]> gcc.gnu.org Git - gcc.git/blob - gcc/tree-vectorizer.h
tree-vect-data-refs.c (vect_find_stmt_data_reference): New function, combining stmt...
[gcc.git] / gcc / tree-vectorizer.h
1 /* Vectorizer
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
23
24 #include "tree-data-ref.h"
25 #include "tree-hash-traits.h"
26 #include "target.h"
27
28 /* Used for naming of new temporaries. */
29 enum vect_var_kind {
30 vect_simple_var,
31 vect_pointer_var,
32 vect_scalar_var,
33 vect_mask_var
34 };
35
36 /* Defines type of operation. */
37 enum operation_type {
38 unary_op = 1,
39 binary_op,
40 ternary_op
41 };
42
43 /* Define type of available alignment support. */
44 enum dr_alignment_support {
45 dr_unaligned_unsupported,
46 dr_unaligned_supported,
47 dr_explicit_realign,
48 dr_explicit_realign_optimized,
49 dr_aligned
50 };
51
52 /* Define type of def-use cross-iteration cycle. */
53 enum vect_def_type {
54 vect_uninitialized_def = 0,
55 vect_constant_def = 1,
56 vect_external_def,
57 vect_internal_def,
58 vect_induction_def,
59 vect_reduction_def,
60 vect_double_reduction_def,
61 vect_nested_cycle,
62 vect_unknown_def_type
63 };
64
65 /* Define type of reduction. */
66 enum vect_reduction_type {
67 TREE_CODE_REDUCTION,
68 COND_REDUCTION,
69 INTEGER_INDUC_COND_REDUCTION,
70 CONST_COND_REDUCTION,
71
72 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
73 to implement:
74
75 for (int i = 0; i < VF; ++i)
76 res = cond[i] ? val[i] : res; */
77 EXTRACT_LAST_REDUCTION,
78
79 /* Use a folding reduction within the loop to implement:
80
81 for (int i = 0; i < VF; ++i)
82 res = res OP val[i];
83
84 (with no reassocation). */
85 FOLD_LEFT_REDUCTION
86 };
87
88 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
89 || ((D) == vect_double_reduction_def) \
90 || ((D) == vect_nested_cycle))
91
92 /* Structure to encapsulate information about a group of like
93 instructions to be presented to the target cost model. */
94 struct stmt_info_for_cost {
95 int count;
96 enum vect_cost_for_stmt kind;
97 enum vect_cost_model_location where;
98 gimple *stmt;
99 int misalign;
100 };
101
102 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
103
104 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
105 known alignment for that base. */
106 typedef hash_map<tree_operand_hash,
107 innermost_loop_behavior *> vec_base_alignments;
108
109 /************************************************************************
110 SLP
111 ************************************************************************/
112 typedef struct _slp_tree *slp_tree;
113
114 /* A computation tree of an SLP instance. Each node corresponds to a group of
115 stmts to be packed in a SIMD stmt. */
116 struct _slp_tree {
117 /* Nodes that contain def-stmts of this node statements operands. */
118 vec<slp_tree> children;
119 /* A group of scalar stmts to be vectorized together. */
120 vec<gimple *> stmts;
121 /* Load permutation relative to the stores, NULL if there is no
122 permutation. */
123 vec<unsigned> load_permutation;
124 /* Vectorized stmt/s. */
125 vec<gimple *> vec_stmts;
126 /* Number of vector stmts that are created to replace the group of scalar
127 stmts. It is calculated during the transformation phase as the number of
128 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
129 divided by vector size. */
130 unsigned int vec_stmts_size;
131 /* Whether the scalar computations use two different operators. */
132 bool two_operators;
133 /* The DEF type of this node. */
134 enum vect_def_type def_type;
135 };
136
137
138 /* SLP instance is a sequence of stmts in a loop that can be packed into
139 SIMD stmts. */
140 typedef struct _slp_instance {
141 /* The root of SLP tree. */
142 slp_tree root;
143
144 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
145 unsigned int group_size;
146
147 /* The unrolling factor required to vectorized this SLP instance. */
148 poly_uint64 unrolling_factor;
149
150 /* The group of nodes that contain loads of this SLP instance. */
151 vec<slp_tree> loads;
152
153 /* The SLP node containing the reduction PHIs. */
154 slp_tree reduc_phis;
155 } *slp_instance;
156
157
158 /* Access Functions. */
159 #define SLP_INSTANCE_TREE(S) (S)->root
160 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
161 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
162 #define SLP_INSTANCE_LOADS(S) (S)->loads
163
164 #define SLP_TREE_CHILDREN(S) (S)->children
165 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
166 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
167 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
168 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
169 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
170 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
171
172
173
174 /* Describes two objects whose addresses must be unequal for the vectorized
175 loop to be valid. */
176 typedef std::pair<tree, tree> vec_object_pair;
177
178 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
179 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
180 struct vec_lower_bound {
181 vec_lower_bound () {}
182 vec_lower_bound (tree e, bool u, poly_uint64 m)
183 : expr (e), unsigned_p (u), min_value (m) {}
184
185 tree expr;
186 bool unsigned_p;
187 poly_uint64 min_value;
188 };
189
190 /* Vectorizer state common between loop and basic-block vectorization. */
191 struct vec_info {
192 enum vec_kind { bb, loop };
193
194 vec_info (vec_kind, void *);
195 ~vec_info ();
196
197 /* The type of vectorization. */
198 vec_kind kind;
199
200 /* All SLP instances. */
201 auto_vec<slp_instance> slp_instances;
202
203 /* All data references. Freed by free_data_refs, so not an auto_vec. */
204 vec<data_reference_p> datarefs;
205
206 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
207 known alignment for that base. */
208 vec_base_alignments base_alignments;
209
210 /* All data dependences. Freed by free_dependence_relations, so not
211 an auto_vec. */
212 vec<ddr_p> ddrs;
213
214 /* All interleaving chains of stores, represented by the first
215 stmt in the chain. */
216 auto_vec<gimple *> grouped_stores;
217
218 /* Cost data used by the target cost model. */
219 void *target_cost_data;
220 };
221
222 struct _loop_vec_info;
223 struct _bb_vec_info;
224
225 template<>
226 template<>
227 inline bool
228 is_a_helper <_loop_vec_info *>::test (vec_info *i)
229 {
230 return i->kind == vec_info::loop;
231 }
232
233 template<>
234 template<>
235 inline bool
236 is_a_helper <_bb_vec_info *>::test (vec_info *i)
237 {
238 return i->kind == vec_info::bb;
239 }
240
241
242 /* In general, we can divide the vector statements in a vectorized loop
243 into related groups ("rgroups") and say that for each rgroup there is
244 some nS such that the rgroup operates on nS values from one scalar
245 iteration followed by nS values from the next. That is, if VF is the
246 vectorization factor of the loop, the rgroup operates on a sequence:
247
248 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
249
250 where (i,j) represents a scalar value with index j in a scalar
251 iteration with index i.
252
253 [ We use the term "rgroup" to emphasise that this grouping isn't
254 necessarily the same as the grouping of statements used elsewhere.
255 For example, if we implement a group of scalar loads using gather
256 loads, we'll use a separate gather load for each scalar load, and
257 thus each gather load will belong to its own rgroup. ]
258
259 In general this sequence will occupy nV vectors concatenated
260 together. If these vectors have nL lanes each, the total number
261 of scalar values N is given by:
262
263 N = nS * VF = nV * nL
264
265 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
266 are compile-time constants but VF and nL can be variable (if the target
267 supports variable-length vectors).
268
269 In classical vectorization, each iteration of the vector loop would
270 handle exactly VF iterations of the original scalar loop. However,
271 in a fully-masked loop, a particular iteration of the vector loop
272 might handle fewer than VF iterations of the scalar loop. The vector
273 lanes that correspond to iterations of the scalar loop are said to be
274 "active" and the other lanes are said to be "inactive".
275
276 In a fully-masked loop, many rgroups need to be masked to ensure that
277 they have no effect for the inactive lanes. Each such rgroup needs a
278 sequence of booleans in the same order as above, but with each (i,j)
279 replaced by a boolean that indicates whether iteration i is active.
280 This sequence occupies nV vector masks that again have nL lanes each.
281 Thus the mask sequence as a whole consists of VF independent booleans
282 that are each repeated nS times.
283
284 We make the simplifying assumption that if a sequence of nV masks is
285 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
286 VIEW_CONVERTing it. This holds for all current targets that support
287 fully-masked loops. For example, suppose the scalar loop is:
288
289 float *f;
290 double *d;
291 for (int i = 0; i < n; ++i)
292 {
293 f[i * 2 + 0] += 1.0f;
294 f[i * 2 + 1] += 2.0f;
295 d[i] += 3.0;
296 }
297
298 and suppose that vectors have 256 bits. The vectorized f accesses
299 will belong to one rgroup and the vectorized d access to another:
300
301 f rgroup: nS = 2, nV = 1, nL = 8
302 d rgroup: nS = 1, nV = 1, nL = 4
303 VF = 4
304
305 [ In this simple example the rgroups do correspond to the normal
306 SLP grouping scheme. ]
307
308 If only the first three lanes are active, the masks we need are:
309
310 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
311 d rgroup: 1 | 1 | 1 | 0
312
313 Here we can use a mask calculated for f's rgroup for d's, but not
314 vice versa.
315
316 Thus for each value of nV, it is enough to provide nV masks, with the
317 mask being calculated based on the highest nL (or, equivalently, based
318 on the highest nS) required by any rgroup with that nV. We therefore
319 represent the entire collection of masks as a two-level table, with the
320 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
321 the second being indexed by the mask index 0 <= i < nV. */
322
323 /* The masks needed by rgroups with nV vectors, according to the
324 description above. */
325 struct rgroup_masks {
326 /* The largest nS for all rgroups that use these masks. */
327 unsigned int max_nscalars_per_iter;
328
329 /* The type of mask to use, based on the highest nS recorded above. */
330 tree mask_type;
331
332 /* A vector of nV masks, in iteration order. */
333 vec<tree> masks;
334 };
335
336 typedef auto_vec<rgroup_masks> vec_loop_masks;
337
338 /*-----------------------------------------------------------------*/
339 /* Info on vectorized loops. */
340 /*-----------------------------------------------------------------*/
341 typedef struct _loop_vec_info : public vec_info {
342 _loop_vec_info (struct loop *);
343 ~_loop_vec_info ();
344
345 /* The loop to which this info struct refers to. */
346 struct loop *loop;
347
348 /* The loop basic blocks. */
349 basic_block *bbs;
350
351 /* Number of latch executions. */
352 tree num_itersm1;
353 /* Number of iterations. */
354 tree num_iters;
355 /* Number of iterations of the original loop. */
356 tree num_iters_unchanged;
357 /* Condition under which this loop is analyzed and versioned. */
358 tree num_iters_assumptions;
359
360 /* Threshold of number of iterations below which vectorzation will not be
361 performed. It is calculated from MIN_PROFITABLE_ITERS and
362 PARAM_MIN_VECT_LOOP_BOUND. */
363 unsigned int th;
364
365 /* When applying loop versioning, the vector form should only be used
366 if the number of scalar iterations is >= this value, on top of all
367 the other requirements. Ignored when loop versioning is not being
368 used. */
369 poly_uint64 versioning_threshold;
370
371 /* Unrolling factor */
372 poly_uint64 vectorization_factor;
373
374 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
375 if there is no particular limit. */
376 unsigned HOST_WIDE_INT max_vectorization_factor;
377
378 /* The masks that a fully-masked loop should use to avoid operating
379 on inactive scalars. */
380 vec_loop_masks masks;
381
382 /* If we are using a loop mask to align memory addresses, this variable
383 contains the number of vector elements that we should skip in the
384 first iteration of the vector loop (i.e. the number of leading
385 elements that should be false in the first mask). */
386 tree mask_skip_niters;
387
388 /* Type of the variables to use in the WHILE_ULT call for fully-masked
389 loops. */
390 tree mask_compare_type;
391
392 /* Unknown DRs according to which loop was peeled. */
393 struct data_reference *unaligned_dr;
394
395 /* peeling_for_alignment indicates whether peeling for alignment will take
396 place, and what the peeling factor should be:
397 peeling_for_alignment = X means:
398 If X=0: Peeling for alignment will not be applied.
399 If X>0: Peel first X iterations.
400 If X=-1: Generate a runtime test to calculate the number of iterations
401 to be peeled, using the dataref recorded in the field
402 unaligned_dr. */
403 int peeling_for_alignment;
404
405 /* The mask used to check the alignment of pointers or arrays. */
406 int ptr_mask;
407
408 /* The loop nest in which the data dependences are computed. */
409 auto_vec<loop_p> loop_nest;
410
411 /* Data Dependence Relations defining address ranges that are candidates
412 for a run-time aliasing check. */
413 auto_vec<ddr_p> may_alias_ddrs;
414
415 /* Data Dependence Relations defining address ranges together with segment
416 lengths from which the run-time aliasing check is built. */
417 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
418
419 /* Check that the addresses of each pair of objects is unequal. */
420 auto_vec<vec_object_pair> check_unequal_addrs;
421
422 /* List of values that are required to be nonzero. This is used to check
423 whether things like "x[i * n] += 1;" are safe and eventually gets added
424 to the checks for lower bounds below. */
425 auto_vec<tree> check_nonzero;
426
427 /* List of values that need to be checked for a minimum value. */
428 auto_vec<vec_lower_bound> lower_bounds;
429
430 /* Statements in the loop that have data references that are candidates for a
431 runtime (loop versioning) misalignment check. */
432 auto_vec<gimple *> may_misalign_stmts;
433
434 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
435 auto_vec<gimple *> reductions;
436
437 /* All reduction chains in the loop, represented by the first
438 stmt in the chain. */
439 auto_vec<gimple *> reduction_chains;
440
441 /* Cost vector for a single scalar iteration. */
442 auto_vec<stmt_info_for_cost> scalar_cost_vec;
443
444 /* Map of IV base/step expressions to inserted name in the preheader. */
445 hash_map<tree_operand_hash, tree> *ivexpr_map;
446
447 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
448 applied to the loop, i.e., no unrolling is needed, this is 1. */
449 poly_uint64 slp_unrolling_factor;
450
451 /* Cost of a single scalar iteration. */
452 int single_scalar_iteration_cost;
453
454 /* Is the loop vectorizable? */
455 bool vectorizable;
456
457 /* Records whether we still have the option of using a fully-masked loop. */
458 bool can_fully_mask_p;
459
460 /* True if have decided to use a fully-masked loop. */
461 bool fully_masked_p;
462
463 /* When we have grouped data accesses with gaps, we may introduce invalid
464 memory accesses. We peel the last iteration of the loop to prevent
465 this. */
466 bool peeling_for_gaps;
467
468 /* When the number of iterations is not a multiple of the vector size
469 we need to peel off iterations at the end to form an epilogue loop. */
470 bool peeling_for_niter;
471
472 /* Reductions are canonicalized so that the last operand is the reduction
473 operand. If this places a constant into RHS1, this decanonicalizes
474 GIMPLE for other phases, so we must track when this has occurred and
475 fix it up. */
476 bool operands_swapped;
477
478 /* True if there are no loop carried data dependencies in the loop.
479 If loop->safelen <= 1, then this is always true, either the loop
480 didn't have any loop carried data dependencies, or the loop is being
481 vectorized guarded with some runtime alias checks, or couldn't
482 be vectorized at all, but then this field shouldn't be used.
483 For loop->safelen >= 2, the user has asserted that there are no
484 backward dependencies, but there still could be loop carried forward
485 dependencies in such loops. This flag will be false if normal
486 vectorizer data dependency analysis would fail or require versioning
487 for alias, but because of loop->safelen >= 2 it has been vectorized
488 even without versioning for alias. E.g. in:
489 #pragma omp simd
490 for (int i = 0; i < m; i++)
491 a[i] = a[i + k] * c;
492 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
493 DTRT even for k > 0 && k < m, but without safelen we would not
494 vectorize this, so this field would be false. */
495 bool no_data_dependencies;
496
497 /* Mark loops having masked stores. */
498 bool has_mask_store;
499
500 /* If if-conversion versioned this loop before conversion, this is the
501 loop version without if-conversion. */
502 struct loop *scalar_loop;
503
504 /* For loops being epilogues of already vectorized loops
505 this points to the original vectorized loop. Otherwise NULL. */
506 _loop_vec_info *orig_loop_info;
507
508 } *loop_vec_info;
509
510 /* Access Functions. */
511 #define LOOP_VINFO_LOOP(L) (L)->loop
512 #define LOOP_VINFO_BBS(L) (L)->bbs
513 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
514 #define LOOP_VINFO_NITERS(L) (L)->num_iters
515 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
516 prologue peeling retain total unchanged scalar loop iterations for
517 cost model. */
518 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
519 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
520 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
521 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
522 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
523 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
524 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
525 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
526 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
527 #define LOOP_VINFO_MASKS(L) (L)->masks
528 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
529 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
530 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
531 #define LOOP_VINFO_LOOP_NEST(L) (L)->loop_nest
532 #define LOOP_VINFO_DATAREFS(L) (L)->datarefs
533 #define LOOP_VINFO_DDRS(L) (L)->ddrs
534 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
535 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
536 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
537 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
538 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
539 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
540 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
541 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
542 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
543 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
544 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
545 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
546 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
547 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
548 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
549 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
550 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
551 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
552 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
553 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
554 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
555 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
556 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
557 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
558
559 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
560 ((L)->may_misalign_stmts.length () > 0)
561 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
562 ((L)->comp_alias_ddrs.length () > 0 \
563 || (L)->check_unequal_addrs.length () > 0 \
564 || (L)->lower_bounds.length () > 0)
565 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
566 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
567 #define LOOP_REQUIRES_VERSIONING(L) \
568 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
569 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
570 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
571
572 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
573 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
574
575 #define LOOP_VINFO_EPILOGUE_P(L) \
576 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
577
578 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
579 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
580
581 static inline loop_vec_info
582 loop_vec_info_for_loop (struct loop *loop)
583 {
584 return (loop_vec_info) loop->aux;
585 }
586
587 static inline bool
588 nested_in_vect_loop_p (struct loop *loop, gimple *stmt)
589 {
590 return (loop->inner
591 && (loop->inner == (gimple_bb (stmt))->loop_father));
592 }
593
594 typedef struct _bb_vec_info : public vec_info
595 {
596 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator);
597 ~_bb_vec_info ();
598
599 basic_block bb;
600 gimple_stmt_iterator region_begin;
601 gimple_stmt_iterator region_end;
602 } *bb_vec_info;
603
604 #define BB_VINFO_BB(B) (B)->bb
605 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
606 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
607 #define BB_VINFO_DATAREFS(B) (B)->datarefs
608 #define BB_VINFO_DDRS(B) (B)->ddrs
609 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
610
611 static inline bb_vec_info
612 vec_info_for_bb (basic_block bb)
613 {
614 return (bb_vec_info) bb->aux;
615 }
616
617 /*-----------------------------------------------------------------*/
618 /* Info on vectorized defs. */
619 /*-----------------------------------------------------------------*/
620 enum stmt_vec_info_type {
621 undef_vec_info_type = 0,
622 load_vec_info_type,
623 store_vec_info_type,
624 shift_vec_info_type,
625 op_vec_info_type,
626 call_vec_info_type,
627 call_simd_clone_vec_info_type,
628 assignment_vec_info_type,
629 condition_vec_info_type,
630 comparison_vec_info_type,
631 reduc_vec_info_type,
632 induc_vec_info_type,
633 type_promotion_vec_info_type,
634 type_demotion_vec_info_type,
635 type_conversion_vec_info_type,
636 loop_exit_ctrl_vec_info_type
637 };
638
639 /* Indicates whether/how a variable is used in the scope of loop/basic
640 block. */
641 enum vect_relevant {
642 vect_unused_in_scope = 0,
643
644 /* The def is only used outside the loop. */
645 vect_used_only_live,
646 /* The def is in the inner loop, and the use is in the outer loop, and the
647 use is a reduction stmt. */
648 vect_used_in_outer_by_reduction,
649 /* The def is in the inner loop, and the use is in the outer loop (and is
650 not part of reduction). */
651 vect_used_in_outer,
652
653 /* defs that feed computations that end up (only) in a reduction. These
654 defs may be used by non-reduction stmts, but eventually, any
655 computations/values that are affected by these defs are used to compute
656 a reduction (i.e. don't get stored to memory, for example). We use this
657 to identify computations that we can change the order in which they are
658 computed. */
659 vect_used_by_reduction,
660
661 vect_used_in_scope
662 };
663
664 /* The type of vectorization that can be applied to the stmt: regular loop-based
665 vectorization; pure SLP - the stmt is a part of SLP instances and does not
666 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
667 a part of SLP instance and also must be loop-based vectorized, since it has
668 uses outside SLP sequences.
669
670 In the loop context the meanings of pure and hybrid SLP are slightly
671 different. By saying that pure SLP is applied to the loop, we mean that we
672 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
673 vectorized without doing any conceptual unrolling, cause we don't pack
674 together stmts from different iterations, only within a single iteration.
675 Loop hybrid SLP means that we exploit both intra-iteration and
676 inter-iteration parallelism (e.g., number of elements in the vector is 4
677 and the slp-group-size is 2, in which case we don't have enough parallelism
678 within an iteration, so we obtain the rest of the parallelism from subsequent
679 iterations by unrolling the loop by 2). */
680 enum slp_vect_type {
681 loop_vect = 0,
682 pure_slp,
683 hybrid
684 };
685
686 /* Says whether a statement is a load, a store of a vectorized statement
687 result, or a store of an invariant value. */
688 enum vec_load_store_type {
689 VLS_LOAD,
690 VLS_STORE,
691 VLS_STORE_INVARIANT
692 };
693
694 /* Describes how we're going to vectorize an individual load or store,
695 or a group of loads or stores. */
696 enum vect_memory_access_type {
697 /* An access to an invariant address. This is used only for loads. */
698 VMAT_INVARIANT,
699
700 /* A simple contiguous access. */
701 VMAT_CONTIGUOUS,
702
703 /* A contiguous access that goes down in memory rather than up,
704 with no additional permutation. This is used only for stores
705 of invariants. */
706 VMAT_CONTIGUOUS_DOWN,
707
708 /* A simple contiguous access in which the elements need to be permuted
709 after loading or before storing. Only used for loop vectorization;
710 SLP uses separate permutes. */
711 VMAT_CONTIGUOUS_PERMUTE,
712
713 /* A simple contiguous access in which the elements need to be reversed
714 after loading or before storing. */
715 VMAT_CONTIGUOUS_REVERSE,
716
717 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
718 VMAT_LOAD_STORE_LANES,
719
720 /* An access in which each scalar element is loaded or stored
721 individually. */
722 VMAT_ELEMENTWISE,
723
724 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
725 SLP accesses. Each unrolled iteration uses a contiguous load
726 or store for the whole group, but the groups from separate iterations
727 are combined in the same way as for VMAT_ELEMENTWISE. */
728 VMAT_STRIDED_SLP,
729
730 /* The access uses gather loads or scatter stores. */
731 VMAT_GATHER_SCATTER
732 };
733
734 typedef struct data_reference *dr_p;
735
736 typedef struct _stmt_vec_info {
737
738 enum stmt_vec_info_type type;
739
740 /* Indicates whether this stmts is part of a computation whose result is
741 used outside the loop. */
742 bool live;
743
744 /* Stmt is part of some pattern (computation idiom) */
745 bool in_pattern_p;
746
747 /* Is this statement vectorizable or should it be skipped in (partial)
748 vectorization. */
749 bool vectorizable;
750
751 /* The stmt to which this info struct refers to. */
752 gimple *stmt;
753
754 /* The vec_info with respect to which STMT is vectorized. */
755 vec_info *vinfo;
756
757 /* The vector type to be used for the LHS of this statement. */
758 tree vectype;
759
760 /* The vectorized version of the stmt. */
761 gimple *vectorized_stmt;
762
763
764 /* The following is relevant only for stmts that contain a non-scalar
765 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
766 at most one such data-ref. */
767
768 /* Information about the data-ref (access function, etc),
769 relative to the inner-most containing loop. */
770 struct data_reference *data_ref_info;
771
772 /* Information about the data-ref relative to this loop
773 nest (the loop that is being considered for vectorization). */
774 innermost_loop_behavior dr_wrt_vec_loop;
775
776 /* For loop PHI nodes, the base and evolution part of it. This makes sure
777 this information is still available in vect_update_ivs_after_vectorizer
778 where we may not be able to re-analyze the PHI nodes evolution as
779 peeling for the prologue loop can make it unanalyzable. The evolution
780 part is still correct after peeling, but the base may have changed from
781 the version here. */
782 tree loop_phi_evolution_base_unchanged;
783 tree loop_phi_evolution_part;
784
785 /* Used for various bookkeeping purposes, generally holding a pointer to
786 some other stmt S that is in some way "related" to this stmt.
787 Current use of this field is:
788 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
789 true): S is the "pattern stmt" that represents (and replaces) the
790 sequence of stmts that constitutes the pattern. Similarly, the
791 related_stmt of the "pattern stmt" points back to this stmt (which is
792 the last stmt in the original sequence of stmts that constitutes the
793 pattern). */
794 gimple *related_stmt;
795
796 /* Used to keep a sequence of def stmts of a pattern stmt if such exists. */
797 gimple_seq pattern_def_seq;
798
799 /* List of datarefs that are known to have the same alignment as the dataref
800 of this stmt. */
801 vec<dr_p> same_align_refs;
802
803 /* Selected SIMD clone's function info. First vector element
804 is SIMD clone's function decl, followed by a pair of trees (base + step)
805 for linear arguments (pair of NULLs for other arguments). */
806 vec<tree> simd_clone_info;
807
808 /* Classify the def of this stmt. */
809 enum vect_def_type def_type;
810
811 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
812 enum slp_vect_type slp_type;
813
814 /* Interleaving and reduction chains info. */
815 /* First element in the group. */
816 gimple *first_element;
817 /* Pointer to the next element in the group. */
818 gimple *next_element;
819 /* For data-refs, in case that two or more stmts share data-ref, this is the
820 pointer to the previously detected stmt with the same dr. */
821 gimple *same_dr_stmt;
822 /* The size of the group. */
823 unsigned int size;
824 /* For stores, number of stores from this group seen. We vectorize the last
825 one. */
826 unsigned int store_count;
827 /* For loads only, the gap from the previous load. For consecutive loads, GAP
828 is 1. */
829 unsigned int gap;
830
831 /* The minimum negative dependence distance this stmt participates in
832 or zero if none. */
833 unsigned int min_neg_dist;
834
835 /* Not all stmts in the loop need to be vectorized. e.g, the increment
836 of the loop induction variable and computation of array indexes. relevant
837 indicates whether the stmt needs to be vectorized. */
838 enum vect_relevant relevant;
839
840 /* For loads if this is a gather, for stores if this is a scatter. */
841 bool gather_scatter_p;
842
843 /* True if this is an access with loop-invariant stride. */
844 bool strided_p;
845
846 /* For both loads and stores. */
847 bool simd_lane_access_p;
848
849 /* Classifies how the load or store is going to be implemented
850 for loop vectorization. */
851 vect_memory_access_type memory_access_type;
852
853 /* For reduction loops, this is the type of reduction. */
854 enum vect_reduction_type v_reduc_type;
855
856 /* For CONST_COND_REDUCTION, record the reduc code. */
857 enum tree_code const_cond_reduc_code;
858
859 /* On a reduction PHI the reduction type as detected by
860 vect_force_simple_reduction. */
861 enum vect_reduction_type reduc_type;
862
863 /* On a reduction PHI the def returned by vect_force_simple_reduction.
864 On the def returned by vect_force_simple_reduction the
865 corresponding PHI. */
866 gimple *reduc_def;
867
868 /* The number of scalar stmt references from active SLP instances. */
869 unsigned int num_slp_uses;
870 } *stmt_vec_info;
871
872 /* Information about a gather/scatter call. */
873 struct gather_scatter_info {
874 /* The internal function to use for the gather/scatter operation,
875 or IFN_LAST if a built-in function should be used instead. */
876 internal_fn ifn;
877
878 /* The FUNCTION_DECL for the built-in gather/scatter function,
879 or null if an internal function should be used instead. */
880 tree decl;
881
882 /* The loop-invariant base value. */
883 tree base;
884
885 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
886 tree offset;
887
888 /* Each offset element should be multiplied by this amount before
889 being added to the base. */
890 int scale;
891
892 /* The definition type for the vectorized offset. */
893 enum vect_def_type offset_dt;
894
895 /* The type of the vectorized offset. */
896 tree offset_vectype;
897
898 /* The type of the scalar elements after loading or before storing. */
899 tree element_type;
900
901 /* The type of the scalar elements being loaded or stored. */
902 tree memory_type;
903 };
904
905 /* Access Functions. */
906 #define STMT_VINFO_TYPE(S) (S)->type
907 #define STMT_VINFO_STMT(S) (S)->stmt
908 inline loop_vec_info
909 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
910 {
911 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
912 return loop_vinfo;
913 return NULL;
914 }
915 inline bb_vec_info
916 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
917 {
918 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
919 return bb_vinfo;
920 return NULL;
921 }
922 #define STMT_VINFO_RELEVANT(S) (S)->relevant
923 #define STMT_VINFO_LIVE_P(S) (S)->live
924 #define STMT_VINFO_VECTYPE(S) (S)->vectype
925 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
926 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
927 #define STMT_VINFO_DATA_REF(S) (S)->data_ref_info
928 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
929 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
930 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
931 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
932 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
933 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
934
935 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
936 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
937 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
938 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
939 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
940 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
941 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
942 (S)->dr_wrt_vec_loop.base_misalignment
943 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
944 (S)->dr_wrt_vec_loop.offset_alignment
945 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
946 (S)->dr_wrt_vec_loop.step_alignment
947
948 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
949 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
950 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
951 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
952 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
953 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
954 #define STMT_VINFO_GROUPED_ACCESS(S) ((S)->data_ref_info && DR_GROUP_FIRST_ELEMENT(S))
955 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
956 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
957 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
958 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
959 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
960 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
961
962 #define DR_GROUP_FIRST_ELEMENT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->first_element)
963 #define DR_GROUP_NEXT_ELEMENT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->next_element)
964 #define DR_GROUP_SIZE(S) (gcc_checking_assert ((S)->data_ref_info), (S)->size)
965 #define DR_GROUP_STORE_COUNT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->store_count)
966 #define DR_GROUP_GAP(S) (gcc_checking_assert ((S)->data_ref_info), (S)->gap)
967 #define DR_GROUP_SAME_DR_STMT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->same_dr_stmt)
968
969 #define REDUC_GROUP_FIRST_ELEMENT(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->first_element)
970 #define REDUC_GROUP_NEXT_ELEMENT(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->next_element)
971 #define REDUC_GROUP_SIZE(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->size)
972
973 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
974
975 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
976 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
977 #define STMT_SLP_TYPE(S) (S)->slp_type
978
979 struct dataref_aux {
980 /* The misalignment in bytes of the reference, or -1 if not known. */
981 int misalignment;
982 /* The byte alignment that we'd ideally like the reference to have,
983 and the value that misalignment is measured against. */
984 int target_alignment;
985 /* If true the alignment of base_decl needs to be increased. */
986 bool base_misaligned;
987 tree base_decl;
988 };
989
990 #define DR_VECT_AUX(dr) ((dataref_aux *)(dr)->aux)
991
992 #define VECT_MAX_COST 1000
993
994 /* The maximum number of intermediate steps required in multi-step type
995 conversion. */
996 #define MAX_INTERM_CVT_STEPS 3
997
998 #define MAX_VECTORIZATION_FACTOR INT_MAX
999
1000 /* Nonzero if TYPE represents a (scalar) boolean type or type
1001 in the middle-end compatible with it (unsigned precision 1 integral
1002 types). Used to determine which types should be vectorized as
1003 VECTOR_BOOLEAN_TYPE_P. */
1004
1005 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1006 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1007 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1008 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1009 && TYPE_PRECISION (TYPE) == 1 \
1010 && TYPE_UNSIGNED (TYPE)))
1011
1012 extern vec<stmt_vec_info> stmt_vec_info_vec;
1013
1014 void init_stmt_vec_info_vec (void);
1015 void free_stmt_vec_info_vec (void);
1016
1017 /* Return a stmt_vec_info corresponding to STMT. */
1018
1019 static inline stmt_vec_info
1020 vinfo_for_stmt (gimple *stmt)
1021 {
1022 int uid = gimple_uid (stmt);
1023 if (uid <= 0)
1024 return NULL;
1025
1026 return stmt_vec_info_vec[uid - 1];
1027 }
1028
1029 /* Set vectorizer information INFO for STMT. */
1030
1031 static inline void
1032 set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info)
1033 {
1034 unsigned int uid = gimple_uid (stmt);
1035 if (uid == 0)
1036 {
1037 gcc_checking_assert (info);
1038 uid = stmt_vec_info_vec.length () + 1;
1039 gimple_set_uid (stmt, uid);
1040 stmt_vec_info_vec.safe_push (info);
1041 }
1042 else
1043 {
1044 gcc_checking_assert (info == NULL);
1045 stmt_vec_info_vec[uid - 1] = info;
1046 }
1047 }
1048
1049 /* Return the earlier statement between STMT1 and STMT2. */
1050
1051 static inline gimple *
1052 get_earlier_stmt (gimple *stmt1, gimple *stmt2)
1053 {
1054 unsigned int uid1, uid2;
1055
1056 if (stmt1 == NULL)
1057 return stmt2;
1058
1059 if (stmt2 == NULL)
1060 return stmt1;
1061
1062 uid1 = gimple_uid (stmt1);
1063 uid2 = gimple_uid (stmt2);
1064
1065 if (uid1 == 0 || uid2 == 0)
1066 return NULL;
1067
1068 gcc_checking_assert (uid1 <= stmt_vec_info_vec.length ()
1069 && uid2 <= stmt_vec_info_vec.length ());
1070
1071 if (uid1 < uid2)
1072 return stmt1;
1073 else
1074 return stmt2;
1075 }
1076
1077 /* Return the later statement between STMT1 and STMT2. */
1078
1079 static inline gimple *
1080 get_later_stmt (gimple *stmt1, gimple *stmt2)
1081 {
1082 unsigned int uid1, uid2;
1083
1084 if (stmt1 == NULL)
1085 return stmt2;
1086
1087 if (stmt2 == NULL)
1088 return stmt1;
1089
1090 uid1 = gimple_uid (stmt1);
1091 uid2 = gimple_uid (stmt2);
1092
1093 if (uid1 == 0 || uid2 == 0)
1094 return NULL;
1095
1096 gcc_assert (uid1 <= stmt_vec_info_vec.length ());
1097 gcc_assert (uid2 <= stmt_vec_info_vec.length ());
1098
1099 if (uid1 > uid2)
1100 return stmt1;
1101 else
1102 return stmt2;
1103 }
1104
1105 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1106 pattern. */
1107
1108 static inline bool
1109 is_pattern_stmt_p (stmt_vec_info stmt_info)
1110 {
1111 gimple *related_stmt;
1112 stmt_vec_info related_stmt_info;
1113
1114 related_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1115 if (related_stmt
1116 && (related_stmt_info = vinfo_for_stmt (related_stmt))
1117 && STMT_VINFO_IN_PATTERN_P (related_stmt_info))
1118 return true;
1119
1120 return false;
1121 }
1122
1123 /* Return true if BB is a loop header. */
1124
1125 static inline bool
1126 is_loop_header_bb_p (basic_block bb)
1127 {
1128 if (bb == (bb->loop_father)->header)
1129 return true;
1130 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1131 return false;
1132 }
1133
1134 /* Return pow2 (X). */
1135
1136 static inline int
1137 vect_pow2 (int x)
1138 {
1139 int i, res = 1;
1140
1141 for (i = 0; i < x; i++)
1142 res *= 2;
1143
1144 return res;
1145 }
1146
1147 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1148
1149 static inline int
1150 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1151 tree vectype, int misalign)
1152 {
1153 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1154 vectype, misalign);
1155 }
1156
1157 /* Get cost by calling cost target builtin. */
1158
1159 static inline
1160 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1161 {
1162 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1163 }
1164
1165 /* Alias targetm.vectorize.init_cost. */
1166
1167 static inline void *
1168 init_cost (struct loop *loop_info)
1169 {
1170 return targetm.vectorize.init_cost (loop_info);
1171 }
1172
1173 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1174 stmt_vec_info, int, enum vect_cost_model_location);
1175
1176 /* Alias targetm.vectorize.add_stmt_cost. */
1177
1178 static inline unsigned
1179 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1180 stmt_vec_info stmt_info, int misalign,
1181 enum vect_cost_model_location where)
1182 {
1183 if (dump_file && (dump_flags & TDF_DETAILS))
1184 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign, where);
1185 return targetm.vectorize.add_stmt_cost (data, count, kind,
1186 stmt_info, misalign, where);
1187 }
1188
1189 /* Alias targetm.vectorize.finish_cost. */
1190
1191 static inline void
1192 finish_cost (void *data, unsigned *prologue_cost,
1193 unsigned *body_cost, unsigned *epilogue_cost)
1194 {
1195 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1196 }
1197
1198 /* Alias targetm.vectorize.destroy_cost_data. */
1199
1200 static inline void
1201 destroy_cost_data (void *data)
1202 {
1203 targetm.vectorize.destroy_cost_data (data);
1204 }
1205
1206 inline void
1207 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1208 {
1209 stmt_info_for_cost *cost;
1210 unsigned i;
1211 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1212 add_stmt_cost (data, cost->count, cost->kind,
1213 cost->stmt ? vinfo_for_stmt (cost->stmt) : NULL,
1214 cost->misalign, cost->where);
1215 }
1216
1217 /*-----------------------------------------------------------------*/
1218 /* Info on data references alignment. */
1219 /*-----------------------------------------------------------------*/
1220 inline void
1221 set_dr_misalignment (struct data_reference *dr, int val)
1222 {
1223 dataref_aux *data_aux = DR_VECT_AUX (dr);
1224
1225 if (!data_aux)
1226 {
1227 data_aux = XCNEW (dataref_aux);
1228 dr->aux = data_aux;
1229 }
1230
1231 data_aux->misalignment = val;
1232 }
1233
1234 inline int
1235 dr_misalignment (struct data_reference *dr)
1236 {
1237 return DR_VECT_AUX (dr)->misalignment;
1238 }
1239
1240 /* Reflects actual alignment of first access in the vectorized loop,
1241 taking into account peeling/versioning if applied. */
1242 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1243 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1244 #define DR_MISALIGNMENT_UNKNOWN (-1)
1245
1246 /* Only defined once DR_MISALIGNMENT is defined. */
1247 #define DR_TARGET_ALIGNMENT(DR) DR_VECT_AUX (DR)->target_alignment
1248
1249 /* Return true if data access DR is aligned to its target alignment
1250 (which may be less than a full vector). */
1251
1252 static inline bool
1253 aligned_access_p (struct data_reference *data_ref_info)
1254 {
1255 return (DR_MISALIGNMENT (data_ref_info) == 0);
1256 }
1257
1258 /* Return TRUE if the alignment of the data access is known, and FALSE
1259 otherwise. */
1260
1261 static inline bool
1262 known_alignment_for_access_p (struct data_reference *data_ref_info)
1263 {
1264 return (DR_MISALIGNMENT (data_ref_info) != DR_MISALIGNMENT_UNKNOWN);
1265 }
1266
1267 /* Return the minimum alignment in bytes that the vectorized version
1268 of DR is guaranteed to have. */
1269
1270 static inline unsigned int
1271 vect_known_alignment_in_bytes (struct data_reference *dr)
1272 {
1273 if (DR_MISALIGNMENT (dr) == DR_MISALIGNMENT_UNKNOWN)
1274 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr)));
1275 if (DR_MISALIGNMENT (dr) == 0)
1276 return DR_TARGET_ALIGNMENT (dr);
1277 return DR_MISALIGNMENT (dr) & -DR_MISALIGNMENT (dr);
1278 }
1279
1280 /* Return the behavior of DR with respect to the vectorization context
1281 (which for outer loop vectorization might not be the behavior recorded
1282 in DR itself). */
1283
1284 static inline innermost_loop_behavior *
1285 vect_dr_behavior (data_reference *dr)
1286 {
1287 gimple *stmt = DR_STMT (dr);
1288 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1289 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1290 if (loop_vinfo == NULL
1291 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt))
1292 return &DR_INNERMOST (dr);
1293 else
1294 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1295 }
1296
1297 /* Return true if the vect cost model is unlimited. */
1298 static inline bool
1299 unlimited_cost_model (loop_p loop)
1300 {
1301 if (loop != NULL && loop->force_vectorize
1302 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1303 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1304 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1305 }
1306
1307 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1308 if the first iteration should use a partial mask in order to achieve
1309 alignment. */
1310
1311 static inline bool
1312 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1313 {
1314 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1315 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1316 }
1317
1318 /* Return the number of vectors of type VECTYPE that are needed to get
1319 NUNITS elements. NUNITS should be based on the vectorization factor,
1320 so it is always a known multiple of the number of elements in VECTYPE. */
1321
1322 static inline unsigned int
1323 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1324 {
1325 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1326 }
1327
1328 /* Return the number of copies needed for loop vectorization when
1329 a statement operates on vectors of type VECTYPE. This is the
1330 vectorization factor divided by the number of elements in
1331 VECTYPE and is always known at compile time. */
1332
1333 static inline unsigned int
1334 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1335 {
1336 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1337 }
1338
1339 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1340 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1341 if we haven't yet recorded any vector types. */
1342
1343 static inline void
1344 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1345 {
1346 /* All unit counts have the form current_vector_size * X for some
1347 rational X, so two unit sizes must have a common multiple.
1348 Everything is a multiple of the initial value of 1. */
1349 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1350 *max_nunits = force_common_multiple (*max_nunits, nunits);
1351 }
1352
1353 /* Return the vectorization factor that should be used for costing
1354 purposes while vectorizing the loop described by LOOP_VINFO.
1355 Pick a reasonable estimate if the vectorization factor isn't
1356 known at compile time. */
1357
1358 static inline unsigned int
1359 vect_vf_for_cost (loop_vec_info loop_vinfo)
1360 {
1361 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1362 }
1363
1364 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1365 Pick a reasonable estimate if the exact number isn't known at
1366 compile time. */
1367
1368 static inline unsigned int
1369 vect_nunits_for_cost (tree vec_type)
1370 {
1371 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1372 }
1373
1374 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1375
1376 static inline unsigned HOST_WIDE_INT
1377 vect_max_vf (loop_vec_info loop_vinfo)
1378 {
1379 unsigned HOST_WIDE_INT vf;
1380 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1381 return vf;
1382 return MAX_VECTORIZATION_FACTOR;
1383 }
1384
1385 /* Return the size of the value accessed by unvectorized data reference DR.
1386 This is only valid once STMT_VINFO_VECTYPE has been calculated for the
1387 associated gimple statement, since that guarantees that DR accesses
1388 either a scalar or a scalar equivalent. ("Scalar equivalent" here
1389 includes things like V1SI, which can be vectorized in the same way
1390 as a plain SI.) */
1391
1392 inline unsigned int
1393 vect_get_scalar_dr_size (struct data_reference *dr)
1394 {
1395 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
1396 }
1397
1398 /* Source location */
1399 extern source_location vect_location;
1400
1401 /*-----------------------------------------------------------------*/
1402 /* Function prototypes. */
1403 /*-----------------------------------------------------------------*/
1404
1405 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1406 in tree-vect-loop-manip.c. */
1407 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1408 tree, tree, tree, bool);
1409 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1410 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1411 struct loop *, edge);
1412 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool,
1413 poly_uint64);
1414 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1415 tree *, tree *, tree *, int, bool, bool);
1416 extern void vect_prepare_for_masked_peels (loop_vec_info);
1417 extern source_location find_loop_location (struct loop *);
1418 extern bool vect_can_advance_ivs_p (loop_vec_info);
1419
1420 /* In tree-vect-stmts.c. */
1421 extern poly_uint64 current_vector_size;
1422 extern tree get_vectype_for_scalar_type (tree);
1423 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1424 extern tree get_mask_type_for_scalar_type (tree);
1425 extern tree get_same_sized_vectype (tree, tree);
1426 extern bool vect_get_loop_mask_type (loop_vec_info);
1427 extern bool vect_is_simple_use (tree, vec_info *, gimple **,
1428 enum vect_def_type *);
1429 extern bool vect_is_simple_use (tree, vec_info *, gimple **,
1430 enum vect_def_type *, tree *);
1431 extern bool supportable_widening_operation (enum tree_code, gimple *, tree,
1432 tree, enum tree_code *,
1433 enum tree_code *, int *,
1434 vec<tree> *);
1435 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1436 enum tree_code *,
1437 int *, vec<tree> *);
1438 extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *);
1439 extern void free_stmt_vec_info (gimple *stmt);
1440 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1441 enum vect_cost_for_stmt, stmt_vec_info,
1442 int, enum vect_cost_model_location);
1443 extern void vect_finish_replace_stmt (gimple *, gimple *);
1444 extern void vect_finish_stmt_generation (gimple *, gimple *,
1445 gimple_stmt_iterator *);
1446 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1447 extern tree vect_get_store_rhs (gimple *);
1448 extern tree vect_get_vec_def_for_operand_1 (gimple *, enum vect_def_type);
1449 extern tree vect_get_vec_def_for_operand (tree, gimple *, tree = NULL);
1450 extern void vect_get_vec_defs (tree, tree, gimple *, vec<tree> *,
1451 vec<tree> *, slp_tree);
1452 extern void vect_get_vec_defs_for_stmt_copy (enum vect_def_type *,
1453 vec<tree> *, vec<tree> *);
1454 extern tree vect_init_vector (gimple *, tree, tree,
1455 gimple_stmt_iterator *);
1456 extern tree vect_get_vec_def_for_stmt_copy (enum vect_def_type, tree);
1457 extern bool vect_transform_stmt (gimple *, gimple_stmt_iterator *,
1458 bool *, slp_tree, slp_instance);
1459 extern void vect_remove_stores (gimple *);
1460 extern bool vect_analyze_stmt (gimple *, bool *, slp_tree, slp_instance,
1461 stmt_vector_for_cost *);
1462 extern bool vectorizable_condition (gimple *, gimple_stmt_iterator *,
1463 gimple **, tree, int, slp_tree,
1464 stmt_vector_for_cost *);
1465 extern void vect_get_load_cost (struct data_reference *, int, bool,
1466 unsigned int *, unsigned int *,
1467 stmt_vector_for_cost *,
1468 stmt_vector_for_cost *, bool);
1469 extern void vect_get_store_cost (struct data_reference *, int,
1470 unsigned int *, stmt_vector_for_cost *);
1471 extern bool vect_supportable_shift (enum tree_code, tree);
1472 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1473 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1474 extern void optimize_mask_stores (struct loop*);
1475 extern gcall *vect_gen_while (tree, tree, tree);
1476 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1477 extern bool vect_get_vector_types_for_stmt (stmt_vec_info, tree *, tree *);
1478 extern tree vect_get_mask_type_for_stmt (stmt_vec_info);
1479
1480 /* In tree-vect-data-refs.c. */
1481 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1482 extern enum dr_alignment_support vect_supportable_dr_alignment
1483 (struct data_reference *, bool);
1484 extern tree vect_get_smallest_scalar_type (gimple *, HOST_WIDE_INT *,
1485 HOST_WIDE_INT *);
1486 extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1487 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1488 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1489 extern bool vect_analyze_data_refs_alignment (loop_vec_info);
1490 extern bool vect_verify_datarefs_alignment (loop_vec_info);
1491 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1492 extern bool vect_analyze_data_ref_accesses (vec_info *);
1493 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1494 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1495 signop, int, internal_fn *, tree *);
1496 extern bool vect_check_gather_scatter (gimple *, loop_vec_info,
1497 gather_scatter_info *);
1498 extern bool vect_find_stmt_data_reference (loop_p, gimple *,
1499 vec<data_reference_p> *);
1500 extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *);
1501 extern void vect_record_base_alignments (vec_info *);
1502 extern tree vect_create_data_ref_ptr (gimple *, tree, struct loop *, tree,
1503 tree *, gimple_stmt_iterator *,
1504 gimple **, bool, bool *,
1505 tree = NULL_TREE, tree = NULL_TREE);
1506 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *, gimple *,
1507 tree);
1508 extern void vect_copy_ref_info (tree, tree);
1509 extern tree vect_create_destination_var (tree, tree);
1510 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1511 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1512 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1513 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1514 extern void vect_permute_store_chain (vec<tree> ,unsigned int, gimple *,
1515 gimple_stmt_iterator *, vec<tree> *);
1516 extern tree vect_setup_realignment (gimple *, gimple_stmt_iterator *, tree *,
1517 enum dr_alignment_support, tree,
1518 struct loop **);
1519 extern void vect_transform_grouped_load (gimple *, vec<tree> , int,
1520 gimple_stmt_iterator *);
1521 extern void vect_record_grouped_load_vectors (gimple *, vec<tree> );
1522 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1523 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1524 const char * = NULL);
1525 extern tree vect_create_addr_base_for_vector_ref (gimple *, gimple_seq *,
1526 tree, tree = NULL_TREE);
1527
1528 /* In tree-vect-loop.c. */
1529 /* FORNOW: Used in tree-parloops.c. */
1530 extern gimple *vect_force_simple_reduction (loop_vec_info, gimple *,
1531 bool *, bool);
1532 /* Used in gimple-loop-interchange.c. */
1533 extern bool check_reduction_path (location_t, loop_p, gphi *, tree,
1534 enum tree_code);
1535 /* Drive for loop analysis stage. */
1536 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info);
1537 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1538 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1539 tree *, bool);
1540 extern tree vect_halve_mask_nunits (tree);
1541 extern tree vect_double_mask_nunits (tree);
1542 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1543 unsigned int, tree);
1544 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1545 unsigned int, tree, unsigned int);
1546
1547 /* Drive for loop transformation stage. */
1548 extern struct loop *vect_transform_loop (loop_vec_info);
1549 extern loop_vec_info vect_analyze_loop_form (struct loop *);
1550 extern bool vectorizable_live_operation (gimple *, gimple_stmt_iterator *,
1551 slp_tree, int, gimple **,
1552 stmt_vector_for_cost *);
1553 extern bool vectorizable_reduction (gimple *, gimple_stmt_iterator *,
1554 gimple **, slp_tree, slp_instance,
1555 stmt_vector_for_cost *);
1556 extern bool vectorizable_induction (gimple *, gimple_stmt_iterator *,
1557 gimple **, slp_tree,
1558 stmt_vector_for_cost *);
1559 extern tree get_initial_def_for_reduction (gimple *, tree, tree *);
1560 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1561 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1562 stmt_vector_for_cost *,
1563 stmt_vector_for_cost *,
1564 stmt_vector_for_cost *);
1565 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1566
1567 /* In tree-vect-slp.c. */
1568 extern void vect_free_slp_instance (slp_instance);
1569 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1570 gimple_stmt_iterator *, poly_uint64,
1571 slp_instance, bool, unsigned *);
1572 extern bool vect_slp_analyze_operations (vec_info *);
1573 extern bool vect_schedule_slp (vec_info *);
1574 extern bool vect_analyze_slp (vec_info *, unsigned);
1575 extern bool vect_make_slp_decision (loop_vec_info);
1576 extern void vect_detect_hybrid_slp (loop_vec_info);
1577 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1578 extern bool vect_slp_bb (basic_block);
1579 extern gimple *vect_find_last_scalar_stmt_in_slp (slp_tree);
1580 extern bool is_simple_and_all_uses_invariant (gimple *, loop_vec_info);
1581 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1582 unsigned int * = NULL,
1583 tree * = NULL, tree * = NULL);
1584 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1585 unsigned int, vec<tree> &);
1586 extern int vect_get_place_in_interleaving_chain (gimple *, gimple *);
1587
1588 /* In tree-vect-patterns.c. */
1589 /* Pattern recognition functions.
1590 Additional pattern recognition functions can (and will) be added
1591 in the future. */
1592 typedef gimple *(* vect_recog_func_ptr) (vec<gimple *> *, tree *, tree *);
1593 #define NUM_PATTERNS 15
1594 void vect_pattern_recog (vec_info *);
1595
1596 /* In tree-vectorizer.c. */
1597 unsigned vectorize_loops (void);
1598 bool vect_stmt_in_region_p (vec_info *, gimple *);
1599 void vect_free_loop_info_assumptions (struct loop *);
1600
1601 #endif /* GCC_TREE_VECTORIZER_H */
This page took 0.0985200000000001 seconds and 5 git commands to generate.