]> gcc.gnu.org Git - gcc.git/blob - gcc/tree.c
* Clean up usages of TREE_INT_CST_LOW.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This file contains the low level primitives for operating on tree nodes,
24 including allocation, list operations, interning of identifiers,
25 construction of data type nodes and statement nodes,
26 and construction of type conversion nodes. It also contains
27 tables index by tree code that describe how to take apart
28 nodes of that code.
29
30 It is intended to be language-independent, but occasionally
31 calls language-dependent routines defined (for C) in typecheck.c.
32
33 The low-level allocation routines oballoc and permalloc
34 are used also for allocating many other kinds of objects
35 by all passes of the compiler. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "flags.h"
40 #include "tree.h"
41 #include "tm_p.h"
42 #include "function.h"
43 #include "obstack.h"
44 #include "toplev.h"
45 #include "ggc.h"
46
47 #define obstack_chunk_alloc xmalloc
48 #define obstack_chunk_free free
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
51
52 static void unsave_expr_now_r PARAMS ((tree));
53
54 /* Tree nodes of permanent duration are allocated in this obstack.
55 They are the identifier nodes, and everything outside of
56 the bodies and parameters of function definitions. */
57
58 struct obstack permanent_obstack;
59
60 /* The initial RTL, and all ..._TYPE nodes, in a function
61 are allocated in this obstack. Usually they are freed at the
62 end of the function, but if the function is inline they are saved.
63 For top-level functions, this is maybepermanent_obstack.
64 Separate obstacks are made for nested functions. */
65
66 struct obstack *function_maybepermanent_obstack;
67
68 /* This is the function_maybepermanent_obstack for top-level functions. */
69
70 struct obstack maybepermanent_obstack;
71
72 /* The contents of the current function definition are allocated
73 in this obstack, and all are freed at the end of the function.
74 For top-level functions, this is temporary_obstack.
75 Separate obstacks are made for nested functions. */
76
77 struct obstack *function_obstack;
78
79 /* This is used for reading initializers of global variables. */
80
81 struct obstack temporary_obstack;
82
83 /* The tree nodes of an expression are allocated
84 in this obstack, and all are freed at the end of the expression. */
85
86 struct obstack momentary_obstack;
87
88 /* The tree nodes of a declarator are allocated
89 in this obstack, and all are freed when the declarator
90 has been parsed. */
91
92 static struct obstack temp_decl_obstack;
93
94 /* This points at either permanent_obstack
95 or the current function_maybepermanent_obstack. */
96
97 struct obstack *saveable_obstack;
98
99 /* This is same as saveable_obstack during parse and expansion phase;
100 it points to the current function's obstack during optimization.
101 This is the obstack to be used for creating rtl objects. */
102
103 struct obstack *rtl_obstack;
104
105 /* This points at either permanent_obstack or the current function_obstack. */
106
107 struct obstack *current_obstack;
108
109 /* This points at either permanent_obstack or the current function_obstack
110 or momentary_obstack. */
111
112 struct obstack *expression_obstack;
113
114 /* Stack of obstack selections for push_obstacks and pop_obstacks. */
115
116 struct obstack_stack
117 {
118 struct obstack_stack *next;
119 struct obstack *current;
120 struct obstack *saveable;
121 struct obstack *expression;
122 struct obstack *rtl;
123 };
124
125 struct obstack_stack *obstack_stack;
126
127 /* Obstack for allocating struct obstack_stack entries. */
128
129 static struct obstack obstack_stack_obstack;
130
131 /* Addresses of first objects in some obstacks.
132 This is for freeing their entire contents. */
133 char *maybepermanent_firstobj;
134 char *temporary_firstobj;
135 char *momentary_firstobj;
136 char *temp_decl_firstobj;
137
138 /* This is used to preserve objects (mainly array initializers) that need to
139 live until the end of the current function, but no further. */
140 char *momentary_function_firstobj;
141
142 /* Nonzero means all ..._TYPE nodes should be allocated permanently. */
143
144 int all_types_permanent;
145
146 /* Stack of places to restore the momentary obstack back to. */
147
148 struct momentary_level
149 {
150 /* Pointer back to previous such level. */
151 struct momentary_level *prev;
152 /* First object allocated within this level. */
153 char *base;
154 /* Value of expression_obstack saved at entry to this level. */
155 struct obstack *obstack;
156 };
157
158 struct momentary_level *momentary_stack;
159
160 /* Table indexed by tree code giving a string containing a character
161 classifying the tree code. Possibilities are
162 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
163
164 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
165
166 char tree_code_type[MAX_TREE_CODES] = {
167 #include "tree.def"
168 };
169 #undef DEFTREECODE
170
171 /* Table indexed by tree code giving number of expression
172 operands beyond the fixed part of the node structure.
173 Not used for types or decls. */
174
175 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
176
177 int tree_code_length[MAX_TREE_CODES] = {
178 #include "tree.def"
179 };
180 #undef DEFTREECODE
181
182 /* Names of tree components.
183 Used for printing out the tree and error messages. */
184 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
185
186 const char *tree_code_name[MAX_TREE_CODES] = {
187 #include "tree.def"
188 };
189 #undef DEFTREECODE
190
191 /* Statistics-gathering stuff. */
192 typedef enum
193 {
194 d_kind,
195 t_kind,
196 b_kind,
197 s_kind,
198 r_kind,
199 e_kind,
200 c_kind,
201 id_kind,
202 op_id_kind,
203 perm_list_kind,
204 temp_list_kind,
205 vec_kind,
206 x_kind,
207 lang_decl,
208 lang_type,
209 all_kinds
210 } tree_node_kind;
211
212 int tree_node_counts[(int)all_kinds];
213 int tree_node_sizes[(int)all_kinds];
214 int id_string_size = 0;
215
216 static const char * const tree_node_kind_names[] = {
217 "decls",
218 "types",
219 "blocks",
220 "stmts",
221 "refs",
222 "exprs",
223 "constants",
224 "identifiers",
225 "op_identifiers",
226 "perm_tree_lists",
227 "temp_tree_lists",
228 "vecs",
229 "random kinds",
230 "lang_decl kinds",
231 "lang_type kinds"
232 };
233
234 /* Hash table for uniquizing IDENTIFIER_NODEs by name. */
235
236 #define MAX_HASH_TABLE 1009
237 static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
238
239 /* 0 while creating built-in identifiers. */
240 static int do_identifier_warnings;
241
242 /* Unique id for next decl created. */
243 static int next_decl_uid;
244 /* Unique id for next type created. */
245 static int next_type_uid = 1;
246
247 /* The language-specific function for alias analysis. If NULL, the
248 language does not do any special alias analysis. */
249 int (*lang_get_alias_set) PARAMS ((tree));
250
251 /* Here is how primitive or already-canonicalized types' hash
252 codes are made. */
253 #define TYPE_HASH(TYPE) ((unsigned long) (TYPE) & 0777777)
254
255 /* Each hash table slot is a bucket containing a chain
256 of these structures. */
257
258 struct type_hash
259 {
260 struct type_hash *next; /* Next structure in the bucket. */
261 unsigned int hashcode; /* Hash code of this type. */
262 tree type; /* The type recorded here. */
263 };
264
265 /* Now here is the hash table. When recording a type, it is added
266 to the slot whose index is the hash code mod the table size.
267 Note that the hash table is used for several kinds of types
268 (function types, array types and array index range types, for now).
269 While all these live in the same table, they are completely independent,
270 and the hash code is computed differently for each of these. */
271
272 #define TYPE_HASH_SIZE 59
273 struct type_hash *type_hash_table[TYPE_HASH_SIZE];
274
275 static void build_real_from_int_cst_1 PARAMS ((PTR));
276 static void set_type_quals PARAMS ((tree, int));
277 static void append_random_chars PARAMS ((char *));
278 static void mark_type_hash PARAMS ((void *));
279
280 /* If non-null, these are language-specific helper functions for
281 unsave_expr_now. If present, LANG_UNSAVE is called before its
282 argument (an UNSAVE_EXPR) is to be unsaved, and all other
283 processing in unsave_expr_now is aborted. LANG_UNSAVE_EXPR_NOW is
284 called from unsave_expr_1 for language-specific tree codes. */
285 void (*lang_unsave) PARAMS ((tree *));
286 void (*lang_unsave_expr_now) PARAMS ((tree));
287
288 /* The string used as a placeholder instead of a source file name for
289 built-in tree nodes. The variable, which is dynamically allocated,
290 should be used; the macro is only used to initialize it. */
291
292 static char *built_in_filename;
293 #define BUILT_IN_FILENAME ("<built-in>")
294 \f
295 tree global_trees[TI_MAX];
296 \f
297 /* Init the principal obstacks. */
298
299 void
300 init_obstacks ()
301 {
302 gcc_obstack_init (&obstack_stack_obstack);
303 gcc_obstack_init (&permanent_obstack);
304
305 gcc_obstack_init (&temporary_obstack);
306 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
307 gcc_obstack_init (&momentary_obstack);
308 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
309 momentary_function_firstobj = momentary_firstobj;
310 gcc_obstack_init (&maybepermanent_obstack);
311 maybepermanent_firstobj
312 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
313 gcc_obstack_init (&temp_decl_obstack);
314 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
315
316 function_obstack = &temporary_obstack;
317 function_maybepermanent_obstack = &maybepermanent_obstack;
318 current_obstack = &permanent_obstack;
319 expression_obstack = &permanent_obstack;
320 rtl_obstack = saveable_obstack = &permanent_obstack;
321
322 /* Init the hash table of identifiers. */
323 bzero ((char *) hash_table, sizeof hash_table);
324 ggc_add_tree_root (hash_table, sizeof hash_table / sizeof (tree));
325
326 /* Initialize the hash table of types. */
327 bzero ((char *) type_hash_table,
328 sizeof type_hash_table / sizeof type_hash_table[0]);
329 ggc_add_root (type_hash_table,
330 sizeof type_hash_table / sizeof type_hash_table [0],
331 sizeof type_hash_table[0], mark_type_hash);
332 ggc_add_tree_root (global_trees, TI_MAX);
333 }
334
335 void
336 gcc_obstack_init (obstack)
337 struct obstack *obstack;
338 {
339 /* Let particular systems override the size of a chunk. */
340 #ifndef OBSTACK_CHUNK_SIZE
341 #define OBSTACK_CHUNK_SIZE 0
342 #endif
343 /* Let them override the alloc and free routines too. */
344 #ifndef OBSTACK_CHUNK_ALLOC
345 #define OBSTACK_CHUNK_ALLOC xmalloc
346 #endif
347 #ifndef OBSTACK_CHUNK_FREE
348 #define OBSTACK_CHUNK_FREE free
349 #endif
350 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
351 (void *(*) PARAMS ((long))) OBSTACK_CHUNK_ALLOC,
352 (void (*) PARAMS ((void *))) OBSTACK_CHUNK_FREE);
353 }
354
355 /* Save all variables describing the current status into the structure
356 *P. This function is called whenever we start compiling one
357 function in the midst of compiling another. For example, when
358 compiling a nested function, or, in C++, a template instantiation
359 that is required by the function we are currently compiling.
360
361 CONTEXT is the decl_function_context for the function we're about to
362 compile; if it isn't current_function_decl, we have to play some games. */
363
364 void
365 save_tree_status (p)
366 struct function *p;
367 {
368 p->all_types_permanent = all_types_permanent;
369 p->momentary_stack = momentary_stack;
370 p->maybepermanent_firstobj = maybepermanent_firstobj;
371 p->temporary_firstobj = temporary_firstobj;
372 p->momentary_firstobj = momentary_firstobj;
373 p->momentary_function_firstobj = momentary_function_firstobj;
374 p->function_obstack = function_obstack;
375 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
376 p->current_obstack = current_obstack;
377 p->expression_obstack = expression_obstack;
378 p->saveable_obstack = saveable_obstack;
379 p->rtl_obstack = rtl_obstack;
380
381 function_maybepermanent_obstack
382 = (struct obstack *) xmalloc (sizeof (struct obstack));
383 gcc_obstack_init (function_maybepermanent_obstack);
384 maybepermanent_firstobj
385 = (char *) obstack_finish (function_maybepermanent_obstack);
386
387 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
388 gcc_obstack_init (function_obstack);
389
390 current_obstack = &permanent_obstack;
391 expression_obstack = &permanent_obstack;
392 rtl_obstack = saveable_obstack = &permanent_obstack;
393
394 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
395 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
396 momentary_function_firstobj = momentary_firstobj;
397 }
398
399 /* Restore all variables describing the current status from the structure *P.
400 This is used after a nested function. */
401
402 void
403 restore_tree_status (p)
404 struct function *p;
405 {
406 all_types_permanent = p->all_types_permanent;
407 momentary_stack = p->momentary_stack;
408
409 obstack_free (&momentary_obstack, momentary_function_firstobj);
410
411 /* Free saveable storage used by the function just compiled and not
412 saved. */
413 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
414 if (obstack_empty_p (function_maybepermanent_obstack))
415 {
416 obstack_free (function_maybepermanent_obstack, NULL);
417 free (function_maybepermanent_obstack);
418 }
419
420 obstack_free (&temporary_obstack, temporary_firstobj);
421 obstack_free (&momentary_obstack, momentary_function_firstobj);
422
423 obstack_free (function_obstack, NULL);
424 free (function_obstack);
425
426 temporary_firstobj = p->temporary_firstobj;
427 momentary_firstobj = p->momentary_firstobj;
428 momentary_function_firstobj = p->momentary_function_firstobj;
429 maybepermanent_firstobj = p->maybepermanent_firstobj;
430 function_obstack = p->function_obstack;
431 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
432 current_obstack = p->current_obstack;
433 expression_obstack = p->expression_obstack;
434 saveable_obstack = p->saveable_obstack;
435 rtl_obstack = p->rtl_obstack;
436 }
437 \f
438 /* Start allocating on the temporary (per function) obstack.
439 This is done in start_function before parsing the function body,
440 and before each initialization at top level, and to go back
441 to temporary allocation after doing permanent_allocation. */
442
443 void
444 temporary_allocation ()
445 {
446 /* Note that function_obstack at top level points to temporary_obstack.
447 But within a nested function context, it is a separate obstack. */
448 current_obstack = function_obstack;
449 expression_obstack = function_obstack;
450 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
451 momentary_stack = 0;
452 }
453
454 /* Start allocating on the permanent obstack but don't
455 free the temporary data. After calling this, call
456 `permanent_allocation' to fully resume permanent allocation status. */
457
458 void
459 end_temporary_allocation ()
460 {
461 current_obstack = &permanent_obstack;
462 expression_obstack = &permanent_obstack;
463 rtl_obstack = saveable_obstack = &permanent_obstack;
464 }
465
466 /* Resume allocating on the temporary obstack, undoing
467 effects of `end_temporary_allocation'. */
468
469 void
470 resume_temporary_allocation ()
471 {
472 current_obstack = function_obstack;
473 expression_obstack = function_obstack;
474 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
475 }
476
477 /* While doing temporary allocation, switch to allocating in such a
478 way as to save all nodes if the function is inlined. Call
479 resume_temporary_allocation to go back to ordinary temporary
480 allocation. */
481
482 void
483 saveable_allocation ()
484 {
485 /* Note that function_obstack at top level points to temporary_obstack.
486 But within a nested function context, it is a separate obstack. */
487 expression_obstack = current_obstack = saveable_obstack;
488 }
489
490 /* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
491 recording the previously current obstacks on a stack.
492 This does not free any storage in any obstack. */
493
494 void
495 push_obstacks (current, saveable)
496 struct obstack *current, *saveable;
497 {
498 struct obstack_stack *p;
499
500 p = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
501 (sizeof (struct obstack_stack)));
502
503 p->current = current_obstack;
504 p->saveable = saveable_obstack;
505 p->expression = expression_obstack;
506 p->rtl = rtl_obstack;
507 p->next = obstack_stack;
508 obstack_stack = p;
509
510 current_obstack = current;
511 expression_obstack = current;
512 rtl_obstack = saveable_obstack = saveable;
513 }
514
515 /* Save the current set of obstacks, but don't change them. */
516
517 void
518 push_obstacks_nochange ()
519 {
520 struct obstack_stack *p;
521
522 p = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
523 (sizeof (struct obstack_stack)));
524
525 p->current = current_obstack;
526 p->saveable = saveable_obstack;
527 p->expression = expression_obstack;
528 p->rtl = rtl_obstack;
529 p->next = obstack_stack;
530 obstack_stack = p;
531 }
532
533 /* Pop the obstack selection stack. */
534
535 void
536 pop_obstacks ()
537 {
538 struct obstack_stack *p;
539
540 p = obstack_stack;
541 obstack_stack = p->next;
542
543 current_obstack = p->current;
544 saveable_obstack = p->saveable;
545 expression_obstack = p->expression;
546 rtl_obstack = p->rtl;
547
548 obstack_free (&obstack_stack_obstack, p);
549 }
550
551 /* Nonzero if temporary allocation is currently in effect.
552 Zero if currently doing permanent allocation. */
553
554 int
555 allocation_temporary_p ()
556 {
557 return current_obstack != &permanent_obstack;
558 }
559
560 /* Go back to allocating on the permanent obstack
561 and free everything in the temporary obstack.
562
563 FUNCTION_END is true only if we have just finished compiling a function.
564 In that case, we also free preserved initial values on the momentary
565 obstack. */
566
567 void
568 permanent_allocation (function_end)
569 int function_end;
570 {
571 /* Free up previous temporary obstack data */
572 obstack_free (&temporary_obstack, temporary_firstobj);
573 if (function_end)
574 {
575 obstack_free (&momentary_obstack, momentary_function_firstobj);
576 momentary_firstobj = momentary_function_firstobj;
577 }
578 else
579 obstack_free (&momentary_obstack, momentary_firstobj);
580
581 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
582 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
583
584 current_obstack = &permanent_obstack;
585 expression_obstack = &permanent_obstack;
586 rtl_obstack = saveable_obstack = &permanent_obstack;
587 }
588
589 /* Save permanently everything on the maybepermanent_obstack. */
590
591 void
592 preserve_data ()
593 {
594 maybepermanent_firstobj
595 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
596 }
597
598 void
599 preserve_initializer ()
600 {
601 struct momentary_level *tem;
602 char *old_momentary;
603
604 temporary_firstobj
605 = (char *) obstack_alloc (&temporary_obstack, 0);
606 maybepermanent_firstobj
607 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
608
609 old_momentary = momentary_firstobj;
610 momentary_firstobj
611 = (char *) obstack_alloc (&momentary_obstack, 0);
612 if (momentary_firstobj != old_momentary)
613 for (tem = momentary_stack; tem; tem = tem->prev)
614 tem->base = momentary_firstobj;
615 }
616
617 /* Start allocating new rtl in current_obstack.
618 Use resume_temporary_allocation
619 to go back to allocating rtl in saveable_obstack. */
620
621 void
622 rtl_in_current_obstack ()
623 {
624 rtl_obstack = current_obstack;
625 }
626
627 /* Start allocating rtl from saveable_obstack. Intended to be used after
628 a call to push_obstacks_nochange. */
629
630 void
631 rtl_in_saveable_obstack ()
632 {
633 rtl_obstack = saveable_obstack;
634 }
635 \f
636 /* Allocate SIZE bytes in the current obstack
637 and return a pointer to them.
638 In practice the current obstack is always the temporary one. */
639
640 char *
641 oballoc (size)
642 int size;
643 {
644 return (char *) obstack_alloc (current_obstack, size);
645 }
646
647 /* Free the object PTR in the current obstack
648 as well as everything allocated since PTR.
649 In practice the current obstack is always the temporary one. */
650
651 void
652 obfree (ptr)
653 char *ptr;
654 {
655 obstack_free (current_obstack, ptr);
656 }
657
658 /* Allocate SIZE bytes in the permanent obstack
659 and return a pointer to them. */
660
661 char *
662 permalloc (size)
663 int size;
664 {
665 return (char *) obstack_alloc (&permanent_obstack, size);
666 }
667
668 /* Allocate NELEM items of SIZE bytes in the permanent obstack
669 and return a pointer to them. The storage is cleared before
670 returning the value. */
671
672 char *
673 perm_calloc (nelem, size)
674 int nelem;
675 long size;
676 {
677 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
678 bzero (rval, nelem * size);
679 return rval;
680 }
681
682 /* Allocate SIZE bytes in the saveable obstack
683 and return a pointer to them. */
684
685 char *
686 savealloc (size)
687 int size;
688 {
689 return (char *) obstack_alloc (saveable_obstack, size);
690 }
691
692 /* Allocate SIZE bytes in the expression obstack
693 and return a pointer to them. */
694
695 char *
696 expralloc (size)
697 int size;
698 {
699 return (char *) obstack_alloc (expression_obstack, size);
700 }
701 \f
702 /* Print out which obstack an object is in. */
703
704 void
705 print_obstack_name (object, file, prefix)
706 char *object;
707 FILE *file;
708 const char *prefix;
709 {
710 struct obstack *obstack = NULL;
711 const char *obstack_name = NULL;
712 struct function *p;
713
714 for (p = outer_function_chain; p; p = p->next)
715 {
716 if (_obstack_allocated_p (p->function_obstack, object))
717 {
718 obstack = p->function_obstack;
719 obstack_name = "containing function obstack";
720 }
721 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
722 {
723 obstack = p->function_maybepermanent_obstack;
724 obstack_name = "containing function maybepermanent obstack";
725 }
726 }
727
728 if (_obstack_allocated_p (&obstack_stack_obstack, object))
729 {
730 obstack = &obstack_stack_obstack;
731 obstack_name = "obstack_stack_obstack";
732 }
733 else if (_obstack_allocated_p (function_obstack, object))
734 {
735 obstack = function_obstack;
736 obstack_name = "function obstack";
737 }
738 else if (_obstack_allocated_p (&permanent_obstack, object))
739 {
740 obstack = &permanent_obstack;
741 obstack_name = "permanent_obstack";
742 }
743 else if (_obstack_allocated_p (&momentary_obstack, object))
744 {
745 obstack = &momentary_obstack;
746 obstack_name = "momentary_obstack";
747 }
748 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
749 {
750 obstack = function_maybepermanent_obstack;
751 obstack_name = "function maybepermanent obstack";
752 }
753 else if (_obstack_allocated_p (&temp_decl_obstack, object))
754 {
755 obstack = &temp_decl_obstack;
756 obstack_name = "temp_decl_obstack";
757 }
758
759 /* Check to see if the object is in the free area of the obstack. */
760 if (obstack != NULL)
761 {
762 if (object >= obstack->next_free
763 && object < obstack->chunk_limit)
764 fprintf (file, "%s in free portion of obstack %s",
765 prefix, obstack_name);
766 else
767 fprintf (file, "%s allocated from %s", prefix, obstack_name);
768 }
769 else
770 fprintf (file, "%s not allocated from any obstack", prefix);
771 }
772
773 void
774 debug_obstack (object)
775 char *object;
776 {
777 print_obstack_name (object, stderr, "object");
778 fprintf (stderr, ".\n");
779 }
780
781 /* Return 1 if OBJ is in the permanent obstack.
782 This is slow, and should be used only for debugging.
783 Use TREE_PERMANENT for other purposes. */
784
785 int
786 object_permanent_p (obj)
787 tree obj;
788 {
789 return _obstack_allocated_p (&permanent_obstack, obj);
790 }
791 \f
792 /* Start a level of momentary allocation.
793 In C, each compound statement has its own level
794 and that level is freed at the end of each statement.
795 All expression nodes are allocated in the momentary allocation level. */
796
797 void
798 push_momentary ()
799 {
800 struct momentary_level *tem
801 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
802 sizeof (struct momentary_level));
803 tem->prev = momentary_stack;
804 tem->base = (char *) obstack_base (&momentary_obstack);
805 tem->obstack = expression_obstack;
806 momentary_stack = tem;
807 expression_obstack = &momentary_obstack;
808 }
809
810 /* Set things up so the next clear_momentary will only clear memory
811 past our present position in momentary_obstack. */
812
813 void
814 preserve_momentary ()
815 {
816 momentary_stack->base = (char *) obstack_base (&momentary_obstack);
817 }
818
819 /* Free all the storage in the current momentary-allocation level.
820 In C, this happens at the end of each statement. */
821
822 void
823 clear_momentary ()
824 {
825 obstack_free (&momentary_obstack, momentary_stack->base);
826 }
827
828 /* Discard a level of momentary allocation.
829 In C, this happens at the end of each compound statement.
830 Restore the status of expression node allocation
831 that was in effect before this level was created. */
832
833 void
834 pop_momentary ()
835 {
836 struct momentary_level *tem = momentary_stack;
837 momentary_stack = tem->prev;
838 expression_obstack = tem->obstack;
839 /* We can't free TEM from the momentary_obstack, because there might
840 be objects above it which have been saved. We can free back to the
841 stack of the level we are popping off though. */
842 obstack_free (&momentary_obstack, tem->base);
843 }
844
845 /* Pop back to the previous level of momentary allocation,
846 but don't free any momentary data just yet. */
847
848 void
849 pop_momentary_nofree ()
850 {
851 struct momentary_level *tem = momentary_stack;
852 momentary_stack = tem->prev;
853 expression_obstack = tem->obstack;
854 }
855
856 /* Call when starting to parse a declaration:
857 make expressions in the declaration last the length of the function.
858 Returns an argument that should be passed to resume_momentary later. */
859
860 int
861 suspend_momentary ()
862 {
863 register int tem = expression_obstack == &momentary_obstack;
864 expression_obstack = saveable_obstack;
865 return tem;
866 }
867
868 /* Call when finished parsing a declaration:
869 restore the treatment of node-allocation that was
870 in effect before the suspension.
871 YES should be the value previously returned by suspend_momentary. */
872
873 void
874 resume_momentary (yes)
875 int yes;
876 {
877 if (yes)
878 expression_obstack = &momentary_obstack;
879 }
880 \f
881 /* Init the tables indexed by tree code.
882 Note that languages can add to these tables to define their own codes. */
883
884 void
885 init_tree_codes ()
886 {
887 built_in_filename
888 = ggc_alloc_string (BUILT_IN_FILENAME, sizeof (BUILT_IN_FILENAME));
889 ggc_add_string_root (&built_in_filename, 1);
890 }
891
892 /* Return a newly allocated node of code CODE.
893 Initialize the node's unique id and its TREE_PERMANENT flag.
894 Note that if garbage collection is in use, TREE_PERMANENT will
895 always be zero - we want to eliminate use of TREE_PERMANENT.
896 For decl and type nodes, some other fields are initialized.
897 The rest of the node is initialized to zero.
898
899 Achoo! I got a code in the node. */
900
901 tree
902 make_node (code)
903 enum tree_code code;
904 {
905 register tree t;
906 register int type = TREE_CODE_CLASS (code);
907 register int length = 0;
908 register struct obstack *obstack = current_obstack;
909 #ifdef GATHER_STATISTICS
910 register tree_node_kind kind;
911 #endif
912
913 switch (type)
914 {
915 case 'd': /* A decl node */
916 #ifdef GATHER_STATISTICS
917 kind = d_kind;
918 #endif
919 length = sizeof (struct tree_decl);
920 /* All decls in an inline function need to be saved. */
921 if (obstack != &permanent_obstack)
922 obstack = saveable_obstack;
923
924 /* PARM_DECLs go on the context of the parent. If this is a nested
925 function, then we must allocate the PARM_DECL on the parent's
926 obstack, so that they will live to the end of the parent's
927 closing brace. This is necessary in case we try to inline the
928 function into its parent.
929
930 PARM_DECLs of top-level functions do not have this problem. However,
931 we allocate them where we put the FUNCTION_DECL for languages such as
932 Ada that need to consult some flags in the PARM_DECLs of the function
933 when calling it.
934
935 See comment in restore_tree_status for why we can't put this
936 in function_obstack. */
937 if (code == PARM_DECL && obstack != &permanent_obstack)
938 {
939 tree context = 0;
940 if (current_function_decl)
941 context = decl_function_context (current_function_decl);
942
943 if (context)
944 obstack
945 = find_function_data (context)->function_maybepermanent_obstack;
946 }
947 break;
948
949 case 't': /* a type node */
950 #ifdef GATHER_STATISTICS
951 kind = t_kind;
952 #endif
953 length = sizeof (struct tree_type);
954 /* All data types are put where we can preserve them if nec. */
955 if (obstack != &permanent_obstack)
956 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
957 break;
958
959 case 'b': /* a lexical block */
960 #ifdef GATHER_STATISTICS
961 kind = b_kind;
962 #endif
963 length = sizeof (struct tree_block);
964 /* All BLOCK nodes are put where we can preserve them if nec. */
965 if (obstack != &permanent_obstack)
966 obstack = saveable_obstack;
967 break;
968
969 case 's': /* an expression with side effects */
970 #ifdef GATHER_STATISTICS
971 kind = s_kind;
972 goto usual_kind;
973 #endif
974 case 'r': /* a reference */
975 #ifdef GATHER_STATISTICS
976 kind = r_kind;
977 goto usual_kind;
978 #endif
979 case 'e': /* an expression */
980 case '<': /* a comparison expression */
981 case '1': /* a unary arithmetic expression */
982 case '2': /* a binary arithmetic expression */
983 #ifdef GATHER_STATISTICS
984 kind = e_kind;
985 usual_kind:
986 #endif
987 obstack = expression_obstack;
988 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
989 if (code == BIND_EXPR && obstack != &permanent_obstack)
990 obstack = saveable_obstack;
991 length = sizeof (struct tree_exp)
992 + (tree_code_length[(int) code] - 1) * sizeof (char *);
993 break;
994
995 case 'c': /* a constant */
996 #ifdef GATHER_STATISTICS
997 kind = c_kind;
998 #endif
999 obstack = expression_obstack;
1000
1001 /* We can't use tree_code_length for INTEGER_CST, since the number of
1002 words is machine-dependent due to varying length of HOST_WIDE_INT,
1003 which might be wider than a pointer (e.g., long long). Similarly
1004 for REAL_CST, since the number of words is machine-dependent due
1005 to varying size and alignment of `double'. */
1006
1007 if (code == INTEGER_CST)
1008 length = sizeof (struct tree_int_cst);
1009 else if (code == REAL_CST)
1010 length = sizeof (struct tree_real_cst);
1011 else
1012 length = sizeof (struct tree_common)
1013 + tree_code_length[(int) code] * sizeof (char *);
1014 break;
1015
1016 case 'x': /* something random, like an identifier. */
1017 #ifdef GATHER_STATISTICS
1018 if (code == IDENTIFIER_NODE)
1019 kind = id_kind;
1020 else if (code == OP_IDENTIFIER)
1021 kind = op_id_kind;
1022 else if (code == TREE_VEC)
1023 kind = vec_kind;
1024 else
1025 kind = x_kind;
1026 #endif
1027 length = sizeof (struct tree_common)
1028 + tree_code_length[(int) code] * sizeof (char *);
1029 /* Identifier nodes are always permanent since they are
1030 unique in a compiler run. */
1031 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
1032 break;
1033
1034 default:
1035 abort ();
1036 }
1037
1038 if (ggc_p)
1039 t = ggc_alloc_tree (length);
1040 else
1041 {
1042 t = (tree) obstack_alloc (obstack, length);
1043 memset ((PTR) t, 0, length);
1044 }
1045
1046 #ifdef GATHER_STATISTICS
1047 tree_node_counts[(int)kind]++;
1048 tree_node_sizes[(int)kind] += length;
1049 #endif
1050
1051 TREE_SET_CODE (t, code);
1052 TREE_SET_PERMANENT (t);
1053
1054 switch (type)
1055 {
1056 case 's':
1057 TREE_SIDE_EFFECTS (t) = 1;
1058 TREE_TYPE (t) = void_type_node;
1059 break;
1060
1061 case 'd':
1062 if (code != FUNCTION_DECL)
1063 DECL_ALIGN (t) = 1;
1064 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
1065 DECL_SOURCE_LINE (t) = lineno;
1066 DECL_SOURCE_FILE (t) =
1067 (input_filename) ? input_filename : built_in_filename;
1068 DECL_UID (t) = next_decl_uid++;
1069 /* Note that we have not yet computed the alias set for this
1070 declaration. */
1071 DECL_POINTER_ALIAS_SET (t) = -1;
1072 break;
1073
1074 case 't':
1075 TYPE_UID (t) = next_type_uid++;
1076 TYPE_ALIGN (t) = 1;
1077 TYPE_MAIN_VARIANT (t) = t;
1078 TYPE_OBSTACK (t) = obstack;
1079 TYPE_ATTRIBUTES (t) = NULL_TREE;
1080 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
1081 SET_DEFAULT_TYPE_ATTRIBUTES (t);
1082 #endif
1083 /* Note that we have not yet computed the alias set for this
1084 type. */
1085 TYPE_ALIAS_SET (t) = -1;
1086 break;
1087
1088 case 'c':
1089 TREE_CONSTANT (t) = 1;
1090 break;
1091
1092 case 'e':
1093 switch (code)
1094 {
1095 case INIT_EXPR:
1096 case MODIFY_EXPR:
1097 case VA_ARG_EXPR:
1098 case RTL_EXPR:
1099 case PREDECREMENT_EXPR:
1100 case PREINCREMENT_EXPR:
1101 case POSTDECREMENT_EXPR:
1102 case POSTINCREMENT_EXPR:
1103 /* All of these have side-effects, no matter what their
1104 operands are. */
1105 TREE_SIDE_EFFECTS (t) = 1;
1106 break;
1107
1108 default:
1109 break;
1110 }
1111 break;
1112 }
1113
1114 return t;
1115 }
1116
1117 /* A front-end can reset this to an appropriate function if types need
1118 special handling. */
1119
1120 tree (*make_lang_type_fn) PARAMS ((enum tree_code)) = make_node;
1121
1122 /* Return a new type (with the indicated CODE), doing whatever
1123 language-specific processing is required. */
1124
1125 tree
1126 make_lang_type (code)
1127 enum tree_code code;
1128 {
1129 return (*make_lang_type_fn) (code);
1130 }
1131 \f
1132 /* Return a new node with the same contents as NODE except that its
1133 TREE_CHAIN is zero and it has a fresh uid. Unlike make_node, this
1134 function always performs the allocation on the CURRENT_OBSTACK;
1135 it's up to the caller to pick the right obstack before calling this
1136 function. */
1137
1138 tree
1139 copy_node (node)
1140 tree node;
1141 {
1142 register tree t;
1143 register enum tree_code code = TREE_CODE (node);
1144 register int length = 0;
1145
1146 switch (TREE_CODE_CLASS (code))
1147 {
1148 case 'd': /* A decl node */
1149 length = sizeof (struct tree_decl);
1150 break;
1151
1152 case 't': /* a type node */
1153 length = sizeof (struct tree_type);
1154 break;
1155
1156 case 'b': /* a lexical block node */
1157 length = sizeof (struct tree_block);
1158 break;
1159
1160 case 'r': /* a reference */
1161 case 'e': /* an expression */
1162 case 's': /* an expression with side effects */
1163 case '<': /* a comparison expression */
1164 case '1': /* a unary arithmetic expression */
1165 case '2': /* a binary arithmetic expression */
1166 length = sizeof (struct tree_exp)
1167 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1168 break;
1169
1170 case 'c': /* a constant */
1171 /* We can't use tree_code_length for INTEGER_CST, since the number of
1172 words is machine-dependent due to varying length of HOST_WIDE_INT,
1173 which might be wider than a pointer (e.g., long long). Similarly
1174 for REAL_CST, since the number of words is machine-dependent due
1175 to varying size and alignment of `double'. */
1176 if (code == INTEGER_CST)
1177 length = sizeof (struct tree_int_cst);
1178 else if (code == REAL_CST)
1179 length = sizeof (struct tree_real_cst);
1180 else
1181 length = (sizeof (struct tree_common)
1182 + tree_code_length[(int) code] * sizeof (char *));
1183 break;
1184
1185 case 'x': /* something random, like an identifier. */
1186 length = sizeof (struct tree_common)
1187 + tree_code_length[(int) code] * sizeof (char *);
1188 if (code == TREE_VEC)
1189 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
1190 }
1191
1192 if (ggc_p)
1193 t = ggc_alloc_tree (length);
1194 else
1195 t = (tree) obstack_alloc (current_obstack, length);
1196 memcpy (t, node, length);
1197
1198 TREE_CHAIN (t) = 0;
1199 TREE_ASM_WRITTEN (t) = 0;
1200
1201 if (TREE_CODE_CLASS (code) == 'd')
1202 DECL_UID (t) = next_decl_uid++;
1203 else if (TREE_CODE_CLASS (code) == 't')
1204 {
1205 TYPE_UID (t) = next_type_uid++;
1206 TYPE_OBSTACK (t) = current_obstack;
1207
1208 /* The following is so that the debug code for
1209 the copy is different from the original type.
1210 The two statements usually duplicate each other
1211 (because they clear fields of the same union),
1212 but the optimizer should catch that. */
1213 TYPE_SYMTAB_POINTER (t) = 0;
1214 TYPE_SYMTAB_ADDRESS (t) = 0;
1215 }
1216
1217 TREE_SET_PERMANENT (t);
1218
1219 return t;
1220 }
1221
1222 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1223 For example, this can copy a list made of TREE_LIST nodes. */
1224
1225 tree
1226 copy_list (list)
1227 tree list;
1228 {
1229 tree head;
1230 register tree prev, next;
1231
1232 if (list == 0)
1233 return 0;
1234
1235 head = prev = copy_node (list);
1236 next = TREE_CHAIN (list);
1237 while (next)
1238 {
1239 TREE_CHAIN (prev) = copy_node (next);
1240 prev = TREE_CHAIN (prev);
1241 next = TREE_CHAIN (next);
1242 }
1243 return head;
1244 }
1245 \f
1246 #define HASHBITS 30
1247
1248 /* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1249 If an identifier with that name has previously been referred to,
1250 the same node is returned this time. */
1251
1252 tree
1253 get_identifier (text)
1254 register const char *text;
1255 {
1256 register int hi;
1257 register int i;
1258 register tree idp;
1259 register int len, hash_len;
1260
1261 /* Compute length of text in len. */
1262 len = strlen (text);
1263
1264 /* Decide how much of that length to hash on */
1265 hash_len = len;
1266 if (warn_id_clash && len > id_clash_len)
1267 hash_len = id_clash_len;
1268
1269 /* Compute hash code */
1270 hi = hash_len * 613 + (unsigned) text[0];
1271 for (i = 1; i < hash_len; i += 2)
1272 hi = ((hi * 613) + (unsigned) (text[i]));
1273
1274 hi &= (1 << HASHBITS) - 1;
1275 hi %= MAX_HASH_TABLE;
1276
1277 /* Search table for identifier */
1278 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1279 if (IDENTIFIER_LENGTH (idp) == len
1280 && IDENTIFIER_POINTER (idp)[0] == text[0]
1281 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1282 return idp; /* <-- return if found */
1283
1284 /* Not found; optionally warn about a similar identifier */
1285 if (warn_id_clash && do_identifier_warnings && len >= id_clash_len)
1286 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1287 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1288 {
1289 warning ("`%s' and `%s' identical in first %d characters",
1290 IDENTIFIER_POINTER (idp), text, id_clash_len);
1291 break;
1292 }
1293
1294 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1295 abort (); /* set_identifier_size hasn't been called. */
1296
1297 /* Not found, create one, add to chain */
1298 idp = make_node (IDENTIFIER_NODE);
1299 IDENTIFIER_LENGTH (idp) = len;
1300 #ifdef GATHER_STATISTICS
1301 id_string_size += len;
1302 #endif
1303
1304 if (ggc_p)
1305 IDENTIFIER_POINTER (idp) = ggc_alloc_string (text, len);
1306 else
1307 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1308
1309 TREE_CHAIN (idp) = hash_table[hi];
1310 hash_table[hi] = idp;
1311 return idp; /* <-- return if created */
1312 }
1313
1314 /* If an identifier with the name TEXT (a null-terminated string) has
1315 previously been referred to, return that node; otherwise return
1316 NULL_TREE. */
1317
1318 tree
1319 maybe_get_identifier (text)
1320 register const char *text;
1321 {
1322 register int hi;
1323 register int i;
1324 register tree idp;
1325 register int len, hash_len;
1326
1327 /* Compute length of text in len. */
1328 len = strlen (text);
1329
1330 /* Decide how much of that length to hash on */
1331 hash_len = len;
1332 if (warn_id_clash && len > id_clash_len)
1333 hash_len = id_clash_len;
1334
1335 /* Compute hash code */
1336 hi = hash_len * 613 + (unsigned) text[0];
1337 for (i = 1; i < hash_len; i += 2)
1338 hi = ((hi * 613) + (unsigned) (text[i]));
1339
1340 hi &= (1 << HASHBITS) - 1;
1341 hi %= MAX_HASH_TABLE;
1342
1343 /* Search table for identifier */
1344 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1345 if (IDENTIFIER_LENGTH (idp) == len
1346 && IDENTIFIER_POINTER (idp)[0] == text[0]
1347 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1348 return idp; /* <-- return if found */
1349
1350 return NULL_TREE;
1351 }
1352
1353 /* Enable warnings on similar identifiers (if requested).
1354 Done after the built-in identifiers are created. */
1355
1356 void
1357 start_identifier_warnings ()
1358 {
1359 do_identifier_warnings = 1;
1360 }
1361
1362 /* Record the size of an identifier node for the language in use.
1363 SIZE is the total size in bytes.
1364 This is called by the language-specific files. This must be
1365 called before allocating any identifiers. */
1366
1367 void
1368 set_identifier_size (size)
1369 int size;
1370 {
1371 tree_code_length[(int) IDENTIFIER_NODE]
1372 = (size - sizeof (struct tree_common)) / sizeof (tree);
1373 }
1374 \f
1375 /* Return a newly constructed INTEGER_CST node whose constant value
1376 is specified by the two ints LOW and HI.
1377 The TREE_TYPE is set to `int'.
1378
1379 This function should be used via the `build_int_2' macro. */
1380
1381 tree
1382 build_int_2_wide (low, hi)
1383 HOST_WIDE_INT low, hi;
1384 {
1385 register tree t = make_node (INTEGER_CST);
1386
1387 TREE_INT_CST_LOW (t) = low;
1388 TREE_INT_CST_HIGH (t) = hi;
1389 TREE_TYPE (t) = integer_type_node;
1390 return t;
1391 }
1392
1393 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1394
1395 tree
1396 build_real (type, d)
1397 tree type;
1398 REAL_VALUE_TYPE d;
1399 {
1400 tree v;
1401 int overflow = 0;
1402
1403 /* Check for valid float value for this type on this target machine;
1404 if not, can print error message and store a valid value in D. */
1405 #ifdef CHECK_FLOAT_VALUE
1406 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1407 #endif
1408
1409 v = make_node (REAL_CST);
1410 TREE_TYPE (v) = type;
1411 TREE_REAL_CST (v) = d;
1412 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1413 return v;
1414 }
1415
1416 /* Return a new REAL_CST node whose type is TYPE
1417 and whose value is the integer value of the INTEGER_CST node I. */
1418
1419 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1420
1421 REAL_VALUE_TYPE
1422 real_value_from_int_cst (type, i)
1423 tree type ATTRIBUTE_UNUSED, i;
1424 {
1425 REAL_VALUE_TYPE d;
1426
1427 #ifdef REAL_ARITHMETIC
1428 /* Clear all bits of the real value type so that we can later do
1429 bitwise comparisons to see if two values are the same. */
1430 bzero ((char *) &d, sizeof d);
1431
1432 if (! TREE_UNSIGNED (TREE_TYPE (i)))
1433 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1434 TYPE_MODE (type));
1435 else
1436 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
1437 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
1438 #else /* not REAL_ARITHMETIC */
1439 /* Some 386 compilers mishandle unsigned int to float conversions,
1440 so introduce a temporary variable E to avoid those bugs. */
1441 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
1442 {
1443 REAL_VALUE_TYPE e;
1444
1445 d = (double) (~ TREE_INT_CST_HIGH (i));
1446 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1447 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1448 d *= e;
1449 e = (double) (~ TREE_INT_CST_LOW (i));
1450 d += e;
1451 d = (- d - 1.0);
1452 }
1453 else
1454 {
1455 REAL_VALUE_TYPE e;
1456
1457 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
1458 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1459 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1460 d *= e;
1461 e = (double) TREE_INT_CST_LOW (i);
1462 d += e;
1463 }
1464 #endif /* not REAL_ARITHMETIC */
1465 return d;
1466 }
1467
1468 /* Args to pass to and from build_real_from_int_cst_1. */
1469
1470 struct brfic_args
1471 {
1472 tree type; /* Input: type to conver to. */
1473 tree i; /* Input: operand to convert */
1474 REAL_VALUE_TYPE d; /* Output: floating point value. */
1475 };
1476
1477 /* Convert an integer to a floating point value while protected by a floating
1478 point exception handler. */
1479
1480 static void
1481 build_real_from_int_cst_1 (data)
1482 PTR data;
1483 {
1484 struct brfic_args *args = (struct brfic_args *) data;
1485
1486 #ifdef REAL_ARITHMETIC
1487 args->d = real_value_from_int_cst (args->type, args->i);
1488 #else
1489 args->d
1490 = REAL_VALUE_TRUNCATE (TYPE_MODE (args->type),
1491 real_value_from_int_cst (args->type, args->i));
1492 #endif
1493 }
1494
1495 /* Given a tree representing an integer constant I, return a tree
1496 representing the same value as a floating-point constant of type TYPE.
1497 We cannot perform this operation if there is no way of doing arithmetic
1498 on floating-point values. */
1499
1500 tree
1501 build_real_from_int_cst (type, i)
1502 tree type;
1503 tree i;
1504 {
1505 tree v;
1506 int overflow = TREE_OVERFLOW (i);
1507 REAL_VALUE_TYPE d;
1508 struct brfic_args args;
1509
1510 v = make_node (REAL_CST);
1511 TREE_TYPE (v) = type;
1512
1513 /* Setup input for build_real_from_int_cst_1() */
1514 args.type = type;
1515 args.i = i;
1516
1517 if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
1518 /* Receive output from build_real_from_int_cst_1() */
1519 d = args.d;
1520 else
1521 {
1522 /* We got an exception from build_real_from_int_cst_1() */
1523 d = dconst0;
1524 overflow = 1;
1525 }
1526
1527 /* Check for valid float value for this type on this target machine. */
1528
1529 #ifdef CHECK_FLOAT_VALUE
1530 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1531 #endif
1532
1533 TREE_REAL_CST (v) = d;
1534 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1535 return v;
1536 }
1537
1538 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1539
1540 /* Return a newly constructed STRING_CST node whose value is
1541 the LEN characters at STR.
1542 The TREE_TYPE is not initialized. */
1543
1544 tree
1545 build_string (len, str)
1546 int len;
1547 const char *str;
1548 {
1549 /* Put the string in saveable_obstack since it will be placed in the RTL
1550 for an "asm" statement and will also be kept around a while if
1551 deferring constant output in varasm.c. */
1552
1553 register tree s = make_node (STRING_CST);
1554
1555 TREE_STRING_LENGTH (s) = len;
1556 if (ggc_p)
1557 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
1558 else
1559 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1560
1561 return s;
1562 }
1563
1564 /* Return a newly constructed COMPLEX_CST node whose value is
1565 specified by the real and imaginary parts REAL and IMAG.
1566 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1567 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1568
1569 tree
1570 build_complex (type, real, imag)
1571 tree type;
1572 tree real, imag;
1573 {
1574 register tree t = make_node (COMPLEX_CST);
1575
1576 TREE_REALPART (t) = real;
1577 TREE_IMAGPART (t) = imag;
1578 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1579 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1580 TREE_CONSTANT_OVERFLOW (t)
1581 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1582 return t;
1583 }
1584
1585 /* Build a newly constructed TREE_VEC node of length LEN. */
1586
1587 tree
1588 make_tree_vec (len)
1589 int len;
1590 {
1591 register tree t;
1592 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1593 register struct obstack *obstack = current_obstack;
1594
1595 #ifdef GATHER_STATISTICS
1596 tree_node_counts[(int)vec_kind]++;
1597 tree_node_sizes[(int)vec_kind] += length;
1598 #endif
1599
1600 if (ggc_p)
1601 t = ggc_alloc_tree (length);
1602 else
1603 {
1604 t = (tree) obstack_alloc (obstack, length);
1605 bzero ((PTR) t, length);
1606 }
1607
1608 TREE_SET_CODE (t, TREE_VEC);
1609 TREE_VEC_LENGTH (t) = len;
1610 TREE_SET_PERMANENT (t);
1611
1612 return t;
1613 }
1614 \f
1615 /* Return 1 if EXPR is the integer constant zero or a complex constant
1616 of zero. */
1617
1618 int
1619 integer_zerop (expr)
1620 tree expr;
1621 {
1622 STRIP_NOPS (expr);
1623
1624 return ((TREE_CODE (expr) == INTEGER_CST
1625 && ! TREE_CONSTANT_OVERFLOW (expr)
1626 && TREE_INT_CST_LOW (expr) == 0
1627 && TREE_INT_CST_HIGH (expr) == 0)
1628 || (TREE_CODE (expr) == COMPLEX_CST
1629 && integer_zerop (TREE_REALPART (expr))
1630 && integer_zerop (TREE_IMAGPART (expr))));
1631 }
1632
1633 /* Return 1 if EXPR is the integer constant one or the corresponding
1634 complex constant. */
1635
1636 int
1637 integer_onep (expr)
1638 tree expr;
1639 {
1640 STRIP_NOPS (expr);
1641
1642 return ((TREE_CODE (expr) == INTEGER_CST
1643 && ! TREE_CONSTANT_OVERFLOW (expr)
1644 && TREE_INT_CST_LOW (expr) == 1
1645 && TREE_INT_CST_HIGH (expr) == 0)
1646 || (TREE_CODE (expr) == COMPLEX_CST
1647 && integer_onep (TREE_REALPART (expr))
1648 && integer_zerop (TREE_IMAGPART (expr))));
1649 }
1650
1651 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1652 it contains. Likewise for the corresponding complex constant. */
1653
1654 int
1655 integer_all_onesp (expr)
1656 tree expr;
1657 {
1658 register int prec;
1659 register int uns;
1660
1661 STRIP_NOPS (expr);
1662
1663 if (TREE_CODE (expr) == COMPLEX_CST
1664 && integer_all_onesp (TREE_REALPART (expr))
1665 && integer_zerop (TREE_IMAGPART (expr)))
1666 return 1;
1667
1668 else if (TREE_CODE (expr) != INTEGER_CST
1669 || TREE_CONSTANT_OVERFLOW (expr))
1670 return 0;
1671
1672 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1673 if (!uns)
1674 return (TREE_INT_CST_LOW (expr) == ~ (unsigned HOST_WIDE_INT) 0
1675 && TREE_INT_CST_HIGH (expr) == -1);
1676
1677 /* Note that using TYPE_PRECISION here is wrong. We care about the
1678 actual bits, not the (arbitrary) range of the type. */
1679 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1680 if (prec >= HOST_BITS_PER_WIDE_INT)
1681 {
1682 HOST_WIDE_INT high_value;
1683 int shift_amount;
1684
1685 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1686
1687 if (shift_amount > HOST_BITS_PER_WIDE_INT)
1688 /* Can not handle precisions greater than twice the host int size. */
1689 abort ();
1690 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
1691 /* Shifting by the host word size is undefined according to the ANSI
1692 standard, so we must handle this as a special case. */
1693 high_value = -1;
1694 else
1695 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1696
1697 return (TREE_INT_CST_LOW (expr) == ~ (unsigned HOST_WIDE_INT) 0
1698 && TREE_INT_CST_HIGH (expr) == high_value);
1699 }
1700 else
1701 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1702 }
1703
1704 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1705 one bit on). */
1706
1707 int
1708 integer_pow2p (expr)
1709 tree expr;
1710 {
1711 int prec;
1712 HOST_WIDE_INT high, low;
1713
1714 STRIP_NOPS (expr);
1715
1716 if (TREE_CODE (expr) == COMPLEX_CST
1717 && integer_pow2p (TREE_REALPART (expr))
1718 && integer_zerop (TREE_IMAGPART (expr)))
1719 return 1;
1720
1721 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1722 return 0;
1723
1724 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1725 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1726 high = TREE_INT_CST_HIGH (expr);
1727 low = TREE_INT_CST_LOW (expr);
1728
1729 /* First clear all bits that are beyond the type's precision in case
1730 we've been sign extended. */
1731
1732 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1733 ;
1734 else if (prec > HOST_BITS_PER_WIDE_INT)
1735 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1736 else
1737 {
1738 high = 0;
1739 if (prec < HOST_BITS_PER_WIDE_INT)
1740 low &= ~((HOST_WIDE_INT) (-1) << prec);
1741 }
1742
1743 if (high == 0 && low == 0)
1744 return 0;
1745
1746 return ((high == 0 && (low & (low - 1)) == 0)
1747 || (low == 0 && (high & (high - 1)) == 0));
1748 }
1749
1750 /* Return the power of two represented by a tree node known to be a
1751 power of two. */
1752
1753 int
1754 tree_log2 (expr)
1755 tree expr;
1756 {
1757 int prec;
1758 HOST_WIDE_INT high, low;
1759
1760 STRIP_NOPS (expr);
1761
1762 if (TREE_CODE (expr) == COMPLEX_CST)
1763 return tree_log2 (TREE_REALPART (expr));
1764
1765 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1766 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1767
1768 high = TREE_INT_CST_HIGH (expr);
1769 low = TREE_INT_CST_LOW (expr);
1770
1771 /* First clear all bits that are beyond the type's precision in case
1772 we've been sign extended. */
1773
1774 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1775 ;
1776 else if (prec > HOST_BITS_PER_WIDE_INT)
1777 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1778 else
1779 {
1780 high = 0;
1781 if (prec < HOST_BITS_PER_WIDE_INT)
1782 low &= ~((HOST_WIDE_INT) (-1) << prec);
1783 }
1784
1785 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1786 : exact_log2 (low));
1787 }
1788
1789 /* Similar, but return the largest integer Y such that 2 ** Y is less
1790 than or equal to EXPR. */
1791
1792 int
1793 tree_floor_log2 (expr)
1794 tree expr;
1795 {
1796 int prec;
1797 HOST_WIDE_INT high, low;
1798
1799 STRIP_NOPS (expr);
1800
1801 if (TREE_CODE (expr) == COMPLEX_CST)
1802 return tree_log2 (TREE_REALPART (expr));
1803
1804 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1805 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1806
1807 high = TREE_INT_CST_HIGH (expr);
1808 low = TREE_INT_CST_LOW (expr);
1809
1810 /* First clear all bits that are beyond the type's precision in case
1811 we've been sign extended. Ignore if type's precision hasn't been set
1812 since what we are doing is setting it. */
1813
1814 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1815 ;
1816 else if (prec > HOST_BITS_PER_WIDE_INT)
1817 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1818 else
1819 {
1820 high = 0;
1821 if (prec < HOST_BITS_PER_WIDE_INT)
1822 low &= ~((HOST_WIDE_INT) (-1) << prec);
1823 }
1824
1825 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1826 : floor_log2 (low));
1827 }
1828
1829 /* Return 1 if EXPR is the real constant zero. */
1830
1831 int
1832 real_zerop (expr)
1833 tree expr;
1834 {
1835 STRIP_NOPS (expr);
1836
1837 return ((TREE_CODE (expr) == REAL_CST
1838 && ! TREE_CONSTANT_OVERFLOW (expr)
1839 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1840 || (TREE_CODE (expr) == COMPLEX_CST
1841 && real_zerop (TREE_REALPART (expr))
1842 && real_zerop (TREE_IMAGPART (expr))));
1843 }
1844
1845 /* Return 1 if EXPR is the real constant one in real or complex form. */
1846
1847 int
1848 real_onep (expr)
1849 tree expr;
1850 {
1851 STRIP_NOPS (expr);
1852
1853 return ((TREE_CODE (expr) == REAL_CST
1854 && ! TREE_CONSTANT_OVERFLOW (expr)
1855 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1856 || (TREE_CODE (expr) == COMPLEX_CST
1857 && real_onep (TREE_REALPART (expr))
1858 && real_zerop (TREE_IMAGPART (expr))));
1859 }
1860
1861 /* Return 1 if EXPR is the real constant two. */
1862
1863 int
1864 real_twop (expr)
1865 tree expr;
1866 {
1867 STRIP_NOPS (expr);
1868
1869 return ((TREE_CODE (expr) == REAL_CST
1870 && ! TREE_CONSTANT_OVERFLOW (expr)
1871 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1872 || (TREE_CODE (expr) == COMPLEX_CST
1873 && real_twop (TREE_REALPART (expr))
1874 && real_zerop (TREE_IMAGPART (expr))));
1875 }
1876
1877 /* Nonzero if EXP is a constant or a cast of a constant. */
1878
1879 int
1880 really_constant_p (exp)
1881 tree exp;
1882 {
1883 /* This is not quite the same as STRIP_NOPS. It does more. */
1884 while (TREE_CODE (exp) == NOP_EXPR
1885 || TREE_CODE (exp) == CONVERT_EXPR
1886 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1887 exp = TREE_OPERAND (exp, 0);
1888 return TREE_CONSTANT (exp);
1889 }
1890 \f
1891 /* Return first list element whose TREE_VALUE is ELEM.
1892 Return 0 if ELEM is not in LIST. */
1893
1894 tree
1895 value_member (elem, list)
1896 tree elem, list;
1897 {
1898 while (list)
1899 {
1900 if (elem == TREE_VALUE (list))
1901 return list;
1902 list = TREE_CHAIN (list);
1903 }
1904 return NULL_TREE;
1905 }
1906
1907 /* Return first list element whose TREE_PURPOSE is ELEM.
1908 Return 0 if ELEM is not in LIST. */
1909
1910 tree
1911 purpose_member (elem, list)
1912 tree elem, list;
1913 {
1914 while (list)
1915 {
1916 if (elem == TREE_PURPOSE (list))
1917 return list;
1918 list = TREE_CHAIN (list);
1919 }
1920 return NULL_TREE;
1921 }
1922
1923 /* Return first list element whose BINFO_TYPE is ELEM.
1924 Return 0 if ELEM is not in LIST. */
1925
1926 tree
1927 binfo_member (elem, list)
1928 tree elem, list;
1929 {
1930 while (list)
1931 {
1932 if (elem == BINFO_TYPE (list))
1933 return list;
1934 list = TREE_CHAIN (list);
1935 }
1936 return NULL_TREE;
1937 }
1938
1939 /* Return nonzero if ELEM is part of the chain CHAIN. */
1940
1941 int
1942 chain_member (elem, chain)
1943 tree elem, chain;
1944 {
1945 while (chain)
1946 {
1947 if (elem == chain)
1948 return 1;
1949 chain = TREE_CHAIN (chain);
1950 }
1951
1952 return 0;
1953 }
1954
1955 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1956 chain CHAIN. This and the next function are currently unused, but
1957 are retained for completeness. */
1958
1959 int
1960 chain_member_value (elem, chain)
1961 tree elem, chain;
1962 {
1963 while (chain)
1964 {
1965 if (elem == TREE_VALUE (chain))
1966 return 1;
1967 chain = TREE_CHAIN (chain);
1968 }
1969
1970 return 0;
1971 }
1972
1973 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1974 for any piece of chain CHAIN. */
1975
1976 int
1977 chain_member_purpose (elem, chain)
1978 tree elem, chain;
1979 {
1980 while (chain)
1981 {
1982 if (elem == TREE_PURPOSE (chain))
1983 return 1;
1984 chain = TREE_CHAIN (chain);
1985 }
1986
1987 return 0;
1988 }
1989
1990 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1991 We expect a null pointer to mark the end of the chain.
1992 This is the Lisp primitive `length'. */
1993
1994 int
1995 list_length (t)
1996 tree t;
1997 {
1998 register tree tail;
1999 register int len = 0;
2000
2001 for (tail = t; tail; tail = TREE_CHAIN (tail))
2002 len++;
2003
2004 return len;
2005 }
2006
2007 /* Returns the number of FIELD_DECLs in TYPE. */
2008
2009 int
2010 fields_length (type)
2011 tree type;
2012 {
2013 tree t = TYPE_FIELDS (type);
2014 int count = 0;
2015
2016 for (; t; t = TREE_CHAIN (t))
2017 if (TREE_CODE (t) == FIELD_DECL)
2018 ++count;
2019
2020 return count;
2021 }
2022
2023 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2024 by modifying the last node in chain 1 to point to chain 2.
2025 This is the Lisp primitive `nconc'. */
2026
2027 tree
2028 chainon (op1, op2)
2029 tree op1, op2;
2030 {
2031
2032 if (op1)
2033 {
2034 register tree t1;
2035 #ifdef ENABLE_TREE_CHECKING
2036 register tree t2;
2037 #endif
2038
2039 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2040 ;
2041 TREE_CHAIN (t1) = op2;
2042 #ifdef ENABLE_TREE_CHECKING
2043 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2044 if (t2 == t1)
2045 abort (); /* Circularity created. */
2046 #endif
2047 return op1;
2048 }
2049 else return op2;
2050 }
2051
2052 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2053
2054 tree
2055 tree_last (chain)
2056 register tree chain;
2057 {
2058 register tree next;
2059 if (chain)
2060 while ((next = TREE_CHAIN (chain)))
2061 chain = next;
2062 return chain;
2063 }
2064
2065 /* Reverse the order of elements in the chain T,
2066 and return the new head of the chain (old last element). */
2067
2068 tree
2069 nreverse (t)
2070 tree t;
2071 {
2072 register tree prev = 0, decl, next;
2073 for (decl = t; decl; decl = next)
2074 {
2075 next = TREE_CHAIN (decl);
2076 TREE_CHAIN (decl) = prev;
2077 prev = decl;
2078 }
2079 return prev;
2080 }
2081
2082 /* Given a chain CHAIN of tree nodes,
2083 construct and return a list of those nodes. */
2084
2085 tree
2086 listify (chain)
2087 tree chain;
2088 {
2089 tree result = NULL_TREE;
2090 tree in_tail = chain;
2091 tree out_tail = NULL_TREE;
2092
2093 while (in_tail)
2094 {
2095 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
2096 if (out_tail)
2097 TREE_CHAIN (out_tail) = next;
2098 else
2099 result = next;
2100 out_tail = next;
2101 in_tail = TREE_CHAIN (in_tail);
2102 }
2103
2104 return result;
2105 }
2106 \f
2107 /* Return a newly created TREE_LIST node whose
2108 purpose and value fields are PARM and VALUE. */
2109
2110 tree
2111 build_tree_list (parm, value)
2112 tree parm, value;
2113 {
2114 register tree t = make_node (TREE_LIST);
2115 TREE_PURPOSE (t) = parm;
2116 TREE_VALUE (t) = value;
2117 return t;
2118 }
2119
2120 /* Similar, but build on the temp_decl_obstack. */
2121
2122 tree
2123 build_decl_list (parm, value)
2124 tree parm, value;
2125 {
2126 register tree node;
2127 register struct obstack *ambient_obstack = current_obstack;
2128
2129 current_obstack = &temp_decl_obstack;
2130 node = build_tree_list (parm, value);
2131 current_obstack = ambient_obstack;
2132 return node;
2133 }
2134
2135 /* Similar, but build on the expression_obstack. */
2136
2137 tree
2138 build_expr_list (parm, value)
2139 tree parm, value;
2140 {
2141 register tree node;
2142 register struct obstack *ambient_obstack = current_obstack;
2143
2144 current_obstack = expression_obstack;
2145 node = build_tree_list (parm, value);
2146 current_obstack = ambient_obstack;
2147 return node;
2148 }
2149
2150 /* Return a newly created TREE_LIST node whose
2151 purpose and value fields are PARM and VALUE
2152 and whose TREE_CHAIN is CHAIN. */
2153
2154 tree
2155 tree_cons (purpose, value, chain)
2156 tree purpose, value, chain;
2157 {
2158 register tree node;
2159
2160 if (ggc_p)
2161 node = ggc_alloc_tree (sizeof (struct tree_list));
2162 else
2163 {
2164 node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
2165 memset (node, 0, sizeof (struct tree_common));
2166 }
2167
2168 #ifdef GATHER_STATISTICS
2169 tree_node_counts[(int)x_kind]++;
2170 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
2171 #endif
2172
2173 TREE_SET_CODE (node, TREE_LIST);
2174 TREE_SET_PERMANENT (node);
2175
2176 TREE_CHAIN (node) = chain;
2177 TREE_PURPOSE (node) = purpose;
2178 TREE_VALUE (node) = value;
2179 return node;
2180 }
2181
2182 /* Similar, but build on the temp_decl_obstack. */
2183
2184 tree
2185 decl_tree_cons (purpose, value, chain)
2186 tree purpose, value, chain;
2187 {
2188 register tree node;
2189 register struct obstack *ambient_obstack = current_obstack;
2190
2191 current_obstack = &temp_decl_obstack;
2192 node = tree_cons (purpose, value, chain);
2193 current_obstack = ambient_obstack;
2194 return node;
2195 }
2196
2197 /* Similar, but build on the expression_obstack. */
2198
2199 tree
2200 expr_tree_cons (purpose, value, chain)
2201 tree purpose, value, chain;
2202 {
2203 register tree node;
2204 register struct obstack *ambient_obstack = current_obstack;
2205
2206 current_obstack = expression_obstack;
2207 node = tree_cons (purpose, value, chain);
2208 current_obstack = ambient_obstack;
2209 return node;
2210 }
2211
2212 /* Same as `tree_cons' but make a permanent object. */
2213
2214 tree
2215 perm_tree_cons (purpose, value, chain)
2216 tree purpose, value, chain;
2217 {
2218 register tree node;
2219 register struct obstack *ambient_obstack = current_obstack;
2220
2221 current_obstack = &permanent_obstack;
2222 node = tree_cons (purpose, value, chain);
2223 current_obstack = ambient_obstack;
2224 return node;
2225 }
2226
2227 /* Same as `tree_cons', but make this node temporary, regardless. */
2228
2229 tree
2230 temp_tree_cons (purpose, value, chain)
2231 tree purpose, value, chain;
2232 {
2233 register tree node;
2234 register struct obstack *ambient_obstack = current_obstack;
2235
2236 current_obstack = &temporary_obstack;
2237 node = tree_cons (purpose, value, chain);
2238 current_obstack = ambient_obstack;
2239 return node;
2240 }
2241
2242 /* Same as `tree_cons', but save this node if the function's RTL is saved. */
2243
2244 tree
2245 saveable_tree_cons (purpose, value, chain)
2246 tree purpose, value, chain;
2247 {
2248 register tree node;
2249 register struct obstack *ambient_obstack = current_obstack;
2250
2251 current_obstack = saveable_obstack;
2252 node = tree_cons (purpose, value, chain);
2253 current_obstack = ambient_obstack;
2254 return node;
2255 }
2256 \f
2257 /* Return the size nominally occupied by an object of type TYPE
2258 when it resides in memory. The value is measured in units of bytes,
2259 and its data type is that normally used for type sizes
2260 (which is the first type created by make_signed_type or
2261 make_unsigned_type). */
2262
2263 tree
2264 size_in_bytes (type)
2265 tree type;
2266 {
2267 tree t;
2268
2269 if (type == error_mark_node)
2270 return integer_zero_node;
2271
2272 type = TYPE_MAIN_VARIANT (type);
2273 t = TYPE_SIZE_UNIT (type);
2274
2275 if (t == 0)
2276 {
2277 incomplete_type_error (NULL_TREE, type);
2278 return integer_zero_node;
2279 }
2280
2281 if (TREE_CODE (t) == INTEGER_CST)
2282 force_fit_type (t, 0);
2283
2284 return t;
2285 }
2286
2287 /* Return the size of TYPE (in bytes) as a wide integer
2288 or return -1 if the size can vary or is larger than an integer. */
2289
2290 HOST_WIDE_INT
2291 int_size_in_bytes (type)
2292 tree type;
2293 {
2294 tree t;
2295
2296 if (type == error_mark_node)
2297 return 0;
2298
2299 type = TYPE_MAIN_VARIANT (type);
2300 t = TYPE_SIZE_UNIT (type);
2301 if (t == 0
2302 || TREE_CODE (t) != INTEGER_CST
2303 || TREE_OVERFLOW (t)
2304 || TREE_INT_CST_HIGH (t) != 0
2305 /* If the result would appear negative, it's too big to represent. */
2306 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2307 return -1;
2308
2309 return TREE_INT_CST_LOW (t);
2310 }
2311 \f
2312 /* Return the bit position of FIELD, in bits from the start of the record.
2313 This is a tree of type bitsizetype. */
2314
2315 tree
2316 bit_position (field)
2317 tree field;
2318 {
2319 return DECL_FIELD_BITPOS (field);
2320 }
2321
2322 /* Likewise, but return as an integer. Abort if it cannot be represented
2323 in that way (since it could be a signed value, we don't have the option
2324 of returning -1 like int_size_in_byte can. */
2325
2326 HOST_WIDE_INT
2327 int_bit_position (field)
2328 tree field;
2329 {
2330 return tree_low_cst (bit_position (field), 0);
2331 }
2332 \f
2333 /* Return the strictest alignment, in bits, that T is known to have. */
2334
2335 unsigned int
2336 expr_align (t)
2337 tree t;
2338 {
2339 unsigned int align0, align1;
2340
2341 switch (TREE_CODE (t))
2342 {
2343 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
2344 /* If we have conversions, we know that the alignment of the
2345 object must meet each of the alignments of the types. */
2346 align0 = expr_align (TREE_OPERAND (t, 0));
2347 align1 = TYPE_ALIGN (TREE_TYPE (t));
2348 return MAX (align0, align1);
2349
2350 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2351 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2352 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
2353 /* These don't change the alignment of an object. */
2354 return expr_align (TREE_OPERAND (t, 0));
2355
2356 case COND_EXPR:
2357 /* The best we can do is say that the alignment is the least aligned
2358 of the two arms. */
2359 align0 = expr_align (TREE_OPERAND (t, 1));
2360 align1 = expr_align (TREE_OPERAND (t, 2));
2361 return MIN (align0, align1);
2362
2363 case LABEL_DECL: case CONST_DECL:
2364 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2365 if (DECL_ALIGN (t) != 0)
2366 return DECL_ALIGN (t);
2367 break;
2368
2369 case FUNCTION_DECL:
2370 return FUNCTION_BOUNDARY;
2371
2372 default:
2373 break;
2374 }
2375
2376 /* Otherwise take the alignment from that of the type. */
2377 return TYPE_ALIGN (TREE_TYPE (t));
2378 }
2379 \f
2380 /* Return, as a tree node, the number of elements for TYPE (which is an
2381 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2382
2383 tree
2384 array_type_nelts (type)
2385 tree type;
2386 {
2387 tree index_type, min, max;
2388
2389 /* If they did it with unspecified bounds, then we should have already
2390 given an error about it before we got here. */
2391 if (! TYPE_DOMAIN (type))
2392 return error_mark_node;
2393
2394 index_type = TYPE_DOMAIN (type);
2395 min = TYPE_MIN_VALUE (index_type);
2396 max = TYPE_MAX_VALUE (index_type);
2397
2398 return (integer_zerop (min)
2399 ? max
2400 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
2401 }
2402 \f
2403 /* Return nonzero if arg is static -- a reference to an object in
2404 static storage. This is not the same as the C meaning of `static'. */
2405
2406 int
2407 staticp (arg)
2408 tree arg;
2409 {
2410 switch (TREE_CODE (arg))
2411 {
2412 case FUNCTION_DECL:
2413 /* Nested functions aren't static, since taking their address
2414 involves a trampoline. */
2415 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
2416 && ! DECL_NON_ADDR_CONST_P (arg);
2417
2418 case VAR_DECL:
2419 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2420 && ! DECL_NON_ADDR_CONST_P (arg);
2421
2422 case CONSTRUCTOR:
2423 return TREE_STATIC (arg);
2424
2425 case STRING_CST:
2426 return 1;
2427
2428 /* If we are referencing a bitfield, we can't evaluate an
2429 ADDR_EXPR at compile time and so it isn't a constant. */
2430 case COMPONENT_REF:
2431 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
2432 && staticp (TREE_OPERAND (arg, 0)));
2433
2434 case BIT_FIELD_REF:
2435 return 0;
2436
2437 #if 0
2438 /* This case is technically correct, but results in setting
2439 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
2440 compile time. */
2441 case INDIRECT_REF:
2442 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
2443 #endif
2444
2445 case ARRAY_REF:
2446 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2447 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2448 return staticp (TREE_OPERAND (arg, 0));
2449
2450 default:
2451 return 0;
2452 }
2453 }
2454 \f
2455 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2456 Do this to any expression which may be used in more than one place,
2457 but must be evaluated only once.
2458
2459 Normally, expand_expr would reevaluate the expression each time.
2460 Calling save_expr produces something that is evaluated and recorded
2461 the first time expand_expr is called on it. Subsequent calls to
2462 expand_expr just reuse the recorded value.
2463
2464 The call to expand_expr that generates code that actually computes
2465 the value is the first call *at compile time*. Subsequent calls
2466 *at compile time* generate code to use the saved value.
2467 This produces correct result provided that *at run time* control
2468 always flows through the insns made by the first expand_expr
2469 before reaching the other places where the save_expr was evaluated.
2470 You, the caller of save_expr, must make sure this is so.
2471
2472 Constants, and certain read-only nodes, are returned with no
2473 SAVE_EXPR because that is safe. Expressions containing placeholders
2474 are not touched; see tree.def for an explanation of what these
2475 are used for. */
2476
2477 tree
2478 save_expr (expr)
2479 tree expr;
2480 {
2481 register tree t = fold (expr);
2482
2483 /* We don't care about whether this can be used as an lvalue in this
2484 context. */
2485 while (TREE_CODE (t) == NON_LVALUE_EXPR)
2486 t = TREE_OPERAND (t, 0);
2487
2488 /* If the tree evaluates to a constant, then we don't want to hide that
2489 fact (i.e. this allows further folding, and direct checks for constants).
2490 However, a read-only object that has side effects cannot be bypassed.
2491 Since it is no problem to reevaluate literals, we just return the
2492 literal node. */
2493
2494 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
2495 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
2496 return t;
2497
2498 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2499 it means that the size or offset of some field of an object depends on
2500 the value within another field.
2501
2502 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2503 and some variable since it would then need to be both evaluated once and
2504 evaluated more than once. Front-ends must assure this case cannot
2505 happen by surrounding any such subexpressions in their own SAVE_EXPR
2506 and forcing evaluation at the proper time. */
2507 if (contains_placeholder_p (t))
2508 return t;
2509
2510 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
2511
2512 /* This expression might be placed ahead of a jump to ensure that the
2513 value was computed on both sides of the jump. So make sure it isn't
2514 eliminated as dead. */
2515 TREE_SIDE_EFFECTS (t) = 1;
2516 return t;
2517 }
2518
2519 /* Arrange for an expression to be expanded multiple independent
2520 times. This is useful for cleanup actions, as the backend can
2521 expand them multiple times in different places. */
2522
2523 tree
2524 unsave_expr (expr)
2525 tree expr;
2526 {
2527 tree t;
2528
2529 /* If this is already protected, no sense in protecting it again. */
2530 if (TREE_CODE (expr) == UNSAVE_EXPR)
2531 return expr;
2532
2533 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
2534 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
2535 return t;
2536 }
2537
2538 /* Returns the index of the first non-tree operand for CODE, or the number
2539 of operands if all are trees. */
2540
2541 int
2542 first_rtl_op (code)
2543 enum tree_code code;
2544 {
2545 switch (code)
2546 {
2547 case SAVE_EXPR:
2548 return 2;
2549 case GOTO_SUBROUTINE_EXPR:
2550 case RTL_EXPR:
2551 return 0;
2552 case CALL_EXPR:
2553 return 2;
2554 case WITH_CLEANUP_EXPR:
2555 /* Should be defined to be 2. */
2556 return 1;
2557 case METHOD_CALL_EXPR:
2558 return 3;
2559 default:
2560 return tree_code_length [(int) code];
2561 }
2562 }
2563
2564 /* Perform any modifications to EXPR required when it is unsaved. Does
2565 not recurse into EXPR's subtrees. */
2566
2567 void
2568 unsave_expr_1 (expr)
2569 tree expr;
2570 {
2571 switch (TREE_CODE (expr))
2572 {
2573 case SAVE_EXPR:
2574 if (! SAVE_EXPR_PERSISTENT_P (expr))
2575 SAVE_EXPR_RTL (expr) = 0;
2576 break;
2577
2578 case TARGET_EXPR:
2579 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
2580 TREE_OPERAND (expr, 3) = NULL_TREE;
2581 break;
2582
2583 case RTL_EXPR:
2584 /* I don't yet know how to emit a sequence multiple times. */
2585 if (RTL_EXPR_SEQUENCE (expr) != 0)
2586 abort ();
2587 break;
2588
2589 case CALL_EXPR:
2590 CALL_EXPR_RTL (expr) = 0;
2591 break;
2592
2593 default:
2594 if (lang_unsave_expr_now != 0)
2595 (*lang_unsave_expr_now) (expr);
2596 break;
2597 }
2598 }
2599
2600 /* Helper function for unsave_expr_now. */
2601
2602 static void
2603 unsave_expr_now_r (expr)
2604 tree expr;
2605 {
2606 enum tree_code code;
2607
2608 /* There's nothing to do for NULL_TREE. */
2609 if (expr == 0)
2610 return;
2611
2612 unsave_expr_1 (expr);
2613
2614 code = TREE_CODE (expr);
2615 if (code == CALL_EXPR
2616 && TREE_OPERAND (expr, 1)
2617 && TREE_CODE (TREE_OPERAND (expr, 1)) == TREE_LIST)
2618 {
2619 tree exp = TREE_OPERAND (expr, 1);
2620 while (exp)
2621 {
2622 unsave_expr_now_r (TREE_VALUE (exp));
2623 exp = TREE_CHAIN (exp);
2624 }
2625 }
2626
2627 switch (TREE_CODE_CLASS (code))
2628 {
2629 case 'c': /* a constant */
2630 case 't': /* a type node */
2631 case 'x': /* something random, like an identifier or an ERROR_MARK. */
2632 case 'd': /* A decl node */
2633 case 'b': /* A block node */
2634 break;
2635
2636 case 'e': /* an expression */
2637 case 'r': /* a reference */
2638 case 's': /* an expression with side effects */
2639 case '<': /* a comparison expression */
2640 case '2': /* a binary arithmetic expression */
2641 case '1': /* a unary arithmetic expression */
2642 {
2643 int i;
2644
2645 for (i = first_rtl_op (code) - 1; i >= 0; i--)
2646 unsave_expr_now_r (TREE_OPERAND (expr, i));
2647 }
2648 break;
2649
2650 default:
2651 abort ();
2652 }
2653 }
2654
2655 /* Modify a tree in place so that all the evaluate only once things
2656 are cleared out. Return the EXPR given. */
2657
2658 tree
2659 unsave_expr_now (expr)
2660 tree expr;
2661 {
2662 if (lang_unsave!= 0)
2663 (*lang_unsave) (&expr);
2664 else
2665 unsave_expr_now_r (expr);
2666
2667 return expr;
2668 }
2669 \f
2670 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2671 or offset that depends on a field within a record. */
2672
2673 int
2674 contains_placeholder_p (exp)
2675 tree exp;
2676 {
2677 register enum tree_code code = TREE_CODE (exp);
2678 int result;
2679
2680 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
2681 in it since it is supplying a value for it. */
2682 if (code == WITH_RECORD_EXPR)
2683 return 0;
2684 else if (code == PLACEHOLDER_EXPR)
2685 return 1;
2686
2687 switch (TREE_CODE_CLASS (code))
2688 {
2689 case 'r':
2690 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2691 position computations since they will be converted into a
2692 WITH_RECORD_EXPR involving the reference, which will assume
2693 here will be valid. */
2694 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2695
2696 case 'x':
2697 if (code == TREE_LIST)
2698 return (contains_placeholder_p (TREE_VALUE (exp))
2699 || (TREE_CHAIN (exp) != 0
2700 && contains_placeholder_p (TREE_CHAIN (exp))));
2701 break;
2702
2703 case '1':
2704 case '2': case '<':
2705 case 'e':
2706 switch (code)
2707 {
2708 case COMPOUND_EXPR:
2709 /* Ignoring the first operand isn't quite right, but works best. */
2710 return contains_placeholder_p (TREE_OPERAND (exp, 1));
2711
2712 case RTL_EXPR:
2713 case CONSTRUCTOR:
2714 return 0;
2715
2716 case COND_EXPR:
2717 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2718 || contains_placeholder_p (TREE_OPERAND (exp, 1))
2719 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
2720
2721 case SAVE_EXPR:
2722 /* If we already know this doesn't have a placeholder, don't
2723 check again. */
2724 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
2725 return 0;
2726
2727 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
2728 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
2729 if (result)
2730 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
2731
2732 return result;
2733
2734 case CALL_EXPR:
2735 return (TREE_OPERAND (exp, 1) != 0
2736 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
2737
2738 default:
2739 break;
2740 }
2741
2742 switch (tree_code_length[(int) code])
2743 {
2744 case 1:
2745 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2746 case 2:
2747 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2748 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
2749 default:
2750 return 0;
2751 }
2752
2753 default:
2754 return 0;
2755 }
2756 return 0;
2757 }
2758
2759 /* Return 1 if EXP contains any expressions that produce cleanups for an
2760 outer scope to deal with. Used by fold. */
2761
2762 int
2763 has_cleanups (exp)
2764 tree exp;
2765 {
2766 int i, nops, cmp;
2767
2768 if (! TREE_SIDE_EFFECTS (exp))
2769 return 0;
2770
2771 switch (TREE_CODE (exp))
2772 {
2773 case TARGET_EXPR:
2774 case GOTO_SUBROUTINE_EXPR:
2775 case WITH_CLEANUP_EXPR:
2776 return 1;
2777
2778 case CLEANUP_POINT_EXPR:
2779 return 0;
2780
2781 case CALL_EXPR:
2782 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
2783 {
2784 cmp = has_cleanups (TREE_VALUE (exp));
2785 if (cmp)
2786 return cmp;
2787 }
2788 return 0;
2789
2790 default:
2791 break;
2792 }
2793
2794 /* This general rule works for most tree codes. All exceptions should be
2795 handled above. If this is a language-specific tree code, we can't
2796 trust what might be in the operand, so say we don't know
2797 the situation. */
2798 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
2799 return -1;
2800
2801 nops = first_rtl_op (TREE_CODE (exp));
2802 for (i = 0; i < nops; i++)
2803 if (TREE_OPERAND (exp, i) != 0)
2804 {
2805 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
2806 if (type == 'e' || type == '<' || type == '1' || type == '2'
2807 || type == 'r' || type == 's')
2808 {
2809 cmp = has_cleanups (TREE_OPERAND (exp, i));
2810 if (cmp)
2811 return cmp;
2812 }
2813 }
2814
2815 return 0;
2816 }
2817 \f
2818 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2819 return a tree with all occurrences of references to F in a
2820 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2821 contains only arithmetic expressions or a CALL_EXPR with a
2822 PLACEHOLDER_EXPR occurring only in its arglist. */
2823
2824 tree
2825 substitute_in_expr (exp, f, r)
2826 tree exp;
2827 tree f;
2828 tree r;
2829 {
2830 enum tree_code code = TREE_CODE (exp);
2831 tree op0, op1, op2;
2832 tree new;
2833 tree inner;
2834
2835 switch (TREE_CODE_CLASS (code))
2836 {
2837 case 'c':
2838 case 'd':
2839 return exp;
2840
2841 case 'x':
2842 if (code == PLACEHOLDER_EXPR)
2843 return exp;
2844 else if (code == TREE_LIST)
2845 {
2846 op0 = (TREE_CHAIN (exp) == 0
2847 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2848 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2849 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2850 return exp;
2851
2852 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2853 }
2854
2855 abort ();
2856
2857 case '1':
2858 case '2':
2859 case '<':
2860 case 'e':
2861 switch (tree_code_length[(int) code])
2862 {
2863 case 1:
2864 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2865 if (op0 == TREE_OPERAND (exp, 0))
2866 return exp;
2867
2868 new = fold (build1 (code, TREE_TYPE (exp), op0));
2869 break;
2870
2871 case 2:
2872 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2873 could, but we don't support it. */
2874 if (code == RTL_EXPR)
2875 return exp;
2876 else if (code == CONSTRUCTOR)
2877 abort ();
2878
2879 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2880 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2881 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2882 return exp;
2883
2884 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2885 break;
2886
2887 case 3:
2888 /* It cannot be that anything inside a SAVE_EXPR contains a
2889 PLACEHOLDER_EXPR. */
2890 if (code == SAVE_EXPR)
2891 return exp;
2892
2893 else if (code == CALL_EXPR)
2894 {
2895 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2896 if (op1 == TREE_OPERAND (exp, 1))
2897 return exp;
2898
2899 return build (code, TREE_TYPE (exp),
2900 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2901 }
2902
2903 else if (code != COND_EXPR)
2904 abort ();
2905
2906 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2907 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2908 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2909 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2910 && op2 == TREE_OPERAND (exp, 2))
2911 return exp;
2912
2913 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2914 break;
2915
2916 default:
2917 abort ();
2918 }
2919
2920 break;
2921
2922 case 'r':
2923 switch (code)
2924 {
2925 case COMPONENT_REF:
2926 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2927 and it is the right field, replace it with R. */
2928 for (inner = TREE_OPERAND (exp, 0);
2929 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2930 inner = TREE_OPERAND (inner, 0))
2931 ;
2932 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2933 && TREE_OPERAND (exp, 1) == f)
2934 return r;
2935
2936 /* If this expression hasn't been completed let, leave it
2937 alone. */
2938 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2939 && TREE_TYPE (inner) == 0)
2940 return exp;
2941
2942 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2943 if (op0 == TREE_OPERAND (exp, 0))
2944 return exp;
2945
2946 new = fold (build (code, TREE_TYPE (exp), op0,
2947 TREE_OPERAND (exp, 1)));
2948 break;
2949
2950 case BIT_FIELD_REF:
2951 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2952 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2953 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2954 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2955 && op2 == TREE_OPERAND (exp, 2))
2956 return exp;
2957
2958 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2959 break;
2960
2961 case INDIRECT_REF:
2962 case BUFFER_REF:
2963 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2964 if (op0 == TREE_OPERAND (exp, 0))
2965 return exp;
2966
2967 new = fold (build1 (code, TREE_TYPE (exp), op0));
2968 break;
2969
2970 default:
2971 abort ();
2972 }
2973 break;
2974
2975 default:
2976 abort ();
2977 }
2978
2979 TREE_READONLY (new) = TREE_READONLY (exp);
2980 return new;
2981 }
2982 \f
2983 /* Stabilize a reference so that we can use it any number of times
2984 without causing its operands to be evaluated more than once.
2985 Returns the stabilized reference. This works by means of save_expr,
2986 so see the caveats in the comments about save_expr.
2987
2988 Also allows conversion expressions whose operands are references.
2989 Any other kind of expression is returned unchanged. */
2990
2991 tree
2992 stabilize_reference (ref)
2993 tree ref;
2994 {
2995 register tree result;
2996 register enum tree_code code = TREE_CODE (ref);
2997
2998 switch (code)
2999 {
3000 case VAR_DECL:
3001 case PARM_DECL:
3002 case RESULT_DECL:
3003 /* No action is needed in this case. */
3004 return ref;
3005
3006 case NOP_EXPR:
3007 case CONVERT_EXPR:
3008 case FLOAT_EXPR:
3009 case FIX_TRUNC_EXPR:
3010 case FIX_FLOOR_EXPR:
3011 case FIX_ROUND_EXPR:
3012 case FIX_CEIL_EXPR:
3013 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3014 break;
3015
3016 case INDIRECT_REF:
3017 result = build_nt (INDIRECT_REF,
3018 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3019 break;
3020
3021 case COMPONENT_REF:
3022 result = build_nt (COMPONENT_REF,
3023 stabilize_reference (TREE_OPERAND (ref, 0)),
3024 TREE_OPERAND (ref, 1));
3025 break;
3026
3027 case BIT_FIELD_REF:
3028 result = build_nt (BIT_FIELD_REF,
3029 stabilize_reference (TREE_OPERAND (ref, 0)),
3030 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3031 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3032 break;
3033
3034 case ARRAY_REF:
3035 result = build_nt (ARRAY_REF,
3036 stabilize_reference (TREE_OPERAND (ref, 0)),
3037 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
3038 break;
3039
3040 case COMPOUND_EXPR:
3041 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3042 it wouldn't be ignored. This matters when dealing with
3043 volatiles. */
3044 return stabilize_reference_1 (ref);
3045
3046 case RTL_EXPR:
3047 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
3048 save_expr (build1 (ADDR_EXPR,
3049 build_pointer_type (TREE_TYPE (ref)),
3050 ref)));
3051 break;
3052
3053
3054 /* If arg isn't a kind of lvalue we recognize, make no change.
3055 Caller should recognize the error for an invalid lvalue. */
3056 default:
3057 return ref;
3058
3059 case ERROR_MARK:
3060 return error_mark_node;
3061 }
3062
3063 TREE_TYPE (result) = TREE_TYPE (ref);
3064 TREE_READONLY (result) = TREE_READONLY (ref);
3065 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3066 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3067
3068 return result;
3069 }
3070
3071 /* Subroutine of stabilize_reference; this is called for subtrees of
3072 references. Any expression with side-effects must be put in a SAVE_EXPR
3073 to ensure that it is only evaluated once.
3074
3075 We don't put SAVE_EXPR nodes around everything, because assigning very
3076 simple expressions to temporaries causes us to miss good opportunities
3077 for optimizations. Among other things, the opportunity to fold in the
3078 addition of a constant into an addressing mode often gets lost, e.g.
3079 "y[i+1] += x;". In general, we take the approach that we should not make
3080 an assignment unless we are forced into it - i.e., that any non-side effect
3081 operator should be allowed, and that cse should take care of coalescing
3082 multiple utterances of the same expression should that prove fruitful. */
3083
3084 tree
3085 stabilize_reference_1 (e)
3086 tree e;
3087 {
3088 register tree result;
3089 register enum tree_code code = TREE_CODE (e);
3090
3091 /* We cannot ignore const expressions because it might be a reference
3092 to a const array but whose index contains side-effects. But we can
3093 ignore things that are actual constant or that already have been
3094 handled by this function. */
3095
3096 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
3097 return e;
3098
3099 switch (TREE_CODE_CLASS (code))
3100 {
3101 case 'x':
3102 case 't':
3103 case 'd':
3104 case 'b':
3105 case '<':
3106 case 's':
3107 case 'e':
3108 case 'r':
3109 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3110 so that it will only be evaluated once. */
3111 /* The reference (r) and comparison (<) classes could be handled as
3112 below, but it is generally faster to only evaluate them once. */
3113 if (TREE_SIDE_EFFECTS (e))
3114 return save_expr (e);
3115 return e;
3116
3117 case 'c':
3118 /* Constants need no processing. In fact, we should never reach
3119 here. */
3120 return e;
3121
3122 case '2':
3123 /* Division is slow and tends to be compiled with jumps,
3124 especially the division by powers of 2 that is often
3125 found inside of an array reference. So do it just once. */
3126 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3127 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3128 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3129 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3130 return save_expr (e);
3131 /* Recursively stabilize each operand. */
3132 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3133 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3134 break;
3135
3136 case '1':
3137 /* Recursively stabilize each operand. */
3138 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3139 break;
3140
3141 default:
3142 abort ();
3143 }
3144
3145 TREE_TYPE (result) = TREE_TYPE (e);
3146 TREE_READONLY (result) = TREE_READONLY (e);
3147 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3148 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3149
3150 return result;
3151 }
3152 \f
3153 /* Low-level constructors for expressions. */
3154
3155 /* Build an expression of code CODE, data type TYPE,
3156 and operands as specified by the arguments ARG1 and following arguments.
3157 Expressions and reference nodes can be created this way.
3158 Constants, decls, types and misc nodes cannot be. */
3159
3160 tree
3161 build VPARAMS ((enum tree_code code, tree tt, ...))
3162 {
3163 #ifndef ANSI_PROTOTYPES
3164 enum tree_code code;
3165 tree tt;
3166 #endif
3167 va_list p;
3168 register tree t;
3169 register int length;
3170 register int i;
3171 int fro;
3172
3173 VA_START (p, tt);
3174
3175 #ifndef ANSI_PROTOTYPES
3176 code = va_arg (p, enum tree_code);
3177 tt = va_arg (p, tree);
3178 #endif
3179
3180 t = make_node (code);
3181 length = tree_code_length[(int) code];
3182 TREE_TYPE (t) = tt;
3183
3184 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_RAISED for
3185 the result based on those same flags for the arguments. But, if
3186 the arguments aren't really even `tree' expressions, we shouldn't
3187 be trying to do this. */
3188 fro = first_rtl_op (code);
3189
3190 if (length == 2)
3191 {
3192 /* This is equivalent to the loop below, but faster. */
3193 register tree arg0 = va_arg (p, tree);
3194 register tree arg1 = va_arg (p, tree);
3195 TREE_OPERAND (t, 0) = arg0;
3196 TREE_OPERAND (t, 1) = arg1;
3197 if (arg0 && fro > 0)
3198 {
3199 if (TREE_SIDE_EFFECTS (arg0))
3200 TREE_SIDE_EFFECTS (t) = 1;
3201 }
3202 if (arg1 && fro > 1)
3203 {
3204 if (TREE_SIDE_EFFECTS (arg1))
3205 TREE_SIDE_EFFECTS (t) = 1;
3206 }
3207 }
3208 else if (length == 1)
3209 {
3210 register tree arg0 = va_arg (p, tree);
3211
3212 /* Call build1 for this! */
3213 if (TREE_CODE_CLASS (code) != 's')
3214 abort ();
3215 TREE_OPERAND (t, 0) = arg0;
3216 if (fro > 0)
3217 {
3218 if (arg0 && TREE_SIDE_EFFECTS (arg0))
3219 TREE_SIDE_EFFECTS (t) = 1;
3220 }
3221 }
3222 else
3223 {
3224 for (i = 0; i < length; i++)
3225 {
3226 register tree operand = va_arg (p, tree);
3227 TREE_OPERAND (t, i) = operand;
3228 if (operand && fro > i)
3229 {
3230 if (TREE_SIDE_EFFECTS (operand))
3231 TREE_SIDE_EFFECTS (t) = 1;
3232 }
3233 }
3234 }
3235 va_end (p);
3236 return t;
3237 }
3238
3239 /* Same as above, but only builds for unary operators.
3240 Saves lions share of calls to `build'; cuts down use
3241 of varargs, which is expensive for RISC machines. */
3242
3243 tree
3244 build1 (code, type, node)
3245 enum tree_code code;
3246 tree type;
3247 tree node;
3248 {
3249 register struct obstack *obstack = expression_obstack;
3250 register int length;
3251 #ifdef GATHER_STATISTICS
3252 register tree_node_kind kind;
3253 #endif
3254 register tree t;
3255
3256 #ifdef GATHER_STATISTICS
3257 if (TREE_CODE_CLASS (code) == 'r')
3258 kind = r_kind;
3259 else
3260 kind = e_kind;
3261 #endif
3262
3263 length = sizeof (struct tree_exp);
3264
3265 if (ggc_p)
3266 t = ggc_alloc_tree (length);
3267 else
3268 {
3269 t = (tree) obstack_alloc (obstack, length);
3270 memset ((PTR) t, 0, length);
3271 }
3272
3273 #ifdef GATHER_STATISTICS
3274 tree_node_counts[(int)kind]++;
3275 tree_node_sizes[(int)kind] += length;
3276 #endif
3277
3278 TREE_TYPE (t) = type;
3279 TREE_SET_CODE (t, code);
3280 TREE_SET_PERMANENT (t);
3281
3282 TREE_OPERAND (t, 0) = node;
3283 if (node && first_rtl_op (code) != 0)
3284 {
3285 if (TREE_SIDE_EFFECTS (node))
3286 TREE_SIDE_EFFECTS (t) = 1;
3287 }
3288
3289 switch (code)
3290 {
3291 case INIT_EXPR:
3292 case MODIFY_EXPR:
3293 case VA_ARG_EXPR:
3294 case RTL_EXPR:
3295 case PREDECREMENT_EXPR:
3296 case PREINCREMENT_EXPR:
3297 case POSTDECREMENT_EXPR:
3298 case POSTINCREMENT_EXPR:
3299 /* All of these have side-effects, no matter what their
3300 operands are. */
3301 TREE_SIDE_EFFECTS (t) = 1;
3302 break;
3303
3304 default:
3305 break;
3306 }
3307
3308 return t;
3309 }
3310
3311 /* Similar except don't specify the TREE_TYPE
3312 and leave the TREE_SIDE_EFFECTS as 0.
3313 It is permissible for arguments to be null,
3314 or even garbage if their values do not matter. */
3315
3316 tree
3317 build_nt VPARAMS ((enum tree_code code, ...))
3318 {
3319 #ifndef ANSI_PROTOTYPES
3320 enum tree_code code;
3321 #endif
3322 va_list p;
3323 register tree t;
3324 register int length;
3325 register int i;
3326
3327 VA_START (p, code);
3328
3329 #ifndef ANSI_PROTOTYPES
3330 code = va_arg (p, enum tree_code);
3331 #endif
3332
3333 t = make_node (code);
3334 length = tree_code_length[(int) code];
3335
3336 for (i = 0; i < length; i++)
3337 TREE_OPERAND (t, i) = va_arg (p, tree);
3338
3339 va_end (p);
3340 return t;
3341 }
3342
3343 /* Similar to `build_nt', except we build
3344 on the temp_decl_obstack, regardless. */
3345
3346 tree
3347 build_parse_node VPARAMS ((enum tree_code code, ...))
3348 {
3349 #ifndef ANSI_PROTOTYPES
3350 enum tree_code code;
3351 #endif
3352 register struct obstack *ambient_obstack = expression_obstack;
3353 va_list p;
3354 register tree t;
3355 register int length;
3356 register int i;
3357
3358 VA_START (p, code);
3359
3360 #ifndef ANSI_PROTOTYPES
3361 code = va_arg (p, enum tree_code);
3362 #endif
3363
3364 expression_obstack = &temp_decl_obstack;
3365
3366 t = make_node (code);
3367 length = tree_code_length[(int) code];
3368
3369 for (i = 0; i < length; i++)
3370 TREE_OPERAND (t, i) = va_arg (p, tree);
3371
3372 va_end (p);
3373 expression_obstack = ambient_obstack;
3374 return t;
3375 }
3376
3377 #if 0
3378 /* Commented out because this wants to be done very
3379 differently. See cp-lex.c. */
3380 tree
3381 build_op_identifier (op1, op2)
3382 tree op1, op2;
3383 {
3384 register tree t = make_node (OP_IDENTIFIER);
3385 TREE_PURPOSE (t) = op1;
3386 TREE_VALUE (t) = op2;
3387 return t;
3388 }
3389 #endif
3390 \f
3391 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3392 We do NOT enter this node in any sort of symbol table.
3393
3394 layout_decl is used to set up the decl's storage layout.
3395 Other slots are initialized to 0 or null pointers. */
3396
3397 tree
3398 build_decl (code, name, type)
3399 enum tree_code code;
3400 tree name, type;
3401 {
3402 register tree t;
3403
3404 t = make_node (code);
3405
3406 /* if (type == error_mark_node)
3407 type = integer_type_node; */
3408 /* That is not done, deliberately, so that having error_mark_node
3409 as the type can suppress useless errors in the use of this variable. */
3410
3411 DECL_NAME (t) = name;
3412 DECL_ASSEMBLER_NAME (t) = name;
3413 TREE_TYPE (t) = type;
3414
3415 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3416 layout_decl (t, 0);
3417 else if (code == FUNCTION_DECL)
3418 DECL_MODE (t) = FUNCTION_MODE;
3419
3420 return t;
3421 }
3422 \f
3423 /* BLOCK nodes are used to represent the structure of binding contours
3424 and declarations, once those contours have been exited and their contents
3425 compiled. This information is used for outputting debugging info. */
3426
3427 tree
3428 build_block (vars, tags, subblocks, supercontext, chain)
3429 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
3430 {
3431 register tree block = make_node (BLOCK);
3432
3433 BLOCK_VARS (block) = vars;
3434 BLOCK_SUBBLOCKS (block) = subblocks;
3435 BLOCK_SUPERCONTEXT (block) = supercontext;
3436 BLOCK_CHAIN (block) = chain;
3437 return block;
3438 }
3439
3440 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
3441 location where an expression or an identifier were encountered. It
3442 is necessary for languages where the frontend parser will handle
3443 recursively more than one file (Java is one of them). */
3444
3445 tree
3446 build_expr_wfl (node, file, line, col)
3447 tree node;
3448 const char *file;
3449 int line, col;
3450 {
3451 static const char *last_file = 0;
3452 static tree last_filenode = NULL_TREE;
3453 register tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
3454
3455 EXPR_WFL_NODE (wfl) = node;
3456 EXPR_WFL_SET_LINECOL (wfl, line, col);
3457 if (file != last_file)
3458 {
3459 last_file = file;
3460 last_filenode = file ? get_identifier (file) : NULL_TREE;
3461 }
3462
3463 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
3464 if (node)
3465 {
3466 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
3467 TREE_TYPE (wfl) = TREE_TYPE (node);
3468 }
3469
3470 return wfl;
3471 }
3472 \f
3473 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
3474 is ATTRIBUTE. */
3475
3476 tree
3477 build_decl_attribute_variant (ddecl, attribute)
3478 tree ddecl, attribute;
3479 {
3480 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
3481 return ddecl;
3482 }
3483
3484 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3485 is ATTRIBUTE.
3486
3487 Record such modified types already made so we don't make duplicates. */
3488
3489 tree
3490 build_type_attribute_variant (ttype, attribute)
3491 tree ttype, attribute;
3492 {
3493 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3494 {
3495 unsigned int hashcode;
3496 tree ntype;
3497
3498 push_obstacks (TYPE_OBSTACK (ttype), TYPE_OBSTACK (ttype));
3499 ntype = copy_node (ttype);
3500
3501 TYPE_POINTER_TO (ntype) = 0;
3502 TYPE_REFERENCE_TO (ntype) = 0;
3503 TYPE_ATTRIBUTES (ntype) = attribute;
3504
3505 /* Create a new main variant of TYPE. */
3506 TYPE_MAIN_VARIANT (ntype) = ntype;
3507 TYPE_NEXT_VARIANT (ntype) = 0;
3508 set_type_quals (ntype, TYPE_UNQUALIFIED);
3509
3510 hashcode = (TYPE_HASH (TREE_CODE (ntype))
3511 + TYPE_HASH (TREE_TYPE (ntype))
3512 + attribute_hash_list (attribute));
3513
3514 switch (TREE_CODE (ntype))
3515 {
3516 case FUNCTION_TYPE:
3517 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
3518 break;
3519 case ARRAY_TYPE:
3520 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
3521 break;
3522 case INTEGER_TYPE:
3523 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
3524 break;
3525 case REAL_TYPE:
3526 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
3527 break;
3528 default:
3529 break;
3530 }
3531
3532 ntype = type_hash_canon (hashcode, ntype);
3533 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3534 pop_obstacks ();
3535 }
3536
3537 return ttype;
3538 }
3539
3540 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
3541 or type TYPE and 0 otherwise. Validity is determined the configuration
3542 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
3543
3544 int
3545 valid_machine_attribute (attr_name, attr_args, decl, type)
3546 tree attr_name;
3547 tree attr_args ATTRIBUTE_UNUSED;
3548 tree decl ATTRIBUTE_UNUSED;
3549 tree type ATTRIBUTE_UNUSED;
3550 {
3551 int validated = 0;
3552 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3553 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
3554 #endif
3555 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3556 tree type_attr_list = TYPE_ATTRIBUTES (type);
3557 #endif
3558
3559 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
3560 abort ();
3561
3562 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3563 if (decl != 0
3564 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name,
3565 attr_args))
3566 {
3567 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3568 decl_attr_list);
3569
3570 if (attr != NULL_TREE)
3571 {
3572 /* Override existing arguments. Declarations are unique so we can
3573 modify this in place. */
3574 TREE_VALUE (attr) = attr_args;
3575 }
3576 else
3577 {
3578 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
3579 decl = build_decl_attribute_variant (decl, decl_attr_list);
3580 }
3581
3582 validated = 1;
3583 }
3584 #endif
3585
3586 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3587 if (validated)
3588 /* Don't apply the attribute to both the decl and the type. */;
3589 else if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name,
3590 attr_args))
3591 {
3592 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3593 type_attr_list);
3594
3595 if (attr != NULL_TREE)
3596 {
3597 /* Override existing arguments.
3598 ??? This currently works since attribute arguments are not
3599 included in `attribute_hash_list'. Something more complicated
3600 may be needed in the future. */
3601 TREE_VALUE (attr) = attr_args;
3602 }
3603 else
3604 {
3605 /* If this is part of a declaration, create a type variant,
3606 otherwise, this is part of a type definition, so add it
3607 to the base type. */
3608 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
3609 if (decl != 0)
3610 type = build_type_attribute_variant (type, type_attr_list);
3611 else
3612 TYPE_ATTRIBUTES (type) = type_attr_list;
3613 }
3614
3615 if (decl != 0)
3616 TREE_TYPE (decl) = type;
3617
3618 validated = 1;
3619 }
3620
3621 /* Handle putting a type attribute on pointer-to-function-type by putting
3622 the attribute on the function type. */
3623 else if (POINTER_TYPE_P (type)
3624 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3625 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
3626 attr_name, attr_args))
3627 {
3628 tree inner_type = TREE_TYPE (type);
3629 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
3630 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3631 type_attr_list);
3632
3633 if (attr != NULL_TREE)
3634 TREE_VALUE (attr) = attr_args;
3635 else
3636 {
3637 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
3638 inner_type = build_type_attribute_variant (inner_type,
3639 inner_attr_list);
3640 }
3641
3642 if (decl != 0)
3643 TREE_TYPE (decl) = build_pointer_type (inner_type);
3644 else
3645 {
3646 /* Clear TYPE_POINTER_TO for the old inner type, since
3647 `type' won't be pointing to it anymore. */
3648 TYPE_POINTER_TO (TREE_TYPE (type)) = NULL_TREE;
3649 TREE_TYPE (type) = inner_type;
3650 }
3651
3652 validated = 1;
3653 }
3654 #endif
3655
3656 return validated;
3657 }
3658
3659 /* Return non-zero if IDENT is a valid name for attribute ATTR,
3660 or zero if not.
3661
3662 We try both `text' and `__text__', ATTR may be either one. */
3663 /* ??? It might be a reasonable simplification to require ATTR to be only
3664 `text'. One might then also require attribute lists to be stored in
3665 their canonicalized form. */
3666
3667 int
3668 is_attribute_p (attr, ident)
3669 const char *attr;
3670 tree ident;
3671 {
3672 int ident_len, attr_len;
3673 char *p;
3674
3675 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3676 return 0;
3677
3678 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
3679 return 1;
3680
3681 p = IDENTIFIER_POINTER (ident);
3682 ident_len = strlen (p);
3683 attr_len = strlen (attr);
3684
3685 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3686 if (attr[0] == '_')
3687 {
3688 if (attr[1] != '_'
3689 || attr[attr_len - 2] != '_'
3690 || attr[attr_len - 1] != '_')
3691 abort ();
3692 if (ident_len == attr_len - 4
3693 && strncmp (attr + 2, p, attr_len - 4) == 0)
3694 return 1;
3695 }
3696 else
3697 {
3698 if (ident_len == attr_len + 4
3699 && p[0] == '_' && p[1] == '_'
3700 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3701 && strncmp (attr, p + 2, attr_len) == 0)
3702 return 1;
3703 }
3704
3705 return 0;
3706 }
3707
3708 /* Given an attribute name and a list of attributes, return a pointer to the
3709 attribute's list element if the attribute is part of the list, or NULL_TREE
3710 if not found. */
3711
3712 tree
3713 lookup_attribute (attr_name, list)
3714 const char *attr_name;
3715 tree list;
3716 {
3717 tree l;
3718
3719 for (l = list; l; l = TREE_CHAIN (l))
3720 {
3721 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
3722 abort ();
3723 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
3724 return l;
3725 }
3726
3727 return NULL_TREE;
3728 }
3729
3730 /* Return an attribute list that is the union of a1 and a2. */
3731
3732 tree
3733 merge_attributes (a1, a2)
3734 register tree a1, a2;
3735 {
3736 tree attributes;
3737
3738 /* Either one unset? Take the set one. */
3739
3740 if ((attributes = a1) == 0)
3741 attributes = a2;
3742
3743 /* One that completely contains the other? Take it. */
3744
3745 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3746 {
3747 if (attribute_list_contained (a2, a1))
3748 attributes = a2;
3749 else
3750 {
3751 /* Pick the longest list, and hang on the other list. */
3752 /* ??? For the moment we punt on the issue of attrs with args. */
3753
3754 if (list_length (a1) < list_length (a2))
3755 attributes = a2, a2 = a1;
3756
3757 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3758 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3759 attributes) == NULL_TREE)
3760 {
3761 a1 = copy_node (a2);
3762 TREE_CHAIN (a1) = attributes;
3763 attributes = a1;
3764 }
3765 }
3766 }
3767 return attributes;
3768 }
3769
3770 /* Given types T1 and T2, merge their attributes and return
3771 the result. */
3772
3773 tree
3774 merge_machine_type_attributes (t1, t2)
3775 tree t1, t2;
3776 {
3777 #ifdef MERGE_MACHINE_TYPE_ATTRIBUTES
3778 return MERGE_MACHINE_TYPE_ATTRIBUTES (t1, t2);
3779 #else
3780 return merge_attributes (TYPE_ATTRIBUTES (t1),
3781 TYPE_ATTRIBUTES (t2));
3782 #endif
3783 }
3784
3785 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3786 the result. */
3787
3788 tree
3789 merge_machine_decl_attributes (olddecl, newdecl)
3790 tree olddecl, newdecl;
3791 {
3792 #ifdef MERGE_MACHINE_DECL_ATTRIBUTES
3793 return MERGE_MACHINE_DECL_ATTRIBUTES (olddecl, newdecl);
3794 #else
3795 return merge_attributes (DECL_MACHINE_ATTRIBUTES (olddecl),
3796 DECL_MACHINE_ATTRIBUTES (newdecl));
3797 #endif
3798 }
3799 \f
3800 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3801 of the various TYPE_QUAL values. */
3802
3803 static void
3804 set_type_quals (type, type_quals)
3805 tree type;
3806 int type_quals;
3807 {
3808 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3809 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3810 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3811 }
3812
3813 /* Given a type node TYPE and a TYPE_QUALIFIER_SET, return a type for
3814 the same kind of data as TYPE describes. Variants point to the
3815 "main variant" (which has no qualifiers set) via TYPE_MAIN_VARIANT,
3816 and it points to a chain of other variants so that duplicate
3817 variants are never made. Only main variants should ever appear as
3818 types of expressions. */
3819
3820 tree
3821 build_qualified_type (type, type_quals)
3822 tree type;
3823 int type_quals;
3824 {
3825 register tree t;
3826
3827 /* Search the chain of variants to see if there is already one there just
3828 like the one we need to have. If so, use that existing one. We must
3829 preserve the TYPE_NAME, since there is code that depends on this. */
3830
3831 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3832 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
3833 return t;
3834
3835 /* We need a new one. */
3836 t = build_type_copy (type);
3837 set_type_quals (t, type_quals);
3838 return t;
3839 }
3840
3841 /* Create a new variant of TYPE, equivalent but distinct.
3842 This is so the caller can modify it. */
3843
3844 tree
3845 build_type_copy (type)
3846 tree type;
3847 {
3848 register tree t, m = TYPE_MAIN_VARIANT (type);
3849 register struct obstack *ambient_obstack = current_obstack;
3850
3851 current_obstack = TYPE_OBSTACK (type);
3852 t = copy_node (type);
3853 current_obstack = ambient_obstack;
3854
3855 TYPE_POINTER_TO (t) = 0;
3856 TYPE_REFERENCE_TO (t) = 0;
3857
3858 /* Add this type to the chain of variants of TYPE. */
3859 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3860 TYPE_NEXT_VARIANT (m) = t;
3861
3862 return t;
3863 }
3864 \f
3865 /* Hashing of types so that we don't make duplicates.
3866 The entry point is `type_hash_canon'. */
3867
3868 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3869 with types in the TREE_VALUE slots), by adding the hash codes
3870 of the individual types. */
3871
3872 unsigned int
3873 type_hash_list (list)
3874 tree list;
3875 {
3876 unsigned int hashcode;
3877 register tree tail;
3878
3879 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3880 hashcode += TYPE_HASH (TREE_VALUE (tail));
3881
3882 return hashcode;
3883 }
3884
3885 /* Look in the type hash table for a type isomorphic to TYPE.
3886 If one is found, return it. Otherwise return 0. */
3887
3888 tree
3889 type_hash_lookup (hashcode, type)
3890 unsigned int hashcode;
3891 tree type;
3892 {
3893 register struct type_hash *h;
3894
3895 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3896 must call that routine before comparing TYPE_ALIGNs. */
3897 layout_type (type);
3898
3899 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
3900 if (h->hashcode == hashcode
3901 && TREE_CODE (h->type) == TREE_CODE (type)
3902 && TREE_TYPE (h->type) == TREE_TYPE (type)
3903 && attribute_list_equal (TYPE_ATTRIBUTES (h->type),
3904 TYPE_ATTRIBUTES (type))
3905 && TYPE_ALIGN (h->type) == TYPE_ALIGN (type)
3906 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
3907 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
3908 TYPE_MAX_VALUE (type)))
3909 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
3910 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
3911 TYPE_MIN_VALUE (type)))
3912 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3913 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
3914 || (TYPE_DOMAIN (h->type)
3915 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
3916 && TYPE_DOMAIN (type)
3917 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
3918 && type_list_equal (TYPE_DOMAIN (h->type),
3919 TYPE_DOMAIN (type)))))
3920 return h->type;
3921
3922 return 0;
3923 }
3924
3925 /* Add an entry to the type-hash-table
3926 for a type TYPE whose hash code is HASHCODE. */
3927
3928 void
3929 type_hash_add (hashcode, type)
3930 unsigned int hashcode;
3931 tree type;
3932 {
3933 register struct type_hash *h;
3934
3935 h = (struct type_hash *) permalloc (sizeof (struct type_hash));
3936 h->hashcode = hashcode;
3937 h->type = type;
3938 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
3939 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
3940 }
3941
3942 /* Given TYPE, and HASHCODE its hash code, return the canonical
3943 object for an identical type if one already exists.
3944 Otherwise, return TYPE, and record it as the canonical object
3945 if it is a permanent object.
3946
3947 To use this function, first create a type of the sort you want.
3948 Then compute its hash code from the fields of the type that
3949 make it different from other similar types.
3950 Then call this function and use the value.
3951 This function frees the type you pass in if it is a duplicate. */
3952
3953 /* Set to 1 to debug without canonicalization. Never set by program. */
3954 int debug_no_type_hash = 0;
3955
3956 tree
3957 type_hash_canon (hashcode, type)
3958 unsigned int hashcode;
3959 tree type;
3960 {
3961 tree t1;
3962
3963 if (debug_no_type_hash)
3964 return type;
3965
3966 t1 = type_hash_lookup (hashcode, type);
3967 if (t1 != 0)
3968 {
3969 if (!ggc_p)
3970 obstack_free (TYPE_OBSTACK (type), type);
3971
3972 #ifdef GATHER_STATISTICS
3973 tree_node_counts[(int)t_kind]--;
3974 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
3975 #endif
3976 return t1;
3977 }
3978
3979 /* If this is a permanent type, record it for later reuse. */
3980 if (ggc_p || TREE_PERMANENT (type))
3981 type_hash_add (hashcode, type);
3982
3983 return type;
3984 }
3985
3986 /* Mark ARG (which is really a struct type_hash **) for GC. */
3987
3988 static void
3989 mark_type_hash (arg)
3990 void *arg;
3991 {
3992 struct type_hash *t = *(struct type_hash **) arg;
3993
3994 while (t)
3995 {
3996 ggc_mark_tree (t->type);
3997 t = t->next;
3998 }
3999 }
4000
4001 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4002 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4003 by adding the hash codes of the individual attributes. */
4004
4005 unsigned int
4006 attribute_hash_list (list)
4007 tree list;
4008 {
4009 unsigned int hashcode;
4010 register tree tail;
4011
4012 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
4013 /* ??? Do we want to add in TREE_VALUE too? */
4014 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
4015 return hashcode;
4016 }
4017
4018 /* Given two lists of attributes, return true if list l2 is
4019 equivalent to l1. */
4020
4021 int
4022 attribute_list_equal (l1, l2)
4023 tree l1, l2;
4024 {
4025 return attribute_list_contained (l1, l2)
4026 && attribute_list_contained (l2, l1);
4027 }
4028
4029 /* Given two lists of attributes, return true if list L2 is
4030 completely contained within L1. */
4031 /* ??? This would be faster if attribute names were stored in a canonicalized
4032 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4033 must be used to show these elements are equivalent (which they are). */
4034 /* ??? It's not clear that attributes with arguments will always be handled
4035 correctly. */
4036
4037 int
4038 attribute_list_contained (l1, l2)
4039 tree l1, l2;
4040 {
4041 register tree t1, t2;
4042
4043 /* First check the obvious, maybe the lists are identical. */
4044 if (l1 == l2)
4045 return 1;
4046
4047 /* Maybe the lists are similar. */
4048 for (t1 = l1, t2 = l2;
4049 t1 != 0 && t2 != 0
4050 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4051 && TREE_VALUE (t1) == TREE_VALUE (t2);
4052 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4053
4054 /* Maybe the lists are equal. */
4055 if (t1 == 0 && t2 == 0)
4056 return 1;
4057
4058 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4059 {
4060 tree attr
4061 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4062
4063 if (attr == 0)
4064 return 0;
4065
4066 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
4067 return 0;
4068 }
4069
4070 return 1;
4071 }
4072
4073 /* Given two lists of types
4074 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4075 return 1 if the lists contain the same types in the same order.
4076 Also, the TREE_PURPOSEs must match. */
4077
4078 int
4079 type_list_equal (l1, l2)
4080 tree l1, l2;
4081 {
4082 register tree t1, t2;
4083
4084 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4085 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4086 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4087 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4088 && (TREE_TYPE (TREE_PURPOSE (t1))
4089 == TREE_TYPE (TREE_PURPOSE (t2))))))
4090 return 0;
4091
4092 return t1 == t2;
4093 }
4094
4095 /* Nonzero if integer constants T1 and T2
4096 represent the same constant value. */
4097
4098 int
4099 tree_int_cst_equal (t1, t2)
4100 tree t1, t2;
4101 {
4102 if (t1 == t2)
4103 return 1;
4104
4105 if (t1 == 0 || t2 == 0)
4106 return 0;
4107
4108 if (TREE_CODE (t1) == INTEGER_CST
4109 && TREE_CODE (t2) == INTEGER_CST
4110 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4111 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4112 return 1;
4113
4114 return 0;
4115 }
4116
4117 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4118 The precise way of comparison depends on their data type. */
4119
4120 int
4121 tree_int_cst_lt (t1, t2)
4122 tree t1, t2;
4123 {
4124 if (t1 == t2)
4125 return 0;
4126
4127 if (! TREE_UNSIGNED (TREE_TYPE (t1)))
4128 return INT_CST_LT (t1, t2);
4129
4130 return INT_CST_LT_UNSIGNED (t1, t2);
4131 }
4132
4133 /* Return 1 if T is an INTEGER_CST that can be represented in a single
4134 HOST_WIDE_INT value. If POS is nonzero, the result must be positive. */
4135
4136 int
4137 host_integerp (t, pos)
4138 tree t;
4139 int pos;
4140 {
4141 return (TREE_CODE (t) == INTEGER_CST
4142 && ! TREE_OVERFLOW (t)
4143 && ((TREE_INT_CST_HIGH (t) == 0
4144 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4145 || (! pos && TREE_INT_CST_HIGH (t) == -1
4146 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)));
4147 }
4148
4149 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4150 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4151 be positive. Abort if we cannot satisfy the above conditions. */
4152
4153 HOST_WIDE_INT
4154 tree_low_cst (t, pos)
4155 tree t;
4156 int pos;
4157 {
4158 if (host_integerp (t, pos))
4159 return TREE_INT_CST_LOW (t);
4160 else
4161 abort ();
4162 }
4163
4164 /* Return the most significant bit of the integer constant T. */
4165
4166 int
4167 tree_int_cst_msb (t)
4168 tree t;
4169 {
4170 register int prec;
4171 HOST_WIDE_INT h;
4172 HOST_WIDE_INT l;
4173
4174 /* Note that using TYPE_PRECISION here is wrong. We care about the
4175 actual bits, not the (arbitrary) range of the type. */
4176 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4177 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4178 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4179 return (l & 1) == 1;
4180 }
4181
4182 /* Return an indication of the sign of the integer constant T.
4183 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4184 Note that -1 will never be returned it T's type is unsigned. */
4185
4186 int
4187 tree_int_cst_sgn (t)
4188 tree t;
4189 {
4190 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4191 return 0;
4192 else if (TREE_UNSIGNED (TREE_TYPE (t)))
4193 return 1;
4194 else if (TREE_INT_CST_HIGH (t) < 0)
4195 return -1;
4196 else
4197 return 1;
4198 }
4199
4200 /* Compare two constructor-element-type constants. Return 1 if the lists
4201 are known to be equal; otherwise return 0. */
4202
4203 int
4204 simple_cst_list_equal (l1, l2)
4205 tree l1, l2;
4206 {
4207 while (l1 != NULL_TREE && l2 != NULL_TREE)
4208 {
4209 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4210 return 0;
4211
4212 l1 = TREE_CHAIN (l1);
4213 l2 = TREE_CHAIN (l2);
4214 }
4215
4216 return l1 == l2;
4217 }
4218
4219 /* Return truthvalue of whether T1 is the same tree structure as T2.
4220 Return 1 if they are the same.
4221 Return 0 if they are understandably different.
4222 Return -1 if either contains tree structure not understood by
4223 this function. */
4224
4225 int
4226 simple_cst_equal (t1, t2)
4227 tree t1, t2;
4228 {
4229 register enum tree_code code1, code2;
4230 int cmp;
4231 int i;
4232
4233 if (t1 == t2)
4234 return 1;
4235 if (t1 == 0 || t2 == 0)
4236 return 0;
4237
4238 code1 = TREE_CODE (t1);
4239 code2 = TREE_CODE (t2);
4240
4241 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4242 {
4243 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4244 || code2 == NON_LVALUE_EXPR)
4245 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4246 else
4247 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4248 }
4249
4250 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4251 || code2 == NON_LVALUE_EXPR)
4252 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4253
4254 if (code1 != code2)
4255 return 0;
4256
4257 switch (code1)
4258 {
4259 case INTEGER_CST:
4260 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4261 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
4262
4263 case REAL_CST:
4264 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4265
4266 case STRING_CST:
4267 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4268 && ! bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4269 TREE_STRING_LENGTH (t1)));
4270
4271 case CONSTRUCTOR:
4272 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
4273 return 1;
4274 else
4275 abort ();
4276
4277 case SAVE_EXPR:
4278 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4279
4280 case CALL_EXPR:
4281 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4282 if (cmp <= 0)
4283 return cmp;
4284 return
4285 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4286
4287 case TARGET_EXPR:
4288 /* Special case: if either target is an unallocated VAR_DECL,
4289 it means that it's going to be unified with whatever the
4290 TARGET_EXPR is really supposed to initialize, so treat it
4291 as being equivalent to anything. */
4292 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4293 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4294 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
4295 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4296 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4297 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
4298 cmp = 1;
4299 else
4300 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4301
4302 if (cmp <= 0)
4303 return cmp;
4304
4305 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4306
4307 case WITH_CLEANUP_EXPR:
4308 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4309 if (cmp <= 0)
4310 return cmp;
4311
4312 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
4313
4314 case COMPONENT_REF:
4315 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4316 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4317
4318 return 0;
4319
4320 case VAR_DECL:
4321 case PARM_DECL:
4322 case CONST_DECL:
4323 case FUNCTION_DECL:
4324 return 0;
4325
4326 default:
4327 break;
4328 }
4329
4330 /* This general rule works for most tree codes. All exceptions should be
4331 handled above. If this is a language-specific tree code, we can't
4332 trust what might be in the operand, so say we don't know
4333 the situation. */
4334 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4335 return -1;
4336
4337 switch (TREE_CODE_CLASS (code1))
4338 {
4339 case '1':
4340 case '2':
4341 case '<':
4342 case 'e':
4343 case 'r':
4344 case 's':
4345 cmp = 1;
4346 for (i = 0; i < tree_code_length[(int) code1]; i++)
4347 {
4348 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4349 if (cmp <= 0)
4350 return cmp;
4351 }
4352
4353 return cmp;
4354
4355 default:
4356 return -1;
4357 }
4358 }
4359
4360 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4361 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4362 than U, respectively. */
4363
4364 int
4365 compare_tree_int (t, u)
4366 tree t;
4367 unsigned int u;
4368 {
4369 if (tree_int_cst_sgn (t) < 0)
4370 return -1;
4371 else if (TREE_INT_CST_HIGH (t) != 0)
4372 return 1;
4373 else if (TREE_INT_CST_LOW (t) == u)
4374 return 0;
4375 else if (TREE_INT_CST_LOW (t) < u)
4376 return -1;
4377 else
4378 return 1;
4379 }
4380 \f
4381 /* Constructors for pointer, array and function types.
4382 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4383 constructed by language-dependent code, not here.) */
4384
4385 /* Construct, lay out and return the type of pointers to TO_TYPE.
4386 If such a type has already been constructed, reuse it. */
4387
4388 tree
4389 build_pointer_type (to_type)
4390 tree to_type;
4391 {
4392 register tree t = TYPE_POINTER_TO (to_type);
4393
4394 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4395
4396 if (t != 0)
4397 return t;
4398
4399 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4400 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4401 t = make_node (POINTER_TYPE);
4402 pop_obstacks ();
4403
4404 TREE_TYPE (t) = to_type;
4405
4406 /* Record this type as the pointer to TO_TYPE. */
4407 TYPE_POINTER_TO (to_type) = t;
4408
4409 /* Lay out the type. This function has many callers that are concerned
4410 with expression-construction, and this simplifies them all.
4411 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
4412 layout_type (t);
4413
4414 return t;
4415 }
4416
4417 /* Build the node for the type of references-to-TO_TYPE. */
4418
4419 tree
4420 build_reference_type (to_type)
4421 tree to_type;
4422 {
4423 register tree t = TYPE_REFERENCE_TO (to_type);
4424
4425 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4426
4427 if (t)
4428 return t;
4429
4430 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4431 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4432 t = make_node (REFERENCE_TYPE);
4433 pop_obstacks ();
4434
4435 TREE_TYPE (t) = to_type;
4436
4437 /* Record this type as the pointer to TO_TYPE. */
4438 TYPE_REFERENCE_TO (to_type) = t;
4439
4440 layout_type (t);
4441
4442 return t;
4443 }
4444
4445 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4446 MAXVAL should be the maximum value in the domain
4447 (one less than the length of the array).
4448
4449 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4450 We don't enforce this limit, that is up to caller (e.g. language front end).
4451 The limit exists because the result is a signed type and we don't handle
4452 sizes that use more than one HOST_WIDE_INT. */
4453
4454 tree
4455 build_index_type (maxval)
4456 tree maxval;
4457 {
4458 register tree itype = make_node (INTEGER_TYPE);
4459
4460 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4461 TYPE_MIN_VALUE (itype) = size_zero_node;
4462
4463 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4464 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
4465 pop_obstacks ();
4466
4467 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4468 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4469 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4470 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4471 if (TREE_CODE (maxval) == INTEGER_CST)
4472 {
4473 int maxint = TREE_INT_CST_LOW (maxval);
4474
4475 /* If the domain should be empty, make sure the maxval
4476 remains -1 and is not spoiled by truncation. */
4477 if (tree_int_cst_sgn (maxval) < 0)
4478 {
4479 TYPE_MAX_VALUE (itype) = build_int_2 (-1, -1);
4480 TREE_TYPE (TYPE_MAX_VALUE (itype)) = sizetype;
4481 }
4482
4483 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4484 }
4485 else
4486 return itype;
4487 }
4488
4489 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4490 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4491 low bound LOWVAL and high bound HIGHVAL.
4492 if TYPE==NULL_TREE, sizetype is used. */
4493
4494 tree
4495 build_range_type (type, lowval, highval)
4496 tree type, lowval, highval;
4497 {
4498 register tree itype = make_node (INTEGER_TYPE);
4499
4500 TREE_TYPE (itype) = type;
4501 if (type == NULL_TREE)
4502 type = sizetype;
4503
4504 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4505 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4506 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4507 pop_obstacks ();
4508
4509 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4510 TYPE_MODE (itype) = TYPE_MODE (type);
4511 TYPE_SIZE (itype) = TYPE_SIZE (type);
4512 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4513 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4514 if (TREE_CODE (lowval) == INTEGER_CST)
4515 {
4516 HOST_WIDE_INT lowint, highint;
4517 int maxint;
4518
4519 lowint = TREE_INT_CST_LOW (lowval);
4520 if (highval && TREE_CODE (highval) == INTEGER_CST)
4521 highint = TREE_INT_CST_LOW (highval);
4522 else
4523 highint = (~(unsigned HOST_WIDE_INT) 0) >> 1;
4524
4525 maxint = (int) (highint - lowint);
4526
4527 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4528 }
4529 else
4530 return itype;
4531 }
4532
4533 /* Just like build_index_type, but takes lowval and highval instead
4534 of just highval (maxval). */
4535
4536 tree
4537 build_index_2_type (lowval,highval)
4538 tree lowval, highval;
4539 {
4540 return build_range_type (NULL_TREE, lowval, highval);
4541 }
4542
4543 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
4544 Needed because when index types are not hashed, equal index types
4545 built at different times appear distinct, even though structurally,
4546 they are not. */
4547
4548 int
4549 index_type_equal (itype1, itype2)
4550 tree itype1, itype2;
4551 {
4552 if (TREE_CODE (itype1) != TREE_CODE (itype2))
4553 return 0;
4554
4555 if (TREE_CODE (itype1) == INTEGER_TYPE)
4556 {
4557 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
4558 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
4559 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
4560 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
4561 return 0;
4562
4563 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
4564 TYPE_MIN_VALUE (itype2))
4565 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
4566 TYPE_MAX_VALUE (itype2)))
4567 return 1;
4568 }
4569
4570 return 0;
4571 }
4572
4573 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4574 and number of elements specified by the range of values of INDEX_TYPE.
4575 If such a type has already been constructed, reuse it. */
4576
4577 tree
4578 build_array_type (elt_type, index_type)
4579 tree elt_type, index_type;
4580 {
4581 register tree t;
4582 unsigned int hashcode;
4583
4584 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4585 {
4586 error ("arrays of functions are not meaningful");
4587 elt_type = integer_type_node;
4588 }
4589
4590 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
4591 build_pointer_type (elt_type);
4592
4593 /* Allocate the array after the pointer type,
4594 in case we free it in type_hash_canon. */
4595 t = make_node (ARRAY_TYPE);
4596 TREE_TYPE (t) = elt_type;
4597 TYPE_DOMAIN (t) = index_type;
4598
4599 if (index_type == 0)
4600 {
4601 return t;
4602 }
4603
4604 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
4605 t = type_hash_canon (hashcode, t);
4606
4607 if (TYPE_SIZE (t) == 0)
4608 layout_type (t);
4609 return t;
4610 }
4611
4612 /* Return the TYPE of the elements comprising
4613 the innermost dimension of ARRAY. */
4614
4615 tree
4616 get_inner_array_type (array)
4617 tree array;
4618 {
4619 tree type = TREE_TYPE (array);
4620
4621 while (TREE_CODE (type) == ARRAY_TYPE)
4622 type = TREE_TYPE (type);
4623
4624 return type;
4625 }
4626
4627 /* Construct, lay out and return
4628 the type of functions returning type VALUE_TYPE
4629 given arguments of types ARG_TYPES.
4630 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4631 are data type nodes for the arguments of the function.
4632 If such a type has already been constructed, reuse it. */
4633
4634 tree
4635 build_function_type (value_type, arg_types)
4636 tree value_type, arg_types;
4637 {
4638 register tree t;
4639 unsigned int hashcode;
4640
4641 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4642 {
4643 error ("function return type cannot be function");
4644 value_type = integer_type_node;
4645 }
4646
4647 /* Make a node of the sort we want. */
4648 t = make_node (FUNCTION_TYPE);
4649 TREE_TYPE (t) = value_type;
4650 TYPE_ARG_TYPES (t) = arg_types;
4651
4652 /* If we already have such a type, use the old one and free this one. */
4653 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
4654 t = type_hash_canon (hashcode, t);
4655
4656 if (TYPE_SIZE (t) == 0)
4657 layout_type (t);
4658 return t;
4659 }
4660
4661 /* Construct, lay out and return the type of methods belonging to class
4662 BASETYPE and whose arguments and values are described by TYPE.
4663 If that type exists already, reuse it.
4664 TYPE must be a FUNCTION_TYPE node. */
4665
4666 tree
4667 build_method_type (basetype, type)
4668 tree basetype, type;
4669 {
4670 register tree t;
4671 unsigned int hashcode;
4672
4673 /* Make a node of the sort we want. */
4674 t = make_node (METHOD_TYPE);
4675
4676 if (TREE_CODE (type) != FUNCTION_TYPE)
4677 abort ();
4678
4679 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4680 TREE_TYPE (t) = TREE_TYPE (type);
4681
4682 /* The actual arglist for this function includes a "hidden" argument
4683 which is "this". Put it into the list of argument types. */
4684
4685 TYPE_ARG_TYPES (t)
4686 = tree_cons (NULL_TREE,
4687 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
4688
4689 /* If we already have such a type, use the old one and free this one. */
4690 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4691 t = type_hash_canon (hashcode, t);
4692
4693 if (TYPE_SIZE (t) == 0)
4694 layout_type (t);
4695
4696 return t;
4697 }
4698
4699 /* Construct, lay out and return the type of offsets to a value
4700 of type TYPE, within an object of type BASETYPE.
4701 If a suitable offset type exists already, reuse it. */
4702
4703 tree
4704 build_offset_type (basetype, type)
4705 tree basetype, type;
4706 {
4707 register tree t;
4708 unsigned int hashcode;
4709
4710 /* Make a node of the sort we want. */
4711 t = make_node (OFFSET_TYPE);
4712
4713 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4714 TREE_TYPE (t) = type;
4715
4716 /* If we already have such a type, use the old one and free this one. */
4717 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4718 t = type_hash_canon (hashcode, t);
4719
4720 if (TYPE_SIZE (t) == 0)
4721 layout_type (t);
4722
4723 return t;
4724 }
4725
4726 /* Create a complex type whose components are COMPONENT_TYPE. */
4727
4728 tree
4729 build_complex_type (component_type)
4730 tree component_type;
4731 {
4732 register tree t;
4733 unsigned int hashcode;
4734
4735 /* Make a node of the sort we want. */
4736 t = make_node (COMPLEX_TYPE);
4737
4738 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4739 set_type_quals (t, TYPE_QUALS (component_type));
4740
4741 /* If we already have such a type, use the old one and free this one. */
4742 hashcode = TYPE_HASH (component_type);
4743 t = type_hash_canon (hashcode, t);
4744
4745 if (TYPE_SIZE (t) == 0)
4746 layout_type (t);
4747
4748 /* If we are writing Dwarf2 output we need to create a name,
4749 since complex is a fundamental type. */
4750 if (write_symbols == DWARF2_DEBUG && ! TYPE_NAME (t))
4751 {
4752 const char *name;
4753 if (component_type == char_type_node)
4754 name = "complex char";
4755 else if (component_type == signed_char_type_node)
4756 name = "complex signed char";
4757 else if (component_type == unsigned_char_type_node)
4758 name = "complex unsigned char";
4759 else if (component_type == short_integer_type_node)
4760 name = "complex short int";
4761 else if (component_type == short_unsigned_type_node)
4762 name = "complex short unsigned int";
4763 else if (component_type == integer_type_node)
4764 name = "complex int";
4765 else if (component_type == unsigned_type_node)
4766 name = "complex unsigned int";
4767 else if (component_type == long_integer_type_node)
4768 name = "complex long int";
4769 else if (component_type == long_unsigned_type_node)
4770 name = "complex long unsigned int";
4771 else if (component_type == long_long_integer_type_node)
4772 name = "complex long long int";
4773 else if (component_type == long_long_unsigned_type_node)
4774 name = "complex long long unsigned int";
4775 else
4776 name = 0;
4777
4778 if (name != 0)
4779 TYPE_NAME (t) = get_identifier (name);
4780 }
4781
4782 return t;
4783 }
4784 \f
4785 /* Return OP, stripped of any conversions to wider types as much as is safe.
4786 Converting the value back to OP's type makes a value equivalent to OP.
4787
4788 If FOR_TYPE is nonzero, we return a value which, if converted to
4789 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4790
4791 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4792 narrowest type that can hold the value, even if they don't exactly fit.
4793 Otherwise, bit-field references are changed to a narrower type
4794 only if they can be fetched directly from memory in that type.
4795
4796 OP must have integer, real or enumeral type. Pointers are not allowed!
4797
4798 There are some cases where the obvious value we could return
4799 would regenerate to OP if converted to OP's type,
4800 but would not extend like OP to wider types.
4801 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4802 For example, if OP is (unsigned short)(signed char)-1,
4803 we avoid returning (signed char)-1 if FOR_TYPE is int,
4804 even though extending that to an unsigned short would regenerate OP,
4805 since the result of extending (signed char)-1 to (int)
4806 is different from (int) OP. */
4807
4808 tree
4809 get_unwidened (op, for_type)
4810 register tree op;
4811 tree for_type;
4812 {
4813 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4814 register tree type = TREE_TYPE (op);
4815 register unsigned final_prec
4816 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4817 register int uns
4818 = (for_type != 0 && for_type != type
4819 && final_prec > TYPE_PRECISION (type)
4820 && TREE_UNSIGNED (type));
4821 register tree win = op;
4822
4823 while (TREE_CODE (op) == NOP_EXPR)
4824 {
4825 register int bitschange
4826 = TYPE_PRECISION (TREE_TYPE (op))
4827 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4828
4829 /* Truncations are many-one so cannot be removed.
4830 Unless we are later going to truncate down even farther. */
4831 if (bitschange < 0
4832 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4833 break;
4834
4835 /* See what's inside this conversion. If we decide to strip it,
4836 we will set WIN. */
4837 op = TREE_OPERAND (op, 0);
4838
4839 /* If we have not stripped any zero-extensions (uns is 0),
4840 we can strip any kind of extension.
4841 If we have previously stripped a zero-extension,
4842 only zero-extensions can safely be stripped.
4843 Any extension can be stripped if the bits it would produce
4844 are all going to be discarded later by truncating to FOR_TYPE. */
4845
4846 if (bitschange > 0)
4847 {
4848 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4849 win = op;
4850 /* TREE_UNSIGNED says whether this is a zero-extension.
4851 Let's avoid computing it if it does not affect WIN
4852 and if UNS will not be needed again. */
4853 if ((uns || TREE_CODE (op) == NOP_EXPR)
4854 && TREE_UNSIGNED (TREE_TYPE (op)))
4855 {
4856 uns = 1;
4857 win = op;
4858 }
4859 }
4860 }
4861
4862 if (TREE_CODE (op) == COMPONENT_REF
4863 /* Since type_for_size always gives an integer type. */
4864 && TREE_CODE (type) != REAL_TYPE
4865 /* Don't crash if field not laid out yet. */
4866 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4867 {
4868 unsigned int innerprec
4869 = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4870
4871 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4872
4873 /* We can get this structure field in the narrowest type it fits in.
4874 If FOR_TYPE is 0, do this only for a field that matches the
4875 narrower type exactly and is aligned for it
4876 The resulting extension to its nominal type (a fullword type)
4877 must fit the same conditions as for other extensions. */
4878
4879 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4880 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4881 && (! uns || final_prec <= innerprec
4882 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4883 && type != 0)
4884 {
4885 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4886 TREE_OPERAND (op, 1));
4887 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4888 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4889 }
4890 }
4891 return win;
4892 }
4893 \f
4894 /* Return OP or a simpler expression for a narrower value
4895 which can be sign-extended or zero-extended to give back OP.
4896 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4897 or 0 if the value should be sign-extended. */
4898
4899 tree
4900 get_narrower (op, unsignedp_ptr)
4901 register tree op;
4902 int *unsignedp_ptr;
4903 {
4904 register int uns = 0;
4905 int first = 1;
4906 register tree win = op;
4907
4908 while (TREE_CODE (op) == NOP_EXPR)
4909 {
4910 register int bitschange
4911 = (TYPE_PRECISION (TREE_TYPE (op))
4912 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4913
4914 /* Truncations are many-one so cannot be removed. */
4915 if (bitschange < 0)
4916 break;
4917
4918 /* See what's inside this conversion. If we decide to strip it,
4919 we will set WIN. */
4920 op = TREE_OPERAND (op, 0);
4921
4922 if (bitschange > 0)
4923 {
4924 /* An extension: the outermost one can be stripped,
4925 but remember whether it is zero or sign extension. */
4926 if (first)
4927 uns = TREE_UNSIGNED (TREE_TYPE (op));
4928 /* Otherwise, if a sign extension has been stripped,
4929 only sign extensions can now be stripped;
4930 if a zero extension has been stripped, only zero-extensions. */
4931 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4932 break;
4933 first = 0;
4934 }
4935 else /* bitschange == 0 */
4936 {
4937 /* A change in nominal type can always be stripped, but we must
4938 preserve the unsignedness. */
4939 if (first)
4940 uns = TREE_UNSIGNED (TREE_TYPE (op));
4941 first = 0;
4942 }
4943
4944 win = op;
4945 }
4946
4947 if (TREE_CODE (op) == COMPONENT_REF
4948 /* Since type_for_size always gives an integer type. */
4949 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
4950 {
4951 unsigned int innerprec
4952 = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4953
4954 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4955
4956 /* We can get this structure field in a narrower type that fits it,
4957 but the resulting extension to its nominal type (a fullword type)
4958 must satisfy the same conditions as for other extensions.
4959
4960 Do this only for fields that are aligned (not bit-fields),
4961 because when bit-field insns will be used there is no
4962 advantage in doing this. */
4963
4964 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4965 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4966 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4967 && type != 0)
4968 {
4969 if (first)
4970 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4971 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4972 TREE_OPERAND (op, 1));
4973 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4974 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4975 }
4976 }
4977 *unsignedp_ptr = uns;
4978 return win;
4979 }
4980 \f
4981 /* Nonzero if integer constant C has a value that is permissible
4982 for type TYPE (an INTEGER_TYPE). */
4983
4984 int
4985 int_fits_type_p (c, type)
4986 tree c, type;
4987 {
4988 if (TREE_UNSIGNED (type))
4989 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4990 && INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c))
4991 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4992 && INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type)))
4993 /* Negative ints never fit unsigned types. */
4994 && ! (TREE_INT_CST_HIGH (c) < 0
4995 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4996 else
4997 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4998 && INT_CST_LT (TYPE_MAX_VALUE (type), c))
4999 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
5000 && INT_CST_LT (c, TYPE_MIN_VALUE (type)))
5001 /* Unsigned ints with top bit set never fit signed types. */
5002 && ! (TREE_INT_CST_HIGH (c) < 0
5003 && TREE_UNSIGNED (TREE_TYPE (c))));
5004 }
5005
5006 /* Given a DECL or TYPE, return the scope in which it was declared, or
5007 NUL_TREE if there is no containing scope. */
5008
5009 tree
5010 get_containing_scope (t)
5011 tree t;
5012 {
5013 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5014 }
5015
5016 /* Return the innermost context enclosing DECL that is
5017 a FUNCTION_DECL, or zero if none. */
5018
5019 tree
5020 decl_function_context (decl)
5021 tree decl;
5022 {
5023 tree context;
5024
5025 if (TREE_CODE (decl) == ERROR_MARK)
5026 return 0;
5027
5028 if (TREE_CODE (decl) == SAVE_EXPR)
5029 context = SAVE_EXPR_CONTEXT (decl);
5030 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5031 where we look up the function at runtime. Such functions always take
5032 a first argument of type 'pointer to real context'.
5033
5034 C++ should really be fixed to use DECL_CONTEXT for the real context,
5035 and use something else for the "virtual context". */
5036 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5037 context = TYPE_MAIN_VARIANT
5038 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5039 else
5040 context = DECL_CONTEXT (decl);
5041
5042 while (context && TREE_CODE (context) != FUNCTION_DECL)
5043 {
5044 if (TREE_CODE (context) == BLOCK)
5045 context = BLOCK_SUPERCONTEXT (context);
5046 else
5047 context = get_containing_scope (context);
5048 }
5049
5050 return context;
5051 }
5052
5053 /* Return the innermost context enclosing DECL that is
5054 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5055 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
5056
5057 tree
5058 decl_type_context (decl)
5059 tree decl;
5060 {
5061 tree context = DECL_CONTEXT (decl);
5062
5063 while (context)
5064 {
5065 if (TREE_CODE (context) == RECORD_TYPE
5066 || TREE_CODE (context) == UNION_TYPE
5067 || TREE_CODE (context) == QUAL_UNION_TYPE)
5068 return context;
5069
5070 if (TREE_CODE (context) == TYPE_DECL
5071 || TREE_CODE (context) == FUNCTION_DECL)
5072 context = DECL_CONTEXT (context);
5073
5074 else if (TREE_CODE (context) == BLOCK)
5075 context = BLOCK_SUPERCONTEXT (context);
5076
5077 else
5078 /* Unhandled CONTEXT!? */
5079 abort ();
5080 }
5081 return NULL_TREE;
5082 }
5083
5084 /* CALL is a CALL_EXPR. Return the declaration for the function
5085 called, or NULL_TREE if the called function cannot be
5086 determined. */
5087
5088 tree
5089 get_callee_fndecl (call)
5090 tree call;
5091 {
5092 tree addr;
5093
5094 /* It's invalid to call this function with anything but a
5095 CALL_EXPR. */
5096 if (TREE_CODE (call) != CALL_EXPR)
5097 abort ();
5098
5099 /* The first operand to the CALL is the address of the function
5100 called. */
5101 addr = TREE_OPERAND (call, 0);
5102
5103 /* If the address is just `&f' for some function `f', then we know
5104 that `f' is being called. */
5105 if (TREE_CODE (addr) == ADDR_EXPR
5106 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5107 return TREE_OPERAND (addr, 0);
5108
5109 /* We couldn't figure out what was being called. */
5110 return NULL_TREE;
5111 }
5112
5113 /* Print debugging information about the obstack O, named STR. */
5114
5115 void
5116 print_obstack_statistics (str, o)
5117 const char *str;
5118 struct obstack *o;
5119 {
5120 struct _obstack_chunk *chunk = o->chunk;
5121 int n_chunks = 1;
5122 int n_alloc = 0;
5123
5124 n_alloc += o->next_free - chunk->contents;
5125 chunk = chunk->prev;
5126 while (chunk)
5127 {
5128 n_chunks += 1;
5129 n_alloc += chunk->limit - &chunk->contents[0];
5130 chunk = chunk->prev;
5131 }
5132 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
5133 str, n_alloc, n_chunks);
5134 }
5135
5136 /* Print debugging information about tree nodes generated during the compile,
5137 and any language-specific information. */
5138
5139 void
5140 dump_tree_statistics ()
5141 {
5142 #ifdef GATHER_STATISTICS
5143 int i;
5144 int total_nodes, total_bytes;
5145 #endif
5146
5147 fprintf (stderr, "\n??? tree nodes created\n\n");
5148 #ifdef GATHER_STATISTICS
5149 fprintf (stderr, "Kind Nodes Bytes\n");
5150 fprintf (stderr, "-------------------------------------\n");
5151 total_nodes = total_bytes = 0;
5152 for (i = 0; i < (int) all_kinds; i++)
5153 {
5154 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
5155 tree_node_counts[i], tree_node_sizes[i]);
5156 total_nodes += tree_node_counts[i];
5157 total_bytes += tree_node_sizes[i];
5158 }
5159 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
5160 fprintf (stderr, "-------------------------------------\n");
5161 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
5162 fprintf (stderr, "-------------------------------------\n");
5163 #else
5164 fprintf (stderr, "(No per-node statistics)\n");
5165 #endif
5166 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
5167 print_obstack_statistics ("maybepermanent_obstack", &maybepermanent_obstack);
5168 print_obstack_statistics ("temporary_obstack", &temporary_obstack);
5169 print_obstack_statistics ("momentary_obstack", &momentary_obstack);
5170 print_obstack_statistics ("temp_decl_obstack", &temp_decl_obstack);
5171 print_lang_statistics ();
5172 }
5173 \f
5174 #define FILE_FUNCTION_PREFIX_LEN 9
5175
5176 #ifndef NO_DOLLAR_IN_LABEL
5177 #define FILE_FUNCTION_FORMAT "_GLOBAL_$%s$%s"
5178 #else /* NO_DOLLAR_IN_LABEL */
5179 #ifndef NO_DOT_IN_LABEL
5180 #define FILE_FUNCTION_FORMAT "_GLOBAL_.%s.%s"
5181 #else /* NO_DOT_IN_LABEL */
5182 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
5183 #endif /* NO_DOT_IN_LABEL */
5184 #endif /* NO_DOLLAR_IN_LABEL */
5185
5186 extern char *first_global_object_name;
5187 extern char *weak_global_object_name;
5188
5189 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
5190 clashes in cases where we can't reliably choose a unique name.
5191
5192 Derived from mkstemp.c in libiberty. */
5193
5194 static void
5195 append_random_chars (template)
5196 char *template;
5197 {
5198 static const char letters[]
5199 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
5200 static unsigned HOST_WIDE_INT value;
5201 unsigned HOST_WIDE_INT v;
5202
5203 #ifdef HAVE_GETTIMEOFDAY
5204 struct timeval tv;
5205 #endif
5206
5207 template += strlen (template);
5208
5209 #ifdef HAVE_GETTIMEOFDAY
5210 /* Get some more or less random data. */
5211 gettimeofday (&tv, NULL);
5212 value += ((unsigned HOST_WIDE_INT) tv.tv_usec << 16) ^ tv.tv_sec ^ getpid ();
5213 #else
5214 value += getpid ();
5215 #endif
5216
5217 v = value;
5218
5219 /* Fill in the random bits. */
5220 template[0] = letters[v % 62];
5221 v /= 62;
5222 template[1] = letters[v % 62];
5223 v /= 62;
5224 template[2] = letters[v % 62];
5225 v /= 62;
5226 template[3] = letters[v % 62];
5227 v /= 62;
5228 template[4] = letters[v % 62];
5229 v /= 62;
5230 template[5] = letters[v % 62];
5231
5232 template[6] = '\0';
5233 }
5234
5235 /* Generate a name for a function unique to this translation unit.
5236 TYPE is some string to identify the purpose of this function to the
5237 linker or collect2. */
5238
5239 tree
5240 get_file_function_name_long (type)
5241 const char *type;
5242 {
5243 char *buf;
5244 register char *p;
5245
5246 if (first_global_object_name)
5247 p = first_global_object_name;
5248 else
5249 {
5250 /* We don't have anything that we know to be unique to this translation
5251 unit, so use what we do have and throw in some randomness. */
5252
5253 const char *name = weak_global_object_name;
5254 const char *file = main_input_filename;
5255
5256 if (! name)
5257 name = "";
5258 if (! file)
5259 file = input_filename;
5260
5261 p = (char *) alloca (7 + strlen (name) + strlen (file));
5262
5263 sprintf (p, "%s%s", name, file);
5264 append_random_chars (p);
5265 }
5266
5267 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
5268 + strlen (type));
5269
5270 /* Set up the name of the file-level functions we may need.
5271 Use a global object (which is already required to be unique over
5272 the program) rather than the file name (which imposes extra
5273 constraints). */
5274 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5275
5276 /* Don't need to pull weird characters out of global names. */
5277 if (p != first_global_object_name)
5278 {
5279 for (p = buf+11; *p; p++)
5280 if (! ( ISDIGIT(*p)
5281 #if 0 /* we always want labels, which are valid C++ identifiers (+ `$') */
5282 #ifndef ASM_IDENTIFY_GCC /* this is required if `.' is invalid -- k. raeburn */
5283 || *p == '.'
5284 #endif
5285 #endif
5286 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5287 || *p == '$'
5288 #endif
5289 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5290 || *p == '.'
5291 #endif
5292 || ISUPPER(*p)
5293 || ISLOWER(*p)))
5294 *p = '_';
5295 }
5296
5297 return get_identifier (buf);
5298 }
5299
5300 /* If KIND=='I', return a suitable global initializer (constructor) name.
5301 If KIND=='D', return a suitable global clean-up (destructor) name. */
5302
5303 tree
5304 get_file_function_name (kind)
5305 int kind;
5306 {
5307 char p[2];
5308
5309 p[0] = kind;
5310 p[1] = 0;
5311
5312 return get_file_function_name_long (p);
5313 }
5314 \f
5315 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5316 The result is placed in BUFFER (which has length BIT_SIZE),
5317 with one bit in each char ('\000' or '\001').
5318
5319 If the constructor is constant, NULL_TREE is returned.
5320 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5321
5322 tree
5323 get_set_constructor_bits (init, buffer, bit_size)
5324 tree init;
5325 char *buffer;
5326 int bit_size;
5327 {
5328 int i;
5329 tree vals;
5330 HOST_WIDE_INT domain_min
5331 = TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))));
5332 tree non_const_bits = NULL_TREE;
5333 for (i = 0; i < bit_size; i++)
5334 buffer[i] = 0;
5335
5336 for (vals = TREE_OPERAND (init, 1);
5337 vals != NULL_TREE; vals = TREE_CHAIN (vals))
5338 {
5339 if (TREE_CODE (TREE_VALUE (vals)) != INTEGER_CST
5340 || (TREE_PURPOSE (vals) != NULL_TREE
5341 && TREE_CODE (TREE_PURPOSE (vals)) != INTEGER_CST))
5342 non_const_bits
5343 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
5344 else if (TREE_PURPOSE (vals) != NULL_TREE)
5345 {
5346 /* Set a range of bits to ones. */
5347 HOST_WIDE_INT lo_index
5348 = TREE_INT_CST_LOW (TREE_PURPOSE (vals)) - domain_min;
5349 HOST_WIDE_INT hi_index
5350 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
5351
5352 if (lo_index < 0 || lo_index >= bit_size
5353 || hi_index < 0 || hi_index >= bit_size)
5354 abort ();
5355 for ( ; lo_index <= hi_index; lo_index++)
5356 buffer[lo_index] = 1;
5357 }
5358 else
5359 {
5360 /* Set a single bit to one. */
5361 HOST_WIDE_INT index
5362 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
5363 if (index < 0 || index >= bit_size)
5364 {
5365 error ("invalid initializer for bit string");
5366 return NULL_TREE;
5367 }
5368 buffer[index] = 1;
5369 }
5370 }
5371 return non_const_bits;
5372 }
5373
5374 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5375 The result is placed in BUFFER (which is an array of bytes).
5376 If the constructor is constant, NULL_TREE is returned.
5377 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5378
5379 tree
5380 get_set_constructor_bytes (init, buffer, wd_size)
5381 tree init;
5382 unsigned char *buffer;
5383 int wd_size;
5384 {
5385 int i;
5386 int set_word_size = BITS_PER_UNIT;
5387 int bit_size = wd_size * set_word_size;
5388 int bit_pos = 0;
5389 unsigned char *bytep = buffer;
5390 char *bit_buffer = (char *) alloca(bit_size);
5391 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5392
5393 for (i = 0; i < wd_size; i++)
5394 buffer[i] = 0;
5395
5396 for (i = 0; i < bit_size; i++)
5397 {
5398 if (bit_buffer[i])
5399 {
5400 if (BYTES_BIG_ENDIAN)
5401 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5402 else
5403 *bytep |= 1 << bit_pos;
5404 }
5405 bit_pos++;
5406 if (bit_pos >= set_word_size)
5407 bit_pos = 0, bytep++;
5408 }
5409 return non_const_bits;
5410 }
5411 \f
5412 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5413 /* Complain that the tree code of NODE does not match the expected CODE.
5414 FILE, LINE, and FUNCTION are of the caller. */
5415 void
5416 tree_check_failed (node, code, file, line, function)
5417 const tree node;
5418 enum tree_code code;
5419 const char *file;
5420 int line;
5421 const char *function;
5422 {
5423 error ("Tree check: expected %s, have %s",
5424 tree_code_name[code], tree_code_name[TREE_CODE (node)]);
5425 fancy_abort (file, line, function);
5426 }
5427
5428 /* Similar to above, except that we check for a class of tree
5429 code, given in CL. */
5430 void
5431 tree_class_check_failed (node, cl, file, line, function)
5432 const tree node;
5433 char cl;
5434 const char *file;
5435 int line;
5436 const char *function;
5437 {
5438 error ("Tree check: expected class '%c', have '%c' (%s)",
5439 cl, TREE_CODE_CLASS (TREE_CODE (node)),
5440 tree_code_name[TREE_CODE (node)]);
5441 fancy_abort (file, line, function);
5442 }
5443
5444 #endif /* ENABLE_TREE_CHECKING */
5445
5446 /* Return the alias set for T, which may be either a type or an
5447 expression. */
5448
5449 int
5450 get_alias_set (t)
5451 tree t;
5452 {
5453 if (! flag_strict_aliasing || lang_get_alias_set == 0)
5454 /* If we're not doing any lanaguage-specific alias analysis, just
5455 assume everything aliases everything else. */
5456 return 0;
5457 else
5458 return (*lang_get_alias_set) (t);
5459 }
5460
5461 /* Return a brand-new alias set. */
5462
5463 int
5464 new_alias_set ()
5465 {
5466 static int last_alias_set;
5467
5468 if (flag_strict_aliasing)
5469 return ++last_alias_set;
5470 else
5471 return 0;
5472 }
5473 \f
5474 #ifndef CHAR_TYPE_SIZE
5475 #define CHAR_TYPE_SIZE BITS_PER_UNIT
5476 #endif
5477
5478 #ifndef SHORT_TYPE_SIZE
5479 #define SHORT_TYPE_SIZE (BITS_PER_UNIT * MIN ((UNITS_PER_WORD + 1) / 2, 2))
5480 #endif
5481
5482 #ifndef INT_TYPE_SIZE
5483 #define INT_TYPE_SIZE BITS_PER_WORD
5484 #endif
5485
5486 #ifndef LONG_TYPE_SIZE
5487 #define LONG_TYPE_SIZE BITS_PER_WORD
5488 #endif
5489
5490 #ifndef LONG_LONG_TYPE_SIZE
5491 #define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
5492 #endif
5493
5494 #ifndef FLOAT_TYPE_SIZE
5495 #define FLOAT_TYPE_SIZE BITS_PER_WORD
5496 #endif
5497
5498 #ifndef DOUBLE_TYPE_SIZE
5499 #define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
5500 #endif
5501
5502 #ifndef LONG_DOUBLE_TYPE_SIZE
5503 #define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
5504 #endif
5505
5506 /* Create nodes for all integer types (and error_mark_node) using the sizes
5507 of C datatypes. The caller should call set_sizetype soon after calling
5508 this function to select one of the types as sizetype. */
5509
5510 void
5511 build_common_tree_nodes (signed_char)
5512 int signed_char;
5513 {
5514 error_mark_node = make_node (ERROR_MARK);
5515 TREE_TYPE (error_mark_node) = error_mark_node;
5516
5517 initialize_sizetypes ();
5518
5519 /* Define both `signed char' and `unsigned char'. */
5520 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5521 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5522
5523 /* Define `char', which is like either `signed char' or `unsigned char'
5524 but not the same as either. */
5525 char_type_node
5526 = (signed_char
5527 ? make_signed_type (CHAR_TYPE_SIZE)
5528 : make_unsigned_type (CHAR_TYPE_SIZE));
5529
5530 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5531 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5532 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5533 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5534 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5535 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5536 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5537 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5538
5539 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
5540 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
5541 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
5542 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
5543 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
5544
5545 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
5546 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
5547 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
5548 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
5549 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
5550 }
5551
5552 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5553 It will create several other common tree nodes. */
5554
5555 void
5556 build_common_tree_nodes_2 (short_double)
5557 int short_double;
5558 {
5559 /* Define these next since types below may used them. */
5560 integer_zero_node = build_int_2 (0, 0);
5561 TREE_TYPE (integer_zero_node) = integer_type_node;
5562 integer_one_node = build_int_2 (1, 0);
5563 TREE_TYPE (integer_one_node) = integer_type_node;
5564
5565 size_zero_node = build_int_2 (0, 0);
5566 TREE_TYPE (size_zero_node) = sizetype;
5567 size_one_node = build_int_2 (1, 0);
5568 TREE_TYPE (size_one_node) = sizetype;
5569
5570 void_type_node = make_node (VOID_TYPE);
5571 layout_type (void_type_node);
5572
5573 /* We are not going to have real types in C with less than byte alignment,
5574 so we might as well not have any types that claim to have it. */
5575 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5576
5577 null_pointer_node = build_int_2 (0, 0);
5578 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
5579 layout_type (TREE_TYPE (null_pointer_node));
5580
5581 ptr_type_node = build_pointer_type (void_type_node);
5582 const_ptr_type_node
5583 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5584
5585 float_type_node = make_node (REAL_TYPE);
5586 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5587 layout_type (float_type_node);
5588
5589 double_type_node = make_node (REAL_TYPE);
5590 if (short_double)
5591 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5592 else
5593 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5594 layout_type (double_type_node);
5595
5596 long_double_type_node = make_node (REAL_TYPE);
5597 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5598 layout_type (long_double_type_node);
5599
5600 complex_integer_type_node = make_node (COMPLEX_TYPE);
5601 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5602 layout_type (complex_integer_type_node);
5603
5604 complex_float_type_node = make_node (COMPLEX_TYPE);
5605 TREE_TYPE (complex_float_type_node) = float_type_node;
5606 layout_type (complex_float_type_node);
5607
5608 complex_double_type_node = make_node (COMPLEX_TYPE);
5609 TREE_TYPE (complex_double_type_node) = double_type_node;
5610 layout_type (complex_double_type_node);
5611
5612 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5613 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5614 layout_type (complex_long_double_type_node);
5615
5616 #ifdef BUILD_VA_LIST_TYPE
5617 BUILD_VA_LIST_TYPE(va_list_type_node);
5618 #else
5619 va_list_type_node = ptr_type_node;
5620 #endif
5621 }
This page took 0.277501 seconds and 5 git commands to generate.