREE
2519 || TREE_OPERAND (op, 3) != NULL_TREE)
2520 return false;
2521 break;
2522
2523 case COMPONENT_REF:
2524 if (TREE_OPERAND (op, 2) != NULL_TREE)
2525 return false;
2526 break;
2527
2528 default:;
2529 }
2530 op = TREE_OPERAND (op, 0);
2531 }
2532
2533 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2534
2535 default:
2536 break;
2537 }
2538
2539 return false;
2540 }
2541
2542 /* Return true if T is function-invariant. */
2543
2544 static bool
2545 tree_invariant_p (tree t)
2546 {
2547 tree inner = skip_simple_arithmetic (t);
2548 return tree_invariant_p_1 (inner);
2549 }
2550
2551 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2552 Do this to any expression which may be used in more than one place,
2553 but must be evaluated only once.
2554
2555 Normally, expand_expr would reevaluate the expression each time.
2556 Calling save_expr produces something that is evaluated and recorded
2557 the first time expand_expr is called on it. Subsequent calls to
2558 expand_expr just reuse the recorded value.
2559
2560 The call to expand_expr that generates code that actually computes
2561 the value is the first call *at compile time*. Subsequent calls
2562 *at compile time* generate code to use the saved value.
2563 This produces correct result provided that *at run time* control
2564 always flows through the insns made by the first expand_expr
2565 before reaching the other places where the save_expr was evaluated.
2566 You, the caller of save_expr, must make sure this is so.
2567
2568 Constants, and certain read-only nodes, are returned with no
2569 SAVE_EXPR because that is safe. Expressions containing placeholders
2570 are not touched; see tree.def for an explanation of what these
2571 are used for. */
2572
2573 tree
2574 save_expr (tree expr)
2575 {
2576 tree t = fold (expr);
2577 tree inner;
2578
2579 /* If the tree evaluates to a constant, then we don't want to hide that
2580 fact (i.e. this allows further folding, and direct checks for constants).
2581 However, a read-only object that has side effects cannot be bypassed.
2582 Since it is no problem to reevaluate literals, we just return the
2583 literal node. */
2584 inner = skip_simple_arithmetic (t);
2585 if (TREE_CODE (inner) == ERROR_MARK)
2586 return inner;
2587
2588 if (tree_invariant_p_1 (inner))
2589 return t;
2590
2591 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2592 it means that the size or offset of some field of an object depends on
2593 the value within another field.
2594
2595 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2596 and some variable since it would then need to be both evaluated once and
2597 evaluated more than once. Front-ends must assure this case cannot
2598 happen by surrounding any such subexpressions in their own SAVE_EXPR
2599 and forcing evaluation at the proper time. */
2600 if (contains_placeholder_p (inner))
2601 return t;
2602
2603 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2604 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2605
2606 /* This expression might be placed ahead of a jump to ensure that the
2607 value was computed on both sides of the jump. So make sure it isn't
2608 eliminated as dead. */
2609 TREE_SIDE_EFFECTS (t) = 1;
2610 return t;
2611 }
2612
2613 /* Look inside EXPR and into any simple arithmetic operations. Return
2614 the innermost non-arithmetic node. */
2615
2616 tree
2617 skip_simple_arithmetic (tree expr)
2618 {
2619 tree inner;
2620
2621 /* We don't care about whether this can be used as an lvalue in this
2622 context. */
2623 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2624 expr = TREE_OPERAND (expr, 0);
2625
2626 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2627 a constant, it will be more efficient to not make another SAVE_EXPR since
2628 it will allow better simplification and GCSE will be able to merge the
2629 computations if they actually occur. */
2630 inner = expr;
2631 while (1)
2632 {
2633 if (UNARY_CLASS_P (inner))
2634 inner = TREE_OPERAND (inner, 0);
2635 else if (BINARY_CLASS_P (inner))
2636 {
2637 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2638 inner = TREE_OPERAND (inner, 0);
2639 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2640 inner = TREE_OPERAND (inner, 1);
2641 else
2642 break;
2643 }
2644 else
2645 break;
2646 }
2647
2648 return inner;
2649 }
2650
2651
2652 /* Return which tree structure is used by T. */
2653
2654 enum tree_node_structure_enum
2655 tree_node_structure (const_tree t)
2656 {
2657 const enum tree_code code = TREE_CODE (t);
2658 return tree_node_structure_for_code (code);
2659 }
2660
2661 /* Set various status flags when building a CALL_EXPR object T. */
2662
2663 static void
2664 process_call_operands (tree t)
2665 {
2666 bool side_effects = TREE_SIDE_EFFECTS (t);
2667 bool read_only = false;
2668 int i = call_expr_flags (t);
2669
2670 /* Calls have side-effects, except those to const or pure functions. */
2671 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2672 side_effects = true;
2673 /* Propagate TREE_READONLY of arguments for const functions. */
2674 if (i & ECF_CONST)
2675 read_only = true;
2676
2677 if (!side_effects || read_only)
2678 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2679 {
2680 tree op = TREE_OPERAND (t, i);
2681 if (op && TREE_SIDE_EFFECTS (op))
2682 side_effects = true;
2683 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2684 read_only = false;
2685 }
2686
2687 TREE_SIDE_EFFECTS (t) = side_effects;
2688 TREE_READONLY (t) = read_only;
2689 }
2690 \f
2691 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2692 or offset that depends on a field within a record. */
2693
2694 bool
2695 contains_placeholder_p (const_tree exp)
2696 {
2697 enum tree_code code;
2698
2699 if (!exp)
2700 return 0;
2701
2702 code = TREE_CODE (exp);
2703 if (code == PLACEHOLDER_EXPR)
2704 return 1;
2705
2706 switch (TREE_CODE_CLASS (code))
2707 {
2708 case tcc_reference:
2709 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2710 position computations since they will be converted into a
2711 WITH_RECORD_EXPR involving the reference, which will assume
2712 here will be valid. */
2713 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2714
2715 case tcc_exceptional:
2716 if (code == TREE_LIST)
2717 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2718 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2719 break;
2720
2721 case tcc_unary:
2722 case tcc_binary:
2723 case tcc_comparison:
2724 case tcc_expression:
2725 switch (code)
2726 {
2727 case COMPOUND_EXPR:
2728 /* Ignoring the first operand isn't quite right, but works best. */
2729 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2730
2731 case COND_EXPR:
2732 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2733 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2734 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2735
2736 case SAVE_EXPR:
2737 /* The save_expr function never wraps anything containing
2738 a PLACEHOLDER_EXPR. */
2739 return 0;
2740
2741 default:
2742 break;
2743 }
2744
2745 switch (TREE_CODE_LENGTH (code))
2746 {
2747 case 1:
2748 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2749 case 2:
2750 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2751 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2752 default:
2753 return 0;
2754 }
2755
2756 case tcc_vl_exp:
2757 switch (code)
2758 {
2759 case CALL_EXPR:
2760 {
2761 const_tree arg;
2762 const_call_expr_arg_iterator iter;
2763 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2764 if (CONTAINS_PLACEHOLDER_P (arg))
2765 return 1;
2766 return 0;
2767 }
2768 default:
2769 return 0;
2770 }
2771
2772 default:
2773 return 0;
2774 }
2775 return 0;
2776 }
2777
2778 /* Return true if any part of the computation of TYPE involves a
2779 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2780 (for QUAL_UNION_TYPE) and field positions. */
2781
2782 static bool
2783 type_contains_placeholder_1 (const_tree type)
2784 {
2785 /* If the size contains a placeholder or the parent type (component type in
2786 the case of arrays) type involves a placeholder, this type does. */
2787 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2788 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2789 || (TREE_TYPE (type) != 0
2790 && type_contains_placeholder_p (TREE_TYPE (type))))
2791 return true;
2792
2793 /* Now do type-specific checks. Note that the last part of the check above
2794 greatly limits what we have to do below. */
2795 switch (TREE_CODE (type))
2796 {
2797 case VOID_TYPE:
2798 case COMPLEX_TYPE:
2799 case ENUMERAL_TYPE:
2800 case BOOLEAN_TYPE:
2801 case POINTER_TYPE:
2802 case OFFSET_TYPE:
2803 case REFERENCE_TYPE:
2804 case METHOD_TYPE:
2805 case FUNCTION_TYPE:
2806 case VECTOR_TYPE:
2807 return false;
2808
2809 case INTEGER_TYPE:
2810 case REAL_TYPE:
2811 case FIXED_POINT_TYPE:
2812 /* Here we just check the bounds. */
2813 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2814 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2815
2816 case ARRAY_TYPE:
2817 /* We're already checked the component type (TREE_TYPE), so just check
2818 the index type. */
2819 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2820
2821 case RECORD_TYPE:
2822 case UNION_TYPE:
2823 case QUAL_UNION_TYPE:
2824 {
2825 tree field;
2826
2827 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2828 if (TREE_CODE (field) == FIELD_DECL
2829 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2830 || (TREE_CODE (type) == QUAL_UNION_TYPE
2831 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2832 || type_contains_placeholder_p (TREE_TYPE (field))))
2833 return true;
2834
2835 return false;
2836 }
2837
2838 default:
2839 gcc_unreachable ();
2840 }
2841 }
2842
2843 bool
2844 type_contains_placeholder_p (tree type)
2845 {
2846 bool result;
2847
2848 /* If the contains_placeholder_bits field has been initialized,
2849 then we know the answer. */
2850 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2851 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2852
2853 /* Indicate that we've seen this type node, and the answer is false.
2854 This is what we want to return if we run into recursion via fields. */
2855 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2856
2857 /* Compute the real value. */
2858 result = type_contains_placeholder_1 (type);
2859
2860 /* Store the real value. */
2861 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2862
2863 return result;
2864 }
2865 \f
2866 /* Push tree EXP onto vector QUEUE if it is not already present. */
2867
2868 static void
2869 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2870 {
2871 unsigned int i;
2872 tree iter;
2873
2874 for (i = 0; VEC_iterate (tree, *queue, i, iter); i++)
2875 if (simple_cst_equal (iter, exp) == 1)
2876 break;
2877
2878 if (!iter)
2879 VEC_safe_push (tree, heap, *queue, exp);
2880 }
2881
2882 /* Given a tree EXP, find all occurences of references to fields
2883 in a PLACEHOLDER_EXPR and place them in vector REFS without
2884 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2885 we assume here that EXP contains only arithmetic expressions
2886 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2887 argument list. */
2888
2889 void
2890 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2891 {
2892 enum tree_code code = TREE_CODE (exp);
2893 tree inner;
2894 int i;
2895
2896 /* We handle TREE_LIST and COMPONENT_REF separately. */
2897 if (code == TREE_LIST)
2898 {
2899 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2900 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2901 }
2902 else if (code == COMPONENT_REF)
2903 {
2904 for (inner = TREE_OPERAND (exp, 0);
2905 REFERENCE_CLASS_P (inner);
2906 inner = TREE_OPERAND (inner, 0))
2907 ;
2908
2909 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2910 push_without_duplicates (exp, refs);
2911 else
2912 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2913 }
2914 else
2915 switch (TREE_CODE_CLASS (code))
2916 {
2917 case tcc_constant:
2918 break;
2919
2920 case tcc_declaration:
2921 /* Variables allocated to static storage can stay. */
2922 if (!TREE_STATIC (exp))
2923 push_without_duplicates (exp, refs);
2924 break;
2925
2926 case tcc_expression:
2927 /* This is the pattern built in ada/make_aligning_type. */
2928 if (code == ADDR_EXPR
2929 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
2930 {
2931 push_without_duplicates (exp, refs);
2932 break;
2933 }
2934
2935 /* Fall through... */
2936
2937 case tcc_exceptional:
2938 case tcc_unary:
2939 case tcc_binary:
2940 case tcc_comparison:
2941 case tcc_reference:
2942 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
2943 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2944 break;
2945
2946 case tcc_vl_exp:
2947 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
2948 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2949 break;
2950
2951 default:
2952 gcc_unreachable ();
2953 }
2954 }
2955
2956 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2957 return a tree with all occurrences of references to F in a
2958 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
2959 CONST_DECLs. Note that we assume here that EXP contains only
2960 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
2961 occurring only in their argument list. */
2962
2963 tree
2964 substitute_in_expr (tree exp, tree f, tree r)
2965 {
2966 enum tree_code code = TREE_CODE (exp);
2967 tree op0, op1, op2, op3;
2968 tree new_tree;
2969
2970 /* We handle TREE_LIST and COMPONENT_REF separately. */
2971 if (code == TREE_LIST)
2972 {
2973 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2974 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2975 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2976 return exp;
2977
2978 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2979 }
2980 else if (code == COMPONENT_REF)
2981 {
2982 tree inner;
2983
2984 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2985 and it is the right field, replace it with R. */
2986 for (inner = TREE_OPERAND (exp, 0);
2987 REFERENCE_CLASS_P (inner);
2988 inner = TREE_OPERAND (inner, 0))
2989 ;
2990
2991 /* The field. */
2992 op1 = TREE_OPERAND (exp, 1);
2993
2994 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
2995 return r;
2996
2997 /* If this expression hasn't been completed let, leave it alone. */
2998 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
2999 return exp;
3000
3001 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3002 if (op0 == TREE_OPERAND (exp, 0))
3003 return exp;
3004
3005 new_tree
3006 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3007 }
3008 else
3009 switch (TREE_CODE_CLASS (code))
3010 {
3011 case tcc_constant:
3012 return exp;
3013
3014 case tcc_declaration:
3015 if (exp == f)
3016 return r;
3017 else
3018 return exp;
3019
3020 case tcc_expression:
3021 if (exp == f)
3022 return r;
3023
3024 /* Fall through... */
3025
3026 case tcc_exceptional:
3027 case tcc_unary:
3028 case tcc_binary:
3029 case tcc_comparison:
3030 case tcc_reference:
3031 switch (TREE_CODE_LENGTH (code))
3032 {
3033 case 0:
3034 return exp;
3035
3036 case 1:
3037 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3038 if (op0 == TREE_OPERAND (exp, 0))
3039 return exp;
3040
3041 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3042 break;
3043
3044 case 2:
3045 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3046 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3047
3048 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3049 return exp;
3050
3051 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3052 break;
3053
3054 case 3:
3055 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3056 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3057 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3058
3059 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3060 && op2 == TREE_OPERAND (exp, 2))
3061 return exp;
3062
3063 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3064 break;
3065
3066 case 4:
3067 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3068 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3069 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3070 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3071
3072 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3073 && op2 == TREE_OPERAND (exp, 2)
3074 && op3 == TREE_OPERAND (exp, 3))
3075 return exp;
3076
3077 new_tree
3078 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3079 break;
3080
3081 default:
3082 gcc_unreachable ();
3083 }
3084 break;
3085
3086 case tcc_vl_exp:
3087 {
3088 int i;
3089
3090 new_tree = NULL_TREE;
3091
3092 /* If we are trying to replace F with a constant, inline back
3093 functions which do nothing else than computing a value from
3094 the arguments they are passed. This makes it possible to
3095 fold partially or entirely the replacement expression. */
3096 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3097 {
3098 tree t = maybe_inline_call_in_expr (exp);
3099 if (t)
3100 return SUBSTITUTE_IN_EXPR (t, f, r);
3101 }
3102
3103 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3104 {
3105 tree op = TREE_OPERAND (exp, i);
3106 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3107 if (new_op != op)
3108 {
3109 if (!new_tree)
3110 new_tree = copy_node (exp);
3111 TREE_OPERAND (new_tree, i) = new_op;
3112 }
3113 }
3114
3115 if (new_tree)
3116 {
3117 new_tree = fold (new_tree);
3118 if (TREE_CODE (new_tree) == CALL_EXPR)
3119 process_call_operands (new_tree);
3120 }
3121 else
3122 return exp;
3123 }
3124 break;
3125
3126 default:
3127 gcc_unreachable ();
3128 }
3129
3130 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3131 return new_tree;
3132 }
3133
3134 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3135 for it within OBJ, a tree that is an object or a chain of references. */
3136
3137 tree
3138 substitute_placeholder_in_expr (tree exp, tree obj)
3139 {
3140 enum tree_code code = TREE_CODE (exp);
3141 tree op0, op1, op2, op3;
3142 tree new_tree;
3143
3144 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3145 in the chain of OBJ. */
3146 if (code == PLACEHOLDER_EXPR)
3147 {
3148 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3149 tree elt;
3150
3151 for (elt = obj; elt != 0;
3152 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3153 || TREE_CODE (elt) == COND_EXPR)
3154 ? TREE_OPERAND (elt, 1)
3155 : (REFERENCE_CLASS_P (elt)
3156 || UNARY_CLASS_P (elt)
3157 || BINARY_CLASS_P (elt)
3158 || VL_EXP_CLASS_P (elt)
3159 || EXPRESSION_CLASS_P (elt))
3160 ? TREE_OPERAND (elt, 0) : 0))
3161 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3162 return elt;
3163
3164 for (elt = obj; elt != 0;
3165 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3166 || TREE_CODE (elt) == COND_EXPR)
3167 ? TREE_OPERAND (elt, 1)
3168 : (REFERENCE_CLASS_P (elt)
3169 || UNARY_CLASS_P (elt)
3170 || BINARY_CLASS_P (elt)
3171 || VL_EXP_CLASS_P (elt)
3172 || EXPRESSION_CLASS_P (elt))
3173 ? TREE_OPERAND (elt, 0) : 0))
3174 if (POINTER_TYPE_P (TREE_TYPE (elt))
3175 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3176 == need_type))
3177 return fold_build1 (INDIRECT_REF, need_type, elt);
3178
3179 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3180 survives until RTL generation, there will be an error. */
3181 return exp;
3182 }
3183
3184 /* TREE_LIST is special because we need to look at TREE_VALUE
3185 and TREE_CHAIN, not TREE_OPERANDS. */
3186 else if (code == TREE_LIST)
3187 {
3188 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3189 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3190 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3191 return exp;
3192
3193 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3194 }
3195 else
3196 switch (TREE_CODE_CLASS (code))
3197 {
3198 case tcc_constant:
3199 case tcc_declaration:
3200 return exp;
3201
3202 case tcc_exceptional:
3203 case tcc_unary:
3204 case tcc_binary:
3205 case tcc_comparison:
3206 case tcc_expression:
3207 case tcc_reference:
3208 case tcc_statement:
3209 switch (TREE_CODE_LENGTH (code))
3210 {
3211 case 0:
3212 return exp;
3213
3214 case 1:
3215 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3216 if (op0 == TREE_OPERAND (exp, 0))
3217 return exp;
3218
3219 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3220 break;
3221
3222 case 2:
3223 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3224 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3225
3226 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3227 return exp;
3228
3229 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3230 break;
3231
3232 case 3:
3233 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3234 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3235 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3236
3237 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3238 && op2 == TREE_OPERAND (exp, 2))
3239 return exp;
3240
3241 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3242 break;
3243
3244 case 4:
3245 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3246 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3247 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3248 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3249
3250 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3251 && op2 == TREE_OPERAND (exp, 2)
3252 && op3 == TREE_OPERAND (exp, 3))
3253 return exp;
3254
3255 new_tree
3256 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3257 break;
3258
3259 default:
3260 gcc_unreachable ();
3261 }
3262 break;
3263
3264 case tcc_vl_exp:
3265 {
3266 int i;
3267
3268 new_tree = NULL_TREE;
3269
3270 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3271 {
3272 tree op = TREE_OPERAND (exp, i);
3273 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3274 if (new_op != op)
3275 {
3276 if (!new_tree)
3277 new_tree = copy_node (exp);
3278 TREE_OPERAND (new_tree, i) = new_op;
3279 }
3280 }
3281
3282 if (new_tree)
3283 {
3284 new_tree = fold (new_tree);
3285 if (TREE_CODE (new_tree) == CALL_EXPR)
3286 process_call_operands (new_tree);
3287 }
3288 else
3289 return exp;
3290 }
3291 break;
3292
3293 default:
3294 gcc_unreachable ();
3295 }
3296
3297 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3298 return new_tree;
3299 }
3300 \f
3301 /* Stabilize a reference so that we can use it any number of times
3302 without causing its operands to be evaluated more than once.
3303 Returns the stabilized reference. This works by means of save_expr,
3304 so see the caveats in the comments about save_expr.
3305
3306 Also allows conversion expressions whose operands are references.
3307 Any other kind of expression is returned unchanged. */
3308
3309 tree
3310 stabilize_reference (tree ref)
3311 {
3312 tree result;
3313 enum tree_code code = TREE_CODE (ref);
3314
3315 switch (code)
3316 {
3317 case VAR_DECL:
3318 case PARM_DECL:
3319 case RESULT_DECL:
3320 /* No action is needed in this case. */
3321 return ref;
3322
3323 CASE_CONVERT:
3324 case FLOAT_EXPR:
3325 case FIX_TRUNC_EXPR:
3326 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3327 break;
3328
3329 case INDIRECT_REF:
3330 result = build_nt (INDIRECT_REF,
3331 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3332 break;
3333
3334 case COMPONENT_REF:
3335 result = build_nt (COMPONENT_REF,
3336 stabilize_reference (TREE_OPERAND (ref, 0)),
3337 TREE_OPERAND (ref, 1), NULL_TREE);
3338 break;
3339
3340 case BIT_FIELD_REF:
3341 result = build_nt (BIT_FIELD_REF,
3342 stabilize_reference (TREE_OPERAND (ref, 0)),
3343 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3344 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3345 break;
3346
3347 case ARRAY_REF:
3348 result = build_nt (ARRAY_REF,
3349 stabilize_reference (TREE_OPERAND (ref, 0)),
3350 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3351 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3352 break;
3353
3354 case ARRAY_RANGE_REF:
3355 result = build_nt (ARRAY_RANGE_REF,
3356 stabilize_reference (TREE_OPERAND (ref, 0)),
3357 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3358 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3359 break;
3360
3361 case COMPOUND_EXPR:
3362 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3363 it wouldn't be ignored. This matters when dealing with
3364 volatiles. */
3365 return stabilize_reference_1 (ref);
3366
3367 /* If arg isn't a kind of lvalue we recognize, make no change.
3368 Caller should recognize the error for an invalid lvalue. */
3369 default:
3370 return ref;
3371
3372 case ERROR_MARK:
3373 return error_mark_node;
3374 }
3375
3376 TREE_TYPE (result) = TREE_TYPE (ref);
3377 TREE_READONLY (result) = TREE_READONLY (ref);
3378 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3379 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3380
3381 return result;
3382 }
3383
3384 /* Subroutine of stabilize_reference; this is called for subtrees of
3385 references. Any expression with side-effects must be put in a SAVE_EXPR
3386 to ensure that it is only evaluated once.
3387
3388 We don't put SAVE_EXPR nodes around everything, because assigning very
3389 simple expressions to temporaries causes us to miss good opportunities
3390 for optimizations. Among other things, the opportunity to fold in the
3391 addition of a constant into an addressing mode often gets lost, e.g.
3392 "y[i+1] += x;". In general, we take the approach that we should not make
3393 an assignment unless we are forced into it - i.e., that any non-side effect
3394 operator should be allowed, and that cse should take care of coalescing
3395 multiple utterances of the same expression should that prove fruitful. */
3396
3397 tree
3398 stabilize_reference_1 (tree e)
3399 {
3400 tree result;
3401 enum tree_code code = TREE_CODE (e);
3402
3403 /* We cannot ignore const expressions because it might be a reference
3404 to a const array but whose index contains side-effects. But we can
3405 ignore things that are actual constant or that already have been
3406 handled by this function. */
3407
3408 if (tree_invariant_p (e))
3409 return e;
3410
3411 switch (TREE_CODE_CLASS (code))
3412 {
3413 case tcc_exceptional:
3414 case tcc_type:
3415 case tcc_declaration:
3416 case tcc_comparison:
3417 case tcc_statement:
3418 case tcc_expression:
3419 case tcc_reference:
3420 case tcc_vl_exp:
3421 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3422 so that it will only be evaluated once. */
3423 /* The reference (r) and comparison (<) classes could be handled as
3424 below, but it is generally faster to only evaluate them once. */
3425 if (TREE_SIDE_EFFECTS (e))
3426 return save_expr (e);
3427 return e;
3428
3429 case tcc_constant:
3430 /* Constants need no processing. In fact, we should never reach
3431 here. */
3432 return e;
3433
3434 case tcc_binary:
3435 /* Division is slow and tends to be compiled with jumps,
3436 especially the division by powers of 2 that is often
3437 found inside of an array reference. So do it just once. */
3438 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3439 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3440 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3441 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3442 return save_expr (e);
3443 /* Recursively stabilize each operand. */
3444 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3445 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3446 break;
3447
3448 case tcc_unary:
3449 /* Recursively stabilize each operand. */
3450 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3451 break;
3452
3453 default:
3454 gcc_unreachable ();
3455 }
3456
3457 TREE_TYPE (result) = TREE_TYPE (e);
3458 TREE_READONLY (result) = TREE_READONLY (e);
3459 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3460 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3461
3462 return result;
3463 }
3464 \f
3465 /* Low-level constructors for expressions. */
3466
3467 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3468 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3469
3470 void
3471 recompute_tree_invariant_for_addr_expr (tree t)
3472 {
3473 tree node;
3474 bool tc = true, se = false;
3475
3476 /* We started out assuming this address is both invariant and constant, but
3477 does not have side effects. Now go down any handled components and see if
3478 any of them involve offsets that are either non-constant or non-invariant.
3479 Also check for side-effects.
3480
3481 ??? Note that this code makes no attempt to deal with the case where
3482 taking the address of something causes a copy due to misalignment. */
3483
3484 #define UPDATE_FLAGS(NODE) \
3485 do { tree _node = (NODE); \
3486 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3487 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3488
3489 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3490 node = TREE_OPERAND (node, 0))
3491 {
3492 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3493 array reference (probably made temporarily by the G++ front end),
3494 so ignore all the operands. */
3495 if ((TREE_CODE (node) == ARRAY_REF
3496 || TREE_CODE (node) == ARRAY_RANGE_REF)
3497 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3498 {
3499 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3500 if (TREE_OPERAND (node, 2))
3501 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3502 if (TREE_OPERAND (node, 3))
3503 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3504 }
3505 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3506 FIELD_DECL, apparently. The G++ front end can put something else
3507 there, at least temporarily. */
3508 else if (TREE_CODE (node) == COMPONENT_REF
3509 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3510 {
3511 if (TREE_OPERAND (node, 2))
3512 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3513 }
3514 else if (TREE_CODE (node) == BIT_FIELD_REF)
3515 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3516 }
3517
3518 node = lang_hooks.expr_to_decl (node, &tc, &se);
3519
3520 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3521 the address, since &(*a)->b is a form of addition. If it's a constant, the
3522 address is constant too. If it's a decl, its address is constant if the
3523 decl is static. Everything else is not constant and, furthermore,
3524 taking the address of a volatile variable is not volatile. */
3525 if (TREE_CODE (node) == INDIRECT_REF)
3526 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3527 else if (CONSTANT_CLASS_P (node))
3528 ;
3529 else if (DECL_P (node))
3530 tc &= (staticp (node) != NULL_TREE);
3531 else
3532 {
3533 tc = false;
3534 se |= TREE_SIDE_EFFECTS (node);
3535 }
3536
3537
3538 TREE_CONSTANT (t) = tc;
3539 TREE_SIDE_EFFECTS (t) = se;
3540 #undef UPDATE_FLAGS
3541 }
3542
3543 /* Build an expression of code CODE, data type TYPE, and operands as
3544 specified. Expressions and reference nodes can be created this way.
3545 Constants, decls, types and misc nodes cannot be.
3546
3547 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3548 enough for all extant tree codes. */
3549
3550 tree
3551 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3552 {
3553 tree t;
3554
3555 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3556
3557 t = make_node_stat (code PASS_MEM_STAT);
3558 TREE_TYPE (t) = tt;
3559
3560 return t;
3561 }
3562
3563 tree
3564 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3565 {
3566 int length = sizeof (struct tree_exp);
3567 #ifdef GATHER_STATISTICS
3568 tree_node_kind kind;
3569 #endif
3570 tree t;
3571
3572 #ifdef GATHER_STATISTICS
3573 switch (TREE_CODE_CLASS (code))
3574 {
3575 case tcc_statement: /* an expression with side effects */
3576 kind = s_kind;
3577 break;
3578 case tcc_reference: /* a reference */
3579 kind = r_kind;
3580 break;
3581 default:
3582 kind = e_kind;
3583 break;
3584 }
3585
3586 tree_node_counts[(int) kind]++;
3587 tree_node_sizes[(int) kind] += length;
3588 #endif
3589
3590 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3591
3592 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
3593
3594 memset (t, 0, sizeof (struct tree_common));
3595
3596 TREE_SET_CODE (t, code);
3597
3598 TREE_TYPE (t) = type;
3599 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3600 TREE_OPERAND (t, 0) = node;
3601 TREE_BLOCK (t) = NULL_TREE;
3602 if (node && !TYPE_P (node))
3603 {
3604 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3605 TREE_READONLY (t) = TREE_READONLY (node);
3606 }
3607
3608 if (TREE_CODE_CLASS (code) == tcc_statement)
3609 TREE_SIDE_EFFECTS (t) = 1;
3610 else switch (code)
3611 {
3612 case VA_ARG_EXPR:
3613 /* All of these have side-effects, no matter what their
3614 operands are. */
3615 TREE_SIDE_EFFECTS (t) = 1;
3616 TREE_READONLY (t) = 0;
3617 break;
3618
3619 case MISALIGNED_INDIRECT_REF:
3620 case ALIGN_INDIRECT_REF:
3621 case INDIRECT_REF:
3622 /* Whether a dereference is readonly has nothing to do with whether
3623 its operand is readonly. */
3624 TREE_READONLY (t) = 0;
3625 break;
3626
3627 case ADDR_EXPR:
3628 if (node)
3629 recompute_tree_invariant_for_addr_expr (t);
3630 break;
3631
3632 default:
3633 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3634 && node && !TYPE_P (node)
3635 && TREE_CONSTANT (node))
3636 TREE_CONSTANT (t) = 1;
3637 if (TREE_CODE_CLASS (code) == tcc_reference
3638 && node && TREE_THIS_VOLATILE (node))
3639 TREE_THIS_VOLATILE (t) = 1;
3640 break;
3641 }
3642
3643 return t;
3644 }
3645
3646 #define PROCESS_ARG(N) \
3647 do { \
3648 TREE_OPERAND (t, N) = arg##N; \
3649 if (arg##N &&!TYPE_P (arg##N)) \
3650 { \
3651 if (TREE_SIDE_EFFECTS (arg##N)) \
3652 side_effects = 1; \
3653 if (!TREE_READONLY (arg##N) \
3654 && !CONSTANT_CLASS_P (arg##N)) \
3655 read_only = 0; \
3656 if (!TREE_CONSTANT (arg##N)) \
3657 constant = 0; \
3658 } \
3659 } while (0)
3660
3661 tree
3662 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3663 {
3664 bool constant, read_only, side_effects;
3665 tree t;
3666
3667 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3668
3669 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3670 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3671 /* When sizetype precision doesn't match that of pointers
3672 we need to be able to build explicit extensions or truncations
3673 of the offset argument. */
3674 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3675 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3676 && TREE_CODE (arg1) == INTEGER_CST);
3677
3678 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3679 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3680 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3681 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3682
3683 t = make_node_stat (code PASS_MEM_STAT);
3684 TREE_TYPE (t) = tt;
3685
3686 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3687 result based on those same flags for the arguments. But if the
3688 arguments aren't really even `tree' expressions, we shouldn't be trying
3689 to do this. */
3690
3691 /* Expressions without side effects may be constant if their
3692 arguments are as well. */
3693 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3694 || TREE_CODE_CLASS (code) == tcc_binary);
3695 read_only = 1;
3696 side_effects = TREE_SIDE_EFFECTS (t);
3697
3698 PROCESS_ARG(0);
3699 PROCESS_ARG(1);
3700
3701 TREE_READONLY (t) = read_only;
3702 TREE_CONSTANT (t) = constant;
3703 TREE_SIDE_EFFECTS (t) = side_effects;
3704 TREE_THIS_VOLATILE (t)
3705 = (TREE_CODE_CLASS (code) == tcc_reference
3706 && arg0 && TREE_THIS_VOLATILE (arg0));
3707
3708 return t;
3709 }
3710
3711
3712 tree
3713 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3714 tree arg2 MEM_STAT_DECL)
3715 {
3716 bool constant, read_only, side_effects;
3717 tree t;
3718
3719 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3720 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3721
3722 t = make_node_stat (code PASS_MEM_STAT);
3723 TREE_TYPE (t) = tt;
3724
3725 read_only = 1;
3726
3727 /* As a special exception, if COND_EXPR has NULL branches, we
3728 assume that it is a gimple statement and always consider
3729 it to have side effects. */
3730 if (code == COND_EXPR
3731 && tt == void_type_node
3732 && arg1 == NULL_TREE
3733 && arg2 == NULL_TREE)
3734 side_effects = true;
3735 else
3736 side_effects = TREE_SIDE_EFFECTS (t);
3737
3738 PROCESS_ARG(0);
3739 PROCESS_ARG(1);
3740 PROCESS_ARG(2);
3741
3742 if (code == COND_EXPR)
3743 TREE_READONLY (t) = read_only;
3744
3745 TREE_SIDE_EFFECTS (t) = side_effects;
3746 TREE_THIS_VOLATILE (t)
3747 = (TREE_CODE_CLASS (code) == tcc_reference
3748 && arg0 && TREE_THIS_VOLATILE (arg0));
3749
3750 return t;
3751 }
3752
3753 tree
3754 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3755 tree arg2, tree arg3 MEM_STAT_DECL)
3756 {
3757 bool constant, read_only, side_effects;
3758 tree t;
3759
3760 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3761
3762 t = make_node_stat (code PASS_MEM_STAT);
3763 TREE_TYPE (t) = tt;
3764
3765 side_effects = TREE_SIDE_EFFECTS (t);
3766
3767 PROCESS_ARG(0);
3768 PROCESS_ARG(1);
3769 PROCESS_ARG(2);
3770 PROCESS_ARG(3);
3771
3772 TREE_SIDE_EFFECTS (t) = side_effects;
3773 TREE_THIS_VOLATILE (t)
3774 = (TREE_CODE_CLASS (code) == tcc_reference
3775 && arg0 && TREE_THIS_VOLATILE (arg0));
3776
3777 return t;
3778 }
3779
3780 tree
3781 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3782 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3783 {
3784 bool constant, read_only, side_effects;
3785 tree t;
3786
3787 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3788
3789 t = make_node_stat (code PASS_MEM_STAT);
3790 TREE_TYPE (t) = tt;
3791
3792 side_effects = TREE_SIDE_EFFECTS (t);
3793
3794 PROCESS_ARG(0);
3795 PROCESS_ARG(1);
3796 PROCESS_ARG(2);
3797 PROCESS_ARG(3);
3798 PROCESS_ARG(4);
3799
3800 TREE_SIDE_EFFECTS (t) = side_effects;
3801 TREE_THIS_VOLATILE (t)
3802 = (TREE_CODE_CLASS (code) == tcc_reference
3803 && arg0 && TREE_THIS_VOLATILE (arg0));
3804
3805 return t;
3806 }
3807
3808 tree
3809 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3810 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3811 {
3812 bool constant, read_only, side_effects;
3813 tree t;
3814
3815 gcc_assert (code == TARGET_MEM_REF);
3816
3817 t = make_node_stat (code PASS_MEM_STAT);
3818 TREE_TYPE (t) = tt;
3819
3820 side_effects = TREE_SIDE_EFFECTS (t);
3821
3822 PROCESS_ARG(0);
3823 PROCESS_ARG(1);
3824 PROCESS_ARG(2);
3825 PROCESS_ARG(3);
3826 PROCESS_ARG(4);
3827 PROCESS_ARG(5);
3828
3829 TREE_SIDE_EFFECTS (t) = side_effects;
3830 TREE_THIS_VOLATILE (t) = 0;
3831
3832 return t;
3833 }
3834
3835 /* Similar except don't specify the TREE_TYPE
3836 and leave the TREE_SIDE_EFFECTS as 0.
3837 It is permissible for arguments to be null,
3838 or even garbage if their values do not matter. */
3839
3840 tree
3841 build_nt (enum tree_code code, ...)
3842 {
3843 tree t;
3844 int length;
3845 int i;
3846 va_list p;
3847
3848 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3849
3850 va_start (p, code);
3851
3852 t = make_node (code);
3853 length = TREE_CODE_LENGTH (code);
3854
3855 for (i = 0; i < length; i++)
3856 TREE_OPERAND (t, i) = va_arg (p, tree);
3857
3858 va_end (p);
3859 return t;
3860 }
3861
3862 /* Similar to build_nt, but for creating a CALL_EXPR object with
3863 ARGLIST passed as a list. */
3864
3865 tree
3866 build_nt_call_list (tree fn, tree arglist)
3867 {
3868 tree t;
3869 int i;
3870
3871 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3872 CALL_EXPR_FN (t) = fn;
3873 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3874 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3875 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3876 return t;
3877 }
3878
3879 /* Similar to build_nt, but for creating a CALL_EXPR object with a
3880 tree VEC. */
3881
3882 tree
3883 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
3884 {
3885 tree ret, t;
3886 unsigned int ix;
3887
3888 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
3889 CALL_EXPR_FN (ret) = fn;
3890 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3891 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
3892 CALL_EXPR_ARG (ret, ix) = t;
3893 return ret;
3894 }
3895 \f
3896 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3897 We do NOT enter this node in any sort of symbol table.
3898
3899 LOC is the location of the decl.
3900
3901 layout_decl is used to set up the decl's storage layout.
3902 Other slots are initialized to 0 or null pointers. */
3903
3904 tree
3905 build_decl_stat (location_t loc, enum tree_code code, tree name,
3906 tree type MEM_STAT_DECL)
3907 {
3908 tree t;
3909
3910 t = make_node_stat (code PASS_MEM_STAT);
3911 DECL_SOURCE_LOCATION (t) = loc;
3912
3913 /* if (type == error_mark_node)
3914 type = integer_type_node; */
3915 /* That is not done, deliberately, so that having error_mark_node
3916 as the type can suppress useless errors in the use of this variable. */
3917
3918 DECL_NAME (t) = name;
3919 TREE_TYPE (t) = type;
3920
3921 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3922 layout_decl (t, 0);
3923
3924 return t;
3925 }
3926
3927 /* Builds and returns function declaration with NAME and TYPE. */
3928
3929 tree
3930 build_fn_decl (const char *name, tree type)
3931 {
3932 tree id = get_identifier (name);
3933 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
3934
3935 DECL_EXTERNAL (decl) = 1;
3936 TREE_PUBLIC (decl) = 1;
3937 DECL_ARTIFICIAL (decl) = 1;
3938 TREE_NOTHROW (decl) = 1;
3939
3940 return decl;
3941 }
3942
3943 \f
3944 /* BLOCK nodes are used to represent the structure of binding contours
3945 and declarations, once those contours have been exited and their contents
3946 compiled. This information is used for outputting debugging info. */
3947
3948 tree
3949 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3950 {
3951 tree block = make_node (BLOCK);
3952
3953 BLOCK_VARS (block) = vars;
3954 BLOCK_SUBBLOCKS (block) = subblocks;
3955 BLOCK_SUPERCONTEXT (block) = supercontext;
3956 BLOCK_CHAIN (block) = chain;
3957 return block;
3958 }
3959
3960 expanded_location
3961 expand_location (source_location loc)
3962 {
3963 expanded_location xloc;
3964 if (loc <= BUILTINS_LOCATION)
3965 {
3966 xloc.file = loc == UNKNOWN_LOCATION ? NULL : _("<built-in>");
3967 xloc.line = 0;
3968 xloc.column = 0;
3969 xloc.sysp = 0;
3970 }
3971 else
3972 {
3973 const struct line_map *map = linemap_lookup (line_table, loc);
3974 xloc.file = map->to_file;
3975 xloc.line = SOURCE_LINE (map, loc);
3976 xloc.column = SOURCE_COLUMN (map, loc);
3977 xloc.sysp = map->sysp != 0;
3978 };
3979 return xloc;
3980 }
3981
3982 \f
3983 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
3984
3985 LOC is the location to use in tree T. */
3986
3987 void
3988 protected_set_expr_location (tree t, location_t loc)
3989 {
3990 if (t && CAN_HAVE_LOCATION_P (t))
3991 SET_EXPR_LOCATION (t, loc);
3992 }
3993 \f
3994 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3995 is ATTRIBUTE. */
3996
3997 tree
3998 build_decl_attribute_variant (tree ddecl, tree attribute)
3999 {
4000 DECL_ATTRIBUTES (ddecl) = attribute;
4001 return ddecl;
4002 }
4003
4004 /* Borrowed from hashtab.c iterative_hash implementation. */
4005 #define mix(a,b,c) \
4006 { \
4007 a -= b; a -= c; a ^= (c>>13); \
4008 b -= c; b -= a; b ^= (a<< 8); \
4009 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4010 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4011 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4012 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4013 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4014 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4015 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4016 }
4017
4018
4019 /* Produce good hash value combining VAL and VAL2. */
4020 hashval_t
4021 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4022 {
4023 /* the golden ratio; an arbitrary value. */
4024 hashval_t a = 0x9e3779b9;
4025
4026 mix (a, val, val2);
4027 return val2;
4028 }
4029
4030 /* Produce good hash value combining VAL and VAL2. */
4031 hashval_t
4032 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4033 {
4034 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4035 return iterative_hash_hashval_t (val, val2);
4036 else
4037 {
4038 hashval_t a = (hashval_t) val;
4039 /* Avoid warnings about shifting of more than the width of the type on
4040 hosts that won't execute this path. */
4041 int zero = 0;
4042 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4043 mix (a, b, val2);
4044 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4045 {
4046 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4047 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4048 mix (a, b, val2);
4049 }
4050 return val2;
4051 }
4052 }
4053
4054 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4055 is ATTRIBUTE and its qualifiers are QUALS.
4056
4057 Record such modified types already made so we don't make duplicates. */
4058
4059 tree
4060 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4061 {
4062 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4063 {
4064 hashval_t hashcode = 0;
4065 tree ntype;
4066 enum tree_code code = TREE_CODE (ttype);
4067
4068 /* Building a distinct copy of a tagged type is inappropriate; it
4069 causes breakage in code that expects there to be a one-to-one
4070 relationship between a struct and its fields.
4071 build_duplicate_type is another solution (as used in
4072 handle_transparent_union_attribute), but that doesn't play well
4073 with the stronger C++ type identity model. */
4074 if (TREE_CODE (ttype) == RECORD_TYPE
4075 || TREE_CODE (ttype) == UNION_TYPE
4076 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4077 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4078 {
4079 warning (OPT_Wattributes,
4080 "ignoring attributes applied to %qT after definition",
4081 TYPE_MAIN_VARIANT (ttype));
4082 return build_qualified_type (ttype, quals);
4083 }
4084
4085 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4086 ntype = build_distinct_type_copy (ttype);
4087
4088 TYPE_ATTRIBUTES (ntype) = attribute;
4089
4090 hashcode = iterative_hash_object (code, hashcode);
4091 if (TREE_TYPE (ntype))
4092 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4093 hashcode);
4094 hashcode = attribute_hash_list (attribute, hashcode);
4095
4096 switch (TREE_CODE (ntype))
4097 {
4098 case FUNCTION_TYPE:
4099 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4100 break;
4101 case ARRAY_TYPE:
4102 if (TYPE_DOMAIN (ntype))
4103 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4104 hashcode);
4105 break;
4106 case INTEGER_TYPE:
4107 hashcode = iterative_hash_object
4108 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4109 hashcode = iterative_hash_object
4110 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4111 break;
4112 case REAL_TYPE:
4113 case FIXED_POINT_TYPE:
4114 {
4115 unsigned int precision = TYPE_PRECISION (ntype);
4116 hashcode = iterative_hash_object (precision, hashcode);
4117 }
4118 break;
4119 default:
4120 break;
4121 }
4122
4123 ntype = type_hash_canon (hashcode, ntype);
4124
4125 /* If the target-dependent attributes make NTYPE different from
4126 its canonical type, we will need to use structural equality
4127 checks for this type. */
4128 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4129 || !targetm.comp_type_attributes (ntype, ttype))
4130 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4131 else if (TYPE_CANONICAL (ntype) == ntype)
4132 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4133
4134 ttype = build_qualified_type (ntype, quals);
4135 }
4136 else if (TYPE_QUALS (ttype) != quals)
4137 ttype = build_qualified_type (ttype, quals);
4138
4139 return ttype;
4140 }
4141
4142
4143 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4144 is ATTRIBUTE.
4145
4146 Record such modified types already made so we don't make duplicates. */
4147
4148 tree
4149 build_type_attribute_variant (tree ttype, tree attribute)
4150 {
4151 return build_type_attribute_qual_variant (ttype, attribute,
4152 TYPE_QUALS (ttype));
4153 }
4154
4155
4156 /* Reset all the fields in a binfo node BINFO. We only keep
4157 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4158
4159 static void
4160 free_lang_data_in_binfo (tree binfo)
4161 {
4162 unsigned i;
4163 tree t;
4164
4165 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4166
4167 BINFO_VTABLE (binfo) = NULL_TREE;
4168 BINFO_BASE_ACCESSES (binfo) = NULL;
4169 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4170 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4171
4172 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (binfo), i, t); i++)
4173 free_lang_data_in_binfo (t);
4174 }
4175
4176
4177 /* Reset all language specific information still present in TYPE. */
4178
4179 static void
4180 free_lang_data_in_type (tree type)
4181 {
4182 gcc_assert (TYPE_P (type));
4183
4184 /* Give the FE a chance to remove its own data first. */
4185 lang_hooks.free_lang_data (type);
4186
4187 TREE_LANG_FLAG_0 (type) = 0;
4188 TREE_LANG_FLAG_1 (type) = 0;
4189 TREE_LANG_FLAG_2 (type) = 0;
4190 TREE_LANG_FLAG_3 (type) = 0;
4191 TREE_LANG_FLAG_4 (type) = 0;
4192 TREE_LANG_FLAG_5 (type) = 0;
4193 TREE_LANG_FLAG_6 (type) = 0;
4194
4195 if (TREE_CODE (type) == FUNCTION_TYPE)
4196 {
4197 /* Remove the const and volatile qualifiers from arguments. The
4198 C++ front end removes them, but the C front end does not,
4199 leading to false ODR violation errors when merging two
4200 instances of the same function signature compiled by
4201 different front ends. */
4202 tree p;
4203
4204 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4205 {
4206 tree arg_type = TREE_VALUE (p);
4207
4208 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4209 {
4210 int quals = TYPE_QUALS (arg_type)
4211 & ~TYPE_QUAL_CONST
4212 & ~TYPE_QUAL_VOLATILE;
4213 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4214 free_lang_data_in_type (TREE_VALUE (p));
4215 }
4216 }
4217 }
4218
4219 /* Remove members that are not actually FIELD_DECLs from the field
4220 list of an aggregate. These occur in C++. */
4221 if (RECORD_OR_UNION_TYPE_P (type))
4222 {
4223 tree prev, member;
4224
4225 /* Note that TYPE_FIELDS can be shared across distinct
4226 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4227 to be removed, we cannot set its TREE_CHAIN to NULL.
4228 Otherwise, we would not be able to find all the other fields
4229 in the other instances of this TREE_TYPE.
4230
4231 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4232 prev = NULL_TREE;
4233 member = TYPE_FIELDS (type);
4234 while (member)
4235 {
4236 if (TREE_CODE (member) == FIELD_DECL)
4237 {
4238 if (prev)
4239 TREE_CHAIN (prev) = member;
4240 else
4241 TYPE_FIELDS (type) = member;
4242 prev = member;
4243 }
4244
4245 member = TREE_CHAIN (member);
4246 }
4247
4248 if (prev)
4249 TREE_CHAIN (prev) = NULL_TREE;
4250 else
4251 TYPE_FIELDS (type) = NULL_TREE;
4252
4253 TYPE_METHODS (type) = NULL_TREE;
4254 if (TYPE_BINFO (type))
4255 free_lang_data_in_binfo (TYPE_BINFO (type));
4256 }
4257 else
4258 {
4259 /* For non-aggregate types, clear out the language slot (which
4260 overloads TYPE_BINFO). */
4261 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4262 }
4263
4264 TYPE_CONTEXT (type) = NULL_TREE;
4265 if (debug_info_level < DINFO_LEVEL_TERSE)
4266 TYPE_STUB_DECL (type) = NULL_TREE;
4267 }
4268
4269
4270 /* Return true if DECL may need an assembler name to be set. */
4271
4272 static inline bool
4273 need_assembler_name_p (tree decl)
4274 {
4275 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4276 if (TREE_CODE (decl) != FUNCTION_DECL
4277 && TREE_CODE (decl) != VAR_DECL)
4278 return false;
4279
4280 /* If DECL already has its assembler name set, it does not need a
4281 new one. */
4282 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4283 || DECL_ASSEMBLER_NAME_SET_P (decl))
4284 return false;
4285
4286 /* Abstract decls do not need an assembler name. */
4287 if (DECL_ABSTRACT (decl))
4288 return false;
4289
4290 /* For VAR_DECLs, only static, public and external symbols need an
4291 assembler name. */
4292 if (TREE_CODE (decl) == VAR_DECL
4293 && !TREE_STATIC (decl)
4294 && !TREE_PUBLIC (decl)
4295 && !DECL_EXTERNAL (decl))
4296 return false;
4297
4298 if (TREE_CODE (decl) == FUNCTION_DECL)
4299 {
4300 /* Do not set assembler name on builtins. Allow RTL expansion to
4301 decide whether to expand inline or via a regular call. */
4302 if (DECL_BUILT_IN (decl)
4303 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4304 return false;
4305
4306 /* Functions represented in the callgraph need an assembler name. */
4307 if (cgraph_get_node (decl) != NULL)
4308 return true;
4309
4310 /* Unused and not public functions don't need an assembler name. */
4311 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4312 return false;
4313 }
4314
4315 return true;
4316 }
4317
4318
4319 /* Remove all the non-variable decls from BLOCK. LOCALS is the set of
4320 variables in DECL_STRUCT_FUNCTION (FN)->local_decls. Every decl
4321 in BLOCK that is not in LOCALS is removed. */
4322
4323 static void
4324 free_lang_data_in_block (tree fn, tree block, struct pointer_set_t *locals)
4325 {
4326 tree *tp, t;
4327
4328 tp = &BLOCK_VARS (block);
4329 while (*tp)
4330 {
4331 if (!pointer_set_contains (locals, *tp))
4332 *tp = TREE_CHAIN (*tp);
4333 else
4334 tp = &TREE_CHAIN (*tp);
4335 }
4336
4337 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4338 free_lang_data_in_block (fn, t, locals);
4339 }
4340
4341
4342 /* Reset all language specific information still present in symbol
4343 DECL. */
4344
4345 static void
4346 free_lang_data_in_decl (tree decl)
4347 {
4348 gcc_assert (DECL_P (decl));
4349
4350 /* Give the FE a chance to remove its own data first. */
4351 lang_hooks.free_lang_data (decl);
4352
4353 TREE_LANG_FLAG_0 (decl) = 0;
4354 TREE_LANG_FLAG_1 (decl) = 0;
4355 TREE_LANG_FLAG_2 (decl) = 0;
4356 TREE_LANG_FLAG_3 (decl) = 0;
4357 TREE_LANG_FLAG_4 (decl) = 0;
4358 TREE_LANG_FLAG_5 (decl) = 0;
4359 TREE_LANG_FLAG_6 (decl) = 0;
4360
4361 /* Identifiers need not have a type. */
4362 if (DECL_NAME (decl))
4363 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4364
4365 /* Ignore any intervening types, because we are going to clear their
4366 TYPE_CONTEXT fields. */
4367 if (TREE_CODE (decl) != FIELD_DECL)
4368 DECL_CONTEXT (decl) = decl_function_context (decl);
4369
4370 if (DECL_CONTEXT (decl)
4371 && TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
4372 DECL_CONTEXT (decl) = NULL_TREE;
4373
4374 if (TREE_CODE (decl) == VAR_DECL)
4375 {
4376 tree context = DECL_CONTEXT (decl);
4377
4378 if (context)
4379 {
4380 enum tree_code code = TREE_CODE (context);
4381 if (code == FUNCTION_DECL && DECL_ABSTRACT (context))
4382 {
4383 /* Do not clear the decl context here, that will promote
4384 all vars to global ones. */
4385 DECL_INITIAL (decl) = NULL_TREE;
4386 }
4387
4388 if (TREE_STATIC (decl))
4389 DECL_CONTEXT (decl) = NULL_TREE;
4390 }
4391 }
4392
4393 /* ??? We could free non-constant DECL_SIZE, DECL_SIZE_UNIT
4394 and DECL_FIELD_OFFSET. But it's cheap enough to not do
4395 that and refrain from adding workarounds to dwarf2out.c */
4396
4397 /* DECL_FCONTEXT is only used for debug info generation. */
4398 if (TREE_CODE (decl) == FIELD_DECL
4399 && debug_info_level < DINFO_LEVEL_TERSE)
4400 DECL_FCONTEXT (decl) = NULL_TREE;
4401
4402 if (TREE_CODE (decl) == FUNCTION_DECL)
4403 {
4404 if (gimple_has_body_p (decl))
4405 {
4406 tree t;
4407 struct pointer_set_t *locals;
4408
4409 /* If DECL has a gimple body, then the context for its
4410 arguments must be DECL. Otherwise, it doesn't really
4411 matter, as we will not be emitting any code for DECL. In
4412 general, there may be other instances of DECL created by
4413 the front end and since PARM_DECLs are generally shared,
4414 their DECL_CONTEXT changes as the replicas of DECL are
4415 created. The only time where DECL_CONTEXT is important
4416 is for the FUNCTION_DECLs that have a gimple body (since
4417 the PARM_DECL will be used in the function's body). */
4418 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4419 DECL_CONTEXT (t) = decl;
4420
4421 /* Collect all the symbols declared in DECL. */
4422 locals = pointer_set_create ();
4423 t = DECL_STRUCT_FUNCTION (decl)->local_decls;
4424 for (; t; t = TREE_CHAIN (t))
4425 {
4426 pointer_set_insert (locals, TREE_VALUE (t));
4427
4428 /* All the local symbols should have DECL as their
4429 context. */
4430 DECL_CONTEXT (TREE_VALUE (t)) = decl;
4431 }
4432
4433 /* Get rid of any decl not in local_decls. */
4434 free_lang_data_in_block (decl, DECL_INITIAL (decl), locals);
4435
4436 pointer_set_destroy (locals);
4437 }
4438
4439 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4440 At this point, it is not needed anymore. */
4441 DECL_SAVED_TREE (decl) = NULL_TREE;
4442 }
4443 else if (TREE_CODE (decl) == VAR_DECL)
4444 {
4445 tree expr = DECL_DEBUG_EXPR (decl);
4446 if (expr
4447 && TREE_CODE (expr) == VAR_DECL
4448 && !TREE_STATIC (expr) && !DECL_EXTERNAL (expr))
4449 SET_DECL_DEBUG_EXPR (decl, NULL_TREE);
4450
4451 if (DECL_EXTERNAL (decl)
4452 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4453 DECL_INITIAL (decl) = NULL_TREE;
4454 }
4455 else if (TREE_CODE (decl) == TYPE_DECL)
4456 {
4457 DECL_INITIAL (decl) = NULL_TREE;
4458
4459 /* DECL_CONTEXT is overloaded as DECL_FIELD_CONTEXT for
4460 FIELD_DECLs, which should be preserved. Otherwise,
4461 we shouldn't be concerned with source-level lexical
4462 nesting beyond this point. */
4463 DECL_CONTEXT (decl) = NULL_TREE;
4464 }
4465 }
4466
4467
4468 /* Data used when collecting DECLs and TYPEs for language data removal. */
4469
4470 struct free_lang_data_d
4471 {
4472 /* Worklist to avoid excessive recursion. */
4473 VEC(tree,heap) *worklist;
4474
4475 /* Set of traversed objects. Used to avoid duplicate visits. */
4476 struct pointer_set_t *pset;
4477
4478 /* Array of symbols to process with free_lang_data_in_decl. */
4479 VEC(tree,heap) *decls;
4480
4481 /* Array of types to process with free_lang_data_in_type. */
4482 VEC(tree,heap) *types;
4483 };
4484
4485
4486 /* Save all language fields needed to generate proper debug information
4487 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4488
4489 static void
4490 save_debug_info_for_decl (tree t)
4491 {
4492 /*struct saved_debug_info_d *sdi;*/
4493
4494 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4495
4496 /* FIXME. Partial implementation for saving debug info removed. */
4497 }
4498
4499
4500 /* Save all language fields needed to generate proper debug information
4501 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4502
4503 static void
4504 save_debug_info_for_type (tree t)
4505 {
4506 /*struct saved_debug_info_d *sdi;*/
4507
4508 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4509
4510 /* FIXME. Partial implementation for saving debug info removed. */
4511 }
4512
4513
4514 /* Add type or decl T to one of the list of tree nodes that need their
4515 language data removed. The lists are held inside FLD. */
4516
4517 static void
4518 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4519 {
4520 if (DECL_P (t))
4521 {
4522 VEC_safe_push (tree, heap, fld->decls, t);
4523 if (debug_info_level > DINFO_LEVEL_TERSE)
4524 save_debug_info_for_decl (t);
4525 }
4526 else if (TYPE_P (t))
4527 {
4528 VEC_safe_push (tree, heap, fld->types, t);
4529 if (debug_info_level > DINFO_LEVEL_TERSE)
4530 save_debug_info_for_type (t);
4531 }
4532 else
4533 gcc_unreachable ();
4534 }
4535
4536 /* Push tree node T into FLD->WORKLIST. */
4537
4538 static inline void
4539 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4540 {
4541 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4542 VEC_safe_push (tree, heap, fld->worklist, (t));
4543 }
4544
4545
4546 /* Operand callback helper for free_lang_data_in_node. *TP is the
4547 subtree operand being considered. */
4548
4549 static tree
4550 find_decls_types_r (tree *tp, int *ws, void *data)
4551 {
4552 tree t = *tp;
4553 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4554
4555 if (TREE_CODE (t) == TREE_LIST)
4556 return NULL_TREE;
4557
4558 /* Language specific nodes will be removed, so there is no need
4559 to gather anything under them. */
4560 if (is_lang_specific (t))
4561 {
4562 *ws = 0;
4563 return NULL_TREE;
4564 }
4565
4566 if (DECL_P (t))
4567 {
4568 /* Note that walk_tree does not traverse every possible field in
4569 decls, so we have to do our own traversals here. */
4570 add_tree_to_fld_list (t, fld);
4571
4572 fld_worklist_push (DECL_NAME (t), fld);
4573 fld_worklist_push (DECL_CONTEXT (t), fld);
4574 fld_worklist_push (DECL_SIZE (t), fld);
4575 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4576
4577 /* We are going to remove everything under DECL_INITIAL for
4578 TYPE_DECLs. No point walking them. */
4579 if (TREE_CODE (t) != TYPE_DECL)
4580 fld_worklist_push (DECL_INITIAL (t), fld);
4581
4582 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4583 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4584
4585 if (TREE_CODE (t) == FUNCTION_DECL)
4586 {
4587 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4588 fld_worklist_push (DECL_RESULT (t), fld);
4589 }
4590 else if (TREE_CODE (t) == TYPE_DECL)
4591 {
4592 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4593 fld_worklist_push (DECL_VINDEX (t), fld);
4594 }
4595 else if (TREE_CODE (t) == FIELD_DECL)
4596 {
4597 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4598 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4599 fld_worklist_push (DECL_QUALIFIER (t), fld);
4600 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4601 fld_worklist_push (DECL_FCONTEXT (t), fld);
4602 }
4603 else if (TREE_CODE (t) == VAR_DECL)
4604 {
4605 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4606 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4607 }
4608
4609 if (TREE_CODE (t) != FIELD_DECL)
4610 fld_worklist_push (TREE_CHAIN (t), fld);
4611 *ws = 0;
4612 }
4613 else if (TYPE_P (t))
4614 {
4615 /* Note that walk_tree does not traverse every possible field in
4616 types, so we have to do our own traversals here. */
4617 add_tree_to_fld_list (t, fld);
4618
4619 if (!RECORD_OR_UNION_TYPE_P (t))
4620 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4621 fld_worklist_push (TYPE_SIZE (t), fld);
4622 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4623 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4624 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4625 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4626 fld_worklist_push (TYPE_NAME (t), fld);
4627 fld_worklist_push (TYPE_MINVAL (t), fld);
4628 if (!RECORD_OR_UNION_TYPE_P (t))
4629 fld_worklist_push (TYPE_MAXVAL (t), fld);
4630 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4631 fld_worklist_push (TYPE_NEXT_VARIANT (t), fld);
4632 fld_worklist_push (TYPE_CONTEXT (t), fld);
4633 fld_worklist_push (TYPE_CANONICAL (t), fld);
4634
4635 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4636 {
4637 unsigned i;
4638 tree tem;
4639 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4640 i, tem); ++i)
4641 fld_worklist_push (TREE_TYPE (tem), fld);
4642 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4643 if (tem
4644 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4645 && TREE_CODE (tem) == TREE_LIST)
4646 do
4647 {
4648 fld_worklist_push (TREE_VALUE (tem), fld);
4649 tem = TREE_CHAIN (tem);
4650 }
4651 while (tem);
4652 }
4653 if (RECORD_OR_UNION_TYPE_P (t))
4654 {
4655 tree tem;
4656 /* Push all TYPE_FIELDS - there can be interleaving interesting
4657 and non-interesting things. */
4658 tem = TYPE_FIELDS (t);
4659 while (tem)
4660 {
4661 if (TREE_CODE (tem) == FIELD_DECL)
4662 fld_worklist_push (tem, fld);
4663 tem = TREE_CHAIN (tem);
4664 }
4665 }
4666
4667 fld_worklist_push (TREE_CHAIN (t), fld);
4668 *ws = 0;
4669 }
4670
4671 fld_worklist_push (TREE_TYPE (t), fld);
4672
4673 return NULL_TREE;
4674 }
4675
4676
4677 /* Find decls and types in T. */
4678
4679 static void
4680 find_decls_types (tree t, struct free_lang_data_d *fld)
4681 {
4682 while (1)
4683 {
4684 if (!pointer_set_contains (fld->pset, t))
4685 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4686 if (VEC_empty (tree, fld->worklist))
4687 break;
4688 t = VEC_pop (tree, fld->worklist);
4689 }
4690 }
4691
4692 /* Translate all the types in LIST with the corresponding runtime
4693 types. */
4694
4695 static tree
4696 get_eh_types_for_runtime (tree list)
4697 {
4698 tree head, prev;
4699
4700 if (list == NULL_TREE)
4701 return NULL_TREE;
4702
4703 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4704 prev = head;
4705 list = TREE_CHAIN (list);
4706 while (list)
4707 {
4708 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4709 TREE_CHAIN (prev) = n;
4710 prev = TREE_CHAIN (prev);
4711 list = TREE_CHAIN (list);
4712 }
4713
4714 return head;
4715 }
4716
4717
4718 /* Find decls and types referenced in EH region R and store them in
4719 FLD->DECLS and FLD->TYPES. */
4720
4721 static void
4722 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4723 {
4724 switch (r->type)
4725 {
4726 case ERT_CLEANUP:
4727 break;
4728
4729 case ERT_TRY:
4730 {
4731 eh_catch c;
4732
4733 /* The types referenced in each catch must first be changed to the
4734 EH types used at runtime. This removes references to FE types
4735 in the region. */
4736 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4737 {
4738 c->type_list = get_eh_types_for_runtime (c->type_list);
4739 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4740 }
4741 }
4742 break;
4743
4744 case ERT_ALLOWED_EXCEPTIONS:
4745 r->u.allowed.type_list
4746 = get_eh_types_for_runtime (r->u.allowed.type_list);
4747 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4748 break;
4749
4750 case ERT_MUST_NOT_THROW:
4751 walk_tree (&r->u.must_not_throw.failure_decl,
4752 find_decls_types_r, fld, fld->pset);
4753 break;
4754 }
4755 }
4756
4757
4758 /* Find decls and types referenced in cgraph node N and store them in
4759 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4760 look for *every* kind of DECL and TYPE node reachable from N,
4761 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4762 NAMESPACE_DECLs, etc). */
4763
4764 static void
4765 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4766 {
4767 basic_block bb;
4768 struct function *fn;
4769 tree t;
4770
4771 find_decls_types (n->decl, fld);
4772
4773 if (!gimple_has_body_p (n->decl))
4774 return;
4775
4776 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4777
4778 fn = DECL_STRUCT_FUNCTION (n->decl);
4779
4780 /* Traverse locals. */
4781 for (t = fn->local_decls; t; t = TREE_CHAIN (t))
4782 find_decls_types (TREE_VALUE (t), fld);
4783
4784 /* Traverse EH regions in FN. */
4785 {
4786 eh_region r;
4787 FOR_ALL_EH_REGION_FN (r, fn)
4788 find_decls_types_in_eh_region (r, fld);
4789 }
4790
4791 /* Traverse every statement in FN. */
4792 FOR_EACH_BB_FN (bb, fn)
4793 {
4794 gimple_stmt_iterator si;
4795 unsigned i;
4796
4797 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4798 {
4799 gimple phi = gsi_stmt (si);
4800
4801 for (i = 0; i < gimple_phi_num_args (phi); i++)
4802 {
4803 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4804 find_decls_types (*arg_p, fld);
4805 }
4806 }
4807
4808 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4809 {
4810 gimple stmt = gsi_stmt (si);
4811
4812 for (i = 0; i < gimple_num_ops (stmt); i++)
4813 {
4814 tree arg = gimple_op (stmt, i);
4815 find_decls_types (arg, fld);
4816 }
4817 }
4818 }
4819 }
4820
4821
4822 /* Find decls and types referenced in varpool node N and store them in
4823 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4824 look for *every* kind of DECL and TYPE node reachable from N,
4825 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4826 NAMESPACE_DECLs, etc). */
4827
4828 static void
4829 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4830 {
4831 find_decls_types (v->decl, fld);
4832 }
4833
4834 /* If T needs an assembler name, have one created for it. */
4835
4836 void
4837 assign_assembler_name_if_neeeded (tree t)
4838 {
4839 if (need_assembler_name_p (t))
4840 {
4841 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4842 diagnostics that use input_location to show locus
4843 information. The problem here is that, at this point,
4844 input_location is generally anchored to the end of the file
4845 (since the parser is long gone), so we don't have a good
4846 position to pin it to.
4847
4848 To alleviate this problem, this uses the location of T's
4849 declaration. Examples of this are
4850 testsuite/g++.dg/template/cond2.C and
4851 testsuite/g++.dg/template/pr35240.C. */
4852 location_t saved_location = input_location;
4853 input_location = DECL_SOURCE_LOCATION (t);
4854
4855 decl_assembler_name (t);
4856
4857 input_location = saved_location;
4858 }
4859 }
4860
4861
4862 /* Free language specific information for every operand and expression
4863 in every node of the call graph. This process operates in three stages:
4864
4865 1- Every callgraph node and varpool node is traversed looking for
4866 decls and types embedded in them. This is a more exhaustive
4867 search than that done by find_referenced_vars, because it will
4868 also collect individual fields, decls embedded in types, etc.
4869
4870 2- All the decls found are sent to free_lang_data_in_decl.
4871
4872 3- All the types found are sent to free_lang_data_in_type.
4873
4874 The ordering between decls and types is important because
4875 free_lang_data_in_decl sets assembler names, which includes
4876 mangling. So types cannot be freed up until assembler names have
4877 been set up. */
4878
4879 static void
4880 free_lang_data_in_cgraph (void)
4881 {
4882 struct cgraph_node *n;
4883 struct varpool_node *v;
4884 struct free_lang_data_d fld;
4885 tree t;
4886 unsigned i;
4887 alias_pair *p;
4888
4889 /* Initialize sets and arrays to store referenced decls and types. */
4890 fld.pset = pointer_set_create ();
4891 fld.worklist = NULL;
4892 fld.decls = VEC_alloc (tree, heap, 100);
4893 fld.types = VEC_alloc (tree, heap, 100);
4894
4895 /* Find decls and types in the body of every function in the callgraph. */
4896 for (n = cgraph_nodes; n; n = n->next)
4897 find_decls_types_in_node (n, &fld);
4898
4899 for (i = 0; VEC_iterate (alias_pair, alias_pairs, i, p); i++)
4900 find_decls_types (p->decl, &fld);
4901
4902 /* Find decls and types in every varpool symbol. */
4903 for (v = varpool_nodes_queue; v; v = v->next_needed)
4904 find_decls_types_in_var (v, &fld);
4905
4906 /* Set the assembler name on every decl found. We need to do this
4907 now because free_lang_data_in_decl will invalidate data needed
4908 for mangling. This breaks mangling on interdependent decls. */
4909 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4910 assign_assembler_name_if_neeeded (t);
4911
4912 /* Traverse every decl found freeing its language data. */
4913 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4914 free_lang_data_in_decl (t);
4915
4916 /* Traverse every type found freeing its language data. */
4917 for (i = 0; VEC_iterate (tree, fld.types, i, t); i++)
4918 free_lang_data_in_type (t);
4919
4920 pointer_set_destroy (fld.pset);
4921 VEC_free (tree, heap, fld.worklist);
4922 VEC_free (tree, heap, fld.decls);
4923 VEC_free (tree, heap, fld.types);
4924 }
4925
4926
4927 /* Free resources that are used by FE but are not needed once they are done. */
4928
4929 static unsigned
4930 free_lang_data (void)
4931 {
4932 unsigned i;
4933
4934 /* If we are the LTO frontend we have freed lang-specific data already. */
4935 if (in_lto_p
4936 || !flag_generate_lto)
4937 return 0;
4938
4939 /* Allocate and assign alias sets to the standard integer types
4940 while the slots are still in the way the frontends generated them. */
4941 for (i = 0; i < itk_none; ++i)
4942 if (integer_types[i])
4943 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
4944
4945 /* Traverse the IL resetting language specific information for
4946 operands, expressions, etc. */
4947 free_lang_data_in_cgraph ();
4948
4949 /* Create gimple variants for common types. */
4950 ptrdiff_type_node = integer_type_node;
4951 fileptr_type_node = ptr_type_node;
4952 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
4953 || (TYPE_MODE (boolean_type_node)
4954 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
4955 || TYPE_PRECISION (boolean_type_node) != 1
4956 || !TYPE_UNSIGNED (boolean_type_node))
4957 {
4958 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
4959 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
4960 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
4961 TYPE_PRECISION (boolean_type_node) = 1;
4962 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
4963 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
4964 }
4965
4966 /* Unify char_type_node with its properly signed variant. */
4967 if (TYPE_UNSIGNED (char_type_node))
4968 unsigned_char_type_node = char_type_node;
4969 else
4970 signed_char_type_node = char_type_node;
4971
4972 /* Reset some langhooks. Do not reset types_compatible_p, it may
4973 still be used indirectly via the get_alias_set langhook. */
4974 lang_hooks.callgraph.analyze_expr = NULL;
4975 lang_hooks.dwarf_name = lhd_dwarf_name;
4976 lang_hooks.decl_printable_name = gimple_decl_printable_name;
4977 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
4978 lang_hooks.fold_obj_type_ref = gimple_fold_obj_type_ref;
4979
4980 /* Reset diagnostic machinery. */
4981 diagnostic_starter (global_dc) = default_diagnostic_starter;
4982 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
4983 diagnostic_format_decoder (global_dc) = default_tree_printer;
4984
4985 return 0;
4986 }
4987
4988
4989 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
4990 {
4991 {
4992 SIMPLE_IPA_PASS,
4993 "*free_lang_data", /* name */
4994 NULL, /* gate */
4995 free_lang_data, /* execute */
4996 NULL, /* sub */
4997 NULL, /* next */
4998 0, /* static_pass_number */
4999 TV_IPA_FREE_LANG_DATA, /* tv_id */
5000 0, /* properties_required */
5001 0, /* properties_provided */
5002 0, /* properties_destroyed */
5003 0, /* todo_flags_start */
5004 TODO_ggc_collect /* todo_flags_finish */
5005 }
5006 };
5007
5008 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5009 or zero if not.
5010
5011 We try both `text' and `__text__', ATTR may be either one. */
5012 /* ??? It might be a reasonable simplification to require ATTR to be only
5013 `text'. One might then also require attribute lists to be stored in
5014 their canonicalized form. */
5015
5016 static int
5017 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5018 {
5019 int ident_len;
5020 const char *p;
5021
5022 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5023 return 0;
5024
5025 p = IDENTIFIER_POINTER (ident);
5026 ident_len = IDENTIFIER_LENGTH (ident);
5027
5028 if (ident_len == attr_len
5029 && strcmp (attr, p) == 0)
5030 return 1;
5031
5032 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5033 if (attr[0] == '_')
5034 {
5035 gcc_assert (attr[1] == '_');
5036 gcc_assert (attr[attr_len - 2] == '_');
5037 gcc_assert (attr[attr_len - 1] == '_');
5038 if (ident_len == attr_len - 4
5039 && strncmp (attr + 2, p, attr_len - 4) == 0)
5040 return 1;
5041 }
5042 else
5043 {
5044 if (ident_len == attr_len + 4
5045 && p[0] == '_' && p[1] == '_'
5046 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5047 && strncmp (attr, p + 2, attr_len) == 0)
5048 return 1;
5049 }
5050
5051 return 0;
5052 }
5053
5054 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5055 or zero if not.
5056
5057 We try both `text' and `__text__', ATTR may be either one. */
5058
5059 int
5060 is_attribute_p (const char *attr, const_tree ident)
5061 {
5062 return is_attribute_with_length_p (attr, strlen (attr), ident);
5063 }
5064
5065 /* Given an attribute name and a list of attributes, return a pointer to the
5066 attribute's list element if the attribute is part of the list, or NULL_TREE
5067 if not found. If the attribute appears more than once, this only
5068 returns the first occurrence; the TREE_CHAIN of the return value should
5069 be passed back in if further occurrences are wanted. */
5070
5071 tree
5072 lookup_attribute (const char *attr_name, tree list)
5073 {
5074 tree l;
5075 size_t attr_len = strlen (attr_name);
5076
5077 for (l = list; l; l = TREE_CHAIN (l))
5078 {
5079 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5080 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5081 return l;
5082 }
5083 return NULL_TREE;
5084 }
5085
5086 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5087 modified list. */
5088
5089 tree
5090 remove_attribute (const char *attr_name, tree list)
5091 {
5092 tree *p;
5093 size_t attr_len = strlen (attr_name);
5094
5095 for (p = &list; *p; )
5096 {
5097 tree l = *p;
5098 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5099 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5100 *p = TREE_CHAIN (l);
5101 else
5102 p = &TREE_CHAIN (l);
5103 }
5104
5105 return list;
5106 }
5107
5108 /* Return an attribute list that is the union of a1 and a2. */
5109
5110 tree
5111 merge_attributes (tree a1, tree a2)
5112 {
5113 tree attributes;
5114
5115 /* Either one unset? Take the set one. */
5116
5117 if ((attributes = a1) == 0)
5118 attributes = a2;
5119
5120 /* One that completely contains the other? Take it. */
5121
5122 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5123 {
5124 if (attribute_list_contained (a2, a1))
5125 attributes = a2;
5126 else
5127 {
5128 /* Pick the longest list, and hang on the other list. */
5129
5130 if (list_length (a1) < list_length (a2))
5131 attributes = a2, a2 = a1;
5132
5133 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5134 {
5135 tree a;
5136 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5137 attributes);
5138 a != NULL_TREE;
5139 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5140 TREE_CHAIN (a)))
5141 {
5142 if (TREE_VALUE (a) != NULL
5143 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5144 && TREE_VALUE (a2) != NULL
5145 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5146 {
5147 if (simple_cst_list_equal (TREE_VALUE (a),
5148 TREE_VALUE (a2)) == 1)
5149 break;
5150 }
5151 else if (simple_cst_equal (TREE_VALUE (a),
5152 TREE_VALUE (a2)) == 1)
5153 break;
5154 }
5155 if (a == NULL_TREE)
5156 {
5157 a1 = copy_node (a2);
5158 TREE_CHAIN (a1) = attributes;
5159 attributes = a1;
5160 }
5161 }
5162 }
5163 }
5164 return attributes;
5165 }
5166
5167 /* Given types T1 and T2, merge their attributes and return
5168 the result. */
5169
5170 tree
5171 merge_type_attributes (tree t1, tree t2)
5172 {
5173 return merge_attributes (TYPE_ATTRIBUTES (t1),
5174 TYPE_ATTRIBUTES (t2));
5175 }
5176
5177 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5178 the result. */
5179
5180 tree
5181 merge_decl_attributes (tree olddecl, tree newdecl)
5182 {
5183 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5184 DECL_ATTRIBUTES (newdecl));
5185 }
5186
5187 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5188
5189 /* Specialization of merge_decl_attributes for various Windows targets.
5190
5191 This handles the following situation:
5192
5193 __declspec (dllimport) int foo;
5194 int foo;
5195
5196 The second instance of `foo' nullifies the dllimport. */
5197
5198 tree
5199 merge_dllimport_decl_attributes (tree old, tree new_tree)
5200 {
5201 tree a;
5202 int delete_dllimport_p = 1;
5203
5204 /* What we need to do here is remove from `old' dllimport if it doesn't
5205 appear in `new'. dllimport behaves like extern: if a declaration is
5206 marked dllimport and a definition appears later, then the object
5207 is not dllimport'd. We also remove a `new' dllimport if the old list
5208 contains dllexport: dllexport always overrides dllimport, regardless
5209 of the order of declaration. */
5210 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5211 delete_dllimport_p = 0;
5212 else if (DECL_DLLIMPORT_P (new_tree)
5213 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5214 {
5215 DECL_DLLIMPORT_P (new_tree) = 0;
5216 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5217 "dllimport ignored", new_tree);
5218 }
5219 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5220 {
5221 /* Warn about overriding a symbol that has already been used, e.g.:
5222 extern int __attribute__ ((dllimport)) foo;
5223 int* bar () {return &foo;}
5224 int foo;
5225 */
5226 if (TREE_USED (old))
5227 {
5228 warning (0, "%q+D redeclared without dllimport attribute "
5229 "after being referenced with dll linkage", new_tree);
5230 /* If we have used a variable's address with dllimport linkage,
5231 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5232 decl may already have had TREE_CONSTANT computed.
5233 We still remove the attribute so that assembler code refers
5234 to '&foo rather than '_imp__foo'. */
5235 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5236 DECL_DLLIMPORT_P (new_tree) = 1;
5237 }
5238
5239 /* Let an inline definition silently override the external reference,
5240 but otherwise warn about attribute inconsistency. */
5241 else if (TREE_CODE (new_tree) == VAR_DECL
5242 || !DECL_DECLARED_INLINE_P (new_tree))
5243 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5244 "previous dllimport ignored", new_tree);
5245 }
5246 else
5247 delete_dllimport_p = 0;
5248
5249 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5250
5251 if (delete_dllimport_p)
5252 {
5253 tree prev, t;
5254 const size_t attr_len = strlen ("dllimport");
5255
5256 /* Scan the list for dllimport and delete it. */
5257 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5258 {
5259 if (is_attribute_with_length_p ("dllimport", attr_len,
5260 TREE_PURPOSE (t)))
5261 {
5262 if (prev == NULL_TREE)
5263 a = TREE_CHAIN (a);
5264 else
5265 TREE_CHAIN (prev) = TREE_CHAIN (t);
5266 break;
5267 }
5268 }
5269 }
5270
5271 return a;
5272 }
5273
5274 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5275 struct attribute_spec.handler. */
5276
5277 tree
5278 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5279 bool *no_add_attrs)
5280 {
5281 tree node = *pnode;
5282 bool is_dllimport;
5283
5284 /* These attributes may apply to structure and union types being created,
5285 but otherwise should pass to the declaration involved. */
5286 if (!DECL_P (node))
5287 {
5288 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5289 | (int) ATTR_FLAG_ARRAY_NEXT))
5290 {
5291 *no_add_attrs = true;
5292 return tree_cons (name, args, NULL_TREE);
5293 }
5294 if (TREE_CODE (node) == RECORD_TYPE
5295 || TREE_CODE (node) == UNION_TYPE)
5296 {
5297 node = TYPE_NAME (node);
5298 if (!node)
5299 return NULL_TREE;
5300 }
5301 else
5302 {
5303 warning (OPT_Wattributes, "%qE attribute ignored",
5304 name);
5305 *no_add_attrs = true;
5306 return NULL_TREE;
5307 }
5308 }
5309
5310 if (TREE_CODE (node) != FUNCTION_DECL
5311 && TREE_CODE (node) != VAR_DECL
5312 && TREE_CODE (node) != TYPE_DECL)
5313 {
5314 *no_add_attrs = true;
5315 warning (OPT_Wattributes, "%qE attribute ignored",
5316 name);
5317 return NULL_TREE;
5318 }
5319
5320 if (TREE_CODE (node) == TYPE_DECL
5321 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5322 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5323 {
5324 *no_add_attrs = true;
5325 warning (OPT_Wattributes, "%qE attribute ignored",
5326 name);
5327 return NULL_TREE;
5328 }
5329
5330 is_dllimport = is_attribute_p ("dllimport", name);
5331
5332 /* Report error on dllimport ambiguities seen now before they cause
5333 any damage. */
5334 if (is_dllimport)
5335 {
5336 /* Honor any target-specific overrides. */
5337 if (!targetm.valid_dllimport_attribute_p (node))
5338 *no_add_attrs = true;
5339
5340 else if (TREE_CODE (node) == FUNCTION_DECL
5341 && DECL_DECLARED_INLINE_P (node))
5342 {
5343 warning (OPT_Wattributes, "inline function %q+D declared as "
5344 " dllimport: attribute ignored", node);
5345 *no_add_attrs = true;
5346 }
5347 /* Like MS, treat definition of dllimported variables and
5348 non-inlined functions on declaration as syntax errors. */
5349 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5350 {
5351 error ("function %q+D definition is marked dllimport", node);
5352 *no_add_attrs = true;
5353 }
5354
5355 else if (TREE_CODE (node) == VAR_DECL)
5356 {
5357 if (DECL_INITIAL (node))
5358 {
5359 error ("variable %q+D definition is marked dllimport",
5360 node);
5361 *no_add_attrs = true;
5362 }
5363
5364 /* `extern' needn't be specified with dllimport.
5365 Specify `extern' now and hope for the best. Sigh. */
5366 DECL_EXTERNAL (node) = 1;
5367 /* Also, implicitly give dllimport'd variables declared within
5368 a function global scope, unless declared static. */
5369 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5370 TREE_PUBLIC (node) = 1;
5371 }
5372
5373 if (*no_add_attrs == false)
5374 DECL_DLLIMPORT_P (node) = 1;
5375 }
5376 else if (TREE_CODE (node) == FUNCTION_DECL
5377 && DECL_DECLARED_INLINE_P (node))
5378 /* An exported function, even if inline, must be emitted. */
5379 DECL_EXTERNAL (node) = 0;
5380
5381 /* Report error if symbol is not accessible at global scope. */
5382 if (!TREE_PUBLIC (node)
5383 && (TREE_CODE (node) == VAR_DECL
5384 || TREE_CODE (node) == FUNCTION_DECL))
5385 {
5386 error ("external linkage required for symbol %q+D because of "
5387 "%qE attribute", node, name);
5388 *no_add_attrs = true;
5389 }
5390
5391 /* A dllexport'd entity must have default visibility so that other
5392 program units (shared libraries or the main executable) can see
5393 it. A dllimport'd entity must have default visibility so that
5394 the linker knows that undefined references within this program
5395 unit can be resolved by the dynamic linker. */
5396 if (!*no_add_attrs)
5397 {
5398 if (DECL_VISIBILITY_SPECIFIED (node)
5399 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5400 error ("%qE implies default visibility, but %qD has already "
5401 "been declared with a different visibility",
5402 name, node);
5403 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5404 DECL_VISIBILITY_SPECIFIED (node) = 1;
5405 }
5406
5407 return NULL_TREE;
5408 }
5409
5410 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5411 \f
5412 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5413 of the various TYPE_QUAL values. */
5414
5415 static void
5416 set_type_quals (tree type, int type_quals)
5417 {
5418 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5419 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5420 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5421 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5422 }
5423
5424 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5425
5426 bool
5427 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5428 {
5429 return (TYPE_QUALS (cand) == type_quals
5430 && TYPE_NAME (cand) == TYPE_NAME (base)
5431 /* Apparently this is needed for Objective-C. */
5432 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5433 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5434 TYPE_ATTRIBUTES (base)));
5435 }
5436
5437 /* Return a version of the TYPE, qualified as indicated by the
5438 TYPE_QUALS, if one exists. If no qualified version exists yet,
5439 return NULL_TREE. */
5440
5441 tree
5442 get_qualified_type (tree type, int type_quals)
5443 {
5444 tree t;
5445
5446 if (TYPE_QUALS (type) == type_quals)
5447 return type;
5448
5449 /* Search the chain of variants to see if there is already one there just
5450 like the one we need to have. If so, use that existing one. We must
5451 preserve the TYPE_NAME, since there is code that depends on this. */
5452 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5453 if (check_qualified_type (t, type, type_quals))
5454 return t;
5455
5456 return NULL_TREE;
5457 }
5458
5459 /* Like get_qualified_type, but creates the type if it does not
5460 exist. This function never returns NULL_TREE. */
5461
5462 tree
5463 build_qualified_type (tree type, int type_quals)
5464 {
5465 tree t;
5466
5467 /* See if we already have the appropriate qualified variant. */
5468 t = get_qualified_type (type, type_quals);
5469
5470 /* If not, build it. */
5471 if (!t)
5472 {
5473 t = build_variant_type_copy (type);
5474 set_type_quals (t, type_quals);
5475
5476 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5477 /* Propagate structural equality. */
5478 SET_TYPE_STRUCTURAL_EQUALITY (t);
5479 else if (TYPE_CANONICAL (type) != type)
5480 /* Build the underlying canonical type, since it is different
5481 from TYPE. */
5482 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5483 type_quals);
5484 else
5485 /* T is its own canonical type. */
5486 TYPE_CANONICAL (t) = t;
5487
5488 }
5489
5490 return t;
5491 }
5492
5493 /* Create a new distinct copy of TYPE. The new type is made its own
5494 MAIN_VARIANT. If TYPE requires structural equality checks, the
5495 resulting type requires structural equality checks; otherwise, its
5496 TYPE_CANONICAL points to itself. */
5497
5498 tree
5499 build_distinct_type_copy (tree type)
5500 {
5501 tree t = copy_node (type);
5502
5503 TYPE_POINTER_TO (t) = 0;
5504 TYPE_REFERENCE_TO (t) = 0;
5505
5506 /* Set the canonical type either to a new equivalence class, or
5507 propagate the need for structural equality checks. */
5508 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5509 SET_TYPE_STRUCTURAL_EQUALITY (t);
5510 else
5511 TYPE_CANONICAL (t) = t;
5512
5513 /* Make it its own variant. */
5514 TYPE_MAIN_VARIANT (t) = t;
5515 TYPE_NEXT_VARIANT (t) = 0;
5516
5517 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5518 whose TREE_TYPE is not t. This can also happen in the Ada
5519 frontend when using subtypes. */
5520
5521 return t;
5522 }
5523
5524 /* Create a new variant of TYPE, equivalent but distinct. This is so
5525 the caller can modify it. TYPE_CANONICAL for the return type will
5526 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5527 are considered equal by the language itself (or that both types
5528 require structural equality checks). */
5529
5530 tree
5531 build_variant_type_copy (tree type)
5532 {
5533 tree t, m = TYPE_MAIN_VARIANT (type);
5534
5535 t = build_distinct_type_copy (type);
5536
5537 /* Since we're building a variant, assume that it is a non-semantic
5538 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5539 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5540
5541 /* Add the new type to the chain of variants of TYPE. */
5542 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5543 TYPE_NEXT_VARIANT (m) = t;
5544 TYPE_MAIN_VARIANT (t) = m;
5545
5546 return t;
5547 }
5548 \f
5549 /* Return true if the from tree in both tree maps are equal. */
5550
5551 int
5552 tree_map_base_eq (const void *va, const void *vb)
5553 {
5554 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5555 *const b = (const struct tree_map_base *) vb;
5556 return (a->from == b->from);
5557 }
5558
5559 /* Hash a from tree in a tree_map. */
5560
5561 unsigned int
5562 tree_map_base_hash (const void *item)
5563 {
5564 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5565 }
5566
5567 /* Return true if this tree map structure is marked for garbage collection
5568 purposes. We simply return true if the from tree is marked, so that this
5569 structure goes away when the from tree goes away. */
5570
5571 int
5572 tree_map_base_marked_p (const void *p)
5573 {
5574 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5575 }
5576
5577 unsigned int
5578 tree_map_hash (const void *item)
5579 {
5580 return (((const struct tree_map *) item)->hash);
5581 }
5582
5583 /* Return the initialization priority for DECL. */
5584
5585 priority_type
5586 decl_init_priority_lookup (tree decl)
5587 {
5588 struct tree_priority_map *h;
5589 struct tree_map_base in;
5590
5591 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5592 in.from = decl;
5593 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5594 return h ? h->init : DEFAULT_INIT_PRIORITY;
5595 }
5596
5597 /* Return the finalization priority for DECL. */
5598
5599 priority_type
5600 decl_fini_priority_lookup (tree decl)
5601 {
5602 struct tree_priority_map *h;
5603 struct tree_map_base in;
5604
5605 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5606 in.from = decl;
5607 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5608 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5609 }
5610
5611 /* Return the initialization and finalization priority information for
5612 DECL. If there is no previous priority information, a freshly
5613 allocated structure is returned. */
5614
5615 static struct tree_priority_map *
5616 decl_priority_info (tree decl)
5617 {
5618 struct tree_priority_map in;
5619 struct tree_priority_map *h;
5620 void **loc;
5621
5622 in.base.from = decl;
5623 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5624 h = (struct tree_priority_map *) *loc;
5625 if (!h)
5626 {
5627 h = GGC_CNEW (struct tree_priority_map);
5628 *loc = h;
5629 h->base.from = decl;
5630 h->init = DEFAULT_INIT_PRIORITY;
5631 h->fini = DEFAULT_INIT_PRIORITY;
5632 }
5633
5634 return h;
5635 }
5636
5637 /* Set the initialization priority for DECL to PRIORITY. */
5638
5639 void
5640 decl_init_priority_insert (tree decl, priority_type priority)
5641 {
5642 struct tree_priority_map *h;
5643
5644 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5645 h = decl_priority_info (decl);
5646 h->init = priority;
5647 }
5648
5649 /* Set the finalization priority for DECL to PRIORITY. */
5650
5651 void
5652 decl_fini_priority_insert (tree decl, priority_type priority)
5653 {
5654 struct tree_priority_map *h;
5655
5656 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5657 h = decl_priority_info (decl);
5658 h->fini = priority;
5659 }
5660
5661 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5662
5663 static void
5664 print_debug_expr_statistics (void)
5665 {
5666 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5667 (long) htab_size (debug_expr_for_decl),
5668 (long) htab_elements (debug_expr_for_decl),
5669 htab_collisions (debug_expr_for_decl));
5670 }
5671
5672 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5673
5674 static void
5675 print_value_expr_statistics (void)
5676 {
5677 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5678 (long) htab_size (value_expr_for_decl),
5679 (long) htab_elements (value_expr_for_decl),
5680 htab_collisions (value_expr_for_decl));
5681 }
5682
5683 /* Lookup a debug expression for FROM, and return it if we find one. */
5684
5685 tree
5686 decl_debug_expr_lookup (tree from)
5687 {
5688 struct tree_map *h, in;
5689 in.base.from = from;
5690
5691 h = (struct tree_map *) htab_find_with_hash (debug_expr_for_decl, &in,
5692 htab_hash_pointer (from));
5693 if (h)
5694 return h->to;
5695 return NULL_TREE;
5696 }
5697
5698 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5699
5700 void
5701 decl_debug_expr_insert (tree from, tree to)
5702 {
5703 struct tree_map *h;
5704 void **loc;
5705
5706 h = GGC_NEW (struct tree_map);
5707 h->hash = htab_hash_pointer (from);
5708 h->base.from = from;
5709 h->to = to;
5710 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
5711 *(struct tree_map **) loc = h;
5712 }
5713
5714 /* Lookup a value expression for FROM, and return it if we find one. */
5715
5716 tree
5717 decl_value_expr_lookup (tree from)
5718 {
5719 struct tree_map *h, in;
5720 in.base.from = from;
5721
5722 h = (struct tree_map *) htab_find_with_hash (value_expr_for_decl, &in,
5723 htab_hash_pointer (from));
5724 if (h)
5725 return h->to;
5726 return NULL_TREE;
5727 }
5728
5729 /* Insert a mapping FROM->TO in the value expression hashtable. */
5730
5731 void
5732 decl_value_expr_insert (tree from, tree to)
5733 {
5734 struct tree_map *h;
5735 void **loc;
5736
5737 h = GGC_NEW (struct tree_map);
5738 h->hash = htab_hash_pointer (from);
5739 h->base.from = from;
5740 h->to = to;
5741 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
5742 *(struct tree_map **) loc = h;
5743 }
5744
5745 /* Hashing of types so that we don't make duplicates.
5746 The entry point is `type_hash_canon'. */
5747
5748 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5749 with types in the TREE_VALUE slots), by adding the hash codes
5750 of the individual types. */
5751
5752 static unsigned int
5753 type_hash_list (const_tree list, hashval_t hashcode)
5754 {
5755 const_tree tail;
5756
5757 for (tail = list; tail; tail = TREE_CHAIN (tail))
5758 if (TREE_VALUE (tail) != error_mark_node)
5759 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5760 hashcode);
5761
5762 return hashcode;
5763 }
5764
5765 /* These are the Hashtable callback functions. */
5766
5767 /* Returns true iff the types are equivalent. */
5768
5769 static int
5770 type_hash_eq (const void *va, const void *vb)
5771 {
5772 const struct type_hash *const a = (const struct type_hash *) va,
5773 *const b = (const struct type_hash *) vb;
5774
5775 /* First test the things that are the same for all types. */
5776 if (a->hash != b->hash
5777 || TREE_CODE (a->type) != TREE_CODE (b->type)
5778 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5779 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5780 TYPE_ATTRIBUTES (b->type))
5781 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5782 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5783 || (TREE_CODE (a->type) != COMPLEX_TYPE
5784 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5785 return 0;
5786
5787 switch (TREE_CODE (a->type))
5788 {
5789 case VOID_TYPE:
5790 case COMPLEX_TYPE:
5791 case POINTER_TYPE:
5792 case REFERENCE_TYPE:
5793 return 1;
5794
5795 case VECTOR_TYPE:
5796 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5797
5798 case ENUMERAL_TYPE:
5799 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5800 && !(TYPE_VALUES (a->type)
5801 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5802 && TYPE_VALUES (b->type)
5803 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5804 && type_list_equal (TYPE_VALUES (a->type),
5805 TYPE_VALUES (b->type))))
5806 return 0;
5807
5808 /* ... fall through ... */
5809
5810 case INTEGER_TYPE:
5811 case REAL_TYPE:
5812 case BOOLEAN_TYPE:
5813 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
5814 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
5815 TYPE_MAX_VALUE (b->type)))
5816 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
5817 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
5818 TYPE_MIN_VALUE (b->type))));
5819
5820 case FIXED_POINT_TYPE:
5821 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
5822
5823 case OFFSET_TYPE:
5824 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
5825
5826 case METHOD_TYPE:
5827 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
5828 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5829 || (TYPE_ARG_TYPES (a->type)
5830 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5831 && TYPE_ARG_TYPES (b->type)
5832 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5833 && type_list_equal (TYPE_ARG_TYPES (a->type),
5834 TYPE_ARG_TYPES (b->type)))));
5835
5836 case ARRAY_TYPE:
5837 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
5838
5839 case RECORD_TYPE:
5840 case UNION_TYPE:
5841 case QUAL_UNION_TYPE:
5842 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
5843 || (TYPE_FIELDS (a->type)
5844 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
5845 && TYPE_FIELDS (b->type)
5846 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
5847 && type_list_equal (TYPE_FIELDS (a->type),
5848 TYPE_FIELDS (b->type))));
5849
5850 case FUNCTION_TYPE:
5851 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5852 || (TYPE_ARG_TYPES (a->type)
5853 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5854 && TYPE_ARG_TYPES (b->type)
5855 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5856 && type_list_equal (TYPE_ARG_TYPES (a->type),
5857 TYPE_ARG_TYPES (b->type))))
5858 break;
5859 return 0;
5860
5861 default:
5862 return 0;
5863 }
5864
5865 if (lang_hooks.types.type_hash_eq != NULL)
5866 return lang_hooks.types.type_hash_eq (a->type, b->type);
5867
5868 return 1;
5869 }
5870
5871 /* Return the cached hash value. */
5872
5873 static hashval_t
5874 type_hash_hash (const void *item)
5875 {
5876 return ((const struct type_hash *) item)->hash;
5877 }
5878
5879 /* Look in the type hash table for a type isomorphic to TYPE.
5880 If one is found, return it. Otherwise return 0. */
5881
5882 tree
5883 type_hash_lookup (hashval_t hashcode, tree type)
5884 {
5885 struct type_hash *h, in;
5886
5887 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
5888 must call that routine before comparing TYPE_ALIGNs. */
5889 layout_type (type);
5890
5891 in.hash = hashcode;
5892 in.type = type;
5893
5894 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
5895 hashcode);
5896 if (h)
5897 return h->type;
5898 return NULL_TREE;
5899 }
5900
5901 /* Add an entry to the type-hash-table
5902 for a type TYPE whose hash code is HASHCODE. */
5903
5904 void
5905 type_hash_add (hashval_t hashcode, tree type)
5906 {
5907 struct type_hash *h;
5908 void **loc;
5909
5910 h = GGC_NEW (struct type_hash);
5911 h->hash = hashcode;
5912 h->type = type;
5913 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
5914 *loc = (void *)h;
5915 }
5916
5917 /* Given TYPE, and HASHCODE its hash code, return the canonical
5918 object for an identical type if one already exists.
5919 Otherwise, return TYPE, and record it as the canonical object.
5920
5921 To use this function, first create a type of the sort you want.
5922 Then compute its hash code from the fields of the type that
5923 make it different from other similar types.
5924 Then call this function and use the value. */
5925
5926 tree
5927 type_hash_canon (unsigned int hashcode, tree type)
5928 {
5929 tree t1;
5930
5931 /* The hash table only contains main variants, so ensure that's what we're
5932 being passed. */
5933 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
5934
5935 if (!lang_hooks.types.hash_types)
5936 return type;
5937
5938 /* See if the type is in the hash table already. If so, return it.
5939 Otherwise, add the type. */
5940 t1 = type_hash_lookup (hashcode, type);
5941 if (t1 != 0)
5942 {
5943 #ifdef GATHER_STATISTICS
5944 tree_node_counts[(int) t_kind]--;
5945 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
5946 #endif
5947 return t1;
5948 }
5949 else
5950 {
5951 type_hash_add (hashcode, type);
5952 return type;
5953 }
5954 }
5955
5956 /* See if the data pointed to by the type hash table is marked. We consider
5957 it marked if the type is marked or if a debug type number or symbol
5958 table entry has been made for the type. This reduces the amount of
5959 debugging output and eliminates that dependency of the debug output on
5960 the number of garbage collections. */
5961
5962 static int
5963 type_hash_marked_p (const void *p)
5964 {
5965 const_tree const type = ((const struct type_hash *) p)->type;
5966
5967 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
5968 }
5969
5970 static void
5971 print_type_hash_statistics (void)
5972 {
5973 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
5974 (long) htab_size (type_hash_table),
5975 (long) htab_elements (type_hash_table),
5976 htab_collisions (type_hash_table));
5977 }
5978
5979 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
5980 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
5981 by adding the hash codes of the individual attributes. */
5982
5983 static unsigned int
5984 attribute_hash_list (const_tree list, hashval_t hashcode)
5985 {
5986 const_tree tail;
5987
5988 for (tail = list; tail; tail = TREE_CHAIN (tail))
5989 /* ??? Do we want to add in TREE_VALUE too? */
5990 hashcode = iterative_hash_object
5991 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
5992 return hashcode;
5993 }
5994
5995 /* Given two lists of attributes, return true if list l2 is
5996 equivalent to l1. */
5997
5998 int
5999 attribute_list_equal (const_tree l1, const_tree l2)
6000 {
6001 return attribute_list_contained (l1, l2)
6002 && attribute_list_contained (l2, l1);
6003 }
6004
6005 /* Given two lists of attributes, return true if list L2 is
6006 completely contained within L1. */
6007 /* ??? This would be faster if attribute names were stored in a canonicalized
6008 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6009 must be used to show these elements are equivalent (which they are). */
6010 /* ??? It's not clear that attributes with arguments will always be handled
6011 correctly. */
6012
6013 int
6014 attribute_list_contained (const_tree l1, const_tree l2)
6015 {
6016 const_tree t1, t2;
6017
6018 /* First check the obvious, maybe the lists are identical. */
6019 if (l1 == l2)
6020 return 1;
6021
6022 /* Maybe the lists are similar. */
6023 for (t1 = l1, t2 = l2;
6024 t1 != 0 && t2 != 0
6025 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6026 && TREE_VALUE (t1) == TREE_VALUE (t2);
6027 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6028
6029 /* Maybe the lists are equal. */
6030 if (t1 == 0 && t2 == 0)
6031 return 1;
6032
6033 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6034 {
6035 const_tree attr;
6036 /* This CONST_CAST is okay because lookup_attribute does not
6037 modify its argument and the return value is assigned to a
6038 const_tree. */
6039 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6040 CONST_CAST_TREE(l1));
6041 attr != NULL_TREE;
6042 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6043 TREE_CHAIN (attr)))
6044 {
6045 if (TREE_VALUE (t2) != NULL
6046 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
6047 && TREE_VALUE (attr) != NULL
6048 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
6049 {
6050 if (simple_cst_list_equal (TREE_VALUE (t2),
6051 TREE_VALUE (attr)) == 1)
6052 break;
6053 }
6054 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
6055 break;
6056 }
6057
6058 if (attr == 0)
6059 return 0;
6060 }
6061
6062 return 1;
6063 }
6064
6065 /* Given two lists of types
6066 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6067 return 1 if the lists contain the same types in the same order.
6068 Also, the TREE_PURPOSEs must match. */
6069
6070 int
6071 type_list_equal (const_tree l1, const_tree l2)
6072 {
6073 const_tree t1, t2;
6074
6075 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6076 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6077 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6078 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6079 && (TREE_TYPE (TREE_PURPOSE (t1))
6080 == TREE_TYPE (TREE_PURPOSE (t2))))))
6081 return 0;
6082
6083 return t1 == t2;
6084 }
6085
6086 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6087 given by TYPE. If the argument list accepts variable arguments,
6088 then this function counts only the ordinary arguments. */
6089
6090 int
6091 type_num_arguments (const_tree type)
6092 {
6093 int i = 0;
6094 tree t;
6095
6096 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6097 /* If the function does not take a variable number of arguments,
6098 the last element in the list will have type `void'. */
6099 if (VOID_TYPE_P (TREE_VALUE (t)))
6100 break;
6101 else
6102 ++i;
6103
6104 return i;
6105 }
6106
6107 /* Nonzero if integer constants T1 and T2
6108 represent the same constant value. */
6109
6110 int
6111 tree_int_cst_equal (const_tree t1, const_tree t2)
6112 {
6113 if (t1 == t2)
6114 return 1;
6115
6116 if (t1 == 0 || t2 == 0)
6117 return 0;
6118
6119 if (TREE_CODE (t1) == INTEGER_CST
6120 && TREE_CODE (t2) == INTEGER_CST
6121 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6122 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6123 return 1;
6124
6125 return 0;
6126 }
6127
6128 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6129 The precise way of comparison depends on their data type. */
6130
6131 int
6132 tree_int_cst_lt (const_tree t1, const_tree t2)
6133 {
6134 if (t1 == t2)
6135 return 0;
6136
6137 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6138 {
6139 int t1_sgn = tree_int_cst_sgn (t1);
6140 int t2_sgn = tree_int_cst_sgn (t2);
6141
6142 if (t1_sgn < t2_sgn)
6143 return 1;
6144 else if (t1_sgn > t2_sgn)
6145 return 0;
6146 /* Otherwise, both are non-negative, so we compare them as
6147 unsigned just in case one of them would overflow a signed
6148 type. */
6149 }
6150 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6151 return INT_CST_LT (t1, t2);
6152
6153 return INT_CST_LT_UNSIGNED (t1, t2);
6154 }
6155
6156 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6157
6158 int
6159 tree_int_cst_compare (const_tree t1, const_tree t2)
6160 {
6161 if (tree_int_cst_lt (t1, t2))
6162 return -1;
6163 else if (tree_int_cst_lt (t2, t1))
6164 return 1;
6165 else
6166 return 0;
6167 }
6168
6169 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6170 the host. If POS is zero, the value can be represented in a single
6171 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6172 be represented in a single unsigned HOST_WIDE_INT. */
6173
6174 int
6175 host_integerp (const_tree t, int pos)
6176 {
6177 if (t == NULL_TREE)
6178 return 0;
6179
6180 return (TREE_CODE (t) == INTEGER_CST
6181 && ((TREE_INT_CST_HIGH (t) == 0
6182 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6183 || (! pos && TREE_INT_CST_HIGH (t) == -1
6184 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6185 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6186 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6187 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6188 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6189 }
6190
6191 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6192 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6193 be non-negative. We must be able to satisfy the above conditions. */
6194
6195 HOST_WIDE_INT
6196 tree_low_cst (const_tree t, int pos)
6197 {
6198 gcc_assert (host_integerp (t, pos));
6199 return TREE_INT_CST_LOW (t);
6200 }
6201
6202 /* Return the most significant bit of the integer constant T. */
6203
6204 int
6205 tree_int_cst_msb (const_tree t)
6206 {
6207 int prec;
6208 HOST_WIDE_INT h;
6209 unsigned HOST_WIDE_INT l;
6210
6211 /* Note that using TYPE_PRECISION here is wrong. We care about the
6212 actual bits, not the (arbitrary) range of the type. */
6213 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6214 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6215 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6216 return (l & 1) == 1;
6217 }
6218
6219 /* Return an indication of the sign of the integer constant T.
6220 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6221 Note that -1 will never be returned if T's type is unsigned. */
6222
6223 int
6224 tree_int_cst_sgn (const_tree t)
6225 {
6226 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6227 return 0;
6228 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6229 return 1;
6230 else if (TREE_INT_CST_HIGH (t) < 0)
6231 return -1;
6232 else
6233 return 1;
6234 }
6235
6236 /* Return the minimum number of bits needed to represent VALUE in a
6237 signed or unsigned type, UNSIGNEDP says which. */
6238
6239 unsigned int
6240 tree_int_cst_min_precision (tree value, bool unsignedp)
6241 {
6242 int log;
6243
6244 /* If the value is negative, compute its negative minus 1. The latter
6245 adjustment is because the absolute value of the largest negative value
6246 is one larger than the largest positive value. This is equivalent to
6247 a bit-wise negation, so use that operation instead. */
6248
6249 if (tree_int_cst_sgn (value) < 0)
6250 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6251
6252 /* Return the number of bits needed, taking into account the fact
6253 that we need one more bit for a signed than unsigned type. */
6254
6255 if (integer_zerop (value))
6256 log = 0;
6257 else
6258 log = tree_floor_log2 (value);
6259
6260 return log + 1 + !unsignedp;
6261 }
6262
6263 /* Compare two constructor-element-type constants. Return 1 if the lists
6264 are known to be equal; otherwise return 0. */
6265
6266 int
6267 simple_cst_list_equal (const_tree l1, const_tree l2)
6268 {
6269 while (l1 != NULL_TREE && l2 != NULL_TREE)
6270 {
6271 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6272 return 0;
6273
6274 l1 = TREE_CHAIN (l1);
6275 l2 = TREE_CHAIN (l2);
6276 }
6277
6278 return l1 == l2;
6279 }
6280
6281 /* Return truthvalue of whether T1 is the same tree structure as T2.
6282 Return 1 if they are the same.
6283 Return 0 if they are understandably different.
6284 Return -1 if either contains tree structure not understood by
6285 this function. */
6286
6287 int
6288 simple_cst_equal (const_tree t1, const_tree t2)
6289 {
6290 enum tree_code code1, code2;
6291 int cmp;
6292 int i;
6293
6294 if (t1 == t2)
6295 return 1;
6296 if (t1 == 0 || t2 == 0)
6297 return 0;
6298
6299 code1 = TREE_CODE (t1);
6300 code2 = TREE_CODE (t2);
6301
6302 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6303 {
6304 if (CONVERT_EXPR_CODE_P (code2)
6305 || code2 == NON_LVALUE_EXPR)
6306 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6307 else
6308 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6309 }
6310
6311 else if (CONVERT_EXPR_CODE_P (code2)
6312 || code2 == NON_LVALUE_EXPR)
6313 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6314
6315 if (code1 != code2)
6316 return 0;
6317
6318 switch (code1)
6319 {
6320 case INTEGER_CST:
6321 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6322 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6323
6324 case REAL_CST:
6325 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6326
6327 case FIXED_CST:
6328 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6329
6330 case STRING_CST:
6331 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6332 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6333 TREE_STRING_LENGTH (t1)));
6334
6335 case CONSTRUCTOR:
6336 {
6337 unsigned HOST_WIDE_INT idx;
6338 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6339 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6340
6341 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6342 return false;
6343
6344 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6345 /* ??? Should we handle also fields here? */
6346 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6347 VEC_index (constructor_elt, v2, idx)->value))
6348 return false;
6349 return true;
6350 }
6351
6352 case SAVE_EXPR:
6353 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6354
6355 case CALL_EXPR:
6356 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6357 if (cmp <= 0)
6358 return cmp;
6359 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6360 return 0;
6361 {
6362 const_tree arg1, arg2;
6363 const_call_expr_arg_iterator iter1, iter2;
6364 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6365 arg2 = first_const_call_expr_arg (t2, &iter2);
6366 arg1 && arg2;
6367 arg1 = next_const_call_expr_arg (&iter1),
6368 arg2 = next_const_call_expr_arg (&iter2))
6369 {
6370 cmp = simple_cst_equal (arg1, arg2);
6371 if (cmp <= 0)
6372 return cmp;
6373 }
6374 return arg1 == arg2;
6375 }
6376
6377 case TARGET_EXPR:
6378 /* Special case: if either target is an unallocated VAR_DECL,
6379 it means that it's going to be unified with whatever the
6380 TARGET_EXPR is really supposed to initialize, so treat it
6381 as being equivalent to anything. */
6382 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6383 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6384 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6385 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6386 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6387 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6388 cmp = 1;
6389 else
6390 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6391
6392 if (cmp <= 0)
6393 return cmp;
6394
6395 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6396
6397 case WITH_CLEANUP_EXPR:
6398 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6399 if (cmp <= 0)
6400 return cmp;
6401
6402 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6403
6404 case COMPONENT_REF:
6405 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6406 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6407
6408 return 0;
6409
6410 case VAR_DECL:
6411 case PARM_DECL:
6412 case CONST_DECL:
6413 case FUNCTION_DECL:
6414 return 0;
6415
6416 default:
6417 break;
6418 }
6419
6420 /* This general rule works for most tree codes. All exceptions should be
6421 handled above. If this is a language-specific tree code, we can't
6422 trust what might be in the operand, so say we don't know
6423 the situation. */
6424 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6425 return -1;
6426
6427 switch (TREE_CODE_CLASS (code1))
6428 {
6429 case tcc_unary:
6430 case tcc_binary:
6431 case tcc_comparison:
6432 case tcc_expression:
6433 case tcc_reference:
6434 case tcc_statement:
6435 cmp = 1;
6436 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6437 {
6438 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6439 if (cmp <= 0)
6440 return cmp;
6441 }
6442
6443 return cmp;
6444
6445 default:
6446 return -1;
6447 }
6448 }
6449
6450 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6451 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6452 than U, respectively. */
6453
6454 int
6455 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6456 {
6457 if (tree_int_cst_sgn (t) < 0)
6458 return -1;
6459 else if (TREE_INT_CST_HIGH (t) != 0)
6460 return 1;
6461 else if (TREE_INT_CST_LOW (t) == u)
6462 return 0;
6463 else if (TREE_INT_CST_LOW (t) < u)
6464 return -1;
6465 else
6466 return 1;
6467 }
6468
6469 /* Return true if CODE represents an associative tree code. Otherwise
6470 return false. */
6471 bool
6472 associative_tree_code (enum tree_code code)
6473 {
6474 switch (code)
6475 {
6476 case BIT_IOR_EXPR:
6477 case BIT_AND_EXPR:
6478 case BIT_XOR_EXPR:
6479 case PLUS_EXPR:
6480 case MULT_EXPR:
6481 case MIN_EXPR:
6482 case MAX_EXPR:
6483 return true;
6484
6485 default:
6486 break;
6487 }
6488 return false;
6489 }
6490
6491 /* Return true if CODE represents a commutative tree code. Otherwise
6492 return false. */
6493 bool
6494 commutative_tree_code (enum tree_code code)
6495 {
6496 switch (code)
6497 {
6498 case PLUS_EXPR:
6499 case MULT_EXPR:
6500 case MIN_EXPR:
6501 case MAX_EXPR:
6502 case BIT_IOR_EXPR:
6503 case BIT_XOR_EXPR:
6504 case BIT_AND_EXPR:
6505 case NE_EXPR:
6506 case EQ_EXPR:
6507 case UNORDERED_EXPR:
6508 case ORDERED_EXPR:
6509 case UNEQ_EXPR:
6510 case LTGT_EXPR:
6511 case TRUTH_AND_EXPR:
6512 case TRUTH_XOR_EXPR:
6513 case TRUTH_OR_EXPR:
6514 return true;
6515
6516 default:
6517 break;
6518 }
6519 return false;
6520 }
6521
6522 /* Generate a hash value for an expression. This can be used iteratively
6523 by passing a previous result as the VAL argument.
6524
6525 This function is intended to produce the same hash for expressions which
6526 would compare equal using operand_equal_p. */
6527
6528 hashval_t
6529 iterative_hash_expr (const_tree t, hashval_t val)
6530 {
6531 int i;
6532 enum tree_code code;
6533 char tclass;
6534
6535 if (t == NULL_TREE)
6536 return iterative_hash_hashval_t (0, val);
6537
6538 code = TREE_CODE (t);
6539
6540 switch (code)
6541 {
6542 /* Alas, constants aren't shared, so we can't rely on pointer
6543 identity. */
6544 case INTEGER_CST:
6545 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6546 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6547 case REAL_CST:
6548 {
6549 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6550
6551 return iterative_hash_hashval_t (val2, val);
6552 }
6553 case FIXED_CST:
6554 {
6555 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6556
6557 return iterative_hash_hashval_t (val2, val);
6558 }
6559 case STRING_CST:
6560 return iterative_hash (TREE_STRING_POINTER (t),
6561 TREE_STRING_LENGTH (t), val);
6562 case COMPLEX_CST:
6563 val = iterative_hash_expr (TREE_REALPART (t), val);
6564 return iterative_hash_expr (TREE_IMAGPART (t), val);
6565 case VECTOR_CST:
6566 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6567
6568 case SSA_NAME:
6569 /* we can just compare by pointer. */
6570 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6571
6572 case TREE_LIST:
6573 /* A list of expressions, for a CALL_EXPR or as the elements of a
6574 VECTOR_CST. */
6575 for (; t; t = TREE_CHAIN (t))
6576 val = iterative_hash_expr (TREE_VALUE (t), val);
6577 return val;
6578 case CONSTRUCTOR:
6579 {
6580 unsigned HOST_WIDE_INT idx;
6581 tree field, value;
6582 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6583 {
6584 val = iterative_hash_expr (field, val);
6585 val = iterative_hash_expr (value, val);
6586 }
6587 return val;
6588 }
6589 case FUNCTION_DECL:
6590 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6591 Otherwise nodes that compare equal according to operand_equal_p might
6592 get different hash codes. However, don't do this for machine specific
6593 or front end builtins, since the function code is overloaded in those
6594 cases. */
6595 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6596 && built_in_decls[DECL_FUNCTION_CODE (t)])
6597 {
6598 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6599 code = TREE_CODE (t);
6600 }
6601 /* FALL THROUGH */
6602 default:
6603 tclass = TREE_CODE_CLASS (code);
6604
6605 if (tclass == tcc_declaration)
6606 {
6607 /* DECL's have a unique ID */
6608 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6609 }
6610 else
6611 {
6612 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6613
6614 val = iterative_hash_object (code, val);
6615
6616 /* Don't hash the type, that can lead to having nodes which
6617 compare equal according to operand_equal_p, but which
6618 have different hash codes. */
6619 if (CONVERT_EXPR_CODE_P (code)
6620 || code == NON_LVALUE_EXPR)
6621 {
6622 /* Make sure to include signness in the hash computation. */
6623 val += TYPE_UNSIGNED (TREE_TYPE (t));
6624 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6625 }
6626
6627 else if (commutative_tree_code (code))
6628 {
6629 /* It's a commutative expression. We want to hash it the same
6630 however it appears. We do this by first hashing both operands
6631 and then rehashing based on the order of their independent
6632 hashes. */
6633 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6634 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6635 hashval_t t;
6636
6637 if (one > two)
6638 t = one, one = two, two = t;
6639
6640 val = iterative_hash_hashval_t (one, val);
6641 val = iterative_hash_hashval_t (two, val);
6642 }
6643 else
6644 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6645 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6646 }
6647 return val;
6648 break;
6649 }
6650 }
6651
6652 /* Generate a hash value for a pair of expressions. This can be used
6653 iteratively by passing a previous result as the VAL argument.
6654
6655 The same hash value is always returned for a given pair of expressions,
6656 regardless of the order in which they are presented. This is useful in
6657 hashing the operands of commutative functions. */
6658
6659 hashval_t
6660 iterative_hash_exprs_commutative (const_tree t1,
6661 const_tree t2, hashval_t val)
6662 {
6663 hashval_t one = iterative_hash_expr (t1, 0);
6664 hashval_t two = iterative_hash_expr (t2, 0);
6665 hashval_t t;
6666
6667 if (one > two)
6668 t = one, one = two, two = t;
6669 val = iterative_hash_hashval_t (one, val);
6670 val = iterative_hash_hashval_t (two, val);
6671
6672 return val;
6673 }
6674 \f
6675 /* Constructors for pointer, array and function types.
6676 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6677 constructed by language-dependent code, not here.) */
6678
6679 /* Construct, lay out and return the type of pointers to TO_TYPE with
6680 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6681 reference all of memory. If such a type has already been
6682 constructed, reuse it. */
6683
6684 tree
6685 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6686 bool can_alias_all)
6687 {
6688 tree t;
6689
6690 if (to_type == error_mark_node)
6691 return error_mark_node;
6692
6693 /* If the pointed-to type has the may_alias attribute set, force
6694 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6695 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6696 can_alias_all = true;
6697
6698 /* In some cases, languages will have things that aren't a POINTER_TYPE
6699 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6700 In that case, return that type without regard to the rest of our
6701 operands.
6702
6703 ??? This is a kludge, but consistent with the way this function has
6704 always operated and there doesn't seem to be a good way to avoid this
6705 at the moment. */
6706 if (TYPE_POINTER_TO (to_type) != 0
6707 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6708 return TYPE_POINTER_TO (to_type);
6709
6710 /* First, if we already have a type for pointers to TO_TYPE and it's
6711 the proper mode, use it. */
6712 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6713 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6714 return t;
6715
6716 t = make_node (POINTER_TYPE);
6717
6718 TREE_TYPE (t) = to_type;
6719 SET_TYPE_MODE (t, mode);
6720 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6721 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6722 TYPE_POINTER_TO (to_type) = t;
6723
6724 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6725 SET_TYPE_STRUCTURAL_EQUALITY (t);
6726 else if (TYPE_CANONICAL (to_type) != to_type)
6727 TYPE_CANONICAL (t)
6728 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6729 mode, can_alias_all);
6730
6731 /* Lay out the type. This function has many callers that are concerned
6732 with expression-construction, and this simplifies them all. */
6733 layout_type (t);
6734
6735 return t;
6736 }
6737
6738 /* By default build pointers in ptr_mode. */
6739
6740 tree
6741 build_pointer_type (tree to_type)
6742 {
6743 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6744 : TYPE_ADDR_SPACE (to_type);
6745 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6746 return build_pointer_type_for_mode (to_type, pointer_mode, false);
6747 }
6748
6749 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6750
6751 tree
6752 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6753 bool can_alias_all)
6754 {
6755 tree t;
6756
6757 if (to_type == error_mark_node)
6758 return error_mark_node;
6759
6760 /* If the pointed-to type has the may_alias attribute set, force
6761 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6762 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6763 can_alias_all = true;
6764
6765 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6766 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6767 In that case, return that type without regard to the rest of our
6768 operands.
6769
6770 ??? This is a kludge, but consistent with the way this function has
6771 always operated and there doesn't seem to be a good way to avoid this
6772 at the moment. */
6773 if (TYPE_REFERENCE_TO (to_type) != 0
6774 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6775 return TYPE_REFERENCE_TO (to_type);
6776
6777 /* First, if we already have a type for pointers to TO_TYPE and it's
6778 the proper mode, use it. */
6779 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
6780 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6781 return t;
6782
6783 t = make_node (REFERENCE_TYPE);
6784
6785 TREE_TYPE (t) = to_type;
6786 SET_TYPE_MODE (t, mode);
6787 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6788 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
6789 TYPE_REFERENCE_TO (to_type) = t;
6790
6791 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6792 SET_TYPE_STRUCTURAL_EQUALITY (t);
6793 else if (TYPE_CANONICAL (to_type) != to_type)
6794 TYPE_CANONICAL (t)
6795 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
6796 mode, can_alias_all);
6797
6798 layout_type (t);
6799
6800 return t;
6801 }
6802
6803
6804 /* Build the node for the type of references-to-TO_TYPE by default
6805 in ptr_mode. */
6806
6807 tree
6808 build_reference_type (tree to_type)
6809 {
6810 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6811 : TYPE_ADDR_SPACE (to_type);
6812 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6813 return build_reference_type_for_mode (to_type, pointer_mode, false);
6814 }
6815
6816 /* Build a type that is compatible with t but has no cv quals anywhere
6817 in its type, thus
6818
6819 const char *const *const * -> char ***. */
6820
6821 tree
6822 build_type_no_quals (tree t)
6823 {
6824 switch (TREE_CODE (t))
6825 {
6826 case POINTER_TYPE:
6827 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6828 TYPE_MODE (t),
6829 TYPE_REF_CAN_ALIAS_ALL (t));
6830 case REFERENCE_TYPE:
6831 return
6832 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6833 TYPE_MODE (t),
6834 TYPE_REF_CAN_ALIAS_ALL (t));
6835 default:
6836 return TYPE_MAIN_VARIANT (t);
6837 }
6838 }
6839
6840 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
6841 MAXVAL should be the maximum value in the domain
6842 (one less than the length of the array).
6843
6844 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
6845 We don't enforce this limit, that is up to caller (e.g. language front end).
6846 The limit exists because the result is a signed type and we don't handle
6847 sizes that use more than one HOST_WIDE_INT. */
6848
6849 tree
6850 build_index_type (tree maxval)
6851 {
6852 tree itype = make_node (INTEGER_TYPE);
6853
6854 TREE_TYPE (itype) = sizetype;
6855 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
6856 TYPE_MIN_VALUE (itype) = size_zero_node;
6857 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
6858 SET_TYPE_MODE (itype, TYPE_MODE (sizetype));
6859 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
6860 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
6861 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
6862 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
6863
6864 if (host_integerp (maxval, 1))
6865 return type_hash_canon (tree_low_cst (maxval, 1), itype);
6866 else
6867 {
6868 /* Since we cannot hash this type, we need to compare it using
6869 structural equality checks. */
6870 SET_TYPE_STRUCTURAL_EQUALITY (itype);
6871 return itype;
6872 }
6873 }
6874
6875 /* Builds a signed or unsigned integer type of precision PRECISION.
6876 Used for C bitfields whose precision does not match that of
6877 built-in target types. */
6878 tree
6879 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
6880 int unsignedp)
6881 {
6882 tree itype = make_node (INTEGER_TYPE);
6883
6884 TYPE_PRECISION (itype) = precision;
6885
6886 if (unsignedp)
6887 fixup_unsigned_type (itype);
6888 else
6889 fixup_signed_type (itype);
6890
6891 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
6892 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
6893
6894 return itype;
6895 }
6896
6897 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
6898 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
6899 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
6900
6901 tree
6902 build_range_type (tree type, tree lowval, tree highval)
6903 {
6904 tree itype = make_node (INTEGER_TYPE);
6905
6906 TREE_TYPE (itype) = type;
6907 if (type == NULL_TREE)
6908 type = sizetype;
6909
6910 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
6911 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
6912
6913 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
6914 SET_TYPE_MODE (itype, TYPE_MODE (type));
6915 TYPE_SIZE (itype) = TYPE_SIZE (type);
6916 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
6917 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
6918 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
6919
6920 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
6921 return type_hash_canon (tree_low_cst (highval, 0)
6922 - tree_low_cst (lowval, 0),
6923 itype);
6924 else
6925 return itype;
6926 }
6927
6928 /* Return true if the debug information for TYPE, a subtype, should be emitted
6929 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
6930 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
6931 debug info and doesn't reflect the source code. */
6932
6933 bool
6934 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
6935 {
6936 tree base_type = TREE_TYPE (type), low, high;
6937
6938 /* Subrange types have a base type which is an integral type. */
6939 if (!INTEGRAL_TYPE_P (base_type))
6940 return false;
6941
6942 /* Get the real bounds of the subtype. */
6943 if (lang_hooks.types.get_subrange_bounds)
6944 lang_hooks.types.get_subrange_bounds (type, &low, &high);
6945 else
6946 {
6947 low = TYPE_MIN_VALUE (type);
6948 high = TYPE_MAX_VALUE (type);
6949 }
6950
6951 /* If the type and its base type have the same representation and the same
6952 name, then the type is not a subrange but a copy of the base type. */
6953 if ((TREE_CODE (base_type) == INTEGER_TYPE
6954 || TREE_CODE (base_type) == BOOLEAN_TYPE)
6955 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
6956 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
6957 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
6958 {
6959 tree type_name = TYPE_NAME (type);
6960 tree base_type_name = TYPE_NAME (base_type);
6961
6962 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
6963 type_name = DECL_NAME (type_name);
6964
6965 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
6966 base_type_name = DECL_NAME (base_type_name);
6967
6968 if (type_name == base_type_name)
6969 return false;
6970 }
6971
6972 if (lowval)
6973 *lowval = low;
6974 if (highval)
6975 *highval = high;
6976 return true;
6977 }
6978
6979 /* Just like build_index_type, but takes lowval and highval instead
6980 of just highval (maxval). */
6981
6982 tree
6983 build_index_2_type (tree lowval, tree highval)
6984 {
6985 return build_range_type (sizetype, lowval, highval);
6986 }
6987
6988 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
6989 and number of elements specified by the range of values of INDEX_TYPE.
6990 If such a type has already been constructed, reuse it. */
6991
6992 tree
6993 build_array_type (tree elt_type, tree index_type)
6994 {
6995 tree t;
6996 hashval_t hashcode = 0;
6997
6998 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
6999 {
7000 error ("arrays of functions are not meaningful");
7001 elt_type = integer_type_node;
7002 }
7003
7004 t = make_node (ARRAY_TYPE);
7005 TREE_TYPE (t) = elt_type;
7006 TYPE_DOMAIN (t) = index_type;
7007 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7008 layout_type (t);
7009
7010 /* If the element type is incomplete at this point we get marked for
7011 structural equality. Do not record these types in the canonical
7012 type hashtable. */
7013 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7014 return t;
7015
7016 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
7017 if (index_type)
7018 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7019 t = type_hash_canon (hashcode, t);
7020
7021 if (TYPE_CANONICAL (t) == t)
7022 {
7023 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7024 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7025 SET_TYPE_STRUCTURAL_EQUALITY (t);
7026 else if (TYPE_CANONICAL (elt_type) != elt_type
7027 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7028 TYPE_CANONICAL (t)
7029 = build_array_type (TYPE_CANONICAL (elt_type),
7030 index_type ? TYPE_CANONICAL (index_type) : NULL);
7031 }
7032
7033 return t;
7034 }
7035
7036 /* Recursively examines the array elements of TYPE, until a non-array
7037 element type is found. */
7038
7039 tree
7040 strip_array_types (tree type)
7041 {
7042 while (TREE_CODE (type) == ARRAY_TYPE)
7043 type = TREE_TYPE (type);
7044
7045 return type;
7046 }
7047
7048 /* Computes the canonical argument types from the argument type list
7049 ARGTYPES.
7050
7051 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7052 on entry to this function, or if any of the ARGTYPES are
7053 structural.
7054
7055 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7056 true on entry to this function, or if any of the ARGTYPES are
7057 non-canonical.
7058
7059 Returns a canonical argument list, which may be ARGTYPES when the
7060 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7061 true) or would not differ from ARGTYPES. */
7062
7063 static tree
7064 maybe_canonicalize_argtypes(tree argtypes,
7065 bool *any_structural_p,
7066 bool *any_noncanonical_p)
7067 {
7068 tree arg;
7069 bool any_noncanonical_argtypes_p = false;
7070
7071 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7072 {
7073 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7074 /* Fail gracefully by stating that the type is structural. */
7075 *any_structural_p = true;
7076 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7077 *any_structural_p = true;
7078 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7079 || TREE_PURPOSE (arg))
7080 /* If the argument has a default argument, we consider it
7081 non-canonical even though the type itself is canonical.
7082 That way, different variants of function and method types
7083 with default arguments will all point to the variant with
7084 no defaults as their canonical type. */
7085 any_noncanonical_argtypes_p = true;
7086 }
7087
7088 if (*any_structural_p)
7089 return argtypes;
7090
7091 if (any_noncanonical_argtypes_p)
7092 {
7093 /* Build the canonical list of argument types. */
7094 tree canon_argtypes = NULL_TREE;
7095 bool is_void = false;
7096
7097 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7098 {
7099 if (arg == void_list_node)
7100 is_void = true;
7101 else
7102 canon_argtypes = tree_cons (NULL_TREE,
7103 TYPE_CANONICAL (TREE_VALUE (arg)),
7104 canon_argtypes);
7105 }
7106
7107 canon_argtypes = nreverse (canon_argtypes);
7108 if (is_void)
7109 canon_argtypes = chainon (canon_argtypes, void_list_node);
7110
7111 /* There is a non-canonical type. */
7112 *any_noncanonical_p = true;
7113 return canon_argtypes;
7114 }
7115
7116 /* The canonical argument types are the same as ARGTYPES. */
7117 return argtypes;
7118 }
7119
7120 /* Construct, lay out and return
7121 the type of functions returning type VALUE_TYPE
7122 given arguments of types ARG_TYPES.
7123 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7124 are data type nodes for the arguments of the function.
7125 If such a type has already been constructed, reuse it. */
7126
7127 tree
7128 build_function_type (tree value_type, tree arg_types)
7129 {
7130 tree t;
7131 hashval_t hashcode = 0;
7132 bool any_structural_p, any_noncanonical_p;
7133 tree canon_argtypes;
7134
7135 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7136 {
7137 error ("function return type cannot be function");
7138 value_type = integer_type_node;
7139 }
7140
7141 /* Make a node of the sort we want. */
7142 t = make_node (FUNCTION_TYPE);
7143 TREE_TYPE (t) = value_type;
7144 TYPE_ARG_TYPES (t) = arg_types;
7145
7146 /* If we already have such a type, use the old one. */
7147 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7148 hashcode = type_hash_list (arg_types, hashcode);
7149 t = type_hash_canon (hashcode, t);
7150
7151 /* Set up the canonical type. */
7152 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7153 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7154 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7155 &any_structural_p,
7156 &any_noncanonical_p);
7157 if (any_structural_p)
7158 SET_TYPE_STRUCTURAL_EQUALITY (t);
7159 else if (any_noncanonical_p)
7160 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7161 canon_argtypes);
7162
7163 if (!COMPLETE_TYPE_P (t))
7164 layout_type (t);
7165 return t;
7166 }
7167
7168 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7169
7170 tree
7171 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7172 {
7173 tree new_type = NULL;
7174 tree args, new_args = NULL, t;
7175 tree new_reversed;
7176 int i = 0;
7177
7178 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7179 args = TREE_CHAIN (args), i++)
7180 if (!bitmap_bit_p (args_to_skip, i))
7181 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7182
7183 new_reversed = nreverse (new_args);
7184 if (args)
7185 {
7186 if (new_reversed)
7187 TREE_CHAIN (new_args) = void_list_node;
7188 else
7189 new_reversed = void_list_node;
7190 }
7191
7192 /* Use copy_node to preserve as much as possible from original type
7193 (debug info, attribute lists etc.)
7194 Exception is METHOD_TYPEs must have THIS argument.
7195 When we are asked to remove it, we need to build new FUNCTION_TYPE
7196 instead. */
7197 if (TREE_CODE (orig_type) != METHOD_TYPE
7198 || !bitmap_bit_p (args_to_skip, 0))
7199 {
7200 new_type = copy_node (orig_type);
7201 TYPE_ARG_TYPES (new_type) = new_reversed;
7202 }
7203 else
7204 {
7205 new_type
7206 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7207 new_reversed));
7208 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7209 }
7210
7211 /* This is a new type, not a copy of an old type. Need to reassociate
7212 variants. We can handle everything except the main variant lazily. */
7213 t = TYPE_MAIN_VARIANT (orig_type);
7214 if (orig_type != t)
7215 {
7216 TYPE_MAIN_VARIANT (new_type) = t;
7217 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7218 TYPE_NEXT_VARIANT (t) = new_type;
7219 }
7220 else
7221 {
7222 TYPE_MAIN_VARIANT (new_type) = new_type;
7223 TYPE_NEXT_VARIANT (new_type) = NULL;
7224 }
7225 return new_type;
7226 }
7227
7228 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7229
7230 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7231 linked by TREE_CHAIN directly. It is caller responsibility to eliminate
7232 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7233
7234 tree
7235 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7236 {
7237 tree new_decl = copy_node (orig_decl);
7238 tree new_type;
7239
7240 new_type = TREE_TYPE (orig_decl);
7241 if (prototype_p (new_type))
7242 new_type = build_function_type_skip_args (new_type, args_to_skip);
7243 TREE_TYPE (new_decl) = new_type;
7244
7245 /* For declarations setting DECL_VINDEX (i.e. methods)
7246 we expect first argument to be THIS pointer. */
7247 if (bitmap_bit_p (args_to_skip, 0))
7248 DECL_VINDEX (new_decl) = NULL_TREE;
7249 return new_decl;
7250 }
7251
7252 /* Build a function type. The RETURN_TYPE is the type returned by the
7253 function. If VAARGS is set, no void_type_node is appended to the
7254 the list. ARGP muse be alway be terminated be a NULL_TREE. */
7255
7256 static tree
7257 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7258 {
7259 tree t, args, last;
7260
7261 t = va_arg (argp, tree);
7262 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7263 args = tree_cons (NULL_TREE, t, args);
7264
7265 if (vaargs)
7266 {
7267 last = args;
7268 if (args != NULL_TREE)
7269 args = nreverse (args);
7270 gcc_assert (args != NULL_TREE && last != void_list_node);
7271 }
7272 else if (args == NULL_TREE)
7273 args = void_list_node;
7274 else
7275 {
7276 last = args;
7277 args = nreverse (args);
7278 TREE_CHAIN (last) = void_list_node;
7279 }
7280 args = build_function_type (return_type, args);
7281
7282 return args;
7283 }
7284
7285 /* Build a function type. The RETURN_TYPE is the type returned by the
7286 function. If additional arguments are provided, they are
7287 additional argument types. The list of argument types must always
7288 be terminated by NULL_TREE. */
7289
7290 tree
7291 build_function_type_list (tree return_type, ...)
7292 {
7293 tree args;
7294 va_list p;
7295
7296 va_start (p, return_type);
7297 args = build_function_type_list_1 (false, return_type, p);
7298 va_end (p);
7299 return args;
7300 }
7301
7302 /* Build a variable argument function type. The RETURN_TYPE is the
7303 type returned by the function. If additional arguments are provided,
7304 they are additional argument types. The list of argument types must
7305 always be terminated by NULL_TREE. */
7306
7307 tree
7308 build_varargs_function_type_list (tree return_type, ...)
7309 {
7310 tree args;
7311 va_list p;
7312
7313 va_start (p, return_type);
7314 args = build_function_type_list_1 (true, return_type, p);
7315 va_end (p);
7316
7317 return args;
7318 }
7319
7320 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7321 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7322 for the method. An implicit additional parameter (of type
7323 pointer-to-BASETYPE) is added to the ARGTYPES. */
7324
7325 tree
7326 build_method_type_directly (tree basetype,
7327 tree rettype,
7328 tree argtypes)
7329 {
7330 tree t;
7331 tree ptype;
7332 int hashcode = 0;
7333 bool any_structural_p, any_noncanonical_p;
7334 tree canon_argtypes;
7335
7336 /* Make a node of the sort we want. */
7337 t = make_node (METHOD_TYPE);
7338
7339 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7340 TREE_TYPE (t) = rettype;
7341 ptype = build_pointer_type (basetype);
7342
7343 /* The actual arglist for this function includes a "hidden" argument
7344 which is "this". Put it into the list of argument types. */
7345 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7346 TYPE_ARG_TYPES (t) = argtypes;
7347
7348 /* If we already have such a type, use the old one. */
7349 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7350 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7351 hashcode = type_hash_list (argtypes, hashcode);
7352 t = type_hash_canon (hashcode, t);
7353
7354 /* Set up the canonical type. */
7355 any_structural_p
7356 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7357 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7358 any_noncanonical_p
7359 = (TYPE_CANONICAL (basetype) != basetype
7360 || TYPE_CANONICAL (rettype) != rettype);
7361 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7362 &any_structural_p,
7363 &any_noncanonical_p);
7364 if (any_structural_p)
7365 SET_TYPE_STRUCTURAL_EQUALITY (t);
7366 else if (any_noncanonical_p)
7367 TYPE_CANONICAL (t)
7368 = build_method_type_directly (TYPE_CANONICAL (basetype),
7369 TYPE_CANONICAL (rettype),
7370 canon_argtypes);
7371 if (!COMPLETE_TYPE_P (t))
7372 layout_type (t);
7373
7374 return t;
7375 }
7376
7377 /* Construct, lay out and return the type of methods belonging to class
7378 BASETYPE and whose arguments and values are described by TYPE.
7379 If that type exists already, reuse it.
7380 TYPE must be a FUNCTION_TYPE node. */
7381
7382 tree
7383 build_method_type (tree basetype, tree type)
7384 {
7385 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7386
7387 return build_method_type_directly (basetype,
7388 TREE_TYPE (type),
7389 TYPE_ARG_TYPES (type));
7390 }
7391
7392 /* Construct, lay out and return the type of offsets to a value
7393 of type TYPE, within an object of type BASETYPE.
7394 If a suitable offset type exists already, reuse it. */
7395
7396 tree
7397 build_offset_type (tree basetype, tree type)
7398 {
7399 tree t;
7400 hashval_t hashcode = 0;
7401
7402 /* Make a node of the sort we want. */
7403 t = make_node (OFFSET_TYPE);
7404
7405 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7406 TREE_TYPE (t) = type;
7407
7408 /* If we already have such a type, use the old one. */
7409 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7410 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7411 t = type_hash_canon (hashcode, t);
7412
7413 if (!COMPLETE_TYPE_P (t))
7414 layout_type (t);
7415
7416 if (TYPE_CANONICAL (t) == t)
7417 {
7418 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7419 || TYPE_STRUCTURAL_EQUALITY_P (type))
7420 SET_TYPE_STRUCTURAL_EQUALITY (t);
7421 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7422 || TYPE_CANONICAL (type) != type)
7423 TYPE_CANONICAL (t)
7424 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7425 TYPE_CANONICAL (type));
7426 }
7427
7428 return t;
7429 }
7430
7431 /* Create a complex type whose components are COMPONENT_TYPE. */
7432
7433 tree
7434 build_complex_type (tree component_type)
7435 {
7436 tree t;
7437 hashval_t hashcode;
7438
7439 gcc_assert (INTEGRAL_TYPE_P (component_type)
7440 || SCALAR_FLOAT_TYPE_P (component_type)
7441 || FIXED_POINT_TYPE_P (component_type));
7442
7443 /* Make a node of the sort we want. */
7444 t = make_node (COMPLEX_TYPE);
7445
7446 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7447
7448 /* If we already have such a type, use the old one. */
7449 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7450 t = type_hash_canon (hashcode, t);
7451
7452 if (!COMPLETE_TYPE_P (t))
7453 layout_type (t);
7454
7455 if (TYPE_CANONICAL (t) == t)
7456 {
7457 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7458 SET_TYPE_STRUCTURAL_EQUALITY (t);
7459 else if (TYPE_CANONICAL (component_type) != component_type)
7460 TYPE_CANONICAL (t)
7461 = build_complex_type (TYPE_CANONICAL (component_type));
7462 }
7463
7464 /* We need to create a name, since complex is a fundamental type. */
7465 if (! TYPE_NAME (t))
7466 {
7467 const char *name;
7468 if (component_type == char_type_node)
7469 name = "complex char";
7470 else if (component_type == signed_char_type_node)
7471 name = "complex signed char";
7472 else if (component_type == unsigned_char_type_node)
7473 name = "complex unsigned char";
7474 else if (component_type == short_integer_type_node)
7475 name = "complex short int";
7476 else if (component_type == short_unsigned_type_node)
7477 name = "complex short unsigned int";
7478 else if (component_type == integer_type_node)
7479 name = "complex int";
7480 else if (component_type == unsigned_type_node)
7481 name = "complex unsigned int";
7482 else if (component_type == long_integer_type_node)
7483 name = "complex long int";
7484 else if (component_type == long_unsigned_type_node)
7485 name = "complex long unsigned int";
7486 else if (component_type == long_long_integer_type_node)
7487 name = "complex long long int";
7488 else if (component_type == long_long_unsigned_type_node)
7489 name = "complex long long unsigned int";
7490 else
7491 name = 0;
7492
7493 if (name != 0)
7494 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7495 get_identifier (name), t);
7496 }
7497
7498 return build_qualified_type (t, TYPE_QUALS (component_type));
7499 }
7500
7501 /* If TYPE is a real or complex floating-point type and the target
7502 does not directly support arithmetic on TYPE then return the wider
7503 type to be used for arithmetic on TYPE. Otherwise, return
7504 NULL_TREE. */
7505
7506 tree
7507 excess_precision_type (tree type)
7508 {
7509 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7510 {
7511 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7512 switch (TREE_CODE (type))
7513 {
7514 case REAL_TYPE:
7515 switch (flt_eval_method)
7516 {
7517 case 1:
7518 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7519 return double_type_node;
7520 break;
7521 case 2:
7522 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7523 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7524 return long_double_type_node;
7525 break;
7526 default:
7527 gcc_unreachable ();
7528 }
7529 break;
7530 case COMPLEX_TYPE:
7531 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7532 return NULL_TREE;
7533 switch (flt_eval_method)
7534 {
7535 case 1:
7536 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7537 return complex_double_type_node;
7538 break;
7539 case 2:
7540 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7541 || (TYPE_MODE (TREE_TYPE (type))
7542 == TYPE_MODE (double_type_node)))
7543 return complex_long_double_type_node;
7544 break;
7545 default:
7546 gcc_unreachable ();
7547 }
7548 break;
7549 default:
7550 break;
7551 }
7552 }
7553 return NULL_TREE;
7554 }
7555 \f
7556 /* Return OP, stripped of any conversions to wider types as much as is safe.
7557 Converting the value back to OP's type makes a value equivalent to OP.
7558
7559 If FOR_TYPE is nonzero, we return a value which, if converted to
7560 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7561
7562 OP must have integer, real or enumeral type. Pointers are not allowed!
7563
7564 There are some cases where the obvious value we could return
7565 would regenerate to OP if converted to OP's type,
7566 but would not extend like OP to wider types.
7567 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7568 For example, if OP is (unsigned short)(signed char)-1,
7569 we avoid returning (signed char)-1 if FOR_TYPE is int,
7570 even though extending that to an unsigned short would regenerate OP,
7571 since the result of extending (signed char)-1 to (int)
7572 is different from (int) OP. */
7573
7574 tree
7575 get_unwidened (tree op, tree for_type)
7576 {
7577 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7578 tree type = TREE_TYPE (op);
7579 unsigned final_prec
7580 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7581 int uns
7582 = (for_type != 0 && for_type != type
7583 && final_prec > TYPE_PRECISION (type)
7584 && TYPE_UNSIGNED (type));
7585 tree win = op;
7586
7587 while (CONVERT_EXPR_P (op))
7588 {
7589 int bitschange;
7590
7591 /* TYPE_PRECISION on vector types has different meaning
7592 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7593 so avoid them here. */
7594 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7595 break;
7596
7597 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7598 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7599
7600 /* Truncations are many-one so cannot be removed.
7601 Unless we are later going to truncate down even farther. */
7602 if (bitschange < 0
7603 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7604 break;
7605
7606 /* See what's inside this conversion. If we decide to strip it,
7607 we will set WIN. */
7608 op = TREE_OPERAND (op, 0);
7609
7610 /* If we have not stripped any zero-extensions (uns is 0),
7611 we can strip any kind of extension.
7612 If we have previously stripped a zero-extension,
7613 only zero-extensions can safely be stripped.
7614 Any extension can be stripped if the bits it would produce
7615 are all going to be discarded later by truncating to FOR_TYPE. */
7616
7617 if (bitschange > 0)
7618 {
7619 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7620 win = op;
7621 /* TYPE_UNSIGNED says whether this is a zero-extension.
7622 Let's avoid computing it if it does not affect WIN
7623 and if UNS will not be needed again. */
7624 if ((uns
7625 || CONVERT_EXPR_P (op))
7626 && TYPE_UNSIGNED (TREE_TYPE (op)))
7627 {
7628 uns = 1;
7629 win = op;
7630 }
7631 }
7632 }
7633
7634 /* If we finally reach a constant see if it fits in for_type and
7635 in that case convert it. */
7636 if (for_type
7637 && TREE_CODE (win) == INTEGER_CST
7638 && TREE_TYPE (win) != for_type
7639 && int_fits_type_p (win, for_type))
7640 win = fold_convert (for_type, win);
7641
7642 return win;
7643 }
7644 \f
7645 /* Return OP or a simpler expression for a narrower value
7646 which can be sign-extended or zero-extended to give back OP.
7647 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7648 or 0 if the value should be sign-extended. */
7649
7650 tree
7651 get_narrower (tree op, int *unsignedp_ptr)
7652 {
7653 int uns = 0;
7654 int first = 1;
7655 tree win = op;
7656 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7657
7658 while (TREE_CODE (op) == NOP_EXPR)
7659 {
7660 int bitschange
7661 = (TYPE_PRECISION (TREE_TYPE (op))
7662 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7663
7664 /* Truncations are many-one so cannot be removed. */
7665 if (bitschange < 0)
7666 break;
7667
7668 /* See what's inside this conversion. If we decide to strip it,
7669 we will set WIN. */
7670
7671 if (bitschange > 0)
7672 {
7673 op = TREE_OPERAND (op, 0);
7674 /* An extension: the outermost one can be stripped,
7675 but remember whether it is zero or sign extension. */
7676 if (first)
7677 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7678 /* Otherwise, if a sign extension has been stripped,
7679 only sign extensions can now be stripped;
7680 if a zero extension has been stripped, only zero-extensions. */
7681 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7682 break;
7683 first = 0;
7684 }
7685 else /* bitschange == 0 */
7686 {
7687 /* A change in nominal type can always be stripped, but we must
7688 preserve the unsignedness. */
7689 if (first)
7690 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7691 first = 0;
7692 op = TREE_OPERAND (op, 0);
7693 /* Keep trying to narrow, but don't assign op to win if it
7694 would turn an integral type into something else. */
7695 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7696 continue;
7697 }
7698
7699 win = op;
7700 }
7701
7702 if (TREE_CODE (op) == COMPONENT_REF
7703 /* Since type_for_size always gives an integer type. */
7704 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7705 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7706 /* Ensure field is laid out already. */
7707 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7708 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7709 {
7710 unsigned HOST_WIDE_INT innerprec
7711 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7712 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7713 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7714 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7715
7716 /* We can get this structure field in a narrower type that fits it,
7717 but the resulting extension to its nominal type (a fullword type)
7718 must satisfy the same conditions as for other extensions.
7719
7720 Do this only for fields that are aligned (not bit-fields),
7721 because when bit-field insns will be used there is no
7722 advantage in doing this. */
7723
7724 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7725 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7726 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7727 && type != 0)
7728 {
7729 if (first)
7730 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7731 win = fold_convert (type, op);
7732 }
7733 }
7734
7735 *unsignedp_ptr = uns;
7736 return win;
7737 }
7738 \f
7739 /* Nonzero if integer constant C has a value that is permissible
7740 for type TYPE (an INTEGER_TYPE). */
7741
7742 int
7743 int_fits_type_p (const_tree c, const_tree type)
7744 {
7745 tree type_low_bound, type_high_bound;
7746 bool ok_for_low_bound, ok_for_high_bound, unsc;
7747 double_int dc, dd;
7748
7749 dc = tree_to_double_int (c);
7750 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
7751
7752 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
7753 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
7754 && unsc)
7755 /* So c is an unsigned integer whose type is sizetype and type is not.
7756 sizetype'd integers are sign extended even though they are
7757 unsigned. If the integer value fits in the lower end word of c,
7758 and if the higher end word has all its bits set to 1, that
7759 means the higher end bits are set to 1 only for sign extension.
7760 So let's convert c into an equivalent zero extended unsigned
7761 integer. */
7762 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
7763
7764 retry:
7765 type_low_bound = TYPE_MIN_VALUE (type);
7766 type_high_bound = TYPE_MAX_VALUE (type);
7767
7768 /* If at least one bound of the type is a constant integer, we can check
7769 ourselves and maybe make a decision. If no such decision is possible, but
7770 this type is a subtype, try checking against that. Otherwise, use
7771 fit_double_type, which checks against the precision.
7772
7773 Compute the status for each possibly constant bound, and return if we see
7774 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
7775 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
7776 for "constant known to fit". */
7777
7778 /* Check if c >= type_low_bound. */
7779 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
7780 {
7781 dd = tree_to_double_int (type_low_bound);
7782 if (TREE_CODE (type) == INTEGER_TYPE
7783 && TYPE_IS_SIZETYPE (type)
7784 && TYPE_UNSIGNED (type))
7785 dd = double_int_zext (dd, TYPE_PRECISION (type));
7786 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
7787 {
7788 int c_neg = (!unsc && double_int_negative_p (dc));
7789 int t_neg = (unsc && double_int_negative_p (dd));
7790
7791 if (c_neg && !t_neg)
7792 return 0;
7793 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
7794 return 0;
7795 }
7796 else if (double_int_cmp (dc, dd, unsc) < 0)
7797 return 0;
7798 ok_for_low_bound = true;
7799 }
7800 else
7801 ok_for_low_bound = false;
7802
7803 /* Check if c <= type_high_bound. */
7804 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
7805 {
7806 dd = tree_to_double_int (type_high_bound);
7807 if (TREE_CODE (type) == INTEGER_TYPE
7808 && TYPE_IS_SIZETYPE (type)
7809 && TYPE_UNSIGNED (type))
7810 dd = double_int_zext (dd, TYPE_PRECISION (type));
7811 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
7812 {
7813 int c_neg = (!unsc && double_int_negative_p (dc));
7814 int t_neg = (unsc && double_int_negative_p (dd));
7815
7816 if (t_neg && !c_neg)
7817 return 0;
7818 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
7819 return 0;
7820 }
7821 else if (double_int_cmp (dc, dd, unsc) > 0)
7822 return 0;
7823 ok_for_high_bound = true;
7824 }
7825 else
7826 ok_for_high_bound = false;
7827
7828 /* If the constant fits both bounds, the result is known. */
7829 if (ok_for_low_bound && ok_for_high_bound)
7830 return 1;
7831
7832 /* Perform some generic filtering which may allow making a decision
7833 even if the bounds are not constant. First, negative integers
7834 never fit in unsigned types, */
7835 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
7836 return 0;
7837
7838 /* Second, narrower types always fit in wider ones. */
7839 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
7840 return 1;
7841
7842 /* Third, unsigned integers with top bit set never fit signed types. */
7843 if (! TYPE_UNSIGNED (type) && unsc)
7844 {
7845 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
7846 if (prec < HOST_BITS_PER_WIDE_INT)
7847 {
7848 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
7849 return 0;
7850 }
7851 else if (((((unsigned HOST_WIDE_INT) 1)
7852 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
7853 return 0;
7854 }
7855
7856 /* If we haven't been able to decide at this point, there nothing more we
7857 can check ourselves here. Look at the base type if we have one and it
7858 has the same precision. */
7859 if (TREE_CODE (type) == INTEGER_TYPE
7860 && TREE_TYPE (type) != 0
7861 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
7862 {
7863 type = TREE_TYPE (type);
7864 goto retry;
7865 }
7866
7867 /* Or to fit_double_type, if nothing else. */
7868 return !fit_double_type (dc.low, dc.high, &dc.low, &dc.high, type);
7869 }
7870
7871 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
7872 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
7873 represented (assuming two's-complement arithmetic) within the bit
7874 precision of the type are returned instead. */
7875
7876 void
7877 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
7878 {
7879 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
7880 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
7881 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
7882 TYPE_UNSIGNED (type));
7883 else
7884 {
7885 if (TYPE_UNSIGNED (type))
7886 mpz_set_ui (min, 0);
7887 else
7888 {
7889 double_int mn;
7890 mn = double_int_mask (TYPE_PRECISION (type) - 1);
7891 mn = double_int_sext (double_int_add (mn, double_int_one),
7892 TYPE_PRECISION (type));
7893 mpz_set_double_int (min, mn, false);
7894 }
7895 }
7896
7897 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
7898 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
7899 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
7900 TYPE_UNSIGNED (type));
7901 else
7902 {
7903 if (TYPE_UNSIGNED (type))
7904 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
7905 true);
7906 else
7907 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
7908 true);
7909 }
7910 }
7911
7912 /* Return true if VAR is an automatic variable defined in function FN. */
7913
7914 bool
7915 auto_var_in_fn_p (const_tree var, const_tree fn)
7916 {
7917 return (DECL_P (var) && DECL_CONTEXT (var) == fn
7918 && (((TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL)
7919 && ! TREE_STATIC (var))
7920 || TREE_CODE (var) == LABEL_DECL
7921 || TREE_CODE (var) == RESULT_DECL));
7922 }
7923
7924 /* Subprogram of following function. Called by walk_tree.
7925
7926 Return *TP if it is an automatic variable or parameter of the
7927 function passed in as DATA. */
7928
7929 static tree
7930 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
7931 {
7932 tree fn = (tree) data;
7933
7934 if (TYPE_P (*tp))
7935 *walk_subtrees = 0;
7936
7937 else if (DECL_P (*tp)
7938 && auto_var_in_fn_p (*tp, fn))
7939 return *tp;
7940
7941 return NULL_TREE;
7942 }
7943
7944 /* Returns true if T is, contains, or refers to a type with variable
7945 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
7946 arguments, but not the return type. If FN is nonzero, only return
7947 true if a modifier of the type or position of FN is a variable or
7948 parameter inside FN.
7949
7950 This concept is more general than that of C99 'variably modified types':
7951 in C99, a struct type is never variably modified because a VLA may not
7952 appear as a structure member. However, in GNU C code like:
7953
7954 struct S { int i[f()]; };
7955
7956 is valid, and other languages may define similar constructs. */
7957
7958 bool
7959 variably_modified_type_p (tree type, tree fn)
7960 {
7961 tree t;
7962
7963 /* Test if T is either variable (if FN is zero) or an expression containing
7964 a variable in FN. */
7965 #define RETURN_TRUE_IF_VAR(T) \
7966 do { tree _t = (T); \
7967 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
7968 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
7969 return true; } while (0)
7970
7971 if (type == error_mark_node)
7972 return false;
7973
7974 /* If TYPE itself has variable size, it is variably modified. */
7975 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
7976 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
7977
7978 switch (TREE_CODE (type))
7979 {
7980 case POINTER_TYPE:
7981 case REFERENCE_TYPE:
7982 case VECTOR_TYPE:
7983 if (variably_modified_type_p (TREE_TYPE (type), fn))
7984 return true;
7985 break;
7986
7987 case FUNCTION_TYPE:
7988 case METHOD_TYPE:
7989 /* If TYPE is a function type, it is variably modified if the
7990 return type is variably modified. */
7991 if (variably_modified_type_p (TREE_TYPE (type), fn))
7992 return true;
7993 break;
7994
7995 case INTEGER_TYPE:
7996 case REAL_TYPE:
7997 case FIXED_POINT_TYPE:
7998 case ENUMERAL_TYPE:
7999 case BOOLEAN_TYPE:
8000 /* Scalar types are variably modified if their end points
8001 aren't constant. */
8002 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8003 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8004 break;
8005
8006 case RECORD_TYPE:
8007 case UNION_TYPE:
8008 case QUAL_UNION_TYPE:
8009 /* We can't see if any of the fields are variably-modified by the
8010 definition we normally use, since that would produce infinite
8011 recursion via pointers. */
8012 /* This is variably modified if some field's type is. */
8013 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
8014 if (TREE_CODE (t) == FIELD_DECL)
8015 {
8016 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8017 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8018 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8019
8020 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8021 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8022 }
8023 break;
8024
8025 case ARRAY_TYPE:
8026 /* Do not call ourselves to avoid infinite recursion. This is
8027 variably modified if the element type is. */
8028 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8029 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8030 break;
8031
8032 default:
8033 break;
8034 }
8035
8036 /* The current language may have other cases to check, but in general,
8037 all other types are not variably modified. */
8038 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8039
8040 #undef RETURN_TRUE_IF_VAR
8041 }
8042
8043 /* Given a DECL or TYPE, return the scope in which it was declared, or
8044 NULL_TREE if there is no containing scope. */
8045
8046 tree
8047 get_containing_scope (const_tree t)
8048 {
8049 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8050 }
8051
8052 /* Return the innermost context enclosing DECL that is
8053 a FUNCTION_DECL, or zero if none. */
8054
8055 tree
8056 decl_function_context (const_tree decl)
8057 {
8058 tree context;
8059
8060 if (TREE_CODE (decl) == ERROR_MARK)
8061 return 0;
8062
8063 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8064 where we look up the function at runtime. Such functions always take
8065 a first argument of type 'pointer to real context'.
8066
8067 C++ should really be fixed to use DECL_CONTEXT for the real context,
8068 and use something else for the "virtual context". */
8069 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8070 context
8071 = TYPE_MAIN_VARIANT
8072 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8073 else
8074 context = DECL_CONTEXT (decl);
8075
8076 while (context && TREE_CODE (context) != FUNCTION_DECL)
8077 {
8078 if (TREE_CODE (context) == BLOCK)
8079 context = BLOCK_SUPERCONTEXT (context);
8080 else
8081 context = get_containing_scope (context);
8082 }
8083
8084 return context;
8085 }
8086
8087 /* Return the innermost context enclosing DECL that is
8088 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8089 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8090
8091 tree
8092 decl_type_context (const_tree decl)
8093 {
8094 tree context = DECL_CONTEXT (decl);
8095
8096 while (context)
8097 switch (TREE_CODE (context))
8098 {
8099 case NAMESPACE_DECL:
8100 case TRANSLATION_UNIT_DECL:
8101 return NULL_TREE;
8102
8103 case RECORD_TYPE:
8104 case UNION_TYPE:
8105 case QUAL_UNION_TYPE:
8106 return context;
8107
8108 case TYPE_DECL:
8109 case FUNCTION_DECL:
8110 context = DECL_CONTEXT (context);
8111 break;
8112
8113 case BLOCK:
8114 context = BLOCK_SUPERCONTEXT (context);
8115 break;
8116
8117 default:
8118 gcc_unreachable ();
8119 }
8120
8121 return NULL_TREE;
8122 }
8123
8124 /* CALL is a CALL_EXPR. Return the declaration for the function
8125 called, or NULL_TREE if the called function cannot be
8126 determined. */
8127
8128 tree
8129 get_callee_fndecl (const_tree call)
8130 {
8131 tree addr;
8132
8133 if (call == error_mark_node)
8134 return error_mark_node;
8135
8136 /* It's invalid to call this function with anything but a
8137 CALL_EXPR. */
8138 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8139
8140 /* The first operand to the CALL is the address of the function
8141 called. */
8142 addr = CALL_EXPR_FN (call);
8143
8144 STRIP_NOPS (addr);
8145
8146 /* If this is a readonly function pointer, extract its initial value. */
8147 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8148 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8149 && DECL_INITIAL (addr))
8150 addr = DECL_INITIAL (addr);
8151
8152 /* If the address is just `&f' for some function `f', then we know
8153 that `f' is being called. */
8154 if (TREE_CODE (addr) == ADDR_EXPR
8155 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8156 return TREE_OPERAND (addr, 0);
8157
8158 /* We couldn't figure out what was being called. */
8159 return NULL_TREE;
8160 }
8161
8162 /* Print debugging information about tree nodes generated during the compile,
8163 and any language-specific information. */
8164
8165 void
8166 dump_tree_statistics (void)
8167 {
8168 #ifdef GATHER_STATISTICS
8169 int i;
8170 int total_nodes, total_bytes;
8171 #endif
8172
8173 fprintf (stderr, "\n??? tree nodes created\n\n");
8174 #ifdef GATHER_STATISTICS
8175 fprintf (stderr, "Kind Nodes Bytes\n");
8176 fprintf (stderr, "---------------------------------------\n");
8177 total_nodes = total_bytes = 0;
8178 for (i = 0; i < (int) all_kinds; i++)
8179 {
8180 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8181 tree_node_counts[i], tree_node_sizes[i]);
8182 total_nodes += tree_node_counts[i];
8183 total_bytes += tree_node_sizes[i];
8184 }
8185 fprintf (stderr, "---------------------------------------\n");
8186 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8187 fprintf (stderr, "---------------------------------------\n");
8188 ssanames_print_statistics ();
8189 phinodes_print_statistics ();
8190 #else
8191 fprintf (stderr, "(No per-node statistics)\n");
8192 #endif
8193 print_type_hash_statistics ();
8194 print_debug_expr_statistics ();
8195 print_value_expr_statistics ();
8196 lang_hooks.print_statistics ();
8197 }
8198 \f
8199 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8200
8201 /* Generate a crc32 of a string. */
8202
8203 unsigned
8204 crc32_string (unsigned chksum, const char *string)
8205 {
8206 do
8207 {
8208 unsigned value = *string << 24;
8209 unsigned ix;
8210
8211 for (ix = 8; ix--; value <<= 1)
8212 {
8213 unsigned feedback;
8214
8215 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8216 chksum <<= 1;
8217 chksum ^= feedback;
8218 }
8219 }
8220 while (*string++);
8221 return chksum;
8222 }
8223
8224 /* P is a string that will be used in a symbol. Mask out any characters
8225 that are not valid in that context. */
8226
8227 void
8228 clean_symbol_name (char *p)
8229 {
8230 for (; *p; p++)
8231 if (! (ISALNUM (*p)
8232 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8233 || *p == '$'
8234 #endif
8235 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8236 || *p == '.'
8237 #endif
8238 ))
8239 *p = '_';
8240 }
8241
8242 /* Generate a name for a special-purpose function function.
8243 The generated name may need to be unique across the whole link.
8244 TYPE is some string to identify the purpose of this function to the
8245 linker or collect2; it must start with an uppercase letter,
8246 one of:
8247 I - for constructors
8248 D - for destructors
8249 N - for C++ anonymous namespaces
8250 F - for DWARF unwind frame information. */
8251
8252 tree
8253 get_file_function_name (const char *type)
8254 {
8255 char *buf;
8256 const char *p;
8257 char *q;
8258
8259 /* If we already have a name we know to be unique, just use that. */
8260 if (first_global_object_name)
8261 p = q = ASTRDUP (first_global_object_name);
8262 /* If the target is handling the constructors/destructors, they
8263 will be local to this file and the name is only necessary for
8264 debugging purposes. */
8265 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8266 {
8267 const char *file = main_input_filename;
8268 if (! file)
8269 file = input_filename;
8270 /* Just use the file's basename, because the full pathname
8271 might be quite long. */
8272 p = strrchr (file, '/');
8273 if (p)
8274 p++;
8275 else
8276 p = file;
8277 p = q = ASTRDUP (p);
8278 }
8279 else
8280 {
8281 /* Otherwise, the name must be unique across the entire link.
8282 We don't have anything that we know to be unique to this translation
8283 unit, so use what we do have and throw in some randomness. */
8284 unsigned len;
8285 const char *name = weak_global_object_name;
8286 const char *file = main_input_filename;
8287
8288 if (! name)
8289 name = "";
8290 if (! file)
8291 file = input_filename;
8292
8293 len = strlen (file);
8294 q = (char *) alloca (9 * 2 + len + 1);
8295 memcpy (q, file, len + 1);
8296
8297 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8298 crc32_string (0, get_random_seed (false)));
8299
8300 p = q;
8301 }
8302
8303 clean_symbol_name (q);
8304 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8305 + strlen (type));
8306
8307 /* Set up the name of the file-level functions we may need.
8308 Use a global object (which is already required to be unique over
8309 the program) rather than the file name (which imposes extra
8310 constraints). */
8311 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8312
8313 return get_identifier (buf);
8314 }
8315 \f
8316 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8317
8318 /* Complain that the tree code of NODE does not match the expected 0
8319 terminated list of trailing codes. The trailing code list can be
8320 empty, for a more vague error message. FILE, LINE, and FUNCTION
8321 are of the caller. */
8322
8323 void
8324 tree_check_failed (const_tree node, const char *file,
8325 int line, const char *function, ...)
8326 {
8327 va_list args;
8328 const char *buffer;
8329 unsigned length = 0;
8330 int code;
8331
8332 va_start (args, function);
8333 while ((code = va_arg (args, int)))
8334 length += 4 + strlen (tree_code_name[code]);
8335 va_end (args);
8336 if (length)
8337 {
8338 char *tmp;
8339 va_start (args, function);
8340 length += strlen ("expected ");
8341 buffer = tmp = (char *) alloca (length);
8342 length = 0;
8343 while ((code = va_arg (args, int)))
8344 {
8345 const char *prefix = length ? " or " : "expected ";
8346
8347 strcpy (tmp + length, prefix);
8348 length += strlen (prefix);
8349 strcpy (tmp + length, tree_code_name[code]);
8350 length += strlen (tree_code_name[code]);
8351 }
8352 va_end (args);
8353 }
8354 else
8355 buffer = "unexpected node";
8356
8357 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8358 buffer, tree_code_name[TREE_CODE (node)],
8359 function, trim_filename (file), line);
8360 }
8361
8362 /* Complain that the tree code of NODE does match the expected 0
8363 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8364 the caller. */
8365
8366 void
8367 tree_not_check_failed (const_tree node, const char *file,
8368 int line, const char *function, ...)
8369 {
8370 va_list args;
8371 char *buffer;
8372 unsigned length = 0;
8373 int code;
8374
8375 va_start (args, function);
8376 while ((code = va_arg (args, int)))
8377 length += 4 + strlen (tree_code_name[code]);
8378 va_end (args);
8379 va_start (args, function);
8380 buffer = (char *) alloca (length);
8381 length = 0;
8382 while ((code = va_arg (args, int)))
8383 {
8384 if (length)
8385 {
8386 strcpy (buffer + length, " or ");
8387 length += 4;
8388 }
8389 strcpy (buffer + length, tree_code_name[code]);
8390 length += strlen (tree_code_name[code]);
8391 }
8392 va_end (args);
8393
8394 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8395 buffer, tree_code_name[TREE_CODE (node)],
8396 function, trim_filename (file), line);
8397 }
8398
8399 /* Similar to tree_check_failed, except that we check for a class of tree
8400 code, given in CL. */
8401
8402 void
8403 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8404 const char *file, int line, const char *function)
8405 {
8406 internal_error
8407 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8408 TREE_CODE_CLASS_STRING (cl),
8409 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8410 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8411 }
8412
8413 /* Similar to tree_check_failed, except that instead of specifying a
8414 dozen codes, use the knowledge that they're all sequential. */
8415
8416 void
8417 tree_range_check_failed (const_tree node, const char *file, int line,
8418 const char *function, enum tree_code c1,
8419 enum tree_code c2)
8420 {
8421 char *buffer;
8422 unsigned length = 0;
8423 unsigned int c;
8424
8425 for (c = c1; c <= c2; ++c)
8426 length += 4 + strlen (tree_code_name[c]);
8427
8428 length += strlen ("expected ");
8429 buffer = (char *) alloca (length);
8430 length = 0;
8431
8432 for (c = c1; c <= c2; ++c)
8433 {
8434 const char *prefix = length ? " or " : "expected ";
8435
8436 strcpy (buffer + length, prefix);
8437 length += strlen (prefix);
8438 strcpy (buffer + length, tree_code_name[c]);
8439 length += strlen (tree_code_name[c]);
8440 }
8441
8442 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8443 buffer, tree_code_name[TREE_CODE (node)],
8444 function, trim_filename (file), line);
8445 }
8446
8447
8448 /* Similar to tree_check_failed, except that we check that a tree does
8449 not have the specified code, given in CL. */
8450
8451 void
8452 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8453 const char *file, int line, const char *function)
8454 {
8455 internal_error
8456 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8457 TREE_CODE_CLASS_STRING (cl),
8458 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8459 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8460 }
8461
8462
8463 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8464
8465 void
8466 omp_clause_check_failed (const_tree node, const char *file, int line,
8467 const char *function, enum omp_clause_code code)
8468 {
8469 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8470 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8471 function, trim_filename (file), line);
8472 }
8473
8474
8475 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8476
8477 void
8478 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8479 const char *function, enum omp_clause_code c1,
8480 enum omp_clause_code c2)
8481 {
8482 char *buffer;
8483 unsigned length = 0;
8484 unsigned int c;
8485
8486 for (c = c1; c <= c2; ++c)
8487 length += 4 + strlen (omp_clause_code_name[c]);
8488
8489 length += strlen ("expected ");
8490 buffer = (char *) alloca (length);
8491 length = 0;
8492
8493 for (c = c1; c <= c2; ++c)
8494 {
8495 const char *prefix = length ? " or " : "expected ";
8496
8497 strcpy (buffer + length, prefix);
8498 length += strlen (prefix);
8499 strcpy (buffer + length, omp_clause_code_name[c]);
8500 length += strlen (omp_clause_code_name[c]);
8501 }
8502
8503 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8504 buffer, omp_clause_code_name[TREE_CODE (node)],
8505 function, trim_filename (file), line);
8506 }
8507
8508
8509 #undef DEFTREESTRUCT
8510 #define DEFTREESTRUCT(VAL, NAME) NAME,
8511
8512 static const char *ts_enum_names[] = {
8513 #include "treestruct.def"
8514 };
8515 #undef DEFTREESTRUCT
8516
8517 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8518
8519 /* Similar to tree_class_check_failed, except that we check for
8520 whether CODE contains the tree structure identified by EN. */
8521
8522 void
8523 tree_contains_struct_check_failed (const_tree node,
8524 const enum tree_node_structure_enum en,
8525 const char *file, int line,
8526 const char *function)
8527 {
8528 internal_error
8529 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8530 TS_ENUM_NAME(en),
8531 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8532 }
8533
8534
8535 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8536 (dynamically sized) vector. */
8537
8538 void
8539 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8540 const char *function)
8541 {
8542 internal_error
8543 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8544 idx + 1, len, function, trim_filename (file), line);
8545 }
8546
8547 /* Similar to above, except that the check is for the bounds of the operand
8548 vector of an expression node EXP. */
8549
8550 void
8551 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8552 int line, const char *function)
8553 {
8554 int code = TREE_CODE (exp);
8555 internal_error
8556 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8557 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8558 function, trim_filename (file), line);
8559 }
8560
8561 /* Similar to above, except that the check is for the number of
8562 operands of an OMP_CLAUSE node. */
8563
8564 void
8565 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8566 int line, const char *function)
8567 {
8568 internal_error
8569 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8570 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8571 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8572 trim_filename (file), line);
8573 }
8574 #endif /* ENABLE_TREE_CHECKING */
8575 \f
8576 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8577 and mapped to the machine mode MODE. Initialize its fields and build
8578 the information necessary for debugging output. */
8579
8580 static tree
8581 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8582 {
8583 tree t;
8584 hashval_t hashcode = 0;
8585
8586 t = make_node (VECTOR_TYPE);
8587 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8588 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8589 SET_TYPE_MODE (t, mode);
8590
8591 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8592 SET_TYPE_STRUCTURAL_EQUALITY (t);
8593 else if (TYPE_CANONICAL (innertype) != innertype
8594 || mode != VOIDmode)
8595 TYPE_CANONICAL (t)
8596 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8597
8598 layout_type (t);
8599
8600 {
8601 tree index = build_int_cst (NULL_TREE, nunits - 1);
8602 tree array = build_array_type (TYPE_MAIN_VARIANT (innertype),
8603 build_index_type (index));
8604 tree rt = make_node (RECORD_TYPE);
8605
8606 TYPE_FIELDS (rt) = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
8607 get_identifier ("f"), array);
8608 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
8609 layout_type (rt);
8610 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
8611 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
8612 the representation type, and we want to find that die when looking up
8613 the vector type. This is most easily achieved by making the TYPE_UID
8614 numbers equal. */
8615 TYPE_UID (rt) = TYPE_UID (t);
8616 }
8617
8618 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8619 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8620 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8621 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8622 t = type_hash_canon (hashcode, t);
8623
8624 /* We have built a main variant, based on the main variant of the
8625 inner type. Use it to build the variant we return. */
8626 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8627 && TREE_TYPE (t) != innertype)
8628 return build_type_attribute_qual_variant (t,
8629 TYPE_ATTRIBUTES (innertype),
8630 TYPE_QUALS (innertype));
8631
8632 return t;
8633 }
8634
8635 static tree
8636 make_or_reuse_type (unsigned size, int unsignedp)
8637 {
8638 if (size == INT_TYPE_SIZE)
8639 return unsignedp ? unsigned_type_node : integer_type_node;
8640 if (size == CHAR_TYPE_SIZE)
8641 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8642 if (size == SHORT_TYPE_SIZE)
8643 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8644 if (size == LONG_TYPE_SIZE)
8645 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8646 if (size == LONG_LONG_TYPE_SIZE)
8647 return (unsignedp ? long_long_unsigned_type_node
8648 : long_long_integer_type_node);
8649
8650 if (unsignedp)
8651 return make_unsigned_type (size);
8652 else
8653 return make_signed_type (size);
8654 }
8655
8656 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8657
8658 static tree
8659 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8660 {
8661 if (satp)
8662 {
8663 if (size == SHORT_FRACT_TYPE_SIZE)
8664 return unsignedp ? sat_unsigned_short_fract_type_node
8665 : sat_short_fract_type_node;
8666 if (size == FRACT_TYPE_SIZE)
8667 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8668 if (size == LONG_FRACT_TYPE_SIZE)
8669 return unsignedp ? sat_unsigned_long_fract_type_node
8670 : sat_long_fract_type_node;
8671 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8672 return unsignedp ? sat_unsigned_long_long_fract_type_node
8673 : sat_long_long_fract_type_node;
8674 }
8675 else
8676 {
8677 if (size == SHORT_FRACT_TYPE_SIZE)
8678 return unsignedp ? unsigned_short_fract_type_node
8679 : short_fract_type_node;
8680 if (size == FRACT_TYPE_SIZE)
8681 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8682 if (size == LONG_FRACT_TYPE_SIZE)
8683 return unsignedp ? unsigned_long_fract_type_node
8684 : long_fract_type_node;
8685 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8686 return unsignedp ? unsigned_long_long_fract_type_node
8687 : long_long_fract_type_node;
8688 }
8689
8690 return make_fract_type (size, unsignedp, satp);
8691 }
8692
8693 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8694
8695 static tree
8696 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8697 {
8698 if (satp)
8699 {
8700 if (size == SHORT_ACCUM_TYPE_SIZE)
8701 return unsignedp ? sat_unsigned_short_accum_type_node
8702 : sat_short_accum_type_node;
8703 if (size == ACCUM_TYPE_SIZE)
8704 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8705 if (size == LONG_ACCUM_TYPE_SIZE)
8706 return unsignedp ? sat_unsigned_long_accum_type_node
8707 : sat_long_accum_type_node;
8708 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8709 return unsignedp ? sat_unsigned_long_long_accum_type_node
8710 : sat_long_long_accum_type_node;
8711 }
8712 else
8713 {
8714 if (size == SHORT_ACCUM_TYPE_SIZE)
8715 return unsignedp ? unsigned_short_accum_type_node
8716 : short_accum_type_node;
8717 if (size == ACCUM_TYPE_SIZE)
8718 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8719 if (size == LONG_ACCUM_TYPE_SIZE)
8720 return unsignedp ? unsigned_long_accum_type_node
8721 : long_accum_type_node;
8722 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8723 return unsignedp ? unsigned_long_long_accum_type_node
8724 : long_long_accum_type_node;
8725 }
8726
8727 return make_accum_type (size, unsignedp, satp);
8728 }
8729
8730 /* Create nodes for all integer types (and error_mark_node) using the sizes
8731 of C datatypes. The caller should call set_sizetype soon after calling
8732 this function to select one of the types as sizetype. */
8733
8734 void
8735 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
8736 {
8737 error_mark_node = make_node (ERROR_MARK);
8738 TREE_TYPE (error_mark_node) = error_mark_node;
8739
8740 initialize_sizetypes (signed_sizetype);
8741
8742 /* Define both `signed char' and `unsigned char'. */
8743 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8744 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8745 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8746 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8747
8748 /* Define `char', which is like either `signed char' or `unsigned char'
8749 but not the same as either. */
8750 char_type_node
8751 = (signed_char
8752 ? make_signed_type (CHAR_TYPE_SIZE)
8753 : make_unsigned_type (CHAR_TYPE_SIZE));
8754 TYPE_STRING_FLAG (char_type_node) = 1;
8755
8756 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8757 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8758 integer_type_node = make_signed_type (INT_TYPE_SIZE);
8759 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
8760 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
8761 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
8762 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
8763 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
8764
8765 /* Define a boolean type. This type only represents boolean values but
8766 may be larger than char depending on the value of BOOL_TYPE_SIZE.
8767 Front ends which want to override this size (i.e. Java) can redefine
8768 boolean_type_node before calling build_common_tree_nodes_2. */
8769 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
8770 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
8771 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
8772 TYPE_PRECISION (boolean_type_node) = 1;
8773
8774 /* Fill in the rest of the sized types. Reuse existing type nodes
8775 when possible. */
8776 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
8777 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
8778 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
8779 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
8780 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
8781
8782 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
8783 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
8784 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
8785 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
8786 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
8787
8788 access_public_node = get_identifier ("public");
8789 access_protected_node = get_identifier ("protected");
8790 access_private_node = get_identifier ("private");
8791 }
8792
8793 /* Call this function after calling build_common_tree_nodes and set_sizetype.
8794 It will create several other common tree nodes. */
8795
8796 void
8797 build_common_tree_nodes_2 (int short_double)
8798 {
8799 /* Define these next since types below may used them. */
8800 integer_zero_node = build_int_cst (NULL_TREE, 0);
8801 integer_one_node = build_int_cst (NULL_TREE, 1);
8802 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
8803
8804 size_zero_node = size_int (0);
8805 size_one_node = size_int (1);
8806 bitsize_zero_node = bitsize_int (0);
8807 bitsize_one_node = bitsize_int (1);
8808 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
8809
8810 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
8811 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
8812
8813 void_type_node = make_node (VOID_TYPE);
8814 layout_type (void_type_node);
8815
8816 /* We are not going to have real types in C with less than byte alignment,
8817 so we might as well not have any types that claim to have it. */
8818 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
8819 TYPE_USER_ALIGN (void_type_node) = 0;
8820
8821 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
8822 layout_type (TREE_TYPE (null_pointer_node));
8823
8824 ptr_type_node = build_pointer_type (void_type_node);
8825 const_ptr_type_node
8826 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
8827 fileptr_type_node = ptr_type_node;
8828
8829 float_type_node = make_node (REAL_TYPE);
8830 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
8831 layout_type (float_type_node);
8832
8833 double_type_node = make_node (REAL_TYPE);
8834 if (short_double)
8835 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
8836 else
8837 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
8838 layout_type (double_type_node);
8839
8840 long_double_type_node = make_node (REAL_TYPE);
8841 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
8842 layout_type (long_double_type_node);
8843
8844 float_ptr_type_node = build_pointer_type (float_type_node);
8845 double_ptr_type_node = build_pointer_type (double_type_node);
8846 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
8847 integer_ptr_type_node = build_pointer_type (integer_type_node);
8848
8849 /* Fixed size integer types. */
8850 uint32_type_node = build_nonstandard_integer_type (32, true);
8851 uint64_type_node = build_nonstandard_integer_type (64, true);
8852
8853 /* Decimal float types. */
8854 dfloat32_type_node = make_node (REAL_TYPE);
8855 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
8856 layout_type (dfloat32_type_node);
8857 SET_TYPE_MODE (dfloat32_type_node, SDmode);
8858 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
8859
8860 dfloat64_type_node = make_node (REAL_TYPE);
8861 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
8862 layout_type (dfloat64_type_node);
8863 SET_TYPE_MODE (dfloat64_type_node, DDmode);
8864 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
8865
8866 dfloat128_type_node = make_node (REAL_TYPE);
8867 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
8868 layout_type (dfloat128_type_node);
8869 SET_TYPE_MODE (dfloat128_type_node, TDmode);
8870 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
8871
8872 complex_integer_type_node = build_complex_type (integer_type_node);
8873 complex_float_type_node = build_complex_type (float_type_node);
8874 complex_double_type_node = build_complex_type (double_type_node);
8875 complex_long_double_type_node = build_complex_type (long_double_type_node);
8876
8877 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
8878 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
8879 sat_ ## KIND ## _type_node = \
8880 make_sat_signed_ ## KIND ## _type (SIZE); \
8881 sat_unsigned_ ## KIND ## _type_node = \
8882 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8883 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8884 unsigned_ ## KIND ## _type_node = \
8885 make_unsigned_ ## KIND ## _type (SIZE);
8886
8887 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
8888 sat_ ## WIDTH ## KIND ## _type_node = \
8889 make_sat_signed_ ## KIND ## _type (SIZE); \
8890 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
8891 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8892 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8893 unsigned_ ## WIDTH ## KIND ## _type_node = \
8894 make_unsigned_ ## KIND ## _type (SIZE);
8895
8896 /* Make fixed-point type nodes based on four different widths. */
8897 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
8898 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
8899 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
8900 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
8901 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
8902
8903 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
8904 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
8905 NAME ## _type_node = \
8906 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
8907 u ## NAME ## _type_node = \
8908 make_or_reuse_unsigned_ ## KIND ## _type \
8909 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
8910 sat_ ## NAME ## _type_node = \
8911 make_or_reuse_sat_signed_ ## KIND ## _type \
8912 (GET_MODE_BITSIZE (MODE ## mode)); \
8913 sat_u ## NAME ## _type_node = \
8914 make_or_reuse_sat_unsigned_ ## KIND ## _type \
8915 (GET_MODE_BITSIZE (U ## MODE ## mode));
8916
8917 /* Fixed-point type and mode nodes. */
8918 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
8919 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
8920 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
8921 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
8922 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
8923 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
8924 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
8925 MAKE_FIXED_MODE_NODE (accum, ha, HA)
8926 MAKE_FIXED_MODE_NODE (accum, sa, SA)
8927 MAKE_FIXED_MODE_NODE (accum, da, DA)
8928 MAKE_FIXED_MODE_NODE (accum, ta, TA)
8929
8930 {
8931 tree t = targetm.build_builtin_va_list ();
8932
8933 /* Many back-ends define record types without setting TYPE_NAME.
8934 If we copied the record type here, we'd keep the original
8935 record type without a name. This breaks name mangling. So,
8936 don't copy record types and let c_common_nodes_and_builtins()
8937 declare the type to be __builtin_va_list. */
8938 if (TREE_CODE (t) != RECORD_TYPE)
8939 t = build_variant_type_copy (t);
8940
8941 va_list_type_node = t;
8942 }
8943 }
8944
8945 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
8946
8947 static void
8948 local_define_builtin (const char *name, tree type, enum built_in_function code,
8949 const char *library_name, int ecf_flags)
8950 {
8951 tree decl;
8952
8953 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
8954 library_name, NULL_TREE);
8955 if (ecf_flags & ECF_CONST)
8956 TREE_READONLY (decl) = 1;
8957 if (ecf_flags & ECF_PURE)
8958 DECL_PURE_P (decl) = 1;
8959 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
8960 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
8961 if (ecf_flags & ECF_NORETURN)
8962 TREE_THIS_VOLATILE (decl) = 1;
8963 if (ecf_flags & ECF_NOTHROW)
8964 TREE_NOTHROW (decl) = 1;
8965 if (ecf_flags & ECF_MALLOC)
8966 DECL_IS_MALLOC (decl) = 1;
8967
8968 built_in_decls[code] = decl;
8969 implicit_built_in_decls[code] = decl;
8970 }
8971
8972 /* Call this function after instantiating all builtins that the language
8973 front end cares about. This will build the rest of the builtins that
8974 are relied upon by the tree optimizers and the middle-end. */
8975
8976 void
8977 build_common_builtin_nodes (void)
8978 {
8979 tree tmp, tmp2, ftype;
8980
8981 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
8982 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
8983 {
8984 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8985 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
8986 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8987 ftype = build_function_type (ptr_type_node, tmp);
8988
8989 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
8990 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
8991 "memcpy", ECF_NOTHROW);
8992 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
8993 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
8994 "memmove", ECF_NOTHROW);
8995 }
8996
8997 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
8998 {
8999 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9000 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
9001 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
9002 ftype = build_function_type (integer_type_node, tmp);
9003 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9004 "memcmp", ECF_PURE | ECF_NOTHROW);
9005 }
9006
9007 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9008 {
9009 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9010 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
9011 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9012 ftype = build_function_type (ptr_type_node, tmp);
9013 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9014 "memset", ECF_NOTHROW);
9015 }
9016
9017 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9018 {
9019 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9020 ftype = build_function_type (ptr_type_node, tmp);
9021 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9022 "alloca",
9023 ECF_MALLOC | (flag_stack_check ? 0 : ECF_NOTHROW));
9024 }
9025
9026 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9027 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9028 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9029 ftype = build_function_type (void_type_node, tmp);
9030 local_define_builtin ("__builtin_init_trampoline", ftype,
9031 BUILT_IN_INIT_TRAMPOLINE,
9032 "__builtin_init_trampoline", ECF_NOTHROW);
9033
9034 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9035 ftype = build_function_type (ptr_type_node, tmp);
9036 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9037 BUILT_IN_ADJUST_TRAMPOLINE,
9038 "__builtin_adjust_trampoline",
9039 ECF_CONST | ECF_NOTHROW);
9040
9041 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9042 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9043 ftype = build_function_type (void_type_node, tmp);
9044 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9045 BUILT_IN_NONLOCAL_GOTO,
9046 "__builtin_nonlocal_goto",
9047 ECF_NORETURN | ECF_NOTHROW);
9048
9049 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9050 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9051 ftype = build_function_type (void_type_node, tmp);
9052 local_define_builtin ("__builtin_setjmp_setup", ftype,
9053 BUILT_IN_SETJMP_SETUP,
9054 "__builtin_setjmp_setup", ECF_NOTHROW);
9055
9056 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9057 ftype = build_function_type (ptr_type_node, tmp);
9058 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9059 BUILT_IN_SETJMP_DISPATCHER,
9060 "__builtin_setjmp_dispatcher",
9061 ECF_PURE | ECF_NOTHROW);
9062
9063 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9064 ftype = build_function_type (void_type_node, tmp);
9065 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9066 BUILT_IN_SETJMP_RECEIVER,
9067 "__builtin_setjmp_receiver", ECF_NOTHROW);
9068
9069 ftype = build_function_type (ptr_type_node, void_list_node);
9070 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9071 "__builtin_stack_save", ECF_NOTHROW);
9072
9073 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9074 ftype = build_function_type (void_type_node, tmp);
9075 local_define_builtin ("__builtin_stack_restore", ftype,
9076 BUILT_IN_STACK_RESTORE,
9077 "__builtin_stack_restore", ECF_NOTHROW);
9078
9079 ftype = build_function_type (void_type_node, void_list_node);
9080 local_define_builtin ("__builtin_profile_func_enter", ftype,
9081 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
9082 local_define_builtin ("__builtin_profile_func_exit", ftype,
9083 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
9084
9085 /* If there's a possibility that we might use the ARM EABI, build the
9086 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9087 if (targetm.arm_eabi_unwinder)
9088 {
9089 ftype = build_function_type (void_type_node, void_list_node);
9090 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9091 BUILT_IN_CXA_END_CLEANUP,
9092 "__cxa_end_cleanup", ECF_NORETURN);
9093 }
9094
9095 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9096 ftype = build_function_type (void_type_node, tmp);
9097 local_define_builtin ("__builtin_unwind_resume", ftype,
9098 BUILT_IN_UNWIND_RESUME,
9099 (USING_SJLJ_EXCEPTIONS
9100 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9101 ECF_NORETURN);
9102
9103 /* The exception object and filter values from the runtime. The argument
9104 must be zero before exception lowering, i.e. from the front end. After
9105 exception lowering, it will be the region number for the exception
9106 landing pad. These functions are PURE instead of CONST to prevent
9107 them from being hoisted past the exception edge that will initialize
9108 its value in the landing pad. */
9109 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
9110 ftype = build_function_type (ptr_type_node, tmp);
9111 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9112 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW);
9113
9114 tmp2 = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9115 ftype = build_function_type (tmp2, tmp);
9116 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9117 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW);
9118
9119 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
9120 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
9121 ftype = build_function_type (void_type_node, tmp);
9122 local_define_builtin ("__builtin_eh_copy_values", ftype,
9123 BUILT_IN_EH_COPY_VALUES,
9124 "__builtin_eh_copy_values", ECF_NOTHROW);
9125
9126 /* Complex multiplication and division. These are handled as builtins
9127 rather than optabs because emit_library_call_value doesn't support
9128 complex. Further, we can do slightly better with folding these
9129 beasties if the real and complex parts of the arguments are separate. */
9130 {
9131 int mode;
9132
9133 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9134 {
9135 char mode_name_buf[4], *q;
9136 const char *p;
9137 enum built_in_function mcode, dcode;
9138 tree type, inner_type;
9139
9140 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9141 if (type == NULL)
9142 continue;
9143 inner_type = TREE_TYPE (type);
9144
9145 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
9146 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9147 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9148 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9149 ftype = build_function_type (type, tmp);
9150
9151 mcode = ((enum built_in_function)
9152 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9153 dcode = ((enum built_in_function)
9154 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9155
9156 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9157 *q = TOLOWER (*p);
9158 *q = '\0';
9159
9160 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9161 local_define_builtin (built_in_names[mcode], ftype, mcode,
9162 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
9163
9164 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9165 local_define_builtin (built_in_names[dcode], ftype, dcode,
9166 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
9167 }
9168 }
9169 }
9170
9171 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9172 better way.
9173
9174 If we requested a pointer to a vector, build up the pointers that
9175 we stripped off while looking for the inner type. Similarly for
9176 return values from functions.
9177
9178 The argument TYPE is the top of the chain, and BOTTOM is the
9179 new type which we will point to. */
9180
9181 tree
9182 reconstruct_complex_type (tree type, tree bottom)
9183 {
9184 tree inner, outer;
9185
9186 if (TREE_CODE (type) == POINTER_TYPE)
9187 {
9188 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9189 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9190 TYPE_REF_CAN_ALIAS_ALL (type));
9191 }
9192 else if (TREE_CODE (type) == REFERENCE_TYPE)
9193 {
9194 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9195 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9196 TYPE_REF_CAN_ALIAS_ALL (type));
9197 }
9198 else if (TREE_CODE (type) == ARRAY_TYPE)
9199 {
9200 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9201 outer = build_array_type (inner, TYPE_DOMAIN (type));
9202 }
9203 else if (TREE_CODE (type) == FUNCTION_TYPE)
9204 {
9205 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9206 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9207 }
9208 else if (TREE_CODE (type) == METHOD_TYPE)
9209 {
9210 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9211 /* The build_method_type_directly() routine prepends 'this' to argument list,
9212 so we must compensate by getting rid of it. */
9213 outer
9214 = build_method_type_directly
9215 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9216 inner,
9217 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9218 }
9219 else if (TREE_CODE (type) == OFFSET_TYPE)
9220 {
9221 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9222 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9223 }
9224 else
9225 return bottom;
9226
9227 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9228 TYPE_QUALS (type));
9229 }
9230
9231 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9232 the inner type. */
9233 tree
9234 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9235 {
9236 int nunits;
9237
9238 switch (GET_MODE_CLASS (mode))
9239 {
9240 case MODE_VECTOR_INT:
9241 case MODE_VECTOR_FLOAT:
9242 case MODE_VECTOR_FRACT:
9243 case MODE_VECTOR_UFRACT:
9244 case MODE_VECTOR_ACCUM:
9245 case MODE_VECTOR_UACCUM:
9246 nunits = GET_MODE_NUNITS (mode);
9247 break;
9248
9249 case MODE_INT:
9250 /* Check that there are no leftover bits. */
9251 gcc_assert (GET_MODE_BITSIZE (mode)
9252 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9253
9254 nunits = GET_MODE_BITSIZE (mode)
9255 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9256 break;
9257
9258 default:
9259 gcc_unreachable ();
9260 }
9261
9262 return make_vector_type (innertype, nunits, mode);
9263 }
9264
9265 /* Similarly, but takes the inner type and number of units, which must be
9266 a power of two. */
9267
9268 tree
9269 build_vector_type (tree innertype, int nunits)
9270 {
9271 return make_vector_type (innertype, nunits, VOIDmode);
9272 }
9273
9274 /* Similarly, but takes the inner type and number of units, which must be
9275 a power of two. */
9276
9277 tree
9278 build_opaque_vector_type (tree innertype, int nunits)
9279 {
9280 tree t;
9281 innertype = build_distinct_type_copy (innertype);
9282 t = make_vector_type (innertype, nunits, VOIDmode);
9283 TYPE_VECTOR_OPAQUE (t) = true;
9284 return t;
9285 }
9286
9287
9288 /* Given an initializer INIT, return TRUE if INIT is zero or some
9289 aggregate of zeros. Otherwise return FALSE. */
9290 bool
9291 initializer_zerop (const_tree init)
9292 {
9293 tree elt;
9294
9295 STRIP_NOPS (init);
9296
9297 switch (TREE_CODE (init))
9298 {
9299 case INTEGER_CST:
9300 return integer_zerop (init);
9301
9302 case REAL_CST:
9303 /* ??? Note that this is not correct for C4X float formats. There,
9304 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9305 negative exponent. */
9306 return real_zerop (init)
9307 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9308
9309 case FIXED_CST:
9310 return fixed_zerop (init);
9311
9312 case COMPLEX_CST:
9313 return integer_zerop (init)
9314 || (real_zerop (init)
9315 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9316 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9317
9318 case VECTOR_CST:
9319 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9320 if (!initializer_zerop (TREE_VALUE (elt)))
9321 return false;
9322 return true;
9323
9324 case CONSTRUCTOR:
9325 {
9326 unsigned HOST_WIDE_INT idx;
9327
9328 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9329 if (!initializer_zerop (elt))
9330 return false;
9331 return true;
9332 }
9333
9334 default:
9335 return false;
9336 }
9337 }
9338
9339 /* Build an empty statement at location LOC. */
9340
9341 tree
9342 build_empty_stmt (location_t loc)
9343 {
9344 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9345 SET_EXPR_LOCATION (t, loc);
9346 return t;
9347 }
9348
9349
9350 /* Build an OpenMP clause with code CODE. LOC is the location of the
9351 clause. */
9352
9353 tree
9354 build_omp_clause (location_t loc, enum omp_clause_code code)
9355 {
9356 tree t;
9357 int size, length;
9358
9359 length = omp_clause_num_ops[code];
9360 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9361
9362 t = GGC_NEWVAR (union tree_node, size);
9363 memset (t, 0, size);
9364 TREE_SET_CODE (t, OMP_CLAUSE);
9365 OMP_CLAUSE_SET_CODE (t, code);
9366 OMP_CLAUSE_LOCATION (t) = loc;
9367
9368 #ifdef GATHER_STATISTICS
9369 tree_node_counts[(int) omp_clause_kind]++;
9370 tree_node_sizes[(int) omp_clause_kind] += size;
9371 #endif
9372
9373 return t;
9374 }
9375
9376 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9377 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9378 Except for the CODE and operand count field, other storage for the
9379 object is initialized to zeros. */
9380
9381 tree
9382 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9383 {
9384 tree t;
9385 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9386
9387 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9388 gcc_assert (len >= 1);
9389
9390 #ifdef GATHER_STATISTICS
9391 tree_node_counts[(int) e_kind]++;
9392 tree_node_sizes[(int) e_kind] += length;
9393 #endif
9394
9395 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
9396
9397 memset (t, 0, length);
9398
9399 TREE_SET_CODE (t, code);
9400
9401 /* Can't use TREE_OPERAND to store the length because if checking is
9402 enabled, it will try to check the length before we store it. :-P */
9403 t->exp.operands[0] = build_int_cst (sizetype, len);
9404
9405 return t;
9406 }
9407
9408
9409 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
9410 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
9411 arguments. */
9412
9413 tree
9414 build_call_list (tree return_type, tree fn, tree arglist)
9415 {
9416 tree t;
9417 int i;
9418
9419 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
9420 TREE_TYPE (t) = return_type;
9421 CALL_EXPR_FN (t) = fn;
9422 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9423 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
9424 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
9425 process_call_operands (t);
9426 return t;
9427 }
9428
9429 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9430 FN and a null static chain slot. NARGS is the number of call arguments
9431 which are specified as "..." arguments. */
9432
9433 tree
9434 build_call_nary (tree return_type, tree fn, int nargs, ...)
9435 {
9436 tree ret;
9437 va_list args;
9438 va_start (args, nargs);
9439 ret = build_call_valist (return_type, fn, nargs, args);
9440 va_end (args);
9441 return ret;
9442 }
9443
9444 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9445 FN and a null static chain slot. NARGS is the number of call arguments
9446 which are specified as a va_list ARGS. */
9447
9448 tree
9449 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9450 {
9451 tree t;
9452 int i;
9453
9454 t = build_vl_exp (CALL_EXPR, nargs + 3);
9455 TREE_TYPE (t) = return_type;
9456 CALL_EXPR_FN (t) = fn;
9457 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9458 for (i = 0; i < nargs; i++)
9459 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9460 process_call_operands (t);
9461 return t;
9462 }
9463
9464 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9465 FN and a null static chain slot. NARGS is the number of call arguments
9466 which are specified as a tree array ARGS. */
9467
9468 tree
9469 build_call_array_loc (location_t loc, tree return_type, tree fn,
9470 int nargs, const tree *args)
9471 {
9472 tree t;
9473 int i;
9474
9475 t = build_vl_exp (CALL_EXPR, nargs + 3);
9476 TREE_TYPE (t) = return_type;
9477 CALL_EXPR_FN (t) = fn;
9478 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9479 for (i = 0; i < nargs; i++)
9480 CALL_EXPR_ARG (t, i) = args[i];
9481 process_call_operands (t);
9482 SET_EXPR_LOCATION (t, loc);
9483 return t;
9484 }
9485
9486 /* Like build_call_array, but takes a VEC. */
9487
9488 tree
9489 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9490 {
9491 tree ret, t;
9492 unsigned int ix;
9493
9494 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9495 TREE_TYPE (ret) = return_type;
9496 CALL_EXPR_FN (ret) = fn;
9497 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9498 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
9499 CALL_EXPR_ARG (ret, ix) = t;
9500 process_call_operands (ret);
9501 return ret;
9502 }
9503
9504
9505 /* Returns true if it is possible to prove that the index of
9506 an array access REF (an ARRAY_REF expression) falls into the
9507 array bounds. */
9508
9509 bool
9510 in_array_bounds_p (tree ref)
9511 {
9512 tree idx = TREE_OPERAND (ref, 1);
9513 tree min, max;
9514
9515 if (TREE_CODE (idx) != INTEGER_CST)
9516 return false;
9517
9518 min = array_ref_low_bound (ref);
9519 max = array_ref_up_bound (ref);
9520 if (!min
9521 || !max
9522 || TREE_CODE (min) != INTEGER_CST
9523 || TREE_CODE (max) != INTEGER_CST)
9524 return false;
9525
9526 if (tree_int_cst_lt (idx, min)
9527 || tree_int_cst_lt (max, idx))
9528 return false;
9529
9530 return true;
9531 }
9532
9533 /* Returns true if it is possible to prove that the range of
9534 an array access REF (an ARRAY_RANGE_REF expression) falls
9535 into the array bounds. */
9536
9537 bool
9538 range_in_array_bounds_p (tree ref)
9539 {
9540 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9541 tree range_min, range_max, min, max;
9542
9543 range_min = TYPE_MIN_VALUE (domain_type);
9544 range_max = TYPE_MAX_VALUE (domain_type);
9545 if (!range_min
9546 || !range_max
9547 || TREE_CODE (range_min) != INTEGER_CST
9548 || TREE_CODE (range_max) != INTEGER_CST)
9549 return false;
9550
9551 min = array_ref_low_bound (ref);
9552 max = array_ref_up_bound (ref);
9553 if (!min
9554 || !max
9555 || TREE_CODE (min) != INTEGER_CST
9556 || TREE_CODE (max) != INTEGER_CST)
9557 return false;
9558
9559 if (tree_int_cst_lt (range_min, min)
9560 || tree_int_cst_lt (max, range_max))
9561 return false;
9562
9563 return true;
9564 }
9565
9566 /* Return true if T (assumed to be a DECL) must be assigned a memory
9567 location. */
9568
9569 bool
9570 needs_to_live_in_memory (const_tree t)
9571 {
9572 if (TREE_CODE (t) == SSA_NAME)
9573 t = SSA_NAME_VAR (t);
9574
9575 return (TREE_ADDRESSABLE (t)
9576 || is_global_var (t)
9577 || (TREE_CODE (t) == RESULT_DECL
9578 && aggregate_value_p (t, current_function_decl)));
9579 }
9580
9581 /* There are situations in which a language considers record types
9582 compatible which have different field lists. Decide if two fields
9583 are compatible. It is assumed that the parent records are compatible. */
9584
9585 bool
9586 fields_compatible_p (const_tree f1, const_tree f2)
9587 {
9588 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9589 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9590 return false;
9591
9592 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9593 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9594 return false;
9595
9596 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9597 return false;
9598
9599 return true;
9600 }
9601
9602 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9603
9604 tree
9605 find_compatible_field (tree record, tree orig_field)
9606 {
9607 tree f;
9608
9609 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9610 if (TREE_CODE (f) == FIELD_DECL
9611 && fields_compatible_p (f, orig_field))
9612 return f;
9613
9614 /* ??? Why isn't this on the main fields list? */
9615 f = TYPE_VFIELD (record);
9616 if (f && TREE_CODE (f) == FIELD_DECL
9617 && fields_compatible_p (f, orig_field))
9618 return f;
9619
9620 /* ??? We should abort here, but Java appears to do Bad Things
9621 with inherited fields. */
9622 return orig_field;
9623 }
9624
9625 /* Return value of a constant X and sign-extend it. */
9626
9627 HOST_WIDE_INT
9628 int_cst_value (const_tree x)
9629 {
9630 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9631 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9632
9633 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9634 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9635 || TREE_INT_CST_HIGH (x) == -1);
9636
9637 if (bits < HOST_BITS_PER_WIDE_INT)
9638 {
9639 bool negative = ((val >> (bits - 1)) & 1) != 0;
9640 if (negative)
9641 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9642 else
9643 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9644 }
9645
9646 return val;
9647 }
9648
9649 /* Return value of a constant X and sign-extend it. */
9650
9651 HOST_WIDEST_INT
9652 widest_int_cst_value (const_tree x)
9653 {
9654 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9655 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9656
9657 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9658 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9659 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9660 << HOST_BITS_PER_WIDE_INT);
9661 #else
9662 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9663 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9664 || TREE_INT_CST_HIGH (x) == -1);
9665 #endif
9666
9667 if (bits < HOST_BITS_PER_WIDEST_INT)
9668 {
9669 bool negative = ((val >> (bits - 1)) & 1) != 0;
9670 if (negative)
9671 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9672 else
9673 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9674 }
9675
9676 return val;
9677 }
9678
9679 /* If TYPE is an integral type, return an equivalent type which is
9680 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9681 return TYPE itself. */
9682
9683 tree
9684 signed_or_unsigned_type_for (int unsignedp, tree type)
9685 {
9686 tree t = type;
9687 if (POINTER_TYPE_P (type))
9688 {
9689 /* If the pointer points to the normal address space, use the
9690 size_type_node. Otherwise use an appropriate size for the pointer
9691 based on the named address space it points to. */
9692 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
9693 t = size_type_node;
9694 else
9695 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9696 }
9697
9698 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9699 return t;
9700
9701 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9702 }
9703
9704 /* Returns unsigned variant of TYPE. */
9705
9706 tree
9707 unsigned_type_for (tree type)
9708 {
9709 return signed_or_unsigned_type_for (1, type);
9710 }
9711
9712 /* Returns signed variant of TYPE. */
9713
9714 tree
9715 signed_type_for (tree type)
9716 {
9717 return signed_or_unsigned_type_for (0, type);
9718 }
9719
9720 /* Returns the largest value obtainable by casting something in INNER type to
9721 OUTER type. */
9722
9723 tree
9724 upper_bound_in_type (tree outer, tree inner)
9725 {
9726 unsigned HOST_WIDE_INT lo, hi;
9727 unsigned int det = 0;
9728 unsigned oprec = TYPE_PRECISION (outer);
9729 unsigned iprec = TYPE_PRECISION (inner);
9730 unsigned prec;
9731
9732 /* Compute a unique number for every combination. */
9733 det |= (oprec > iprec) ? 4 : 0;
9734 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9735 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9736
9737 /* Determine the exponent to use. */
9738 switch (det)
9739 {
9740 case 0:
9741 case 1:
9742 /* oprec <= iprec, outer: signed, inner: don't care. */
9743 prec = oprec - 1;
9744 break;
9745 case 2:
9746 case 3:
9747 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9748 prec = oprec;
9749 break;
9750 case 4:
9751 /* oprec > iprec, outer: signed, inner: signed. */
9752 prec = iprec - 1;
9753 break;
9754 case 5:
9755 /* oprec > iprec, outer: signed, inner: unsigned. */
9756 prec = iprec;
9757 break;
9758 case 6:
9759 /* oprec > iprec, outer: unsigned, inner: signed. */
9760 prec = oprec;
9761 break;
9762 case 7:
9763 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9764 prec = iprec;
9765 break;
9766 default:
9767 gcc_unreachable ();
9768 }
9769
9770 /* Compute 2^^prec - 1. */
9771 if (prec <= HOST_BITS_PER_WIDE_INT)
9772 {
9773 hi = 0;
9774 lo = ((~(unsigned HOST_WIDE_INT) 0)
9775 >> (HOST_BITS_PER_WIDE_INT - prec));
9776 }
9777 else
9778 {
9779 hi = ((~(unsigned HOST_WIDE_INT) 0)
9780 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
9781 lo = ~(unsigned HOST_WIDE_INT) 0;
9782 }
9783
9784 return build_int_cst_wide (outer, lo, hi);
9785 }
9786
9787 /* Returns the smallest value obtainable by casting something in INNER type to
9788 OUTER type. */
9789
9790 tree
9791 lower_bound_in_type (tree outer, tree inner)
9792 {
9793 unsigned HOST_WIDE_INT lo, hi;
9794 unsigned oprec = TYPE_PRECISION (outer);
9795 unsigned iprec = TYPE_PRECISION (inner);
9796
9797 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
9798 and obtain 0. */
9799 if (TYPE_UNSIGNED (outer)
9800 /* If we are widening something of an unsigned type, OUTER type
9801 contains all values of INNER type. In particular, both INNER
9802 and OUTER types have zero in common. */
9803 || (oprec > iprec && TYPE_UNSIGNED (inner)))
9804 lo = hi = 0;
9805 else
9806 {
9807 /* If we are widening a signed type to another signed type, we
9808 want to obtain -2^^(iprec-1). If we are keeping the
9809 precision or narrowing to a signed type, we want to obtain
9810 -2^(oprec-1). */
9811 unsigned prec = oprec > iprec ? iprec : oprec;
9812
9813 if (prec <= HOST_BITS_PER_WIDE_INT)
9814 {
9815 hi = ~(unsigned HOST_WIDE_INT) 0;
9816 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
9817 }
9818 else
9819 {
9820 hi = ((~(unsigned HOST_WIDE_INT) 0)
9821 << (prec - HOST_BITS_PER_WIDE_INT - 1));
9822 lo = 0;
9823 }
9824 }
9825
9826 return build_int_cst_wide (outer, lo, hi);
9827 }
9828
9829 /* Return nonzero if two operands that are suitable for PHI nodes are
9830 necessarily equal. Specifically, both ARG0 and ARG1 must be either
9831 SSA_NAME or invariant. Note that this is strictly an optimization.
9832 That is, callers of this function can directly call operand_equal_p
9833 and get the same result, only slower. */
9834
9835 int
9836 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
9837 {
9838 if (arg0 == arg1)
9839 return 1;
9840 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
9841 return 0;
9842 return operand_equal_p (arg0, arg1, 0);
9843 }
9844
9845 /* Returns number of zeros at the end of binary representation of X.
9846
9847 ??? Use ffs if available? */
9848
9849 tree
9850 num_ending_zeros (const_tree x)
9851 {
9852 unsigned HOST_WIDE_INT fr, nfr;
9853 unsigned num, abits;
9854 tree type = TREE_TYPE (x);
9855
9856 if (TREE_INT_CST_LOW (x) == 0)
9857 {
9858 num = HOST_BITS_PER_WIDE_INT;
9859 fr = TREE_INT_CST_HIGH (x);
9860 }
9861 else
9862 {
9863 num = 0;
9864 fr = TREE_INT_CST_LOW (x);
9865 }
9866
9867 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
9868 {
9869 nfr = fr >> abits;
9870 if (nfr << abits == fr)
9871 {
9872 num += abits;
9873 fr = nfr;
9874 }
9875 }
9876
9877 if (num > TYPE_PRECISION (type))
9878 num = TYPE_PRECISION (type);
9879
9880 return build_int_cst_type (type, num);
9881 }
9882
9883
9884 #define WALK_SUBTREE(NODE) \
9885 do \
9886 { \
9887 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
9888 if (result) \
9889 return result; \
9890 } \
9891 while (0)
9892
9893 /* This is a subroutine of walk_tree that walks field of TYPE that are to
9894 be walked whenever a type is seen in the tree. Rest of operands and return
9895 value are as for walk_tree. */
9896
9897 static tree
9898 walk_type_fields (tree type, walk_tree_fn func, void *data,
9899 struct pointer_set_t *pset, walk_tree_lh lh)
9900 {
9901 tree result = NULL_TREE;
9902
9903 switch (TREE_CODE (type))
9904 {
9905 case POINTER_TYPE:
9906 case REFERENCE_TYPE:
9907 /* We have to worry about mutually recursive pointers. These can't
9908 be written in C. They can in Ada. It's pathological, but
9909 there's an ACATS test (c38102a) that checks it. Deal with this
9910 by checking if we're pointing to another pointer, that one
9911 points to another pointer, that one does too, and we have no htab.
9912 If so, get a hash table. We check three levels deep to avoid
9913 the cost of the hash table if we don't need one. */
9914 if (POINTER_TYPE_P (TREE_TYPE (type))
9915 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
9916 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
9917 && !pset)
9918 {
9919 result = walk_tree_without_duplicates (&TREE_TYPE (type),
9920 func, data);
9921 if (result)
9922 return result;
9923
9924 break;
9925 }
9926
9927 /* ... fall through ... */
9928
9929 case COMPLEX_TYPE:
9930 WALK_SUBTREE (TREE_TYPE (type));
9931 break;
9932
9933 case METHOD_TYPE:
9934 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
9935
9936 /* Fall through. */
9937
9938 case FUNCTION_TYPE:
9939 WALK_SUBTREE (TREE_TYPE (type));
9940 {
9941 tree arg;
9942
9943 /* We never want to walk into default arguments. */
9944 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
9945 WALK_SUBTREE (TREE_VALUE (arg));
9946 }
9947 break;
9948
9949 case ARRAY_TYPE:
9950 /* Don't follow this nodes's type if a pointer for fear that
9951 we'll have infinite recursion. If we have a PSET, then we
9952 need not fear. */
9953 if (pset
9954 || (!POINTER_TYPE_P (TREE_TYPE (type))
9955 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
9956 WALK_SUBTREE (TREE_TYPE (type));
9957 WALK_SUBTREE (TYPE_DOMAIN (type));
9958 break;
9959
9960 case OFFSET_TYPE:
9961 WALK_SUBTREE (TREE_TYPE (type));
9962 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
9963 break;
9964
9965 default:
9966 break;
9967 }
9968
9969 return NULL_TREE;
9970 }
9971
9972 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
9973 called with the DATA and the address of each sub-tree. If FUNC returns a
9974 non-NULL value, the traversal is stopped, and the value returned by FUNC
9975 is returned. If PSET is non-NULL it is used to record the nodes visited,
9976 and to avoid visiting a node more than once. */
9977
9978 tree
9979 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
9980 struct pointer_set_t *pset, walk_tree_lh lh)
9981 {
9982 enum tree_code code;
9983 int walk_subtrees;
9984 tree result;
9985
9986 #define WALK_SUBTREE_TAIL(NODE) \
9987 do \
9988 { \
9989 tp = & (NODE); \
9990 goto tail_recurse; \
9991 } \
9992 while (0)
9993
9994 tail_recurse:
9995 /* Skip empty subtrees. */
9996 if (!*tp)
9997 return NULL_TREE;
9998
9999 /* Don't walk the same tree twice, if the user has requested
10000 that we avoid doing so. */
10001 if (pset && pointer_set_insert (pset, *tp))
10002 return NULL_TREE;
10003
10004 /* Call the function. */
10005 walk_subtrees = 1;
10006 result = (*func) (tp, &walk_subtrees, data);
10007
10008 /* If we found something, return it. */
10009 if (result)
10010 return result;
10011
10012 code = TREE_CODE (*tp);
10013
10014 /* Even if we didn't, FUNC may have decided that there was nothing
10015 interesting below this point in the tree. */
10016 if (!walk_subtrees)
10017 {
10018 /* But we still need to check our siblings. */
10019 if (code == TREE_LIST)
10020 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10021 else if (code == OMP_CLAUSE)
10022 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10023 else
10024 return NULL_TREE;
10025 }
10026
10027 if (lh)
10028 {
10029 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10030 if (result || !walk_subtrees)
10031 return result;
10032 }
10033
10034 switch (code)
10035 {
10036 case ERROR_MARK:
10037 case IDENTIFIER_NODE:
10038 case INTEGER_CST:
10039 case REAL_CST:
10040 case FIXED_CST:
10041 case VECTOR_CST:
10042 case STRING_CST:
10043 case BLOCK:
10044 case PLACEHOLDER_EXPR:
10045 case SSA_NAME:
10046 case FIELD_DECL:
10047 case RESULT_DECL:
10048 /* None of these have subtrees other than those already walked
10049 above. */
10050 break;
10051
10052 case TREE_LIST:
10053 WALK_SUBTREE (TREE_VALUE (*tp));
10054 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10055 break;
10056
10057 case TREE_VEC:
10058 {
10059 int len = TREE_VEC_LENGTH (*tp);
10060
10061 if (len == 0)
10062 break;
10063
10064 /* Walk all elements but the first. */
10065 while (--len)
10066 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10067
10068 /* Now walk the first one as a tail call. */
10069 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10070 }
10071
10072 case COMPLEX_CST:
10073 WALK_SUBTREE (TREE_REALPART (*tp));
10074 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10075
10076 case CONSTRUCTOR:
10077 {
10078 unsigned HOST_WIDE_INT idx;
10079 constructor_elt *ce;
10080
10081 for (idx = 0;
10082 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10083 idx++)
10084 WALK_SUBTREE (ce->value);
10085 }
10086 break;
10087
10088 case SAVE_EXPR:
10089 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10090
10091 case BIND_EXPR:
10092 {
10093 tree decl;
10094 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
10095 {
10096 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10097 into declarations that are just mentioned, rather than
10098 declared; they don't really belong to this part of the tree.
10099 And, we can see cycles: the initializer for a declaration
10100 can refer to the declaration itself. */
10101 WALK_SUBTREE (DECL_INITIAL (decl));
10102 WALK_SUBTREE (DECL_SIZE (decl));
10103 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10104 }
10105 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10106 }
10107
10108 case STATEMENT_LIST:
10109 {
10110 tree_stmt_iterator i;
10111 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10112 WALK_SUBTREE (*tsi_stmt_ptr (i));
10113 }
10114 break;
10115
10116 case OMP_CLAUSE:
10117 switch (OMP_CLAUSE_CODE (*tp))
10118 {
10119 case OMP_CLAUSE_PRIVATE:
10120 case OMP_CLAUSE_SHARED:
10121 case OMP_CLAUSE_FIRSTPRIVATE:
10122 case OMP_CLAUSE_COPYIN:
10123 case OMP_CLAUSE_COPYPRIVATE:
10124 case OMP_CLAUSE_IF:
10125 case OMP_CLAUSE_NUM_THREADS:
10126 case OMP_CLAUSE_SCHEDULE:
10127 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10128 /* FALLTHRU */
10129
10130 case OMP_CLAUSE_NOWAIT:
10131 case OMP_CLAUSE_ORDERED:
10132 case OMP_CLAUSE_DEFAULT:
10133 case OMP_CLAUSE_UNTIED:
10134 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10135
10136 case OMP_CLAUSE_LASTPRIVATE:
10137 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10138 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10139 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10140
10141 case OMP_CLAUSE_COLLAPSE:
10142 {
10143 int i;
10144 for (i = 0; i < 3; i++)
10145 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10146 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10147 }
10148
10149 case OMP_CLAUSE_REDUCTION:
10150 {
10151 int i;
10152 for (i = 0; i < 4; i++)
10153 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10154 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10155 }
10156
10157 default:
10158 gcc_unreachable ();
10159 }
10160 break;
10161
10162 case TARGET_EXPR:
10163 {
10164 int i, len;
10165
10166 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10167 But, we only want to walk once. */
10168 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10169 for (i = 0; i < len; ++i)
10170 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10171 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10172 }
10173
10174 case DECL_EXPR:
10175 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10176 defining. We only want to walk into these fields of a type in this
10177 case and not in the general case of a mere reference to the type.
10178
10179 The criterion is as follows: if the field can be an expression, it
10180 must be walked only here. This should be in keeping with the fields
10181 that are directly gimplified in gimplify_type_sizes in order for the
10182 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10183 variable-sized types.
10184
10185 Note that DECLs get walked as part of processing the BIND_EXPR. */
10186 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10187 {
10188 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10189 if (TREE_CODE (*type_p) == ERROR_MARK)
10190 return NULL_TREE;
10191
10192 /* Call the function for the type. See if it returns anything or
10193 doesn't want us to continue. If we are to continue, walk both
10194 the normal fields and those for the declaration case. */
10195 result = (*func) (type_p, &walk_subtrees, data);
10196 if (result || !walk_subtrees)
10197 return result;
10198
10199 result = walk_type_fields (*type_p, func, data, pset, lh);
10200 if (result)
10201 return result;
10202
10203 /* If this is a record type, also walk the fields. */
10204 if (RECORD_OR_UNION_TYPE_P (*type_p))
10205 {
10206 tree field;
10207
10208 for (field = TYPE_FIELDS (*type_p); field;
10209 field = TREE_CHAIN (field))
10210 {
10211 /* We'd like to look at the type of the field, but we can
10212 easily get infinite recursion. So assume it's pointed
10213 to elsewhere in the tree. Also, ignore things that
10214 aren't fields. */
10215 if (TREE_CODE (field) != FIELD_DECL)
10216 continue;
10217
10218 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10219 WALK_SUBTREE (DECL_SIZE (field));
10220 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10221 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10222 WALK_SUBTREE (DECL_QUALIFIER (field));
10223 }
10224 }
10225
10226 /* Same for scalar types. */
10227 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10228 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10229 || TREE_CODE (*type_p) == INTEGER_TYPE
10230 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10231 || TREE_CODE (*type_p) == REAL_TYPE)
10232 {
10233 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10234 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10235 }
10236
10237 WALK_SUBTREE (TYPE_SIZE (*type_p));
10238 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10239 }
10240 /* FALLTHRU */
10241
10242 default:
10243 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10244 {
10245 int i, len;
10246
10247 /* Walk over all the sub-trees of this operand. */
10248 len = TREE_OPERAND_LENGTH (*tp);
10249
10250 /* Go through the subtrees. We need to do this in forward order so
10251 that the scope of a FOR_EXPR is handled properly. */
10252 if (len)
10253 {
10254 for (i = 0; i < len - 1; ++i)
10255 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10256 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10257 }
10258 }
10259 /* If this is a type, walk the needed fields in the type. */
10260 else if (TYPE_P (*tp))
10261 return walk_type_fields (*tp, func, data, pset, lh);
10262 break;
10263 }
10264
10265 /* We didn't find what we were looking for. */
10266 return NULL_TREE;
10267
10268 #undef WALK_SUBTREE_TAIL
10269 }
10270 #undef WALK_SUBTREE
10271
10272 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10273
10274 tree
10275 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10276 walk_tree_lh lh)
10277 {
10278 tree result;
10279 struct pointer_set_t *pset;
10280
10281 pset = pointer_set_create ();
10282 result = walk_tree_1 (tp, func, data, pset, lh);
10283 pointer_set_destroy (pset);
10284 return result;
10285 }
10286
10287
10288 tree *
10289 tree_block (tree t)
10290 {
10291 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10292
10293 if (IS_EXPR_CODE_CLASS (c))
10294 return &t->exp.block;
10295 gcc_unreachable ();
10296 return NULL;
10297 }
10298
10299 /* Build and return a TREE_LIST of arguments in the CALL_EXPR exp.
10300 FIXME: don't use this function. It exists for compatibility with
10301 the old representation of CALL_EXPRs where a list was used to hold the
10302 arguments. Places that currently extract the arglist from a CALL_EXPR
10303 ought to be rewritten to use the CALL_EXPR itself. */
10304 tree
10305 call_expr_arglist (tree exp)
10306 {
10307 tree arglist = NULL_TREE;
10308 int i;
10309 for (i = call_expr_nargs (exp) - 1; i >= 0; i--)
10310 arglist = tree_cons (NULL_TREE, CALL_EXPR_ARG (exp, i), arglist);
10311 return arglist;
10312 }
10313
10314
10315 /* Create a nameless artificial label and put it in the current
10316 function context. The label has a location of LOC. Returns the
10317 newly created label. */
10318
10319 tree
10320 create_artificial_label (location_t loc)
10321 {
10322 tree lab = build_decl (loc,
10323 LABEL_DECL, NULL_TREE, void_type_node);
10324
10325 DECL_ARTIFICIAL (lab) = 1;
10326 DECL_IGNORED_P (lab) = 1;
10327 DECL_CONTEXT (lab) = current_function_decl;
10328 return lab;
10329 }
10330
10331 /* Given a tree, try to return a useful variable name that we can use
10332 to prefix a temporary that is being assigned the value of the tree.
10333 I.E. given <temp> = &A, return A. */
10334
10335 const char *
10336 get_name (tree t)
10337 {
10338 tree stripped_decl;
10339
10340 stripped_decl = t;
10341 STRIP_NOPS (stripped_decl);
10342 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10343 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10344 else
10345 {
10346 switch (TREE_CODE (stripped_decl))
10347 {
10348 case ADDR_EXPR:
10349 return get_name (TREE_OPERAND (stripped_decl, 0));
10350 default:
10351 return NULL;
10352 }
10353 }
10354 }
10355
10356 /* Return true if TYPE has a variable argument list. */
10357
10358 bool
10359 stdarg_p (tree fntype)
10360 {
10361 function_args_iterator args_iter;
10362 tree n = NULL_TREE, t;
10363
10364 if (!fntype)
10365 return false;
10366
10367 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10368 {
10369 n = t;
10370 }
10371
10372 return n != NULL_TREE && n != void_type_node;
10373 }
10374
10375 /* Return true if TYPE has a prototype. */
10376
10377 bool
10378 prototype_p (tree fntype)
10379 {
10380 tree t;
10381
10382 gcc_assert (fntype != NULL_TREE);
10383
10384 t = TYPE_ARG_TYPES (fntype);
10385 return (t != NULL_TREE);
10386 }
10387
10388 /* If BLOCK is inlined from an __attribute__((__artificial__))
10389 routine, return pointer to location from where it has been
10390 called. */
10391 location_t *
10392 block_nonartificial_location (tree block)
10393 {
10394 location_t *ret = NULL;
10395
10396 while (block && TREE_CODE (block) == BLOCK
10397 && BLOCK_ABSTRACT_ORIGIN (block))
10398 {
10399 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10400
10401 while (TREE_CODE (ao) == BLOCK
10402 && BLOCK_ABSTRACT_ORIGIN (ao)
10403 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10404 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10405
10406 if (TREE_CODE (ao) == FUNCTION_DECL)
10407 {
10408 /* If AO is an artificial inline, point RET to the
10409 call site locus at which it has been inlined and continue
10410 the loop, in case AO's caller is also an artificial
10411 inline. */
10412 if (DECL_DECLARED_INLINE_P (ao)
10413 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10414 ret = &BLOCK_SOURCE_LOCATION (block);
10415 else
10416 break;
10417 }
10418 else if (TREE_CODE (ao) != BLOCK)
10419 break;
10420
10421 block = BLOCK_SUPERCONTEXT (block);
10422 }
10423 return ret;
10424 }
10425
10426
10427 /* If EXP is inlined from an __attribute__((__artificial__))
10428 function, return the location of the original call expression. */
10429
10430 location_t
10431 tree_nonartificial_location (tree exp)
10432 {
10433 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10434
10435 if (loc)
10436 return *loc;
10437 else
10438 return EXPR_LOCATION (exp);
10439 }
10440
10441
10442 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10443 nodes. */
10444
10445 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10446
10447 static hashval_t
10448 cl_option_hash_hash (const void *x)
10449 {
10450 const_tree const t = (const_tree) x;
10451 const char *p;
10452 size_t i;
10453 size_t len = 0;
10454 hashval_t hash = 0;
10455
10456 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10457 {
10458 p = (const char *)TREE_OPTIMIZATION (t);
10459 len = sizeof (struct cl_optimization);
10460 }
10461
10462 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10463 {
10464 p = (const char *)TREE_TARGET_OPTION (t);
10465 len = sizeof (struct cl_target_option);
10466 }
10467
10468 else
10469 gcc_unreachable ();
10470
10471 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10472 something else. */
10473 for (i = 0; i < len; i++)
10474 if (p[i])
10475 hash = (hash << 4) ^ ((i << 2) | p[i]);
10476
10477 return hash;
10478 }
10479
10480 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10481 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10482 same. */
10483
10484 static int
10485 cl_option_hash_eq (const void *x, const void *y)
10486 {
10487 const_tree const xt = (const_tree) x;
10488 const_tree const yt = (const_tree) y;
10489 const char *xp;
10490 const char *yp;
10491 size_t len;
10492
10493 if (TREE_CODE (xt) != TREE_CODE (yt))
10494 return 0;
10495
10496 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10497 {
10498 xp = (const char *)TREE_OPTIMIZATION (xt);
10499 yp = (const char *)TREE_OPTIMIZATION (yt);
10500 len = sizeof (struct cl_optimization);
10501 }
10502
10503 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10504 {
10505 xp = (const char *)TREE_TARGET_OPTION (xt);
10506 yp = (const char *)TREE_TARGET_OPTION (yt);
10507 len = sizeof (struct cl_target_option);
10508 }
10509
10510 else
10511 gcc_unreachable ();
10512
10513 return (memcmp (xp, yp, len) == 0);
10514 }
10515
10516 /* Build an OPTIMIZATION_NODE based on the current options. */
10517
10518 tree
10519 build_optimization_node (void)
10520 {
10521 tree t;
10522 void **slot;
10523
10524 /* Use the cache of optimization nodes. */
10525
10526 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node));
10527
10528 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10529 t = (tree) *slot;
10530 if (!t)
10531 {
10532 /* Insert this one into the hash table. */
10533 t = cl_optimization_node;
10534 *slot = t;
10535
10536 /* Make a new node for next time round. */
10537 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10538 }
10539
10540 return t;
10541 }
10542
10543 /* Build a TARGET_OPTION_NODE based on the current options. */
10544
10545 tree
10546 build_target_option_node (void)
10547 {
10548 tree t;
10549 void **slot;
10550
10551 /* Use the cache of optimization nodes. */
10552
10553 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node));
10554
10555 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10556 t = (tree) *slot;
10557 if (!t)
10558 {
10559 /* Insert this one into the hash table. */
10560 t = cl_target_option_node;
10561 *slot = t;
10562
10563 /* Make a new node for next time round. */
10564 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10565 }
10566
10567 return t;
10568 }
10569
10570 /* Determine the "ultimate origin" of a block. The block may be an inlined
10571 instance of an inlined instance of a block which is local to an inline
10572 function, so we have to trace all of the way back through the origin chain
10573 to find out what sort of node actually served as the original seed for the
10574 given block. */
10575
10576 tree
10577 block_ultimate_origin (const_tree block)
10578 {
10579 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10580
10581 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10582 nodes in the function to point to themselves; ignore that if
10583 we're trying to output the abstract instance of this function. */
10584 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10585 return NULL_TREE;
10586
10587 if (immediate_origin == NULL_TREE)
10588 return NULL_TREE;
10589 else
10590 {
10591 tree ret_val;
10592 tree lookahead = immediate_origin;
10593
10594 do
10595 {
10596 ret_val = lookahead;
10597 lookahead = (TREE_CODE (ret_val) == BLOCK
10598 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10599 }
10600 while (lookahead != NULL && lookahead != ret_val);
10601
10602 /* The block's abstract origin chain may not be the *ultimate* origin of
10603 the block. It could lead to a DECL that has an abstract origin set.
10604 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10605 will give us if it has one). Note that DECL's abstract origins are
10606 supposed to be the most distant ancestor (or so decl_ultimate_origin
10607 claims), so we don't need to loop following the DECL origins. */
10608 if (DECL_P (ret_val))
10609 return DECL_ORIGIN (ret_val);
10610
10611 return ret_val;
10612 }
10613 }
10614
10615 /* Return true if T1 and T2 are equivalent lists. */
10616
10617 bool
10618 list_equal_p (const_tree t1, const_tree t2)
10619 {
10620 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10621 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10622 return false;
10623 return !t1 && !t2;
10624 }
10625
10626 /* Return true iff conversion in EXP generates no instruction. Mark
10627 it inline so that we fully inline into the stripping functions even
10628 though we have two uses of this function. */
10629
10630 static inline bool
10631 tree_nop_conversion (const_tree exp)
10632 {
10633 tree outer_type, inner_type;
10634
10635 if (!CONVERT_EXPR_P (exp)
10636 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10637 return false;
10638 if (TREE_OPERAND (exp, 0) == error_mark_node)
10639 return false;
10640
10641 outer_type = TREE_TYPE (exp);
10642 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10643
10644 /* Use precision rather then machine mode when we can, which gives
10645 the correct answer even for submode (bit-field) types. */
10646 if ((INTEGRAL_TYPE_P (outer_type)
10647 || POINTER_TYPE_P (outer_type)
10648 || TREE_CODE (outer_type) == OFFSET_TYPE)
10649 && (INTEGRAL_TYPE_P (inner_type)
10650 || POINTER_TYPE_P (inner_type)
10651 || TREE_CODE (inner_type) == OFFSET_TYPE))
10652 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10653
10654 /* Otherwise fall back on comparing machine modes (e.g. for
10655 aggregate types, floats). */
10656 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10657 }
10658
10659 /* Return true iff conversion in EXP generates no instruction. Don't
10660 consider conversions changing the signedness. */
10661
10662 static bool
10663 tree_sign_nop_conversion (const_tree exp)
10664 {
10665 tree outer_type, inner_type;
10666
10667 if (!tree_nop_conversion (exp))
10668 return false;
10669
10670 outer_type = TREE_TYPE (exp);
10671 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10672
10673 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10674 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10675 }
10676
10677 /* Strip conversions from EXP according to tree_nop_conversion and
10678 return the resulting expression. */
10679
10680 tree
10681 tree_strip_nop_conversions (tree exp)
10682 {
10683 while (tree_nop_conversion (exp))
10684 exp = TREE_OPERAND (exp, 0);
10685 return exp;
10686 }
10687
10688 /* Strip conversions from EXP according to tree_sign_nop_conversion
10689 and return the resulting expression. */
10690
10691 tree
10692 tree_strip_sign_nop_conversions (tree exp)
10693 {
10694 while (tree_sign_nop_conversion (exp))
10695 exp = TREE_OPERAND (exp, 0);
10696 return exp;
10697 }
10698
10699 static GTY(()) tree gcc_eh_personality_decl;
10700
10701 /* Return the GCC personality function decl. */
10702
10703 tree
10704 lhd_gcc_personality (void)
10705 {
10706 if (!gcc_eh_personality_decl)
10707 gcc_eh_personality_decl
10708 = build_personality_function (USING_SJLJ_EXCEPTIONS
10709 ? "__gcc_personality_sj0"
10710 : "__gcc_personality_v0");
10711
10712 return gcc_eh_personality_decl;
10713 }
10714
10715 #include "gt-tree.h"
This page took 0.611389 seconds and 4 git commands to generate.