]> gcc.gnu.org Git - gcc.git/blob - gcc/tree-ssa.c
* mangle.c (get_identifier_nocopy): Add cast.
[gcc.git] / gcc / tree-ssa.c
1 /* Miscellaneous SSA utility functions.
2 Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "langhooks.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "errors.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "diagnostic.h"
38 #include "bitmap.h"
39 #include "tree-flow.h"
40 #include "tree-gimple.h"
41 #include "tree-inline.h"
42 #include "varray.h"
43 #include "timevar.h"
44 #include "tree-alias-common.h"
45 #include "hashtab.h"
46 #include "tree-dump.h"
47 #include "tree-pass.h"
48
49
50 /* Remove edge E and remove the corresponding arguments from the PHI nodes
51 in E's destination block. */
52
53 void
54 ssa_remove_edge (edge e)
55 {
56 tree phi, next;
57
58 /* Remove the appropriate PHI arguments in E's destination block. */
59 for (phi = phi_nodes (e->dest); phi; phi = next)
60 {
61 next = PHI_CHAIN (phi);
62 remove_phi_arg (phi, e->src);
63 }
64
65 remove_edge (e);
66 }
67
68 /* Remove the corresponding arguments from the PHI nodes in E's
69 destination block and redirect it to DEST. Return redirected edge.
70 The list of removed arguments is stored in PENDING_STMT (e). */
71
72 edge
73 ssa_redirect_edge (edge e, basic_block dest)
74 {
75 tree phi, next;
76 tree list = NULL, *last = &list;
77 tree src, dst, node;
78 int i;
79
80 /* Remove the appropriate PHI arguments in E's destination block. */
81 for (phi = phi_nodes (e->dest); phi; phi = next)
82 {
83 next = PHI_CHAIN (phi);
84
85 i = phi_arg_from_edge (phi, e);
86 if (i < 0)
87 continue;
88
89 src = PHI_ARG_DEF (phi, i);
90 dst = PHI_RESULT (phi);
91 node = build_tree_list (dst, src);
92 *last = node;
93 last = &TREE_CHAIN (node);
94
95 remove_phi_arg_num (phi, i);
96 }
97
98 e = redirect_edge_succ_nodup (e, dest);
99 PENDING_STMT (e) = list;
100
101 return e;
102 }
103
104
105 /* Return true if SSA_NAME is malformed and mark it visited.
106
107 IS_VIRTUAL is true if this SSA_NAME was found inside a virtual
108 operand. */
109
110 static bool
111 verify_ssa_name (tree ssa_name, bool is_virtual)
112 {
113 TREE_VISITED (ssa_name) = 1;
114
115 if (TREE_CODE (ssa_name) != SSA_NAME)
116 {
117 error ("Expected an SSA_NAME object");
118 return true;
119 }
120
121 if (TREE_TYPE (ssa_name) != TREE_TYPE (SSA_NAME_VAR (ssa_name)))
122 {
123 error ("Type mismatch between an SSA_NAME and its symbol.");
124 return true;
125 }
126
127 if (SSA_NAME_IN_FREE_LIST (ssa_name))
128 {
129 error ("Found an SSA_NAME that had been released into the free pool");
130 return true;
131 }
132
133 if (is_virtual && is_gimple_reg (ssa_name))
134 {
135 error ("Found a virtual definition for a GIMPLE register");
136 return true;
137 }
138
139 if (!is_virtual && !is_gimple_reg (ssa_name))
140 {
141 error ("Found a real definition for a non-register");
142 return true;
143 }
144
145 return false;
146 }
147
148
149 /* Return true if the definition of SSA_NAME at block BB is malformed.
150
151 STMT is the statement where SSA_NAME is created.
152
153 DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME
154 version numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set,
155 it means that the block in that array slot contains the
156 definition of SSA_NAME.
157
158 IS_VIRTUAL is true if SSA_NAME is created by a V_MAY_DEF or a
159 V_MUST_DEF. */
160
161 static bool
162 verify_def (basic_block bb, basic_block *definition_block, tree ssa_name,
163 tree stmt, bool is_virtual)
164 {
165 if (verify_ssa_name (ssa_name, is_virtual))
166 goto err;
167
168 if (definition_block[SSA_NAME_VERSION (ssa_name)])
169 {
170 error ("SSA_NAME created in two different blocks %i and %i",
171 definition_block[SSA_NAME_VERSION (ssa_name)]->index, bb->index);
172 goto err;
173 }
174
175 definition_block[SSA_NAME_VERSION (ssa_name)] = bb;
176
177 if (SSA_NAME_DEF_STMT (ssa_name) != stmt)
178 {
179 error ("SSA_NAME_DEF_STMT is wrong");
180 fprintf (stderr, "Expected definition statement:\n");
181 debug_generic_stmt (SSA_NAME_DEF_STMT (ssa_name));
182 fprintf (stderr, "\nActual definition statement:\n");
183 debug_generic_stmt (stmt);
184 goto err;
185 }
186
187 return false;
188
189 err:
190 fprintf (stderr, "while verifying SSA_NAME ");
191 print_generic_expr (stderr, ssa_name, 0);
192 fprintf (stderr, " in statement\n");
193 debug_generic_stmt (stmt);
194
195 return true;
196 }
197
198
199 /* Return true if the use of SSA_NAME at statement STMT in block BB is
200 malformed.
201
202 DEF_BB is the block where SSA_NAME was found to be created.
203
204 IDOM contains immediate dominator information for the flowgraph.
205
206 CHECK_ABNORMAL is true if the caller wants to check whether this use
207 is flowing through an abnormal edge (only used when checking PHI
208 arguments).
209
210 IS_VIRTUAL is true if SSA_NAME is created by a V_MAY_DEF or a
211 V_MUST_DEF. */
212
213 static bool
214 verify_use (basic_block bb, basic_block def_bb, tree ssa_name,
215 tree stmt, bool check_abnormal, bool is_virtual)
216 {
217 bool err = false;
218
219 err = verify_ssa_name (ssa_name, is_virtual);
220
221 if (IS_EMPTY_STMT (SSA_NAME_DEF_STMT (ssa_name))
222 && var_ann (SSA_NAME_VAR (ssa_name))->default_def == ssa_name)
223 ; /* Default definitions have empty statements. Nothing to do. */
224 else if (!def_bb)
225 {
226 error ("Missing definition");
227 err = true;
228 }
229 else if (bb != def_bb
230 && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
231 {
232 error ("Definition in block %i does not dominate use in block %i",
233 def_bb->index, bb->index);
234 err = true;
235 }
236
237 if (check_abnormal
238 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
239 {
240 error ("SSA_NAME_OCCURS_IN_ABNORMAL_PHI should be set");
241 err = true;
242 }
243
244 if (err)
245 {
246 fprintf (stderr, "for SSA_NAME: ");
247 debug_generic_expr (ssa_name);
248 fprintf (stderr, "in statement:\n");
249 debug_generic_stmt (stmt);
250 }
251
252 return err;
253 }
254
255
256 /* Return true if any of the arguments for PHI node PHI at block BB is
257 malformed.
258
259 IDOM contains immediate dominator information for the flowgraph.
260
261 DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME version
262 numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set, it means that the
263 block in that array slot contains the definition of SSA_NAME. */
264
265 static bool
266 verify_phi_args (tree phi, basic_block bb, basic_block *definition_block)
267 {
268 edge e;
269 bool err = false;
270 int i, phi_num_args = PHI_NUM_ARGS (phi);
271
272 /* Mark all the incoming edges. */
273 for (e = bb->pred; e; e = e->pred_next)
274 e->aux = (void *) 1;
275
276 for (i = 0; i < phi_num_args; i++)
277 {
278 tree op = PHI_ARG_DEF (phi, i);
279
280 e = PHI_ARG_EDGE (phi, i);
281
282 if (TREE_CODE (op) == SSA_NAME)
283 err = verify_use (e->src, definition_block[SSA_NAME_VERSION (op)], op,
284 phi, e->flags & EDGE_ABNORMAL,
285 !is_gimple_reg (PHI_RESULT (phi)));
286
287 if (e->dest != bb)
288 {
289 error ("Wrong edge %d->%d for PHI argument\n",
290 e->src->index, e->dest->index, bb->index);
291 err = true;
292 }
293
294 if (e->aux == (void *) 0)
295 {
296 error ("PHI argument flowing through dead edge %d->%d\n",
297 e->src->index, e->dest->index);
298 err = true;
299 }
300
301 if (e->aux == (void *) 2)
302 {
303 error ("PHI argument duplicated for edge %d->%d\n", e->src->index,
304 e->dest->index);
305 err = true;
306 }
307
308 if (err)
309 {
310 fprintf (stderr, "PHI argument\n");
311 debug_generic_stmt (op);
312 goto error;
313 }
314
315 e->aux = (void *) 2;
316 }
317
318 for (e = bb->pred; e; e = e->pred_next)
319 {
320 if (e->aux != (void *) 2)
321 {
322 error ("No argument flowing through edge %d->%d\n", e->src->index,
323 e->dest->index);
324 err = true;
325 goto error;
326 }
327 e->aux = (void *) 0;
328 }
329
330 error:
331 if (err)
332 {
333 fprintf (stderr, "for PHI node\n");
334 debug_generic_stmt (phi);
335 }
336
337
338 return err;
339 }
340
341
342 static void
343 verify_flow_insensitive_alias_info (void)
344 {
345 size_t i;
346 tree var;
347 bitmap visited = BITMAP_XMALLOC ();
348
349 for (i = 0; i < num_referenced_vars; i++)
350 {
351 size_t j;
352 var_ann_t ann;
353 varray_type may_aliases;
354
355 var = referenced_var (i);
356 ann = var_ann (var);
357 may_aliases = ann->may_aliases;
358
359 for (j = 0; may_aliases && j < VARRAY_ACTIVE_SIZE (may_aliases); j++)
360 {
361 tree alias = VARRAY_TREE (may_aliases, j);
362
363 bitmap_set_bit (visited, var_ann (alias)->uid);
364
365 if (!may_be_aliased (alias))
366 {
367 error ("Non-addressable variable inside an alias set.");
368 debug_variable (alias);
369 goto err;
370 }
371 }
372 }
373
374 for (i = 0; i < num_referenced_vars; i++)
375 {
376 var_ann_t ann;
377
378 var = referenced_var (i);
379 ann = var_ann (var);
380
381 if (ann->mem_tag_kind == NOT_A_TAG
382 && ann->is_alias_tag
383 && !bitmap_bit_p (visited, ann->uid))
384 {
385 error ("Addressable variable that is an alias tag but is not in any alias set.");
386 goto err;
387 }
388 }
389
390 BITMAP_XFREE (visited);
391 return;
392
393 err:
394 debug_variable (var);
395 internal_error ("verify_flow_insensitive_alias_info failed.");
396 }
397
398
399 static void
400 verify_flow_sensitive_alias_info (void)
401 {
402 size_t i;
403 tree ptr;
404
405 for (i = 1; i < num_ssa_names; i++)
406 {
407 var_ann_t ann;
408 struct ptr_info_def *pi;
409
410 ptr = ssa_name (i);
411 ann = var_ann (SSA_NAME_VAR (ptr));
412 pi = SSA_NAME_PTR_INFO (ptr);
413
414 /* We only care for pointers that are actually referenced in the
415 program. */
416 if (!TREE_VISITED (ptr) || !POINTER_TYPE_P (TREE_TYPE (ptr)))
417 continue;
418
419 /* RESULT_DECL is special. If it's a GIMPLE register, then it
420 is only written-to only once in the return statement.
421 Otherwise, aggregate RESULT_DECLs may be written-to more than
422 once in virtual operands. */
423 if (TREE_CODE (SSA_NAME_VAR (ptr)) == RESULT_DECL
424 && is_gimple_reg (ptr))
425 continue;
426
427 if (pi == NULL)
428 continue;
429
430 if (pi->is_dereferenced && !pi->name_mem_tag && !ann->type_mem_tag)
431 {
432 error ("Dereferenced pointers should have a name or a type tag");
433 goto err;
434 }
435
436 if (pi->name_mem_tag
437 && !pi->pt_malloc
438 && (pi->pt_vars == NULL
439 || bitmap_first_set_bit (pi->pt_vars) < 0))
440 {
441 error ("Pointers with a memory tag, should have points-to sets or point to malloc");
442 goto err;
443 }
444
445 if (pi->value_escapes_p
446 && pi->name_mem_tag
447 && !is_call_clobbered (pi->name_mem_tag))
448 {
449 error ("Pointer escapes but its name tag is not call-clobbered.");
450 goto err;
451 }
452
453 if (pi->name_mem_tag && pi->pt_vars)
454 {
455 size_t j;
456
457 for (j = i + 1; j < num_ssa_names; j++)
458 {
459 tree ptr2 = ssa_name (j);
460 struct ptr_info_def *pi2 = SSA_NAME_PTR_INFO (ptr2);
461
462 if (!TREE_VISITED (ptr2) || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
463 continue;
464
465 if (pi2
466 && pi2->name_mem_tag
467 && pi2->pt_vars
468 && bitmap_first_set_bit (pi2->pt_vars) >= 0
469 && pi->name_mem_tag != pi2->name_mem_tag
470 && bitmap_equal_p (pi->pt_vars, pi2->pt_vars))
471 {
472 error ("Two pointers with different name tags and identical points-to sets");
473 debug_variable (ptr2);
474 goto err;
475 }
476 }
477 }
478 }
479
480 return;
481
482 err:
483 debug_variable (ptr);
484 internal_error ("verify_flow_sensitive_alias_info failed.");
485 }
486
487
488 /* Verify the consistency of aliasing information. */
489
490 static void
491 verify_alias_info (void)
492 {
493 verify_flow_sensitive_alias_info ();
494 verify_flow_insensitive_alias_info ();
495 }
496
497
498 /* Verify common invariants in the SSA web.
499 TODO: verify the variable annotations. */
500
501 void
502 verify_ssa (void)
503 {
504 size_t i;
505 basic_block bb;
506 basic_block *definition_block = xcalloc (num_ssa_names, sizeof (basic_block));
507
508 timevar_push (TV_TREE_SSA_VERIFY);
509
510 /* Keep track of SSA names present in the IL. */
511 for (i = 1; i < num_ssa_names; i++)
512 TREE_VISITED (ssa_name (i)) = 0;
513
514 calculate_dominance_info (CDI_DOMINATORS);
515
516 /* Verify and register all the SSA_NAME definitions found in the
517 function. */
518 FOR_EACH_BB (bb)
519 {
520 tree phi;
521 block_stmt_iterator bsi;
522
523 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
524 if (verify_def (bb, definition_block, PHI_RESULT (phi), phi,
525 !is_gimple_reg (PHI_RESULT (phi))))
526 goto err;
527
528 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
529 {
530 tree stmt;
531 stmt_ann_t ann;
532 unsigned int j;
533 v_may_def_optype v_may_defs;
534 v_must_def_optype v_must_defs;
535 def_optype defs;
536
537 stmt = bsi_stmt (bsi);
538 ann = stmt_ann (stmt);
539 get_stmt_operands (stmt);
540
541 v_may_defs = V_MAY_DEF_OPS (ann);
542 if (ann->makes_aliased_stores && NUM_V_MAY_DEFS (v_may_defs) == 0)
543 {
544 error ("Statement makes aliased stores, but has no V_MAY_DEFS");
545 debug_generic_stmt (stmt);
546 goto err;
547 }
548
549 for (j = 0; j < NUM_V_MAY_DEFS (v_may_defs); j++)
550 {
551 tree op = V_MAY_DEF_RESULT (v_may_defs, j);
552 if (verify_def (bb, definition_block, op, stmt, true))
553 goto err;
554 }
555
556 v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
557 for (j = 0; j < NUM_V_MUST_DEFS (v_must_defs); j++)
558 {
559 tree op = V_MUST_DEF_OP (v_must_defs, j);
560 if (verify_def (bb, definition_block, op, stmt, true))
561 goto err;
562 }
563
564 defs = DEF_OPS (ann);
565 for (j = 0; j < NUM_DEFS (defs); j++)
566 {
567 tree op = DEF_OP (defs, j);
568 if (verify_def (bb, definition_block, op, stmt, false))
569 goto err;
570 }
571 }
572 }
573
574
575 /* Now verify all the uses and make sure they agree with the definitions
576 found in the previous pass. */
577 FOR_EACH_BB (bb)
578 {
579 edge e;
580 tree phi;
581 block_stmt_iterator bsi;
582
583 /* Make sure that all edges have a clear 'aux' field. */
584 for (e = bb->pred; e; e = e->pred_next)
585 {
586 if (e->aux)
587 {
588 error ("AUX pointer initialized for edge %d->%d\n", e->src->index,
589 e->dest->index);
590 goto err;
591 }
592 }
593
594 /* Verify the arguments for every PHI node in the block. */
595 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
596 if (verify_phi_args (phi, bb, definition_block))
597 goto err;
598
599 /* Now verify all the uses and vuses in every statement of the block. */
600 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
601 {
602 tree stmt = bsi_stmt (bsi);
603 stmt_ann_t ann = stmt_ann (stmt);
604 unsigned int j;
605 vuse_optype vuses;
606 v_may_def_optype v_may_defs;
607 use_optype uses;
608
609 vuses = VUSE_OPS (ann);
610 for (j = 0; j < NUM_VUSES (vuses); j++)
611 {
612 tree op = VUSE_OP (vuses, j);
613 if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
614 op, stmt, false, true))
615 goto err;
616 }
617
618 v_may_defs = V_MAY_DEF_OPS (ann);
619 for (j = 0; j < NUM_V_MAY_DEFS (v_may_defs); j++)
620 {
621 tree op = V_MAY_DEF_OP (v_may_defs, j);
622 if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
623 op, stmt, false, true))
624 goto err;
625 }
626
627 uses = USE_OPS (ann);
628 for (j = 0; j < NUM_USES (uses); j++)
629 {
630 tree op = USE_OP (uses, j);
631 if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
632 op, stmt, false, false))
633 goto err;
634 }
635 }
636 }
637
638 /* Finally, verify alias information. */
639 verify_alias_info ();
640
641 free (definition_block);
642 timevar_pop (TV_TREE_SSA_VERIFY);
643 return;
644
645 err:
646 internal_error ("verify_ssa failed.");
647 }
648
649
650 /* Initialize global DFA and SSA structures. */
651
652 void
653 init_tree_ssa (void)
654 {
655 VARRAY_TREE_INIT (referenced_vars, 20, "referenced_vars");
656 call_clobbered_vars = BITMAP_XMALLOC ();
657 addressable_vars = BITMAP_XMALLOC ();
658 init_ssa_operands ();
659 init_ssanames ();
660 init_phinodes ();
661 global_var = NULL_TREE;
662 }
663
664
665 /* Deallocate memory associated with SSA data structures for FNDECL. */
666
667 void
668 delete_tree_ssa (void)
669 {
670 size_t i;
671 basic_block bb;
672 block_stmt_iterator bsi;
673
674 /* Remove annotations from every tree in the function. */
675 FOR_EACH_BB (bb)
676 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
677 bsi_stmt (bsi)->common.ann = NULL;
678
679 /* Remove annotations from every referenced variable. */
680 if (referenced_vars)
681 {
682 for (i = 0; i < num_referenced_vars; i++)
683 referenced_var (i)->common.ann = NULL;
684 referenced_vars = NULL;
685 }
686
687 fini_ssanames ();
688 fini_phinodes ();
689 fini_ssa_operands ();
690
691 global_var = NULL_TREE;
692 BITMAP_XFREE (call_clobbered_vars);
693 call_clobbered_vars = NULL;
694 BITMAP_XFREE (addressable_vars);
695 addressable_vars = NULL;
696 }
697
698
699 /* Return true if EXPR is a useless type conversion, otherwise return
700 false. */
701
702 bool
703 tree_ssa_useless_type_conversion_1 (tree outer_type, tree inner_type)
704 {
705 /* If the inner and outer types are effectively the same, then
706 strip the type conversion and enter the equivalence into
707 the table. */
708 if (inner_type == outer_type
709 || (lang_hooks.types_compatible_p (inner_type, outer_type)))
710 return true;
711
712 /* If both types are pointers and the outer type is a (void *), then
713 the conversion is not necessary. The opposite is not true since
714 that conversion would result in a loss of information if the
715 equivalence was used. Consider an indirect function call where
716 we need to know the exact type of the function to correctly
717 implement the ABI. */
718 else if (POINTER_TYPE_P (inner_type)
719 && POINTER_TYPE_P (outer_type)
720 && TREE_CODE (TREE_TYPE (outer_type)) == VOID_TYPE)
721 return true;
722
723 /* Pointers and references are equivalent once we get to GENERIC,
724 so strip conversions that just switch between them. */
725 else if (POINTER_TYPE_P (inner_type)
726 && POINTER_TYPE_P (outer_type)
727 && lang_hooks.types_compatible_p (TREE_TYPE (inner_type),
728 TREE_TYPE (outer_type)))
729 return true;
730
731 /* If both the inner and outer types are integral types, then the
732 conversion is not necessary if they have the same mode and
733 signedness and precision, and both or neither are boolean. Some
734 code assumes an invariant that boolean types stay boolean and do
735 not become 1-bit bit-field types. Note that types with precision
736 not using all bits of the mode (such as bit-field types in C)
737 mean that testing of precision is necessary. */
738 else if (INTEGRAL_TYPE_P (inner_type)
739 && INTEGRAL_TYPE_P (outer_type)
740 && TYPE_MODE (inner_type) == TYPE_MODE (outer_type)
741 && TYPE_UNSIGNED (inner_type) == TYPE_UNSIGNED (outer_type)
742 && TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
743 {
744 bool first_boolean = (TREE_CODE (inner_type) == BOOLEAN_TYPE);
745 bool second_boolean = (TREE_CODE (outer_type) == BOOLEAN_TYPE);
746 if (first_boolean == second_boolean)
747 return true;
748 }
749
750 /* Recurse for complex types. */
751 else if (TREE_CODE (inner_type) == COMPLEX_TYPE
752 && TREE_CODE (outer_type) == COMPLEX_TYPE
753 && tree_ssa_useless_type_conversion_1 (TREE_TYPE (outer_type),
754 TREE_TYPE (inner_type)))
755 return true;
756
757 return false;
758 }
759
760 /* Return true if EXPR is a useless type conversion, otherwise return
761 false. */
762
763 bool
764 tree_ssa_useless_type_conversion (tree expr)
765 {
766 /* If we have an assignment that merely uses a NOP_EXPR to change
767 the top of the RHS to the type of the LHS and the type conversion
768 is "safe", then strip away the type conversion so that we can
769 enter LHS = RHS into the const_and_copies table. */
770 if (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR
771 || TREE_CODE (expr) == VIEW_CONVERT_EXPR
772 || TREE_CODE (expr) == NON_LVALUE_EXPR)
773 return tree_ssa_useless_type_conversion_1 (TREE_TYPE (expr),
774 TREE_TYPE (TREE_OPERAND (expr,
775 0)));
776
777
778 return false;
779 }
780
781
782 /* Internal helper for walk_use_def_chains. VAR, FN and DATA are as
783 described in walk_use_def_chains.
784
785 VISITED is a bitmap used to mark visited SSA_NAMEs to avoid
786 infinite loops.
787
788 IS_DFS is true if the caller wants to perform a depth-first search
789 when visiting PHI nodes. A DFS will visit each PHI argument and
790 call FN after each one. Otherwise, all the arguments are
791 visited first and then FN is called with each of the visited
792 arguments in a separate pass. */
793
794 static bool
795 walk_use_def_chains_1 (tree var, walk_use_def_chains_fn fn, void *data,
796 bitmap visited, bool is_dfs)
797 {
798 tree def_stmt;
799
800 if (bitmap_bit_p (visited, SSA_NAME_VERSION (var)))
801 return false;
802
803 bitmap_set_bit (visited, SSA_NAME_VERSION (var));
804
805 def_stmt = SSA_NAME_DEF_STMT (var);
806
807 if (TREE_CODE (def_stmt) != PHI_NODE)
808 {
809 /* If we reached the end of the use-def chain, call FN. */
810 return fn (var, def_stmt, data);
811 }
812 else
813 {
814 int i;
815
816 /* When doing a breadth-first search, call FN before following the
817 use-def links for each argument. */
818 if (!is_dfs)
819 for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
820 if (fn (PHI_ARG_DEF (def_stmt, i), def_stmt, data))
821 return true;
822
823 /* Follow use-def links out of each PHI argument. */
824 for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
825 {
826 tree arg = PHI_ARG_DEF (def_stmt, i);
827 if (TREE_CODE (arg) == SSA_NAME
828 && walk_use_def_chains_1 (arg, fn, data, visited, is_dfs))
829 return true;
830 }
831
832 /* When doing a depth-first search, call FN after following the
833 use-def links for each argument. */
834 if (is_dfs)
835 for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
836 if (fn (PHI_ARG_DEF (def_stmt, i), def_stmt, data))
837 return true;
838 }
839
840 return false;
841 }
842
843
844
845 /* Walk use-def chains starting at the SSA variable VAR. Call
846 function FN at each reaching definition found. FN takes three
847 arguments: VAR, its defining statement (DEF_STMT) and a generic
848 pointer to whatever state information that FN may want to maintain
849 (DATA). FN is able to stop the walk by returning true, otherwise
850 in order to continue the walk, FN should return false.
851
852 Note, that if DEF_STMT is a PHI node, the semantics are slightly
853 different. The first argument to FN is no longer the original
854 variable VAR, but the PHI argument currently being examined. If FN
855 wants to get at VAR, it should call PHI_RESULT (PHI).
856
857 If IS_DFS is true, this function will:
858
859 1- walk the use-def chains for all the PHI arguments, and,
860 2- call (*FN) (ARG, PHI, DATA) on all the PHI arguments.
861
862 If IS_DFS is false, the two steps above are done in reverse order
863 (i.e., a breadth-first search). */
864
865
866 void
867 walk_use_def_chains (tree var, walk_use_def_chains_fn fn, void *data,
868 bool is_dfs)
869 {
870 tree def_stmt;
871
872 #if defined ENABLE_CHECKING
873 if (TREE_CODE (var) != SSA_NAME)
874 abort ();
875 #endif
876
877 def_stmt = SSA_NAME_DEF_STMT (var);
878
879 /* We only need to recurse if the reaching definition comes from a PHI
880 node. */
881 if (TREE_CODE (def_stmt) != PHI_NODE)
882 (*fn) (var, def_stmt, data);
883 else
884 {
885 bitmap visited = BITMAP_XMALLOC ();
886 walk_use_def_chains_1 (var, fn, data, visited, is_dfs);
887 BITMAP_XFREE (visited);
888 }
889 }
890
891
892 /* Replaces VAR with REPL in memory reference expression *X in
893 statement STMT. */
894
895 static void
896 propagate_into_addr (tree stmt, tree var, tree *x, tree repl)
897 {
898 tree new_var, ass_stmt, addr_var;
899 basic_block bb;
900 block_stmt_iterator bsi;
901
902 /* There is nothing special to handle in the other cases. */
903 if (TREE_CODE (repl) != ADDR_EXPR)
904 return;
905 addr_var = TREE_OPERAND (repl, 0);
906
907 while (TREE_CODE (*x) == ARRAY_REF
908 || TREE_CODE (*x) == COMPONENT_REF
909 || TREE_CODE (*x) == BIT_FIELD_REF)
910 x = &TREE_OPERAND (*x, 0);
911
912 if (TREE_CODE (*x) != INDIRECT_REF
913 || TREE_OPERAND (*x, 0) != var)
914 return;
915
916 if (TREE_TYPE (*x) == TREE_TYPE (addr_var))
917 {
918 *x = addr_var;
919 mark_new_vars_to_rename (stmt, vars_to_rename);
920 return;
921 }
922
923
924 /* Frontends sometimes produce expressions like *&a instead of a[0].
925 Create a temporary variable to handle this case. */
926 ass_stmt = build2 (MODIFY_EXPR, void_type_node, NULL_TREE, repl);
927 new_var = duplicate_ssa_name (var, ass_stmt);
928 TREE_OPERAND (*x, 0) = new_var;
929 TREE_OPERAND (ass_stmt, 0) = new_var;
930
931 bb = bb_for_stmt (stmt);
932 tree_block_label (bb);
933 bsi = bsi_after_labels (bb);
934 bsi_insert_after (&bsi, ass_stmt, BSI_NEW_STMT);
935
936 mark_new_vars_to_rename (stmt, vars_to_rename);
937 }
938
939 /* Replaces immediate uses of VAR by REPL. */
940
941 static void
942 replace_immediate_uses (tree var, tree repl)
943 {
944 use_optype uses;
945 vuse_optype vuses;
946 v_may_def_optype v_may_defs;
947 int i, j, n;
948 dataflow_t df;
949 tree stmt;
950 stmt_ann_t ann;
951 bool mark_new_vars;
952
953 df = get_immediate_uses (SSA_NAME_DEF_STMT (var));
954 n = num_immediate_uses (df);
955
956 for (i = 0; i < n; i++)
957 {
958 stmt = immediate_use (df, i);
959 ann = stmt_ann (stmt);
960
961 if (TREE_CODE (stmt) == PHI_NODE)
962 {
963 for (j = 0; j < PHI_NUM_ARGS (stmt); j++)
964 if (PHI_ARG_DEF (stmt, j) == var)
965 {
966 SET_PHI_ARG_DEF (stmt, j, repl);
967 if (TREE_CODE (repl) == SSA_NAME
968 && PHI_ARG_EDGE (stmt, j)->flags & EDGE_ABNORMAL)
969 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (repl) = 1;
970 }
971
972 continue;
973 }
974
975 get_stmt_operands (stmt);
976 mark_new_vars = false;
977 if (is_gimple_reg (SSA_NAME_VAR (var)))
978 {
979 if (TREE_CODE (stmt) == MODIFY_EXPR)
980 {
981 propagate_into_addr (stmt, var, &TREE_OPERAND (stmt, 0), repl);
982 propagate_into_addr (stmt, var, &TREE_OPERAND (stmt, 1), repl);
983 }
984
985 uses = USE_OPS (ann);
986 for (j = 0; j < (int) NUM_USES (uses); j++)
987 if (USE_OP (uses, j) == var)
988 {
989 propagate_value (USE_OP_PTR (uses, j), repl);
990 mark_new_vars = POINTER_TYPE_P (TREE_TYPE (repl));
991 }
992 }
993 else
994 {
995 vuses = VUSE_OPS (ann);
996 for (j = 0; j < (int) NUM_VUSES (vuses); j++)
997 if (VUSE_OP (vuses, j) == var)
998 propagate_value (VUSE_OP_PTR (vuses, j), repl);
999
1000 v_may_defs = V_MAY_DEF_OPS (ann);
1001 for (j = 0; j < (int) NUM_V_MAY_DEFS (v_may_defs); j++)
1002 if (V_MAY_DEF_OP (v_may_defs, j) == var)
1003 propagate_value (V_MAY_DEF_OP_PTR (v_may_defs, j), repl);
1004 }
1005
1006 /* If REPL is a pointer, it may have different memory tags associated
1007 with it. For instance, VAR may have had a name tag while REPL
1008 only had a type tag. In these cases, the virtual operands (if
1009 any) in the statement will refer to different symbols which need
1010 to be renamed. */
1011 if (mark_new_vars)
1012 mark_new_vars_to_rename (stmt, vars_to_rename);
1013 else
1014 modify_stmt (stmt);
1015 }
1016 }
1017
1018 /* Gets the value VAR is equivalent to according to EQ_TO. */
1019
1020 static tree
1021 get_eq_name (tree *eq_to, tree var)
1022 {
1023 unsigned ver;
1024 tree val = var;
1025
1026 while (TREE_CODE (val) == SSA_NAME)
1027 {
1028 ver = SSA_NAME_VERSION (val);
1029 if (!eq_to[ver])
1030 break;
1031
1032 val = eq_to[ver];
1033 }
1034
1035 while (TREE_CODE (var) == SSA_NAME)
1036 {
1037 ver = SSA_NAME_VERSION (var);
1038 if (!eq_to[ver])
1039 break;
1040
1041 var = eq_to[ver];
1042 eq_to[ver] = val;
1043 }
1044
1045 return val;
1046 }
1047
1048 /* Checks whether phi node PHI is redundant and if it is, records the ssa name
1049 its result is redundant to to EQ_TO array. */
1050
1051 static void
1052 check_phi_redundancy (tree phi, tree *eq_to)
1053 {
1054 tree val = NULL_TREE, def, res = PHI_RESULT (phi), stmt;
1055 unsigned i, ver = SSA_NAME_VERSION (res), n;
1056 dataflow_t df;
1057
1058 /* It is unlikely that such large phi node would be redundant. */
1059 if (PHI_NUM_ARGS (phi) > 16)
1060 return;
1061
1062 for (i = 0; i < (unsigned) PHI_NUM_ARGS (phi); i++)
1063 {
1064 def = PHI_ARG_DEF (phi, i);
1065
1066 if (TREE_CODE (def) == SSA_NAME)
1067 {
1068 def = get_eq_name (eq_to, def);
1069 if (def == res)
1070 continue;
1071 }
1072
1073 if (val
1074 && !operand_equal_p (val, def, 0))
1075 return;
1076
1077 val = def;
1078 }
1079
1080 /* At least one of the arguments should not be equal to the result, or
1081 something strange is happening. */
1082 if (!val)
1083 abort ();
1084
1085 if (get_eq_name (eq_to, res) == val)
1086 return;
1087
1088 if (!may_propagate_copy (res, val))
1089 return;
1090
1091 eq_to[ver] = val;
1092
1093 df = get_immediate_uses (SSA_NAME_DEF_STMT (res));
1094 n = num_immediate_uses (df);
1095
1096 for (i = 0; i < n; i++)
1097 {
1098 stmt = immediate_use (df, i);
1099
1100 if (TREE_CODE (stmt) == PHI_NODE)
1101 check_phi_redundancy (stmt, eq_to);
1102 }
1103 }
1104
1105 /* Removes redundant phi nodes.
1106
1107 A redundant PHI node is a PHI node where all of its PHI arguments
1108 are the same value, excluding any PHI arguments which are the same
1109 as the PHI result.
1110
1111 A redundant PHI node is effectively a copy, so we forward copy propagate
1112 which removes all uses of the destination of the PHI node then
1113 finally we delete the redundant PHI node.
1114
1115 Note that if we can not copy propagate the PHI node, then the PHI
1116 will not be removed. Thus we do not have to worry about dependencies
1117 between PHIs and the problems serializing PHIs into copies creates.
1118
1119 The most important effect of this pass is to remove degenerate PHI
1120 nodes created by removing unreachable code. */
1121
1122 void
1123 kill_redundant_phi_nodes (void)
1124 {
1125 tree *eq_to;
1126 unsigned i, old_num_ssa_names;
1127 basic_block bb;
1128 tree phi, var, repl, stmt;
1129
1130 /* The EQ_TO[VER] holds the value by that the ssa name VER should be
1131 replaced. If EQ_TO[VER] is ssa name and it is decided to replace it by
1132 other value, it may be necessary to follow the chain till the final value.
1133 We perform path shortening (replacing the entries of the EQ_TO array with
1134 heads of these chains) whenever we access the field to prevent quadratic
1135 complexity (probably would not occur in practice anyway, but let us play
1136 it safe). */
1137 eq_to = xcalloc (num_ssa_names, sizeof (tree));
1138
1139 /* We have had cases where computing immediate uses takes a
1140 significant amount of compile time. If we run into such
1141 problems here, we may want to only compute immediate uses for
1142 a subset of all the SSA_NAMEs instead of computing it for
1143 all of the SSA_NAMEs. */
1144 compute_immediate_uses (TDFA_USE_OPS | TDFA_USE_VOPS, NULL);
1145 old_num_ssa_names = num_ssa_names;
1146
1147 FOR_EACH_BB (bb)
1148 {
1149 for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
1150 {
1151 var = PHI_RESULT (phi);
1152 check_phi_redundancy (phi, eq_to);
1153 }
1154 }
1155
1156 /* Now propagate the values. */
1157 for (i = 0; i < old_num_ssa_names; i++)
1158 {
1159 if (!ssa_name (i))
1160 continue;
1161
1162 repl = get_eq_name (eq_to, ssa_name (i));
1163 if (repl != ssa_name (i))
1164 replace_immediate_uses (ssa_name (i), repl);
1165 }
1166
1167 /* And remove the dead phis. */
1168 for (i = 0; i < old_num_ssa_names; i++)
1169 {
1170 if (!ssa_name (i))
1171 continue;
1172
1173 repl = get_eq_name (eq_to, ssa_name (i));
1174 if (repl != ssa_name (i))
1175 {
1176 stmt = SSA_NAME_DEF_STMT (ssa_name (i));
1177 remove_phi_node (stmt, NULL_TREE, bb_for_stmt (stmt));
1178 }
1179 }
1180
1181 free_df ();
1182 free (eq_to);
1183 }
1184
1185 struct tree_opt_pass pass_redundant_phi =
1186 {
1187 "redphi", /* name */
1188 NULL, /* gate */
1189 kill_redundant_phi_nodes, /* execute */
1190 NULL, /* sub */
1191 NULL, /* next */
1192 0, /* static_pass_number */
1193 0, /* tv_id */
1194 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
1195 0, /* properties_provided */
1196 0, /* properties_destroyed */
1197 0, /* todo_flags_start */
1198 TODO_dump_func | TODO_rename_vars
1199 | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
1200 };
1201 \f
1202 /* Emit warnings for uninitialized variables. This is done in two passes.
1203
1204 The first pass notices real uses of SSA names with default definitions.
1205 Such uses are unconditionally uninitialized, and we can be certain that
1206 such a use is a mistake. This pass is run before most optimizations,
1207 so that we catch as many as we can.
1208
1209 The second pass follows PHI nodes to find uses that are potentially
1210 uninitialized. In this case we can't necessarily prove that the use
1211 is really uninitialized. This pass is run after most optimizations,
1212 so that we thread as many jumps and possible, and delete as much dead
1213 code as possible, in order to reduce false positives. We also look
1214 again for plain uninitialized variables, since optimization may have
1215 changed conditionally uninitialized to unconditionally uninitialized. */
1216
1217 /* Emit a warning for T, an SSA_NAME, being uninitialized. The exact
1218 warning text is in MSGID and LOCUS may contain a location or be null. */
1219
1220 static void
1221 warn_uninit (tree t, const char *msgid, location_t *locus)
1222 {
1223 tree var = SSA_NAME_VAR (t);
1224 tree def = SSA_NAME_DEF_STMT (t);
1225
1226 /* Default uses (indicated by an empty definition statement),
1227 are uninitialized. */
1228 if (!IS_EMPTY_STMT (def))
1229 return;
1230
1231 /* Except for PARMs of course, which are always initialized. */
1232 if (TREE_CODE (var) == PARM_DECL)
1233 return;
1234
1235 /* Hard register variables get their initial value from the ether. */
1236 if (DECL_HARD_REGISTER (var))
1237 return;
1238
1239 /* TREE_NO_WARNING either means we already warned, or the front end
1240 wishes to suppress the warning. */
1241 if (TREE_NO_WARNING (var))
1242 return;
1243
1244 if (!locus)
1245 locus = &DECL_SOURCE_LOCATION (var);
1246 warning (msgid, locus, var);
1247 TREE_NO_WARNING (var) = 1;
1248 }
1249
1250 /* Called via walk_tree, look for SSA_NAMEs that have empty definitions
1251 and warn about them. */
1252
1253 static tree
1254 warn_uninitialized_var (tree *tp, int *walk_subtrees, void *data)
1255 {
1256 location_t *locus = data;
1257 tree t = *tp;
1258
1259 /* We only do data flow with SSA_NAMEs, so that's all we can warn about. */
1260 if (TREE_CODE (t) == SSA_NAME)
1261 {
1262 warn_uninit (t, "%H'%D' is used uninitialized in this function", locus);
1263 *walk_subtrees = 0;
1264 }
1265 else if (DECL_P (t) || TYPE_P (t))
1266 *walk_subtrees = 0;
1267
1268 return NULL_TREE;
1269 }
1270
1271 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
1272 and warn about them. */
1273
1274 static void
1275 warn_uninitialized_phi (tree phi)
1276 {
1277 int i, n = PHI_NUM_ARGS (phi);
1278
1279 /* Don't look at memory tags. */
1280 if (!is_gimple_reg (PHI_RESULT (phi)))
1281 return;
1282
1283 for (i = 0; i < n; ++i)
1284 {
1285 tree op = PHI_ARG_DEF (phi, i);
1286 if (TREE_CODE (op) == SSA_NAME)
1287 warn_uninit (op, "%H'%D' may be used uninitialized in this function",
1288 NULL);
1289 }
1290 }
1291
1292 static void
1293 execute_early_warn_uninitialized (void)
1294 {
1295 block_stmt_iterator bsi;
1296 basic_block bb;
1297
1298 FOR_EACH_BB (bb)
1299 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1300 walk_tree (bsi_stmt_ptr (bsi), warn_uninitialized_var,
1301 EXPR_LOCUS (bsi_stmt (bsi)), NULL);
1302 }
1303
1304 static void
1305 execute_late_warn_uninitialized (void)
1306 {
1307 basic_block bb;
1308 tree phi;
1309
1310 /* Re-do the plain uninitialized variable check, as optimization may have
1311 straightened control flow. Do this first so that we don't accidentally
1312 get a "may be" warning when we'd have seen an "is" warning later. */
1313 execute_early_warn_uninitialized ();
1314
1315 FOR_EACH_BB (bb)
1316 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1317 warn_uninitialized_phi (phi);
1318 }
1319
1320 static bool
1321 gate_warn_uninitialized (void)
1322 {
1323 return warn_uninitialized != 0;
1324 }
1325
1326 struct tree_opt_pass pass_early_warn_uninitialized =
1327 {
1328 NULL, /* name */
1329 gate_warn_uninitialized, /* gate */
1330 execute_early_warn_uninitialized, /* execute */
1331 NULL, /* sub */
1332 NULL, /* next */
1333 0, /* static_pass_number */
1334 0, /* tv_id */
1335 PROP_ssa, /* properties_required */
1336 0, /* properties_provided */
1337 0, /* properties_destroyed */
1338 0, /* todo_flags_start */
1339 0 /* todo_flags_finish */
1340 };
1341
1342 struct tree_opt_pass pass_late_warn_uninitialized =
1343 {
1344 NULL, /* name */
1345 gate_warn_uninitialized, /* gate */
1346 execute_late_warn_uninitialized, /* execute */
1347 NULL, /* sub */
1348 NULL, /* next */
1349 0, /* static_pass_number */
1350 0, /* tv_id */
1351 PROP_ssa, /* properties_required */
1352 0, /* properties_provided */
1353 0, /* properties_destroyed */
1354 0, /* todo_flags_start */
1355 0 /* todo_flags_finish */
1356 };
This page took 0.095256 seconds and 5 git commands to generate.