]> gcc.gnu.org Git - gcc.git/blob - gcc/tree.c
7746628375dc18c77a48efdf1366ab022148f4a3
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "output.h"
45 #include "target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62 #include "intl.h"
63
64 /* Tree code classes. */
65
66 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
67 #define END_OF_BASE_TREE_CODES tcc_exceptional,
68
69 const enum tree_code_class tree_code_type[] = {
70 #include "all-tree.def"
71 };
72
73 #undef DEFTREECODE
74 #undef END_OF_BASE_TREE_CODES
75
76 /* Table indexed by tree code giving number of expression
77 operands beyond the fixed part of the node structure.
78 Not used for types or decls. */
79
80 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
81 #define END_OF_BASE_TREE_CODES 0,
82
83 const unsigned char tree_code_length[] = {
84 #include "all-tree.def"
85 };
86
87 #undef DEFTREECODE
88 #undef END_OF_BASE_TREE_CODES
89
90 /* Names of tree components.
91 Used for printing out the tree and error messages. */
92 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
93 #define END_OF_BASE_TREE_CODES "@dummy",
94
95 const char *const tree_code_name[] = {
96 #include "all-tree.def"
97 };
98
99 #undef DEFTREECODE
100 #undef END_OF_BASE_TREE_CODES
101
102 /* Each tree code class has an associated string representation.
103 These must correspond to the tree_code_class entries. */
104
105 const char *const tree_code_class_strings[] =
106 {
107 "exceptional",
108 "constant",
109 "type",
110 "declaration",
111 "reference",
112 "comparison",
113 "unary",
114 "binary",
115 "statement",
116 "vl_exp",
117 "expression"
118 };
119
120 /* obstack.[ch] explicitly declined to prototype this. */
121 extern int _obstack_allocated_p (struct obstack *h, void *obj);
122
123 #ifdef GATHER_STATISTICS
124 /* Statistics-gathering stuff. */
125
126 int tree_node_counts[(int) all_kinds];
127 int tree_node_sizes[(int) all_kinds];
128
129 /* Keep in sync with tree.h:enum tree_node_kind. */
130 static const char * const tree_node_kind_names[] = {
131 "decls",
132 "types",
133 "blocks",
134 "stmts",
135 "refs",
136 "exprs",
137 "constants",
138 "identifiers",
139 "vecs",
140 "binfos",
141 "ssa names",
142 "constructors",
143 "random kinds",
144 "lang_decl kinds",
145 "lang_type kinds",
146 "omp clauses",
147 };
148 #endif /* GATHER_STATISTICS */
149
150 /* Unique id for next decl created. */
151 static GTY(()) int next_decl_uid;
152 /* Unique id for next type created. */
153 static GTY(()) int next_type_uid = 1;
154 /* Unique id for next debug decl created. Use negative numbers,
155 to catch erroneous uses. */
156 static GTY(()) int next_debug_decl_uid;
157
158 /* Since we cannot rehash a type after it is in the table, we have to
159 keep the hash code. */
160
161 struct GTY(()) type_hash {
162 unsigned long hash;
163 tree type;
164 };
165
166 /* Initial size of the hash table (rounded to next prime). */
167 #define TYPE_HASH_INITIAL_SIZE 1000
168
169 /* Now here is the hash table. When recording a type, it is added to
170 the slot whose index is the hash code. Note that the hash table is
171 used for several kinds of types (function types, array types and
172 array index range types, for now). While all these live in the
173 same table, they are completely independent, and the hash code is
174 computed differently for each of these. */
175
176 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
177 htab_t type_hash_table;
178
179 /* Hash table and temporary node for larger integer const values. */
180 static GTY (()) tree int_cst_node;
181 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
182 htab_t int_cst_hash_table;
183
184 /* Hash table for optimization flags and target option flags. Use the same
185 hash table for both sets of options. Nodes for building the current
186 optimization and target option nodes. The assumption is most of the time
187 the options created will already be in the hash table, so we avoid
188 allocating and freeing up a node repeatably. */
189 static GTY (()) tree cl_optimization_node;
190 static GTY (()) tree cl_target_option_node;
191 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
192 htab_t cl_option_hash_table;
193
194 /* General tree->tree mapping structure for use in hash tables. */
195
196
197 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
198 htab_t debug_expr_for_decl;
199
200 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
201 htab_t value_expr_for_decl;
202
203 static GTY ((if_marked ("tree_priority_map_marked_p"),
204 param_is (struct tree_priority_map)))
205 htab_t init_priority_for_decl;
206
207 static void set_type_quals (tree, int);
208 static int type_hash_eq (const void *, const void *);
209 static hashval_t type_hash_hash (const void *);
210 static hashval_t int_cst_hash_hash (const void *);
211 static int int_cst_hash_eq (const void *, const void *);
212 static hashval_t cl_option_hash_hash (const void *);
213 static int cl_option_hash_eq (const void *, const void *);
214 static void print_type_hash_statistics (void);
215 static void print_debug_expr_statistics (void);
216 static void print_value_expr_statistics (void);
217 static int type_hash_marked_p (const void *);
218 static unsigned int type_hash_list (const_tree, hashval_t);
219 static unsigned int attribute_hash_list (const_tree, hashval_t);
220
221 tree global_trees[TI_MAX];
222 tree integer_types[itk_none];
223
224 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
225
226 /* Number of operands for each OpenMP clause. */
227 unsigned const char omp_clause_num_ops[] =
228 {
229 0, /* OMP_CLAUSE_ERROR */
230 1, /* OMP_CLAUSE_PRIVATE */
231 1, /* OMP_CLAUSE_SHARED */
232 1, /* OMP_CLAUSE_FIRSTPRIVATE */
233 2, /* OMP_CLAUSE_LASTPRIVATE */
234 4, /* OMP_CLAUSE_REDUCTION */
235 1, /* OMP_CLAUSE_COPYIN */
236 1, /* OMP_CLAUSE_COPYPRIVATE */
237 1, /* OMP_CLAUSE_IF */
238 1, /* OMP_CLAUSE_NUM_THREADS */
239 1, /* OMP_CLAUSE_SCHEDULE */
240 0, /* OMP_CLAUSE_NOWAIT */
241 0, /* OMP_CLAUSE_ORDERED */
242 0, /* OMP_CLAUSE_DEFAULT */
243 3, /* OMP_CLAUSE_COLLAPSE */
244 0 /* OMP_CLAUSE_UNTIED */
245 };
246
247 const char * const omp_clause_code_name[] =
248 {
249 "error_clause",
250 "private",
251 "shared",
252 "firstprivate",
253 "lastprivate",
254 "reduction",
255 "copyin",
256 "copyprivate",
257 "if",
258 "num_threads",
259 "schedule",
260 "nowait",
261 "ordered",
262 "default",
263 "collapse",
264 "untied"
265 };
266
267
268 /* Return the tree node structure used by tree code CODE. */
269
270 static inline enum tree_node_structure_enum
271 tree_node_structure_for_code (enum tree_code code)
272 {
273 switch (TREE_CODE_CLASS (code))
274 {
275 case tcc_declaration:
276 {
277 switch (code)
278 {
279 case FIELD_DECL:
280 return TS_FIELD_DECL;
281 case PARM_DECL:
282 return TS_PARM_DECL;
283 case VAR_DECL:
284 return TS_VAR_DECL;
285 case LABEL_DECL:
286 return TS_LABEL_DECL;
287 case RESULT_DECL:
288 return TS_RESULT_DECL;
289 case DEBUG_EXPR_DECL:
290 return TS_DECL_WRTL;
291 case CONST_DECL:
292 return TS_CONST_DECL;
293 case TYPE_DECL:
294 return TS_TYPE_DECL;
295 case FUNCTION_DECL:
296 return TS_FUNCTION_DECL;
297 case TRANSLATION_UNIT_DECL:
298 return TS_TRANSLATION_UNIT_DECL;
299 default:
300 return TS_DECL_NON_COMMON;
301 }
302 }
303 case tcc_type:
304 return TS_TYPE;
305 case tcc_reference:
306 case tcc_comparison:
307 case tcc_unary:
308 case tcc_binary:
309 case tcc_expression:
310 case tcc_statement:
311 case tcc_vl_exp:
312 return TS_EXP;
313 default: /* tcc_constant and tcc_exceptional */
314 break;
315 }
316 switch (code)
317 {
318 /* tcc_constant cases. */
319 case INTEGER_CST: return TS_INT_CST;
320 case REAL_CST: return TS_REAL_CST;
321 case FIXED_CST: return TS_FIXED_CST;
322 case COMPLEX_CST: return TS_COMPLEX;
323 case VECTOR_CST: return TS_VECTOR;
324 case STRING_CST: return TS_STRING;
325 /* tcc_exceptional cases. */
326 case ERROR_MARK: return TS_COMMON;
327 case IDENTIFIER_NODE: return TS_IDENTIFIER;
328 case TREE_LIST: return TS_LIST;
329 case TREE_VEC: return TS_VEC;
330 case SSA_NAME: return TS_SSA_NAME;
331 case PLACEHOLDER_EXPR: return TS_COMMON;
332 case STATEMENT_LIST: return TS_STATEMENT_LIST;
333 case BLOCK: return TS_BLOCK;
334 case CONSTRUCTOR: return TS_CONSTRUCTOR;
335 case TREE_BINFO: return TS_BINFO;
336 case OMP_CLAUSE: return TS_OMP_CLAUSE;
337 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
338 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
339
340 default:
341 gcc_unreachable ();
342 }
343 }
344
345
346 /* Initialize tree_contains_struct to describe the hierarchy of tree
347 nodes. */
348
349 static void
350 initialize_tree_contains_struct (void)
351 {
352 unsigned i;
353
354 #define MARK_TS_BASE(C) \
355 do { \
356 tree_contains_struct[C][TS_BASE] = 1; \
357 } while (0)
358
359 #define MARK_TS_COMMON(C) \
360 do { \
361 MARK_TS_BASE (C); \
362 tree_contains_struct[C][TS_COMMON] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_MINIMAL(C) \
366 do { \
367 MARK_TS_COMMON (C); \
368 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_COMMON(C) \
372 do { \
373 MARK_TS_DECL_MINIMAL (C); \
374 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WRTL(C) \
378 do { \
379 MARK_TS_DECL_COMMON (C); \
380 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_WITH_VIS(C) \
384 do { \
385 MARK_TS_DECL_WRTL (C); \
386 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
387 } while (0)
388
389 #define MARK_TS_DECL_NON_COMMON(C) \
390 do { \
391 MARK_TS_DECL_WITH_VIS (C); \
392 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
393 } while (0)
394
395 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
396 {
397 enum tree_code code;
398 enum tree_node_structure_enum ts_code;
399
400 code = (enum tree_code) i;
401 ts_code = tree_node_structure_for_code (code);
402
403 /* Mark the TS structure itself. */
404 tree_contains_struct[code][ts_code] = 1;
405
406 /* Mark all the structures that TS is derived from. */
407 switch (ts_code)
408 {
409 case TS_COMMON:
410 MARK_TS_BASE (code);
411 break;
412
413 case TS_INT_CST:
414 case TS_REAL_CST:
415 case TS_FIXED_CST:
416 case TS_VECTOR:
417 case TS_STRING:
418 case TS_COMPLEX:
419 case TS_IDENTIFIER:
420 case TS_DECL_MINIMAL:
421 case TS_TYPE:
422 case TS_LIST:
423 case TS_VEC:
424 case TS_EXP:
425 case TS_SSA_NAME:
426 case TS_BLOCK:
427 case TS_BINFO:
428 case TS_STATEMENT_LIST:
429 case TS_CONSTRUCTOR:
430 case TS_OMP_CLAUSE:
431 case TS_OPTIMIZATION:
432 case TS_TARGET_OPTION:
433 MARK_TS_COMMON (code);
434 break;
435
436 case TS_DECL_COMMON:
437 MARK_TS_DECL_MINIMAL (code);
438 break;
439
440 case TS_DECL_WRTL:
441 MARK_TS_DECL_COMMON (code);
442 break;
443
444 case TS_DECL_NON_COMMON:
445 MARK_TS_DECL_WITH_VIS (code);
446 break;
447
448 case TS_DECL_WITH_VIS:
449 case TS_PARM_DECL:
450 case TS_LABEL_DECL:
451 case TS_RESULT_DECL:
452 case TS_CONST_DECL:
453 MARK_TS_DECL_WRTL (code);
454 break;
455
456 case TS_FIELD_DECL:
457 MARK_TS_DECL_COMMON (code);
458 break;
459
460 case TS_VAR_DECL:
461 MARK_TS_DECL_WITH_VIS (code);
462 break;
463
464 case TS_TYPE_DECL:
465 case TS_FUNCTION_DECL:
466 MARK_TS_DECL_NON_COMMON (code);
467 break;
468
469 case TS_TRANSLATION_UNIT_DECL:
470 MARK_TS_DECL_COMMON (code);
471 break;
472
473 default:
474 gcc_unreachable ();
475 }
476 }
477
478 /* Basic consistency checks for attributes used in fold. */
479 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
480 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
481 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
482 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
483 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
484 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
485 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
486 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
487 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
488 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
489 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
490 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
491 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
492 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
493 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
494 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
495 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
496 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
498 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
499 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
500 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
501 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
502 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
503 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
504 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
505 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
506 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
507 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
508 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
509 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
510 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
511 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
512 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
513 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
514 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
515 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
516 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
517 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
518
519 #undef MARK_TS_BASE
520 #undef MARK_TS_COMMON
521 #undef MARK_TS_DECL_MINIMAL
522 #undef MARK_TS_DECL_COMMON
523 #undef MARK_TS_DECL_WRTL
524 #undef MARK_TS_DECL_WITH_VIS
525 #undef MARK_TS_DECL_NON_COMMON
526 }
527
528
529 /* Init tree.c. */
530
531 void
532 init_ttree (void)
533 {
534 /* Initialize the hash table of types. */
535 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
536 type_hash_eq, 0);
537
538 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
539 tree_decl_map_eq, 0);
540
541 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
542 tree_decl_map_eq, 0);
543 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
544 tree_priority_map_eq, 0);
545
546 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
547 int_cst_hash_eq, NULL);
548
549 int_cst_node = make_node (INTEGER_CST);
550
551 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
552 cl_option_hash_eq, NULL);
553
554 cl_optimization_node = make_node (OPTIMIZATION_NODE);
555 cl_target_option_node = make_node (TARGET_OPTION_NODE);
556
557 /* Initialize the tree_contains_struct array. */
558 initialize_tree_contains_struct ();
559 lang_hooks.init_ts ();
560 }
561
562 \f
563 /* The name of the object as the assembler will see it (but before any
564 translations made by ASM_OUTPUT_LABELREF). Often this is the same
565 as DECL_NAME. It is an IDENTIFIER_NODE. */
566 tree
567 decl_assembler_name (tree decl)
568 {
569 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
570 lang_hooks.set_decl_assembler_name (decl);
571 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
572 }
573
574 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
575
576 bool
577 decl_assembler_name_equal (tree decl, const_tree asmname)
578 {
579 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
580 const char *decl_str;
581 const char *asmname_str;
582 bool test = false;
583
584 if (decl_asmname == asmname)
585 return true;
586
587 decl_str = IDENTIFIER_POINTER (decl_asmname);
588 asmname_str = IDENTIFIER_POINTER (asmname);
589
590
591 /* If the target assembler name was set by the user, things are trickier.
592 We have a leading '*' to begin with. After that, it's arguable what
593 is the correct thing to do with -fleading-underscore. Arguably, we've
594 historically been doing the wrong thing in assemble_alias by always
595 printing the leading underscore. Since we're not changing that, make
596 sure user_label_prefix follows the '*' before matching. */
597 if (decl_str[0] == '*')
598 {
599 size_t ulp_len = strlen (user_label_prefix);
600
601 decl_str ++;
602
603 if (ulp_len == 0)
604 test = true;
605 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
606 decl_str += ulp_len, test=true;
607 else
608 decl_str --;
609 }
610 if (asmname_str[0] == '*')
611 {
612 size_t ulp_len = strlen (user_label_prefix);
613
614 asmname_str ++;
615
616 if (ulp_len == 0)
617 test = true;
618 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
619 asmname_str += ulp_len, test=true;
620 else
621 asmname_str --;
622 }
623
624 if (!test)
625 return false;
626 return strcmp (decl_str, asmname_str) == 0;
627 }
628
629 /* Hash asmnames ignoring the user specified marks. */
630
631 hashval_t
632 decl_assembler_name_hash (const_tree asmname)
633 {
634 if (IDENTIFIER_POINTER (asmname)[0] == '*')
635 {
636 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
637 size_t ulp_len = strlen (user_label_prefix);
638
639 if (ulp_len == 0)
640 ;
641 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
642 decl_str += ulp_len;
643
644 return htab_hash_string (decl_str);
645 }
646
647 return htab_hash_string (IDENTIFIER_POINTER (asmname));
648 }
649
650 /* Compute the number of bytes occupied by a tree with code CODE.
651 This function cannot be used for nodes that have variable sizes,
652 including TREE_VEC, STRING_CST, and CALL_EXPR. */
653 size_t
654 tree_code_size (enum tree_code code)
655 {
656 switch (TREE_CODE_CLASS (code))
657 {
658 case tcc_declaration: /* A decl node */
659 {
660 switch (code)
661 {
662 case FIELD_DECL:
663 return sizeof (struct tree_field_decl);
664 case PARM_DECL:
665 return sizeof (struct tree_parm_decl);
666 case VAR_DECL:
667 return sizeof (struct tree_var_decl);
668 case LABEL_DECL:
669 return sizeof (struct tree_label_decl);
670 case RESULT_DECL:
671 return sizeof (struct tree_result_decl);
672 case CONST_DECL:
673 return sizeof (struct tree_const_decl);
674 case TYPE_DECL:
675 return sizeof (struct tree_type_decl);
676 case FUNCTION_DECL:
677 return sizeof (struct tree_function_decl);
678 case DEBUG_EXPR_DECL:
679 return sizeof (struct tree_decl_with_rtl);
680 default:
681 return sizeof (struct tree_decl_non_common);
682 }
683 }
684
685 case tcc_type: /* a type node */
686 return sizeof (struct tree_type);
687
688 case tcc_reference: /* a reference */
689 case tcc_expression: /* an expression */
690 case tcc_statement: /* an expression with side effects */
691 case tcc_comparison: /* a comparison expression */
692 case tcc_unary: /* a unary arithmetic expression */
693 case tcc_binary: /* a binary arithmetic expression */
694 return (sizeof (struct tree_exp)
695 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
696
697 case tcc_constant: /* a constant */
698 switch (code)
699 {
700 case INTEGER_CST: return sizeof (struct tree_int_cst);
701 case REAL_CST: return sizeof (struct tree_real_cst);
702 case FIXED_CST: return sizeof (struct tree_fixed_cst);
703 case COMPLEX_CST: return sizeof (struct tree_complex);
704 case VECTOR_CST: return sizeof (struct tree_vector);
705 case STRING_CST: gcc_unreachable ();
706 default:
707 return lang_hooks.tree_size (code);
708 }
709
710 case tcc_exceptional: /* something random, like an identifier. */
711 switch (code)
712 {
713 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
714 case TREE_LIST: return sizeof (struct tree_list);
715
716 case ERROR_MARK:
717 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
718
719 case TREE_VEC:
720 case OMP_CLAUSE: gcc_unreachable ();
721
722 case SSA_NAME: return sizeof (struct tree_ssa_name);
723
724 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
725 case BLOCK: return sizeof (struct tree_block);
726 case CONSTRUCTOR: return sizeof (struct tree_constructor);
727 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
728 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
729
730 default:
731 return lang_hooks.tree_size (code);
732 }
733
734 default:
735 gcc_unreachable ();
736 }
737 }
738
739 /* Compute the number of bytes occupied by NODE. This routine only
740 looks at TREE_CODE, except for those nodes that have variable sizes. */
741 size_t
742 tree_size (const_tree node)
743 {
744 const enum tree_code code = TREE_CODE (node);
745 switch (code)
746 {
747 case TREE_BINFO:
748 return (offsetof (struct tree_binfo, base_binfos)
749 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
750
751 case TREE_VEC:
752 return (sizeof (struct tree_vec)
753 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
754
755 case STRING_CST:
756 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
757
758 case OMP_CLAUSE:
759 return (sizeof (struct tree_omp_clause)
760 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
761 * sizeof (tree));
762
763 default:
764 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
765 return (sizeof (struct tree_exp)
766 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
767 else
768 return tree_code_size (code);
769 }
770 }
771
772 /* Return a newly allocated node of code CODE. For decl and type
773 nodes, some other fields are initialized. The rest of the node is
774 initialized to zero. This function cannot be used for TREE_VEC or
775 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
776
777 Achoo! I got a code in the node. */
778
779 tree
780 make_node_stat (enum tree_code code MEM_STAT_DECL)
781 {
782 tree t;
783 enum tree_code_class type = TREE_CODE_CLASS (code);
784 size_t length = tree_code_size (code);
785 #ifdef GATHER_STATISTICS
786 tree_node_kind kind;
787
788 switch (type)
789 {
790 case tcc_declaration: /* A decl node */
791 kind = d_kind;
792 break;
793
794 case tcc_type: /* a type node */
795 kind = t_kind;
796 break;
797
798 case tcc_statement: /* an expression with side effects */
799 kind = s_kind;
800 break;
801
802 case tcc_reference: /* a reference */
803 kind = r_kind;
804 break;
805
806 case tcc_expression: /* an expression */
807 case tcc_comparison: /* a comparison expression */
808 case tcc_unary: /* a unary arithmetic expression */
809 case tcc_binary: /* a binary arithmetic expression */
810 kind = e_kind;
811 break;
812
813 case tcc_constant: /* a constant */
814 kind = c_kind;
815 break;
816
817 case tcc_exceptional: /* something random, like an identifier. */
818 switch (code)
819 {
820 case IDENTIFIER_NODE:
821 kind = id_kind;
822 break;
823
824 case TREE_VEC:
825 kind = vec_kind;
826 break;
827
828 case TREE_BINFO:
829 kind = binfo_kind;
830 break;
831
832 case SSA_NAME:
833 kind = ssa_name_kind;
834 break;
835
836 case BLOCK:
837 kind = b_kind;
838 break;
839
840 case CONSTRUCTOR:
841 kind = constr_kind;
842 break;
843
844 default:
845 kind = x_kind;
846 break;
847 }
848 break;
849
850 default:
851 gcc_unreachable ();
852 }
853
854 tree_node_counts[(int) kind]++;
855 tree_node_sizes[(int) kind] += length;
856 #endif
857
858 t = ggc_alloc_zone_cleared_tree_node_stat (
859 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
860 length PASS_MEM_STAT);
861 TREE_SET_CODE (t, code);
862
863 switch (type)
864 {
865 case tcc_statement:
866 TREE_SIDE_EFFECTS (t) = 1;
867 break;
868
869 case tcc_declaration:
870 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
871 {
872 if (code == FUNCTION_DECL)
873 {
874 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
875 DECL_MODE (t) = FUNCTION_MODE;
876 }
877 else
878 DECL_ALIGN (t) = 1;
879 }
880 DECL_SOURCE_LOCATION (t) = input_location;
881 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
882 DECL_UID (t) = --next_debug_decl_uid;
883 else
884 {
885 DECL_UID (t) = next_decl_uid++;
886 SET_DECL_PT_UID (t, -1);
887 }
888 if (TREE_CODE (t) == LABEL_DECL)
889 LABEL_DECL_UID (t) = -1;
890
891 break;
892
893 case tcc_type:
894 TYPE_UID (t) = next_type_uid++;
895 TYPE_ALIGN (t) = BITS_PER_UNIT;
896 TYPE_USER_ALIGN (t) = 0;
897 TYPE_MAIN_VARIANT (t) = t;
898 TYPE_CANONICAL (t) = t;
899
900 /* Default to no attributes for type, but let target change that. */
901 TYPE_ATTRIBUTES (t) = NULL_TREE;
902 targetm.set_default_type_attributes (t);
903
904 /* We have not yet computed the alias set for this type. */
905 TYPE_ALIAS_SET (t) = -1;
906 break;
907
908 case tcc_constant:
909 TREE_CONSTANT (t) = 1;
910 break;
911
912 case tcc_expression:
913 switch (code)
914 {
915 case INIT_EXPR:
916 case MODIFY_EXPR:
917 case VA_ARG_EXPR:
918 case PREDECREMENT_EXPR:
919 case PREINCREMENT_EXPR:
920 case POSTDECREMENT_EXPR:
921 case POSTINCREMENT_EXPR:
922 /* All of these have side-effects, no matter what their
923 operands are. */
924 TREE_SIDE_EFFECTS (t) = 1;
925 break;
926
927 default:
928 break;
929 }
930 break;
931
932 default:
933 /* Other classes need no special treatment. */
934 break;
935 }
936
937 return t;
938 }
939 \f
940 /* Return a new node with the same contents as NODE except that its
941 TREE_CHAIN is zero and it has a fresh uid. */
942
943 tree
944 copy_node_stat (tree node MEM_STAT_DECL)
945 {
946 tree t;
947 enum tree_code code = TREE_CODE (node);
948 size_t length;
949
950 gcc_assert (code != STATEMENT_LIST);
951
952 length = tree_size (node);
953 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
954 memcpy (t, node, length);
955
956 TREE_CHAIN (t) = 0;
957 TREE_ASM_WRITTEN (t) = 0;
958 TREE_VISITED (t) = 0;
959 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
960 *DECL_VAR_ANN_PTR (t) = 0;
961
962 if (TREE_CODE_CLASS (code) == tcc_declaration)
963 {
964 if (code == DEBUG_EXPR_DECL)
965 DECL_UID (t) = --next_debug_decl_uid;
966 else
967 {
968 DECL_UID (t) = next_decl_uid++;
969 if (DECL_PT_UID_SET_P (node))
970 SET_DECL_PT_UID (t, DECL_PT_UID (node));
971 }
972 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
973 && DECL_HAS_VALUE_EXPR_P (node))
974 {
975 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
976 DECL_HAS_VALUE_EXPR_P (t) = 1;
977 }
978 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
979 {
980 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
981 DECL_HAS_INIT_PRIORITY_P (t) = 1;
982 }
983 }
984 else if (TREE_CODE_CLASS (code) == tcc_type)
985 {
986 TYPE_UID (t) = next_type_uid++;
987 /* The following is so that the debug code for
988 the copy is different from the original type.
989 The two statements usually duplicate each other
990 (because they clear fields of the same union),
991 but the optimizer should catch that. */
992 TYPE_SYMTAB_POINTER (t) = 0;
993 TYPE_SYMTAB_ADDRESS (t) = 0;
994
995 /* Do not copy the values cache. */
996 if (TYPE_CACHED_VALUES_P(t))
997 {
998 TYPE_CACHED_VALUES_P (t) = 0;
999 TYPE_CACHED_VALUES (t) = NULL_TREE;
1000 }
1001 }
1002
1003 return t;
1004 }
1005
1006 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1007 For example, this can copy a list made of TREE_LIST nodes. */
1008
1009 tree
1010 copy_list (tree list)
1011 {
1012 tree head;
1013 tree prev, next;
1014
1015 if (list == 0)
1016 return 0;
1017
1018 head = prev = copy_node (list);
1019 next = TREE_CHAIN (list);
1020 while (next)
1021 {
1022 TREE_CHAIN (prev) = copy_node (next);
1023 prev = TREE_CHAIN (prev);
1024 next = TREE_CHAIN (next);
1025 }
1026 return head;
1027 }
1028
1029 \f
1030 /* Create an INT_CST node with a LOW value sign extended. */
1031
1032 tree
1033 build_int_cst (tree type, HOST_WIDE_INT low)
1034 {
1035 /* Support legacy code. */
1036 if (!type)
1037 type = integer_type_node;
1038
1039 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1040 }
1041
1042 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1043 if it is negative. This function is similar to build_int_cst, but
1044 the extra bits outside of the type precision are cleared. Constants
1045 with these extra bits may confuse the fold so that it detects overflows
1046 even in cases when they do not occur, and in general should be avoided.
1047 We cannot however make this a default behavior of build_int_cst without
1048 more intrusive changes, since there are parts of gcc that rely on the extra
1049 precision of the integer constants. */
1050
1051 tree
1052 build_int_cst_type (tree type, HOST_WIDE_INT low)
1053 {
1054 gcc_assert (type);
1055
1056 return double_int_to_tree (type, shwi_to_double_int (low));
1057 }
1058
1059 /* Constructs tree in type TYPE from with value given by CST. Signedness
1060 of CST is assumed to be the same as the signedness of TYPE. */
1061
1062 tree
1063 double_int_to_tree (tree type, double_int cst)
1064 {
1065 /* Size types *are* sign extended. */
1066 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1067 || (TREE_CODE (type) == INTEGER_TYPE
1068 && TYPE_IS_SIZETYPE (type)));
1069
1070 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1071
1072 return build_int_cst_wide (type, cst.low, cst.high);
1073 }
1074
1075 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1076 to be the same as the signedness of TYPE. */
1077
1078 bool
1079 double_int_fits_to_tree_p (const_tree type, double_int cst)
1080 {
1081 /* Size types *are* sign extended. */
1082 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1083 || (TREE_CODE (type) == INTEGER_TYPE
1084 && TYPE_IS_SIZETYPE (type)));
1085
1086 double_int ext
1087 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1088
1089 return double_int_equal_p (cst, ext);
1090 }
1091
1092 /* We force the double_int CST to the range of the type TYPE by sign or
1093 zero extending it. OVERFLOWABLE indicates if we are interested in
1094 overflow of the value, when >0 we are only interested in signed
1095 overflow, for <0 we are interested in any overflow. OVERFLOWED
1096 indicates whether overflow has already occurred. CONST_OVERFLOWED
1097 indicates whether constant overflow has already occurred. We force
1098 T's value to be within range of T's type (by setting to 0 or 1 all
1099 the bits outside the type's range). We set TREE_OVERFLOWED if,
1100 OVERFLOWED is nonzero,
1101 or OVERFLOWABLE is >0 and signed overflow occurs
1102 or OVERFLOWABLE is <0 and any overflow occurs
1103 We return a new tree node for the extended double_int. The node
1104 is shared if no overflow flags are set. */
1105
1106
1107 tree
1108 force_fit_type_double (tree type, double_int cst, int overflowable,
1109 bool overflowed)
1110 {
1111 bool sign_extended_type;
1112
1113 /* Size types *are* sign extended. */
1114 sign_extended_type = (!TYPE_UNSIGNED (type)
1115 || (TREE_CODE (type) == INTEGER_TYPE
1116 && TYPE_IS_SIZETYPE (type)));
1117
1118 /* If we need to set overflow flags, return a new unshared node. */
1119 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1120 {
1121 if (overflowed
1122 || overflowable < 0
1123 || (overflowable > 0 && sign_extended_type))
1124 {
1125 tree t = make_node (INTEGER_CST);
1126 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1127 !sign_extended_type);
1128 TREE_TYPE (t) = type;
1129 TREE_OVERFLOW (t) = 1;
1130 return t;
1131 }
1132 }
1133
1134 /* Else build a shared node. */
1135 return double_int_to_tree (type, cst);
1136 }
1137
1138 /* These are the hash table functions for the hash table of INTEGER_CST
1139 nodes of a sizetype. */
1140
1141 /* Return the hash code code X, an INTEGER_CST. */
1142
1143 static hashval_t
1144 int_cst_hash_hash (const void *x)
1145 {
1146 const_tree const t = (const_tree) x;
1147
1148 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1149 ^ htab_hash_pointer (TREE_TYPE (t)));
1150 }
1151
1152 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1153 is the same as that given by *Y, which is the same. */
1154
1155 static int
1156 int_cst_hash_eq (const void *x, const void *y)
1157 {
1158 const_tree const xt = (const_tree) x;
1159 const_tree const yt = (const_tree) y;
1160
1161 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1162 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1163 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1164 }
1165
1166 /* Create an INT_CST node of TYPE and value HI:LOW.
1167 The returned node is always shared. For small integers we use a
1168 per-type vector cache, for larger ones we use a single hash table. */
1169
1170 tree
1171 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1172 {
1173 tree t;
1174 int ix = -1;
1175 int limit = 0;
1176
1177 gcc_assert (type);
1178
1179 switch (TREE_CODE (type))
1180 {
1181 case POINTER_TYPE:
1182 case REFERENCE_TYPE:
1183 /* Cache NULL pointer. */
1184 if (!hi && !low)
1185 {
1186 limit = 1;
1187 ix = 0;
1188 }
1189 break;
1190
1191 case BOOLEAN_TYPE:
1192 /* Cache false or true. */
1193 limit = 2;
1194 if (!hi && low < 2)
1195 ix = low;
1196 break;
1197
1198 case INTEGER_TYPE:
1199 case OFFSET_TYPE:
1200 if (TYPE_UNSIGNED (type))
1201 {
1202 /* Cache 0..N */
1203 limit = INTEGER_SHARE_LIMIT;
1204 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1205 ix = low;
1206 }
1207 else
1208 {
1209 /* Cache -1..N */
1210 limit = INTEGER_SHARE_LIMIT + 1;
1211 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1212 ix = low + 1;
1213 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1214 ix = 0;
1215 }
1216 break;
1217
1218 case ENUMERAL_TYPE:
1219 break;
1220
1221 default:
1222 gcc_unreachable ();
1223 }
1224
1225 if (ix >= 0)
1226 {
1227 /* Look for it in the type's vector of small shared ints. */
1228 if (!TYPE_CACHED_VALUES_P (type))
1229 {
1230 TYPE_CACHED_VALUES_P (type) = 1;
1231 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1232 }
1233
1234 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1235 if (t)
1236 {
1237 /* Make sure no one is clobbering the shared constant. */
1238 gcc_assert (TREE_TYPE (t) == type);
1239 gcc_assert (TREE_INT_CST_LOW (t) == low);
1240 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1241 }
1242 else
1243 {
1244 /* Create a new shared int. */
1245 t = make_node (INTEGER_CST);
1246
1247 TREE_INT_CST_LOW (t) = low;
1248 TREE_INT_CST_HIGH (t) = hi;
1249 TREE_TYPE (t) = type;
1250
1251 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1252 }
1253 }
1254 else
1255 {
1256 /* Use the cache of larger shared ints. */
1257 void **slot;
1258
1259 TREE_INT_CST_LOW (int_cst_node) = low;
1260 TREE_INT_CST_HIGH (int_cst_node) = hi;
1261 TREE_TYPE (int_cst_node) = type;
1262
1263 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1264 t = (tree) *slot;
1265 if (!t)
1266 {
1267 /* Insert this one into the hash table. */
1268 t = int_cst_node;
1269 *slot = t;
1270 /* Make a new node for next time round. */
1271 int_cst_node = make_node (INTEGER_CST);
1272 }
1273 }
1274
1275 return t;
1276 }
1277
1278 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1279 and the rest are zeros. */
1280
1281 tree
1282 build_low_bits_mask (tree type, unsigned bits)
1283 {
1284 double_int mask;
1285
1286 gcc_assert (bits <= TYPE_PRECISION (type));
1287
1288 if (bits == TYPE_PRECISION (type)
1289 && !TYPE_UNSIGNED (type))
1290 /* Sign extended all-ones mask. */
1291 mask = double_int_minus_one;
1292 else
1293 mask = double_int_mask (bits);
1294
1295 return build_int_cst_wide (type, mask.low, mask.high);
1296 }
1297
1298 /* Checks that X is integer constant that can be expressed in (unsigned)
1299 HOST_WIDE_INT without loss of precision. */
1300
1301 bool
1302 cst_and_fits_in_hwi (const_tree x)
1303 {
1304 if (TREE_CODE (x) != INTEGER_CST)
1305 return false;
1306
1307 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1308 return false;
1309
1310 return (TREE_INT_CST_HIGH (x) == 0
1311 || TREE_INT_CST_HIGH (x) == -1);
1312 }
1313
1314 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1315 are in a list pointed to by VALS. */
1316
1317 tree
1318 build_vector (tree type, tree vals)
1319 {
1320 tree v = make_node (VECTOR_CST);
1321 int over = 0;
1322 tree link;
1323 unsigned cnt = 0;
1324
1325 TREE_VECTOR_CST_ELTS (v) = vals;
1326 TREE_TYPE (v) = type;
1327
1328 /* Iterate through elements and check for overflow. */
1329 for (link = vals; link; link = TREE_CHAIN (link))
1330 {
1331 tree value = TREE_VALUE (link);
1332 cnt++;
1333
1334 /* Don't crash if we get an address constant. */
1335 if (!CONSTANT_CLASS_P (value))
1336 continue;
1337
1338 over |= TREE_OVERFLOW (value);
1339 }
1340
1341 gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
1342
1343 TREE_OVERFLOW (v) = over;
1344 return v;
1345 }
1346
1347 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1348 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1349
1350 tree
1351 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1352 {
1353 tree list = NULL_TREE;
1354 unsigned HOST_WIDE_INT idx;
1355 tree value;
1356
1357 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1358 list = tree_cons (NULL_TREE, value, list);
1359 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1360 list = tree_cons (NULL_TREE,
1361 fold_convert (TREE_TYPE (type), integer_zero_node), list);
1362 return build_vector (type, nreverse (list));
1363 }
1364
1365 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1366 are in the VEC pointed to by VALS. */
1367 tree
1368 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1369 {
1370 tree c = make_node (CONSTRUCTOR);
1371 unsigned int i;
1372 constructor_elt *elt;
1373 bool constant_p = true;
1374
1375 TREE_TYPE (c) = type;
1376 CONSTRUCTOR_ELTS (c) = vals;
1377
1378 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1379 if (!TREE_CONSTANT (elt->value))
1380 {
1381 constant_p = false;
1382 break;
1383 }
1384
1385 TREE_CONSTANT (c) = constant_p;
1386
1387 return c;
1388 }
1389
1390 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1391 INDEX and VALUE. */
1392 tree
1393 build_constructor_single (tree type, tree index, tree value)
1394 {
1395 VEC(constructor_elt,gc) *v;
1396 constructor_elt *elt;
1397
1398 v = VEC_alloc (constructor_elt, gc, 1);
1399 elt = VEC_quick_push (constructor_elt, v, NULL);
1400 elt->index = index;
1401 elt->value = value;
1402
1403 return build_constructor (type, v);
1404 }
1405
1406
1407 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1408 are in a list pointed to by VALS. */
1409 tree
1410 build_constructor_from_list (tree type, tree vals)
1411 {
1412 tree t;
1413 VEC(constructor_elt,gc) *v = NULL;
1414
1415 if (vals)
1416 {
1417 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1418 for (t = vals; t; t = TREE_CHAIN (t))
1419 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1420 }
1421
1422 return build_constructor (type, v);
1423 }
1424
1425 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1426
1427 tree
1428 build_fixed (tree type, FIXED_VALUE_TYPE f)
1429 {
1430 tree v;
1431 FIXED_VALUE_TYPE *fp;
1432
1433 v = make_node (FIXED_CST);
1434 fp = ggc_alloc_fixed_value ();
1435 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1436
1437 TREE_TYPE (v) = type;
1438 TREE_FIXED_CST_PTR (v) = fp;
1439 return v;
1440 }
1441
1442 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1443
1444 tree
1445 build_real (tree type, REAL_VALUE_TYPE d)
1446 {
1447 tree v;
1448 REAL_VALUE_TYPE *dp;
1449 int overflow = 0;
1450
1451 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1452 Consider doing it via real_convert now. */
1453
1454 v = make_node (REAL_CST);
1455 dp = ggc_alloc_real_value ();
1456 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1457
1458 TREE_TYPE (v) = type;
1459 TREE_REAL_CST_PTR (v) = dp;
1460 TREE_OVERFLOW (v) = overflow;
1461 return v;
1462 }
1463
1464 /* Return a new REAL_CST node whose type is TYPE
1465 and whose value is the integer value of the INTEGER_CST node I. */
1466
1467 REAL_VALUE_TYPE
1468 real_value_from_int_cst (const_tree type, const_tree i)
1469 {
1470 REAL_VALUE_TYPE d;
1471
1472 /* Clear all bits of the real value type so that we can later do
1473 bitwise comparisons to see if two values are the same. */
1474 memset (&d, 0, sizeof d);
1475
1476 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1477 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1478 TYPE_UNSIGNED (TREE_TYPE (i)));
1479 return d;
1480 }
1481
1482 /* Given a tree representing an integer constant I, return a tree
1483 representing the same value as a floating-point constant of type TYPE. */
1484
1485 tree
1486 build_real_from_int_cst (tree type, const_tree i)
1487 {
1488 tree v;
1489 int overflow = TREE_OVERFLOW (i);
1490
1491 v = build_real (type, real_value_from_int_cst (type, i));
1492
1493 TREE_OVERFLOW (v) |= overflow;
1494 return v;
1495 }
1496
1497 /* Return a newly constructed STRING_CST node whose value is
1498 the LEN characters at STR.
1499 The TREE_TYPE is not initialized. */
1500
1501 tree
1502 build_string (int len, const char *str)
1503 {
1504 tree s;
1505 size_t length;
1506
1507 /* Do not waste bytes provided by padding of struct tree_string. */
1508 length = len + offsetof (struct tree_string, str) + 1;
1509
1510 #ifdef GATHER_STATISTICS
1511 tree_node_counts[(int) c_kind]++;
1512 tree_node_sizes[(int) c_kind] += length;
1513 #endif
1514
1515 s = ggc_alloc_tree_node (length);
1516
1517 memset (s, 0, sizeof (struct tree_common));
1518 TREE_SET_CODE (s, STRING_CST);
1519 TREE_CONSTANT (s) = 1;
1520 TREE_STRING_LENGTH (s) = len;
1521 memcpy (s->string.str, str, len);
1522 s->string.str[len] = '\0';
1523
1524 return s;
1525 }
1526
1527 /* Return a newly constructed COMPLEX_CST node whose value is
1528 specified by the real and imaginary parts REAL and IMAG.
1529 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1530 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1531
1532 tree
1533 build_complex (tree type, tree real, tree imag)
1534 {
1535 tree t = make_node (COMPLEX_CST);
1536
1537 TREE_REALPART (t) = real;
1538 TREE_IMAGPART (t) = imag;
1539 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1540 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1541 return t;
1542 }
1543
1544 /* Return a constant of arithmetic type TYPE which is the
1545 multiplicative identity of the set TYPE. */
1546
1547 tree
1548 build_one_cst (tree type)
1549 {
1550 switch (TREE_CODE (type))
1551 {
1552 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1553 case POINTER_TYPE: case REFERENCE_TYPE:
1554 case OFFSET_TYPE:
1555 return build_int_cst (type, 1);
1556
1557 case REAL_TYPE:
1558 return build_real (type, dconst1);
1559
1560 case FIXED_POINT_TYPE:
1561 /* We can only generate 1 for accum types. */
1562 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1563 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1564
1565 case VECTOR_TYPE:
1566 {
1567 tree scalar, cst;
1568 int i;
1569
1570 scalar = build_one_cst (TREE_TYPE (type));
1571
1572 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1573 cst = NULL_TREE;
1574 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1575 cst = tree_cons (NULL_TREE, scalar, cst);
1576
1577 return build_vector (type, cst);
1578 }
1579
1580 case COMPLEX_TYPE:
1581 return build_complex (type,
1582 build_one_cst (TREE_TYPE (type)),
1583 fold_convert (TREE_TYPE (type), integer_zero_node));
1584
1585 default:
1586 gcc_unreachable ();
1587 }
1588 }
1589
1590 /* Build 0 constant of type TYPE. This is used by constructor folding and thus
1591 the constant should correspond zero in memory representation. */
1592
1593 tree
1594 build_zero_cst (tree type)
1595 {
1596 if (!AGGREGATE_TYPE_P (type))
1597 return fold_convert (type, integer_zero_node);
1598 return build_constructor (type, NULL);
1599 }
1600
1601
1602 /* Build a BINFO with LEN language slots. */
1603
1604 tree
1605 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1606 {
1607 tree t;
1608 size_t length = (offsetof (struct tree_binfo, base_binfos)
1609 + VEC_embedded_size (tree, base_binfos));
1610
1611 #ifdef GATHER_STATISTICS
1612 tree_node_counts[(int) binfo_kind]++;
1613 tree_node_sizes[(int) binfo_kind] += length;
1614 #endif
1615
1616 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1617
1618 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1619
1620 TREE_SET_CODE (t, TREE_BINFO);
1621
1622 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1623
1624 return t;
1625 }
1626
1627
1628 /* Build a newly constructed TREE_VEC node of length LEN. */
1629
1630 tree
1631 make_tree_vec_stat (int len MEM_STAT_DECL)
1632 {
1633 tree t;
1634 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1635
1636 #ifdef GATHER_STATISTICS
1637 tree_node_counts[(int) vec_kind]++;
1638 tree_node_sizes[(int) vec_kind] += length;
1639 #endif
1640
1641 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1642
1643 TREE_SET_CODE (t, TREE_VEC);
1644 TREE_VEC_LENGTH (t) = len;
1645
1646 return t;
1647 }
1648 \f
1649 /* Return 1 if EXPR is the integer constant zero or a complex constant
1650 of zero. */
1651
1652 int
1653 integer_zerop (const_tree expr)
1654 {
1655 STRIP_NOPS (expr);
1656
1657 return ((TREE_CODE (expr) == INTEGER_CST
1658 && TREE_INT_CST_LOW (expr) == 0
1659 && TREE_INT_CST_HIGH (expr) == 0)
1660 || (TREE_CODE (expr) == COMPLEX_CST
1661 && integer_zerop (TREE_REALPART (expr))
1662 && integer_zerop (TREE_IMAGPART (expr))));
1663 }
1664
1665 /* Return 1 if EXPR is the integer constant one or the corresponding
1666 complex constant. */
1667
1668 int
1669 integer_onep (const_tree expr)
1670 {
1671 STRIP_NOPS (expr);
1672
1673 return ((TREE_CODE (expr) == INTEGER_CST
1674 && TREE_INT_CST_LOW (expr) == 1
1675 && TREE_INT_CST_HIGH (expr) == 0)
1676 || (TREE_CODE (expr) == COMPLEX_CST
1677 && integer_onep (TREE_REALPART (expr))
1678 && integer_zerop (TREE_IMAGPART (expr))));
1679 }
1680
1681 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1682 it contains. Likewise for the corresponding complex constant. */
1683
1684 int
1685 integer_all_onesp (const_tree expr)
1686 {
1687 int prec;
1688 int uns;
1689
1690 STRIP_NOPS (expr);
1691
1692 if (TREE_CODE (expr) == COMPLEX_CST
1693 && integer_all_onesp (TREE_REALPART (expr))
1694 && integer_zerop (TREE_IMAGPART (expr)))
1695 return 1;
1696
1697 else if (TREE_CODE (expr) != INTEGER_CST)
1698 return 0;
1699
1700 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1701 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1702 && TREE_INT_CST_HIGH (expr) == -1)
1703 return 1;
1704 if (!uns)
1705 return 0;
1706
1707 /* Note that using TYPE_PRECISION here is wrong. We care about the
1708 actual bits, not the (arbitrary) range of the type. */
1709 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1710 if (prec >= HOST_BITS_PER_WIDE_INT)
1711 {
1712 HOST_WIDE_INT high_value;
1713 int shift_amount;
1714
1715 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1716
1717 /* Can not handle precisions greater than twice the host int size. */
1718 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1719 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1720 /* Shifting by the host word size is undefined according to the ANSI
1721 standard, so we must handle this as a special case. */
1722 high_value = -1;
1723 else
1724 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1725
1726 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1727 && TREE_INT_CST_HIGH (expr) == high_value);
1728 }
1729 else
1730 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1731 }
1732
1733 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1734 one bit on). */
1735
1736 int
1737 integer_pow2p (const_tree expr)
1738 {
1739 int prec;
1740 HOST_WIDE_INT high, low;
1741
1742 STRIP_NOPS (expr);
1743
1744 if (TREE_CODE (expr) == COMPLEX_CST
1745 && integer_pow2p (TREE_REALPART (expr))
1746 && integer_zerop (TREE_IMAGPART (expr)))
1747 return 1;
1748
1749 if (TREE_CODE (expr) != INTEGER_CST)
1750 return 0;
1751
1752 prec = TYPE_PRECISION (TREE_TYPE (expr));
1753 high = TREE_INT_CST_HIGH (expr);
1754 low = TREE_INT_CST_LOW (expr);
1755
1756 /* First clear all bits that are beyond the type's precision in case
1757 we've been sign extended. */
1758
1759 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1760 ;
1761 else if (prec > HOST_BITS_PER_WIDE_INT)
1762 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1763 else
1764 {
1765 high = 0;
1766 if (prec < HOST_BITS_PER_WIDE_INT)
1767 low &= ~((HOST_WIDE_INT) (-1) << prec);
1768 }
1769
1770 if (high == 0 && low == 0)
1771 return 0;
1772
1773 return ((high == 0 && (low & (low - 1)) == 0)
1774 || (low == 0 && (high & (high - 1)) == 0));
1775 }
1776
1777 /* Return 1 if EXPR is an integer constant other than zero or a
1778 complex constant other than zero. */
1779
1780 int
1781 integer_nonzerop (const_tree expr)
1782 {
1783 STRIP_NOPS (expr);
1784
1785 return ((TREE_CODE (expr) == INTEGER_CST
1786 && (TREE_INT_CST_LOW (expr) != 0
1787 || TREE_INT_CST_HIGH (expr) != 0))
1788 || (TREE_CODE (expr) == COMPLEX_CST
1789 && (integer_nonzerop (TREE_REALPART (expr))
1790 || integer_nonzerop (TREE_IMAGPART (expr)))));
1791 }
1792
1793 /* Return 1 if EXPR is the fixed-point constant zero. */
1794
1795 int
1796 fixed_zerop (const_tree expr)
1797 {
1798 return (TREE_CODE (expr) == FIXED_CST
1799 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1800 }
1801
1802 /* Return the power of two represented by a tree node known to be a
1803 power of two. */
1804
1805 int
1806 tree_log2 (const_tree expr)
1807 {
1808 int prec;
1809 HOST_WIDE_INT high, low;
1810
1811 STRIP_NOPS (expr);
1812
1813 if (TREE_CODE (expr) == COMPLEX_CST)
1814 return tree_log2 (TREE_REALPART (expr));
1815
1816 prec = TYPE_PRECISION (TREE_TYPE (expr));
1817 high = TREE_INT_CST_HIGH (expr);
1818 low = TREE_INT_CST_LOW (expr);
1819
1820 /* First clear all bits that are beyond the type's precision in case
1821 we've been sign extended. */
1822
1823 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1824 ;
1825 else if (prec > HOST_BITS_PER_WIDE_INT)
1826 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1827 else
1828 {
1829 high = 0;
1830 if (prec < HOST_BITS_PER_WIDE_INT)
1831 low &= ~((HOST_WIDE_INT) (-1) << prec);
1832 }
1833
1834 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1835 : exact_log2 (low));
1836 }
1837
1838 /* Similar, but return the largest integer Y such that 2 ** Y is less
1839 than or equal to EXPR. */
1840
1841 int
1842 tree_floor_log2 (const_tree expr)
1843 {
1844 int prec;
1845 HOST_WIDE_INT high, low;
1846
1847 STRIP_NOPS (expr);
1848
1849 if (TREE_CODE (expr) == COMPLEX_CST)
1850 return tree_log2 (TREE_REALPART (expr));
1851
1852 prec = TYPE_PRECISION (TREE_TYPE (expr));
1853 high = TREE_INT_CST_HIGH (expr);
1854 low = TREE_INT_CST_LOW (expr);
1855
1856 /* First clear all bits that are beyond the type's precision in case
1857 we've been sign extended. Ignore if type's precision hasn't been set
1858 since what we are doing is setting it. */
1859
1860 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1861 ;
1862 else if (prec > HOST_BITS_PER_WIDE_INT)
1863 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1864 else
1865 {
1866 high = 0;
1867 if (prec < HOST_BITS_PER_WIDE_INT)
1868 low &= ~((HOST_WIDE_INT) (-1) << prec);
1869 }
1870
1871 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1872 : floor_log2 (low));
1873 }
1874
1875 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1876 decimal float constants, so don't return 1 for them. */
1877
1878 int
1879 real_zerop (const_tree expr)
1880 {
1881 STRIP_NOPS (expr);
1882
1883 return ((TREE_CODE (expr) == REAL_CST
1884 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1885 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1886 || (TREE_CODE (expr) == COMPLEX_CST
1887 && real_zerop (TREE_REALPART (expr))
1888 && real_zerop (TREE_IMAGPART (expr))));
1889 }
1890
1891 /* Return 1 if EXPR is the real constant one in real or complex form.
1892 Trailing zeroes matter for decimal float constants, so don't return
1893 1 for them. */
1894
1895 int
1896 real_onep (const_tree expr)
1897 {
1898 STRIP_NOPS (expr);
1899
1900 return ((TREE_CODE (expr) == REAL_CST
1901 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1902 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1903 || (TREE_CODE (expr) == COMPLEX_CST
1904 && real_onep (TREE_REALPART (expr))
1905 && real_zerop (TREE_IMAGPART (expr))));
1906 }
1907
1908 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1909 for decimal float constants, so don't return 1 for them. */
1910
1911 int
1912 real_twop (const_tree expr)
1913 {
1914 STRIP_NOPS (expr);
1915
1916 return ((TREE_CODE (expr) == REAL_CST
1917 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1918 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1919 || (TREE_CODE (expr) == COMPLEX_CST
1920 && real_twop (TREE_REALPART (expr))
1921 && real_zerop (TREE_IMAGPART (expr))));
1922 }
1923
1924 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1925 matter for decimal float constants, so don't return 1 for them. */
1926
1927 int
1928 real_minus_onep (const_tree expr)
1929 {
1930 STRIP_NOPS (expr);
1931
1932 return ((TREE_CODE (expr) == REAL_CST
1933 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1934 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1935 || (TREE_CODE (expr) == COMPLEX_CST
1936 && real_minus_onep (TREE_REALPART (expr))
1937 && real_zerop (TREE_IMAGPART (expr))));
1938 }
1939
1940 /* Nonzero if EXP is a constant or a cast of a constant. */
1941
1942 int
1943 really_constant_p (const_tree exp)
1944 {
1945 /* This is not quite the same as STRIP_NOPS. It does more. */
1946 while (CONVERT_EXPR_P (exp)
1947 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1948 exp = TREE_OPERAND (exp, 0);
1949 return TREE_CONSTANT (exp);
1950 }
1951 \f
1952 /* Return first list element whose TREE_VALUE is ELEM.
1953 Return 0 if ELEM is not in LIST. */
1954
1955 tree
1956 value_member (tree elem, tree list)
1957 {
1958 while (list)
1959 {
1960 if (elem == TREE_VALUE (list))
1961 return list;
1962 list = TREE_CHAIN (list);
1963 }
1964 return NULL_TREE;
1965 }
1966
1967 /* Return first list element whose TREE_PURPOSE is ELEM.
1968 Return 0 if ELEM is not in LIST. */
1969
1970 tree
1971 purpose_member (const_tree elem, tree list)
1972 {
1973 while (list)
1974 {
1975 if (elem == TREE_PURPOSE (list))
1976 return list;
1977 list = TREE_CHAIN (list);
1978 }
1979 return NULL_TREE;
1980 }
1981
1982 /* Return true if ELEM is in V. */
1983
1984 bool
1985 vec_member (const_tree elem, VEC(tree,gc) *v)
1986 {
1987 unsigned ix;
1988 tree t;
1989 FOR_EACH_VEC_ELT (tree, v, ix, t)
1990 if (elem == t)
1991 return true;
1992 return false;
1993 }
1994
1995 /* Returns element number IDX (zero-origin) of chain CHAIN, or
1996 NULL_TREE. */
1997
1998 tree
1999 chain_index (int idx, tree chain)
2000 {
2001 for (; chain && idx > 0; --idx)
2002 chain = TREE_CHAIN (chain);
2003 return chain;
2004 }
2005
2006 /* Return nonzero if ELEM is part of the chain CHAIN. */
2007
2008 int
2009 chain_member (const_tree elem, const_tree chain)
2010 {
2011 while (chain)
2012 {
2013 if (elem == chain)
2014 return 1;
2015 chain = DECL_CHAIN (chain);
2016 }
2017
2018 return 0;
2019 }
2020
2021 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2022 We expect a null pointer to mark the end of the chain.
2023 This is the Lisp primitive `length'. */
2024
2025 int
2026 list_length (const_tree t)
2027 {
2028 const_tree p = t;
2029 #ifdef ENABLE_TREE_CHECKING
2030 const_tree q = t;
2031 #endif
2032 int len = 0;
2033
2034 while (p)
2035 {
2036 p = TREE_CHAIN (p);
2037 #ifdef ENABLE_TREE_CHECKING
2038 if (len % 2)
2039 q = TREE_CHAIN (q);
2040 gcc_assert (p != q);
2041 #endif
2042 len++;
2043 }
2044
2045 return len;
2046 }
2047
2048 /* Returns the number of FIELD_DECLs in TYPE. */
2049
2050 int
2051 fields_length (const_tree type)
2052 {
2053 tree t = TYPE_FIELDS (type);
2054 int count = 0;
2055
2056 for (; t; t = DECL_CHAIN (t))
2057 if (TREE_CODE (t) == FIELD_DECL)
2058 ++count;
2059
2060 return count;
2061 }
2062
2063 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2064 UNION_TYPE TYPE, or NULL_TREE if none. */
2065
2066 tree
2067 first_field (const_tree type)
2068 {
2069 tree t = TYPE_FIELDS (type);
2070 while (t && TREE_CODE (t) != FIELD_DECL)
2071 t = TREE_CHAIN (t);
2072 return t;
2073 }
2074
2075 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2076 by modifying the last node in chain 1 to point to chain 2.
2077 This is the Lisp primitive `nconc'. */
2078
2079 tree
2080 chainon (tree op1, tree op2)
2081 {
2082 tree t1;
2083
2084 if (!op1)
2085 return op2;
2086 if (!op2)
2087 return op1;
2088
2089 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2090 continue;
2091 TREE_CHAIN (t1) = op2;
2092
2093 #ifdef ENABLE_TREE_CHECKING
2094 {
2095 tree t2;
2096 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2097 gcc_assert (t2 != t1);
2098 }
2099 #endif
2100
2101 return op1;
2102 }
2103
2104 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2105
2106 tree
2107 tree_last (tree chain)
2108 {
2109 tree next;
2110 if (chain)
2111 while ((next = TREE_CHAIN (chain)))
2112 chain = next;
2113 return chain;
2114 }
2115
2116 /* Reverse the order of elements in the chain T,
2117 and return the new head of the chain (old last element). */
2118
2119 tree
2120 nreverse (tree t)
2121 {
2122 tree prev = 0, decl, next;
2123 for (decl = t; decl; decl = next)
2124 {
2125 /* We shouldn't be using this function to reverse BLOCK chains; we
2126 have blocks_nreverse for that. */
2127 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2128 next = TREE_CHAIN (decl);
2129 TREE_CHAIN (decl) = prev;
2130 prev = decl;
2131 }
2132 return prev;
2133 }
2134 \f
2135 /* Return a newly created TREE_LIST node whose
2136 purpose and value fields are PARM and VALUE. */
2137
2138 tree
2139 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2140 {
2141 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2142 TREE_PURPOSE (t) = parm;
2143 TREE_VALUE (t) = value;
2144 return t;
2145 }
2146
2147 /* Build a chain of TREE_LIST nodes from a vector. */
2148
2149 tree
2150 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2151 {
2152 tree ret = NULL_TREE;
2153 tree *pp = &ret;
2154 unsigned int i;
2155 tree t;
2156 FOR_EACH_VEC_ELT (tree, vec, i, t)
2157 {
2158 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2159 pp = &TREE_CHAIN (*pp);
2160 }
2161 return ret;
2162 }
2163
2164 /* Return a newly created TREE_LIST node whose
2165 purpose and value fields are PURPOSE and VALUE
2166 and whose TREE_CHAIN is CHAIN. */
2167
2168 tree
2169 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2170 {
2171 tree node;
2172
2173 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2174 PASS_MEM_STAT);
2175 memset (node, 0, sizeof (struct tree_common));
2176
2177 #ifdef GATHER_STATISTICS
2178 tree_node_counts[(int) x_kind]++;
2179 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2180 #endif
2181
2182 TREE_SET_CODE (node, TREE_LIST);
2183 TREE_CHAIN (node) = chain;
2184 TREE_PURPOSE (node) = purpose;
2185 TREE_VALUE (node) = value;
2186 return node;
2187 }
2188
2189 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2190 trees. */
2191
2192 VEC(tree,gc) *
2193 ctor_to_vec (tree ctor)
2194 {
2195 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2196 unsigned int ix;
2197 tree val;
2198
2199 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2200 VEC_quick_push (tree, vec, val);
2201
2202 return vec;
2203 }
2204 \f
2205 /* Return the size nominally occupied by an object of type TYPE
2206 when it resides in memory. The value is measured in units of bytes,
2207 and its data type is that normally used for type sizes
2208 (which is the first type created by make_signed_type or
2209 make_unsigned_type). */
2210
2211 tree
2212 size_in_bytes (const_tree type)
2213 {
2214 tree t;
2215
2216 if (type == error_mark_node)
2217 return integer_zero_node;
2218
2219 type = TYPE_MAIN_VARIANT (type);
2220 t = TYPE_SIZE_UNIT (type);
2221
2222 if (t == 0)
2223 {
2224 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2225 return size_zero_node;
2226 }
2227
2228 return t;
2229 }
2230
2231 /* Return the size of TYPE (in bytes) as a wide integer
2232 or return -1 if the size can vary or is larger than an integer. */
2233
2234 HOST_WIDE_INT
2235 int_size_in_bytes (const_tree type)
2236 {
2237 tree t;
2238
2239 if (type == error_mark_node)
2240 return 0;
2241
2242 type = TYPE_MAIN_VARIANT (type);
2243 t = TYPE_SIZE_UNIT (type);
2244 if (t == 0
2245 || TREE_CODE (t) != INTEGER_CST
2246 || TREE_INT_CST_HIGH (t) != 0
2247 /* If the result would appear negative, it's too big to represent. */
2248 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2249 return -1;
2250
2251 return TREE_INT_CST_LOW (t);
2252 }
2253
2254 /* Return the maximum size of TYPE (in bytes) as a wide integer
2255 or return -1 if the size can vary or is larger than an integer. */
2256
2257 HOST_WIDE_INT
2258 max_int_size_in_bytes (const_tree type)
2259 {
2260 HOST_WIDE_INT size = -1;
2261 tree size_tree;
2262
2263 /* If this is an array type, check for a possible MAX_SIZE attached. */
2264
2265 if (TREE_CODE (type) == ARRAY_TYPE)
2266 {
2267 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2268
2269 if (size_tree && host_integerp (size_tree, 1))
2270 size = tree_low_cst (size_tree, 1);
2271 }
2272
2273 /* If we still haven't been able to get a size, see if the language
2274 can compute a maximum size. */
2275
2276 if (size == -1)
2277 {
2278 size_tree = lang_hooks.types.max_size (type);
2279
2280 if (size_tree && host_integerp (size_tree, 1))
2281 size = tree_low_cst (size_tree, 1);
2282 }
2283
2284 return size;
2285 }
2286
2287 /* Returns a tree for the size of EXP in bytes. */
2288
2289 tree
2290 tree_expr_size (const_tree exp)
2291 {
2292 if (DECL_P (exp)
2293 && DECL_SIZE_UNIT (exp) != 0)
2294 return DECL_SIZE_UNIT (exp);
2295 else
2296 return size_in_bytes (TREE_TYPE (exp));
2297 }
2298 \f
2299 /* Return the bit position of FIELD, in bits from the start of the record.
2300 This is a tree of type bitsizetype. */
2301
2302 tree
2303 bit_position (const_tree field)
2304 {
2305 return bit_from_pos (DECL_FIELD_OFFSET (field),
2306 DECL_FIELD_BIT_OFFSET (field));
2307 }
2308
2309 /* Likewise, but return as an integer. It must be representable in
2310 that way (since it could be a signed value, we don't have the
2311 option of returning -1 like int_size_in_byte can. */
2312
2313 HOST_WIDE_INT
2314 int_bit_position (const_tree field)
2315 {
2316 return tree_low_cst (bit_position (field), 0);
2317 }
2318 \f
2319 /* Return the byte position of FIELD, in bytes from the start of the record.
2320 This is a tree of type sizetype. */
2321
2322 tree
2323 byte_position (const_tree field)
2324 {
2325 return byte_from_pos (DECL_FIELD_OFFSET (field),
2326 DECL_FIELD_BIT_OFFSET (field));
2327 }
2328
2329 /* Likewise, but return as an integer. It must be representable in
2330 that way (since it could be a signed value, we don't have the
2331 option of returning -1 like int_size_in_byte can. */
2332
2333 HOST_WIDE_INT
2334 int_byte_position (const_tree field)
2335 {
2336 return tree_low_cst (byte_position (field), 0);
2337 }
2338 \f
2339 /* Return the strictest alignment, in bits, that T is known to have. */
2340
2341 unsigned int
2342 expr_align (const_tree t)
2343 {
2344 unsigned int align0, align1;
2345
2346 switch (TREE_CODE (t))
2347 {
2348 CASE_CONVERT: case NON_LVALUE_EXPR:
2349 /* If we have conversions, we know that the alignment of the
2350 object must meet each of the alignments of the types. */
2351 align0 = expr_align (TREE_OPERAND (t, 0));
2352 align1 = TYPE_ALIGN (TREE_TYPE (t));
2353 return MAX (align0, align1);
2354
2355 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2356 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2357 case CLEANUP_POINT_EXPR:
2358 /* These don't change the alignment of an object. */
2359 return expr_align (TREE_OPERAND (t, 0));
2360
2361 case COND_EXPR:
2362 /* The best we can do is say that the alignment is the least aligned
2363 of the two arms. */
2364 align0 = expr_align (TREE_OPERAND (t, 1));
2365 align1 = expr_align (TREE_OPERAND (t, 2));
2366 return MIN (align0, align1);
2367
2368 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2369 meaningfully, it's always 1. */
2370 case LABEL_DECL: case CONST_DECL:
2371 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2372 case FUNCTION_DECL:
2373 gcc_assert (DECL_ALIGN (t) != 0);
2374 return DECL_ALIGN (t);
2375
2376 default:
2377 break;
2378 }
2379
2380 /* Otherwise take the alignment from that of the type. */
2381 return TYPE_ALIGN (TREE_TYPE (t));
2382 }
2383 \f
2384 /* Return, as a tree node, the number of elements for TYPE (which is an
2385 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2386
2387 tree
2388 array_type_nelts (const_tree type)
2389 {
2390 tree index_type, min, max;
2391
2392 /* If they did it with unspecified bounds, then we should have already
2393 given an error about it before we got here. */
2394 if (! TYPE_DOMAIN (type))
2395 return error_mark_node;
2396
2397 index_type = TYPE_DOMAIN (type);
2398 min = TYPE_MIN_VALUE (index_type);
2399 max = TYPE_MAX_VALUE (index_type);
2400
2401 return (integer_zerop (min)
2402 ? max
2403 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2404 }
2405 \f
2406 /* If arg is static -- a reference to an object in static storage -- then
2407 return the object. This is not the same as the C meaning of `static'.
2408 If arg isn't static, return NULL. */
2409
2410 tree
2411 staticp (tree arg)
2412 {
2413 switch (TREE_CODE (arg))
2414 {
2415 case FUNCTION_DECL:
2416 /* Nested functions are static, even though taking their address will
2417 involve a trampoline as we unnest the nested function and create
2418 the trampoline on the tree level. */
2419 return arg;
2420
2421 case VAR_DECL:
2422 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2423 && ! DECL_THREAD_LOCAL_P (arg)
2424 && ! DECL_DLLIMPORT_P (arg)
2425 ? arg : NULL);
2426
2427 case CONST_DECL:
2428 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2429 ? arg : NULL);
2430
2431 case CONSTRUCTOR:
2432 return TREE_STATIC (arg) ? arg : NULL;
2433
2434 case LABEL_DECL:
2435 case STRING_CST:
2436 return arg;
2437
2438 case COMPONENT_REF:
2439 /* If the thing being referenced is not a field, then it is
2440 something language specific. */
2441 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2442
2443 /* If we are referencing a bitfield, we can't evaluate an
2444 ADDR_EXPR at compile time and so it isn't a constant. */
2445 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2446 return NULL;
2447
2448 return staticp (TREE_OPERAND (arg, 0));
2449
2450 case BIT_FIELD_REF:
2451 return NULL;
2452
2453 case INDIRECT_REF:
2454 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2455
2456 case ARRAY_REF:
2457 case ARRAY_RANGE_REF:
2458 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2459 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2460 return staticp (TREE_OPERAND (arg, 0));
2461 else
2462 return NULL;
2463
2464 case COMPOUND_LITERAL_EXPR:
2465 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2466
2467 default:
2468 return NULL;
2469 }
2470 }
2471
2472 \f
2473
2474
2475 /* Return whether OP is a DECL whose address is function-invariant. */
2476
2477 bool
2478 decl_address_invariant_p (const_tree op)
2479 {
2480 /* The conditions below are slightly less strict than the one in
2481 staticp. */
2482
2483 switch (TREE_CODE (op))
2484 {
2485 case PARM_DECL:
2486 case RESULT_DECL:
2487 case LABEL_DECL:
2488 case FUNCTION_DECL:
2489 return true;
2490
2491 case VAR_DECL:
2492 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2493 || DECL_THREAD_LOCAL_P (op)
2494 || DECL_CONTEXT (op) == current_function_decl
2495 || decl_function_context (op) == current_function_decl)
2496 return true;
2497 break;
2498
2499 case CONST_DECL:
2500 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2501 || decl_function_context (op) == current_function_decl)
2502 return true;
2503 break;
2504
2505 default:
2506 break;
2507 }
2508
2509 return false;
2510 }
2511
2512 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2513
2514 bool
2515 decl_address_ip_invariant_p (const_tree op)
2516 {
2517 /* The conditions below are slightly less strict than the one in
2518 staticp. */
2519
2520 switch (TREE_CODE (op))
2521 {
2522 case LABEL_DECL:
2523 case FUNCTION_DECL:
2524 case STRING_CST:
2525 return true;
2526
2527 case VAR_DECL:
2528 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2529 && !DECL_DLLIMPORT_P (op))
2530 || DECL_THREAD_LOCAL_P (op))
2531 return true;
2532 break;
2533
2534 case CONST_DECL:
2535 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2536 return true;
2537 break;
2538
2539 default:
2540 break;
2541 }
2542
2543 return false;
2544 }
2545
2546
2547 /* Return true if T is function-invariant (internal function, does
2548 not handle arithmetic; that's handled in skip_simple_arithmetic and
2549 tree_invariant_p). */
2550
2551 static bool tree_invariant_p (tree t);
2552
2553 static bool
2554 tree_invariant_p_1 (tree t)
2555 {
2556 tree op;
2557
2558 if (TREE_CONSTANT (t)
2559 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2560 return true;
2561
2562 switch (TREE_CODE (t))
2563 {
2564 case SAVE_EXPR:
2565 return true;
2566
2567 case ADDR_EXPR:
2568 op = TREE_OPERAND (t, 0);
2569 while (handled_component_p (op))
2570 {
2571 switch (TREE_CODE (op))
2572 {
2573 case ARRAY_REF:
2574 case ARRAY_RANGE_REF:
2575 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2576 || TREE_OPERAND (op, 2) != NULL_TREE
2577 || TREE_OPERAND (op, 3) != NULL_TREE)
2578 return false;
2579 break;
2580
2581 case COMPONENT_REF:
2582 if (TREE_OPERAND (op, 2) != NULL_TREE)
2583 return false;
2584 break;
2585
2586 default:;
2587 }
2588 op = TREE_OPERAND (op, 0);
2589 }
2590
2591 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2592
2593 default:
2594 break;
2595 }
2596
2597 return false;
2598 }
2599
2600 /* Return true if T is function-invariant. */
2601
2602 static bool
2603 tree_invariant_p (tree t)
2604 {
2605 tree inner = skip_simple_arithmetic (t);
2606 return tree_invariant_p_1 (inner);
2607 }
2608
2609 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2610 Do this to any expression which may be used in more than one place,
2611 but must be evaluated only once.
2612
2613 Normally, expand_expr would reevaluate the expression each time.
2614 Calling save_expr produces something that is evaluated and recorded
2615 the first time expand_expr is called on it. Subsequent calls to
2616 expand_expr just reuse the recorded value.
2617
2618 The call to expand_expr that generates code that actually computes
2619 the value is the first call *at compile time*. Subsequent calls
2620 *at compile time* generate code to use the saved value.
2621 This produces correct result provided that *at run time* control
2622 always flows through the insns made by the first expand_expr
2623 before reaching the other places where the save_expr was evaluated.
2624 You, the caller of save_expr, must make sure this is so.
2625
2626 Constants, and certain read-only nodes, are returned with no
2627 SAVE_EXPR because that is safe. Expressions containing placeholders
2628 are not touched; see tree.def for an explanation of what these
2629 are used for. */
2630
2631 tree
2632 save_expr (tree expr)
2633 {
2634 tree t = fold (expr);
2635 tree inner;
2636
2637 /* If the tree evaluates to a constant, then we don't want to hide that
2638 fact (i.e. this allows further folding, and direct checks for constants).
2639 However, a read-only object that has side effects cannot be bypassed.
2640 Since it is no problem to reevaluate literals, we just return the
2641 literal node. */
2642 inner = skip_simple_arithmetic (t);
2643 if (TREE_CODE (inner) == ERROR_MARK)
2644 return inner;
2645
2646 if (tree_invariant_p_1 (inner))
2647 return t;
2648
2649 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2650 it means that the size or offset of some field of an object depends on
2651 the value within another field.
2652
2653 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2654 and some variable since it would then need to be both evaluated once and
2655 evaluated more than once. Front-ends must assure this case cannot
2656 happen by surrounding any such subexpressions in their own SAVE_EXPR
2657 and forcing evaluation at the proper time. */
2658 if (contains_placeholder_p (inner))
2659 return t;
2660
2661 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2662 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2663
2664 /* This expression might be placed ahead of a jump to ensure that the
2665 value was computed on both sides of the jump. So make sure it isn't
2666 eliminated as dead. */
2667 TREE_SIDE_EFFECTS (t) = 1;
2668 return t;
2669 }
2670
2671 /* Look inside EXPR and into any simple arithmetic operations. Return
2672 the innermost non-arithmetic node. */
2673
2674 tree
2675 skip_simple_arithmetic (tree expr)
2676 {
2677 tree inner;
2678
2679 /* We don't care about whether this can be used as an lvalue in this
2680 context. */
2681 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2682 expr = TREE_OPERAND (expr, 0);
2683
2684 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2685 a constant, it will be more efficient to not make another SAVE_EXPR since
2686 it will allow better simplification and GCSE will be able to merge the
2687 computations if they actually occur. */
2688 inner = expr;
2689 while (1)
2690 {
2691 if (UNARY_CLASS_P (inner))
2692 inner = TREE_OPERAND (inner, 0);
2693 else if (BINARY_CLASS_P (inner))
2694 {
2695 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2696 inner = TREE_OPERAND (inner, 0);
2697 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2698 inner = TREE_OPERAND (inner, 1);
2699 else
2700 break;
2701 }
2702 else
2703 break;
2704 }
2705
2706 return inner;
2707 }
2708
2709
2710 /* Return which tree structure is used by T. */
2711
2712 enum tree_node_structure_enum
2713 tree_node_structure (const_tree t)
2714 {
2715 const enum tree_code code = TREE_CODE (t);
2716 return tree_node_structure_for_code (code);
2717 }
2718
2719 /* Set various status flags when building a CALL_EXPR object T. */
2720
2721 static void
2722 process_call_operands (tree t)
2723 {
2724 bool side_effects = TREE_SIDE_EFFECTS (t);
2725 bool read_only = false;
2726 int i = call_expr_flags (t);
2727
2728 /* Calls have side-effects, except those to const or pure functions. */
2729 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2730 side_effects = true;
2731 /* Propagate TREE_READONLY of arguments for const functions. */
2732 if (i & ECF_CONST)
2733 read_only = true;
2734
2735 if (!side_effects || read_only)
2736 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2737 {
2738 tree op = TREE_OPERAND (t, i);
2739 if (op && TREE_SIDE_EFFECTS (op))
2740 side_effects = true;
2741 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2742 read_only = false;
2743 }
2744
2745 TREE_SIDE_EFFECTS (t) = side_effects;
2746 TREE_READONLY (t) = read_only;
2747 }
2748 \f
2749 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2750 or offset that depends on a field within a record. */
2751
2752 bool
2753 contains_placeholder_p (const_tree exp)
2754 {
2755 enum tree_code code;
2756
2757 if (!exp)
2758 return 0;
2759
2760 code = TREE_CODE (exp);
2761 if (code == PLACEHOLDER_EXPR)
2762 return 1;
2763
2764 switch (TREE_CODE_CLASS (code))
2765 {
2766 case tcc_reference:
2767 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2768 position computations since they will be converted into a
2769 WITH_RECORD_EXPR involving the reference, which will assume
2770 here will be valid. */
2771 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2772
2773 case tcc_exceptional:
2774 if (code == TREE_LIST)
2775 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2776 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2777 break;
2778
2779 case tcc_unary:
2780 case tcc_binary:
2781 case tcc_comparison:
2782 case tcc_expression:
2783 switch (code)
2784 {
2785 case COMPOUND_EXPR:
2786 /* Ignoring the first operand isn't quite right, but works best. */
2787 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2788
2789 case COND_EXPR:
2790 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2791 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2792 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2793
2794 case SAVE_EXPR:
2795 /* The save_expr function never wraps anything containing
2796 a PLACEHOLDER_EXPR. */
2797 return 0;
2798
2799 default:
2800 break;
2801 }
2802
2803 switch (TREE_CODE_LENGTH (code))
2804 {
2805 case 1:
2806 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2807 case 2:
2808 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2809 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2810 default:
2811 return 0;
2812 }
2813
2814 case tcc_vl_exp:
2815 switch (code)
2816 {
2817 case CALL_EXPR:
2818 {
2819 const_tree arg;
2820 const_call_expr_arg_iterator iter;
2821 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2822 if (CONTAINS_PLACEHOLDER_P (arg))
2823 return 1;
2824 return 0;
2825 }
2826 default:
2827 return 0;
2828 }
2829
2830 default:
2831 return 0;
2832 }
2833 return 0;
2834 }
2835
2836 /* Return true if any part of the computation of TYPE involves a
2837 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2838 (for QUAL_UNION_TYPE) and field positions. */
2839
2840 static bool
2841 type_contains_placeholder_1 (const_tree type)
2842 {
2843 /* If the size contains a placeholder or the parent type (component type in
2844 the case of arrays) type involves a placeholder, this type does. */
2845 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2846 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2847 || (TREE_TYPE (type) != 0
2848 && type_contains_placeholder_p (TREE_TYPE (type))))
2849 return true;
2850
2851 /* Now do type-specific checks. Note that the last part of the check above
2852 greatly limits what we have to do below. */
2853 switch (TREE_CODE (type))
2854 {
2855 case VOID_TYPE:
2856 case COMPLEX_TYPE:
2857 case ENUMERAL_TYPE:
2858 case BOOLEAN_TYPE:
2859 case POINTER_TYPE:
2860 case OFFSET_TYPE:
2861 case REFERENCE_TYPE:
2862 case METHOD_TYPE:
2863 case FUNCTION_TYPE:
2864 case VECTOR_TYPE:
2865 return false;
2866
2867 case INTEGER_TYPE:
2868 case REAL_TYPE:
2869 case FIXED_POINT_TYPE:
2870 /* Here we just check the bounds. */
2871 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2872 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2873
2874 case ARRAY_TYPE:
2875 /* We're already checked the component type (TREE_TYPE), so just check
2876 the index type. */
2877 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2878
2879 case RECORD_TYPE:
2880 case UNION_TYPE:
2881 case QUAL_UNION_TYPE:
2882 {
2883 tree field;
2884
2885 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2886 if (TREE_CODE (field) == FIELD_DECL
2887 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2888 || (TREE_CODE (type) == QUAL_UNION_TYPE
2889 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2890 || type_contains_placeholder_p (TREE_TYPE (field))))
2891 return true;
2892
2893 return false;
2894 }
2895
2896 default:
2897 gcc_unreachable ();
2898 }
2899 }
2900
2901 bool
2902 type_contains_placeholder_p (tree type)
2903 {
2904 bool result;
2905
2906 /* If the contains_placeholder_bits field has been initialized,
2907 then we know the answer. */
2908 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2909 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2910
2911 /* Indicate that we've seen this type node, and the answer is false.
2912 This is what we want to return if we run into recursion via fields. */
2913 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2914
2915 /* Compute the real value. */
2916 result = type_contains_placeholder_1 (type);
2917
2918 /* Store the real value. */
2919 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2920
2921 return result;
2922 }
2923 \f
2924 /* Push tree EXP onto vector QUEUE if it is not already present. */
2925
2926 static void
2927 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2928 {
2929 unsigned int i;
2930 tree iter;
2931
2932 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
2933 if (simple_cst_equal (iter, exp) == 1)
2934 break;
2935
2936 if (!iter)
2937 VEC_safe_push (tree, heap, *queue, exp);
2938 }
2939
2940 /* Given a tree EXP, find all occurences of references to fields
2941 in a PLACEHOLDER_EXPR and place them in vector REFS without
2942 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2943 we assume here that EXP contains only arithmetic expressions
2944 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2945 argument list. */
2946
2947 void
2948 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2949 {
2950 enum tree_code code = TREE_CODE (exp);
2951 tree inner;
2952 int i;
2953
2954 /* We handle TREE_LIST and COMPONENT_REF separately. */
2955 if (code == TREE_LIST)
2956 {
2957 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2958 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2959 }
2960 else if (code == COMPONENT_REF)
2961 {
2962 for (inner = TREE_OPERAND (exp, 0);
2963 REFERENCE_CLASS_P (inner);
2964 inner = TREE_OPERAND (inner, 0))
2965 ;
2966
2967 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2968 push_without_duplicates (exp, refs);
2969 else
2970 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2971 }
2972 else
2973 switch (TREE_CODE_CLASS (code))
2974 {
2975 case tcc_constant:
2976 break;
2977
2978 case tcc_declaration:
2979 /* Variables allocated to static storage can stay. */
2980 if (!TREE_STATIC (exp))
2981 push_without_duplicates (exp, refs);
2982 break;
2983
2984 case tcc_expression:
2985 /* This is the pattern built in ada/make_aligning_type. */
2986 if (code == ADDR_EXPR
2987 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
2988 {
2989 push_without_duplicates (exp, refs);
2990 break;
2991 }
2992
2993 /* Fall through... */
2994
2995 case tcc_exceptional:
2996 case tcc_unary:
2997 case tcc_binary:
2998 case tcc_comparison:
2999 case tcc_reference:
3000 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3001 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3002 break;
3003
3004 case tcc_vl_exp:
3005 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3006 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3007 break;
3008
3009 default:
3010 gcc_unreachable ();
3011 }
3012 }
3013
3014 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3015 return a tree with all occurrences of references to F in a
3016 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3017 CONST_DECLs. Note that we assume here that EXP contains only
3018 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3019 occurring only in their argument list. */
3020
3021 tree
3022 substitute_in_expr (tree exp, tree f, tree r)
3023 {
3024 enum tree_code code = TREE_CODE (exp);
3025 tree op0, op1, op2, op3;
3026 tree new_tree;
3027
3028 /* We handle TREE_LIST and COMPONENT_REF separately. */
3029 if (code == TREE_LIST)
3030 {
3031 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3032 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3033 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3034 return exp;
3035
3036 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3037 }
3038 else if (code == COMPONENT_REF)
3039 {
3040 tree inner;
3041
3042 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3043 and it is the right field, replace it with R. */
3044 for (inner = TREE_OPERAND (exp, 0);
3045 REFERENCE_CLASS_P (inner);
3046 inner = TREE_OPERAND (inner, 0))
3047 ;
3048
3049 /* The field. */
3050 op1 = TREE_OPERAND (exp, 1);
3051
3052 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3053 return r;
3054
3055 /* If this expression hasn't been completed let, leave it alone. */
3056 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3057 return exp;
3058
3059 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3060 if (op0 == TREE_OPERAND (exp, 0))
3061 return exp;
3062
3063 new_tree
3064 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3065 }
3066 else
3067 switch (TREE_CODE_CLASS (code))
3068 {
3069 case tcc_constant:
3070 return exp;
3071
3072 case tcc_declaration:
3073 if (exp == f)
3074 return r;
3075 else
3076 return exp;
3077
3078 case tcc_expression:
3079 if (exp == f)
3080 return r;
3081
3082 /* Fall through... */
3083
3084 case tcc_exceptional:
3085 case tcc_unary:
3086 case tcc_binary:
3087 case tcc_comparison:
3088 case tcc_reference:
3089 switch (TREE_CODE_LENGTH (code))
3090 {
3091 case 0:
3092 return exp;
3093
3094 case 1:
3095 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3096 if (op0 == TREE_OPERAND (exp, 0))
3097 return exp;
3098
3099 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3100 break;
3101
3102 case 2:
3103 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3104 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3105
3106 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3107 return exp;
3108
3109 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3110 break;
3111
3112 case 3:
3113 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3114 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3115 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3116
3117 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3118 && op2 == TREE_OPERAND (exp, 2))
3119 return exp;
3120
3121 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3122 break;
3123
3124 case 4:
3125 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3126 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3127 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3128 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3129
3130 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3131 && op2 == TREE_OPERAND (exp, 2)
3132 && op3 == TREE_OPERAND (exp, 3))
3133 return exp;
3134
3135 new_tree
3136 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3137 break;
3138
3139 default:
3140 gcc_unreachable ();
3141 }
3142 break;
3143
3144 case tcc_vl_exp:
3145 {
3146 int i;
3147
3148 new_tree = NULL_TREE;
3149
3150 /* If we are trying to replace F with a constant, inline back
3151 functions which do nothing else than computing a value from
3152 the arguments they are passed. This makes it possible to
3153 fold partially or entirely the replacement expression. */
3154 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3155 {
3156 tree t = maybe_inline_call_in_expr (exp);
3157 if (t)
3158 return SUBSTITUTE_IN_EXPR (t, f, r);
3159 }
3160
3161 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3162 {
3163 tree op = TREE_OPERAND (exp, i);
3164 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3165 if (new_op != op)
3166 {
3167 if (!new_tree)
3168 new_tree = copy_node (exp);
3169 TREE_OPERAND (new_tree, i) = new_op;
3170 }
3171 }
3172
3173 if (new_tree)
3174 {
3175 new_tree = fold (new_tree);
3176 if (TREE_CODE (new_tree) == CALL_EXPR)
3177 process_call_operands (new_tree);
3178 }
3179 else
3180 return exp;
3181 }
3182 break;
3183
3184 default:
3185 gcc_unreachable ();
3186 }
3187
3188 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3189 return new_tree;
3190 }
3191
3192 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3193 for it within OBJ, a tree that is an object or a chain of references. */
3194
3195 tree
3196 substitute_placeholder_in_expr (tree exp, tree obj)
3197 {
3198 enum tree_code code = TREE_CODE (exp);
3199 tree op0, op1, op2, op3;
3200 tree new_tree;
3201
3202 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3203 in the chain of OBJ. */
3204 if (code == PLACEHOLDER_EXPR)
3205 {
3206 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3207 tree elt;
3208
3209 for (elt = obj; elt != 0;
3210 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3211 || TREE_CODE (elt) == COND_EXPR)
3212 ? TREE_OPERAND (elt, 1)
3213 : (REFERENCE_CLASS_P (elt)
3214 || UNARY_CLASS_P (elt)
3215 || BINARY_CLASS_P (elt)
3216 || VL_EXP_CLASS_P (elt)
3217 || EXPRESSION_CLASS_P (elt))
3218 ? TREE_OPERAND (elt, 0) : 0))
3219 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3220 return elt;
3221
3222 for (elt = obj; elt != 0;
3223 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3224 || TREE_CODE (elt) == COND_EXPR)
3225 ? TREE_OPERAND (elt, 1)
3226 : (REFERENCE_CLASS_P (elt)
3227 || UNARY_CLASS_P (elt)
3228 || BINARY_CLASS_P (elt)
3229 || VL_EXP_CLASS_P (elt)
3230 || EXPRESSION_CLASS_P (elt))
3231 ? TREE_OPERAND (elt, 0) : 0))
3232 if (POINTER_TYPE_P (TREE_TYPE (elt))
3233 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3234 == need_type))
3235 return fold_build1 (INDIRECT_REF, need_type, elt);
3236
3237 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3238 survives until RTL generation, there will be an error. */
3239 return exp;
3240 }
3241
3242 /* TREE_LIST is special because we need to look at TREE_VALUE
3243 and TREE_CHAIN, not TREE_OPERANDS. */
3244 else if (code == TREE_LIST)
3245 {
3246 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3247 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3248 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3249 return exp;
3250
3251 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3252 }
3253 else
3254 switch (TREE_CODE_CLASS (code))
3255 {
3256 case tcc_constant:
3257 case tcc_declaration:
3258 return exp;
3259
3260 case tcc_exceptional:
3261 case tcc_unary:
3262 case tcc_binary:
3263 case tcc_comparison:
3264 case tcc_expression:
3265 case tcc_reference:
3266 case tcc_statement:
3267 switch (TREE_CODE_LENGTH (code))
3268 {
3269 case 0:
3270 return exp;
3271
3272 case 1:
3273 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3274 if (op0 == TREE_OPERAND (exp, 0))
3275 return exp;
3276
3277 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3278 break;
3279
3280 case 2:
3281 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3282 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3283
3284 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3285 return exp;
3286
3287 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3288 break;
3289
3290 case 3:
3291 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3292 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3293 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3294
3295 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3296 && op2 == TREE_OPERAND (exp, 2))
3297 return exp;
3298
3299 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3300 break;
3301
3302 case 4:
3303 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3304 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3305 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3306 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3307
3308 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3309 && op2 == TREE_OPERAND (exp, 2)
3310 && op3 == TREE_OPERAND (exp, 3))
3311 return exp;
3312
3313 new_tree
3314 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3315 break;
3316
3317 default:
3318 gcc_unreachable ();
3319 }
3320 break;
3321
3322 case tcc_vl_exp:
3323 {
3324 int i;
3325
3326 new_tree = NULL_TREE;
3327
3328 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3329 {
3330 tree op = TREE_OPERAND (exp, i);
3331 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3332 if (new_op != op)
3333 {
3334 if (!new_tree)
3335 new_tree = copy_node (exp);
3336 TREE_OPERAND (new_tree, i) = new_op;
3337 }
3338 }
3339
3340 if (new_tree)
3341 {
3342 new_tree = fold (new_tree);
3343 if (TREE_CODE (new_tree) == CALL_EXPR)
3344 process_call_operands (new_tree);
3345 }
3346 else
3347 return exp;
3348 }
3349 break;
3350
3351 default:
3352 gcc_unreachable ();
3353 }
3354
3355 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3356 return new_tree;
3357 }
3358 \f
3359 /* Stabilize a reference so that we can use it any number of times
3360 without causing its operands to be evaluated more than once.
3361 Returns the stabilized reference. This works by means of save_expr,
3362 so see the caveats in the comments about save_expr.
3363
3364 Also allows conversion expressions whose operands are references.
3365 Any other kind of expression is returned unchanged. */
3366
3367 tree
3368 stabilize_reference (tree ref)
3369 {
3370 tree result;
3371 enum tree_code code = TREE_CODE (ref);
3372
3373 switch (code)
3374 {
3375 case VAR_DECL:
3376 case PARM_DECL:
3377 case RESULT_DECL:
3378 /* No action is needed in this case. */
3379 return ref;
3380
3381 CASE_CONVERT:
3382 case FLOAT_EXPR:
3383 case FIX_TRUNC_EXPR:
3384 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3385 break;
3386
3387 case INDIRECT_REF:
3388 result = build_nt (INDIRECT_REF,
3389 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3390 break;
3391
3392 case COMPONENT_REF:
3393 result = build_nt (COMPONENT_REF,
3394 stabilize_reference (TREE_OPERAND (ref, 0)),
3395 TREE_OPERAND (ref, 1), NULL_TREE);
3396 break;
3397
3398 case BIT_FIELD_REF:
3399 result = build_nt (BIT_FIELD_REF,
3400 stabilize_reference (TREE_OPERAND (ref, 0)),
3401 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3402 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3403 break;
3404
3405 case ARRAY_REF:
3406 result = build_nt (ARRAY_REF,
3407 stabilize_reference (TREE_OPERAND (ref, 0)),
3408 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3409 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3410 break;
3411
3412 case ARRAY_RANGE_REF:
3413 result = build_nt (ARRAY_RANGE_REF,
3414 stabilize_reference (TREE_OPERAND (ref, 0)),
3415 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3416 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3417 break;
3418
3419 case COMPOUND_EXPR:
3420 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3421 it wouldn't be ignored. This matters when dealing with
3422 volatiles. */
3423 return stabilize_reference_1 (ref);
3424
3425 /* If arg isn't a kind of lvalue we recognize, make no change.
3426 Caller should recognize the error for an invalid lvalue. */
3427 default:
3428 return ref;
3429
3430 case ERROR_MARK:
3431 return error_mark_node;
3432 }
3433
3434 TREE_TYPE (result) = TREE_TYPE (ref);
3435 TREE_READONLY (result) = TREE_READONLY (ref);
3436 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3437 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3438
3439 return result;
3440 }
3441
3442 /* Subroutine of stabilize_reference; this is called for subtrees of
3443 references. Any expression with side-effects must be put in a SAVE_EXPR
3444 to ensure that it is only evaluated once.
3445
3446 We don't put SAVE_EXPR nodes around everything, because assigning very
3447 simple expressions to temporaries causes us to miss good opportunities
3448 for optimizations. Among other things, the opportunity to fold in the
3449 addition of a constant into an addressing mode often gets lost, e.g.
3450 "y[i+1] += x;". In general, we take the approach that we should not make
3451 an assignment unless we are forced into it - i.e., that any non-side effect
3452 operator should be allowed, and that cse should take care of coalescing
3453 multiple utterances of the same expression should that prove fruitful. */
3454
3455 tree
3456 stabilize_reference_1 (tree e)
3457 {
3458 tree result;
3459 enum tree_code code = TREE_CODE (e);
3460
3461 /* We cannot ignore const expressions because it might be a reference
3462 to a const array but whose index contains side-effects. But we can
3463 ignore things that are actual constant or that already have been
3464 handled by this function. */
3465
3466 if (tree_invariant_p (e))
3467 return e;
3468
3469 switch (TREE_CODE_CLASS (code))
3470 {
3471 case tcc_exceptional:
3472 case tcc_type:
3473 case tcc_declaration:
3474 case tcc_comparison:
3475 case tcc_statement:
3476 case tcc_expression:
3477 case tcc_reference:
3478 case tcc_vl_exp:
3479 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3480 so that it will only be evaluated once. */
3481 /* The reference (r) and comparison (<) classes could be handled as
3482 below, but it is generally faster to only evaluate them once. */
3483 if (TREE_SIDE_EFFECTS (e))
3484 return save_expr (e);
3485 return e;
3486
3487 case tcc_constant:
3488 /* Constants need no processing. In fact, we should never reach
3489 here. */
3490 return e;
3491
3492 case tcc_binary:
3493 /* Division is slow and tends to be compiled with jumps,
3494 especially the division by powers of 2 that is often
3495 found inside of an array reference. So do it just once. */
3496 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3497 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3498 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3499 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3500 return save_expr (e);
3501 /* Recursively stabilize each operand. */
3502 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3503 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3504 break;
3505
3506 case tcc_unary:
3507 /* Recursively stabilize each operand. */
3508 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3509 break;
3510
3511 default:
3512 gcc_unreachable ();
3513 }
3514
3515 TREE_TYPE (result) = TREE_TYPE (e);
3516 TREE_READONLY (result) = TREE_READONLY (e);
3517 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3518 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3519
3520 return result;
3521 }
3522 \f
3523 /* Low-level constructors for expressions. */
3524
3525 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3526 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3527
3528 void
3529 recompute_tree_invariant_for_addr_expr (tree t)
3530 {
3531 tree node;
3532 bool tc = true, se = false;
3533
3534 /* We started out assuming this address is both invariant and constant, but
3535 does not have side effects. Now go down any handled components and see if
3536 any of them involve offsets that are either non-constant or non-invariant.
3537 Also check for side-effects.
3538
3539 ??? Note that this code makes no attempt to deal with the case where
3540 taking the address of something causes a copy due to misalignment. */
3541
3542 #define UPDATE_FLAGS(NODE) \
3543 do { tree _node = (NODE); \
3544 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3545 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3546
3547 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3548 node = TREE_OPERAND (node, 0))
3549 {
3550 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3551 array reference (probably made temporarily by the G++ front end),
3552 so ignore all the operands. */
3553 if ((TREE_CODE (node) == ARRAY_REF
3554 || TREE_CODE (node) == ARRAY_RANGE_REF)
3555 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3556 {
3557 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3558 if (TREE_OPERAND (node, 2))
3559 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3560 if (TREE_OPERAND (node, 3))
3561 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3562 }
3563 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3564 FIELD_DECL, apparently. The G++ front end can put something else
3565 there, at least temporarily. */
3566 else if (TREE_CODE (node) == COMPONENT_REF
3567 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3568 {
3569 if (TREE_OPERAND (node, 2))
3570 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3571 }
3572 else if (TREE_CODE (node) == BIT_FIELD_REF)
3573 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3574 }
3575
3576 node = lang_hooks.expr_to_decl (node, &tc, &se);
3577
3578 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3579 the address, since &(*a)->b is a form of addition. If it's a constant, the
3580 address is constant too. If it's a decl, its address is constant if the
3581 decl is static. Everything else is not constant and, furthermore,
3582 taking the address of a volatile variable is not volatile. */
3583 if (TREE_CODE (node) == INDIRECT_REF
3584 || TREE_CODE (node) == MEM_REF)
3585 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3586 else if (CONSTANT_CLASS_P (node))
3587 ;
3588 else if (DECL_P (node))
3589 tc &= (staticp (node) != NULL_TREE);
3590 else
3591 {
3592 tc = false;
3593 se |= TREE_SIDE_EFFECTS (node);
3594 }
3595
3596
3597 TREE_CONSTANT (t) = tc;
3598 TREE_SIDE_EFFECTS (t) = se;
3599 #undef UPDATE_FLAGS
3600 }
3601
3602 /* Build an expression of code CODE, data type TYPE, and operands as
3603 specified. Expressions and reference nodes can be created this way.
3604 Constants, decls, types and misc nodes cannot be.
3605
3606 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3607 enough for all extant tree codes. */
3608
3609 tree
3610 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3611 {
3612 tree t;
3613
3614 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3615
3616 t = make_node_stat (code PASS_MEM_STAT);
3617 TREE_TYPE (t) = tt;
3618
3619 return t;
3620 }
3621
3622 tree
3623 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3624 {
3625 int length = sizeof (struct tree_exp);
3626 #ifdef GATHER_STATISTICS
3627 tree_node_kind kind;
3628 #endif
3629 tree t;
3630
3631 #ifdef GATHER_STATISTICS
3632 switch (TREE_CODE_CLASS (code))
3633 {
3634 case tcc_statement: /* an expression with side effects */
3635 kind = s_kind;
3636 break;
3637 case tcc_reference: /* a reference */
3638 kind = r_kind;
3639 break;
3640 default:
3641 kind = e_kind;
3642 break;
3643 }
3644
3645 tree_node_counts[(int) kind]++;
3646 tree_node_sizes[(int) kind] += length;
3647 #endif
3648
3649 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3650
3651 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3652
3653 memset (t, 0, sizeof (struct tree_common));
3654
3655 TREE_SET_CODE (t, code);
3656
3657 TREE_TYPE (t) = type;
3658 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3659 TREE_OPERAND (t, 0) = node;
3660 TREE_BLOCK (t) = NULL_TREE;
3661 if (node && !TYPE_P (node))
3662 {
3663 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3664 TREE_READONLY (t) = TREE_READONLY (node);
3665 }
3666
3667 if (TREE_CODE_CLASS (code) == tcc_statement)
3668 TREE_SIDE_EFFECTS (t) = 1;
3669 else switch (code)
3670 {
3671 case VA_ARG_EXPR:
3672 /* All of these have side-effects, no matter what their
3673 operands are. */
3674 TREE_SIDE_EFFECTS (t) = 1;
3675 TREE_READONLY (t) = 0;
3676 break;
3677
3678 case INDIRECT_REF:
3679 /* Whether a dereference is readonly has nothing to do with whether
3680 its operand is readonly. */
3681 TREE_READONLY (t) = 0;
3682 break;
3683
3684 case ADDR_EXPR:
3685 if (node)
3686 recompute_tree_invariant_for_addr_expr (t);
3687 break;
3688
3689 default:
3690 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3691 && node && !TYPE_P (node)
3692 && TREE_CONSTANT (node))
3693 TREE_CONSTANT (t) = 1;
3694 if (TREE_CODE_CLASS (code) == tcc_reference
3695 && node && TREE_THIS_VOLATILE (node))
3696 TREE_THIS_VOLATILE (t) = 1;
3697 break;
3698 }
3699
3700 return t;
3701 }
3702
3703 #define PROCESS_ARG(N) \
3704 do { \
3705 TREE_OPERAND (t, N) = arg##N; \
3706 if (arg##N &&!TYPE_P (arg##N)) \
3707 { \
3708 if (TREE_SIDE_EFFECTS (arg##N)) \
3709 side_effects = 1; \
3710 if (!TREE_READONLY (arg##N) \
3711 && !CONSTANT_CLASS_P (arg##N)) \
3712 (void) (read_only = 0); \
3713 if (!TREE_CONSTANT (arg##N)) \
3714 (void) (constant = 0); \
3715 } \
3716 } while (0)
3717
3718 tree
3719 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3720 {
3721 bool constant, read_only, side_effects;
3722 tree t;
3723
3724 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3725
3726 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3727 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3728 /* When sizetype precision doesn't match that of pointers
3729 we need to be able to build explicit extensions or truncations
3730 of the offset argument. */
3731 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3732 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3733 && TREE_CODE (arg1) == INTEGER_CST);
3734
3735 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3736 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3737 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3738 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3739
3740 t = make_node_stat (code PASS_MEM_STAT);
3741 TREE_TYPE (t) = tt;
3742
3743 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3744 result based on those same flags for the arguments. But if the
3745 arguments aren't really even `tree' expressions, we shouldn't be trying
3746 to do this. */
3747
3748 /* Expressions without side effects may be constant if their
3749 arguments are as well. */
3750 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3751 || TREE_CODE_CLASS (code) == tcc_binary);
3752 read_only = 1;
3753 side_effects = TREE_SIDE_EFFECTS (t);
3754
3755 PROCESS_ARG(0);
3756 PROCESS_ARG(1);
3757
3758 TREE_READONLY (t) = read_only;
3759 TREE_CONSTANT (t) = constant;
3760 TREE_SIDE_EFFECTS (t) = side_effects;
3761 TREE_THIS_VOLATILE (t)
3762 = (TREE_CODE_CLASS (code) == tcc_reference
3763 && arg0 && TREE_THIS_VOLATILE (arg0));
3764
3765 return t;
3766 }
3767
3768
3769 tree
3770 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3771 tree arg2 MEM_STAT_DECL)
3772 {
3773 bool constant, read_only, side_effects;
3774 tree t;
3775
3776 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3777 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3778
3779 t = make_node_stat (code PASS_MEM_STAT);
3780 TREE_TYPE (t) = tt;
3781
3782 read_only = 1;
3783
3784 /* As a special exception, if COND_EXPR has NULL branches, we
3785 assume that it is a gimple statement and always consider
3786 it to have side effects. */
3787 if (code == COND_EXPR
3788 && tt == void_type_node
3789 && arg1 == NULL_TREE
3790 && arg2 == NULL_TREE)
3791 side_effects = true;
3792 else
3793 side_effects = TREE_SIDE_EFFECTS (t);
3794
3795 PROCESS_ARG(0);
3796 PROCESS_ARG(1);
3797 PROCESS_ARG(2);
3798
3799 if (code == COND_EXPR)
3800 TREE_READONLY (t) = read_only;
3801
3802 TREE_SIDE_EFFECTS (t) = side_effects;
3803 TREE_THIS_VOLATILE (t)
3804 = (TREE_CODE_CLASS (code) == tcc_reference
3805 && arg0 && TREE_THIS_VOLATILE (arg0));
3806
3807 return t;
3808 }
3809
3810 tree
3811 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3812 tree arg2, tree arg3 MEM_STAT_DECL)
3813 {
3814 bool constant, read_only, side_effects;
3815 tree t;
3816
3817 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3818
3819 t = make_node_stat (code PASS_MEM_STAT);
3820 TREE_TYPE (t) = tt;
3821
3822 side_effects = TREE_SIDE_EFFECTS (t);
3823
3824 PROCESS_ARG(0);
3825 PROCESS_ARG(1);
3826 PROCESS_ARG(2);
3827 PROCESS_ARG(3);
3828
3829 TREE_SIDE_EFFECTS (t) = side_effects;
3830 TREE_THIS_VOLATILE (t)
3831 = (TREE_CODE_CLASS (code) == tcc_reference
3832 && arg0 && TREE_THIS_VOLATILE (arg0));
3833
3834 return t;
3835 }
3836
3837 tree
3838 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3839 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3840 {
3841 bool constant, read_only, side_effects;
3842 tree t;
3843
3844 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3845
3846 t = make_node_stat (code PASS_MEM_STAT);
3847 TREE_TYPE (t) = tt;
3848
3849 side_effects = TREE_SIDE_EFFECTS (t);
3850
3851 PROCESS_ARG(0);
3852 PROCESS_ARG(1);
3853 PROCESS_ARG(2);
3854 PROCESS_ARG(3);
3855 PROCESS_ARG(4);
3856
3857 TREE_SIDE_EFFECTS (t) = side_effects;
3858 TREE_THIS_VOLATILE (t)
3859 = (TREE_CODE_CLASS (code) == tcc_reference
3860 && arg0 && TREE_THIS_VOLATILE (arg0));
3861
3862 return t;
3863 }
3864
3865 tree
3866 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3867 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3868 {
3869 bool constant, read_only, side_effects;
3870 tree t;
3871
3872 gcc_assert (code == TARGET_MEM_REF);
3873
3874 t = make_node_stat (code PASS_MEM_STAT);
3875 TREE_TYPE (t) = tt;
3876
3877 side_effects = TREE_SIDE_EFFECTS (t);
3878
3879 PROCESS_ARG(0);
3880 PROCESS_ARG(1);
3881 PROCESS_ARG(2);
3882 PROCESS_ARG(3);
3883 PROCESS_ARG(4);
3884 if (code == TARGET_MEM_REF)
3885 side_effects = 0;
3886 PROCESS_ARG(5);
3887
3888 TREE_SIDE_EFFECTS (t) = side_effects;
3889 TREE_THIS_VOLATILE (t)
3890 = (code == TARGET_MEM_REF
3891 && arg5 && TREE_THIS_VOLATILE (arg5));
3892
3893 return t;
3894 }
3895
3896 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3897 on the pointer PTR. */
3898
3899 tree
3900 build_simple_mem_ref_loc (location_t loc, tree ptr)
3901 {
3902 HOST_WIDE_INT offset = 0;
3903 tree ptype = TREE_TYPE (ptr);
3904 tree tem;
3905 /* For convenience allow addresses that collapse to a simple base
3906 and offset. */
3907 if (TREE_CODE (ptr) == ADDR_EXPR
3908 && (handled_component_p (TREE_OPERAND (ptr, 0))
3909 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3910 {
3911 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3912 gcc_assert (ptr);
3913 ptr = build_fold_addr_expr (ptr);
3914 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
3915 }
3916 tem = build2 (MEM_REF, TREE_TYPE (ptype),
3917 ptr, build_int_cst (ptype, offset));
3918 SET_EXPR_LOCATION (tem, loc);
3919 return tem;
3920 }
3921
3922 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
3923
3924 double_int
3925 mem_ref_offset (const_tree t)
3926 {
3927 tree toff = TREE_OPERAND (t, 1);
3928 return double_int_sext (tree_to_double_int (toff),
3929 TYPE_PRECISION (TREE_TYPE (toff)));
3930 }
3931
3932 /* Return the pointer-type relevant for TBAA purposes from the
3933 gimple memory reference tree T. This is the type to be used for
3934 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
3935
3936 tree
3937 reference_alias_ptr_type (const_tree t)
3938 {
3939 const_tree base = t;
3940 while (handled_component_p (base))
3941 base = TREE_OPERAND (base, 0);
3942 if (TREE_CODE (base) == MEM_REF)
3943 return TREE_TYPE (TREE_OPERAND (base, 1));
3944 else if (TREE_CODE (base) == TARGET_MEM_REF)
3945 return TREE_TYPE (TMR_OFFSET (base));
3946 else
3947 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
3948 }
3949
3950 /* Similar except don't specify the TREE_TYPE
3951 and leave the TREE_SIDE_EFFECTS as 0.
3952 It is permissible for arguments to be null,
3953 or even garbage if their values do not matter. */
3954
3955 tree
3956 build_nt (enum tree_code code, ...)
3957 {
3958 tree t;
3959 int length;
3960 int i;
3961 va_list p;
3962
3963 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3964
3965 va_start (p, code);
3966
3967 t = make_node (code);
3968 length = TREE_CODE_LENGTH (code);
3969
3970 for (i = 0; i < length; i++)
3971 TREE_OPERAND (t, i) = va_arg (p, tree);
3972
3973 va_end (p);
3974 return t;
3975 }
3976
3977 /* Similar to build_nt, but for creating a CALL_EXPR object with a
3978 tree VEC. */
3979
3980 tree
3981 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
3982 {
3983 tree ret, t;
3984 unsigned int ix;
3985
3986 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
3987 CALL_EXPR_FN (ret) = fn;
3988 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3989 FOR_EACH_VEC_ELT (tree, args, ix, t)
3990 CALL_EXPR_ARG (ret, ix) = t;
3991 return ret;
3992 }
3993 \f
3994 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3995 We do NOT enter this node in any sort of symbol table.
3996
3997 LOC is the location of the decl.
3998
3999 layout_decl is used to set up the decl's storage layout.
4000 Other slots are initialized to 0 or null pointers. */
4001
4002 tree
4003 build_decl_stat (location_t loc, enum tree_code code, tree name,
4004 tree type MEM_STAT_DECL)
4005 {
4006 tree t;
4007
4008 t = make_node_stat (code PASS_MEM_STAT);
4009 DECL_SOURCE_LOCATION (t) = loc;
4010
4011 /* if (type == error_mark_node)
4012 type = integer_type_node; */
4013 /* That is not done, deliberately, so that having error_mark_node
4014 as the type can suppress useless errors in the use of this variable. */
4015
4016 DECL_NAME (t) = name;
4017 TREE_TYPE (t) = type;
4018
4019 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4020 layout_decl (t, 0);
4021
4022 return t;
4023 }
4024
4025 /* Builds and returns function declaration with NAME and TYPE. */
4026
4027 tree
4028 build_fn_decl (const char *name, tree type)
4029 {
4030 tree id = get_identifier (name);
4031 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4032
4033 DECL_EXTERNAL (decl) = 1;
4034 TREE_PUBLIC (decl) = 1;
4035 DECL_ARTIFICIAL (decl) = 1;
4036 TREE_NOTHROW (decl) = 1;
4037
4038 return decl;
4039 }
4040
4041 VEC(tree,gc) *all_translation_units;
4042
4043 /* Builds a new translation-unit decl with name NAME, queues it in the
4044 global list of translation-unit decls and returns it. */
4045
4046 tree
4047 build_translation_unit_decl (tree name)
4048 {
4049 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4050 name, NULL_TREE);
4051 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4052 VEC_safe_push (tree, gc, all_translation_units, tu);
4053 return tu;
4054 }
4055
4056 \f
4057 /* BLOCK nodes are used to represent the structure of binding contours
4058 and declarations, once those contours have been exited and their contents
4059 compiled. This information is used for outputting debugging info. */
4060
4061 tree
4062 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4063 {
4064 tree block = make_node (BLOCK);
4065
4066 BLOCK_VARS (block) = vars;
4067 BLOCK_SUBBLOCKS (block) = subblocks;
4068 BLOCK_SUPERCONTEXT (block) = supercontext;
4069 BLOCK_CHAIN (block) = chain;
4070 return block;
4071 }
4072
4073 \f
4074 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4075
4076 LOC is the location to use in tree T. */
4077
4078 void
4079 protected_set_expr_location (tree t, location_t loc)
4080 {
4081 if (t && CAN_HAVE_LOCATION_P (t))
4082 SET_EXPR_LOCATION (t, loc);
4083 }
4084 \f
4085 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4086 is ATTRIBUTE. */
4087
4088 tree
4089 build_decl_attribute_variant (tree ddecl, tree attribute)
4090 {
4091 DECL_ATTRIBUTES (ddecl) = attribute;
4092 return ddecl;
4093 }
4094
4095 /* Borrowed from hashtab.c iterative_hash implementation. */
4096 #define mix(a,b,c) \
4097 { \
4098 a -= b; a -= c; a ^= (c>>13); \
4099 b -= c; b -= a; b ^= (a<< 8); \
4100 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4101 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4102 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4103 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4104 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4105 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4106 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4107 }
4108
4109
4110 /* Produce good hash value combining VAL and VAL2. */
4111 hashval_t
4112 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4113 {
4114 /* the golden ratio; an arbitrary value. */
4115 hashval_t a = 0x9e3779b9;
4116
4117 mix (a, val, val2);
4118 return val2;
4119 }
4120
4121 /* Produce good hash value combining VAL and VAL2. */
4122 hashval_t
4123 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4124 {
4125 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4126 return iterative_hash_hashval_t (val, val2);
4127 else
4128 {
4129 hashval_t a = (hashval_t) val;
4130 /* Avoid warnings about shifting of more than the width of the type on
4131 hosts that won't execute this path. */
4132 int zero = 0;
4133 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4134 mix (a, b, val2);
4135 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4136 {
4137 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4138 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4139 mix (a, b, val2);
4140 }
4141 return val2;
4142 }
4143 }
4144
4145 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4146 is ATTRIBUTE and its qualifiers are QUALS.
4147
4148 Record such modified types already made so we don't make duplicates. */
4149
4150 tree
4151 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4152 {
4153 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4154 {
4155 hashval_t hashcode = 0;
4156 tree ntype;
4157 enum tree_code code = TREE_CODE (ttype);
4158
4159 /* Building a distinct copy of a tagged type is inappropriate; it
4160 causes breakage in code that expects there to be a one-to-one
4161 relationship between a struct and its fields.
4162 build_duplicate_type is another solution (as used in
4163 handle_transparent_union_attribute), but that doesn't play well
4164 with the stronger C++ type identity model. */
4165 if (TREE_CODE (ttype) == RECORD_TYPE
4166 || TREE_CODE (ttype) == UNION_TYPE
4167 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4168 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4169 {
4170 warning (OPT_Wattributes,
4171 "ignoring attributes applied to %qT after definition",
4172 TYPE_MAIN_VARIANT (ttype));
4173 return build_qualified_type (ttype, quals);
4174 }
4175
4176 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4177 ntype = build_distinct_type_copy (ttype);
4178
4179 TYPE_ATTRIBUTES (ntype) = attribute;
4180
4181 hashcode = iterative_hash_object (code, hashcode);
4182 if (TREE_TYPE (ntype))
4183 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4184 hashcode);
4185 hashcode = attribute_hash_list (attribute, hashcode);
4186
4187 switch (TREE_CODE (ntype))
4188 {
4189 case FUNCTION_TYPE:
4190 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4191 break;
4192 case ARRAY_TYPE:
4193 if (TYPE_DOMAIN (ntype))
4194 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4195 hashcode);
4196 break;
4197 case INTEGER_TYPE:
4198 hashcode = iterative_hash_object
4199 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4200 hashcode = iterative_hash_object
4201 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4202 break;
4203 case REAL_TYPE:
4204 case FIXED_POINT_TYPE:
4205 {
4206 unsigned int precision = TYPE_PRECISION (ntype);
4207 hashcode = iterative_hash_object (precision, hashcode);
4208 }
4209 break;
4210 default:
4211 break;
4212 }
4213
4214 ntype = type_hash_canon (hashcode, ntype);
4215
4216 /* If the target-dependent attributes make NTYPE different from
4217 its canonical type, we will need to use structural equality
4218 checks for this type. */
4219 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4220 || !targetm.comp_type_attributes (ntype, ttype))
4221 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4222 else if (TYPE_CANONICAL (ntype) == ntype)
4223 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4224
4225 ttype = build_qualified_type (ntype, quals);
4226 }
4227 else if (TYPE_QUALS (ttype) != quals)
4228 ttype = build_qualified_type (ttype, quals);
4229
4230 return ttype;
4231 }
4232
4233
4234 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4235 is ATTRIBUTE.
4236
4237 Record such modified types already made so we don't make duplicates. */
4238
4239 tree
4240 build_type_attribute_variant (tree ttype, tree attribute)
4241 {
4242 return build_type_attribute_qual_variant (ttype, attribute,
4243 TYPE_QUALS (ttype));
4244 }
4245
4246
4247 /* Reset the expression *EXPR_P, a size or position.
4248
4249 ??? We could reset all non-constant sizes or positions. But it's cheap
4250 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4251
4252 We need to reset self-referential sizes or positions because they cannot
4253 be gimplified and thus can contain a CALL_EXPR after the gimplification
4254 is finished, which will run afoul of LTO streaming. And they need to be
4255 reset to something essentially dummy but not constant, so as to preserve
4256 the properties of the object they are attached to. */
4257
4258 static inline void
4259 free_lang_data_in_one_sizepos (tree *expr_p)
4260 {
4261 tree expr = *expr_p;
4262 if (CONTAINS_PLACEHOLDER_P (expr))
4263 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4264 }
4265
4266
4267 /* Reset all the fields in a binfo node BINFO. We only keep
4268 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4269
4270 static void
4271 free_lang_data_in_binfo (tree binfo)
4272 {
4273 unsigned i;
4274 tree t;
4275
4276 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4277
4278 BINFO_VTABLE (binfo) = NULL_TREE;
4279 BINFO_BASE_ACCESSES (binfo) = NULL;
4280 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4281 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4282
4283 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4284 free_lang_data_in_binfo (t);
4285 }
4286
4287
4288 /* Reset all language specific information still present in TYPE. */
4289
4290 static void
4291 free_lang_data_in_type (tree type)
4292 {
4293 gcc_assert (TYPE_P (type));
4294
4295 /* Give the FE a chance to remove its own data first. */
4296 lang_hooks.free_lang_data (type);
4297
4298 TREE_LANG_FLAG_0 (type) = 0;
4299 TREE_LANG_FLAG_1 (type) = 0;
4300 TREE_LANG_FLAG_2 (type) = 0;
4301 TREE_LANG_FLAG_3 (type) = 0;
4302 TREE_LANG_FLAG_4 (type) = 0;
4303 TREE_LANG_FLAG_5 (type) = 0;
4304 TREE_LANG_FLAG_6 (type) = 0;
4305
4306 if (TREE_CODE (type) == FUNCTION_TYPE)
4307 {
4308 /* Remove the const and volatile qualifiers from arguments. The
4309 C++ front end removes them, but the C front end does not,
4310 leading to false ODR violation errors when merging two
4311 instances of the same function signature compiled by
4312 different front ends. */
4313 tree p;
4314
4315 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4316 {
4317 tree arg_type = TREE_VALUE (p);
4318
4319 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4320 {
4321 int quals = TYPE_QUALS (arg_type)
4322 & ~TYPE_QUAL_CONST
4323 & ~TYPE_QUAL_VOLATILE;
4324 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4325 free_lang_data_in_type (TREE_VALUE (p));
4326 }
4327 }
4328 }
4329
4330 /* Remove members that are not actually FIELD_DECLs from the field
4331 list of an aggregate. These occur in C++. */
4332 if (RECORD_OR_UNION_TYPE_P (type))
4333 {
4334 tree prev, member;
4335
4336 /* Note that TYPE_FIELDS can be shared across distinct
4337 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4338 to be removed, we cannot set its TREE_CHAIN to NULL.
4339 Otherwise, we would not be able to find all the other fields
4340 in the other instances of this TREE_TYPE.
4341
4342 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4343 prev = NULL_TREE;
4344 member = TYPE_FIELDS (type);
4345 while (member)
4346 {
4347 if (TREE_CODE (member) == FIELD_DECL)
4348 {
4349 if (prev)
4350 TREE_CHAIN (prev) = member;
4351 else
4352 TYPE_FIELDS (type) = member;
4353 prev = member;
4354 }
4355
4356 member = TREE_CHAIN (member);
4357 }
4358
4359 if (prev)
4360 TREE_CHAIN (prev) = NULL_TREE;
4361 else
4362 TYPE_FIELDS (type) = NULL_TREE;
4363
4364 TYPE_METHODS (type) = NULL_TREE;
4365 if (TYPE_BINFO (type))
4366 free_lang_data_in_binfo (TYPE_BINFO (type));
4367 }
4368 else
4369 {
4370 /* For non-aggregate types, clear out the language slot (which
4371 overloads TYPE_BINFO). */
4372 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4373
4374 if (INTEGRAL_TYPE_P (type)
4375 || SCALAR_FLOAT_TYPE_P (type)
4376 || FIXED_POINT_TYPE_P (type))
4377 {
4378 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4379 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4380 }
4381 }
4382
4383 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4384 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4385
4386 if (debug_info_level < DINFO_LEVEL_TERSE
4387 || (TYPE_CONTEXT (type)
4388 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4389 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4390 TYPE_CONTEXT (type) = NULL_TREE;
4391
4392 if (debug_info_level < DINFO_LEVEL_TERSE)
4393 TYPE_STUB_DECL (type) = NULL_TREE;
4394 }
4395
4396
4397 /* Return true if DECL may need an assembler name to be set. */
4398
4399 static inline bool
4400 need_assembler_name_p (tree decl)
4401 {
4402 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4403 if (TREE_CODE (decl) != FUNCTION_DECL
4404 && TREE_CODE (decl) != VAR_DECL)
4405 return false;
4406
4407 /* If DECL already has its assembler name set, it does not need a
4408 new one. */
4409 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4410 || DECL_ASSEMBLER_NAME_SET_P (decl))
4411 return false;
4412
4413 /* Abstract decls do not need an assembler name. */
4414 if (DECL_ABSTRACT (decl))
4415 return false;
4416
4417 /* For VAR_DECLs, only static, public and external symbols need an
4418 assembler name. */
4419 if (TREE_CODE (decl) == VAR_DECL
4420 && !TREE_STATIC (decl)
4421 && !TREE_PUBLIC (decl)
4422 && !DECL_EXTERNAL (decl))
4423 return false;
4424
4425 if (TREE_CODE (decl) == FUNCTION_DECL)
4426 {
4427 /* Do not set assembler name on builtins. Allow RTL expansion to
4428 decide whether to expand inline or via a regular call. */
4429 if (DECL_BUILT_IN (decl)
4430 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4431 return false;
4432
4433 /* Functions represented in the callgraph need an assembler name. */
4434 if (cgraph_get_node (decl) != NULL)
4435 return true;
4436
4437 /* Unused and not public functions don't need an assembler name. */
4438 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4439 return false;
4440 }
4441
4442 return true;
4443 }
4444
4445
4446 /* Remove all the non-variable decls from BLOCK. LOCALS is the set of
4447 variables in DECL_STRUCT_FUNCTION (FN)->local_decls. Every decl
4448 in BLOCK that is not in LOCALS is removed. */
4449
4450 static void
4451 free_lang_data_in_block (tree fn, tree block, struct pointer_set_t *locals)
4452 {
4453 tree *tp, t;
4454
4455 tp = &BLOCK_VARS (block);
4456 while (*tp)
4457 {
4458 if (!pointer_set_contains (locals, *tp))
4459 *tp = TREE_CHAIN (*tp);
4460 else
4461 tp = &TREE_CHAIN (*tp);
4462 }
4463
4464 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4465 free_lang_data_in_block (fn, t, locals);
4466 }
4467
4468
4469 /* Reset all language specific information still present in symbol
4470 DECL. */
4471
4472 static void
4473 free_lang_data_in_decl (tree decl)
4474 {
4475 gcc_assert (DECL_P (decl));
4476
4477 /* Give the FE a chance to remove its own data first. */
4478 lang_hooks.free_lang_data (decl);
4479
4480 TREE_LANG_FLAG_0 (decl) = 0;
4481 TREE_LANG_FLAG_1 (decl) = 0;
4482 TREE_LANG_FLAG_2 (decl) = 0;
4483 TREE_LANG_FLAG_3 (decl) = 0;
4484 TREE_LANG_FLAG_4 (decl) = 0;
4485 TREE_LANG_FLAG_5 (decl) = 0;
4486 TREE_LANG_FLAG_6 (decl) = 0;
4487
4488 /* Identifiers need not have a type. */
4489 if (DECL_NAME (decl))
4490 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4491
4492 /* Ignore any intervening types, because we are going to clear their
4493 TYPE_CONTEXT fields. */
4494 if (TREE_CODE (decl) != FIELD_DECL
4495 && TREE_CODE (decl) != FUNCTION_DECL)
4496 DECL_CONTEXT (decl) = decl_function_context (decl);
4497
4498 if (DECL_CONTEXT (decl)
4499 && TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
4500 DECL_CONTEXT (decl) = NULL_TREE;
4501
4502 if (TREE_CODE (decl) == VAR_DECL)
4503 {
4504 tree context = DECL_CONTEXT (decl);
4505
4506 if (context)
4507 {
4508 enum tree_code code = TREE_CODE (context);
4509 if (code == FUNCTION_DECL && DECL_ABSTRACT (context))
4510 {
4511 /* Do not clear the decl context here, that will promote
4512 all vars to global ones. */
4513 DECL_INITIAL (decl) = NULL_TREE;
4514 }
4515
4516 if (TREE_STATIC (decl))
4517 DECL_CONTEXT (decl) = NULL_TREE;
4518 }
4519 }
4520
4521 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4522 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4523 if (TREE_CODE (decl) == FIELD_DECL)
4524 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4525
4526 /* DECL_FCONTEXT is only used for debug info generation. */
4527 if (TREE_CODE (decl) == FIELD_DECL
4528 && debug_info_level < DINFO_LEVEL_TERSE)
4529 DECL_FCONTEXT (decl) = NULL_TREE;
4530
4531 if (TREE_CODE (decl) == FUNCTION_DECL)
4532 {
4533 if (gimple_has_body_p (decl))
4534 {
4535 tree t;
4536 unsigned ix;
4537 struct pointer_set_t *locals;
4538
4539 /* If DECL has a gimple body, then the context for its
4540 arguments must be DECL. Otherwise, it doesn't really
4541 matter, as we will not be emitting any code for DECL. In
4542 general, there may be other instances of DECL created by
4543 the front end and since PARM_DECLs are generally shared,
4544 their DECL_CONTEXT changes as the replicas of DECL are
4545 created. The only time where DECL_CONTEXT is important
4546 is for the FUNCTION_DECLs that have a gimple body (since
4547 the PARM_DECL will be used in the function's body). */
4548 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4549 DECL_CONTEXT (t) = decl;
4550
4551 /* Collect all the symbols declared in DECL. */
4552 locals = pointer_set_create ();
4553 FOR_EACH_LOCAL_DECL (DECL_STRUCT_FUNCTION (decl), ix, t)
4554 {
4555 pointer_set_insert (locals, t);
4556
4557 /* All the local symbols should have DECL as their
4558 context. */
4559 DECL_CONTEXT (t) = decl;
4560 }
4561
4562 /* Get rid of any decl not in local_decls. */
4563 free_lang_data_in_block (decl, DECL_INITIAL (decl), locals);
4564
4565 pointer_set_destroy (locals);
4566 }
4567
4568 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4569 At this point, it is not needed anymore. */
4570 DECL_SAVED_TREE (decl) = NULL_TREE;
4571 }
4572 else if (TREE_CODE (decl) == VAR_DECL)
4573 {
4574 if (DECL_EXTERNAL (decl)
4575 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4576 DECL_INITIAL (decl) = NULL_TREE;
4577 }
4578 else if (TREE_CODE (decl) == TYPE_DECL)
4579 {
4580 DECL_INITIAL (decl) = NULL_TREE;
4581
4582 /* DECL_CONTEXT is overloaded as DECL_FIELD_CONTEXT for
4583 FIELD_DECLs, which should be preserved. Otherwise,
4584 we shouldn't be concerned with source-level lexical
4585 nesting beyond this point. */
4586 DECL_CONTEXT (decl) = NULL_TREE;
4587 }
4588 }
4589
4590
4591 /* Data used when collecting DECLs and TYPEs for language data removal. */
4592
4593 struct free_lang_data_d
4594 {
4595 /* Worklist to avoid excessive recursion. */
4596 VEC(tree,heap) *worklist;
4597
4598 /* Set of traversed objects. Used to avoid duplicate visits. */
4599 struct pointer_set_t *pset;
4600
4601 /* Array of symbols to process with free_lang_data_in_decl. */
4602 VEC(tree,heap) *decls;
4603
4604 /* Array of types to process with free_lang_data_in_type. */
4605 VEC(tree,heap) *types;
4606 };
4607
4608
4609 /* Save all language fields needed to generate proper debug information
4610 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4611
4612 static void
4613 save_debug_info_for_decl (tree t)
4614 {
4615 /*struct saved_debug_info_d *sdi;*/
4616
4617 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4618
4619 /* FIXME. Partial implementation for saving debug info removed. */
4620 }
4621
4622
4623 /* Save all language fields needed to generate proper debug information
4624 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4625
4626 static void
4627 save_debug_info_for_type (tree t)
4628 {
4629 /*struct saved_debug_info_d *sdi;*/
4630
4631 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4632
4633 /* FIXME. Partial implementation for saving debug info removed. */
4634 }
4635
4636
4637 /* Add type or decl T to one of the list of tree nodes that need their
4638 language data removed. The lists are held inside FLD. */
4639
4640 static void
4641 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4642 {
4643 if (DECL_P (t))
4644 {
4645 VEC_safe_push (tree, heap, fld->decls, t);
4646 if (debug_info_level > DINFO_LEVEL_TERSE)
4647 save_debug_info_for_decl (t);
4648 }
4649 else if (TYPE_P (t))
4650 {
4651 VEC_safe_push (tree, heap, fld->types, t);
4652 if (debug_info_level > DINFO_LEVEL_TERSE)
4653 save_debug_info_for_type (t);
4654 }
4655 else
4656 gcc_unreachable ();
4657 }
4658
4659 /* Push tree node T into FLD->WORKLIST. */
4660
4661 static inline void
4662 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4663 {
4664 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4665 VEC_safe_push (tree, heap, fld->worklist, (t));
4666 }
4667
4668
4669 /* Operand callback helper for free_lang_data_in_node. *TP is the
4670 subtree operand being considered. */
4671
4672 static tree
4673 find_decls_types_r (tree *tp, int *ws, void *data)
4674 {
4675 tree t = *tp;
4676 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4677
4678 if (TREE_CODE (t) == TREE_LIST)
4679 return NULL_TREE;
4680
4681 /* Language specific nodes will be removed, so there is no need
4682 to gather anything under them. */
4683 if (is_lang_specific (t))
4684 {
4685 *ws = 0;
4686 return NULL_TREE;
4687 }
4688
4689 if (DECL_P (t))
4690 {
4691 /* Note that walk_tree does not traverse every possible field in
4692 decls, so we have to do our own traversals here. */
4693 add_tree_to_fld_list (t, fld);
4694
4695 fld_worklist_push (DECL_NAME (t), fld);
4696 fld_worklist_push (DECL_CONTEXT (t), fld);
4697 fld_worklist_push (DECL_SIZE (t), fld);
4698 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4699
4700 /* We are going to remove everything under DECL_INITIAL for
4701 TYPE_DECLs. No point walking them. */
4702 if (TREE_CODE (t) != TYPE_DECL)
4703 fld_worklist_push (DECL_INITIAL (t), fld);
4704
4705 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4706 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4707
4708 if (TREE_CODE (t) == FUNCTION_DECL)
4709 {
4710 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4711 fld_worklist_push (DECL_RESULT (t), fld);
4712 }
4713 else if (TREE_CODE (t) == TYPE_DECL)
4714 {
4715 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4716 fld_worklist_push (DECL_VINDEX (t), fld);
4717 }
4718 else if (TREE_CODE (t) == FIELD_DECL)
4719 {
4720 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4721 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4722 fld_worklist_push (DECL_QUALIFIER (t), fld);
4723 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4724 fld_worklist_push (DECL_FCONTEXT (t), fld);
4725 }
4726 else if (TREE_CODE (t) == VAR_DECL)
4727 {
4728 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4729 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4730 }
4731
4732 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4733 && DECL_HAS_VALUE_EXPR_P (t))
4734 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4735
4736 if (TREE_CODE (t) != FIELD_DECL
4737 && TREE_CODE (t) != TYPE_DECL)
4738 fld_worklist_push (TREE_CHAIN (t), fld);
4739 *ws = 0;
4740 }
4741 else if (TYPE_P (t))
4742 {
4743 /* Note that walk_tree does not traverse every possible field in
4744 types, so we have to do our own traversals here. */
4745 add_tree_to_fld_list (t, fld);
4746
4747 if (!RECORD_OR_UNION_TYPE_P (t))
4748 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4749 fld_worklist_push (TYPE_SIZE (t), fld);
4750 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4751 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4752 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4753 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4754 fld_worklist_push (TYPE_NAME (t), fld);
4755 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4756 them and thus do not and want not to reach unused pointer types
4757 this way. */
4758 if (!POINTER_TYPE_P (t))
4759 fld_worklist_push (TYPE_MINVAL (t), fld);
4760 if (!RECORD_OR_UNION_TYPE_P (t))
4761 fld_worklist_push (TYPE_MAXVAL (t), fld);
4762 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4763 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4764 do not and want not to reach unused variants this way. */
4765 fld_worklist_push (TYPE_CONTEXT (t), fld);
4766 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4767 and want not to reach unused types this way. */
4768
4769 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4770 {
4771 unsigned i;
4772 tree tem;
4773 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4774 i, tem); ++i)
4775 fld_worklist_push (TREE_TYPE (tem), fld);
4776 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4777 if (tem
4778 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4779 && TREE_CODE (tem) == TREE_LIST)
4780 do
4781 {
4782 fld_worklist_push (TREE_VALUE (tem), fld);
4783 tem = TREE_CHAIN (tem);
4784 }
4785 while (tem);
4786 }
4787 if (RECORD_OR_UNION_TYPE_P (t))
4788 {
4789 tree tem;
4790 /* Push all TYPE_FIELDS - there can be interleaving interesting
4791 and non-interesting things. */
4792 tem = TYPE_FIELDS (t);
4793 while (tem)
4794 {
4795 if (TREE_CODE (tem) == FIELD_DECL)
4796 fld_worklist_push (tem, fld);
4797 tem = TREE_CHAIN (tem);
4798 }
4799 }
4800
4801 fld_worklist_push (TREE_CHAIN (t), fld);
4802 *ws = 0;
4803 }
4804 else if (TREE_CODE (t) == BLOCK)
4805 {
4806 tree tem;
4807 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4808 fld_worklist_push (tem, fld);
4809 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4810 fld_worklist_push (tem, fld);
4811 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4812 }
4813
4814 fld_worklist_push (TREE_TYPE (t), fld);
4815
4816 return NULL_TREE;
4817 }
4818
4819
4820 /* Find decls and types in T. */
4821
4822 static void
4823 find_decls_types (tree t, struct free_lang_data_d *fld)
4824 {
4825 while (1)
4826 {
4827 if (!pointer_set_contains (fld->pset, t))
4828 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4829 if (VEC_empty (tree, fld->worklist))
4830 break;
4831 t = VEC_pop (tree, fld->worklist);
4832 }
4833 }
4834
4835 /* Translate all the types in LIST with the corresponding runtime
4836 types. */
4837
4838 static tree
4839 get_eh_types_for_runtime (tree list)
4840 {
4841 tree head, prev;
4842
4843 if (list == NULL_TREE)
4844 return NULL_TREE;
4845
4846 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4847 prev = head;
4848 list = TREE_CHAIN (list);
4849 while (list)
4850 {
4851 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4852 TREE_CHAIN (prev) = n;
4853 prev = TREE_CHAIN (prev);
4854 list = TREE_CHAIN (list);
4855 }
4856
4857 return head;
4858 }
4859
4860
4861 /* Find decls and types referenced in EH region R and store them in
4862 FLD->DECLS and FLD->TYPES. */
4863
4864 static void
4865 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4866 {
4867 switch (r->type)
4868 {
4869 case ERT_CLEANUP:
4870 break;
4871
4872 case ERT_TRY:
4873 {
4874 eh_catch c;
4875
4876 /* The types referenced in each catch must first be changed to the
4877 EH types used at runtime. This removes references to FE types
4878 in the region. */
4879 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4880 {
4881 c->type_list = get_eh_types_for_runtime (c->type_list);
4882 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4883 }
4884 }
4885 break;
4886
4887 case ERT_ALLOWED_EXCEPTIONS:
4888 r->u.allowed.type_list
4889 = get_eh_types_for_runtime (r->u.allowed.type_list);
4890 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4891 break;
4892
4893 case ERT_MUST_NOT_THROW:
4894 walk_tree (&r->u.must_not_throw.failure_decl,
4895 find_decls_types_r, fld, fld->pset);
4896 break;
4897 }
4898 }
4899
4900
4901 /* Find decls and types referenced in cgraph node N and store them in
4902 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4903 look for *every* kind of DECL and TYPE node reachable from N,
4904 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4905 NAMESPACE_DECLs, etc). */
4906
4907 static void
4908 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4909 {
4910 basic_block bb;
4911 struct function *fn;
4912 unsigned ix;
4913 tree t;
4914
4915 find_decls_types (n->decl, fld);
4916
4917 if (!gimple_has_body_p (n->decl))
4918 return;
4919
4920 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4921
4922 fn = DECL_STRUCT_FUNCTION (n->decl);
4923
4924 /* Traverse locals. */
4925 FOR_EACH_LOCAL_DECL (fn, ix, t)
4926 find_decls_types (t, fld);
4927
4928 /* Traverse EH regions in FN. */
4929 {
4930 eh_region r;
4931 FOR_ALL_EH_REGION_FN (r, fn)
4932 find_decls_types_in_eh_region (r, fld);
4933 }
4934
4935 /* Traverse every statement in FN. */
4936 FOR_EACH_BB_FN (bb, fn)
4937 {
4938 gimple_stmt_iterator si;
4939 unsigned i;
4940
4941 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4942 {
4943 gimple phi = gsi_stmt (si);
4944
4945 for (i = 0; i < gimple_phi_num_args (phi); i++)
4946 {
4947 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4948 find_decls_types (*arg_p, fld);
4949 }
4950 }
4951
4952 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4953 {
4954 gimple stmt = gsi_stmt (si);
4955
4956 for (i = 0; i < gimple_num_ops (stmt); i++)
4957 {
4958 tree arg = gimple_op (stmt, i);
4959 find_decls_types (arg, fld);
4960 }
4961 }
4962 }
4963 }
4964
4965
4966 /* Find decls and types referenced in varpool node N and store them in
4967 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4968 look for *every* kind of DECL and TYPE node reachable from N,
4969 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4970 NAMESPACE_DECLs, etc). */
4971
4972 static void
4973 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4974 {
4975 find_decls_types (v->decl, fld);
4976 }
4977
4978 /* If T needs an assembler name, have one created for it. */
4979
4980 void
4981 assign_assembler_name_if_neeeded (tree t)
4982 {
4983 if (need_assembler_name_p (t))
4984 {
4985 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4986 diagnostics that use input_location to show locus
4987 information. The problem here is that, at this point,
4988 input_location is generally anchored to the end of the file
4989 (since the parser is long gone), so we don't have a good
4990 position to pin it to.
4991
4992 To alleviate this problem, this uses the location of T's
4993 declaration. Examples of this are
4994 testsuite/g++.dg/template/cond2.C and
4995 testsuite/g++.dg/template/pr35240.C. */
4996 location_t saved_location = input_location;
4997 input_location = DECL_SOURCE_LOCATION (t);
4998
4999 decl_assembler_name (t);
5000
5001 input_location = saved_location;
5002 }
5003 }
5004
5005
5006 /* Free language specific information for every operand and expression
5007 in every node of the call graph. This process operates in three stages:
5008
5009 1- Every callgraph node and varpool node is traversed looking for
5010 decls and types embedded in them. This is a more exhaustive
5011 search than that done by find_referenced_vars, because it will
5012 also collect individual fields, decls embedded in types, etc.
5013
5014 2- All the decls found are sent to free_lang_data_in_decl.
5015
5016 3- All the types found are sent to free_lang_data_in_type.
5017
5018 The ordering between decls and types is important because
5019 free_lang_data_in_decl sets assembler names, which includes
5020 mangling. So types cannot be freed up until assembler names have
5021 been set up. */
5022
5023 static void
5024 free_lang_data_in_cgraph (void)
5025 {
5026 struct cgraph_node *n;
5027 struct varpool_node *v;
5028 struct free_lang_data_d fld;
5029 tree t;
5030 unsigned i;
5031 alias_pair *p;
5032
5033 /* Initialize sets and arrays to store referenced decls and types. */
5034 fld.pset = pointer_set_create ();
5035 fld.worklist = NULL;
5036 fld.decls = VEC_alloc (tree, heap, 100);
5037 fld.types = VEC_alloc (tree, heap, 100);
5038
5039 /* Find decls and types in the body of every function in the callgraph. */
5040 for (n = cgraph_nodes; n; n = n->next)
5041 find_decls_types_in_node (n, &fld);
5042
5043 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
5044 find_decls_types (p->decl, &fld);
5045
5046 /* Find decls and types in every varpool symbol. */
5047 for (v = varpool_nodes_queue; v; v = v->next_needed)
5048 find_decls_types_in_var (v, &fld);
5049
5050 /* Set the assembler name on every decl found. We need to do this
5051 now because free_lang_data_in_decl will invalidate data needed
5052 for mangling. This breaks mangling on interdependent decls. */
5053 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5054 assign_assembler_name_if_neeeded (t);
5055
5056 /* Traverse every decl found freeing its language data. */
5057 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5058 free_lang_data_in_decl (t);
5059
5060 /* Traverse every type found freeing its language data. */
5061 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
5062 free_lang_data_in_type (t);
5063
5064 pointer_set_destroy (fld.pset);
5065 VEC_free (tree, heap, fld.worklist);
5066 VEC_free (tree, heap, fld.decls);
5067 VEC_free (tree, heap, fld.types);
5068 }
5069
5070
5071 /* Free resources that are used by FE but are not needed once they are done. */
5072
5073 static unsigned
5074 free_lang_data (void)
5075 {
5076 unsigned i;
5077
5078 /* If we are the LTO frontend we have freed lang-specific data already. */
5079 if (in_lto_p
5080 || !flag_generate_lto)
5081 return 0;
5082
5083 /* Allocate and assign alias sets to the standard integer types
5084 while the slots are still in the way the frontends generated them. */
5085 for (i = 0; i < itk_none; ++i)
5086 if (integer_types[i])
5087 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5088
5089 /* Traverse the IL resetting language specific information for
5090 operands, expressions, etc. */
5091 free_lang_data_in_cgraph ();
5092
5093 /* Create gimple variants for common types. */
5094 ptrdiff_type_node = integer_type_node;
5095 fileptr_type_node = ptr_type_node;
5096 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
5097 || (TYPE_MODE (boolean_type_node)
5098 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
5099 || TYPE_PRECISION (boolean_type_node) != 1
5100 || !TYPE_UNSIGNED (boolean_type_node))
5101 {
5102 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5103 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5104 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5105 TYPE_PRECISION (boolean_type_node) = 1;
5106 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5107 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5108 }
5109
5110 /* Unify char_type_node with its properly signed variant. */
5111 if (TYPE_UNSIGNED (char_type_node))
5112 unsigned_char_type_node = char_type_node;
5113 else
5114 signed_char_type_node = char_type_node;
5115
5116 /* Reset some langhooks. Do not reset types_compatible_p, it may
5117 still be used indirectly via the get_alias_set langhook. */
5118 lang_hooks.callgraph.analyze_expr = NULL;
5119 lang_hooks.dwarf_name = lhd_dwarf_name;
5120 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5121 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
5122
5123 /* Reset diagnostic machinery. */
5124 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5125 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5126 diagnostic_format_decoder (global_dc) = default_tree_printer;
5127
5128 return 0;
5129 }
5130
5131
5132 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5133 {
5134 {
5135 SIMPLE_IPA_PASS,
5136 "*free_lang_data", /* name */
5137 NULL, /* gate */
5138 free_lang_data, /* execute */
5139 NULL, /* sub */
5140 NULL, /* next */
5141 0, /* static_pass_number */
5142 TV_IPA_FREE_LANG_DATA, /* tv_id */
5143 0, /* properties_required */
5144 0, /* properties_provided */
5145 0, /* properties_destroyed */
5146 0, /* todo_flags_start */
5147 TODO_ggc_collect /* todo_flags_finish */
5148 }
5149 };
5150
5151 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5152 or zero if not.
5153
5154 We try both `text' and `__text__', ATTR may be either one. */
5155 /* ??? It might be a reasonable simplification to require ATTR to be only
5156 `text'. One might then also require attribute lists to be stored in
5157 their canonicalized form. */
5158
5159 static int
5160 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5161 {
5162 int ident_len;
5163 const char *p;
5164
5165 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5166 return 0;
5167
5168 p = IDENTIFIER_POINTER (ident);
5169 ident_len = IDENTIFIER_LENGTH (ident);
5170
5171 if (ident_len == attr_len
5172 && strcmp (attr, p) == 0)
5173 return 1;
5174
5175 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5176 if (attr[0] == '_')
5177 {
5178 gcc_assert (attr[1] == '_');
5179 gcc_assert (attr[attr_len - 2] == '_');
5180 gcc_assert (attr[attr_len - 1] == '_');
5181 if (ident_len == attr_len - 4
5182 && strncmp (attr + 2, p, attr_len - 4) == 0)
5183 return 1;
5184 }
5185 else
5186 {
5187 if (ident_len == attr_len + 4
5188 && p[0] == '_' && p[1] == '_'
5189 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5190 && strncmp (attr, p + 2, attr_len) == 0)
5191 return 1;
5192 }
5193
5194 return 0;
5195 }
5196
5197 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5198 or zero if not.
5199
5200 We try both `text' and `__text__', ATTR may be either one. */
5201
5202 int
5203 is_attribute_p (const char *attr, const_tree ident)
5204 {
5205 return is_attribute_with_length_p (attr, strlen (attr), ident);
5206 }
5207
5208 /* Given an attribute name and a list of attributes, return a pointer to the
5209 attribute's list element if the attribute is part of the list, or NULL_TREE
5210 if not found. If the attribute appears more than once, this only
5211 returns the first occurrence; the TREE_CHAIN of the return value should
5212 be passed back in if further occurrences are wanted. */
5213
5214 tree
5215 lookup_attribute (const char *attr_name, tree list)
5216 {
5217 tree l;
5218 size_t attr_len = strlen (attr_name);
5219
5220 for (l = list; l; l = TREE_CHAIN (l))
5221 {
5222 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5223 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5224 return l;
5225 }
5226 return NULL_TREE;
5227 }
5228
5229 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5230 modified list. */
5231
5232 tree
5233 remove_attribute (const char *attr_name, tree list)
5234 {
5235 tree *p;
5236 size_t attr_len = strlen (attr_name);
5237
5238 for (p = &list; *p; )
5239 {
5240 tree l = *p;
5241 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5242 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5243 *p = TREE_CHAIN (l);
5244 else
5245 p = &TREE_CHAIN (l);
5246 }
5247
5248 return list;
5249 }
5250
5251 /* Return an attribute list that is the union of a1 and a2. */
5252
5253 tree
5254 merge_attributes (tree a1, tree a2)
5255 {
5256 tree attributes;
5257
5258 /* Either one unset? Take the set one. */
5259
5260 if ((attributes = a1) == 0)
5261 attributes = a2;
5262
5263 /* One that completely contains the other? Take it. */
5264
5265 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5266 {
5267 if (attribute_list_contained (a2, a1))
5268 attributes = a2;
5269 else
5270 {
5271 /* Pick the longest list, and hang on the other list. */
5272
5273 if (list_length (a1) < list_length (a2))
5274 attributes = a2, a2 = a1;
5275
5276 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5277 {
5278 tree a;
5279 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5280 attributes);
5281 a != NULL_TREE;
5282 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5283 TREE_CHAIN (a)))
5284 {
5285 if (TREE_VALUE (a) != NULL
5286 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5287 && TREE_VALUE (a2) != NULL
5288 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5289 {
5290 if (simple_cst_list_equal (TREE_VALUE (a),
5291 TREE_VALUE (a2)) == 1)
5292 break;
5293 }
5294 else if (simple_cst_equal (TREE_VALUE (a),
5295 TREE_VALUE (a2)) == 1)
5296 break;
5297 }
5298 if (a == NULL_TREE)
5299 {
5300 a1 = copy_node (a2);
5301 TREE_CHAIN (a1) = attributes;
5302 attributes = a1;
5303 }
5304 }
5305 }
5306 }
5307 return attributes;
5308 }
5309
5310 /* Given types T1 and T2, merge their attributes and return
5311 the result. */
5312
5313 tree
5314 merge_type_attributes (tree t1, tree t2)
5315 {
5316 return merge_attributes (TYPE_ATTRIBUTES (t1),
5317 TYPE_ATTRIBUTES (t2));
5318 }
5319
5320 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5321 the result. */
5322
5323 tree
5324 merge_decl_attributes (tree olddecl, tree newdecl)
5325 {
5326 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5327 DECL_ATTRIBUTES (newdecl));
5328 }
5329
5330 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5331
5332 /* Specialization of merge_decl_attributes for various Windows targets.
5333
5334 This handles the following situation:
5335
5336 __declspec (dllimport) int foo;
5337 int foo;
5338
5339 The second instance of `foo' nullifies the dllimport. */
5340
5341 tree
5342 merge_dllimport_decl_attributes (tree old, tree new_tree)
5343 {
5344 tree a;
5345 int delete_dllimport_p = 1;
5346
5347 /* What we need to do here is remove from `old' dllimport if it doesn't
5348 appear in `new'. dllimport behaves like extern: if a declaration is
5349 marked dllimport and a definition appears later, then the object
5350 is not dllimport'd. We also remove a `new' dllimport if the old list
5351 contains dllexport: dllexport always overrides dllimport, regardless
5352 of the order of declaration. */
5353 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5354 delete_dllimport_p = 0;
5355 else if (DECL_DLLIMPORT_P (new_tree)
5356 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5357 {
5358 DECL_DLLIMPORT_P (new_tree) = 0;
5359 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5360 "dllimport ignored", new_tree);
5361 }
5362 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5363 {
5364 /* Warn about overriding a symbol that has already been used, e.g.:
5365 extern int __attribute__ ((dllimport)) foo;
5366 int* bar () {return &foo;}
5367 int foo;
5368 */
5369 if (TREE_USED (old))
5370 {
5371 warning (0, "%q+D redeclared without dllimport attribute "
5372 "after being referenced with dll linkage", new_tree);
5373 /* If we have used a variable's address with dllimport linkage,
5374 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5375 decl may already have had TREE_CONSTANT computed.
5376 We still remove the attribute so that assembler code refers
5377 to '&foo rather than '_imp__foo'. */
5378 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5379 DECL_DLLIMPORT_P (new_tree) = 1;
5380 }
5381
5382 /* Let an inline definition silently override the external reference,
5383 but otherwise warn about attribute inconsistency. */
5384 else if (TREE_CODE (new_tree) == VAR_DECL
5385 || !DECL_DECLARED_INLINE_P (new_tree))
5386 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5387 "previous dllimport ignored", new_tree);
5388 }
5389 else
5390 delete_dllimport_p = 0;
5391
5392 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5393
5394 if (delete_dllimport_p)
5395 {
5396 tree prev, t;
5397 const size_t attr_len = strlen ("dllimport");
5398
5399 /* Scan the list for dllimport and delete it. */
5400 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5401 {
5402 if (is_attribute_with_length_p ("dllimport", attr_len,
5403 TREE_PURPOSE (t)))
5404 {
5405 if (prev == NULL_TREE)
5406 a = TREE_CHAIN (a);
5407 else
5408 TREE_CHAIN (prev) = TREE_CHAIN (t);
5409 break;
5410 }
5411 }
5412 }
5413
5414 return a;
5415 }
5416
5417 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5418 struct attribute_spec.handler. */
5419
5420 tree
5421 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5422 bool *no_add_attrs)
5423 {
5424 tree node = *pnode;
5425 bool is_dllimport;
5426
5427 /* These attributes may apply to structure and union types being created,
5428 but otherwise should pass to the declaration involved. */
5429 if (!DECL_P (node))
5430 {
5431 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5432 | (int) ATTR_FLAG_ARRAY_NEXT))
5433 {
5434 *no_add_attrs = true;
5435 return tree_cons (name, args, NULL_TREE);
5436 }
5437 if (TREE_CODE (node) == RECORD_TYPE
5438 || TREE_CODE (node) == UNION_TYPE)
5439 {
5440 node = TYPE_NAME (node);
5441 if (!node)
5442 return NULL_TREE;
5443 }
5444 else
5445 {
5446 warning (OPT_Wattributes, "%qE attribute ignored",
5447 name);
5448 *no_add_attrs = true;
5449 return NULL_TREE;
5450 }
5451 }
5452
5453 if (TREE_CODE (node) != FUNCTION_DECL
5454 && TREE_CODE (node) != VAR_DECL
5455 && TREE_CODE (node) != TYPE_DECL)
5456 {
5457 *no_add_attrs = true;
5458 warning (OPT_Wattributes, "%qE attribute ignored",
5459 name);
5460 return NULL_TREE;
5461 }
5462
5463 if (TREE_CODE (node) == TYPE_DECL
5464 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5465 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5466 {
5467 *no_add_attrs = true;
5468 warning (OPT_Wattributes, "%qE attribute ignored",
5469 name);
5470 return NULL_TREE;
5471 }
5472
5473 is_dllimport = is_attribute_p ("dllimport", name);
5474
5475 /* Report error on dllimport ambiguities seen now before they cause
5476 any damage. */
5477 if (is_dllimport)
5478 {
5479 /* Honor any target-specific overrides. */
5480 if (!targetm.valid_dllimport_attribute_p (node))
5481 *no_add_attrs = true;
5482
5483 else if (TREE_CODE (node) == FUNCTION_DECL
5484 && DECL_DECLARED_INLINE_P (node))
5485 {
5486 warning (OPT_Wattributes, "inline function %q+D declared as "
5487 " dllimport: attribute ignored", node);
5488 *no_add_attrs = true;
5489 }
5490 /* Like MS, treat definition of dllimported variables and
5491 non-inlined functions on declaration as syntax errors. */
5492 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5493 {
5494 error ("function %q+D definition is marked dllimport", node);
5495 *no_add_attrs = true;
5496 }
5497
5498 else if (TREE_CODE (node) == VAR_DECL)
5499 {
5500 if (DECL_INITIAL (node))
5501 {
5502 error ("variable %q+D definition is marked dllimport",
5503 node);
5504 *no_add_attrs = true;
5505 }
5506
5507 /* `extern' needn't be specified with dllimport.
5508 Specify `extern' now and hope for the best. Sigh. */
5509 DECL_EXTERNAL (node) = 1;
5510 /* Also, implicitly give dllimport'd variables declared within
5511 a function global scope, unless declared static. */
5512 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5513 TREE_PUBLIC (node) = 1;
5514 }
5515
5516 if (*no_add_attrs == false)
5517 DECL_DLLIMPORT_P (node) = 1;
5518 }
5519 else if (TREE_CODE (node) == FUNCTION_DECL
5520 && DECL_DECLARED_INLINE_P (node))
5521 /* An exported function, even if inline, must be emitted. */
5522 DECL_EXTERNAL (node) = 0;
5523
5524 /* Report error if symbol is not accessible at global scope. */
5525 if (!TREE_PUBLIC (node)
5526 && (TREE_CODE (node) == VAR_DECL
5527 || TREE_CODE (node) == FUNCTION_DECL))
5528 {
5529 error ("external linkage required for symbol %q+D because of "
5530 "%qE attribute", node, name);
5531 *no_add_attrs = true;
5532 }
5533
5534 /* A dllexport'd entity must have default visibility so that other
5535 program units (shared libraries or the main executable) can see
5536 it. A dllimport'd entity must have default visibility so that
5537 the linker knows that undefined references within this program
5538 unit can be resolved by the dynamic linker. */
5539 if (!*no_add_attrs)
5540 {
5541 if (DECL_VISIBILITY_SPECIFIED (node)
5542 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5543 error ("%qE implies default visibility, but %qD has already "
5544 "been declared with a different visibility",
5545 name, node);
5546 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5547 DECL_VISIBILITY_SPECIFIED (node) = 1;
5548 }
5549
5550 return NULL_TREE;
5551 }
5552
5553 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5554 \f
5555 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5556 of the various TYPE_QUAL values. */
5557
5558 static void
5559 set_type_quals (tree type, int type_quals)
5560 {
5561 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5562 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5563 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5564 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5565 }
5566
5567 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5568
5569 bool
5570 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5571 {
5572 return (TYPE_QUALS (cand) == type_quals
5573 && TYPE_NAME (cand) == TYPE_NAME (base)
5574 /* Apparently this is needed for Objective-C. */
5575 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5576 /* Check alignment. */
5577 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5578 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5579 TYPE_ATTRIBUTES (base)));
5580 }
5581
5582 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5583
5584 static bool
5585 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5586 {
5587 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5588 && TYPE_NAME (cand) == TYPE_NAME (base)
5589 /* Apparently this is needed for Objective-C. */
5590 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5591 /* Check alignment. */
5592 && TYPE_ALIGN (cand) == align
5593 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5594 TYPE_ATTRIBUTES (base)));
5595 }
5596
5597 /* Return a version of the TYPE, qualified as indicated by the
5598 TYPE_QUALS, if one exists. If no qualified version exists yet,
5599 return NULL_TREE. */
5600
5601 tree
5602 get_qualified_type (tree type, int type_quals)
5603 {
5604 tree t;
5605
5606 if (TYPE_QUALS (type) == type_quals)
5607 return type;
5608
5609 /* Search the chain of variants to see if there is already one there just
5610 like the one we need to have. If so, use that existing one. We must
5611 preserve the TYPE_NAME, since there is code that depends on this. */
5612 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5613 if (check_qualified_type (t, type, type_quals))
5614 return t;
5615
5616 return NULL_TREE;
5617 }
5618
5619 /* Like get_qualified_type, but creates the type if it does not
5620 exist. This function never returns NULL_TREE. */
5621
5622 tree
5623 build_qualified_type (tree type, int type_quals)
5624 {
5625 tree t;
5626
5627 /* See if we already have the appropriate qualified variant. */
5628 t = get_qualified_type (type, type_quals);
5629
5630 /* If not, build it. */
5631 if (!t)
5632 {
5633 t = build_variant_type_copy (type);
5634 set_type_quals (t, type_quals);
5635
5636 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5637 /* Propagate structural equality. */
5638 SET_TYPE_STRUCTURAL_EQUALITY (t);
5639 else if (TYPE_CANONICAL (type) != type)
5640 /* Build the underlying canonical type, since it is different
5641 from TYPE. */
5642 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5643 type_quals);
5644 else
5645 /* T is its own canonical type. */
5646 TYPE_CANONICAL (t) = t;
5647
5648 }
5649
5650 return t;
5651 }
5652
5653 /* Create a variant of type T with alignment ALIGN. */
5654
5655 tree
5656 build_aligned_type (tree type, unsigned int align)
5657 {
5658 tree t;
5659
5660 if (TYPE_PACKED (type)
5661 || TYPE_ALIGN (type) == align)
5662 return type;
5663
5664 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5665 if (check_aligned_type (t, type, align))
5666 return t;
5667
5668 t = build_variant_type_copy (type);
5669 TYPE_ALIGN (t) = align;
5670
5671 return t;
5672 }
5673
5674 /* Create a new distinct copy of TYPE. The new type is made its own
5675 MAIN_VARIANT. If TYPE requires structural equality checks, the
5676 resulting type requires structural equality checks; otherwise, its
5677 TYPE_CANONICAL points to itself. */
5678
5679 tree
5680 build_distinct_type_copy (tree type)
5681 {
5682 tree t = copy_node (type);
5683
5684 TYPE_POINTER_TO (t) = 0;
5685 TYPE_REFERENCE_TO (t) = 0;
5686
5687 /* Set the canonical type either to a new equivalence class, or
5688 propagate the need for structural equality checks. */
5689 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5690 SET_TYPE_STRUCTURAL_EQUALITY (t);
5691 else
5692 TYPE_CANONICAL (t) = t;
5693
5694 /* Make it its own variant. */
5695 TYPE_MAIN_VARIANT (t) = t;
5696 TYPE_NEXT_VARIANT (t) = 0;
5697
5698 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5699 whose TREE_TYPE is not t. This can also happen in the Ada
5700 frontend when using subtypes. */
5701
5702 return t;
5703 }
5704
5705 /* Create a new variant of TYPE, equivalent but distinct. This is so
5706 the caller can modify it. TYPE_CANONICAL for the return type will
5707 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5708 are considered equal by the language itself (or that both types
5709 require structural equality checks). */
5710
5711 tree
5712 build_variant_type_copy (tree type)
5713 {
5714 tree t, m = TYPE_MAIN_VARIANT (type);
5715
5716 t = build_distinct_type_copy (type);
5717
5718 /* Since we're building a variant, assume that it is a non-semantic
5719 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5720 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5721
5722 /* Add the new type to the chain of variants of TYPE. */
5723 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5724 TYPE_NEXT_VARIANT (m) = t;
5725 TYPE_MAIN_VARIANT (t) = m;
5726
5727 return t;
5728 }
5729 \f
5730 /* Return true if the from tree in both tree maps are equal. */
5731
5732 int
5733 tree_map_base_eq (const void *va, const void *vb)
5734 {
5735 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5736 *const b = (const struct tree_map_base *) vb;
5737 return (a->from == b->from);
5738 }
5739
5740 /* Hash a from tree in a tree_base_map. */
5741
5742 unsigned int
5743 tree_map_base_hash (const void *item)
5744 {
5745 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5746 }
5747
5748 /* Return true if this tree map structure is marked for garbage collection
5749 purposes. We simply return true if the from tree is marked, so that this
5750 structure goes away when the from tree goes away. */
5751
5752 int
5753 tree_map_base_marked_p (const void *p)
5754 {
5755 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5756 }
5757
5758 /* Hash a from tree in a tree_map. */
5759
5760 unsigned int
5761 tree_map_hash (const void *item)
5762 {
5763 return (((const struct tree_map *) item)->hash);
5764 }
5765
5766 /* Hash a from tree in a tree_decl_map. */
5767
5768 unsigned int
5769 tree_decl_map_hash (const void *item)
5770 {
5771 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5772 }
5773
5774 /* Return the initialization priority for DECL. */
5775
5776 priority_type
5777 decl_init_priority_lookup (tree decl)
5778 {
5779 struct tree_priority_map *h;
5780 struct tree_map_base in;
5781
5782 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5783 in.from = decl;
5784 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5785 return h ? h->init : DEFAULT_INIT_PRIORITY;
5786 }
5787
5788 /* Return the finalization priority for DECL. */
5789
5790 priority_type
5791 decl_fini_priority_lookup (tree decl)
5792 {
5793 struct tree_priority_map *h;
5794 struct tree_map_base in;
5795
5796 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5797 in.from = decl;
5798 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5799 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5800 }
5801
5802 /* Return the initialization and finalization priority information for
5803 DECL. If there is no previous priority information, a freshly
5804 allocated structure is returned. */
5805
5806 static struct tree_priority_map *
5807 decl_priority_info (tree decl)
5808 {
5809 struct tree_priority_map in;
5810 struct tree_priority_map *h;
5811 void **loc;
5812
5813 in.base.from = decl;
5814 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5815 h = (struct tree_priority_map *) *loc;
5816 if (!h)
5817 {
5818 h = ggc_alloc_cleared_tree_priority_map ();
5819 *loc = h;
5820 h->base.from = decl;
5821 h->init = DEFAULT_INIT_PRIORITY;
5822 h->fini = DEFAULT_INIT_PRIORITY;
5823 }
5824
5825 return h;
5826 }
5827
5828 /* Set the initialization priority for DECL to PRIORITY. */
5829
5830 void
5831 decl_init_priority_insert (tree decl, priority_type priority)
5832 {
5833 struct tree_priority_map *h;
5834
5835 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5836 h = decl_priority_info (decl);
5837 h->init = priority;
5838 }
5839
5840 /* Set the finalization priority for DECL to PRIORITY. */
5841
5842 void
5843 decl_fini_priority_insert (tree decl, priority_type priority)
5844 {
5845 struct tree_priority_map *h;
5846
5847 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5848 h = decl_priority_info (decl);
5849 h->fini = priority;
5850 }
5851
5852 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5853
5854 static void
5855 print_debug_expr_statistics (void)
5856 {
5857 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5858 (long) htab_size (debug_expr_for_decl),
5859 (long) htab_elements (debug_expr_for_decl),
5860 htab_collisions (debug_expr_for_decl));
5861 }
5862
5863 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5864
5865 static void
5866 print_value_expr_statistics (void)
5867 {
5868 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5869 (long) htab_size (value_expr_for_decl),
5870 (long) htab_elements (value_expr_for_decl),
5871 htab_collisions (value_expr_for_decl));
5872 }
5873
5874 /* Lookup a debug expression for FROM, and return it if we find one. */
5875
5876 tree
5877 decl_debug_expr_lookup (tree from)
5878 {
5879 struct tree_decl_map *h, in;
5880 in.base.from = from;
5881
5882 h = (struct tree_decl_map *)
5883 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5884 if (h)
5885 return h->to;
5886 return NULL_TREE;
5887 }
5888
5889 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5890
5891 void
5892 decl_debug_expr_insert (tree from, tree to)
5893 {
5894 struct tree_decl_map *h;
5895 void **loc;
5896
5897 h = ggc_alloc_tree_decl_map ();
5898 h->base.from = from;
5899 h->to = to;
5900 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5901 INSERT);
5902 *(struct tree_decl_map **) loc = h;
5903 }
5904
5905 /* Lookup a value expression for FROM, and return it if we find one. */
5906
5907 tree
5908 decl_value_expr_lookup (tree from)
5909 {
5910 struct tree_decl_map *h, in;
5911 in.base.from = from;
5912
5913 h = (struct tree_decl_map *)
5914 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
5915 if (h)
5916 return h->to;
5917 return NULL_TREE;
5918 }
5919
5920 /* Insert a mapping FROM->TO in the value expression hashtable. */
5921
5922 void
5923 decl_value_expr_insert (tree from, tree to)
5924 {
5925 struct tree_decl_map *h;
5926 void **loc;
5927
5928 h = ggc_alloc_tree_decl_map ();
5929 h->base.from = from;
5930 h->to = to;
5931 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
5932 INSERT);
5933 *(struct tree_decl_map **) loc = h;
5934 }
5935
5936 /* Hashing of types so that we don't make duplicates.
5937 The entry point is `type_hash_canon'. */
5938
5939 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5940 with types in the TREE_VALUE slots), by adding the hash codes
5941 of the individual types. */
5942
5943 static unsigned int
5944 type_hash_list (const_tree list, hashval_t hashcode)
5945 {
5946 const_tree tail;
5947
5948 for (tail = list; tail; tail = TREE_CHAIN (tail))
5949 if (TREE_VALUE (tail) != error_mark_node)
5950 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5951 hashcode);
5952
5953 return hashcode;
5954 }
5955
5956 /* These are the Hashtable callback functions. */
5957
5958 /* Returns true iff the types are equivalent. */
5959
5960 static int
5961 type_hash_eq (const void *va, const void *vb)
5962 {
5963 const struct type_hash *const a = (const struct type_hash *) va,
5964 *const b = (const struct type_hash *) vb;
5965
5966 /* First test the things that are the same for all types. */
5967 if (a->hash != b->hash
5968 || TREE_CODE (a->type) != TREE_CODE (b->type)
5969 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5970 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5971 TYPE_ATTRIBUTES (b->type))
5972 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5973 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5974 || (TREE_CODE (a->type) != COMPLEX_TYPE
5975 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5976 return 0;
5977
5978 switch (TREE_CODE (a->type))
5979 {
5980 case VOID_TYPE:
5981 case COMPLEX_TYPE:
5982 case POINTER_TYPE:
5983 case REFERENCE_TYPE:
5984 return 1;
5985
5986 case VECTOR_TYPE:
5987 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5988
5989 case ENUMERAL_TYPE:
5990 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5991 && !(TYPE_VALUES (a->type)
5992 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5993 && TYPE_VALUES (b->type)
5994 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5995 && type_list_equal (TYPE_VALUES (a->type),
5996 TYPE_VALUES (b->type))))
5997 return 0;
5998
5999 /* ... fall through ... */
6000
6001 case INTEGER_TYPE:
6002 case REAL_TYPE:
6003 case BOOLEAN_TYPE:
6004 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6005 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6006 TYPE_MAX_VALUE (b->type)))
6007 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6008 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6009 TYPE_MIN_VALUE (b->type))));
6010
6011 case FIXED_POINT_TYPE:
6012 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6013
6014 case OFFSET_TYPE:
6015 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6016
6017 case METHOD_TYPE:
6018 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6019 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6020 || (TYPE_ARG_TYPES (a->type)
6021 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6022 && TYPE_ARG_TYPES (b->type)
6023 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6024 && type_list_equal (TYPE_ARG_TYPES (a->type),
6025 TYPE_ARG_TYPES (b->type)))));
6026
6027 case ARRAY_TYPE:
6028 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6029
6030 case RECORD_TYPE:
6031 case UNION_TYPE:
6032 case QUAL_UNION_TYPE:
6033 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6034 || (TYPE_FIELDS (a->type)
6035 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6036 && TYPE_FIELDS (b->type)
6037 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6038 && type_list_equal (TYPE_FIELDS (a->type),
6039 TYPE_FIELDS (b->type))));
6040
6041 case FUNCTION_TYPE:
6042 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6043 || (TYPE_ARG_TYPES (a->type)
6044 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6045 && TYPE_ARG_TYPES (b->type)
6046 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6047 && type_list_equal (TYPE_ARG_TYPES (a->type),
6048 TYPE_ARG_TYPES (b->type))))
6049 break;
6050 return 0;
6051
6052 default:
6053 return 0;
6054 }
6055
6056 if (lang_hooks.types.type_hash_eq != NULL)
6057 return lang_hooks.types.type_hash_eq (a->type, b->type);
6058
6059 return 1;
6060 }
6061
6062 /* Return the cached hash value. */
6063
6064 static hashval_t
6065 type_hash_hash (const void *item)
6066 {
6067 return ((const struct type_hash *) item)->hash;
6068 }
6069
6070 /* Look in the type hash table for a type isomorphic to TYPE.
6071 If one is found, return it. Otherwise return 0. */
6072
6073 tree
6074 type_hash_lookup (hashval_t hashcode, tree type)
6075 {
6076 struct type_hash *h, in;
6077
6078 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6079 must call that routine before comparing TYPE_ALIGNs. */
6080 layout_type (type);
6081
6082 in.hash = hashcode;
6083 in.type = type;
6084
6085 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6086 hashcode);
6087 if (h)
6088 return h->type;
6089 return NULL_TREE;
6090 }
6091
6092 /* Add an entry to the type-hash-table
6093 for a type TYPE whose hash code is HASHCODE. */
6094
6095 void
6096 type_hash_add (hashval_t hashcode, tree type)
6097 {
6098 struct type_hash *h;
6099 void **loc;
6100
6101 h = ggc_alloc_type_hash ();
6102 h->hash = hashcode;
6103 h->type = type;
6104 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6105 *loc = (void *)h;
6106 }
6107
6108 /* Given TYPE, and HASHCODE its hash code, return the canonical
6109 object for an identical type if one already exists.
6110 Otherwise, return TYPE, and record it as the canonical object.
6111
6112 To use this function, first create a type of the sort you want.
6113 Then compute its hash code from the fields of the type that
6114 make it different from other similar types.
6115 Then call this function and use the value. */
6116
6117 tree
6118 type_hash_canon (unsigned int hashcode, tree type)
6119 {
6120 tree t1;
6121
6122 /* The hash table only contains main variants, so ensure that's what we're
6123 being passed. */
6124 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6125
6126 if (!lang_hooks.types.hash_types)
6127 return type;
6128
6129 /* See if the type is in the hash table already. If so, return it.
6130 Otherwise, add the type. */
6131 t1 = type_hash_lookup (hashcode, type);
6132 if (t1 != 0)
6133 {
6134 #ifdef GATHER_STATISTICS
6135 tree_node_counts[(int) t_kind]--;
6136 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
6137 #endif
6138 return t1;
6139 }
6140 else
6141 {
6142 type_hash_add (hashcode, type);
6143 return type;
6144 }
6145 }
6146
6147 /* See if the data pointed to by the type hash table is marked. We consider
6148 it marked if the type is marked or if a debug type number or symbol
6149 table entry has been made for the type. */
6150
6151 static int
6152 type_hash_marked_p (const void *p)
6153 {
6154 const_tree const type = ((const struct type_hash *) p)->type;
6155
6156 return ggc_marked_p (type);
6157 }
6158
6159 static void
6160 print_type_hash_statistics (void)
6161 {
6162 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6163 (long) htab_size (type_hash_table),
6164 (long) htab_elements (type_hash_table),
6165 htab_collisions (type_hash_table));
6166 }
6167
6168 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6169 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6170 by adding the hash codes of the individual attributes. */
6171
6172 static unsigned int
6173 attribute_hash_list (const_tree list, hashval_t hashcode)
6174 {
6175 const_tree tail;
6176
6177 for (tail = list; tail; tail = TREE_CHAIN (tail))
6178 /* ??? Do we want to add in TREE_VALUE too? */
6179 hashcode = iterative_hash_object
6180 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6181 return hashcode;
6182 }
6183
6184 /* Given two lists of attributes, return true if list l2 is
6185 equivalent to l1. */
6186
6187 int
6188 attribute_list_equal (const_tree l1, const_tree l2)
6189 {
6190 return attribute_list_contained (l1, l2)
6191 && attribute_list_contained (l2, l1);
6192 }
6193
6194 /* Given two lists of attributes, return true if list L2 is
6195 completely contained within L1. */
6196 /* ??? This would be faster if attribute names were stored in a canonicalized
6197 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6198 must be used to show these elements are equivalent (which they are). */
6199 /* ??? It's not clear that attributes with arguments will always be handled
6200 correctly. */
6201
6202 int
6203 attribute_list_contained (const_tree l1, const_tree l2)
6204 {
6205 const_tree t1, t2;
6206
6207 /* First check the obvious, maybe the lists are identical. */
6208 if (l1 == l2)
6209 return 1;
6210
6211 /* Maybe the lists are similar. */
6212 for (t1 = l1, t2 = l2;
6213 t1 != 0 && t2 != 0
6214 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6215 && TREE_VALUE (t1) == TREE_VALUE (t2);
6216 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6217
6218 /* Maybe the lists are equal. */
6219 if (t1 == 0 && t2 == 0)
6220 return 1;
6221
6222 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6223 {
6224 const_tree attr;
6225 /* This CONST_CAST is okay because lookup_attribute does not
6226 modify its argument and the return value is assigned to a
6227 const_tree. */
6228 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6229 CONST_CAST_TREE(l1));
6230 attr != NULL_TREE;
6231 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6232 TREE_CHAIN (attr)))
6233 {
6234 if (TREE_VALUE (t2) != NULL
6235 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
6236 && TREE_VALUE (attr) != NULL
6237 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
6238 {
6239 if (simple_cst_list_equal (TREE_VALUE (t2),
6240 TREE_VALUE (attr)) == 1)
6241 break;
6242 }
6243 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
6244 break;
6245 }
6246
6247 if (attr == 0)
6248 return 0;
6249 }
6250
6251 return 1;
6252 }
6253
6254 /* Given two lists of types
6255 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6256 return 1 if the lists contain the same types in the same order.
6257 Also, the TREE_PURPOSEs must match. */
6258
6259 int
6260 type_list_equal (const_tree l1, const_tree l2)
6261 {
6262 const_tree t1, t2;
6263
6264 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6265 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6266 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6267 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6268 && (TREE_TYPE (TREE_PURPOSE (t1))
6269 == TREE_TYPE (TREE_PURPOSE (t2))))))
6270 return 0;
6271
6272 return t1 == t2;
6273 }
6274
6275 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6276 given by TYPE. If the argument list accepts variable arguments,
6277 then this function counts only the ordinary arguments. */
6278
6279 int
6280 type_num_arguments (const_tree type)
6281 {
6282 int i = 0;
6283 tree t;
6284
6285 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6286 /* If the function does not take a variable number of arguments,
6287 the last element in the list will have type `void'. */
6288 if (VOID_TYPE_P (TREE_VALUE (t)))
6289 break;
6290 else
6291 ++i;
6292
6293 return i;
6294 }
6295
6296 /* Nonzero if integer constants T1 and T2
6297 represent the same constant value. */
6298
6299 int
6300 tree_int_cst_equal (const_tree t1, const_tree t2)
6301 {
6302 if (t1 == t2)
6303 return 1;
6304
6305 if (t1 == 0 || t2 == 0)
6306 return 0;
6307
6308 if (TREE_CODE (t1) == INTEGER_CST
6309 && TREE_CODE (t2) == INTEGER_CST
6310 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6311 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6312 return 1;
6313
6314 return 0;
6315 }
6316
6317 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6318 The precise way of comparison depends on their data type. */
6319
6320 int
6321 tree_int_cst_lt (const_tree t1, const_tree t2)
6322 {
6323 if (t1 == t2)
6324 return 0;
6325
6326 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6327 {
6328 int t1_sgn = tree_int_cst_sgn (t1);
6329 int t2_sgn = tree_int_cst_sgn (t2);
6330
6331 if (t1_sgn < t2_sgn)
6332 return 1;
6333 else if (t1_sgn > t2_sgn)
6334 return 0;
6335 /* Otherwise, both are non-negative, so we compare them as
6336 unsigned just in case one of them would overflow a signed
6337 type. */
6338 }
6339 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6340 return INT_CST_LT (t1, t2);
6341
6342 return INT_CST_LT_UNSIGNED (t1, t2);
6343 }
6344
6345 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6346
6347 int
6348 tree_int_cst_compare (const_tree t1, const_tree t2)
6349 {
6350 if (tree_int_cst_lt (t1, t2))
6351 return -1;
6352 else if (tree_int_cst_lt (t2, t1))
6353 return 1;
6354 else
6355 return 0;
6356 }
6357
6358 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6359 the host. If POS is zero, the value can be represented in a single
6360 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6361 be represented in a single unsigned HOST_WIDE_INT. */
6362
6363 int
6364 host_integerp (const_tree t, int pos)
6365 {
6366 if (t == NULL_TREE)
6367 return 0;
6368
6369 return (TREE_CODE (t) == INTEGER_CST
6370 && ((TREE_INT_CST_HIGH (t) == 0
6371 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6372 || (! pos && TREE_INT_CST_HIGH (t) == -1
6373 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6374 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6375 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6376 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6377 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6378 }
6379
6380 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6381 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6382 be non-negative. We must be able to satisfy the above conditions. */
6383
6384 HOST_WIDE_INT
6385 tree_low_cst (const_tree t, int pos)
6386 {
6387 gcc_assert (host_integerp (t, pos));
6388 return TREE_INT_CST_LOW (t);
6389 }
6390
6391 /* Return the most significant bit of the integer constant T. */
6392
6393 int
6394 tree_int_cst_msb (const_tree t)
6395 {
6396 int prec;
6397 HOST_WIDE_INT h;
6398 unsigned HOST_WIDE_INT l;
6399
6400 /* Note that using TYPE_PRECISION here is wrong. We care about the
6401 actual bits, not the (arbitrary) range of the type. */
6402 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6403 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6404 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6405 return (l & 1) == 1;
6406 }
6407
6408 /* Return an indication of the sign of the integer constant T.
6409 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6410 Note that -1 will never be returned if T's type is unsigned. */
6411
6412 int
6413 tree_int_cst_sgn (const_tree t)
6414 {
6415 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6416 return 0;
6417 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6418 return 1;
6419 else if (TREE_INT_CST_HIGH (t) < 0)
6420 return -1;
6421 else
6422 return 1;
6423 }
6424
6425 /* Return the minimum number of bits needed to represent VALUE in a
6426 signed or unsigned type, UNSIGNEDP says which. */
6427
6428 unsigned int
6429 tree_int_cst_min_precision (tree value, bool unsignedp)
6430 {
6431 int log;
6432
6433 /* If the value is negative, compute its negative minus 1. The latter
6434 adjustment is because the absolute value of the largest negative value
6435 is one larger than the largest positive value. This is equivalent to
6436 a bit-wise negation, so use that operation instead. */
6437
6438 if (tree_int_cst_sgn (value) < 0)
6439 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6440
6441 /* Return the number of bits needed, taking into account the fact
6442 that we need one more bit for a signed than unsigned type. */
6443
6444 if (integer_zerop (value))
6445 log = 0;
6446 else
6447 log = tree_floor_log2 (value);
6448
6449 return log + 1 + !unsignedp;
6450 }
6451
6452 /* Compare two constructor-element-type constants. Return 1 if the lists
6453 are known to be equal; otherwise return 0. */
6454
6455 int
6456 simple_cst_list_equal (const_tree l1, const_tree l2)
6457 {
6458 while (l1 != NULL_TREE && l2 != NULL_TREE)
6459 {
6460 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6461 return 0;
6462
6463 l1 = TREE_CHAIN (l1);
6464 l2 = TREE_CHAIN (l2);
6465 }
6466
6467 return l1 == l2;
6468 }
6469
6470 /* Return truthvalue of whether T1 is the same tree structure as T2.
6471 Return 1 if they are the same.
6472 Return 0 if they are understandably different.
6473 Return -1 if either contains tree structure not understood by
6474 this function. */
6475
6476 int
6477 simple_cst_equal (const_tree t1, const_tree t2)
6478 {
6479 enum tree_code code1, code2;
6480 int cmp;
6481 int i;
6482
6483 if (t1 == t2)
6484 return 1;
6485 if (t1 == 0 || t2 == 0)
6486 return 0;
6487
6488 code1 = TREE_CODE (t1);
6489 code2 = TREE_CODE (t2);
6490
6491 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6492 {
6493 if (CONVERT_EXPR_CODE_P (code2)
6494 || code2 == NON_LVALUE_EXPR)
6495 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6496 else
6497 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6498 }
6499
6500 else if (CONVERT_EXPR_CODE_P (code2)
6501 || code2 == NON_LVALUE_EXPR)
6502 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6503
6504 if (code1 != code2)
6505 return 0;
6506
6507 switch (code1)
6508 {
6509 case INTEGER_CST:
6510 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6511 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6512
6513 case REAL_CST:
6514 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6515
6516 case FIXED_CST:
6517 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6518
6519 case STRING_CST:
6520 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6521 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6522 TREE_STRING_LENGTH (t1)));
6523
6524 case CONSTRUCTOR:
6525 {
6526 unsigned HOST_WIDE_INT idx;
6527 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6528 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6529
6530 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6531 return false;
6532
6533 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6534 /* ??? Should we handle also fields here? */
6535 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6536 VEC_index (constructor_elt, v2, idx)->value))
6537 return false;
6538 return true;
6539 }
6540
6541 case SAVE_EXPR:
6542 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6543
6544 case CALL_EXPR:
6545 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6546 if (cmp <= 0)
6547 return cmp;
6548 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6549 return 0;
6550 {
6551 const_tree arg1, arg2;
6552 const_call_expr_arg_iterator iter1, iter2;
6553 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6554 arg2 = first_const_call_expr_arg (t2, &iter2);
6555 arg1 && arg2;
6556 arg1 = next_const_call_expr_arg (&iter1),
6557 arg2 = next_const_call_expr_arg (&iter2))
6558 {
6559 cmp = simple_cst_equal (arg1, arg2);
6560 if (cmp <= 0)
6561 return cmp;
6562 }
6563 return arg1 == arg2;
6564 }
6565
6566 case TARGET_EXPR:
6567 /* Special case: if either target is an unallocated VAR_DECL,
6568 it means that it's going to be unified with whatever the
6569 TARGET_EXPR is really supposed to initialize, so treat it
6570 as being equivalent to anything. */
6571 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6572 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6573 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6574 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6575 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6576 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6577 cmp = 1;
6578 else
6579 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6580
6581 if (cmp <= 0)
6582 return cmp;
6583
6584 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6585
6586 case WITH_CLEANUP_EXPR:
6587 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6588 if (cmp <= 0)
6589 return cmp;
6590
6591 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6592
6593 case COMPONENT_REF:
6594 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6595 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6596
6597 return 0;
6598
6599 case VAR_DECL:
6600 case PARM_DECL:
6601 case CONST_DECL:
6602 case FUNCTION_DECL:
6603 return 0;
6604
6605 default:
6606 break;
6607 }
6608
6609 /* This general rule works for most tree codes. All exceptions should be
6610 handled above. If this is a language-specific tree code, we can't
6611 trust what might be in the operand, so say we don't know
6612 the situation. */
6613 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6614 return -1;
6615
6616 switch (TREE_CODE_CLASS (code1))
6617 {
6618 case tcc_unary:
6619 case tcc_binary:
6620 case tcc_comparison:
6621 case tcc_expression:
6622 case tcc_reference:
6623 case tcc_statement:
6624 cmp = 1;
6625 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6626 {
6627 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6628 if (cmp <= 0)
6629 return cmp;
6630 }
6631
6632 return cmp;
6633
6634 default:
6635 return -1;
6636 }
6637 }
6638
6639 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6640 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6641 than U, respectively. */
6642
6643 int
6644 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6645 {
6646 if (tree_int_cst_sgn (t) < 0)
6647 return -1;
6648 else if (TREE_INT_CST_HIGH (t) != 0)
6649 return 1;
6650 else if (TREE_INT_CST_LOW (t) == u)
6651 return 0;
6652 else if (TREE_INT_CST_LOW (t) < u)
6653 return -1;
6654 else
6655 return 1;
6656 }
6657
6658 /* Return true if CODE represents an associative tree code. Otherwise
6659 return false. */
6660 bool
6661 associative_tree_code (enum tree_code code)
6662 {
6663 switch (code)
6664 {
6665 case BIT_IOR_EXPR:
6666 case BIT_AND_EXPR:
6667 case BIT_XOR_EXPR:
6668 case PLUS_EXPR:
6669 case MULT_EXPR:
6670 case MIN_EXPR:
6671 case MAX_EXPR:
6672 return true;
6673
6674 default:
6675 break;
6676 }
6677 return false;
6678 }
6679
6680 /* Return true if CODE represents a commutative tree code. Otherwise
6681 return false. */
6682 bool
6683 commutative_tree_code (enum tree_code code)
6684 {
6685 switch (code)
6686 {
6687 case PLUS_EXPR:
6688 case MULT_EXPR:
6689 case MIN_EXPR:
6690 case MAX_EXPR:
6691 case BIT_IOR_EXPR:
6692 case BIT_XOR_EXPR:
6693 case BIT_AND_EXPR:
6694 case NE_EXPR:
6695 case EQ_EXPR:
6696 case UNORDERED_EXPR:
6697 case ORDERED_EXPR:
6698 case UNEQ_EXPR:
6699 case LTGT_EXPR:
6700 case TRUTH_AND_EXPR:
6701 case TRUTH_XOR_EXPR:
6702 case TRUTH_OR_EXPR:
6703 return true;
6704
6705 default:
6706 break;
6707 }
6708 return false;
6709 }
6710
6711 /* Return true if CODE represents a ternary tree code for which the
6712 first two operands are commutative. Otherwise return false. */
6713 bool
6714 commutative_ternary_tree_code (enum tree_code code)
6715 {
6716 switch (code)
6717 {
6718 case WIDEN_MULT_PLUS_EXPR:
6719 case WIDEN_MULT_MINUS_EXPR:
6720 return true;
6721
6722 default:
6723 break;
6724 }
6725 return false;
6726 }
6727
6728 /* Generate a hash value for an expression. This can be used iteratively
6729 by passing a previous result as the VAL argument.
6730
6731 This function is intended to produce the same hash for expressions which
6732 would compare equal using operand_equal_p. */
6733
6734 hashval_t
6735 iterative_hash_expr (const_tree t, hashval_t val)
6736 {
6737 int i;
6738 enum tree_code code;
6739 char tclass;
6740
6741 if (t == NULL_TREE)
6742 return iterative_hash_hashval_t (0, val);
6743
6744 code = TREE_CODE (t);
6745
6746 switch (code)
6747 {
6748 /* Alas, constants aren't shared, so we can't rely on pointer
6749 identity. */
6750 case INTEGER_CST:
6751 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6752 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6753 case REAL_CST:
6754 {
6755 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6756
6757 return iterative_hash_hashval_t (val2, val);
6758 }
6759 case FIXED_CST:
6760 {
6761 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6762
6763 return iterative_hash_hashval_t (val2, val);
6764 }
6765 case STRING_CST:
6766 return iterative_hash (TREE_STRING_POINTER (t),
6767 TREE_STRING_LENGTH (t), val);
6768 case COMPLEX_CST:
6769 val = iterative_hash_expr (TREE_REALPART (t), val);
6770 return iterative_hash_expr (TREE_IMAGPART (t), val);
6771 case VECTOR_CST:
6772 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6773 case SSA_NAME:
6774 /* We can just compare by pointer. */
6775 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6776 case PLACEHOLDER_EXPR:
6777 /* The node itself doesn't matter. */
6778 return val;
6779 case TREE_LIST:
6780 /* A list of expressions, for a CALL_EXPR or as the elements of a
6781 VECTOR_CST. */
6782 for (; t; t = TREE_CHAIN (t))
6783 val = iterative_hash_expr (TREE_VALUE (t), val);
6784 return val;
6785 case CONSTRUCTOR:
6786 {
6787 unsigned HOST_WIDE_INT idx;
6788 tree field, value;
6789 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6790 {
6791 val = iterative_hash_expr (field, val);
6792 val = iterative_hash_expr (value, val);
6793 }
6794 return val;
6795 }
6796 case MEM_REF:
6797 {
6798 /* The type of the second operand is relevant, except for
6799 its top-level qualifiers. */
6800 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
6801
6802 val = iterative_hash_object (TYPE_HASH (type), val);
6803
6804 /* We could use the standard hash computation from this point
6805 on. */
6806 val = iterative_hash_object (code, val);
6807 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
6808 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6809 return val;
6810 }
6811 case FUNCTION_DECL:
6812 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6813 Otherwise nodes that compare equal according to operand_equal_p might
6814 get different hash codes. However, don't do this for machine specific
6815 or front end builtins, since the function code is overloaded in those
6816 cases. */
6817 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6818 && built_in_decls[DECL_FUNCTION_CODE (t)])
6819 {
6820 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6821 code = TREE_CODE (t);
6822 }
6823 /* FALL THROUGH */
6824 default:
6825 tclass = TREE_CODE_CLASS (code);
6826
6827 if (tclass == tcc_declaration)
6828 {
6829 /* DECL's have a unique ID */
6830 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6831 }
6832 else
6833 {
6834 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6835
6836 val = iterative_hash_object (code, val);
6837
6838 /* Don't hash the type, that can lead to having nodes which
6839 compare equal according to operand_equal_p, but which
6840 have different hash codes. */
6841 if (CONVERT_EXPR_CODE_P (code)
6842 || code == NON_LVALUE_EXPR)
6843 {
6844 /* Make sure to include signness in the hash computation. */
6845 val += TYPE_UNSIGNED (TREE_TYPE (t));
6846 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6847 }
6848
6849 else if (commutative_tree_code (code))
6850 {
6851 /* It's a commutative expression. We want to hash it the same
6852 however it appears. We do this by first hashing both operands
6853 and then rehashing based on the order of their independent
6854 hashes. */
6855 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6856 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6857 hashval_t t;
6858
6859 if (one > two)
6860 t = one, one = two, two = t;
6861
6862 val = iterative_hash_hashval_t (one, val);
6863 val = iterative_hash_hashval_t (two, val);
6864 }
6865 else
6866 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6867 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6868 }
6869 return val;
6870 break;
6871 }
6872 }
6873
6874 /* Generate a hash value for a pair of expressions. This can be used
6875 iteratively by passing a previous result as the VAL argument.
6876
6877 The same hash value is always returned for a given pair of expressions,
6878 regardless of the order in which they are presented. This is useful in
6879 hashing the operands of commutative functions. */
6880
6881 hashval_t
6882 iterative_hash_exprs_commutative (const_tree t1,
6883 const_tree t2, hashval_t val)
6884 {
6885 hashval_t one = iterative_hash_expr (t1, 0);
6886 hashval_t two = iterative_hash_expr (t2, 0);
6887 hashval_t t;
6888
6889 if (one > two)
6890 t = one, one = two, two = t;
6891 val = iterative_hash_hashval_t (one, val);
6892 val = iterative_hash_hashval_t (two, val);
6893
6894 return val;
6895 }
6896 \f
6897 /* Constructors for pointer, array and function types.
6898 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6899 constructed by language-dependent code, not here.) */
6900
6901 /* Construct, lay out and return the type of pointers to TO_TYPE with
6902 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6903 reference all of memory. If such a type has already been
6904 constructed, reuse it. */
6905
6906 tree
6907 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6908 bool can_alias_all)
6909 {
6910 tree t;
6911
6912 if (to_type == error_mark_node)
6913 return error_mark_node;
6914
6915 /* If the pointed-to type has the may_alias attribute set, force
6916 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6917 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6918 can_alias_all = true;
6919
6920 /* In some cases, languages will have things that aren't a POINTER_TYPE
6921 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6922 In that case, return that type without regard to the rest of our
6923 operands.
6924
6925 ??? This is a kludge, but consistent with the way this function has
6926 always operated and there doesn't seem to be a good way to avoid this
6927 at the moment. */
6928 if (TYPE_POINTER_TO (to_type) != 0
6929 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6930 return TYPE_POINTER_TO (to_type);
6931
6932 /* First, if we already have a type for pointers to TO_TYPE and it's
6933 the proper mode, use it. */
6934 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6935 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6936 return t;
6937
6938 t = make_node (POINTER_TYPE);
6939
6940 TREE_TYPE (t) = to_type;
6941 SET_TYPE_MODE (t, mode);
6942 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6943 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6944 TYPE_POINTER_TO (to_type) = t;
6945
6946 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6947 SET_TYPE_STRUCTURAL_EQUALITY (t);
6948 else if (TYPE_CANONICAL (to_type) != to_type)
6949 TYPE_CANONICAL (t)
6950 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6951 mode, can_alias_all);
6952
6953 /* Lay out the type. This function has many callers that are concerned
6954 with expression-construction, and this simplifies them all. */
6955 layout_type (t);
6956
6957 return t;
6958 }
6959
6960 /* By default build pointers in ptr_mode. */
6961
6962 tree
6963 build_pointer_type (tree to_type)
6964 {
6965 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6966 : TYPE_ADDR_SPACE (to_type);
6967 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6968 return build_pointer_type_for_mode (to_type, pointer_mode, false);
6969 }
6970
6971 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6972
6973 tree
6974 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6975 bool can_alias_all)
6976 {
6977 tree t;
6978
6979 if (to_type == error_mark_node)
6980 return error_mark_node;
6981
6982 /* If the pointed-to type has the may_alias attribute set, force
6983 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6984 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6985 can_alias_all = true;
6986
6987 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6988 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6989 In that case, return that type without regard to the rest of our
6990 operands.
6991
6992 ??? This is a kludge, but consistent with the way this function has
6993 always operated and there doesn't seem to be a good way to avoid this
6994 at the moment. */
6995 if (TYPE_REFERENCE_TO (to_type) != 0
6996 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6997 return TYPE_REFERENCE_TO (to_type);
6998
6999 /* First, if we already have a type for pointers to TO_TYPE and it's
7000 the proper mode, use it. */
7001 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7002 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7003 return t;
7004
7005 t = make_node (REFERENCE_TYPE);
7006
7007 TREE_TYPE (t) = to_type;
7008 SET_TYPE_MODE (t, mode);
7009 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7010 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7011 TYPE_REFERENCE_TO (to_type) = t;
7012
7013 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7014 SET_TYPE_STRUCTURAL_EQUALITY (t);
7015 else if (TYPE_CANONICAL (to_type) != to_type)
7016 TYPE_CANONICAL (t)
7017 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7018 mode, can_alias_all);
7019
7020 layout_type (t);
7021
7022 return t;
7023 }
7024
7025
7026 /* Build the node for the type of references-to-TO_TYPE by default
7027 in ptr_mode. */
7028
7029 tree
7030 build_reference_type (tree to_type)
7031 {
7032 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7033 : TYPE_ADDR_SPACE (to_type);
7034 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7035 return build_reference_type_for_mode (to_type, pointer_mode, false);
7036 }
7037
7038 /* Build a type that is compatible with t but has no cv quals anywhere
7039 in its type, thus
7040
7041 const char *const *const * -> char ***. */
7042
7043 tree
7044 build_type_no_quals (tree t)
7045 {
7046 switch (TREE_CODE (t))
7047 {
7048 case POINTER_TYPE:
7049 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7050 TYPE_MODE (t),
7051 TYPE_REF_CAN_ALIAS_ALL (t));
7052 case REFERENCE_TYPE:
7053 return
7054 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7055 TYPE_MODE (t),
7056 TYPE_REF_CAN_ALIAS_ALL (t));
7057 default:
7058 return TYPE_MAIN_VARIANT (t);
7059 }
7060 }
7061
7062 #define MAX_INT_CACHED_PREC \
7063 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7064 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7065
7066 /* Builds a signed or unsigned integer type of precision PRECISION.
7067 Used for C bitfields whose precision does not match that of
7068 built-in target types. */
7069 tree
7070 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7071 int unsignedp)
7072 {
7073 tree itype, ret;
7074
7075 if (unsignedp)
7076 unsignedp = MAX_INT_CACHED_PREC + 1;
7077
7078 if (precision <= MAX_INT_CACHED_PREC)
7079 {
7080 itype = nonstandard_integer_type_cache[precision + unsignedp];
7081 if (itype)
7082 return itype;
7083 }
7084
7085 itype = make_node (INTEGER_TYPE);
7086 TYPE_PRECISION (itype) = precision;
7087
7088 if (unsignedp)
7089 fixup_unsigned_type (itype);
7090 else
7091 fixup_signed_type (itype);
7092
7093 ret = itype;
7094 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7095 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7096 if (precision <= MAX_INT_CACHED_PREC && lang_hooks.types.hash_types)
7097 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7098
7099 return ret;
7100 }
7101
7102 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
7103 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
7104 high bound HIGHVAL. */
7105
7106 tree
7107 build_range_type (tree type, tree lowval, tree highval)
7108 {
7109 tree itype = make_node (INTEGER_TYPE);
7110 hashval_t hash;
7111
7112 TREE_TYPE (itype) = type;
7113
7114 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7115 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7116
7117 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7118 SET_TYPE_MODE (itype, TYPE_MODE (type));
7119 TYPE_SIZE (itype) = TYPE_SIZE (type);
7120 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7121 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7122 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7123
7124 if ((TYPE_MIN_VALUE (itype)
7125 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7126 || (TYPE_MAX_VALUE (itype)
7127 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7128 {
7129 /* Since we cannot reliably merge this type, we need to compare it using
7130 structural equality checks. */
7131 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7132 return itype;
7133 }
7134 hash = iterative_hash_expr (TYPE_MIN_VALUE (itype), 0);
7135 hash = iterative_hash_expr (TYPE_MAX_VALUE (itype), hash);
7136 hash = iterative_hash_hashval_t (TYPE_HASH (type), hash);
7137 return type_hash_canon (hash, itype);
7138 }
7139
7140 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7141 MAXVAL should be the maximum value in the domain
7142 (one less than the length of the array).
7143
7144 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7145 We don't enforce this limit, that is up to caller (e.g. language front end).
7146 The limit exists because the result is a signed type and we don't handle
7147 sizes that use more than one HOST_WIDE_INT. */
7148
7149 tree
7150 build_index_type (tree maxval)
7151 {
7152 return build_range_type (sizetype, size_zero_node, maxval);
7153 }
7154
7155 /* Return true if the debug information for TYPE, a subtype, should be emitted
7156 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7157 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7158 debug info and doesn't reflect the source code. */
7159
7160 bool
7161 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7162 {
7163 tree base_type = TREE_TYPE (type), low, high;
7164
7165 /* Subrange types have a base type which is an integral type. */
7166 if (!INTEGRAL_TYPE_P (base_type))
7167 return false;
7168
7169 /* Get the real bounds of the subtype. */
7170 if (lang_hooks.types.get_subrange_bounds)
7171 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7172 else
7173 {
7174 low = TYPE_MIN_VALUE (type);
7175 high = TYPE_MAX_VALUE (type);
7176 }
7177
7178 /* If the type and its base type have the same representation and the same
7179 name, then the type is not a subrange but a copy of the base type. */
7180 if ((TREE_CODE (base_type) == INTEGER_TYPE
7181 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7182 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7183 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7184 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7185 {
7186 tree type_name = TYPE_NAME (type);
7187 tree base_type_name = TYPE_NAME (base_type);
7188
7189 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7190 type_name = DECL_NAME (type_name);
7191
7192 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7193 base_type_name = DECL_NAME (base_type_name);
7194
7195 if (type_name == base_type_name)
7196 return false;
7197 }
7198
7199 if (lowval)
7200 *lowval = low;
7201 if (highval)
7202 *highval = high;
7203 return true;
7204 }
7205
7206 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7207 and number of elements specified by the range of values of INDEX_TYPE.
7208 If such a type has already been constructed, reuse it. */
7209
7210 tree
7211 build_array_type (tree elt_type, tree index_type)
7212 {
7213 tree t;
7214 hashval_t hashcode = 0;
7215
7216 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7217 {
7218 error ("arrays of functions are not meaningful");
7219 elt_type = integer_type_node;
7220 }
7221
7222 t = make_node (ARRAY_TYPE);
7223 TREE_TYPE (t) = elt_type;
7224 TYPE_DOMAIN (t) = index_type;
7225 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7226 layout_type (t);
7227
7228 /* If the element type is incomplete at this point we get marked for
7229 structural equality. Do not record these types in the canonical
7230 type hashtable. */
7231 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7232 return t;
7233
7234 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
7235 if (index_type)
7236 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7237 t = type_hash_canon (hashcode, t);
7238
7239 if (TYPE_CANONICAL (t) == t)
7240 {
7241 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7242 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7243 SET_TYPE_STRUCTURAL_EQUALITY (t);
7244 else if (TYPE_CANONICAL (elt_type) != elt_type
7245 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7246 TYPE_CANONICAL (t)
7247 = build_array_type (TYPE_CANONICAL (elt_type),
7248 index_type ? TYPE_CANONICAL (index_type) : NULL);
7249 }
7250
7251 return t;
7252 }
7253
7254 /* Recursively examines the array elements of TYPE, until a non-array
7255 element type is found. */
7256
7257 tree
7258 strip_array_types (tree type)
7259 {
7260 while (TREE_CODE (type) == ARRAY_TYPE)
7261 type = TREE_TYPE (type);
7262
7263 return type;
7264 }
7265
7266 /* Computes the canonical argument types from the argument type list
7267 ARGTYPES.
7268
7269 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7270 on entry to this function, or if any of the ARGTYPES are
7271 structural.
7272
7273 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7274 true on entry to this function, or if any of the ARGTYPES are
7275 non-canonical.
7276
7277 Returns a canonical argument list, which may be ARGTYPES when the
7278 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7279 true) or would not differ from ARGTYPES. */
7280
7281 static tree
7282 maybe_canonicalize_argtypes(tree argtypes,
7283 bool *any_structural_p,
7284 bool *any_noncanonical_p)
7285 {
7286 tree arg;
7287 bool any_noncanonical_argtypes_p = false;
7288
7289 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7290 {
7291 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7292 /* Fail gracefully by stating that the type is structural. */
7293 *any_structural_p = true;
7294 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7295 *any_structural_p = true;
7296 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7297 || TREE_PURPOSE (arg))
7298 /* If the argument has a default argument, we consider it
7299 non-canonical even though the type itself is canonical.
7300 That way, different variants of function and method types
7301 with default arguments will all point to the variant with
7302 no defaults as their canonical type. */
7303 any_noncanonical_argtypes_p = true;
7304 }
7305
7306 if (*any_structural_p)
7307 return argtypes;
7308
7309 if (any_noncanonical_argtypes_p)
7310 {
7311 /* Build the canonical list of argument types. */
7312 tree canon_argtypes = NULL_TREE;
7313 bool is_void = false;
7314
7315 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7316 {
7317 if (arg == void_list_node)
7318 is_void = true;
7319 else
7320 canon_argtypes = tree_cons (NULL_TREE,
7321 TYPE_CANONICAL (TREE_VALUE (arg)),
7322 canon_argtypes);
7323 }
7324
7325 canon_argtypes = nreverse (canon_argtypes);
7326 if (is_void)
7327 canon_argtypes = chainon (canon_argtypes, void_list_node);
7328
7329 /* There is a non-canonical type. */
7330 *any_noncanonical_p = true;
7331 return canon_argtypes;
7332 }
7333
7334 /* The canonical argument types are the same as ARGTYPES. */
7335 return argtypes;
7336 }
7337
7338 /* Construct, lay out and return
7339 the type of functions returning type VALUE_TYPE
7340 given arguments of types ARG_TYPES.
7341 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7342 are data type nodes for the arguments of the function.
7343 If such a type has already been constructed, reuse it. */
7344
7345 tree
7346 build_function_type (tree value_type, tree arg_types)
7347 {
7348 tree t;
7349 hashval_t hashcode = 0;
7350 bool any_structural_p, any_noncanonical_p;
7351 tree canon_argtypes;
7352
7353 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7354 {
7355 error ("function return type cannot be function");
7356 value_type = integer_type_node;
7357 }
7358
7359 /* Make a node of the sort we want. */
7360 t = make_node (FUNCTION_TYPE);
7361 TREE_TYPE (t) = value_type;
7362 TYPE_ARG_TYPES (t) = arg_types;
7363
7364 /* If we already have such a type, use the old one. */
7365 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7366 hashcode = type_hash_list (arg_types, hashcode);
7367 t = type_hash_canon (hashcode, t);
7368
7369 /* Set up the canonical type. */
7370 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7371 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7372 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7373 &any_structural_p,
7374 &any_noncanonical_p);
7375 if (any_structural_p)
7376 SET_TYPE_STRUCTURAL_EQUALITY (t);
7377 else if (any_noncanonical_p)
7378 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7379 canon_argtypes);
7380
7381 if (!COMPLETE_TYPE_P (t))
7382 layout_type (t);
7383 return t;
7384 }
7385
7386 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7387
7388 tree
7389 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7390 {
7391 tree new_type = NULL;
7392 tree args, new_args = NULL, t;
7393 tree new_reversed;
7394 int i = 0;
7395
7396 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7397 args = TREE_CHAIN (args), i++)
7398 if (!bitmap_bit_p (args_to_skip, i))
7399 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7400
7401 new_reversed = nreverse (new_args);
7402 if (args)
7403 {
7404 if (new_reversed)
7405 TREE_CHAIN (new_args) = void_list_node;
7406 else
7407 new_reversed = void_list_node;
7408 }
7409
7410 /* Use copy_node to preserve as much as possible from original type
7411 (debug info, attribute lists etc.)
7412 Exception is METHOD_TYPEs must have THIS argument.
7413 When we are asked to remove it, we need to build new FUNCTION_TYPE
7414 instead. */
7415 if (TREE_CODE (orig_type) != METHOD_TYPE
7416 || !bitmap_bit_p (args_to_skip, 0))
7417 {
7418 new_type = build_distinct_type_copy (orig_type);
7419 TYPE_ARG_TYPES (new_type) = new_reversed;
7420 }
7421 else
7422 {
7423 new_type
7424 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7425 new_reversed));
7426 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7427 }
7428
7429 /* This is a new type, not a copy of an old type. Need to reassociate
7430 variants. We can handle everything except the main variant lazily. */
7431 t = TYPE_MAIN_VARIANT (orig_type);
7432 if (orig_type != t)
7433 {
7434 TYPE_MAIN_VARIANT (new_type) = t;
7435 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7436 TYPE_NEXT_VARIANT (t) = new_type;
7437 }
7438 else
7439 {
7440 TYPE_MAIN_VARIANT (new_type) = new_type;
7441 TYPE_NEXT_VARIANT (new_type) = NULL;
7442 }
7443 return new_type;
7444 }
7445
7446 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7447
7448 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7449 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7450 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7451
7452 tree
7453 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7454 {
7455 tree new_decl = copy_node (orig_decl);
7456 tree new_type;
7457
7458 new_type = TREE_TYPE (orig_decl);
7459 if (prototype_p (new_type))
7460 new_type = build_function_type_skip_args (new_type, args_to_skip);
7461 TREE_TYPE (new_decl) = new_type;
7462
7463 /* For declarations setting DECL_VINDEX (i.e. methods)
7464 we expect first argument to be THIS pointer. */
7465 if (bitmap_bit_p (args_to_skip, 0))
7466 DECL_VINDEX (new_decl) = NULL_TREE;
7467
7468 /* When signature changes, we need to clear builtin info. */
7469 if (DECL_BUILT_IN (new_decl) && !bitmap_empty_p (args_to_skip))
7470 {
7471 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7472 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7473 }
7474 return new_decl;
7475 }
7476
7477 /* Build a function type. The RETURN_TYPE is the type returned by the
7478 function. If VAARGS is set, no void_type_node is appended to the
7479 the list. ARGP must be always be terminated be a NULL_TREE. */
7480
7481 static tree
7482 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7483 {
7484 tree t, args, last;
7485
7486 t = va_arg (argp, tree);
7487 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7488 args = tree_cons (NULL_TREE, t, args);
7489
7490 if (vaargs)
7491 {
7492 last = args;
7493 if (args != NULL_TREE)
7494 args = nreverse (args);
7495 gcc_assert (last != void_list_node);
7496 }
7497 else if (args == NULL_TREE)
7498 args = void_list_node;
7499 else
7500 {
7501 last = args;
7502 args = nreverse (args);
7503 TREE_CHAIN (last) = void_list_node;
7504 }
7505 args = build_function_type (return_type, args);
7506
7507 return args;
7508 }
7509
7510 /* Build a function type. The RETURN_TYPE is the type returned by the
7511 function. If additional arguments are provided, they are
7512 additional argument types. The list of argument types must always
7513 be terminated by NULL_TREE. */
7514
7515 tree
7516 build_function_type_list (tree return_type, ...)
7517 {
7518 tree args;
7519 va_list p;
7520
7521 va_start (p, return_type);
7522 args = build_function_type_list_1 (false, return_type, p);
7523 va_end (p);
7524 return args;
7525 }
7526
7527 /* Build a variable argument function type. The RETURN_TYPE is the
7528 type returned by the function. If additional arguments are provided,
7529 they are additional argument types. The list of argument types must
7530 always be terminated by NULL_TREE. */
7531
7532 tree
7533 build_varargs_function_type_list (tree return_type, ...)
7534 {
7535 tree args;
7536 va_list p;
7537
7538 va_start (p, return_type);
7539 args = build_function_type_list_1 (true, return_type, p);
7540 va_end (p);
7541
7542 return args;
7543 }
7544
7545 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7546 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7547 for the method. An implicit additional parameter (of type
7548 pointer-to-BASETYPE) is added to the ARGTYPES. */
7549
7550 tree
7551 build_method_type_directly (tree basetype,
7552 tree rettype,
7553 tree argtypes)
7554 {
7555 tree t;
7556 tree ptype;
7557 int hashcode = 0;
7558 bool any_structural_p, any_noncanonical_p;
7559 tree canon_argtypes;
7560
7561 /* Make a node of the sort we want. */
7562 t = make_node (METHOD_TYPE);
7563
7564 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7565 TREE_TYPE (t) = rettype;
7566 ptype = build_pointer_type (basetype);
7567
7568 /* The actual arglist for this function includes a "hidden" argument
7569 which is "this". Put it into the list of argument types. */
7570 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7571 TYPE_ARG_TYPES (t) = argtypes;
7572
7573 /* If we already have such a type, use the old one. */
7574 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7575 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7576 hashcode = type_hash_list (argtypes, hashcode);
7577 t = type_hash_canon (hashcode, t);
7578
7579 /* Set up the canonical type. */
7580 any_structural_p
7581 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7582 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7583 any_noncanonical_p
7584 = (TYPE_CANONICAL (basetype) != basetype
7585 || TYPE_CANONICAL (rettype) != rettype);
7586 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7587 &any_structural_p,
7588 &any_noncanonical_p);
7589 if (any_structural_p)
7590 SET_TYPE_STRUCTURAL_EQUALITY (t);
7591 else if (any_noncanonical_p)
7592 TYPE_CANONICAL (t)
7593 = build_method_type_directly (TYPE_CANONICAL (basetype),
7594 TYPE_CANONICAL (rettype),
7595 canon_argtypes);
7596 if (!COMPLETE_TYPE_P (t))
7597 layout_type (t);
7598
7599 return t;
7600 }
7601
7602 /* Construct, lay out and return the type of methods belonging to class
7603 BASETYPE and whose arguments and values are described by TYPE.
7604 If that type exists already, reuse it.
7605 TYPE must be a FUNCTION_TYPE node. */
7606
7607 tree
7608 build_method_type (tree basetype, tree type)
7609 {
7610 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7611
7612 return build_method_type_directly (basetype,
7613 TREE_TYPE (type),
7614 TYPE_ARG_TYPES (type));
7615 }
7616
7617 /* Construct, lay out and return the type of offsets to a value
7618 of type TYPE, within an object of type BASETYPE.
7619 If a suitable offset type exists already, reuse it. */
7620
7621 tree
7622 build_offset_type (tree basetype, tree type)
7623 {
7624 tree t;
7625 hashval_t hashcode = 0;
7626
7627 /* Make a node of the sort we want. */
7628 t = make_node (OFFSET_TYPE);
7629
7630 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7631 TREE_TYPE (t) = type;
7632
7633 /* If we already have such a type, use the old one. */
7634 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7635 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7636 t = type_hash_canon (hashcode, t);
7637
7638 if (!COMPLETE_TYPE_P (t))
7639 layout_type (t);
7640
7641 if (TYPE_CANONICAL (t) == t)
7642 {
7643 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7644 || TYPE_STRUCTURAL_EQUALITY_P (type))
7645 SET_TYPE_STRUCTURAL_EQUALITY (t);
7646 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7647 || TYPE_CANONICAL (type) != type)
7648 TYPE_CANONICAL (t)
7649 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7650 TYPE_CANONICAL (type));
7651 }
7652
7653 return t;
7654 }
7655
7656 /* Create a complex type whose components are COMPONENT_TYPE. */
7657
7658 tree
7659 build_complex_type (tree component_type)
7660 {
7661 tree t;
7662 hashval_t hashcode;
7663
7664 gcc_assert (INTEGRAL_TYPE_P (component_type)
7665 || SCALAR_FLOAT_TYPE_P (component_type)
7666 || FIXED_POINT_TYPE_P (component_type));
7667
7668 /* Make a node of the sort we want. */
7669 t = make_node (COMPLEX_TYPE);
7670
7671 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7672
7673 /* If we already have such a type, use the old one. */
7674 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7675 t = type_hash_canon (hashcode, t);
7676
7677 if (!COMPLETE_TYPE_P (t))
7678 layout_type (t);
7679
7680 if (TYPE_CANONICAL (t) == t)
7681 {
7682 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7683 SET_TYPE_STRUCTURAL_EQUALITY (t);
7684 else if (TYPE_CANONICAL (component_type) != component_type)
7685 TYPE_CANONICAL (t)
7686 = build_complex_type (TYPE_CANONICAL (component_type));
7687 }
7688
7689 /* We need to create a name, since complex is a fundamental type. */
7690 if (! TYPE_NAME (t))
7691 {
7692 const char *name;
7693 if (component_type == char_type_node)
7694 name = "complex char";
7695 else if (component_type == signed_char_type_node)
7696 name = "complex signed char";
7697 else if (component_type == unsigned_char_type_node)
7698 name = "complex unsigned char";
7699 else if (component_type == short_integer_type_node)
7700 name = "complex short int";
7701 else if (component_type == short_unsigned_type_node)
7702 name = "complex short unsigned int";
7703 else if (component_type == integer_type_node)
7704 name = "complex int";
7705 else if (component_type == unsigned_type_node)
7706 name = "complex unsigned int";
7707 else if (component_type == long_integer_type_node)
7708 name = "complex long int";
7709 else if (component_type == long_unsigned_type_node)
7710 name = "complex long unsigned int";
7711 else if (component_type == long_long_integer_type_node)
7712 name = "complex long long int";
7713 else if (component_type == long_long_unsigned_type_node)
7714 name = "complex long long unsigned int";
7715 else
7716 name = 0;
7717
7718 if (name != 0)
7719 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7720 get_identifier (name), t);
7721 }
7722
7723 return build_qualified_type (t, TYPE_QUALS (component_type));
7724 }
7725
7726 /* If TYPE is a real or complex floating-point type and the target
7727 does not directly support arithmetic on TYPE then return the wider
7728 type to be used for arithmetic on TYPE. Otherwise, return
7729 NULL_TREE. */
7730
7731 tree
7732 excess_precision_type (tree type)
7733 {
7734 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7735 {
7736 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7737 switch (TREE_CODE (type))
7738 {
7739 case REAL_TYPE:
7740 switch (flt_eval_method)
7741 {
7742 case 1:
7743 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7744 return double_type_node;
7745 break;
7746 case 2:
7747 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7748 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7749 return long_double_type_node;
7750 break;
7751 default:
7752 gcc_unreachable ();
7753 }
7754 break;
7755 case COMPLEX_TYPE:
7756 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7757 return NULL_TREE;
7758 switch (flt_eval_method)
7759 {
7760 case 1:
7761 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7762 return complex_double_type_node;
7763 break;
7764 case 2:
7765 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7766 || (TYPE_MODE (TREE_TYPE (type))
7767 == TYPE_MODE (double_type_node)))
7768 return complex_long_double_type_node;
7769 break;
7770 default:
7771 gcc_unreachable ();
7772 }
7773 break;
7774 default:
7775 break;
7776 }
7777 }
7778 return NULL_TREE;
7779 }
7780 \f
7781 /* Return OP, stripped of any conversions to wider types as much as is safe.
7782 Converting the value back to OP's type makes a value equivalent to OP.
7783
7784 If FOR_TYPE is nonzero, we return a value which, if converted to
7785 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7786
7787 OP must have integer, real or enumeral type. Pointers are not allowed!
7788
7789 There are some cases where the obvious value we could return
7790 would regenerate to OP if converted to OP's type,
7791 but would not extend like OP to wider types.
7792 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7793 For example, if OP is (unsigned short)(signed char)-1,
7794 we avoid returning (signed char)-1 if FOR_TYPE is int,
7795 even though extending that to an unsigned short would regenerate OP,
7796 since the result of extending (signed char)-1 to (int)
7797 is different from (int) OP. */
7798
7799 tree
7800 get_unwidened (tree op, tree for_type)
7801 {
7802 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7803 tree type = TREE_TYPE (op);
7804 unsigned final_prec
7805 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7806 int uns
7807 = (for_type != 0 && for_type != type
7808 && final_prec > TYPE_PRECISION (type)
7809 && TYPE_UNSIGNED (type));
7810 tree win = op;
7811
7812 while (CONVERT_EXPR_P (op))
7813 {
7814 int bitschange;
7815
7816 /* TYPE_PRECISION on vector types has different meaning
7817 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7818 so avoid them here. */
7819 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7820 break;
7821
7822 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7823 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7824
7825 /* Truncations are many-one so cannot be removed.
7826 Unless we are later going to truncate down even farther. */
7827 if (bitschange < 0
7828 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7829 break;
7830
7831 /* See what's inside this conversion. If we decide to strip it,
7832 we will set WIN. */
7833 op = TREE_OPERAND (op, 0);
7834
7835 /* If we have not stripped any zero-extensions (uns is 0),
7836 we can strip any kind of extension.
7837 If we have previously stripped a zero-extension,
7838 only zero-extensions can safely be stripped.
7839 Any extension can be stripped if the bits it would produce
7840 are all going to be discarded later by truncating to FOR_TYPE. */
7841
7842 if (bitschange > 0)
7843 {
7844 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7845 win = op;
7846 /* TYPE_UNSIGNED says whether this is a zero-extension.
7847 Let's avoid computing it if it does not affect WIN
7848 and if UNS will not be needed again. */
7849 if ((uns
7850 || CONVERT_EXPR_P (op))
7851 && TYPE_UNSIGNED (TREE_TYPE (op)))
7852 {
7853 uns = 1;
7854 win = op;
7855 }
7856 }
7857 }
7858
7859 /* If we finally reach a constant see if it fits in for_type and
7860 in that case convert it. */
7861 if (for_type
7862 && TREE_CODE (win) == INTEGER_CST
7863 && TREE_TYPE (win) != for_type
7864 && int_fits_type_p (win, for_type))
7865 win = fold_convert (for_type, win);
7866
7867 return win;
7868 }
7869 \f
7870 /* Return OP or a simpler expression for a narrower value
7871 which can be sign-extended or zero-extended to give back OP.
7872 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7873 or 0 if the value should be sign-extended. */
7874
7875 tree
7876 get_narrower (tree op, int *unsignedp_ptr)
7877 {
7878 int uns = 0;
7879 int first = 1;
7880 tree win = op;
7881 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7882
7883 while (TREE_CODE (op) == NOP_EXPR)
7884 {
7885 int bitschange
7886 = (TYPE_PRECISION (TREE_TYPE (op))
7887 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7888
7889 /* Truncations are many-one so cannot be removed. */
7890 if (bitschange < 0)
7891 break;
7892
7893 /* See what's inside this conversion. If we decide to strip it,
7894 we will set WIN. */
7895
7896 if (bitschange > 0)
7897 {
7898 op = TREE_OPERAND (op, 0);
7899 /* An extension: the outermost one can be stripped,
7900 but remember whether it is zero or sign extension. */
7901 if (first)
7902 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7903 /* Otherwise, if a sign extension has been stripped,
7904 only sign extensions can now be stripped;
7905 if a zero extension has been stripped, only zero-extensions. */
7906 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7907 break;
7908 first = 0;
7909 }
7910 else /* bitschange == 0 */
7911 {
7912 /* A change in nominal type can always be stripped, but we must
7913 preserve the unsignedness. */
7914 if (first)
7915 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7916 first = 0;
7917 op = TREE_OPERAND (op, 0);
7918 /* Keep trying to narrow, but don't assign op to win if it
7919 would turn an integral type into something else. */
7920 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7921 continue;
7922 }
7923
7924 win = op;
7925 }
7926
7927 if (TREE_CODE (op) == COMPONENT_REF
7928 /* Since type_for_size always gives an integer type. */
7929 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7930 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7931 /* Ensure field is laid out already. */
7932 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7933 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7934 {
7935 unsigned HOST_WIDE_INT innerprec
7936 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7937 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7938 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7939 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7940
7941 /* We can get this structure field in a narrower type that fits it,
7942 but the resulting extension to its nominal type (a fullword type)
7943 must satisfy the same conditions as for other extensions.
7944
7945 Do this only for fields that are aligned (not bit-fields),
7946 because when bit-field insns will be used there is no
7947 advantage in doing this. */
7948
7949 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7950 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7951 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7952 && type != 0)
7953 {
7954 if (first)
7955 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7956 win = fold_convert (type, op);
7957 }
7958 }
7959
7960 *unsignedp_ptr = uns;
7961 return win;
7962 }
7963 \f
7964 /* Returns true if integer constant C has a value that is permissible
7965 for type TYPE (an INTEGER_TYPE). */
7966
7967 bool
7968 int_fits_type_p (const_tree c, const_tree type)
7969 {
7970 tree type_low_bound, type_high_bound;
7971 bool ok_for_low_bound, ok_for_high_bound, unsc;
7972 double_int dc, dd;
7973
7974 dc = tree_to_double_int (c);
7975 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
7976
7977 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
7978 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
7979 && unsc)
7980 /* So c is an unsigned integer whose type is sizetype and type is not.
7981 sizetype'd integers are sign extended even though they are
7982 unsigned. If the integer value fits in the lower end word of c,
7983 and if the higher end word has all its bits set to 1, that
7984 means the higher end bits are set to 1 only for sign extension.
7985 So let's convert c into an equivalent zero extended unsigned
7986 integer. */
7987 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
7988
7989 retry:
7990 type_low_bound = TYPE_MIN_VALUE (type);
7991 type_high_bound = TYPE_MAX_VALUE (type);
7992
7993 /* If at least one bound of the type is a constant integer, we can check
7994 ourselves and maybe make a decision. If no such decision is possible, but
7995 this type is a subtype, try checking against that. Otherwise, use
7996 double_int_fits_to_tree_p, which checks against the precision.
7997
7998 Compute the status for each possibly constant bound, and return if we see
7999 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8000 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8001 for "constant known to fit". */
8002
8003 /* Check if c >= type_low_bound. */
8004 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8005 {
8006 dd = tree_to_double_int (type_low_bound);
8007 if (TREE_CODE (type) == INTEGER_TYPE
8008 && TYPE_IS_SIZETYPE (type)
8009 && TYPE_UNSIGNED (type))
8010 dd = double_int_zext (dd, TYPE_PRECISION (type));
8011 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8012 {
8013 int c_neg = (!unsc && double_int_negative_p (dc));
8014 int t_neg = (unsc && double_int_negative_p (dd));
8015
8016 if (c_neg && !t_neg)
8017 return false;
8018 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
8019 return false;
8020 }
8021 else if (double_int_cmp (dc, dd, unsc) < 0)
8022 return false;
8023 ok_for_low_bound = true;
8024 }
8025 else
8026 ok_for_low_bound = false;
8027
8028 /* Check if c <= type_high_bound. */
8029 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8030 {
8031 dd = tree_to_double_int (type_high_bound);
8032 if (TREE_CODE (type) == INTEGER_TYPE
8033 && TYPE_IS_SIZETYPE (type)
8034 && TYPE_UNSIGNED (type))
8035 dd = double_int_zext (dd, TYPE_PRECISION (type));
8036 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8037 {
8038 int c_neg = (!unsc && double_int_negative_p (dc));
8039 int t_neg = (unsc && double_int_negative_p (dd));
8040
8041 if (t_neg && !c_neg)
8042 return false;
8043 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
8044 return false;
8045 }
8046 else if (double_int_cmp (dc, dd, unsc) > 0)
8047 return false;
8048 ok_for_high_bound = true;
8049 }
8050 else
8051 ok_for_high_bound = false;
8052
8053 /* If the constant fits both bounds, the result is known. */
8054 if (ok_for_low_bound && ok_for_high_bound)
8055 return true;
8056
8057 /* Perform some generic filtering which may allow making a decision
8058 even if the bounds are not constant. First, negative integers
8059 never fit in unsigned types, */
8060 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8061 return false;
8062
8063 /* Second, narrower types always fit in wider ones. */
8064 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8065 return true;
8066
8067 /* Third, unsigned integers with top bit set never fit signed types. */
8068 if (! TYPE_UNSIGNED (type) && unsc)
8069 {
8070 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8071 if (prec < HOST_BITS_PER_WIDE_INT)
8072 {
8073 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8074 return false;
8075 }
8076 else if (((((unsigned HOST_WIDE_INT) 1)
8077 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8078 return false;
8079 }
8080
8081 /* If we haven't been able to decide at this point, there nothing more we
8082 can check ourselves here. Look at the base type if we have one and it
8083 has the same precision. */
8084 if (TREE_CODE (type) == INTEGER_TYPE
8085 && TREE_TYPE (type) != 0
8086 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8087 {
8088 type = TREE_TYPE (type);
8089 goto retry;
8090 }
8091
8092 /* Or to double_int_fits_to_tree_p, if nothing else. */
8093 return double_int_fits_to_tree_p (type, dc);
8094 }
8095
8096 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8097 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8098 represented (assuming two's-complement arithmetic) within the bit
8099 precision of the type are returned instead. */
8100
8101 void
8102 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8103 {
8104 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8105 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8106 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8107 TYPE_UNSIGNED (type));
8108 else
8109 {
8110 if (TYPE_UNSIGNED (type))
8111 mpz_set_ui (min, 0);
8112 else
8113 {
8114 double_int mn;
8115 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8116 mn = double_int_sext (double_int_add (mn, double_int_one),
8117 TYPE_PRECISION (type));
8118 mpz_set_double_int (min, mn, false);
8119 }
8120 }
8121
8122 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8123 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8124 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8125 TYPE_UNSIGNED (type));
8126 else
8127 {
8128 if (TYPE_UNSIGNED (type))
8129 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8130 true);
8131 else
8132 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8133 true);
8134 }
8135 }
8136
8137 /* Return true if VAR is an automatic variable defined in function FN. */
8138
8139 bool
8140 auto_var_in_fn_p (const_tree var, const_tree fn)
8141 {
8142 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8143 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8144 || TREE_CODE (var) == PARM_DECL)
8145 && ! TREE_STATIC (var))
8146 || TREE_CODE (var) == LABEL_DECL
8147 || TREE_CODE (var) == RESULT_DECL));
8148 }
8149
8150 /* Subprogram of following function. Called by walk_tree.
8151
8152 Return *TP if it is an automatic variable or parameter of the
8153 function passed in as DATA. */
8154
8155 static tree
8156 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8157 {
8158 tree fn = (tree) data;
8159
8160 if (TYPE_P (*tp))
8161 *walk_subtrees = 0;
8162
8163 else if (DECL_P (*tp)
8164 && auto_var_in_fn_p (*tp, fn))
8165 return *tp;
8166
8167 return NULL_TREE;
8168 }
8169
8170 /* Returns true if T is, contains, or refers to a type with variable
8171 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8172 arguments, but not the return type. If FN is nonzero, only return
8173 true if a modifier of the type or position of FN is a variable or
8174 parameter inside FN.
8175
8176 This concept is more general than that of C99 'variably modified types':
8177 in C99, a struct type is never variably modified because a VLA may not
8178 appear as a structure member. However, in GNU C code like:
8179
8180 struct S { int i[f()]; };
8181
8182 is valid, and other languages may define similar constructs. */
8183
8184 bool
8185 variably_modified_type_p (tree type, tree fn)
8186 {
8187 tree t;
8188
8189 /* Test if T is either variable (if FN is zero) or an expression containing
8190 a variable in FN. */
8191 #define RETURN_TRUE_IF_VAR(T) \
8192 do { tree _t = (T); \
8193 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8194 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8195 return true; } while (0)
8196
8197 if (type == error_mark_node)
8198 return false;
8199
8200 /* If TYPE itself has variable size, it is variably modified. */
8201 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8202 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8203
8204 switch (TREE_CODE (type))
8205 {
8206 case POINTER_TYPE:
8207 case REFERENCE_TYPE:
8208 case VECTOR_TYPE:
8209 if (variably_modified_type_p (TREE_TYPE (type), fn))
8210 return true;
8211 break;
8212
8213 case FUNCTION_TYPE:
8214 case METHOD_TYPE:
8215 /* If TYPE is a function type, it is variably modified if the
8216 return type is variably modified. */
8217 if (variably_modified_type_p (TREE_TYPE (type), fn))
8218 return true;
8219 break;
8220
8221 case INTEGER_TYPE:
8222 case REAL_TYPE:
8223 case FIXED_POINT_TYPE:
8224 case ENUMERAL_TYPE:
8225 case BOOLEAN_TYPE:
8226 /* Scalar types are variably modified if their end points
8227 aren't constant. */
8228 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8229 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8230 break;
8231
8232 case RECORD_TYPE:
8233 case UNION_TYPE:
8234 case QUAL_UNION_TYPE:
8235 /* We can't see if any of the fields are variably-modified by the
8236 definition we normally use, since that would produce infinite
8237 recursion via pointers. */
8238 /* This is variably modified if some field's type is. */
8239 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8240 if (TREE_CODE (t) == FIELD_DECL)
8241 {
8242 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8243 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8244 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8245
8246 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8247 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8248 }
8249 break;
8250
8251 case ARRAY_TYPE:
8252 /* Do not call ourselves to avoid infinite recursion. This is
8253 variably modified if the element type is. */
8254 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8255 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8256 break;
8257
8258 default:
8259 break;
8260 }
8261
8262 /* The current language may have other cases to check, but in general,
8263 all other types are not variably modified. */
8264 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8265
8266 #undef RETURN_TRUE_IF_VAR
8267 }
8268
8269 /* Given a DECL or TYPE, return the scope in which it was declared, or
8270 NULL_TREE if there is no containing scope. */
8271
8272 tree
8273 get_containing_scope (const_tree t)
8274 {
8275 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8276 }
8277
8278 /* Return the innermost context enclosing DECL that is
8279 a FUNCTION_DECL, or zero if none. */
8280
8281 tree
8282 decl_function_context (const_tree decl)
8283 {
8284 tree context;
8285
8286 if (TREE_CODE (decl) == ERROR_MARK)
8287 return 0;
8288
8289 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8290 where we look up the function at runtime. Such functions always take
8291 a first argument of type 'pointer to real context'.
8292
8293 C++ should really be fixed to use DECL_CONTEXT for the real context,
8294 and use something else for the "virtual context". */
8295 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8296 context
8297 = TYPE_MAIN_VARIANT
8298 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8299 else
8300 context = DECL_CONTEXT (decl);
8301
8302 while (context && TREE_CODE (context) != FUNCTION_DECL)
8303 {
8304 if (TREE_CODE (context) == BLOCK)
8305 context = BLOCK_SUPERCONTEXT (context);
8306 else
8307 context = get_containing_scope (context);
8308 }
8309
8310 return context;
8311 }
8312
8313 /* Return the innermost context enclosing DECL that is
8314 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8315 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8316
8317 tree
8318 decl_type_context (const_tree decl)
8319 {
8320 tree context = DECL_CONTEXT (decl);
8321
8322 while (context)
8323 switch (TREE_CODE (context))
8324 {
8325 case NAMESPACE_DECL:
8326 case TRANSLATION_UNIT_DECL:
8327 return NULL_TREE;
8328
8329 case RECORD_TYPE:
8330 case UNION_TYPE:
8331 case QUAL_UNION_TYPE:
8332 return context;
8333
8334 case TYPE_DECL:
8335 case FUNCTION_DECL:
8336 context = DECL_CONTEXT (context);
8337 break;
8338
8339 case BLOCK:
8340 context = BLOCK_SUPERCONTEXT (context);
8341 break;
8342
8343 default:
8344 gcc_unreachable ();
8345 }
8346
8347 return NULL_TREE;
8348 }
8349
8350 /* CALL is a CALL_EXPR. Return the declaration for the function
8351 called, or NULL_TREE if the called function cannot be
8352 determined. */
8353
8354 tree
8355 get_callee_fndecl (const_tree call)
8356 {
8357 tree addr;
8358
8359 if (call == error_mark_node)
8360 return error_mark_node;
8361
8362 /* It's invalid to call this function with anything but a
8363 CALL_EXPR. */
8364 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8365
8366 /* The first operand to the CALL is the address of the function
8367 called. */
8368 addr = CALL_EXPR_FN (call);
8369
8370 STRIP_NOPS (addr);
8371
8372 /* If this is a readonly function pointer, extract its initial value. */
8373 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8374 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8375 && DECL_INITIAL (addr))
8376 addr = DECL_INITIAL (addr);
8377
8378 /* If the address is just `&f' for some function `f', then we know
8379 that `f' is being called. */
8380 if (TREE_CODE (addr) == ADDR_EXPR
8381 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8382 return TREE_OPERAND (addr, 0);
8383
8384 /* We couldn't figure out what was being called. */
8385 return NULL_TREE;
8386 }
8387
8388 /* Print debugging information about tree nodes generated during the compile,
8389 and any language-specific information. */
8390
8391 void
8392 dump_tree_statistics (void)
8393 {
8394 #ifdef GATHER_STATISTICS
8395 int i;
8396 int total_nodes, total_bytes;
8397 #endif
8398
8399 fprintf (stderr, "\n??? tree nodes created\n\n");
8400 #ifdef GATHER_STATISTICS
8401 fprintf (stderr, "Kind Nodes Bytes\n");
8402 fprintf (stderr, "---------------------------------------\n");
8403 total_nodes = total_bytes = 0;
8404 for (i = 0; i < (int) all_kinds; i++)
8405 {
8406 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8407 tree_node_counts[i], tree_node_sizes[i]);
8408 total_nodes += tree_node_counts[i];
8409 total_bytes += tree_node_sizes[i];
8410 }
8411 fprintf (stderr, "---------------------------------------\n");
8412 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8413 fprintf (stderr, "---------------------------------------\n");
8414 ssanames_print_statistics ();
8415 phinodes_print_statistics ();
8416 #else
8417 fprintf (stderr, "(No per-node statistics)\n");
8418 #endif
8419 print_type_hash_statistics ();
8420 print_debug_expr_statistics ();
8421 print_value_expr_statistics ();
8422 lang_hooks.print_statistics ();
8423 }
8424 \f
8425 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8426
8427 /* Generate a crc32 of a string. */
8428
8429 unsigned
8430 crc32_string (unsigned chksum, const char *string)
8431 {
8432 do
8433 {
8434 unsigned value = *string << 24;
8435 unsigned ix;
8436
8437 for (ix = 8; ix--; value <<= 1)
8438 {
8439 unsigned feedback;
8440
8441 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8442 chksum <<= 1;
8443 chksum ^= feedback;
8444 }
8445 }
8446 while (*string++);
8447 return chksum;
8448 }
8449
8450 /* P is a string that will be used in a symbol. Mask out any characters
8451 that are not valid in that context. */
8452
8453 void
8454 clean_symbol_name (char *p)
8455 {
8456 for (; *p; p++)
8457 if (! (ISALNUM (*p)
8458 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8459 || *p == '$'
8460 #endif
8461 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8462 || *p == '.'
8463 #endif
8464 ))
8465 *p = '_';
8466 }
8467
8468 /* Generate a name for a special-purpose function function.
8469 The generated name may need to be unique across the whole link.
8470 TYPE is some string to identify the purpose of this function to the
8471 linker or collect2; it must start with an uppercase letter,
8472 one of:
8473 I - for constructors
8474 D - for destructors
8475 N - for C++ anonymous namespaces
8476 F - for DWARF unwind frame information. */
8477
8478 tree
8479 get_file_function_name (const char *type)
8480 {
8481 char *buf;
8482 const char *p;
8483 char *q;
8484
8485 /* If we already have a name we know to be unique, just use that. */
8486 if (first_global_object_name)
8487 p = q = ASTRDUP (first_global_object_name);
8488 /* If the target is handling the constructors/destructors, they
8489 will be local to this file and the name is only necessary for
8490 debugging purposes. */
8491 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8492 {
8493 const char *file = main_input_filename;
8494 if (! file)
8495 file = input_filename;
8496 /* Just use the file's basename, because the full pathname
8497 might be quite long. */
8498 p = strrchr (file, '/');
8499 if (p)
8500 p++;
8501 else
8502 p = file;
8503 p = q = ASTRDUP (p);
8504 }
8505 else
8506 {
8507 /* Otherwise, the name must be unique across the entire link.
8508 We don't have anything that we know to be unique to this translation
8509 unit, so use what we do have and throw in some randomness. */
8510 unsigned len;
8511 const char *name = weak_global_object_name;
8512 const char *file = main_input_filename;
8513
8514 if (! name)
8515 name = "";
8516 if (! file)
8517 file = input_filename;
8518
8519 len = strlen (file);
8520 q = (char *) alloca (9 * 2 + len + 1);
8521 memcpy (q, file, len + 1);
8522
8523 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8524 crc32_string (0, get_random_seed (false)));
8525
8526 p = q;
8527 }
8528
8529 clean_symbol_name (q);
8530 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8531 + strlen (type));
8532
8533 /* Set up the name of the file-level functions we may need.
8534 Use a global object (which is already required to be unique over
8535 the program) rather than the file name (which imposes extra
8536 constraints). */
8537 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8538
8539 return get_identifier (buf);
8540 }
8541 \f
8542 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8543
8544 /* Complain that the tree code of NODE does not match the expected 0
8545 terminated list of trailing codes. The trailing code list can be
8546 empty, for a more vague error message. FILE, LINE, and FUNCTION
8547 are of the caller. */
8548
8549 void
8550 tree_check_failed (const_tree node, const char *file,
8551 int line, const char *function, ...)
8552 {
8553 va_list args;
8554 const char *buffer;
8555 unsigned length = 0;
8556 int code;
8557
8558 va_start (args, function);
8559 while ((code = va_arg (args, int)))
8560 length += 4 + strlen (tree_code_name[code]);
8561 va_end (args);
8562 if (length)
8563 {
8564 char *tmp;
8565 va_start (args, function);
8566 length += strlen ("expected ");
8567 buffer = tmp = (char *) alloca (length);
8568 length = 0;
8569 while ((code = va_arg (args, int)))
8570 {
8571 const char *prefix = length ? " or " : "expected ";
8572
8573 strcpy (tmp + length, prefix);
8574 length += strlen (prefix);
8575 strcpy (tmp + length, tree_code_name[code]);
8576 length += strlen (tree_code_name[code]);
8577 }
8578 va_end (args);
8579 }
8580 else
8581 buffer = "unexpected node";
8582
8583 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8584 buffer, tree_code_name[TREE_CODE (node)],
8585 function, trim_filename (file), line);
8586 }
8587
8588 /* Complain that the tree code of NODE does match the expected 0
8589 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8590 the caller. */
8591
8592 void
8593 tree_not_check_failed (const_tree node, const char *file,
8594 int line, const char *function, ...)
8595 {
8596 va_list args;
8597 char *buffer;
8598 unsigned length = 0;
8599 int code;
8600
8601 va_start (args, function);
8602 while ((code = va_arg (args, int)))
8603 length += 4 + strlen (tree_code_name[code]);
8604 va_end (args);
8605 va_start (args, function);
8606 buffer = (char *) alloca (length);
8607 length = 0;
8608 while ((code = va_arg (args, int)))
8609 {
8610 if (length)
8611 {
8612 strcpy (buffer + length, " or ");
8613 length += 4;
8614 }
8615 strcpy (buffer + length, tree_code_name[code]);
8616 length += strlen (tree_code_name[code]);
8617 }
8618 va_end (args);
8619
8620 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8621 buffer, tree_code_name[TREE_CODE (node)],
8622 function, trim_filename (file), line);
8623 }
8624
8625 /* Similar to tree_check_failed, except that we check for a class of tree
8626 code, given in CL. */
8627
8628 void
8629 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8630 const char *file, int line, const char *function)
8631 {
8632 internal_error
8633 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8634 TREE_CODE_CLASS_STRING (cl),
8635 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8636 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8637 }
8638
8639 /* Similar to tree_check_failed, except that instead of specifying a
8640 dozen codes, use the knowledge that they're all sequential. */
8641
8642 void
8643 tree_range_check_failed (const_tree node, const char *file, int line,
8644 const char *function, enum tree_code c1,
8645 enum tree_code c2)
8646 {
8647 char *buffer;
8648 unsigned length = 0;
8649 unsigned int c;
8650
8651 for (c = c1; c <= c2; ++c)
8652 length += 4 + strlen (tree_code_name[c]);
8653
8654 length += strlen ("expected ");
8655 buffer = (char *) alloca (length);
8656 length = 0;
8657
8658 for (c = c1; c <= c2; ++c)
8659 {
8660 const char *prefix = length ? " or " : "expected ";
8661
8662 strcpy (buffer + length, prefix);
8663 length += strlen (prefix);
8664 strcpy (buffer + length, tree_code_name[c]);
8665 length += strlen (tree_code_name[c]);
8666 }
8667
8668 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8669 buffer, tree_code_name[TREE_CODE (node)],
8670 function, trim_filename (file), line);
8671 }
8672
8673
8674 /* Similar to tree_check_failed, except that we check that a tree does
8675 not have the specified code, given in CL. */
8676
8677 void
8678 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8679 const char *file, int line, const char *function)
8680 {
8681 internal_error
8682 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8683 TREE_CODE_CLASS_STRING (cl),
8684 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8685 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8686 }
8687
8688
8689 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8690
8691 void
8692 omp_clause_check_failed (const_tree node, const char *file, int line,
8693 const char *function, enum omp_clause_code code)
8694 {
8695 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8696 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8697 function, trim_filename (file), line);
8698 }
8699
8700
8701 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8702
8703 void
8704 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8705 const char *function, enum omp_clause_code c1,
8706 enum omp_clause_code c2)
8707 {
8708 char *buffer;
8709 unsigned length = 0;
8710 unsigned int c;
8711
8712 for (c = c1; c <= c2; ++c)
8713 length += 4 + strlen (omp_clause_code_name[c]);
8714
8715 length += strlen ("expected ");
8716 buffer = (char *) alloca (length);
8717 length = 0;
8718
8719 for (c = c1; c <= c2; ++c)
8720 {
8721 const char *prefix = length ? " or " : "expected ";
8722
8723 strcpy (buffer + length, prefix);
8724 length += strlen (prefix);
8725 strcpy (buffer + length, omp_clause_code_name[c]);
8726 length += strlen (omp_clause_code_name[c]);
8727 }
8728
8729 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8730 buffer, omp_clause_code_name[TREE_CODE (node)],
8731 function, trim_filename (file), line);
8732 }
8733
8734
8735 #undef DEFTREESTRUCT
8736 #define DEFTREESTRUCT(VAL, NAME) NAME,
8737
8738 static const char *ts_enum_names[] = {
8739 #include "treestruct.def"
8740 };
8741 #undef DEFTREESTRUCT
8742
8743 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8744
8745 /* Similar to tree_class_check_failed, except that we check for
8746 whether CODE contains the tree structure identified by EN. */
8747
8748 void
8749 tree_contains_struct_check_failed (const_tree node,
8750 const enum tree_node_structure_enum en,
8751 const char *file, int line,
8752 const char *function)
8753 {
8754 internal_error
8755 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8756 TS_ENUM_NAME(en),
8757 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8758 }
8759
8760
8761 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8762 (dynamically sized) vector. */
8763
8764 void
8765 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8766 const char *function)
8767 {
8768 internal_error
8769 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8770 idx + 1, len, function, trim_filename (file), line);
8771 }
8772
8773 /* Similar to above, except that the check is for the bounds of the operand
8774 vector of an expression node EXP. */
8775
8776 void
8777 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8778 int line, const char *function)
8779 {
8780 int code = TREE_CODE (exp);
8781 internal_error
8782 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8783 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8784 function, trim_filename (file), line);
8785 }
8786
8787 /* Similar to above, except that the check is for the number of
8788 operands of an OMP_CLAUSE node. */
8789
8790 void
8791 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8792 int line, const char *function)
8793 {
8794 internal_error
8795 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8796 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8797 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8798 trim_filename (file), line);
8799 }
8800 #endif /* ENABLE_TREE_CHECKING */
8801 \f
8802 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8803 and mapped to the machine mode MODE. Initialize its fields and build
8804 the information necessary for debugging output. */
8805
8806 static tree
8807 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8808 {
8809 tree t;
8810 hashval_t hashcode = 0;
8811
8812 t = make_node (VECTOR_TYPE);
8813 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8814 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8815 SET_TYPE_MODE (t, mode);
8816
8817 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8818 SET_TYPE_STRUCTURAL_EQUALITY (t);
8819 else if (TYPE_CANONICAL (innertype) != innertype
8820 || mode != VOIDmode)
8821 TYPE_CANONICAL (t)
8822 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8823
8824 layout_type (t);
8825
8826 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8827 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8828 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8829 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8830 t = type_hash_canon (hashcode, t);
8831
8832 /* We have built a main variant, based on the main variant of the
8833 inner type. Use it to build the variant we return. */
8834 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8835 && TREE_TYPE (t) != innertype)
8836 return build_type_attribute_qual_variant (t,
8837 TYPE_ATTRIBUTES (innertype),
8838 TYPE_QUALS (innertype));
8839
8840 return t;
8841 }
8842
8843 static tree
8844 make_or_reuse_type (unsigned size, int unsignedp)
8845 {
8846 if (size == INT_TYPE_SIZE)
8847 return unsignedp ? unsigned_type_node : integer_type_node;
8848 if (size == CHAR_TYPE_SIZE)
8849 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8850 if (size == SHORT_TYPE_SIZE)
8851 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8852 if (size == LONG_TYPE_SIZE)
8853 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8854 if (size == LONG_LONG_TYPE_SIZE)
8855 return (unsignedp ? long_long_unsigned_type_node
8856 : long_long_integer_type_node);
8857 if (size == 128 && int128_integer_type_node)
8858 return (unsignedp ? int128_unsigned_type_node
8859 : int128_integer_type_node);
8860
8861 if (unsignedp)
8862 return make_unsigned_type (size);
8863 else
8864 return make_signed_type (size);
8865 }
8866
8867 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8868
8869 static tree
8870 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8871 {
8872 if (satp)
8873 {
8874 if (size == SHORT_FRACT_TYPE_SIZE)
8875 return unsignedp ? sat_unsigned_short_fract_type_node
8876 : sat_short_fract_type_node;
8877 if (size == FRACT_TYPE_SIZE)
8878 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8879 if (size == LONG_FRACT_TYPE_SIZE)
8880 return unsignedp ? sat_unsigned_long_fract_type_node
8881 : sat_long_fract_type_node;
8882 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8883 return unsignedp ? sat_unsigned_long_long_fract_type_node
8884 : sat_long_long_fract_type_node;
8885 }
8886 else
8887 {
8888 if (size == SHORT_FRACT_TYPE_SIZE)
8889 return unsignedp ? unsigned_short_fract_type_node
8890 : short_fract_type_node;
8891 if (size == FRACT_TYPE_SIZE)
8892 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8893 if (size == LONG_FRACT_TYPE_SIZE)
8894 return unsignedp ? unsigned_long_fract_type_node
8895 : long_fract_type_node;
8896 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8897 return unsignedp ? unsigned_long_long_fract_type_node
8898 : long_long_fract_type_node;
8899 }
8900
8901 return make_fract_type (size, unsignedp, satp);
8902 }
8903
8904 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8905
8906 static tree
8907 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8908 {
8909 if (satp)
8910 {
8911 if (size == SHORT_ACCUM_TYPE_SIZE)
8912 return unsignedp ? sat_unsigned_short_accum_type_node
8913 : sat_short_accum_type_node;
8914 if (size == ACCUM_TYPE_SIZE)
8915 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8916 if (size == LONG_ACCUM_TYPE_SIZE)
8917 return unsignedp ? sat_unsigned_long_accum_type_node
8918 : sat_long_accum_type_node;
8919 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8920 return unsignedp ? sat_unsigned_long_long_accum_type_node
8921 : sat_long_long_accum_type_node;
8922 }
8923 else
8924 {
8925 if (size == SHORT_ACCUM_TYPE_SIZE)
8926 return unsignedp ? unsigned_short_accum_type_node
8927 : short_accum_type_node;
8928 if (size == ACCUM_TYPE_SIZE)
8929 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8930 if (size == LONG_ACCUM_TYPE_SIZE)
8931 return unsignedp ? unsigned_long_accum_type_node
8932 : long_accum_type_node;
8933 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8934 return unsignedp ? unsigned_long_long_accum_type_node
8935 : long_long_accum_type_node;
8936 }
8937
8938 return make_accum_type (size, unsignedp, satp);
8939 }
8940
8941 /* Create nodes for all integer types (and error_mark_node) using the sizes
8942 of C datatypes. The caller should call set_sizetype soon after calling
8943 this function to select one of the types as sizetype. */
8944
8945 void
8946 build_common_tree_nodes (bool signed_char)
8947 {
8948 error_mark_node = make_node (ERROR_MARK);
8949 TREE_TYPE (error_mark_node) = error_mark_node;
8950
8951 initialize_sizetypes ();
8952
8953 /* Define both `signed char' and `unsigned char'. */
8954 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8955 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8956 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8957 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8958
8959 /* Define `char', which is like either `signed char' or `unsigned char'
8960 but not the same as either. */
8961 char_type_node
8962 = (signed_char
8963 ? make_signed_type (CHAR_TYPE_SIZE)
8964 : make_unsigned_type (CHAR_TYPE_SIZE));
8965 TYPE_STRING_FLAG (char_type_node) = 1;
8966
8967 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8968 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8969 integer_type_node = make_signed_type (INT_TYPE_SIZE);
8970 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
8971 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
8972 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
8973 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
8974 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
8975 #if HOST_BITS_PER_WIDE_INT >= 64
8976 /* TODO: This isn't correct, but as logic depends at the moment on
8977 host's instead of target's wide-integer.
8978 If there is a target not supporting TImode, but has an 128-bit
8979 integer-scalar register, this target check needs to be adjusted. */
8980 if (targetm.scalar_mode_supported_p (TImode))
8981 {
8982 int128_integer_type_node = make_signed_type (128);
8983 int128_unsigned_type_node = make_unsigned_type (128);
8984 }
8985 #endif
8986 /* Define a boolean type. This type only represents boolean values but
8987 may be larger than char depending on the value of BOOL_TYPE_SIZE.
8988 Front ends which want to override this size (i.e. Java) can redefine
8989 boolean_type_node before calling build_common_tree_nodes_2. */
8990 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
8991 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
8992 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
8993 TYPE_PRECISION (boolean_type_node) = 1;
8994
8995 /* Fill in the rest of the sized types. Reuse existing type nodes
8996 when possible. */
8997 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
8998 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
8999 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9000 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9001 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9002
9003 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9004 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9005 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9006 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9007 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9008
9009 access_public_node = get_identifier ("public");
9010 access_protected_node = get_identifier ("protected");
9011 access_private_node = get_identifier ("private");
9012 }
9013
9014 /* Call this function after calling build_common_tree_nodes and set_sizetype.
9015 It will create several other common tree nodes. */
9016
9017 void
9018 build_common_tree_nodes_2 (int short_double)
9019 {
9020 /* Define these next since types below may used them. */
9021 integer_zero_node = build_int_cst (integer_type_node, 0);
9022 integer_one_node = build_int_cst (integer_type_node, 1);
9023 integer_three_node = build_int_cst (integer_type_node, 3);
9024 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9025
9026 size_zero_node = size_int (0);
9027 size_one_node = size_int (1);
9028 bitsize_zero_node = bitsize_int (0);
9029 bitsize_one_node = bitsize_int (1);
9030 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9031
9032 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9033 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9034
9035 void_type_node = make_node (VOID_TYPE);
9036 layout_type (void_type_node);
9037
9038 /* We are not going to have real types in C with less than byte alignment,
9039 so we might as well not have any types that claim to have it. */
9040 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9041 TYPE_USER_ALIGN (void_type_node) = 0;
9042
9043 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9044 layout_type (TREE_TYPE (null_pointer_node));
9045
9046 ptr_type_node = build_pointer_type (void_type_node);
9047 const_ptr_type_node
9048 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9049 fileptr_type_node = ptr_type_node;
9050
9051 float_type_node = make_node (REAL_TYPE);
9052 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9053 layout_type (float_type_node);
9054
9055 double_type_node = make_node (REAL_TYPE);
9056 if (short_double)
9057 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9058 else
9059 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9060 layout_type (double_type_node);
9061
9062 long_double_type_node = make_node (REAL_TYPE);
9063 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9064 layout_type (long_double_type_node);
9065
9066 float_ptr_type_node = build_pointer_type (float_type_node);
9067 double_ptr_type_node = build_pointer_type (double_type_node);
9068 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9069 integer_ptr_type_node = build_pointer_type (integer_type_node);
9070
9071 /* Fixed size integer types. */
9072 uint32_type_node = build_nonstandard_integer_type (32, true);
9073 uint64_type_node = build_nonstandard_integer_type (64, true);
9074
9075 /* Decimal float types. */
9076 dfloat32_type_node = make_node (REAL_TYPE);
9077 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9078 layout_type (dfloat32_type_node);
9079 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9080 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9081
9082 dfloat64_type_node = make_node (REAL_TYPE);
9083 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9084 layout_type (dfloat64_type_node);
9085 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9086 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9087
9088 dfloat128_type_node = make_node (REAL_TYPE);
9089 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9090 layout_type (dfloat128_type_node);
9091 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9092 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9093
9094 complex_integer_type_node = build_complex_type (integer_type_node);
9095 complex_float_type_node = build_complex_type (float_type_node);
9096 complex_double_type_node = build_complex_type (double_type_node);
9097 complex_long_double_type_node = build_complex_type (long_double_type_node);
9098
9099 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9100 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9101 sat_ ## KIND ## _type_node = \
9102 make_sat_signed_ ## KIND ## _type (SIZE); \
9103 sat_unsigned_ ## KIND ## _type_node = \
9104 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9105 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9106 unsigned_ ## KIND ## _type_node = \
9107 make_unsigned_ ## KIND ## _type (SIZE);
9108
9109 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9110 sat_ ## WIDTH ## KIND ## _type_node = \
9111 make_sat_signed_ ## KIND ## _type (SIZE); \
9112 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9113 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9114 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9115 unsigned_ ## WIDTH ## KIND ## _type_node = \
9116 make_unsigned_ ## KIND ## _type (SIZE);
9117
9118 /* Make fixed-point type nodes based on four different widths. */
9119 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9120 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9121 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9122 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9123 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9124
9125 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9126 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9127 NAME ## _type_node = \
9128 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9129 u ## NAME ## _type_node = \
9130 make_or_reuse_unsigned_ ## KIND ## _type \
9131 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9132 sat_ ## NAME ## _type_node = \
9133 make_or_reuse_sat_signed_ ## KIND ## _type \
9134 (GET_MODE_BITSIZE (MODE ## mode)); \
9135 sat_u ## NAME ## _type_node = \
9136 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9137 (GET_MODE_BITSIZE (U ## MODE ## mode));
9138
9139 /* Fixed-point type and mode nodes. */
9140 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9141 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9142 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9143 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9144 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9145 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9146 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9147 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9148 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9149 MAKE_FIXED_MODE_NODE (accum, da, DA)
9150 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9151
9152 {
9153 tree t = targetm.build_builtin_va_list ();
9154
9155 /* Many back-ends define record types without setting TYPE_NAME.
9156 If we copied the record type here, we'd keep the original
9157 record type without a name. This breaks name mangling. So,
9158 don't copy record types and let c_common_nodes_and_builtins()
9159 declare the type to be __builtin_va_list. */
9160 if (TREE_CODE (t) != RECORD_TYPE)
9161 t = build_variant_type_copy (t);
9162
9163 va_list_type_node = t;
9164 }
9165 }
9166
9167 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9168
9169 static void
9170 local_define_builtin (const char *name, tree type, enum built_in_function code,
9171 const char *library_name, int ecf_flags)
9172 {
9173 tree decl;
9174
9175 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9176 library_name, NULL_TREE);
9177 if (ecf_flags & ECF_CONST)
9178 TREE_READONLY (decl) = 1;
9179 if (ecf_flags & ECF_PURE)
9180 DECL_PURE_P (decl) = 1;
9181 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9182 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9183 if (ecf_flags & ECF_NORETURN)
9184 TREE_THIS_VOLATILE (decl) = 1;
9185 if (ecf_flags & ECF_NOTHROW)
9186 TREE_NOTHROW (decl) = 1;
9187 if (ecf_flags & ECF_MALLOC)
9188 DECL_IS_MALLOC (decl) = 1;
9189
9190 built_in_decls[code] = decl;
9191 implicit_built_in_decls[code] = decl;
9192 }
9193
9194 /* Call this function after instantiating all builtins that the language
9195 front end cares about. This will build the rest of the builtins that
9196 are relied upon by the tree optimizers and the middle-end. */
9197
9198 void
9199 build_common_builtin_nodes (void)
9200 {
9201 tree tmp, ftype;
9202
9203 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9204 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9205 {
9206 ftype = build_function_type_list (ptr_type_node,
9207 ptr_type_node, const_ptr_type_node,
9208 size_type_node, NULL_TREE);
9209
9210 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9211 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9212 "memcpy", ECF_NOTHROW);
9213 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9214 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9215 "memmove", ECF_NOTHROW);
9216 }
9217
9218 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9219 {
9220 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9221 const_ptr_type_node, size_type_node,
9222 NULL_TREE);
9223 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9224 "memcmp", ECF_PURE | ECF_NOTHROW);
9225 }
9226
9227 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9228 {
9229 ftype = build_function_type_list (ptr_type_node,
9230 ptr_type_node, integer_type_node,
9231 size_type_node, NULL_TREE);
9232 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9233 "memset", ECF_NOTHROW);
9234 }
9235
9236 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9237 {
9238 ftype = build_function_type_list (ptr_type_node,
9239 size_type_node, NULL_TREE);
9240 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9241 "alloca", ECF_MALLOC | ECF_NOTHROW);
9242 }
9243
9244 /* If we're checking the stack, `alloca' can throw. */
9245 if (flag_stack_check)
9246 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9247
9248 ftype = build_function_type_list (void_type_node,
9249 ptr_type_node, ptr_type_node,
9250 ptr_type_node, NULL_TREE);
9251 local_define_builtin ("__builtin_init_trampoline", ftype,
9252 BUILT_IN_INIT_TRAMPOLINE,
9253 "__builtin_init_trampoline", ECF_NOTHROW);
9254
9255 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9256 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9257 BUILT_IN_ADJUST_TRAMPOLINE,
9258 "__builtin_adjust_trampoline",
9259 ECF_CONST | ECF_NOTHROW);
9260
9261 ftype = build_function_type_list (void_type_node,
9262 ptr_type_node, ptr_type_node, NULL_TREE);
9263 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9264 BUILT_IN_NONLOCAL_GOTO,
9265 "__builtin_nonlocal_goto",
9266 ECF_NORETURN | ECF_NOTHROW);
9267
9268 ftype = build_function_type_list (void_type_node,
9269 ptr_type_node, ptr_type_node, NULL_TREE);
9270 local_define_builtin ("__builtin_setjmp_setup", ftype,
9271 BUILT_IN_SETJMP_SETUP,
9272 "__builtin_setjmp_setup", ECF_NOTHROW);
9273
9274 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9275 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9276 BUILT_IN_SETJMP_DISPATCHER,
9277 "__builtin_setjmp_dispatcher",
9278 ECF_PURE | ECF_NOTHROW);
9279
9280 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9281 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9282 BUILT_IN_SETJMP_RECEIVER,
9283 "__builtin_setjmp_receiver", ECF_NOTHROW);
9284
9285 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9286 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9287 "__builtin_stack_save", ECF_NOTHROW);
9288
9289 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9290 local_define_builtin ("__builtin_stack_restore", ftype,
9291 BUILT_IN_STACK_RESTORE,
9292 "__builtin_stack_restore", ECF_NOTHROW);
9293
9294 ftype = build_function_type_list (void_type_node, NULL_TREE);
9295 local_define_builtin ("__builtin_profile_func_enter", ftype,
9296 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
9297 local_define_builtin ("__builtin_profile_func_exit", ftype,
9298 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
9299
9300 /* If there's a possibility that we might use the ARM EABI, build the
9301 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9302 if (targetm.arm_eabi_unwinder)
9303 {
9304 ftype = build_function_type_list (void_type_node, NULL_TREE);
9305 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9306 BUILT_IN_CXA_END_CLEANUP,
9307 "__cxa_end_cleanup", ECF_NORETURN);
9308 }
9309
9310 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9311 local_define_builtin ("__builtin_unwind_resume", ftype,
9312 BUILT_IN_UNWIND_RESUME,
9313 (USING_SJLJ_EXCEPTIONS
9314 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9315 ECF_NORETURN);
9316
9317 /* The exception object and filter values from the runtime. The argument
9318 must be zero before exception lowering, i.e. from the front end. After
9319 exception lowering, it will be the region number for the exception
9320 landing pad. These functions are PURE instead of CONST to prevent
9321 them from being hoisted past the exception edge that will initialize
9322 its value in the landing pad. */
9323 ftype = build_function_type_list (ptr_type_node,
9324 integer_type_node, NULL_TREE);
9325 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9326 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW);
9327
9328 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9329 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9330 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9331 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW);
9332
9333 ftype = build_function_type_list (void_type_node,
9334 integer_type_node, integer_type_node,
9335 NULL_TREE);
9336 local_define_builtin ("__builtin_eh_copy_values", ftype,
9337 BUILT_IN_EH_COPY_VALUES,
9338 "__builtin_eh_copy_values", ECF_NOTHROW);
9339
9340 /* Complex multiplication and division. These are handled as builtins
9341 rather than optabs because emit_library_call_value doesn't support
9342 complex. Further, we can do slightly better with folding these
9343 beasties if the real and complex parts of the arguments are separate. */
9344 {
9345 int mode;
9346
9347 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9348 {
9349 char mode_name_buf[4], *q;
9350 const char *p;
9351 enum built_in_function mcode, dcode;
9352 tree type, inner_type;
9353
9354 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9355 if (type == NULL)
9356 continue;
9357 inner_type = TREE_TYPE (type);
9358
9359 ftype = build_function_type_list (type, inner_type, inner_type,
9360 inner_type, inner_type, NULL_TREE);
9361
9362 mcode = ((enum built_in_function)
9363 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9364 dcode = ((enum built_in_function)
9365 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9366
9367 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9368 *q = TOLOWER (*p);
9369 *q = '\0';
9370
9371 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9372 local_define_builtin (built_in_names[mcode], ftype, mcode,
9373 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
9374
9375 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9376 local_define_builtin (built_in_names[dcode], ftype, dcode,
9377 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
9378 }
9379 }
9380 }
9381
9382 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9383 better way.
9384
9385 If we requested a pointer to a vector, build up the pointers that
9386 we stripped off while looking for the inner type. Similarly for
9387 return values from functions.
9388
9389 The argument TYPE is the top of the chain, and BOTTOM is the
9390 new type which we will point to. */
9391
9392 tree
9393 reconstruct_complex_type (tree type, tree bottom)
9394 {
9395 tree inner, outer;
9396
9397 if (TREE_CODE (type) == POINTER_TYPE)
9398 {
9399 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9400 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9401 TYPE_REF_CAN_ALIAS_ALL (type));
9402 }
9403 else if (TREE_CODE (type) == REFERENCE_TYPE)
9404 {
9405 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9406 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9407 TYPE_REF_CAN_ALIAS_ALL (type));
9408 }
9409 else if (TREE_CODE (type) == ARRAY_TYPE)
9410 {
9411 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9412 outer = build_array_type (inner, TYPE_DOMAIN (type));
9413 }
9414 else if (TREE_CODE (type) == FUNCTION_TYPE)
9415 {
9416 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9417 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9418 }
9419 else if (TREE_CODE (type) == METHOD_TYPE)
9420 {
9421 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9422 /* The build_method_type_directly() routine prepends 'this' to argument list,
9423 so we must compensate by getting rid of it. */
9424 outer
9425 = build_method_type_directly
9426 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9427 inner,
9428 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9429 }
9430 else if (TREE_CODE (type) == OFFSET_TYPE)
9431 {
9432 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9433 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9434 }
9435 else
9436 return bottom;
9437
9438 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9439 TYPE_QUALS (type));
9440 }
9441
9442 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9443 the inner type. */
9444 tree
9445 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9446 {
9447 int nunits;
9448
9449 switch (GET_MODE_CLASS (mode))
9450 {
9451 case MODE_VECTOR_INT:
9452 case MODE_VECTOR_FLOAT:
9453 case MODE_VECTOR_FRACT:
9454 case MODE_VECTOR_UFRACT:
9455 case MODE_VECTOR_ACCUM:
9456 case MODE_VECTOR_UACCUM:
9457 nunits = GET_MODE_NUNITS (mode);
9458 break;
9459
9460 case MODE_INT:
9461 /* Check that there are no leftover bits. */
9462 gcc_assert (GET_MODE_BITSIZE (mode)
9463 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9464
9465 nunits = GET_MODE_BITSIZE (mode)
9466 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9467 break;
9468
9469 default:
9470 gcc_unreachable ();
9471 }
9472
9473 return make_vector_type (innertype, nunits, mode);
9474 }
9475
9476 /* Similarly, but takes the inner type and number of units, which must be
9477 a power of two. */
9478
9479 tree
9480 build_vector_type (tree innertype, int nunits)
9481 {
9482 return make_vector_type (innertype, nunits, VOIDmode);
9483 }
9484
9485 /* Similarly, but takes the inner type and number of units, which must be
9486 a power of two. */
9487
9488 tree
9489 build_opaque_vector_type (tree innertype, int nunits)
9490 {
9491 tree t;
9492 innertype = build_distinct_type_copy (innertype);
9493 t = make_vector_type (innertype, nunits, VOIDmode);
9494 TYPE_VECTOR_OPAQUE (t) = true;
9495 return t;
9496 }
9497
9498
9499 /* Given an initializer INIT, return TRUE if INIT is zero or some
9500 aggregate of zeros. Otherwise return FALSE. */
9501 bool
9502 initializer_zerop (const_tree init)
9503 {
9504 tree elt;
9505
9506 STRIP_NOPS (init);
9507
9508 switch (TREE_CODE (init))
9509 {
9510 case INTEGER_CST:
9511 return integer_zerop (init);
9512
9513 case REAL_CST:
9514 /* ??? Note that this is not correct for C4X float formats. There,
9515 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9516 negative exponent. */
9517 return real_zerop (init)
9518 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9519
9520 case FIXED_CST:
9521 return fixed_zerop (init);
9522
9523 case COMPLEX_CST:
9524 return integer_zerop (init)
9525 || (real_zerop (init)
9526 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9527 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9528
9529 case VECTOR_CST:
9530 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9531 if (!initializer_zerop (TREE_VALUE (elt)))
9532 return false;
9533 return true;
9534
9535 case CONSTRUCTOR:
9536 {
9537 unsigned HOST_WIDE_INT idx;
9538
9539 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9540 if (!initializer_zerop (elt))
9541 return false;
9542 return true;
9543 }
9544
9545 case STRING_CST:
9546 {
9547 int i;
9548
9549 /* We need to loop through all elements to handle cases like
9550 "\0" and "\0foobar". */
9551 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9552 if (TREE_STRING_POINTER (init)[i] != '\0')
9553 return false;
9554
9555 return true;
9556 }
9557
9558 default:
9559 return false;
9560 }
9561 }
9562
9563 /* Build an empty statement at location LOC. */
9564
9565 tree
9566 build_empty_stmt (location_t loc)
9567 {
9568 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9569 SET_EXPR_LOCATION (t, loc);
9570 return t;
9571 }
9572
9573
9574 /* Build an OpenMP clause with code CODE. LOC is the location of the
9575 clause. */
9576
9577 tree
9578 build_omp_clause (location_t loc, enum omp_clause_code code)
9579 {
9580 tree t;
9581 int size, length;
9582
9583 length = omp_clause_num_ops[code];
9584 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9585
9586 t = ggc_alloc_tree_node (size);
9587 memset (t, 0, size);
9588 TREE_SET_CODE (t, OMP_CLAUSE);
9589 OMP_CLAUSE_SET_CODE (t, code);
9590 OMP_CLAUSE_LOCATION (t) = loc;
9591
9592 #ifdef GATHER_STATISTICS
9593 tree_node_counts[(int) omp_clause_kind]++;
9594 tree_node_sizes[(int) omp_clause_kind] += size;
9595 #endif
9596
9597 return t;
9598 }
9599
9600 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9601 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9602 Except for the CODE and operand count field, other storage for the
9603 object is initialized to zeros. */
9604
9605 tree
9606 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9607 {
9608 tree t;
9609 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9610
9611 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9612 gcc_assert (len >= 1);
9613
9614 #ifdef GATHER_STATISTICS
9615 tree_node_counts[(int) e_kind]++;
9616 tree_node_sizes[(int) e_kind] += length;
9617 #endif
9618
9619 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9620
9621 TREE_SET_CODE (t, code);
9622
9623 /* Can't use TREE_OPERAND to store the length because if checking is
9624 enabled, it will try to check the length before we store it. :-P */
9625 t->exp.operands[0] = build_int_cst (sizetype, len);
9626
9627 return t;
9628 }
9629
9630 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9631 FN and a null static chain slot. NARGS is the number of call arguments
9632 which are specified as "..." arguments. */
9633
9634 tree
9635 build_call_nary (tree return_type, tree fn, int nargs, ...)
9636 {
9637 tree ret;
9638 va_list args;
9639 va_start (args, nargs);
9640 ret = build_call_valist (return_type, fn, nargs, args);
9641 va_end (args);
9642 return ret;
9643 }
9644
9645 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9646 FN and a null static chain slot. NARGS is the number of call arguments
9647 which are specified as a va_list ARGS. */
9648
9649 tree
9650 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9651 {
9652 tree t;
9653 int i;
9654
9655 t = build_vl_exp (CALL_EXPR, nargs + 3);
9656 TREE_TYPE (t) = return_type;
9657 CALL_EXPR_FN (t) = fn;
9658 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9659 for (i = 0; i < nargs; i++)
9660 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9661 process_call_operands (t);
9662 return t;
9663 }
9664
9665 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9666 FN and a null static chain slot. NARGS is the number of call arguments
9667 which are specified as a tree array ARGS. */
9668
9669 tree
9670 build_call_array_loc (location_t loc, tree return_type, tree fn,
9671 int nargs, const tree *args)
9672 {
9673 tree t;
9674 int i;
9675
9676 t = build_vl_exp (CALL_EXPR, nargs + 3);
9677 TREE_TYPE (t) = return_type;
9678 CALL_EXPR_FN (t) = fn;
9679 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9680 for (i = 0; i < nargs; i++)
9681 CALL_EXPR_ARG (t, i) = args[i];
9682 process_call_operands (t);
9683 SET_EXPR_LOCATION (t, loc);
9684 return t;
9685 }
9686
9687 /* Like build_call_array, but takes a VEC. */
9688
9689 tree
9690 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9691 {
9692 tree ret, t;
9693 unsigned int ix;
9694
9695 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9696 TREE_TYPE (ret) = return_type;
9697 CALL_EXPR_FN (ret) = fn;
9698 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9699 FOR_EACH_VEC_ELT (tree, args, ix, t)
9700 CALL_EXPR_ARG (ret, ix) = t;
9701 process_call_operands (ret);
9702 return ret;
9703 }
9704
9705
9706 /* Returns true if it is possible to prove that the index of
9707 an array access REF (an ARRAY_REF expression) falls into the
9708 array bounds. */
9709
9710 bool
9711 in_array_bounds_p (tree ref)
9712 {
9713 tree idx = TREE_OPERAND (ref, 1);
9714 tree min, max;
9715
9716 if (TREE_CODE (idx) != INTEGER_CST)
9717 return false;
9718
9719 min = array_ref_low_bound (ref);
9720 max = array_ref_up_bound (ref);
9721 if (!min
9722 || !max
9723 || TREE_CODE (min) != INTEGER_CST
9724 || TREE_CODE (max) != INTEGER_CST)
9725 return false;
9726
9727 if (tree_int_cst_lt (idx, min)
9728 || tree_int_cst_lt (max, idx))
9729 return false;
9730
9731 return true;
9732 }
9733
9734 /* Returns true if it is possible to prove that the range of
9735 an array access REF (an ARRAY_RANGE_REF expression) falls
9736 into the array bounds. */
9737
9738 bool
9739 range_in_array_bounds_p (tree ref)
9740 {
9741 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9742 tree range_min, range_max, min, max;
9743
9744 range_min = TYPE_MIN_VALUE (domain_type);
9745 range_max = TYPE_MAX_VALUE (domain_type);
9746 if (!range_min
9747 || !range_max
9748 || TREE_CODE (range_min) != INTEGER_CST
9749 || TREE_CODE (range_max) != INTEGER_CST)
9750 return false;
9751
9752 min = array_ref_low_bound (ref);
9753 max = array_ref_up_bound (ref);
9754 if (!min
9755 || !max
9756 || TREE_CODE (min) != INTEGER_CST
9757 || TREE_CODE (max) != INTEGER_CST)
9758 return false;
9759
9760 if (tree_int_cst_lt (range_min, min)
9761 || tree_int_cst_lt (max, range_max))
9762 return false;
9763
9764 return true;
9765 }
9766
9767 /* Return true if T (assumed to be a DECL) must be assigned a memory
9768 location. */
9769
9770 bool
9771 needs_to_live_in_memory (const_tree t)
9772 {
9773 if (TREE_CODE (t) == SSA_NAME)
9774 t = SSA_NAME_VAR (t);
9775
9776 return (TREE_ADDRESSABLE (t)
9777 || is_global_var (t)
9778 || (TREE_CODE (t) == RESULT_DECL
9779 && !DECL_BY_REFERENCE (t)
9780 && aggregate_value_p (t, current_function_decl)));
9781 }
9782
9783 /* There are situations in which a language considers record types
9784 compatible which have different field lists. Decide if two fields
9785 are compatible. It is assumed that the parent records are compatible. */
9786
9787 bool
9788 fields_compatible_p (const_tree f1, const_tree f2)
9789 {
9790 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9791 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9792 return false;
9793
9794 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9795 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9796 return false;
9797
9798 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9799 return false;
9800
9801 return true;
9802 }
9803
9804 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9805
9806 tree
9807 find_compatible_field (tree record, tree orig_field)
9808 {
9809 tree f;
9810
9811 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9812 if (TREE_CODE (f) == FIELD_DECL
9813 && fields_compatible_p (f, orig_field))
9814 return f;
9815
9816 /* ??? Why isn't this on the main fields list? */
9817 f = TYPE_VFIELD (record);
9818 if (f && TREE_CODE (f) == FIELD_DECL
9819 && fields_compatible_p (f, orig_field))
9820 return f;
9821
9822 /* ??? We should abort here, but Java appears to do Bad Things
9823 with inherited fields. */
9824 return orig_field;
9825 }
9826
9827 /* Return value of a constant X and sign-extend it. */
9828
9829 HOST_WIDE_INT
9830 int_cst_value (const_tree x)
9831 {
9832 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9833 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9834
9835 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9836 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9837 || TREE_INT_CST_HIGH (x) == -1);
9838
9839 if (bits < HOST_BITS_PER_WIDE_INT)
9840 {
9841 bool negative = ((val >> (bits - 1)) & 1) != 0;
9842 if (negative)
9843 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9844 else
9845 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9846 }
9847
9848 return val;
9849 }
9850
9851 /* Return value of a constant X and sign-extend it. */
9852
9853 HOST_WIDEST_INT
9854 widest_int_cst_value (const_tree x)
9855 {
9856 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9857 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9858
9859 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9860 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9861 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9862 << HOST_BITS_PER_WIDE_INT);
9863 #else
9864 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9865 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9866 || TREE_INT_CST_HIGH (x) == -1);
9867 #endif
9868
9869 if (bits < HOST_BITS_PER_WIDEST_INT)
9870 {
9871 bool negative = ((val >> (bits - 1)) & 1) != 0;
9872 if (negative)
9873 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9874 else
9875 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9876 }
9877
9878 return val;
9879 }
9880
9881 /* If TYPE is an integral type, return an equivalent type which is
9882 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9883 return TYPE itself. */
9884
9885 tree
9886 signed_or_unsigned_type_for (int unsignedp, tree type)
9887 {
9888 tree t = type;
9889 if (POINTER_TYPE_P (type))
9890 {
9891 /* If the pointer points to the normal address space, use the
9892 size_type_node. Otherwise use an appropriate size for the pointer
9893 based on the named address space it points to. */
9894 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
9895 t = size_type_node;
9896 else
9897 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9898 }
9899
9900 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9901 return t;
9902
9903 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9904 }
9905
9906 /* Returns unsigned variant of TYPE. */
9907
9908 tree
9909 unsigned_type_for (tree type)
9910 {
9911 return signed_or_unsigned_type_for (1, type);
9912 }
9913
9914 /* Returns signed variant of TYPE. */
9915
9916 tree
9917 signed_type_for (tree type)
9918 {
9919 return signed_or_unsigned_type_for (0, type);
9920 }
9921
9922 /* Returns the largest value obtainable by casting something in INNER type to
9923 OUTER type. */
9924
9925 tree
9926 upper_bound_in_type (tree outer, tree inner)
9927 {
9928 unsigned HOST_WIDE_INT lo, hi;
9929 unsigned int det = 0;
9930 unsigned oprec = TYPE_PRECISION (outer);
9931 unsigned iprec = TYPE_PRECISION (inner);
9932 unsigned prec;
9933
9934 /* Compute a unique number for every combination. */
9935 det |= (oprec > iprec) ? 4 : 0;
9936 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9937 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9938
9939 /* Determine the exponent to use. */
9940 switch (det)
9941 {
9942 case 0:
9943 case 1:
9944 /* oprec <= iprec, outer: signed, inner: don't care. */
9945 prec = oprec - 1;
9946 break;
9947 case 2:
9948 case 3:
9949 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9950 prec = oprec;
9951 break;
9952 case 4:
9953 /* oprec > iprec, outer: signed, inner: signed. */
9954 prec = iprec - 1;
9955 break;
9956 case 5:
9957 /* oprec > iprec, outer: signed, inner: unsigned. */
9958 prec = iprec;
9959 break;
9960 case 6:
9961 /* oprec > iprec, outer: unsigned, inner: signed. */
9962 prec = oprec;
9963 break;
9964 case 7:
9965 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9966 prec = iprec;
9967 break;
9968 default:
9969 gcc_unreachable ();
9970 }
9971
9972 /* Compute 2^^prec - 1. */
9973 if (prec <= HOST_BITS_PER_WIDE_INT)
9974 {
9975 hi = 0;
9976 lo = ((~(unsigned HOST_WIDE_INT) 0)
9977 >> (HOST_BITS_PER_WIDE_INT - prec));
9978 }
9979 else
9980 {
9981 hi = ((~(unsigned HOST_WIDE_INT) 0)
9982 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
9983 lo = ~(unsigned HOST_WIDE_INT) 0;
9984 }
9985
9986 return build_int_cst_wide (outer, lo, hi);
9987 }
9988
9989 /* Returns the smallest value obtainable by casting something in INNER type to
9990 OUTER type. */
9991
9992 tree
9993 lower_bound_in_type (tree outer, tree inner)
9994 {
9995 unsigned HOST_WIDE_INT lo, hi;
9996 unsigned oprec = TYPE_PRECISION (outer);
9997 unsigned iprec = TYPE_PRECISION (inner);
9998
9999 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10000 and obtain 0. */
10001 if (TYPE_UNSIGNED (outer)
10002 /* If we are widening something of an unsigned type, OUTER type
10003 contains all values of INNER type. In particular, both INNER
10004 and OUTER types have zero in common. */
10005 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10006 lo = hi = 0;
10007 else
10008 {
10009 /* If we are widening a signed type to another signed type, we
10010 want to obtain -2^^(iprec-1). If we are keeping the
10011 precision or narrowing to a signed type, we want to obtain
10012 -2^(oprec-1). */
10013 unsigned prec = oprec > iprec ? iprec : oprec;
10014
10015 if (prec <= HOST_BITS_PER_WIDE_INT)
10016 {
10017 hi = ~(unsigned HOST_WIDE_INT) 0;
10018 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10019 }
10020 else
10021 {
10022 hi = ((~(unsigned HOST_WIDE_INT) 0)
10023 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10024 lo = 0;
10025 }
10026 }
10027
10028 return build_int_cst_wide (outer, lo, hi);
10029 }
10030
10031 /* Return nonzero if two operands that are suitable for PHI nodes are
10032 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10033 SSA_NAME or invariant. Note that this is strictly an optimization.
10034 That is, callers of this function can directly call operand_equal_p
10035 and get the same result, only slower. */
10036
10037 int
10038 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10039 {
10040 if (arg0 == arg1)
10041 return 1;
10042 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10043 return 0;
10044 return operand_equal_p (arg0, arg1, 0);
10045 }
10046
10047 /* Returns number of zeros at the end of binary representation of X.
10048
10049 ??? Use ffs if available? */
10050
10051 tree
10052 num_ending_zeros (const_tree x)
10053 {
10054 unsigned HOST_WIDE_INT fr, nfr;
10055 unsigned num, abits;
10056 tree type = TREE_TYPE (x);
10057
10058 if (TREE_INT_CST_LOW (x) == 0)
10059 {
10060 num = HOST_BITS_PER_WIDE_INT;
10061 fr = TREE_INT_CST_HIGH (x);
10062 }
10063 else
10064 {
10065 num = 0;
10066 fr = TREE_INT_CST_LOW (x);
10067 }
10068
10069 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10070 {
10071 nfr = fr >> abits;
10072 if (nfr << abits == fr)
10073 {
10074 num += abits;
10075 fr = nfr;
10076 }
10077 }
10078
10079 if (num > TYPE_PRECISION (type))
10080 num = TYPE_PRECISION (type);
10081
10082 return build_int_cst_type (type, num);
10083 }
10084
10085
10086 #define WALK_SUBTREE(NODE) \
10087 do \
10088 { \
10089 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10090 if (result) \
10091 return result; \
10092 } \
10093 while (0)
10094
10095 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10096 be walked whenever a type is seen in the tree. Rest of operands and return
10097 value are as for walk_tree. */
10098
10099 static tree
10100 walk_type_fields (tree type, walk_tree_fn func, void *data,
10101 struct pointer_set_t *pset, walk_tree_lh lh)
10102 {
10103 tree result = NULL_TREE;
10104
10105 switch (TREE_CODE (type))
10106 {
10107 case POINTER_TYPE:
10108 case REFERENCE_TYPE:
10109 /* We have to worry about mutually recursive pointers. These can't
10110 be written in C. They can in Ada. It's pathological, but
10111 there's an ACATS test (c38102a) that checks it. Deal with this
10112 by checking if we're pointing to another pointer, that one
10113 points to another pointer, that one does too, and we have no htab.
10114 If so, get a hash table. We check three levels deep to avoid
10115 the cost of the hash table if we don't need one. */
10116 if (POINTER_TYPE_P (TREE_TYPE (type))
10117 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10118 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10119 && !pset)
10120 {
10121 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10122 func, data);
10123 if (result)
10124 return result;
10125
10126 break;
10127 }
10128
10129 /* ... fall through ... */
10130
10131 case COMPLEX_TYPE:
10132 WALK_SUBTREE (TREE_TYPE (type));
10133 break;
10134
10135 case METHOD_TYPE:
10136 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10137
10138 /* Fall through. */
10139
10140 case FUNCTION_TYPE:
10141 WALK_SUBTREE (TREE_TYPE (type));
10142 {
10143 tree arg;
10144
10145 /* We never want to walk into default arguments. */
10146 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10147 WALK_SUBTREE (TREE_VALUE (arg));
10148 }
10149 break;
10150
10151 case ARRAY_TYPE:
10152 /* Don't follow this nodes's type if a pointer for fear that
10153 we'll have infinite recursion. If we have a PSET, then we
10154 need not fear. */
10155 if (pset
10156 || (!POINTER_TYPE_P (TREE_TYPE (type))
10157 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10158 WALK_SUBTREE (TREE_TYPE (type));
10159 WALK_SUBTREE (TYPE_DOMAIN (type));
10160 break;
10161
10162 case OFFSET_TYPE:
10163 WALK_SUBTREE (TREE_TYPE (type));
10164 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10165 break;
10166
10167 default:
10168 break;
10169 }
10170
10171 return NULL_TREE;
10172 }
10173
10174 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10175 called with the DATA and the address of each sub-tree. If FUNC returns a
10176 non-NULL value, the traversal is stopped, and the value returned by FUNC
10177 is returned. If PSET is non-NULL it is used to record the nodes visited,
10178 and to avoid visiting a node more than once. */
10179
10180 tree
10181 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10182 struct pointer_set_t *pset, walk_tree_lh lh)
10183 {
10184 enum tree_code code;
10185 int walk_subtrees;
10186 tree result;
10187
10188 #define WALK_SUBTREE_TAIL(NODE) \
10189 do \
10190 { \
10191 tp = & (NODE); \
10192 goto tail_recurse; \
10193 } \
10194 while (0)
10195
10196 tail_recurse:
10197 /* Skip empty subtrees. */
10198 if (!*tp)
10199 return NULL_TREE;
10200
10201 /* Don't walk the same tree twice, if the user has requested
10202 that we avoid doing so. */
10203 if (pset && pointer_set_insert (pset, *tp))
10204 return NULL_TREE;
10205
10206 /* Call the function. */
10207 walk_subtrees = 1;
10208 result = (*func) (tp, &walk_subtrees, data);
10209
10210 /* If we found something, return it. */
10211 if (result)
10212 return result;
10213
10214 code = TREE_CODE (*tp);
10215
10216 /* Even if we didn't, FUNC may have decided that there was nothing
10217 interesting below this point in the tree. */
10218 if (!walk_subtrees)
10219 {
10220 /* But we still need to check our siblings. */
10221 if (code == TREE_LIST)
10222 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10223 else if (code == OMP_CLAUSE)
10224 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10225 else
10226 return NULL_TREE;
10227 }
10228
10229 if (lh)
10230 {
10231 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10232 if (result || !walk_subtrees)
10233 return result;
10234 }
10235
10236 switch (code)
10237 {
10238 case ERROR_MARK:
10239 case IDENTIFIER_NODE:
10240 case INTEGER_CST:
10241 case REAL_CST:
10242 case FIXED_CST:
10243 case VECTOR_CST:
10244 case STRING_CST:
10245 case BLOCK:
10246 case PLACEHOLDER_EXPR:
10247 case SSA_NAME:
10248 case FIELD_DECL:
10249 case RESULT_DECL:
10250 /* None of these have subtrees other than those already walked
10251 above. */
10252 break;
10253
10254 case TREE_LIST:
10255 WALK_SUBTREE (TREE_VALUE (*tp));
10256 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10257 break;
10258
10259 case TREE_VEC:
10260 {
10261 int len = TREE_VEC_LENGTH (*tp);
10262
10263 if (len == 0)
10264 break;
10265
10266 /* Walk all elements but the first. */
10267 while (--len)
10268 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10269
10270 /* Now walk the first one as a tail call. */
10271 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10272 }
10273
10274 case COMPLEX_CST:
10275 WALK_SUBTREE (TREE_REALPART (*tp));
10276 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10277
10278 case CONSTRUCTOR:
10279 {
10280 unsigned HOST_WIDE_INT idx;
10281 constructor_elt *ce;
10282
10283 for (idx = 0;
10284 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10285 idx++)
10286 WALK_SUBTREE (ce->value);
10287 }
10288 break;
10289
10290 case SAVE_EXPR:
10291 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10292
10293 case BIND_EXPR:
10294 {
10295 tree decl;
10296 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10297 {
10298 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10299 into declarations that are just mentioned, rather than
10300 declared; they don't really belong to this part of the tree.
10301 And, we can see cycles: the initializer for a declaration
10302 can refer to the declaration itself. */
10303 WALK_SUBTREE (DECL_INITIAL (decl));
10304 WALK_SUBTREE (DECL_SIZE (decl));
10305 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10306 }
10307 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10308 }
10309
10310 case STATEMENT_LIST:
10311 {
10312 tree_stmt_iterator i;
10313 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10314 WALK_SUBTREE (*tsi_stmt_ptr (i));
10315 }
10316 break;
10317
10318 case OMP_CLAUSE:
10319 switch (OMP_CLAUSE_CODE (*tp))
10320 {
10321 case OMP_CLAUSE_PRIVATE:
10322 case OMP_CLAUSE_SHARED:
10323 case OMP_CLAUSE_FIRSTPRIVATE:
10324 case OMP_CLAUSE_COPYIN:
10325 case OMP_CLAUSE_COPYPRIVATE:
10326 case OMP_CLAUSE_IF:
10327 case OMP_CLAUSE_NUM_THREADS:
10328 case OMP_CLAUSE_SCHEDULE:
10329 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10330 /* FALLTHRU */
10331
10332 case OMP_CLAUSE_NOWAIT:
10333 case OMP_CLAUSE_ORDERED:
10334 case OMP_CLAUSE_DEFAULT:
10335 case OMP_CLAUSE_UNTIED:
10336 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10337
10338 case OMP_CLAUSE_LASTPRIVATE:
10339 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10340 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10341 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10342
10343 case OMP_CLAUSE_COLLAPSE:
10344 {
10345 int i;
10346 for (i = 0; i < 3; i++)
10347 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10348 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10349 }
10350
10351 case OMP_CLAUSE_REDUCTION:
10352 {
10353 int i;
10354 for (i = 0; i < 4; i++)
10355 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10356 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10357 }
10358
10359 default:
10360 gcc_unreachable ();
10361 }
10362 break;
10363
10364 case TARGET_EXPR:
10365 {
10366 int i, len;
10367
10368 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10369 But, we only want to walk once. */
10370 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10371 for (i = 0; i < len; ++i)
10372 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10373 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10374 }
10375
10376 case DECL_EXPR:
10377 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10378 defining. We only want to walk into these fields of a type in this
10379 case and not in the general case of a mere reference to the type.
10380
10381 The criterion is as follows: if the field can be an expression, it
10382 must be walked only here. This should be in keeping with the fields
10383 that are directly gimplified in gimplify_type_sizes in order for the
10384 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10385 variable-sized types.
10386
10387 Note that DECLs get walked as part of processing the BIND_EXPR. */
10388 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10389 {
10390 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10391 if (TREE_CODE (*type_p) == ERROR_MARK)
10392 return NULL_TREE;
10393
10394 /* Call the function for the type. See if it returns anything or
10395 doesn't want us to continue. If we are to continue, walk both
10396 the normal fields and those for the declaration case. */
10397 result = (*func) (type_p, &walk_subtrees, data);
10398 if (result || !walk_subtrees)
10399 return result;
10400
10401 result = walk_type_fields (*type_p, func, data, pset, lh);
10402 if (result)
10403 return result;
10404
10405 /* If this is a record type, also walk the fields. */
10406 if (RECORD_OR_UNION_TYPE_P (*type_p))
10407 {
10408 tree field;
10409
10410 for (field = TYPE_FIELDS (*type_p); field;
10411 field = DECL_CHAIN (field))
10412 {
10413 /* We'd like to look at the type of the field, but we can
10414 easily get infinite recursion. So assume it's pointed
10415 to elsewhere in the tree. Also, ignore things that
10416 aren't fields. */
10417 if (TREE_CODE (field) != FIELD_DECL)
10418 continue;
10419
10420 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10421 WALK_SUBTREE (DECL_SIZE (field));
10422 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10423 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10424 WALK_SUBTREE (DECL_QUALIFIER (field));
10425 }
10426 }
10427
10428 /* Same for scalar types. */
10429 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10430 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10431 || TREE_CODE (*type_p) == INTEGER_TYPE
10432 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10433 || TREE_CODE (*type_p) == REAL_TYPE)
10434 {
10435 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10436 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10437 }
10438
10439 WALK_SUBTREE (TYPE_SIZE (*type_p));
10440 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10441 }
10442 /* FALLTHRU */
10443
10444 default:
10445 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10446 {
10447 int i, len;
10448
10449 /* Walk over all the sub-trees of this operand. */
10450 len = TREE_OPERAND_LENGTH (*tp);
10451
10452 /* Go through the subtrees. We need to do this in forward order so
10453 that the scope of a FOR_EXPR is handled properly. */
10454 if (len)
10455 {
10456 for (i = 0; i < len - 1; ++i)
10457 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10458 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10459 }
10460 }
10461 /* If this is a type, walk the needed fields in the type. */
10462 else if (TYPE_P (*tp))
10463 return walk_type_fields (*tp, func, data, pset, lh);
10464 break;
10465 }
10466
10467 /* We didn't find what we were looking for. */
10468 return NULL_TREE;
10469
10470 #undef WALK_SUBTREE_TAIL
10471 }
10472 #undef WALK_SUBTREE
10473
10474 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10475
10476 tree
10477 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10478 walk_tree_lh lh)
10479 {
10480 tree result;
10481 struct pointer_set_t *pset;
10482
10483 pset = pointer_set_create ();
10484 result = walk_tree_1 (tp, func, data, pset, lh);
10485 pointer_set_destroy (pset);
10486 return result;
10487 }
10488
10489
10490 tree *
10491 tree_block (tree t)
10492 {
10493 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10494
10495 if (IS_EXPR_CODE_CLASS (c))
10496 return &t->exp.block;
10497 gcc_unreachable ();
10498 return NULL;
10499 }
10500
10501 /* Create a nameless artificial label and put it in the current
10502 function context. The label has a location of LOC. Returns the
10503 newly created label. */
10504
10505 tree
10506 create_artificial_label (location_t loc)
10507 {
10508 tree lab = build_decl (loc,
10509 LABEL_DECL, NULL_TREE, void_type_node);
10510
10511 DECL_ARTIFICIAL (lab) = 1;
10512 DECL_IGNORED_P (lab) = 1;
10513 DECL_CONTEXT (lab) = current_function_decl;
10514 return lab;
10515 }
10516
10517 /* Given a tree, try to return a useful variable name that we can use
10518 to prefix a temporary that is being assigned the value of the tree.
10519 I.E. given <temp> = &A, return A. */
10520
10521 const char *
10522 get_name (tree t)
10523 {
10524 tree stripped_decl;
10525
10526 stripped_decl = t;
10527 STRIP_NOPS (stripped_decl);
10528 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10529 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10530 else
10531 {
10532 switch (TREE_CODE (stripped_decl))
10533 {
10534 case ADDR_EXPR:
10535 return get_name (TREE_OPERAND (stripped_decl, 0));
10536 default:
10537 return NULL;
10538 }
10539 }
10540 }
10541
10542 /* Return true if TYPE has a variable argument list. */
10543
10544 bool
10545 stdarg_p (const_tree fntype)
10546 {
10547 function_args_iterator args_iter;
10548 tree n = NULL_TREE, t;
10549
10550 if (!fntype)
10551 return false;
10552
10553 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10554 {
10555 n = t;
10556 }
10557
10558 return n != NULL_TREE && n != void_type_node;
10559 }
10560
10561 /* Return true if TYPE has a prototype. */
10562
10563 bool
10564 prototype_p (tree fntype)
10565 {
10566 tree t;
10567
10568 gcc_assert (fntype != NULL_TREE);
10569
10570 t = TYPE_ARG_TYPES (fntype);
10571 return (t != NULL_TREE);
10572 }
10573
10574 /* If BLOCK is inlined from an __attribute__((__artificial__))
10575 routine, return pointer to location from where it has been
10576 called. */
10577 location_t *
10578 block_nonartificial_location (tree block)
10579 {
10580 location_t *ret = NULL;
10581
10582 while (block && TREE_CODE (block) == BLOCK
10583 && BLOCK_ABSTRACT_ORIGIN (block))
10584 {
10585 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10586
10587 while (TREE_CODE (ao) == BLOCK
10588 && BLOCK_ABSTRACT_ORIGIN (ao)
10589 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10590 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10591
10592 if (TREE_CODE (ao) == FUNCTION_DECL)
10593 {
10594 /* If AO is an artificial inline, point RET to the
10595 call site locus at which it has been inlined and continue
10596 the loop, in case AO's caller is also an artificial
10597 inline. */
10598 if (DECL_DECLARED_INLINE_P (ao)
10599 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10600 ret = &BLOCK_SOURCE_LOCATION (block);
10601 else
10602 break;
10603 }
10604 else if (TREE_CODE (ao) != BLOCK)
10605 break;
10606
10607 block = BLOCK_SUPERCONTEXT (block);
10608 }
10609 return ret;
10610 }
10611
10612
10613 /* If EXP is inlined from an __attribute__((__artificial__))
10614 function, return the location of the original call expression. */
10615
10616 location_t
10617 tree_nonartificial_location (tree exp)
10618 {
10619 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10620
10621 if (loc)
10622 return *loc;
10623 else
10624 return EXPR_LOCATION (exp);
10625 }
10626
10627
10628 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10629 nodes. */
10630
10631 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10632
10633 static hashval_t
10634 cl_option_hash_hash (const void *x)
10635 {
10636 const_tree const t = (const_tree) x;
10637 const char *p;
10638 size_t i;
10639 size_t len = 0;
10640 hashval_t hash = 0;
10641
10642 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10643 {
10644 p = (const char *)TREE_OPTIMIZATION (t);
10645 len = sizeof (struct cl_optimization);
10646 }
10647
10648 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10649 {
10650 p = (const char *)TREE_TARGET_OPTION (t);
10651 len = sizeof (struct cl_target_option);
10652 }
10653
10654 else
10655 gcc_unreachable ();
10656
10657 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10658 something else. */
10659 for (i = 0; i < len; i++)
10660 if (p[i])
10661 hash = (hash << 4) ^ ((i << 2) | p[i]);
10662
10663 return hash;
10664 }
10665
10666 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10667 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10668 same. */
10669
10670 static int
10671 cl_option_hash_eq (const void *x, const void *y)
10672 {
10673 const_tree const xt = (const_tree) x;
10674 const_tree const yt = (const_tree) y;
10675 const char *xp;
10676 const char *yp;
10677 size_t len;
10678
10679 if (TREE_CODE (xt) != TREE_CODE (yt))
10680 return 0;
10681
10682 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10683 {
10684 xp = (const char *)TREE_OPTIMIZATION (xt);
10685 yp = (const char *)TREE_OPTIMIZATION (yt);
10686 len = sizeof (struct cl_optimization);
10687 }
10688
10689 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10690 {
10691 xp = (const char *)TREE_TARGET_OPTION (xt);
10692 yp = (const char *)TREE_TARGET_OPTION (yt);
10693 len = sizeof (struct cl_target_option);
10694 }
10695
10696 else
10697 gcc_unreachable ();
10698
10699 return (memcmp (xp, yp, len) == 0);
10700 }
10701
10702 /* Build an OPTIMIZATION_NODE based on the current options. */
10703
10704 tree
10705 build_optimization_node (void)
10706 {
10707 tree t;
10708 void **slot;
10709
10710 /* Use the cache of optimization nodes. */
10711
10712 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node));
10713
10714 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10715 t = (tree) *slot;
10716 if (!t)
10717 {
10718 /* Insert this one into the hash table. */
10719 t = cl_optimization_node;
10720 *slot = t;
10721
10722 /* Make a new node for next time round. */
10723 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10724 }
10725
10726 return t;
10727 }
10728
10729 /* Build a TARGET_OPTION_NODE based on the current options. */
10730
10731 tree
10732 build_target_option_node (void)
10733 {
10734 tree t;
10735 void **slot;
10736
10737 /* Use the cache of optimization nodes. */
10738
10739 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node));
10740
10741 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10742 t = (tree) *slot;
10743 if (!t)
10744 {
10745 /* Insert this one into the hash table. */
10746 t = cl_target_option_node;
10747 *slot = t;
10748
10749 /* Make a new node for next time round. */
10750 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10751 }
10752
10753 return t;
10754 }
10755
10756 /* Determine the "ultimate origin" of a block. The block may be an inlined
10757 instance of an inlined instance of a block which is local to an inline
10758 function, so we have to trace all of the way back through the origin chain
10759 to find out what sort of node actually served as the original seed for the
10760 given block. */
10761
10762 tree
10763 block_ultimate_origin (const_tree block)
10764 {
10765 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10766
10767 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10768 nodes in the function to point to themselves; ignore that if
10769 we're trying to output the abstract instance of this function. */
10770 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10771 return NULL_TREE;
10772
10773 if (immediate_origin == NULL_TREE)
10774 return NULL_TREE;
10775 else
10776 {
10777 tree ret_val;
10778 tree lookahead = immediate_origin;
10779
10780 do
10781 {
10782 ret_val = lookahead;
10783 lookahead = (TREE_CODE (ret_val) == BLOCK
10784 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10785 }
10786 while (lookahead != NULL && lookahead != ret_val);
10787
10788 /* The block's abstract origin chain may not be the *ultimate* origin of
10789 the block. It could lead to a DECL that has an abstract origin set.
10790 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10791 will give us if it has one). Note that DECL's abstract origins are
10792 supposed to be the most distant ancestor (or so decl_ultimate_origin
10793 claims), so we don't need to loop following the DECL origins. */
10794 if (DECL_P (ret_val))
10795 return DECL_ORIGIN (ret_val);
10796
10797 return ret_val;
10798 }
10799 }
10800
10801 /* Return true if T1 and T2 are equivalent lists. */
10802
10803 bool
10804 list_equal_p (const_tree t1, const_tree t2)
10805 {
10806 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10807 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10808 return false;
10809 return !t1 && !t2;
10810 }
10811
10812 /* Return true iff conversion in EXP generates no instruction. Mark
10813 it inline so that we fully inline into the stripping functions even
10814 though we have two uses of this function. */
10815
10816 static inline bool
10817 tree_nop_conversion (const_tree exp)
10818 {
10819 tree outer_type, inner_type;
10820
10821 if (!CONVERT_EXPR_P (exp)
10822 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10823 return false;
10824 if (TREE_OPERAND (exp, 0) == error_mark_node)
10825 return false;
10826
10827 outer_type = TREE_TYPE (exp);
10828 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10829
10830 if (!inner_type)
10831 return false;
10832
10833 /* Use precision rather then machine mode when we can, which gives
10834 the correct answer even for submode (bit-field) types. */
10835 if ((INTEGRAL_TYPE_P (outer_type)
10836 || POINTER_TYPE_P (outer_type)
10837 || TREE_CODE (outer_type) == OFFSET_TYPE)
10838 && (INTEGRAL_TYPE_P (inner_type)
10839 || POINTER_TYPE_P (inner_type)
10840 || TREE_CODE (inner_type) == OFFSET_TYPE))
10841 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10842
10843 /* Otherwise fall back on comparing machine modes (e.g. for
10844 aggregate types, floats). */
10845 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10846 }
10847
10848 /* Return true iff conversion in EXP generates no instruction. Don't
10849 consider conversions changing the signedness. */
10850
10851 static bool
10852 tree_sign_nop_conversion (const_tree exp)
10853 {
10854 tree outer_type, inner_type;
10855
10856 if (!tree_nop_conversion (exp))
10857 return false;
10858
10859 outer_type = TREE_TYPE (exp);
10860 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10861
10862 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10863 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10864 }
10865
10866 /* Strip conversions from EXP according to tree_nop_conversion and
10867 return the resulting expression. */
10868
10869 tree
10870 tree_strip_nop_conversions (tree exp)
10871 {
10872 while (tree_nop_conversion (exp))
10873 exp = TREE_OPERAND (exp, 0);
10874 return exp;
10875 }
10876
10877 /* Strip conversions from EXP according to tree_sign_nop_conversion
10878 and return the resulting expression. */
10879
10880 tree
10881 tree_strip_sign_nop_conversions (tree exp)
10882 {
10883 while (tree_sign_nop_conversion (exp))
10884 exp = TREE_OPERAND (exp, 0);
10885 return exp;
10886 }
10887
10888 static GTY(()) tree gcc_eh_personality_decl;
10889
10890 /* Return the GCC personality function decl. */
10891
10892 tree
10893 lhd_gcc_personality (void)
10894 {
10895 if (!gcc_eh_personality_decl)
10896 gcc_eh_personality_decl
10897 = build_personality_function (USING_SJLJ_EXCEPTIONS
10898 ? "__gcc_personality_sj0"
10899 : "__gcc_personality_v0");
10900
10901 return gcc_eh_personality_decl;
10902 }
10903
10904 /* Try to find a base info of BINFO that would have its field decl at offset
10905 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
10906 found, return, otherwise return NULL_TREE. */
10907
10908 tree
10909 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
10910 {
10911 tree type;
10912
10913 if (offset == 0)
10914 return binfo;
10915
10916 type = TREE_TYPE (binfo);
10917 while (offset > 0)
10918 {
10919 tree base_binfo, found_binfo;
10920 HOST_WIDE_INT pos, size;
10921 tree fld;
10922 int i;
10923
10924 if (TREE_CODE (type) != RECORD_TYPE)
10925 return NULL_TREE;
10926
10927 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
10928 {
10929 if (TREE_CODE (fld) != FIELD_DECL)
10930 continue;
10931
10932 pos = int_bit_position (fld);
10933 size = tree_low_cst (DECL_SIZE (fld), 1);
10934 if (pos <= offset && (pos + size) > offset)
10935 break;
10936 }
10937 if (!fld)
10938 return NULL_TREE;
10939
10940 found_binfo = NULL_TREE;
10941 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
10942 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
10943 {
10944 found_binfo = base_binfo;
10945 break;
10946 }
10947
10948 if (!found_binfo)
10949 return NULL_TREE;
10950
10951 type = TREE_TYPE (fld);
10952 binfo = found_binfo;
10953 offset -= pos;
10954 }
10955 if (type != expected_type)
10956 return NULL_TREE;
10957 return binfo;
10958 }
10959
10960 /* Returns true if X is a typedef decl. */
10961
10962 bool
10963 is_typedef_decl (tree x)
10964 {
10965 return (x && TREE_CODE (x) == TYPE_DECL
10966 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
10967 }
10968
10969 /* Returns true iff TYPE is a type variant created for a typedef. */
10970
10971 bool
10972 typedef_variant_p (tree type)
10973 {
10974 return is_typedef_decl (TYPE_NAME (type));
10975 }
10976
10977 #include "gt-tree.h"
This page took 0.516012 seconds and 5 git commands to generate.