1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
36 #include "tree-flow.h"
37 #include "tree-inline.h"
40 #include "diagnostic.h"
46 #include "tree-pass.h"
48 #include "alloc-pool.h"
49 #include "splay-tree.h"
51 #include "tree-ssa-structalias.h"
54 #include "pointer-set.h"
56 /* The idea behind this analyzer is to generate set constraints from the
57 program, then solve the resulting constraints in order to generate the
60 Set constraints are a way of modeling program analysis problems that
61 involve sets. They consist of an inclusion constraint language,
62 describing the variables (each variable is a set) and operations that
63 are involved on the variables, and a set of rules that derive facts
64 from these operations. To solve a system of set constraints, you derive
65 all possible facts under the rules, which gives you the correct sets
68 See "Efficient Field-sensitive pointer analysis for C" by "David
69 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
70 http://citeseer.ist.psu.edu/pearce04efficient.html
72 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
73 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
74 http://citeseer.ist.psu.edu/heintze01ultrafast.html
76 There are three types of real constraint expressions, DEREF,
77 ADDRESSOF, and SCALAR. Each constraint expression consists
78 of a constraint type, a variable, and an offset.
80 SCALAR is a constraint expression type used to represent x, whether
81 it appears on the LHS or the RHS of a statement.
82 DEREF is a constraint expression type used to represent *x, whether
83 it appears on the LHS or the RHS of a statement.
84 ADDRESSOF is a constraint expression used to represent &x, whether
85 it appears on the LHS or the RHS of a statement.
87 Each pointer variable in the program is assigned an integer id, and
88 each field of a structure variable is assigned an integer id as well.
90 Structure variables are linked to their list of fields through a "next
91 field" in each variable that points to the next field in offset
93 Each variable for a structure field has
95 1. "size", that tells the size in bits of that field.
96 2. "fullsize, that tells the size in bits of the entire structure.
97 3. "offset", that tells the offset in bits from the beginning of the
98 structure to this field.
110 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
111 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
112 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
115 In order to solve the system of set constraints, the following is
118 1. Each constraint variable x has a solution set associated with it,
121 2. Constraints are separated into direct, copy, and complex.
122 Direct constraints are ADDRESSOF constraints that require no extra
123 processing, such as P = &Q
124 Copy constraints are those of the form P = Q.
125 Complex constraints are all the constraints involving dereferences
126 and offsets (including offsetted copies).
128 3. All direct constraints of the form P = &Q are processed, such
129 that Q is added to Sol(P)
131 4. All complex constraints for a given constraint variable are stored in a
132 linked list attached to that variable's node.
134 5. A directed graph is built out of the copy constraints. Each
135 constraint variable is a node in the graph, and an edge from
136 Q to P is added for each copy constraint of the form P = Q
138 6. The graph is then walked, and solution sets are
139 propagated along the copy edges, such that an edge from Q to P
140 causes Sol(P) <- Sol(P) union Sol(Q).
142 7. As we visit each node, all complex constraints associated with
143 that node are processed by adding appropriate copy edges to the graph, or the
144 appropriate variables to the solution set.
146 8. The process of walking the graph is iterated until no solution
149 Prior to walking the graph in steps 6 and 7, We perform static
150 cycle elimination on the constraint graph, as well
151 as off-line variable substitution.
153 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
154 on and turned into anything), but isn't. You can just see what offset
155 inside the pointed-to struct it's going to access.
157 TODO: Constant bounded arrays can be handled as if they were structs of the
158 same number of elements.
160 TODO: Modeling heap and incoming pointers becomes much better if we
161 add fields to them as we discover them, which we could do.
163 TODO: We could handle unions, but to be honest, it's probably not
164 worth the pain or slowdown. */
166 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map
)))
167 htab_t heapvar_for_stmt
;
169 static bool use_field_sensitive
= true;
170 static int in_ipa_mode
= 0;
172 /* Used for predecessor bitmaps. */
173 static bitmap_obstack predbitmap_obstack
;
175 /* Used for points-to sets. */
176 static bitmap_obstack pta_obstack
;
178 /* Used for oldsolution members of variables. */
179 static bitmap_obstack oldpta_obstack
;
181 /* Used for per-solver-iteration bitmaps. */
182 static bitmap_obstack iteration_obstack
;
184 static unsigned int create_variable_info_for (tree
, const char *);
185 typedef struct constraint_graph
*constraint_graph_t
;
186 static void unify_nodes (constraint_graph_t
, unsigned int, unsigned int, bool);
188 DEF_VEC_P(constraint_t
);
189 DEF_VEC_ALLOC_P(constraint_t
,heap
);
191 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
193 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
195 static struct constraint_stats
197 unsigned int total_vars
;
198 unsigned int nonpointer_vars
;
199 unsigned int unified_vars_static
;
200 unsigned int unified_vars_dynamic
;
201 unsigned int iterations
;
202 unsigned int num_edges
;
203 unsigned int num_implicit_edges
;
204 unsigned int points_to_sets_created
;
209 /* ID of this variable */
212 /* True if this is a variable created by the constraint analysis, such as
213 heap variables and constraints we had to break up. */
214 unsigned int is_artificial_var
:1;
216 /* True if this is a special variable whose solution set should not be
218 unsigned int is_special_var
:1;
220 /* True for variables whose size is not known or variable. */
221 unsigned int is_unknown_size_var
:1;
223 /* True for (sub-)fields that represent a whole variable. */
224 unsigned int is_full_var
: 1;
226 /* True if this is a heap variable. */
227 unsigned int is_heap_var
:1;
229 /* True if we may not use TBAA to prune references to this
230 variable. This is used for C++ placement new. */
231 unsigned int no_tbaa_pruning
: 1;
233 /* Variable id this was collapsed to due to type unsafety. Zero if
234 this variable was not collapsed. This should be unused completely
235 after build_succ_graph, or something is broken. */
236 unsigned int collapsed_to
;
238 /* A link to the variable for the next field in this structure. */
239 struct variable_info
*next
;
241 /* Offset of this variable, in bits, from the base variable */
242 unsigned HOST_WIDE_INT offset
;
244 /* Size of the variable, in bits. */
245 unsigned HOST_WIDE_INT size
;
247 /* Full size of the base variable, in bits. */
248 unsigned HOST_WIDE_INT fullsize
;
250 /* Name of this variable */
253 /* Tree that this variable is associated with. */
256 /* Points-to set for this variable. */
259 /* Old points-to set for this variable. */
262 typedef struct variable_info
*varinfo_t
;
264 static varinfo_t
first_vi_for_offset (varinfo_t
, unsigned HOST_WIDE_INT
);
265 static varinfo_t
lookup_vi_for_tree (tree
);
267 /* Pool of variable info structures. */
268 static alloc_pool variable_info_pool
;
270 DEF_VEC_P(varinfo_t
);
272 DEF_VEC_ALLOC_P(varinfo_t
, heap
);
274 /* Table of variable info structures for constraint variables.
275 Indexed directly by variable info id. */
276 static VEC(varinfo_t
,heap
) *varmap
;
278 /* Return the varmap element N */
280 static inline varinfo_t
281 get_varinfo (unsigned int n
)
283 return VEC_index (varinfo_t
, varmap
, n
);
286 /* Return the varmap element N, following the collapsed_to link. */
288 static inline varinfo_t
289 get_varinfo_fc (unsigned int n
)
291 varinfo_t v
= VEC_index (varinfo_t
, varmap
, n
);
293 if (v
->collapsed_to
!= 0)
294 return get_varinfo (v
->collapsed_to
);
298 /* Static IDs for the special variables. */
299 enum { nothing_id
= 0, anything_id
= 1, readonly_id
= 2,
300 escaped_id
= 3, nonlocal_id
= 4, callused_id
= 5, integer_id
= 6 };
302 /* Variable that represents the unknown pointer. */
303 static varinfo_t var_anything
;
304 static tree anything_tree
;
306 /* Variable that represents the NULL pointer. */
307 static varinfo_t var_nothing
;
308 static tree nothing_tree
;
310 /* Variable that represents read only memory. */
311 static varinfo_t var_readonly
;
312 static tree readonly_tree
;
314 /* Variable that represents escaped memory. */
315 static varinfo_t var_escaped
;
316 static tree escaped_tree
;
318 /* Variable that represents nonlocal memory. */
319 static varinfo_t var_nonlocal
;
320 static tree nonlocal_tree
;
322 /* Variable that represents call-used memory. */
323 static varinfo_t var_callused
;
324 static tree callused_tree
;
326 /* Variable that represents integers. This is used for when people do things
328 static varinfo_t var_integer
;
329 static tree integer_tree
;
331 /* Lookup a heap var for FROM, and return it if we find one. */
334 heapvar_lookup (tree from
)
336 struct tree_map
*h
, in
;
339 h
= (struct tree_map
*) htab_find_with_hash (heapvar_for_stmt
, &in
,
340 htab_hash_pointer (from
));
346 /* Insert a mapping FROM->TO in the heap var for statement
350 heapvar_insert (tree from
, tree to
)
355 h
= GGC_NEW (struct tree_map
);
356 h
->hash
= htab_hash_pointer (from
);
359 loc
= htab_find_slot_with_hash (heapvar_for_stmt
, h
, h
->hash
, INSERT
);
360 *(struct tree_map
**) loc
= h
;
363 /* Return a new variable info structure consisting for a variable
364 named NAME, and using constraint graph node NODE. */
367 new_var_info (tree t
, unsigned int id
, const char *name
)
369 varinfo_t ret
= (varinfo_t
) pool_alloc (variable_info_pool
);
375 ret
->is_artificial_var
= false;
376 ret
->is_heap_var
= false;
377 ret
->is_special_var
= false;
378 ret
->is_unknown_size_var
= false;
379 ret
->is_full_var
= false;
381 if (TREE_CODE (var
) == SSA_NAME
)
382 var
= SSA_NAME_VAR (var
);
383 ret
->no_tbaa_pruning
= (DECL_P (var
)
384 && POINTER_TYPE_P (TREE_TYPE (var
))
385 && DECL_NO_TBAA_P (var
));
386 ret
->solution
= BITMAP_ALLOC (&pta_obstack
);
387 ret
->oldsolution
= BITMAP_ALLOC (&oldpta_obstack
);
389 ret
->collapsed_to
= 0;
393 typedef enum {SCALAR
, DEREF
, ADDRESSOF
} constraint_expr_type
;
395 /* An expression that appears in a constraint. */
397 struct constraint_expr
399 /* Constraint type. */
400 constraint_expr_type type
;
402 /* Variable we are referring to in the constraint. */
405 /* Offset, in bits, of this constraint from the beginning of
406 variables it ends up referring to.
408 IOW, in a deref constraint, we would deref, get the result set,
409 then add OFFSET to each member. */
410 unsigned HOST_WIDE_INT offset
;
413 typedef struct constraint_expr ce_s
;
415 DEF_VEC_ALLOC_O(ce_s
, heap
);
416 static void get_constraint_for_1 (tree
, VEC(ce_s
, heap
) **, bool);
417 static void get_constraint_for (tree
, VEC(ce_s
, heap
) **);
418 static void do_deref (VEC (ce_s
, heap
) **);
420 /* Our set constraints are made up of two constraint expressions, one
423 As described in the introduction, our set constraints each represent an
424 operation between set valued variables.
428 struct constraint_expr lhs
;
429 struct constraint_expr rhs
;
432 /* List of constraints that we use to build the constraint graph from. */
434 static VEC(constraint_t
,heap
) *constraints
;
435 static alloc_pool constraint_pool
;
439 DEF_VEC_ALLOC_I(int, heap
);
441 /* The constraint graph is represented as an array of bitmaps
442 containing successor nodes. */
444 struct constraint_graph
446 /* Size of this graph, which may be different than the number of
447 nodes in the variable map. */
450 /* Explicit successors of each node. */
453 /* Implicit predecessors of each node (Used for variable
455 bitmap
*implicit_preds
;
457 /* Explicit predecessors of each node (Used for variable substitution). */
460 /* Indirect cycle representatives, or -1 if the node has no indirect
462 int *indirect_cycles
;
464 /* Representative node for a node. rep[a] == a unless the node has
468 /* Equivalence class representative for a label. This is used for
469 variable substitution. */
472 /* Pointer equivalence label for a node. All nodes with the same
473 pointer equivalence label can be unified together at some point
474 (either during constraint optimization or after the constraint
478 /* Pointer equivalence representative for a label. This is used to
479 handle nodes that are pointer equivalent but not location
480 equivalent. We can unite these once the addressof constraints
481 are transformed into initial points-to sets. */
484 /* Pointer equivalence label for each node, used during variable
486 unsigned int *pointer_label
;
488 /* Location equivalence label for each node, used during location
489 equivalence finding. */
490 unsigned int *loc_label
;
492 /* Pointed-by set for each node, used during location equivalence
493 finding. This is pointed-by rather than pointed-to, because it
494 is constructed using the predecessor graph. */
497 /* Points to sets for pointer equivalence. This is *not* the actual
498 points-to sets for nodes. */
501 /* Bitmap of nodes where the bit is set if the node is a direct
502 node. Used for variable substitution. */
503 sbitmap direct_nodes
;
505 /* Bitmap of nodes where the bit is set if the node is address
506 taken. Used for variable substitution. */
507 bitmap address_taken
;
509 /* Vector of complex constraints for each graph node. Complex
510 constraints are those involving dereferences or offsets that are
512 VEC(constraint_t
,heap
) **complex;
515 static constraint_graph_t graph
;
517 /* During variable substitution and the offline version of indirect
518 cycle finding, we create nodes to represent dereferences and
519 address taken constraints. These represent where these start and
521 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
522 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
524 /* Return the representative node for NODE, if NODE has been unioned
526 This function performs path compression along the way to finding
527 the representative. */
530 find (unsigned int node
)
532 gcc_assert (node
< graph
->size
);
533 if (graph
->rep
[node
] != node
)
534 return graph
->rep
[node
] = find (graph
->rep
[node
]);
538 /* Union the TO and FROM nodes to the TO nodes.
539 Note that at some point in the future, we may want to do
540 union-by-rank, in which case we are going to have to return the
541 node we unified to. */
544 unite (unsigned int to
, unsigned int from
)
546 gcc_assert (to
< graph
->size
&& from
< graph
->size
);
547 if (to
!= from
&& graph
->rep
[from
] != to
)
549 graph
->rep
[from
] = to
;
555 /* Create a new constraint consisting of LHS and RHS expressions. */
558 new_constraint (const struct constraint_expr lhs
,
559 const struct constraint_expr rhs
)
561 constraint_t ret
= (constraint_t
) pool_alloc (constraint_pool
);
567 /* Print out constraint C to FILE. */
570 dump_constraint (FILE *file
, constraint_t c
)
572 if (c
->lhs
.type
== ADDRESSOF
)
574 else if (c
->lhs
.type
== DEREF
)
576 fprintf (file
, "%s", get_varinfo_fc (c
->lhs
.var
)->name
);
577 if (c
->lhs
.offset
!= 0)
578 fprintf (file
, " + " HOST_WIDE_INT_PRINT_DEC
, c
->lhs
.offset
);
579 fprintf (file
, " = ");
580 if (c
->rhs
.type
== ADDRESSOF
)
582 else if (c
->rhs
.type
== DEREF
)
584 fprintf (file
, "%s", get_varinfo_fc (c
->rhs
.var
)->name
);
585 if (c
->rhs
.offset
!= 0)
586 fprintf (file
, " + " HOST_WIDE_INT_PRINT_DEC
, c
->rhs
.offset
);
587 fprintf (file
, "\n");
590 /* Print out constraint C to stderr. */
593 debug_constraint (constraint_t c
)
595 dump_constraint (stderr
, c
);
598 /* Print out all constraints to FILE */
601 dump_constraints (FILE *file
)
605 for (i
= 0; VEC_iterate (constraint_t
, constraints
, i
, c
); i
++)
606 dump_constraint (file
, c
);
609 /* Print out all constraints to stderr. */
612 debug_constraints (void)
614 dump_constraints (stderr
);
617 /* Print out to FILE the edge in the constraint graph that is created by
618 constraint c. The edge may have a label, depending on the type of
619 constraint that it represents. If complex1, e.g: a = *b, then the label
620 is "=*", if complex2, e.g: *a = b, then the label is "*=", if
621 complex with an offset, e.g: a = b + 8, then the label is "+".
622 Otherwise the edge has no label. */
625 dump_constraint_edge (FILE *file
, constraint_t c
)
627 if (c
->rhs
.type
!= ADDRESSOF
)
629 const char *src
= get_varinfo_fc (c
->rhs
.var
)->name
;
630 const char *dst
= get_varinfo_fc (c
->lhs
.var
)->name
;
631 fprintf (file
, " \"%s\" -> \"%s\" ", src
, dst
);
632 /* Due to preprocessing of constraints, instructions like *a = *b are
633 illegal; thus, we do not have to handle such cases. */
634 if (c
->lhs
.type
== DEREF
)
635 fprintf (file
, " [ label=\"*=\" ] ;\n");
636 else if (c
->rhs
.type
== DEREF
)
637 fprintf (file
, " [ label=\"=*\" ] ;\n");
640 /* We must check the case where the constraint is an offset.
641 In this case, it is treated as a complex constraint. */
642 if (c
->rhs
.offset
!= c
->lhs
.offset
)
643 fprintf (file
, " [ label=\"+\" ] ;\n");
645 fprintf (file
, " ;\n");
650 /* Print the constraint graph in dot format. */
653 dump_constraint_graph (FILE *file
)
655 unsigned int i
=0, size
;
658 /* Only print the graph if it has already been initialized: */
662 /* Print the constraints used to produce the constraint graph. The
663 constraints will be printed as comments in the dot file: */
664 fprintf (file
, "\n\n/* Constraints used in the constraint graph:\n");
665 dump_constraints (file
);
666 fprintf (file
, "*/\n");
668 /* Prints the header of the dot file: */
669 fprintf (file
, "\n\n// The constraint graph in dot format:\n");
670 fprintf (file
, "strict digraph {\n");
671 fprintf (file
, " node [\n shape = box\n ]\n");
672 fprintf (file
, " edge [\n fontsize = \"12\"\n ]\n");
673 fprintf (file
, "\n // List of nodes in the constraint graph:\n");
675 /* The next lines print the nodes in the graph. In order to get the
676 number of nodes in the graph, we must choose the minimum between the
677 vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
678 yet been initialized, then graph->size == 0, otherwise we must only
679 read nodes that have an entry in VEC (varinfo_t, varmap). */
680 size
= VEC_length (varinfo_t
, varmap
);
681 size
= size
< graph
->size
? size
: graph
->size
;
682 for (i
= 0; i
< size
; i
++)
684 const char *name
= get_varinfo_fc (graph
->rep
[i
])->name
;
685 fprintf (file
, " \"%s\" ;\n", name
);
688 /* Go over the list of constraints printing the edges in the constraint
690 fprintf (file
, "\n // The constraint edges:\n");
691 for (i
= 0; VEC_iterate (constraint_t
, constraints
, i
, c
); i
++)
693 dump_constraint_edge (file
, c
);
695 /* Prints the tail of the dot file. By now, only the closing bracket. */
696 fprintf (file
, "}\n\n\n");
699 /* Print out the constraint graph to stderr. */
702 debug_constraint_graph (void)
704 dump_constraint_graph (stderr
);
709 The solver is a simple worklist solver, that works on the following
712 sbitmap changed_nodes = all zeroes;
714 For each node that is not already collapsed:
716 set bit in changed nodes
718 while (changed_count > 0)
720 compute topological ordering for constraint graph
722 find and collapse cycles in the constraint graph (updating
723 changed if necessary)
725 for each node (n) in the graph in topological order:
728 Process each complex constraint associated with the node,
729 updating changed if necessary.
731 For each outgoing edge from n, propagate the solution from n to
732 the destination of the edge, updating changed as necessary.
736 /* Return true if two constraint expressions A and B are equal. */
739 constraint_expr_equal (struct constraint_expr a
, struct constraint_expr b
)
741 return a
.type
== b
.type
&& a
.var
== b
.var
&& a
.offset
== b
.offset
;
744 /* Return true if constraint expression A is less than constraint expression
745 B. This is just arbitrary, but consistent, in order to give them an
749 constraint_expr_less (struct constraint_expr a
, struct constraint_expr b
)
751 if (a
.type
== b
.type
)
754 return a
.offset
< b
.offset
;
756 return a
.var
< b
.var
;
759 return a
.type
< b
.type
;
762 /* Return true if constraint A is less than constraint B. This is just
763 arbitrary, but consistent, in order to give them an ordering. */
766 constraint_less (const constraint_t a
, const constraint_t b
)
768 if (constraint_expr_less (a
->lhs
, b
->lhs
))
770 else if (constraint_expr_less (b
->lhs
, a
->lhs
))
773 return constraint_expr_less (a
->rhs
, b
->rhs
);
776 /* Return true if two constraints A and B are equal. */
779 constraint_equal (struct constraint a
, struct constraint b
)
781 return constraint_expr_equal (a
.lhs
, b
.lhs
)
782 && constraint_expr_equal (a
.rhs
, b
.rhs
);
786 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
789 constraint_vec_find (VEC(constraint_t
,heap
) *vec
,
790 struct constraint lookfor
)
798 place
= VEC_lower_bound (constraint_t
, vec
, &lookfor
, constraint_less
);
799 if (place
>= VEC_length (constraint_t
, vec
))
801 found
= VEC_index (constraint_t
, vec
, place
);
802 if (!constraint_equal (*found
, lookfor
))
807 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
810 constraint_set_union (VEC(constraint_t
,heap
) **to
,
811 VEC(constraint_t
,heap
) **from
)
816 for (i
= 0; VEC_iterate (constraint_t
, *from
, i
, c
); i
++)
818 if (constraint_vec_find (*to
, *c
) == NULL
)
820 unsigned int place
= VEC_lower_bound (constraint_t
, *to
, c
,
822 VEC_safe_insert (constraint_t
, heap
, *to
, place
, c
);
827 /* Take a solution set SET, add OFFSET to each member of the set, and
828 overwrite SET with the result when done. */
831 solution_set_add (bitmap set
, unsigned HOST_WIDE_INT offset
)
833 bitmap result
= BITMAP_ALLOC (&iteration_obstack
);
837 EXECUTE_IF_SET_IN_BITMAP (set
, 0, i
, bi
)
839 varinfo_t vi
= get_varinfo (i
);
841 /* If this is a variable with just one field just set its bit
843 if (vi
->is_artificial_var
844 || vi
->is_unknown_size_var
846 bitmap_set_bit (result
, i
);
849 unsigned HOST_WIDE_INT fieldoffset
= vi
->offset
+ offset
;
850 varinfo_t v
= first_vi_for_offset (vi
, fieldoffset
);
851 /* If the result is outside of the variable use the last field. */
855 while (v
->next
!= NULL
)
858 bitmap_set_bit (result
, v
->id
);
859 /* If the result is not exactly at fieldoffset include the next
860 field as well. See get_constraint_for_ptr_offset for more
862 if (v
->offset
!= fieldoffset
864 bitmap_set_bit (result
, v
->next
->id
);
868 bitmap_copy (set
, result
);
869 BITMAP_FREE (result
);
872 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
876 set_union_with_increment (bitmap to
, bitmap from
, unsigned HOST_WIDE_INT inc
)
879 return bitmap_ior_into (to
, from
);
885 tmp
= BITMAP_ALLOC (&iteration_obstack
);
886 bitmap_copy (tmp
, from
);
887 solution_set_add (tmp
, inc
);
888 res
= bitmap_ior_into (to
, tmp
);
894 /* Insert constraint C into the list of complex constraints for graph
898 insert_into_complex (constraint_graph_t graph
,
899 unsigned int var
, constraint_t c
)
901 VEC (constraint_t
, heap
) *complex = graph
->complex[var
];
902 unsigned int place
= VEC_lower_bound (constraint_t
, complex, c
,
905 /* Only insert constraints that do not already exist. */
906 if (place
>= VEC_length (constraint_t
, complex)
907 || !constraint_equal (*c
, *VEC_index (constraint_t
, complex, place
)))
908 VEC_safe_insert (constraint_t
, heap
, graph
->complex[var
], place
, c
);
912 /* Condense two variable nodes into a single variable node, by moving
913 all associated info from SRC to TO. */
916 merge_node_constraints (constraint_graph_t graph
, unsigned int to
,
922 gcc_assert (find (from
) == to
);
924 /* Move all complex constraints from src node into to node */
925 for (i
= 0; VEC_iterate (constraint_t
, graph
->complex[from
], i
, c
); i
++)
927 /* In complex constraints for node src, we may have either
928 a = *src, and *src = a, or an offseted constraint which are
929 always added to the rhs node's constraints. */
931 if (c
->rhs
.type
== DEREF
)
933 else if (c
->lhs
.type
== DEREF
)
938 constraint_set_union (&graph
->complex[to
], &graph
->complex[from
]);
939 VEC_free (constraint_t
, heap
, graph
->complex[from
]);
940 graph
->complex[from
] = NULL
;
944 /* Remove edges involving NODE from GRAPH. */
947 clear_edges_for_node (constraint_graph_t graph
, unsigned int node
)
949 if (graph
->succs
[node
])
950 BITMAP_FREE (graph
->succs
[node
]);
953 /* Merge GRAPH nodes FROM and TO into node TO. */
956 merge_graph_nodes (constraint_graph_t graph
, unsigned int to
,
959 if (graph
->indirect_cycles
[from
] != -1)
961 /* If we have indirect cycles with the from node, and we have
962 none on the to node, the to node has indirect cycles from the
963 from node now that they are unified.
964 If indirect cycles exist on both, unify the nodes that they
965 are in a cycle with, since we know they are in a cycle with
967 if (graph
->indirect_cycles
[to
] == -1)
968 graph
->indirect_cycles
[to
] = graph
->indirect_cycles
[from
];
971 /* Merge all the successor edges. */
972 if (graph
->succs
[from
])
974 if (!graph
->succs
[to
])
975 graph
->succs
[to
] = BITMAP_ALLOC (&pta_obstack
);
976 bitmap_ior_into (graph
->succs
[to
],
980 clear_edges_for_node (graph
, from
);
984 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
985 it doesn't exist in the graph already. */
988 add_implicit_graph_edge (constraint_graph_t graph
, unsigned int to
,
994 if (!graph
->implicit_preds
[to
])
995 graph
->implicit_preds
[to
] = BITMAP_ALLOC (&predbitmap_obstack
);
997 if (bitmap_set_bit (graph
->implicit_preds
[to
], from
))
998 stats
.num_implicit_edges
++;
1001 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1002 it doesn't exist in the graph already.
1003 Return false if the edge already existed, true otherwise. */
1006 add_pred_graph_edge (constraint_graph_t graph
, unsigned int to
,
1009 if (!graph
->preds
[to
])
1010 graph
->preds
[to
] = BITMAP_ALLOC (&predbitmap_obstack
);
1011 bitmap_set_bit (graph
->preds
[to
], from
);
1014 /* Add a graph edge to GRAPH, going from FROM to TO if
1015 it doesn't exist in the graph already.
1016 Return false if the edge already existed, true otherwise. */
1019 add_graph_edge (constraint_graph_t graph
, unsigned int to
,
1030 if (!graph
->succs
[from
])
1031 graph
->succs
[from
] = BITMAP_ALLOC (&pta_obstack
);
1032 if (bitmap_set_bit (graph
->succs
[from
], to
))
1035 if (to
< FIRST_REF_NODE
&& from
< FIRST_REF_NODE
)
1043 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1046 valid_graph_edge (constraint_graph_t graph
, unsigned int src
,
1049 return (graph
->succs
[dest
]
1050 && bitmap_bit_p (graph
->succs
[dest
], src
));
1053 /* Initialize the constraint graph structure to contain SIZE nodes. */
1056 init_graph (unsigned int size
)
1060 graph
= XCNEW (struct constraint_graph
);
1062 graph
->succs
= XCNEWVEC (bitmap
, graph
->size
);
1063 graph
->indirect_cycles
= XNEWVEC (int, graph
->size
);
1064 graph
->rep
= XNEWVEC (unsigned int, graph
->size
);
1065 graph
->complex = XCNEWVEC (VEC(constraint_t
, heap
) *, size
);
1066 graph
->pe
= XCNEWVEC (unsigned int, graph
->size
);
1067 graph
->pe_rep
= XNEWVEC (int, graph
->size
);
1069 for (j
= 0; j
< graph
->size
; j
++)
1072 graph
->pe_rep
[j
] = -1;
1073 graph
->indirect_cycles
[j
] = -1;
1077 /* Build the constraint graph, adding only predecessor edges right now. */
1080 build_pred_graph (void)
1086 graph
->implicit_preds
= XCNEWVEC (bitmap
, graph
->size
);
1087 graph
->preds
= XCNEWVEC (bitmap
, graph
->size
);
1088 graph
->pointer_label
= XCNEWVEC (unsigned int, graph
->size
);
1089 graph
->loc_label
= XCNEWVEC (unsigned int, graph
->size
);
1090 graph
->pointed_by
= XCNEWVEC (bitmap
, graph
->size
);
1091 graph
->points_to
= XCNEWVEC (bitmap
, graph
->size
);
1092 graph
->eq_rep
= XNEWVEC (int, graph
->size
);
1093 graph
->direct_nodes
= sbitmap_alloc (graph
->size
);
1094 graph
->address_taken
= BITMAP_ALLOC (&predbitmap_obstack
);
1095 sbitmap_zero (graph
->direct_nodes
);
1097 for (j
= 0; j
< FIRST_REF_NODE
; j
++)
1099 if (!get_varinfo (j
)->is_special_var
)
1100 SET_BIT (graph
->direct_nodes
, j
);
1103 for (j
= 0; j
< graph
->size
; j
++)
1104 graph
->eq_rep
[j
] = -1;
1106 for (j
= 0; j
< VEC_length (varinfo_t
, varmap
); j
++)
1107 graph
->indirect_cycles
[j
] = -1;
1109 for (i
= 0; VEC_iterate (constraint_t
, constraints
, i
, c
); i
++)
1111 struct constraint_expr lhs
= c
->lhs
;
1112 struct constraint_expr rhs
= c
->rhs
;
1113 unsigned int lhsvar
= get_varinfo_fc (lhs
.var
)->id
;
1114 unsigned int rhsvar
= get_varinfo_fc (rhs
.var
)->id
;
1116 if (lhs
.type
== DEREF
)
1119 if (rhs
.offset
== 0 && lhs
.offset
== 0 && rhs
.type
== SCALAR
)
1120 add_pred_graph_edge (graph
, FIRST_REF_NODE
+ lhsvar
, rhsvar
);
1122 else if (rhs
.type
== DEREF
)
1125 if (rhs
.offset
== 0 && lhs
.offset
== 0 && lhs
.type
== SCALAR
)
1126 add_pred_graph_edge (graph
, lhsvar
, FIRST_REF_NODE
+ rhsvar
);
1128 RESET_BIT (graph
->direct_nodes
, lhsvar
);
1130 else if (rhs
.type
== ADDRESSOF
)
1133 if (graph
->points_to
[lhsvar
] == NULL
)
1134 graph
->points_to
[lhsvar
] = BITMAP_ALLOC (&predbitmap_obstack
);
1135 bitmap_set_bit (graph
->points_to
[lhsvar
], rhsvar
);
1137 if (graph
->pointed_by
[rhsvar
] == NULL
)
1138 graph
->pointed_by
[rhsvar
] = BITMAP_ALLOC (&predbitmap_obstack
);
1139 bitmap_set_bit (graph
->pointed_by
[rhsvar
], lhsvar
);
1141 /* Implicitly, *x = y */
1142 add_implicit_graph_edge (graph
, FIRST_REF_NODE
+ lhsvar
, rhsvar
);
1144 RESET_BIT (graph
->direct_nodes
, rhsvar
);
1145 bitmap_set_bit (graph
->address_taken
, rhsvar
);
1147 else if (lhsvar
> anything_id
1148 && lhsvar
!= rhsvar
&& lhs
.offset
== 0 && rhs
.offset
== 0)
1151 add_pred_graph_edge (graph
, lhsvar
, rhsvar
);
1152 /* Implicitly, *x = *y */
1153 add_implicit_graph_edge (graph
, FIRST_REF_NODE
+ lhsvar
,
1154 FIRST_REF_NODE
+ rhsvar
);
1156 else if (lhs
.offset
!= 0 || rhs
.offset
!= 0)
1158 if (rhs
.offset
!= 0)
1159 RESET_BIT (graph
->direct_nodes
, lhs
.var
);
1160 else if (lhs
.offset
!= 0)
1161 RESET_BIT (graph
->direct_nodes
, rhs
.var
);
1166 /* Build the constraint graph, adding successor edges. */
1169 build_succ_graph (void)
1174 for (i
= 0; VEC_iterate (constraint_t
, constraints
, i
, c
); i
++)
1176 struct constraint_expr lhs
;
1177 struct constraint_expr rhs
;
1178 unsigned int lhsvar
;
1179 unsigned int rhsvar
;
1186 lhsvar
= find (get_varinfo_fc (lhs
.var
)->id
);
1187 rhsvar
= find (get_varinfo_fc (rhs
.var
)->id
);
1189 if (lhs
.type
== DEREF
)
1191 if (rhs
.offset
== 0 && lhs
.offset
== 0 && rhs
.type
== SCALAR
)
1192 add_graph_edge (graph
, FIRST_REF_NODE
+ lhsvar
, rhsvar
);
1194 else if (rhs
.type
== DEREF
)
1196 if (rhs
.offset
== 0 && lhs
.offset
== 0 && lhs
.type
== SCALAR
)
1197 add_graph_edge (graph
, lhsvar
, FIRST_REF_NODE
+ rhsvar
);
1199 else if (rhs
.type
== ADDRESSOF
)
1202 gcc_assert (find (get_varinfo_fc (rhs
.var
)->id
)
1203 == get_varinfo_fc (rhs
.var
)->id
);
1204 bitmap_set_bit (get_varinfo (lhsvar
)->solution
, rhsvar
);
1206 else if (lhsvar
> anything_id
1207 && lhsvar
!= rhsvar
&& lhs
.offset
== 0 && rhs
.offset
== 0)
1209 add_graph_edge (graph
, lhsvar
, rhsvar
);
1215 /* Changed variables on the last iteration. */
1216 static unsigned int changed_count
;
1217 static sbitmap changed
;
1219 DEF_VEC_I(unsigned);
1220 DEF_VEC_ALLOC_I(unsigned,heap
);
1223 /* Strongly Connected Component visitation info. */
1230 unsigned int *node_mapping
;
1232 VEC(unsigned,heap
) *scc_stack
;
1236 /* Recursive routine to find strongly connected components in GRAPH.
1237 SI is the SCC info to store the information in, and N is the id of current
1238 graph node we are processing.
1240 This is Tarjan's strongly connected component finding algorithm, as
1241 modified by Nuutila to keep only non-root nodes on the stack.
1242 The algorithm can be found in "On finding the strongly connected
1243 connected components in a directed graph" by Esko Nuutila and Eljas
1244 Soisalon-Soininen, in Information Processing Letters volume 49,
1245 number 1, pages 9-14. */
1248 scc_visit (constraint_graph_t graph
, struct scc_info
*si
, unsigned int n
)
1252 unsigned int my_dfs
;
1254 SET_BIT (si
->visited
, n
);
1255 si
->dfs
[n
] = si
->current_index
++;
1256 my_dfs
= si
->dfs
[n
];
1258 /* Visit all the successors. */
1259 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->succs
[n
], 0, i
, bi
)
1263 if (i
> LAST_REF_NODE
)
1267 if (TEST_BIT (si
->deleted
, w
))
1270 if (!TEST_BIT (si
->visited
, w
))
1271 scc_visit (graph
, si
, w
);
1273 unsigned int t
= find (w
);
1274 unsigned int nnode
= find (n
);
1275 gcc_assert (nnode
== n
);
1277 if (si
->dfs
[t
] < si
->dfs
[nnode
])
1278 si
->dfs
[n
] = si
->dfs
[t
];
1282 /* See if any components have been identified. */
1283 if (si
->dfs
[n
] == my_dfs
)
1285 if (VEC_length (unsigned, si
->scc_stack
) > 0
1286 && si
->dfs
[VEC_last (unsigned, si
->scc_stack
)] >= my_dfs
)
1288 bitmap scc
= BITMAP_ALLOC (NULL
);
1289 bool have_ref_node
= n
>= FIRST_REF_NODE
;
1290 unsigned int lowest_node
;
1293 bitmap_set_bit (scc
, n
);
1295 while (VEC_length (unsigned, si
->scc_stack
) != 0
1296 && si
->dfs
[VEC_last (unsigned, si
->scc_stack
)] >= my_dfs
)
1298 unsigned int w
= VEC_pop (unsigned, si
->scc_stack
);
1300 bitmap_set_bit (scc
, w
);
1301 if (w
>= FIRST_REF_NODE
)
1302 have_ref_node
= true;
1305 lowest_node
= bitmap_first_set_bit (scc
);
1306 gcc_assert (lowest_node
< FIRST_REF_NODE
);
1308 /* Collapse the SCC nodes into a single node, and mark the
1310 EXECUTE_IF_SET_IN_BITMAP (scc
, 0, i
, bi
)
1312 if (i
< FIRST_REF_NODE
)
1314 if (unite (lowest_node
, i
))
1315 unify_nodes (graph
, lowest_node
, i
, false);
1319 unite (lowest_node
, i
);
1320 graph
->indirect_cycles
[i
- FIRST_REF_NODE
] = lowest_node
;
1324 SET_BIT (si
->deleted
, n
);
1327 VEC_safe_push (unsigned, heap
, si
->scc_stack
, n
);
1330 /* Unify node FROM into node TO, updating the changed count if
1331 necessary when UPDATE_CHANGED is true. */
1334 unify_nodes (constraint_graph_t graph
, unsigned int to
, unsigned int from
,
1335 bool update_changed
)
1338 gcc_assert (to
!= from
&& find (to
) == to
);
1339 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1340 fprintf (dump_file
, "Unifying %s to %s\n",
1341 get_varinfo (from
)->name
,
1342 get_varinfo (to
)->name
);
1345 stats
.unified_vars_dynamic
++;
1347 stats
.unified_vars_static
++;
1349 merge_graph_nodes (graph
, to
, from
);
1350 merge_node_constraints (graph
, to
, from
);
1352 if (get_varinfo (from
)->no_tbaa_pruning
)
1353 get_varinfo (to
)->no_tbaa_pruning
= true;
1355 /* Mark TO as changed if FROM was changed. If TO was already marked
1356 as changed, decrease the changed count. */
1358 if (update_changed
&& TEST_BIT (changed
, from
))
1360 RESET_BIT (changed
, from
);
1361 if (!TEST_BIT (changed
, to
))
1362 SET_BIT (changed
, to
);
1365 gcc_assert (changed_count
> 0);
1369 if (get_varinfo (from
)->solution
)
1371 /* If the solution changes because of the merging, we need to mark
1372 the variable as changed. */
1373 if (bitmap_ior_into (get_varinfo (to
)->solution
,
1374 get_varinfo (from
)->solution
))
1376 if (update_changed
&& !TEST_BIT (changed
, to
))
1378 SET_BIT (changed
, to
);
1383 BITMAP_FREE (get_varinfo (from
)->solution
);
1384 BITMAP_FREE (get_varinfo (from
)->oldsolution
);
1386 if (stats
.iterations
> 0)
1388 BITMAP_FREE (get_varinfo (to
)->oldsolution
);
1389 get_varinfo (to
)->oldsolution
= BITMAP_ALLOC (&oldpta_obstack
);
1392 if (valid_graph_edge (graph
, to
, to
))
1394 if (graph
->succs
[to
])
1395 bitmap_clear_bit (graph
->succs
[to
], to
);
1399 /* Information needed to compute the topological ordering of a graph. */
1403 /* sbitmap of visited nodes. */
1405 /* Array that stores the topological order of the graph, *in
1407 VEC(unsigned,heap
) *topo_order
;
1411 /* Initialize and return a topological info structure. */
1413 static struct topo_info
*
1414 init_topo_info (void)
1416 size_t size
= graph
->size
;
1417 struct topo_info
*ti
= XNEW (struct topo_info
);
1418 ti
->visited
= sbitmap_alloc (size
);
1419 sbitmap_zero (ti
->visited
);
1420 ti
->topo_order
= VEC_alloc (unsigned, heap
, 1);
1425 /* Free the topological sort info pointed to by TI. */
1428 free_topo_info (struct topo_info
*ti
)
1430 sbitmap_free (ti
->visited
);
1431 VEC_free (unsigned, heap
, ti
->topo_order
);
1435 /* Visit the graph in topological order, and store the order in the
1436 topo_info structure. */
1439 topo_visit (constraint_graph_t graph
, struct topo_info
*ti
,
1445 SET_BIT (ti
->visited
, n
);
1447 if (graph
->succs
[n
])
1448 EXECUTE_IF_SET_IN_BITMAP (graph
->succs
[n
], 0, j
, bi
)
1450 if (!TEST_BIT (ti
->visited
, j
))
1451 topo_visit (graph
, ti
, j
);
1454 VEC_safe_push (unsigned, heap
, ti
->topo_order
, n
);
1457 /* Return true if variable N + OFFSET is a legal field of N. */
1460 type_safe (unsigned int n
, unsigned HOST_WIDE_INT
*offset
)
1462 varinfo_t ninfo
= get_varinfo (n
);
1464 /* For things we've globbed to single variables, any offset into the
1465 variable acts like the entire variable, so that it becomes offset
1467 if (ninfo
->is_special_var
1468 || ninfo
->is_artificial_var
1469 || ninfo
->is_unknown_size_var
1470 || ninfo
->is_full_var
)
1475 return (get_varinfo (n
)->offset
+ *offset
) < get_varinfo (n
)->fullsize
;
1478 /* Process a constraint C that represents x = *y, using DELTA as the
1479 starting solution. */
1482 do_sd_constraint (constraint_graph_t graph
, constraint_t c
,
1485 unsigned int lhs
= c
->lhs
.var
;
1487 bitmap sol
= get_varinfo (lhs
)->solution
;
1491 if (bitmap_bit_p (delta
, anything_id
))
1493 flag
|= bitmap_set_bit (sol
, anything_id
);
1497 /* For x = *ESCAPED and x = *CALLUSED we want to compute the
1498 reachability set of the rhs var. As a pointer to a sub-field
1499 of a variable can also reach all other fields of the variable
1500 we simply have to expand the solution to contain all sub-fields
1501 if one sub-field is contained. */
1502 if (c
->rhs
.var
== escaped_id
1503 || c
->rhs
.var
== callused_id
)
1506 /* In a first pass record all variables we need to add all
1507 sub-fields off. This avoids quadratic behavior. */
1508 EXECUTE_IF_SET_IN_BITMAP (delta
, 0, j
, bi
)
1510 varinfo_t v
= get_varinfo (j
);
1514 v
= lookup_vi_for_tree (v
->decl
);
1515 if (v
->next
!= NULL
)
1518 vars
= BITMAP_ALLOC (NULL
);
1519 bitmap_set_bit (vars
, v
->id
);
1522 /* In the second pass now do the addition to the solution and
1523 to speed up solving add it to the delta as well. */
1526 EXECUTE_IF_SET_IN_BITMAP (vars
, 0, j
, bi
)
1528 varinfo_t v
= get_varinfo (j
);
1529 for (; v
!= NULL
; v
= v
->next
)
1531 if (bitmap_set_bit (sol
, v
->id
))
1534 bitmap_set_bit (delta
, v
->id
);
1542 /* For each variable j in delta (Sol(y)), add
1543 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1544 EXECUTE_IF_SET_IN_BITMAP (delta
, 0, j
, bi
)
1546 unsigned HOST_WIDE_INT roffset
= c
->rhs
.offset
;
1547 if (type_safe (j
, &roffset
))
1550 unsigned HOST_WIDE_INT fieldoffset
= get_varinfo (j
)->offset
+ roffset
;
1553 v
= first_vi_for_offset (get_varinfo (j
), fieldoffset
);
1554 /* If the access is outside of the variable we can ignore it. */
1559 /* Adding edges from the special vars is pointless.
1560 They don't have sets that can change. */
1561 if (get_varinfo (t
)->is_special_var
)
1562 flag
|= bitmap_ior_into (sol
, get_varinfo (t
)->solution
);
1563 /* Merging the solution from ESCAPED needlessly increases
1564 the set. Use ESCAPED as representative instead.
1565 Same for CALLUSED. */
1566 else if (get_varinfo (t
)->id
== escaped_id
1567 || get_varinfo (t
)->id
== callused_id
)
1568 flag
|= bitmap_set_bit (sol
, get_varinfo (t
)->id
);
1569 else if (add_graph_edge (graph
, lhs
, t
))
1570 flag
|= bitmap_ior_into (sol
, get_varinfo (t
)->solution
);
1575 /* If the LHS solution changed, mark the var as changed. */
1578 get_varinfo (lhs
)->solution
= sol
;
1579 if (!TEST_BIT (changed
, lhs
))
1581 SET_BIT (changed
, lhs
);
1587 /* Process a constraint C that represents *x = y. */
1590 do_ds_constraint (constraint_t c
, bitmap delta
)
1592 unsigned int rhs
= c
->rhs
.var
;
1593 bitmap sol
= get_varinfo (rhs
)->solution
;
1597 if (bitmap_bit_p (sol
, anything_id
))
1599 EXECUTE_IF_SET_IN_BITMAP (delta
, 0, j
, bi
)
1601 varinfo_t jvi
= get_varinfo (j
);
1603 unsigned int loff
= c
->lhs
.offset
;
1604 unsigned HOST_WIDE_INT fieldoffset
= jvi
->offset
+ loff
;
1607 v
= get_varinfo (j
);
1608 if (!v
->is_full_var
)
1610 v
= first_vi_for_offset (v
, fieldoffset
);
1611 /* If the access is outside of the variable we can ignore it. */
1617 if (bitmap_set_bit (get_varinfo (t
)->solution
, anything_id
)
1618 && !TEST_BIT (changed
, t
))
1620 SET_BIT (changed
, t
);
1627 /* For each member j of delta (Sol(x)), add an edge from y to j and
1628 union Sol(y) into Sol(j) */
1629 EXECUTE_IF_SET_IN_BITMAP (delta
, 0, j
, bi
)
1631 unsigned HOST_WIDE_INT loff
= c
->lhs
.offset
;
1632 if (type_safe (j
, &loff
) && !(get_varinfo (j
)->is_special_var
))
1636 unsigned HOST_WIDE_INT fieldoffset
= get_varinfo (j
)->offset
+ loff
;
1639 v
= first_vi_for_offset (get_varinfo (j
), fieldoffset
);
1640 /* If the access is outside of the variable we can ignore it. */
1644 tmp
= get_varinfo (t
)->solution
;
1646 if (set_union_with_increment (tmp
, sol
, 0))
1648 get_varinfo (t
)->solution
= tmp
;
1650 sol
= get_varinfo (rhs
)->solution
;
1651 if (!TEST_BIT (changed
, t
))
1653 SET_BIT (changed
, t
);
1661 /* Handle a non-simple (simple meaning requires no iteration),
1662 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1665 do_complex_constraint (constraint_graph_t graph
, constraint_t c
, bitmap delta
)
1667 if (c
->lhs
.type
== DEREF
)
1669 if (c
->rhs
.type
== ADDRESSOF
)
1676 do_ds_constraint (c
, delta
);
1679 else if (c
->rhs
.type
== DEREF
)
1682 if (!(get_varinfo (c
->lhs
.var
)->is_special_var
))
1683 do_sd_constraint (graph
, c
, delta
);
1691 gcc_assert (c
->rhs
.type
== SCALAR
&& c
->lhs
.type
== SCALAR
);
1692 solution
= get_varinfo (c
->rhs
.var
)->solution
;
1693 tmp
= get_varinfo (c
->lhs
.var
)->solution
;
1695 flag
= set_union_with_increment (tmp
, solution
, c
->rhs
.offset
);
1699 get_varinfo (c
->lhs
.var
)->solution
= tmp
;
1700 if (!TEST_BIT (changed
, c
->lhs
.var
))
1702 SET_BIT (changed
, c
->lhs
.var
);
1709 /* Initialize and return a new SCC info structure. */
1711 static struct scc_info
*
1712 init_scc_info (size_t size
)
1714 struct scc_info
*si
= XNEW (struct scc_info
);
1717 si
->current_index
= 0;
1718 si
->visited
= sbitmap_alloc (size
);
1719 sbitmap_zero (si
->visited
);
1720 si
->deleted
= sbitmap_alloc (size
);
1721 sbitmap_zero (si
->deleted
);
1722 si
->node_mapping
= XNEWVEC (unsigned int, size
);
1723 si
->dfs
= XCNEWVEC (unsigned int, size
);
1725 for (i
= 0; i
< size
; i
++)
1726 si
->node_mapping
[i
] = i
;
1728 si
->scc_stack
= VEC_alloc (unsigned, heap
, 1);
1732 /* Free an SCC info structure pointed to by SI */
1735 free_scc_info (struct scc_info
*si
)
1737 sbitmap_free (si
->visited
);
1738 sbitmap_free (si
->deleted
);
1739 free (si
->node_mapping
);
1741 VEC_free (unsigned, heap
, si
->scc_stack
);
1746 /* Find indirect cycles in GRAPH that occur, using strongly connected
1747 components, and note them in the indirect cycles map.
1749 This technique comes from Ben Hardekopf and Calvin Lin,
1750 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1751 Lines of Code", submitted to PLDI 2007. */
1754 find_indirect_cycles (constraint_graph_t graph
)
1757 unsigned int size
= graph
->size
;
1758 struct scc_info
*si
= init_scc_info (size
);
1760 for (i
= 0; i
< MIN (LAST_REF_NODE
, size
); i
++ )
1761 if (!TEST_BIT (si
->visited
, i
) && find (i
) == i
)
1762 scc_visit (graph
, si
, i
);
1767 /* Compute a topological ordering for GRAPH, and store the result in the
1768 topo_info structure TI. */
1771 compute_topo_order (constraint_graph_t graph
,
1772 struct topo_info
*ti
)
1775 unsigned int size
= graph
->size
;
1777 for (i
= 0; i
!= size
; ++i
)
1778 if (!TEST_BIT (ti
->visited
, i
) && find (i
) == i
)
1779 topo_visit (graph
, ti
, i
);
1782 /* Structure used to for hash value numbering of pointer equivalence
1785 typedef struct equiv_class_label
1787 unsigned int equivalence_class
;
1790 } *equiv_class_label_t
;
1791 typedef const struct equiv_class_label
*const_equiv_class_label_t
;
1793 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1795 static htab_t pointer_equiv_class_table
;
1797 /* A hashtable for mapping a bitmap of labels->location equivalence
1799 static htab_t location_equiv_class_table
;
1801 /* Hash function for a equiv_class_label_t */
1804 equiv_class_label_hash (const void *p
)
1806 const_equiv_class_label_t
const ecl
= (const_equiv_class_label_t
) p
;
1807 return ecl
->hashcode
;
1810 /* Equality function for two equiv_class_label_t's. */
1813 equiv_class_label_eq (const void *p1
, const void *p2
)
1815 const_equiv_class_label_t
const eql1
= (const_equiv_class_label_t
) p1
;
1816 const_equiv_class_label_t
const eql2
= (const_equiv_class_label_t
) p2
;
1817 return bitmap_equal_p (eql1
->labels
, eql2
->labels
);
1820 /* Lookup a equivalence class in TABLE by the bitmap of LABELS it
1824 equiv_class_lookup (htab_t table
, bitmap labels
)
1827 struct equiv_class_label ecl
;
1829 ecl
.labels
= labels
;
1830 ecl
.hashcode
= bitmap_hash (labels
);
1832 slot
= htab_find_slot_with_hash (table
, &ecl
,
1833 ecl
.hashcode
, NO_INSERT
);
1837 return ((equiv_class_label_t
) *slot
)->equivalence_class
;
1841 /* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
1845 equiv_class_add (htab_t table
, unsigned int equivalence_class
,
1849 equiv_class_label_t ecl
= XNEW (struct equiv_class_label
);
1851 ecl
->labels
= labels
;
1852 ecl
->equivalence_class
= equivalence_class
;
1853 ecl
->hashcode
= bitmap_hash (labels
);
1855 slot
= htab_find_slot_with_hash (table
, ecl
,
1856 ecl
->hashcode
, INSERT
);
1857 gcc_assert (!*slot
);
1858 *slot
= (void *) ecl
;
1861 /* Perform offline variable substitution.
1863 This is a worst case quadratic time way of identifying variables
1864 that must have equivalent points-to sets, including those caused by
1865 static cycles, and single entry subgraphs, in the constraint graph.
1867 The technique is described in "Exploiting Pointer and Location
1868 Equivalence to Optimize Pointer Analysis. In the 14th International
1869 Static Analysis Symposium (SAS), August 2007." It is known as the
1870 "HU" algorithm, and is equivalent to value numbering the collapsed
1871 constraint graph including evaluating unions.
1873 The general method of finding equivalence classes is as follows:
1874 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
1875 Initialize all non-REF nodes to be direct nodes.
1876 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
1878 For each constraint containing the dereference, we also do the same
1881 We then compute SCC's in the graph and unify nodes in the same SCC,
1884 For each non-collapsed node x:
1885 Visit all unvisited explicit incoming edges.
1886 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
1888 Lookup the equivalence class for pts(x).
1889 If we found one, equivalence_class(x) = found class.
1890 Otherwise, equivalence_class(x) = new class, and new_class is
1891 added to the lookup table.
1893 All direct nodes with the same equivalence class can be replaced
1894 with a single representative node.
1895 All unlabeled nodes (label == 0) are not pointers and all edges
1896 involving them can be eliminated.
1897 We perform these optimizations during rewrite_constraints
1899 In addition to pointer equivalence class finding, we also perform
1900 location equivalence class finding. This is the set of variables
1901 that always appear together in points-to sets. We use this to
1902 compress the size of the points-to sets. */
1904 /* Current maximum pointer equivalence class id. */
1905 static int pointer_equiv_class
;
1907 /* Current maximum location equivalence class id. */
1908 static int location_equiv_class
;
1910 /* Recursive routine to find strongly connected components in GRAPH,
1911 and label it's nodes with DFS numbers. */
1914 condense_visit (constraint_graph_t graph
, struct scc_info
*si
, unsigned int n
)
1918 unsigned int my_dfs
;
1920 gcc_assert (si
->node_mapping
[n
] == n
);
1921 SET_BIT (si
->visited
, n
);
1922 si
->dfs
[n
] = si
->current_index
++;
1923 my_dfs
= si
->dfs
[n
];
1925 /* Visit all the successors. */
1926 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->preds
[n
], 0, i
, bi
)
1928 unsigned int w
= si
->node_mapping
[i
];
1930 if (TEST_BIT (si
->deleted
, w
))
1933 if (!TEST_BIT (si
->visited
, w
))
1934 condense_visit (graph
, si
, w
);
1936 unsigned int t
= si
->node_mapping
[w
];
1937 unsigned int nnode
= si
->node_mapping
[n
];
1938 gcc_assert (nnode
== n
);
1940 if (si
->dfs
[t
] < si
->dfs
[nnode
])
1941 si
->dfs
[n
] = si
->dfs
[t
];
1945 /* Visit all the implicit predecessors. */
1946 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->implicit_preds
[n
], 0, i
, bi
)
1948 unsigned int w
= si
->node_mapping
[i
];
1950 if (TEST_BIT (si
->deleted
, w
))
1953 if (!TEST_BIT (si
->visited
, w
))
1954 condense_visit (graph
, si
, w
);
1956 unsigned int t
= si
->node_mapping
[w
];
1957 unsigned int nnode
= si
->node_mapping
[n
];
1958 gcc_assert (nnode
== n
);
1960 if (si
->dfs
[t
] < si
->dfs
[nnode
])
1961 si
->dfs
[n
] = si
->dfs
[t
];
1965 /* See if any components have been identified. */
1966 if (si
->dfs
[n
] == my_dfs
)
1968 while (VEC_length (unsigned, si
->scc_stack
) != 0
1969 && si
->dfs
[VEC_last (unsigned, si
->scc_stack
)] >= my_dfs
)
1971 unsigned int w
= VEC_pop (unsigned, si
->scc_stack
);
1972 si
->node_mapping
[w
] = n
;
1974 if (!TEST_BIT (graph
->direct_nodes
, w
))
1975 RESET_BIT (graph
->direct_nodes
, n
);
1977 /* Unify our nodes. */
1978 if (graph
->preds
[w
])
1980 if (!graph
->preds
[n
])
1981 graph
->preds
[n
] = BITMAP_ALLOC (&predbitmap_obstack
);
1982 bitmap_ior_into (graph
->preds
[n
], graph
->preds
[w
]);
1984 if (graph
->implicit_preds
[w
])
1986 if (!graph
->implicit_preds
[n
])
1987 graph
->implicit_preds
[n
] = BITMAP_ALLOC (&predbitmap_obstack
);
1988 bitmap_ior_into (graph
->implicit_preds
[n
],
1989 graph
->implicit_preds
[w
]);
1991 if (graph
->points_to
[w
])
1993 if (!graph
->points_to
[n
])
1994 graph
->points_to
[n
] = BITMAP_ALLOC (&predbitmap_obstack
);
1995 bitmap_ior_into (graph
->points_to
[n
],
1996 graph
->points_to
[w
]);
1999 SET_BIT (si
->deleted
, n
);
2002 VEC_safe_push (unsigned, heap
, si
->scc_stack
, n
);
2005 /* Label pointer equivalences. */
2008 label_visit (constraint_graph_t graph
, struct scc_info
*si
, unsigned int n
)
2012 SET_BIT (si
->visited
, n
);
2014 if (!graph
->points_to
[n
])
2015 graph
->points_to
[n
] = BITMAP_ALLOC (&predbitmap_obstack
);
2017 /* Label and union our incoming edges's points to sets. */
2018 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->preds
[n
], 0, i
, bi
)
2020 unsigned int w
= si
->node_mapping
[i
];
2021 if (!TEST_BIT (si
->visited
, w
))
2022 label_visit (graph
, si
, w
);
2024 /* Skip unused edges */
2025 if (w
== n
|| graph
->pointer_label
[w
] == 0)
2028 if (graph
->points_to
[w
])
2029 bitmap_ior_into(graph
->points_to
[n
], graph
->points_to
[w
]);
2031 /* Indirect nodes get fresh variables. */
2032 if (!TEST_BIT (graph
->direct_nodes
, n
))
2033 bitmap_set_bit (graph
->points_to
[n
], FIRST_REF_NODE
+ n
);
2035 if (!bitmap_empty_p (graph
->points_to
[n
]))
2037 unsigned int label
= equiv_class_lookup (pointer_equiv_class_table
,
2038 graph
->points_to
[n
]);
2041 label
= pointer_equiv_class
++;
2042 equiv_class_add (pointer_equiv_class_table
,
2043 label
, graph
->points_to
[n
]);
2045 graph
->pointer_label
[n
] = label
;
2049 /* Perform offline variable substitution, discovering equivalence
2050 classes, and eliminating non-pointer variables. */
2052 static struct scc_info
*
2053 perform_var_substitution (constraint_graph_t graph
)
2056 unsigned int size
= graph
->size
;
2057 struct scc_info
*si
= init_scc_info (size
);
2059 bitmap_obstack_initialize (&iteration_obstack
);
2060 pointer_equiv_class_table
= htab_create (511, equiv_class_label_hash
,
2061 equiv_class_label_eq
, free
);
2062 location_equiv_class_table
= htab_create (511, equiv_class_label_hash
,
2063 equiv_class_label_eq
, free
);
2064 pointer_equiv_class
= 1;
2065 location_equiv_class
= 1;
2067 /* Condense the nodes, which means to find SCC's, count incoming
2068 predecessors, and unite nodes in SCC's. */
2069 for (i
= 0; i
< FIRST_REF_NODE
; i
++)
2070 if (!TEST_BIT (si
->visited
, si
->node_mapping
[i
]))
2071 condense_visit (graph
, si
, si
->node_mapping
[i
]);
2073 sbitmap_zero (si
->visited
);
2074 /* Actually the label the nodes for pointer equivalences */
2075 for (i
= 0; i
< FIRST_REF_NODE
; i
++)
2076 if (!TEST_BIT (si
->visited
, si
->node_mapping
[i
]))
2077 label_visit (graph
, si
, si
->node_mapping
[i
]);
2079 /* Calculate location equivalence labels. */
2080 for (i
= 0; i
< FIRST_REF_NODE
; i
++)
2087 if (!graph
->pointed_by
[i
])
2089 pointed_by
= BITMAP_ALLOC (&iteration_obstack
);
2091 /* Translate the pointed-by mapping for pointer equivalence
2093 EXECUTE_IF_SET_IN_BITMAP (graph
->pointed_by
[i
], 0, j
, bi
)
2095 bitmap_set_bit (pointed_by
,
2096 graph
->pointer_label
[si
->node_mapping
[j
]]);
2098 /* The original pointed_by is now dead. */
2099 BITMAP_FREE (graph
->pointed_by
[i
]);
2101 /* Look up the location equivalence label if one exists, or make
2103 label
= equiv_class_lookup (location_equiv_class_table
,
2107 label
= location_equiv_class
++;
2108 equiv_class_add (location_equiv_class_table
,
2113 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2114 fprintf (dump_file
, "Found location equivalence for node %s\n",
2115 get_varinfo (i
)->name
);
2116 BITMAP_FREE (pointed_by
);
2118 graph
->loc_label
[i
] = label
;
2122 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2123 for (i
= 0; i
< FIRST_REF_NODE
; i
++)
2125 bool direct_node
= TEST_BIT (graph
->direct_nodes
, i
);
2127 "Equivalence classes for %s node id %d:%s are pointer: %d"
2129 direct_node
? "Direct node" : "Indirect node", i
,
2130 get_varinfo (i
)->name
,
2131 graph
->pointer_label
[si
->node_mapping
[i
]],
2132 graph
->loc_label
[si
->node_mapping
[i
]]);
2135 /* Quickly eliminate our non-pointer variables. */
2137 for (i
= 0; i
< FIRST_REF_NODE
; i
++)
2139 unsigned int node
= si
->node_mapping
[i
];
2141 if (graph
->pointer_label
[node
] == 0)
2143 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2145 "%s is a non-pointer variable, eliminating edges.\n",
2146 get_varinfo (node
)->name
);
2147 stats
.nonpointer_vars
++;
2148 clear_edges_for_node (graph
, node
);
2155 /* Free information that was only necessary for variable
2159 free_var_substitution_info (struct scc_info
*si
)
2162 free (graph
->pointer_label
);
2163 free (graph
->loc_label
);
2164 free (graph
->pointed_by
);
2165 free (graph
->points_to
);
2166 free (graph
->eq_rep
);
2167 sbitmap_free (graph
->direct_nodes
);
2168 htab_delete (pointer_equiv_class_table
);
2169 htab_delete (location_equiv_class_table
);
2170 bitmap_obstack_release (&iteration_obstack
);
2173 /* Return an existing node that is equivalent to NODE, which has
2174 equivalence class LABEL, if one exists. Return NODE otherwise. */
2177 find_equivalent_node (constraint_graph_t graph
,
2178 unsigned int node
, unsigned int label
)
2180 /* If the address version of this variable is unused, we can
2181 substitute it for anything else with the same label.
2182 Otherwise, we know the pointers are equivalent, but not the
2183 locations, and we can unite them later. */
2185 if (!bitmap_bit_p (graph
->address_taken
, node
))
2187 gcc_assert (label
< graph
->size
);
2189 if (graph
->eq_rep
[label
] != -1)
2191 /* Unify the two variables since we know they are equivalent. */
2192 if (unite (graph
->eq_rep
[label
], node
))
2193 unify_nodes (graph
, graph
->eq_rep
[label
], node
, false);
2194 return graph
->eq_rep
[label
];
2198 graph
->eq_rep
[label
] = node
;
2199 graph
->pe_rep
[label
] = node
;
2204 gcc_assert (label
< graph
->size
);
2205 graph
->pe
[node
] = label
;
2206 if (graph
->pe_rep
[label
] == -1)
2207 graph
->pe_rep
[label
] = node
;
2213 /* Unite pointer equivalent but not location equivalent nodes in
2214 GRAPH. This may only be performed once variable substitution is
2218 unite_pointer_equivalences (constraint_graph_t graph
)
2222 /* Go through the pointer equivalences and unite them to their
2223 representative, if they aren't already. */
2224 for (i
= 0; i
< FIRST_REF_NODE
; i
++)
2226 unsigned int label
= graph
->pe
[i
];
2229 int label_rep
= graph
->pe_rep
[label
];
2231 if (label_rep
== -1)
2234 label_rep
= find (label_rep
);
2235 if (label_rep
>= 0 && unite (label_rep
, find (i
)))
2236 unify_nodes (graph
, label_rep
, i
, false);
2241 /* Move complex constraints to the GRAPH nodes they belong to. */
2244 move_complex_constraints (constraint_graph_t graph
)
2249 for (i
= 0; VEC_iterate (constraint_t
, constraints
, i
, c
); i
++)
2253 struct constraint_expr lhs
= c
->lhs
;
2254 struct constraint_expr rhs
= c
->rhs
;
2256 if (lhs
.type
== DEREF
)
2258 insert_into_complex (graph
, lhs
.var
, c
);
2260 else if (rhs
.type
== DEREF
)
2262 if (!(get_varinfo (lhs
.var
)->is_special_var
))
2263 insert_into_complex (graph
, rhs
.var
, c
);
2265 else if (rhs
.type
!= ADDRESSOF
&& lhs
.var
> anything_id
2266 && (lhs
.offset
!= 0 || rhs
.offset
!= 0))
2268 insert_into_complex (graph
, rhs
.var
, c
);
2275 /* Optimize and rewrite complex constraints while performing
2276 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2277 result of perform_variable_substitution. */
2280 rewrite_constraints (constraint_graph_t graph
,
2281 struct scc_info
*si
)
2287 for (j
= 0; j
< graph
->size
; j
++)
2288 gcc_assert (find (j
) == j
);
2290 for (i
= 0; VEC_iterate (constraint_t
, constraints
, i
, c
); i
++)
2292 struct constraint_expr lhs
= c
->lhs
;
2293 struct constraint_expr rhs
= c
->rhs
;
2294 unsigned int lhsvar
= find (get_varinfo_fc (lhs
.var
)->id
);
2295 unsigned int rhsvar
= find (get_varinfo_fc (rhs
.var
)->id
);
2296 unsigned int lhsnode
, rhsnode
;
2297 unsigned int lhslabel
, rhslabel
;
2299 lhsnode
= si
->node_mapping
[lhsvar
];
2300 rhsnode
= si
->node_mapping
[rhsvar
];
2301 lhslabel
= graph
->pointer_label
[lhsnode
];
2302 rhslabel
= graph
->pointer_label
[rhsnode
];
2304 /* See if it is really a non-pointer variable, and if so, ignore
2308 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2311 fprintf (dump_file
, "%s is a non-pointer variable,"
2312 "ignoring constraint:",
2313 get_varinfo (lhs
.var
)->name
);
2314 dump_constraint (dump_file
, c
);
2316 VEC_replace (constraint_t
, constraints
, i
, NULL
);
2322 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2325 fprintf (dump_file
, "%s is a non-pointer variable,"
2326 "ignoring constraint:",
2327 get_varinfo (rhs
.var
)->name
);
2328 dump_constraint (dump_file
, c
);
2330 VEC_replace (constraint_t
, constraints
, i
, NULL
);
2334 lhsvar
= find_equivalent_node (graph
, lhsvar
, lhslabel
);
2335 rhsvar
= find_equivalent_node (graph
, rhsvar
, rhslabel
);
2336 c
->lhs
.var
= lhsvar
;
2337 c
->rhs
.var
= rhsvar
;
2342 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2343 part of an SCC, false otherwise. */
2346 eliminate_indirect_cycles (unsigned int node
)
2348 if (graph
->indirect_cycles
[node
] != -1
2349 && !bitmap_empty_p (get_varinfo (node
)->solution
))
2352 VEC(unsigned,heap
) *queue
= NULL
;
2354 unsigned int to
= find (graph
->indirect_cycles
[node
]);
2357 /* We can't touch the solution set and call unify_nodes
2358 at the same time, because unify_nodes is going to do
2359 bitmap unions into it. */
2361 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node
)->solution
, 0, i
, bi
)
2363 if (find (i
) == i
&& i
!= to
)
2366 VEC_safe_push (unsigned, heap
, queue
, i
);
2371 VEC_iterate (unsigned, queue
, queuepos
, i
);
2374 unify_nodes (graph
, to
, i
, true);
2376 VEC_free (unsigned, heap
, queue
);
2382 /* Solve the constraint graph GRAPH using our worklist solver.
2383 This is based on the PW* family of solvers from the "Efficient Field
2384 Sensitive Pointer Analysis for C" paper.
2385 It works by iterating over all the graph nodes, processing the complex
2386 constraints and propagating the copy constraints, until everything stops
2387 changed. This corresponds to steps 6-8 in the solving list given above. */
2390 solve_graph (constraint_graph_t graph
)
2392 unsigned int size
= graph
->size
;
2397 changed
= sbitmap_alloc (size
);
2398 sbitmap_zero (changed
);
2400 /* Mark all initial non-collapsed nodes as changed. */
2401 for (i
= 0; i
< size
; i
++)
2403 varinfo_t ivi
= get_varinfo (i
);
2404 if (find (i
) == i
&& !bitmap_empty_p (ivi
->solution
)
2405 && ((graph
->succs
[i
] && !bitmap_empty_p (graph
->succs
[i
]))
2406 || VEC_length (constraint_t
, graph
->complex[i
]) > 0))
2408 SET_BIT (changed
, i
);
2413 /* Allocate a bitmap to be used to store the changed bits. */
2414 pts
= BITMAP_ALLOC (&pta_obstack
);
2416 while (changed_count
> 0)
2419 struct topo_info
*ti
= init_topo_info ();
2422 bitmap_obstack_initialize (&iteration_obstack
);
2424 compute_topo_order (graph
, ti
);
2426 while (VEC_length (unsigned, ti
->topo_order
) != 0)
2429 i
= VEC_pop (unsigned, ti
->topo_order
);
2431 /* If this variable is not a representative, skip it. */
2435 /* In certain indirect cycle cases, we may merge this
2436 variable to another. */
2437 if (eliminate_indirect_cycles (i
) && find (i
) != i
)
2440 /* If the node has changed, we need to process the
2441 complex constraints and outgoing edges again. */
2442 if (TEST_BIT (changed
, i
))
2447 VEC(constraint_t
,heap
) *complex = graph
->complex[i
];
2448 bool solution_empty
;
2450 RESET_BIT (changed
, i
);
2453 /* Compute the changed set of solution bits. */
2454 bitmap_and_compl (pts
, get_varinfo (i
)->solution
,
2455 get_varinfo (i
)->oldsolution
);
2457 if (bitmap_empty_p (pts
))
2460 bitmap_ior_into (get_varinfo (i
)->oldsolution
, pts
);
2462 solution
= get_varinfo (i
)->solution
;
2463 solution_empty
= bitmap_empty_p (solution
);
2465 /* Process the complex constraints */
2466 for (j
= 0; VEC_iterate (constraint_t
, complex, j
, c
); j
++)
2468 /* XXX: This is going to unsort the constraints in
2469 some cases, which will occasionally add duplicate
2470 constraints during unification. This does not
2471 affect correctness. */
2472 c
->lhs
.var
= find (c
->lhs
.var
);
2473 c
->rhs
.var
= find (c
->rhs
.var
);
2475 /* The only complex constraint that can change our
2476 solution to non-empty, given an empty solution,
2477 is a constraint where the lhs side is receiving
2478 some set from elsewhere. */
2479 if (!solution_empty
|| c
->lhs
.type
!= DEREF
)
2480 do_complex_constraint (graph
, c
, pts
);
2483 solution_empty
= bitmap_empty_p (solution
);
2486 /* Do not propagate the ESCAPED/CALLUSED solutions. */
2488 && i
!= callused_id
)
2492 /* Propagate solution to all successors. */
2493 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->succs
[i
],
2499 unsigned int to
= find (j
);
2500 tmp
= get_varinfo (to
)->solution
;
2503 /* Don't try to propagate to ourselves. */
2507 flag
= set_union_with_increment (tmp
, pts
, 0);
2511 get_varinfo (to
)->solution
= tmp
;
2512 if (!TEST_BIT (changed
, to
))
2514 SET_BIT (changed
, to
);
2522 free_topo_info (ti
);
2523 bitmap_obstack_release (&iteration_obstack
);
2527 sbitmap_free (changed
);
2528 bitmap_obstack_release (&oldpta_obstack
);
2531 /* Map from trees to variable infos. */
2532 static struct pointer_map_t
*vi_for_tree
;
2535 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2538 insert_vi_for_tree (tree t
, varinfo_t vi
)
2540 void **slot
= pointer_map_insert (vi_for_tree
, t
);
2542 gcc_assert (*slot
== NULL
);
2546 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2547 exist in the map, return NULL, otherwise, return the varinfo we found. */
2550 lookup_vi_for_tree (tree t
)
2552 void **slot
= pointer_map_contains (vi_for_tree
, t
);
2556 return (varinfo_t
) *slot
;
2559 /* Return a printable name for DECL */
2562 alias_get_name (tree decl
)
2564 const char *res
= get_name (decl
);
2566 int num_printed
= 0;
2575 if (TREE_CODE (decl
) == SSA_NAME
)
2577 num_printed
= asprintf (&temp
, "%s_%u",
2578 alias_get_name (SSA_NAME_VAR (decl
)),
2579 SSA_NAME_VERSION (decl
));
2581 else if (DECL_P (decl
))
2583 num_printed
= asprintf (&temp
, "D.%u", DECL_UID (decl
));
2585 if (num_printed
> 0)
2587 res
= ggc_strdup (temp
);
2593 /* Find the variable id for tree T in the map.
2594 If T doesn't exist in the map, create an entry for it and return it. */
2597 get_vi_for_tree (tree t
)
2599 void **slot
= pointer_map_contains (vi_for_tree
, t
);
2601 return get_varinfo (create_variable_info_for (t
, alias_get_name (t
)));
2603 return (varinfo_t
) *slot
;
2606 /* Get a constraint expression for a new temporary variable. */
2608 static struct constraint_expr
2609 get_constraint_exp_for_temp (tree t
)
2611 struct constraint_expr cexpr
;
2613 gcc_assert (SSA_VAR_P (t
));
2615 cexpr
.type
= SCALAR
;
2616 cexpr
.var
= get_vi_for_tree (t
)->id
;
2622 /* Get a constraint expression vector from an SSA_VAR_P node.
2623 If address_p is true, the result will be taken its address of. */
2626 get_constraint_for_ssa_var (tree t
, VEC(ce_s
, heap
) **results
, bool address_p
)
2628 struct constraint_expr cexpr
;
2631 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2632 gcc_assert (SSA_VAR_P (t
) || DECL_P (t
));
2634 /* For parameters, get at the points-to set for the actual parm
2636 if (TREE_CODE (t
) == SSA_NAME
2637 && TREE_CODE (SSA_NAME_VAR (t
)) == PARM_DECL
2638 && SSA_NAME_IS_DEFAULT_DEF (t
))
2640 get_constraint_for_ssa_var (SSA_NAME_VAR (t
), results
, address_p
);
2644 vi
= get_vi_for_tree (t
);
2646 cexpr
.type
= SCALAR
;
2648 /* If we determine the result is "anything", and we know this is readonly,
2649 say it points to readonly memory instead. */
2650 if (cexpr
.var
== anything_id
&& TREE_READONLY (t
))
2653 cexpr
.type
= ADDRESSOF
;
2654 cexpr
.var
= readonly_id
;
2657 /* If we are not taking the address of the constraint expr, add all
2658 sub-fiels of the variable as well. */
2661 for (; vi
; vi
= vi
->next
)
2664 VEC_safe_push (ce_s
, heap
, *results
, &cexpr
);
2669 VEC_safe_push (ce_s
, heap
, *results
, &cexpr
);
2672 /* Process constraint T, performing various simplifications and then
2673 adding it to our list of overall constraints. */
2676 process_constraint (constraint_t t
)
2678 struct constraint_expr rhs
= t
->rhs
;
2679 struct constraint_expr lhs
= t
->lhs
;
2681 gcc_assert (rhs
.var
< VEC_length (varinfo_t
, varmap
));
2682 gcc_assert (lhs
.var
< VEC_length (varinfo_t
, varmap
));
2684 /* ANYTHING == ANYTHING is pointless. */
2685 if (lhs
.var
== anything_id
&& rhs
.var
== anything_id
)
2688 /* If we have &ANYTHING = something, convert to SOMETHING = &ANYTHING) */
2689 else if (lhs
.var
== anything_id
&& lhs
.type
== ADDRESSOF
)
2694 process_constraint (t
);
2696 /* This can happen in our IR with things like n->a = *p */
2697 else if (rhs
.type
== DEREF
&& lhs
.type
== DEREF
&& rhs
.var
!= anything_id
)
2699 /* Split into tmp = *rhs, *lhs = tmp */
2700 tree rhsdecl
= get_varinfo (rhs
.var
)->decl
;
2701 tree pointertype
= TREE_TYPE (rhsdecl
);
2702 tree pointedtotype
= TREE_TYPE (pointertype
);
2703 tree tmpvar
= create_tmp_var_raw (pointedtotype
, "doubledereftmp");
2704 struct constraint_expr tmplhs
= get_constraint_exp_for_temp (tmpvar
);
2706 process_constraint (new_constraint (tmplhs
, rhs
));
2707 process_constraint (new_constraint (lhs
, tmplhs
));
2709 else if (rhs
.type
== ADDRESSOF
&& lhs
.type
== DEREF
)
2711 /* Split into tmp = &rhs, *lhs = tmp */
2712 tree rhsdecl
= get_varinfo (rhs
.var
)->decl
;
2713 tree pointertype
= TREE_TYPE (rhsdecl
);
2714 tree tmpvar
= create_tmp_var_raw (pointertype
, "derefaddrtmp");
2715 struct constraint_expr tmplhs
= get_constraint_exp_for_temp (tmpvar
);
2717 process_constraint (new_constraint (tmplhs
, rhs
));
2718 process_constraint (new_constraint (lhs
, tmplhs
));
2722 gcc_assert (rhs
.type
!= ADDRESSOF
|| rhs
.offset
== 0);
2723 VEC_safe_push (constraint_t
, heap
, constraints
, t
);
2727 /* Return true if T is a variable of a type that could contain
2731 could_have_pointers (tree t
)
2733 tree type
= TREE_TYPE (t
);
2735 if (POINTER_TYPE_P (type
)
2736 || AGGREGATE_TYPE_P (type
))
2742 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2745 static HOST_WIDE_INT
2746 bitpos_of_field (const tree fdecl
)
2749 if (!host_integerp (DECL_FIELD_OFFSET (fdecl
), 0)
2750 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl
), 0))
2753 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl
)) * 8
2754 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl
)));
2758 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2759 resulting constraint expressions in *RESULTS. */
2762 get_constraint_for_ptr_offset (tree ptr
, tree offset
,
2763 VEC (ce_s
, heap
) **results
)
2765 struct constraint_expr
*c
;
2767 unsigned HOST_WIDE_INT rhsunitoffset
, rhsoffset
;
2769 /* If we do not do field-sensitive PTA adding offsets to pointers
2770 does not change the points-to solution. */
2771 if (!use_field_sensitive
)
2773 get_constraint_for (ptr
, results
);
2777 /* If the offset is not a non-negative integer constant that fits
2778 in a HOST_WIDE_INT, we have to fall back to a conservative
2779 solution which includes all sub-fields of all pointed-to
2781 ??? As we do not have the ability to express this, fall back
2783 if (!host_integerp (offset
, 1))
2785 struct constraint_expr temp
;
2786 temp
.var
= anything_id
;
2789 VEC_safe_push (ce_s
, heap
, *results
, &temp
);
2793 /* Make sure the bit-offset also fits. */
2794 rhsunitoffset
= TREE_INT_CST_LOW (offset
);
2795 rhsoffset
= rhsunitoffset
* BITS_PER_UNIT
;
2796 if (rhsunitoffset
!= rhsoffset
/ BITS_PER_UNIT
)
2798 struct constraint_expr temp
;
2799 temp
.var
= anything_id
;
2802 VEC_safe_push (ce_s
, heap
, *results
, &temp
);
2806 get_constraint_for (ptr
, results
);
2810 /* As we are eventually appending to the solution do not use
2811 VEC_iterate here. */
2812 n
= VEC_length (ce_s
, *results
);
2813 for (j
= 0; j
< n
; j
++)
2816 c
= VEC_index (ce_s
, *results
, j
);
2817 curr
= get_varinfo (c
->var
);
2819 if (c
->type
== ADDRESSOF
2820 && !curr
->is_full_var
)
2822 varinfo_t temp
, curr
= get_varinfo (c
->var
);
2824 /* Search the sub-field which overlaps with the
2825 pointed-to offset. As we deal with positive offsets
2826 only, we can start the search from the current variable. */
2827 temp
= first_vi_for_offset (curr
, curr
->offset
+ rhsoffset
);
2829 /* If the result is outside of the variable we have to provide
2830 a conservative result, as the variable is still reachable
2831 from the resulting pointer (even though it technically
2832 cannot point to anything). The last sub-field is such
2833 a conservative result.
2834 ??? If we always had a sub-field for &object + 1 then
2835 we could represent this in a more precise way. */
2839 while (temp
->next
!= NULL
)
2844 /* If the found variable is not exactly at the pointed to
2845 result, we have to include the next variable in the
2846 solution as well. Otherwise two increments by offset / 2
2847 do not result in the same or a conservative superset
2849 if (temp
->offset
!= curr
->offset
+ rhsoffset
2850 && temp
->next
!= NULL
)
2852 struct constraint_expr c2
;
2853 c2
.var
= temp
->next
->id
;
2854 c2
.type
= ADDRESSOF
;
2856 VEC_safe_push (ce_s
, heap
, *results
, &c2
);
2861 else if (c
->type
== ADDRESSOF
2862 /* If this varinfo represents a full variable just use it. */
2863 && curr
->is_full_var
)
2866 c
->offset
= rhsoffset
;
2871 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
2872 If address_p is true the result will be taken its address of. */
2875 get_constraint_for_component_ref (tree t
, VEC(ce_s
, heap
) **results
,
2879 HOST_WIDE_INT bitsize
= -1;
2880 HOST_WIDE_INT bitmaxsize
= -1;
2881 HOST_WIDE_INT bitpos
;
2883 struct constraint_expr
*result
;
2885 /* Some people like to do cute things like take the address of
2888 while (!SSA_VAR_P (forzero
) && !CONSTANT_CLASS_P (forzero
))
2889 forzero
= TREE_OPERAND (forzero
, 0);
2891 if (CONSTANT_CLASS_P (forzero
) && integer_zerop (forzero
))
2893 struct constraint_expr temp
;
2896 temp
.var
= integer_id
;
2898 VEC_safe_push (ce_s
, heap
, *results
, &temp
);
2902 t
= get_ref_base_and_extent (t
, &bitpos
, &bitsize
, &bitmaxsize
);
2904 /* Pretend to take the address of the base, we'll take care of
2905 adding the required subset of sub-fields below. */
2906 get_constraint_for_1 (t
, results
, true);
2907 gcc_assert (VEC_length (ce_s
, *results
) == 1);
2908 result
= VEC_last (ce_s
, *results
);
2910 /* This can also happen due to weird offsetof type macros. */
2911 if (TREE_CODE (t
) != ADDR_EXPR
&& result
->type
== ADDRESSOF
)
2912 result
->type
= SCALAR
;
2914 if (result
->type
== SCALAR
2915 && get_varinfo (result
->var
)->is_full_var
)
2916 /* For single-field vars do not bother about the offset. */
2918 else if (result
->type
== SCALAR
)
2920 /* In languages like C, you can access one past the end of an
2921 array. You aren't allowed to dereference it, so we can
2922 ignore this constraint. When we handle pointer subtraction,
2923 we may have to do something cute here. */
2925 if ((unsigned HOST_WIDE_INT
)bitpos
< get_varinfo (result
->var
)->fullsize
2928 /* It's also not true that the constraint will actually start at the
2929 right offset, it may start in some padding. We only care about
2930 setting the constraint to the first actual field it touches, so
2932 struct constraint_expr cexpr
= *result
;
2934 VEC_pop (ce_s
, *results
);
2936 for (curr
= get_varinfo (cexpr
.var
); curr
; curr
= curr
->next
)
2938 if (ranges_overlap_p (curr
->offset
, curr
->size
,
2939 bitpos
, bitmaxsize
))
2941 cexpr
.var
= curr
->id
;
2942 VEC_safe_push (ce_s
, heap
, *results
, &cexpr
);
2947 /* If we are going to take the address of this field then
2948 to be able to compute reachability correctly add at least
2949 the last field of the variable. */
2951 && VEC_length (ce_s
, *results
) == 0)
2953 curr
= get_varinfo (cexpr
.var
);
2954 while (curr
->next
!= NULL
)
2956 cexpr
.var
= curr
->id
;
2957 VEC_safe_push (ce_s
, heap
, *results
, &cexpr
);
2960 /* Assert that we found *some* field there. The user couldn't be
2961 accessing *only* padding. */
2962 /* Still the user could access one past the end of an array
2963 embedded in a struct resulting in accessing *only* padding. */
2964 gcc_assert (VEC_length (ce_s
, *results
) >= 1
2965 || ref_contains_array_ref (orig_t
));
2967 else if (bitmaxsize
== 0)
2969 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2970 fprintf (dump_file
, "Access to zero-sized part of variable,"
2974 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2975 fprintf (dump_file
, "Access to past the end of variable, ignoring\n");
2977 else if (bitmaxsize
== -1)
2979 /* We can't handle DEREF constraints with unknown size, we'll
2980 get the wrong answer. Punt and return anything. */
2981 result
->var
= anything_id
;
2985 result
->offset
= bitpos
;
2989 /* Dereference the constraint expression CONS, and return the result.
2990 DEREF (ADDRESSOF) = SCALAR
2991 DEREF (SCALAR) = DEREF
2992 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
2993 This is needed so that we can handle dereferencing DEREF constraints. */
2996 do_deref (VEC (ce_s
, heap
) **constraints
)
2998 struct constraint_expr
*c
;
3001 for (i
= 0; VEC_iterate (ce_s
, *constraints
, i
, c
); i
++)
3003 if (c
->type
== SCALAR
)
3005 else if (c
->type
== ADDRESSOF
)
3007 else if (c
->type
== DEREF
)
3009 tree tmpvar
= create_tmp_var_raw (ptr_type_node
, "dereftmp");
3010 struct constraint_expr tmplhs
= get_constraint_exp_for_temp (tmpvar
);
3011 process_constraint (new_constraint (tmplhs
, *c
));
3012 c
->var
= tmplhs
.var
;
3019 /* Given a tree T, return the constraint expression for it. */
3022 get_constraint_for_1 (tree t
, VEC (ce_s
, heap
) **results
, bool address_p
)
3024 struct constraint_expr temp
;
3026 /* x = integer is all glommed to a single variable, which doesn't
3027 point to anything by itself. That is, of course, unless it is an
3028 integer constant being treated as a pointer, in which case, we
3029 will return that this is really the addressof anything. This
3030 happens below, since it will fall into the default case. The only
3031 case we know something about an integer treated like a pointer is
3032 when it is the NULL pointer, and then we just say it points to
3034 if (TREE_CODE (t
) == INTEGER_CST
3035 && integer_zerop (t
))
3037 temp
.var
= nothing_id
;
3038 temp
.type
= ADDRESSOF
;
3040 VEC_safe_push (ce_s
, heap
, *results
, &temp
);
3044 /* String constants are read-only. */
3045 if (TREE_CODE (t
) == STRING_CST
)
3047 temp
.var
= readonly_id
;
3050 VEC_safe_push (ce_s
, heap
, *results
, &temp
);
3054 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
3056 case tcc_expression
:
3058 switch (TREE_CODE (t
))
3062 struct constraint_expr
*c
;
3064 tree exp
= TREE_OPERAND (t
, 0);
3066 get_constraint_for_1 (exp
, results
, true);
3068 for (i
= 0; VEC_iterate (ce_s
, *results
, i
, c
); i
++)
3070 if (c
->type
== DEREF
)
3073 c
->type
= ADDRESSOF
;
3084 switch (TREE_CODE (t
))
3088 get_constraint_for_1 (TREE_OPERAND (t
, 0), results
, address_p
);
3093 case ARRAY_RANGE_REF
:
3095 get_constraint_for_component_ref (t
, results
, address_p
);
3101 case tcc_exceptional
:
3103 switch (TREE_CODE (t
))
3107 get_constraint_for_ssa_var (t
, results
, address_p
);
3114 case tcc_declaration
:
3116 get_constraint_for_ssa_var (t
, results
, address_p
);
3122 /* The default fallback is a constraint from anything. */
3123 temp
.type
= ADDRESSOF
;
3124 temp
.var
= anything_id
;
3126 VEC_safe_push (ce_s
, heap
, *results
, &temp
);
3129 /* Given a gimple tree T, return the constraint expression vector for it. */
3132 get_constraint_for (tree t
, VEC (ce_s
, heap
) **results
)
3134 gcc_assert (VEC_length (ce_s
, *results
) == 0);
3136 get_constraint_for_1 (t
, results
, false);
3139 /* Handle the structure copy case where we have a simple structure copy
3140 between LHS and RHS that is of SIZE (in bits)
3142 For each field of the lhs variable (lhsfield)
3143 For each field of the rhs variable at lhsfield.offset (rhsfield)
3144 add the constraint lhsfield = rhsfield
3146 If we fail due to some kind of type unsafety or other thing we
3147 can't handle, return false. We expect the caller to collapse the
3148 variable in that case. */
3151 do_simple_structure_copy (const struct constraint_expr lhs
,
3152 const struct constraint_expr rhs
,
3153 const unsigned HOST_WIDE_INT size
)
3155 varinfo_t p
= get_varinfo (lhs
.var
);
3156 unsigned HOST_WIDE_INT pstart
, last
;
3158 last
= p
->offset
+ size
;
3159 for (; p
&& p
->offset
< last
; p
= p
->next
)
3162 struct constraint_expr templhs
= lhs
;
3163 struct constraint_expr temprhs
= rhs
;
3164 unsigned HOST_WIDE_INT fieldoffset
;
3166 templhs
.var
= p
->id
;
3167 q
= get_varinfo (temprhs
.var
);
3168 fieldoffset
= p
->offset
- pstart
;
3169 q
= first_vi_for_offset (q
, q
->offset
+ fieldoffset
);
3172 temprhs
.var
= q
->id
;
3173 process_constraint (new_constraint (templhs
, temprhs
));
3179 /* Handle the structure copy case where we have a structure copy between a
3180 aggregate on the LHS and a dereference of a pointer on the RHS
3181 that is of SIZE (in bits)
3183 For each field of the lhs variable (lhsfield)
3184 rhs.offset = lhsfield->offset
3185 add the constraint lhsfield = rhs
3189 do_rhs_deref_structure_copy (const struct constraint_expr lhs
,
3190 const struct constraint_expr rhs
,
3191 const unsigned HOST_WIDE_INT size
)
3193 varinfo_t p
= get_varinfo (lhs
.var
);
3194 unsigned HOST_WIDE_INT pstart
,last
;
3196 last
= p
->offset
+ size
;
3198 for (; p
&& p
->offset
< last
; p
= p
->next
)
3201 struct constraint_expr templhs
= lhs
;
3202 struct constraint_expr temprhs
= rhs
;
3203 unsigned HOST_WIDE_INT fieldoffset
;
3206 if (templhs
.type
== SCALAR
)
3207 templhs
.var
= p
->id
;
3209 templhs
.offset
= p
->offset
;
3211 q
= get_varinfo (temprhs
.var
);
3212 fieldoffset
= p
->offset
- pstart
;
3213 temprhs
.offset
+= fieldoffset
;
3214 process_constraint (new_constraint (templhs
, temprhs
));
3218 /* Handle the structure copy case where we have a structure copy
3219 between an aggregate on the RHS and a dereference of a pointer on
3220 the LHS that is of SIZE (in bits)
3222 For each field of the rhs variable (rhsfield)
3223 lhs.offset = rhsfield->offset
3224 add the constraint lhs = rhsfield
3228 do_lhs_deref_structure_copy (const struct constraint_expr lhs
,
3229 const struct constraint_expr rhs
,
3230 const unsigned HOST_WIDE_INT size
)
3232 varinfo_t p
= get_varinfo (rhs
.var
);
3233 unsigned HOST_WIDE_INT pstart
,last
;
3235 last
= p
->offset
+ size
;
3237 for (; p
&& p
->offset
< last
; p
= p
->next
)
3240 struct constraint_expr templhs
= lhs
;
3241 struct constraint_expr temprhs
= rhs
;
3242 unsigned HOST_WIDE_INT fieldoffset
;
3245 if (temprhs
.type
== SCALAR
)
3246 temprhs
.var
= p
->id
;
3248 temprhs
.offset
= p
->offset
;
3250 q
= get_varinfo (templhs
.var
);
3251 fieldoffset
= p
->offset
- pstart
;
3252 templhs
.offset
+= fieldoffset
;
3253 process_constraint (new_constraint (templhs
, temprhs
));
3257 /* Sometimes, frontends like to give us bad type information. This
3258 function will collapse all the fields from VAR to the end of VAR,
3259 into VAR, so that we treat those fields as a single variable.
3260 We return the variable they were collapsed into. */
3263 collapse_rest_of_var (unsigned int var
)
3265 varinfo_t currvar
= get_varinfo (var
);
3268 for (field
= currvar
->next
; field
; field
= field
->next
)
3271 fprintf (dump_file
, "Type safety: Collapsing var %s into %s\n",
3272 field
->name
, currvar
->name
);
3274 gcc_assert (field
->collapsed_to
== 0);
3275 field
->collapsed_to
= currvar
->id
;
3278 currvar
->next
= NULL
;
3279 currvar
->size
= currvar
->fullsize
- currvar
->offset
;
3284 /* Handle aggregate copies by expanding into copies of the respective
3285 fields of the structures. */
3288 do_structure_copy (tree lhsop
, tree rhsop
)
3290 struct constraint_expr lhs
, rhs
, tmp
;
3291 VEC (ce_s
, heap
) *lhsc
= NULL
, *rhsc
= NULL
;
3293 unsigned HOST_WIDE_INT lhssize
;
3294 unsigned HOST_WIDE_INT rhssize
;
3296 /* Pretend we are taking the address of the constraint exprs.
3297 We deal with walking the sub-fields ourselves. */
3298 get_constraint_for_1 (lhsop
, &lhsc
, true);
3299 get_constraint_for_1 (rhsop
, &rhsc
, true);
3300 gcc_assert (VEC_length (ce_s
, lhsc
) == 1);
3301 gcc_assert (VEC_length (ce_s
, rhsc
) == 1);
3302 lhs
= *(VEC_last (ce_s
, lhsc
));
3303 rhs
= *(VEC_last (ce_s
, rhsc
));
3305 VEC_free (ce_s
, heap
, lhsc
);
3306 VEC_free (ce_s
, heap
, rhsc
);
3308 /* If we have special var = x, swap it around. */
3309 if (lhs
.var
<= integer_id
&& !(get_varinfo (rhs
.var
)->is_special_var
))
3316 /* This is fairly conservative for the RHS == ADDRESSOF case, in that it's
3317 possible it's something we could handle. However, most cases falling
3318 into this are dealing with transparent unions, which are slightly
3320 if (rhs
.type
== ADDRESSOF
&& !(get_varinfo (rhs
.var
)->is_special_var
))
3322 rhs
.type
= ADDRESSOF
;
3323 rhs
.var
= anything_id
;
3326 /* If the RHS is a special var, or an addressof, set all the LHS fields to
3327 that special var. */
3328 if (rhs
.var
<= integer_id
)
3330 for (p
= get_varinfo (lhs
.var
); p
; p
= p
->next
)
3332 struct constraint_expr templhs
= lhs
;
3333 struct constraint_expr temprhs
= rhs
;
3335 if (templhs
.type
== SCALAR
)
3336 templhs
.var
= p
->id
;
3338 templhs
.offset
+= p
->offset
;
3339 process_constraint (new_constraint (templhs
, temprhs
));
3344 tree rhstype
= TREE_TYPE (rhsop
);
3345 tree lhstype
= TREE_TYPE (lhsop
);
3349 lhstypesize
= DECL_P (lhsop
) ? DECL_SIZE (lhsop
) : TYPE_SIZE (lhstype
);
3350 rhstypesize
= DECL_P (rhsop
) ? DECL_SIZE (rhsop
) : TYPE_SIZE (rhstype
);
3352 /* If we have a variably sized types on the rhs or lhs, and a deref
3353 constraint, add the constraint, lhsconstraint = &ANYTHING.
3354 This is conservatively correct because either the lhs is an unknown
3355 sized var (if the constraint is SCALAR), or the lhs is a DEREF
3356 constraint, and every variable it can point to must be unknown sized
3357 anyway, so we don't need to worry about fields at all. */
3358 if ((rhs
.type
== DEREF
&& TREE_CODE (rhstypesize
) != INTEGER_CST
)
3359 || (lhs
.type
== DEREF
&& TREE_CODE (lhstypesize
) != INTEGER_CST
))
3361 rhs
.var
= anything_id
;
3362 rhs
.type
= ADDRESSOF
;
3364 process_constraint (new_constraint (lhs
, rhs
));
3368 /* The size only really matters insofar as we don't set more or less of
3369 the variable. If we hit an unknown size var, the size should be the
3370 whole darn thing. */
3371 if (get_varinfo (rhs
.var
)->is_unknown_size_var
)
3374 rhssize
= TREE_INT_CST_LOW (rhstypesize
);
3376 if (get_varinfo (lhs
.var
)->is_unknown_size_var
)
3379 lhssize
= TREE_INT_CST_LOW (lhstypesize
);
3382 if (rhs
.type
== SCALAR
&& lhs
.type
== SCALAR
)
3384 if (!do_simple_structure_copy (lhs
, rhs
, MIN (lhssize
, rhssize
)))
3386 lhs
.var
= collapse_rest_of_var (lhs
.var
);
3387 rhs
.var
= collapse_rest_of_var (rhs
.var
);
3392 process_constraint (new_constraint (lhs
, rhs
));
3395 else if (lhs
.type
!= DEREF
&& rhs
.type
== DEREF
)
3396 do_rhs_deref_structure_copy (lhs
, rhs
, MIN (lhssize
, rhssize
));
3397 else if (lhs
.type
== DEREF
&& rhs
.type
!= DEREF
)
3398 do_lhs_deref_structure_copy (lhs
, rhs
, MIN (lhssize
, rhssize
));
3401 tree pointedtotype
= lhstype
;
3404 gcc_assert (rhs
.type
== DEREF
&& lhs
.type
== DEREF
);
3405 tmpvar
= create_tmp_var_raw (pointedtotype
, "structcopydereftmp");
3406 do_structure_copy (tmpvar
, rhsop
);
3407 do_structure_copy (lhsop
, tmpvar
);
3412 /* Create a constraint ID = OP. */
3415 make_constraint_to (unsigned id
, tree op
)
3417 VEC(ce_s
, heap
) *rhsc
= NULL
;
3418 struct constraint_expr
*c
;
3419 struct constraint_expr includes
;
3423 includes
.offset
= 0;
3424 includes
.type
= SCALAR
;
3426 get_constraint_for (op
, &rhsc
);
3427 for (j
= 0; VEC_iterate (ce_s
, rhsc
, j
, c
); j
++)
3428 process_constraint (new_constraint (includes
, *c
));
3429 VEC_free (ce_s
, heap
, rhsc
);
3432 /* Make constraints necessary to make OP escape. */
3435 make_escape_constraint (tree op
)
3437 make_constraint_to (escaped_id
, op
);
3440 /* For non-IPA mode, generate constraints necessary for a call on the
3444 handle_rhs_call (gimple stmt
)
3448 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3450 tree arg
= gimple_call_arg (stmt
, i
);
3452 /* Find those pointers being passed, and make sure they end up
3453 pointing to anything. */
3454 if (could_have_pointers (arg
))
3455 make_escape_constraint (arg
);
3458 /* The static chain escapes as well. */
3459 if (gimple_call_chain (stmt
))
3460 make_escape_constraint (gimple_call_chain (stmt
));
3463 /* For non-IPA mode, generate constraints necessary for a call
3464 that returns a pointer and assigns it to LHS. This simply makes
3465 the LHS point to global and escaped variables. */
3468 handle_lhs_call (tree lhs
, int flags
)
3470 VEC(ce_s
, heap
) *lhsc
= NULL
;
3471 struct constraint_expr rhsc
;
3473 struct constraint_expr
*lhsp
;
3475 get_constraint_for (lhs
, &lhsc
);
3477 if (flags
& ECF_MALLOC
)
3479 tree heapvar
= heapvar_lookup (lhs
);
3482 if (heapvar
== NULL
)
3484 heapvar
= create_tmp_var_raw (ptr_type_node
, "HEAP");
3485 DECL_EXTERNAL (heapvar
) = 1;
3486 get_var_ann (heapvar
)->is_heapvar
= 1;
3487 if (gimple_referenced_vars (cfun
))
3488 add_referenced_var (heapvar
);
3489 heapvar_insert (lhs
, heapvar
);
3492 rhsc
.var
= create_variable_info_for (heapvar
,
3493 alias_get_name (heapvar
));
3494 vi
= get_varinfo (rhsc
.var
);
3495 vi
->is_artificial_var
= 1;
3496 vi
->is_heap_var
= 1;
3497 rhsc
.type
= ADDRESSOF
;
3502 rhsc
.var
= escaped_id
;
3504 rhsc
.type
= ADDRESSOF
;
3506 for (j
= 0; VEC_iterate (ce_s
, lhsc
, j
, lhsp
); j
++)
3507 process_constraint (new_constraint (*lhsp
, rhsc
));
3508 VEC_free (ce_s
, heap
, lhsc
);
3511 /* For non-IPA mode, generate constraints necessary for a call of a
3512 const function that returns a pointer in the statement STMT. */
3515 handle_const_call (gimple stmt
)
3517 tree lhs
= gimple_call_lhs (stmt
);
3518 VEC(ce_s
, heap
) *lhsc
= NULL
;
3519 struct constraint_expr rhsc
;
3521 struct constraint_expr
*lhsp
;
3523 struct constraint_expr tmpc
;
3525 get_constraint_for (lhs
, &lhsc
);
3527 /* If this is a nested function then it can return anything. */
3528 if (gimple_call_chain (stmt
))
3530 rhsc
.var
= anything_id
;
3532 rhsc
.type
= ADDRESSOF
;
3533 for (j
= 0; VEC_iterate (ce_s
, lhsc
, j
, lhsp
); j
++)
3534 process_constraint (new_constraint (*lhsp
, rhsc
));
3535 VEC_free (ce_s
, heap
, lhsc
);
3539 /* We always use a temporary here, otherwise we end up with a quadratic
3540 amount of constraints for
3541 large_struct = const_call (large_struct);
3542 in field-sensitive PTA. */
3543 tmpvar
= create_tmp_var_raw (ptr_type_node
, "consttmp");
3544 tmpc
= get_constraint_exp_for_temp (tmpvar
);
3546 /* May return addresses of globals. */
3547 rhsc
.var
= nonlocal_id
;
3549 rhsc
.type
= ADDRESSOF
;
3550 process_constraint (new_constraint (tmpc
, rhsc
));
3552 /* May return arguments. */
3553 for (k
= 0; k
< gimple_call_num_args (stmt
); ++k
)
3555 tree arg
= gimple_call_arg (stmt
, k
);
3557 if (could_have_pointers (arg
))
3559 VEC(ce_s
, heap
) *argc
= NULL
;
3560 struct constraint_expr
*argp
;
3563 get_constraint_for (arg
, &argc
);
3564 for (i
= 0; VEC_iterate (ce_s
, argc
, i
, argp
); i
++)
3565 process_constraint (new_constraint (tmpc
, *argp
));
3566 VEC_free (ce_s
, heap
, argc
);
3570 for (j
= 0; VEC_iterate (ce_s
, lhsc
, j
, lhsp
); j
++)
3571 process_constraint (new_constraint (*lhsp
, tmpc
));
3573 VEC_free (ce_s
, heap
, lhsc
);
3576 /* For non-IPA mode, generate constraints necessary for a call to a
3577 pure function in statement STMT. */
3580 handle_pure_call (gimple stmt
)
3584 /* Memory reached from pointer arguments is call-used. */
3585 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3587 tree arg
= gimple_call_arg (stmt
, i
);
3589 if (could_have_pointers (arg
))
3590 make_constraint_to (callused_id
, arg
);
3593 /* The static chain is used as well. */
3594 if (gimple_call_chain (stmt
))
3595 make_constraint_to (callused_id
, gimple_call_chain (stmt
));
3597 /* If the call returns a pointer it may point to reachable memory
3598 from the arguments. Not so for malloc functions though. */
3599 if (gimple_call_lhs (stmt
)
3600 && could_have_pointers (gimple_call_lhs (stmt
))
3601 && !(gimple_call_flags (stmt
) & ECF_MALLOC
))
3603 tree lhs
= gimple_call_lhs (stmt
);
3604 VEC(ce_s
, heap
) *lhsc
= NULL
;
3605 struct constraint_expr rhsc
;
3606 struct constraint_expr
*lhsp
;
3609 get_constraint_for (lhs
, &lhsc
);
3611 /* If this is a nested function then it can return anything. */
3612 if (gimple_call_chain (stmt
))
3614 rhsc
.var
= anything_id
;
3616 rhsc
.type
= ADDRESSOF
;
3617 for (j
= 0; VEC_iterate (ce_s
, lhsc
, j
, lhsp
); j
++)
3618 process_constraint (new_constraint (*lhsp
, rhsc
));
3619 VEC_free (ce_s
, heap
, lhsc
);
3623 /* Else just add the call-used memory here. Escaped variables
3624 and globals will be dealt with in handle_lhs_call. */
3625 rhsc
.var
= callused_id
;
3627 rhsc
.type
= ADDRESSOF
;
3628 for (j
= 0; VEC_iterate (ce_s
, lhsc
, j
, lhsp
); j
++)
3629 process_constraint (new_constraint (*lhsp
, rhsc
));
3630 VEC_free (ce_s
, heap
, lhsc
);
3634 /* Walk statement T setting up aliasing constraints according to the
3635 references found in T. This function is the main part of the
3636 constraint builder. AI points to auxiliary alias information used
3637 when building alias sets and computing alias grouping heuristics. */
3640 find_func_aliases (gimple origt
)
3643 VEC(ce_s
, heap
) *lhsc
= NULL
;
3644 VEC(ce_s
, heap
) *rhsc
= NULL
;
3645 struct constraint_expr
*c
;
3646 enum escape_type stmt_escape_type
;
3648 /* Now build constraints expressions. */
3649 if (gimple_code (t
) == GIMPLE_PHI
)
3651 gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (gimple_phi_result (t
))));
3653 /* Only care about pointers and structures containing
3655 if (could_have_pointers (gimple_phi_result (t
)))
3660 /* For a phi node, assign all the arguments to
3662 get_constraint_for (gimple_phi_result (t
), &lhsc
);
3663 for (i
= 0; i
< gimple_phi_num_args (t
); i
++)
3666 tree strippedrhs
= PHI_ARG_DEF (t
, i
);
3668 STRIP_NOPS (strippedrhs
);
3669 rhstype
= TREE_TYPE (strippedrhs
);
3670 get_constraint_for (gimple_phi_arg_def (t
, i
), &rhsc
);
3672 for (j
= 0; VEC_iterate (ce_s
, lhsc
, j
, c
); j
++)
3674 struct constraint_expr
*c2
;
3675 while (VEC_length (ce_s
, rhsc
) > 0)
3677 c2
= VEC_last (ce_s
, rhsc
);
3678 process_constraint (new_constraint (*c
, *c2
));
3679 VEC_pop (ce_s
, rhsc
);
3685 /* In IPA mode, we need to generate constraints to pass call
3686 arguments through their calls. There are two cases,
3687 either a GIMPLE_CALL returning a value, or just a plain
3688 GIMPLE_CALL when we are not.
3690 In non-ipa mode, we need to generate constraints for each
3691 pointer passed by address. */
3692 else if (is_gimple_call (t
))
3696 int flags
= gimple_call_flags (t
);
3698 /* Const functions can return their arguments and addresses
3699 of global memory but not of escaped memory. */
3700 if (flags
& ECF_CONST
)
3702 if (gimple_call_lhs (t
)
3703 && could_have_pointers (gimple_call_lhs (t
)))
3704 handle_const_call (t
);
3706 /* Pure functions can return addresses in and of memory
3707 reachable from their arguments, but they are not an escape
3708 point for reachable memory of their arguments. */
3709 else if (flags
& ECF_PURE
)
3711 handle_pure_call (t
);
3712 if (gimple_call_lhs (t
)
3713 && could_have_pointers (gimple_call_lhs (t
)))
3714 handle_lhs_call (gimple_call_lhs (t
), flags
);
3718 handle_rhs_call (t
);
3719 if (gimple_call_lhs (t
)
3720 && could_have_pointers (gimple_call_lhs (t
)))
3721 handle_lhs_call (gimple_call_lhs (t
), flags
);
3732 lhsop
= gimple_call_lhs (t
);
3733 decl
= gimple_call_fndecl (t
);
3735 /* If we can directly resolve the function being called, do so.
3736 Otherwise, it must be some sort of indirect expression that
3737 we should still be able to handle. */
3739 fi
= get_vi_for_tree (decl
);
3742 decl
= gimple_call_fn (t
);
3743 fi
= get_vi_for_tree (decl
);
3746 /* Assign all the passed arguments to the appropriate incoming
3747 parameters of the function. */
3748 for (j
= 0; j
< gimple_call_num_args (t
); j
++)
3750 struct constraint_expr lhs
;
3751 struct constraint_expr
*rhsp
;
3752 tree arg
= gimple_call_arg (t
, j
);
3754 get_constraint_for (arg
, &rhsc
);
3755 if (TREE_CODE (decl
) != FUNCTION_DECL
)
3764 lhs
.var
= first_vi_for_offset (fi
, i
)->id
;
3767 while (VEC_length (ce_s
, rhsc
) != 0)
3769 rhsp
= VEC_last (ce_s
, rhsc
);
3770 process_constraint (new_constraint (lhs
, *rhsp
));
3771 VEC_pop (ce_s
, rhsc
);
3776 /* If we are returning a value, assign it to the result. */
3779 struct constraint_expr rhs
;
3780 struct constraint_expr
*lhsp
;
3783 get_constraint_for (lhsop
, &lhsc
);
3784 if (TREE_CODE (decl
) != FUNCTION_DECL
)
3793 rhs
.var
= first_vi_for_offset (fi
, i
)->id
;
3796 for (j
= 0; VEC_iterate (ce_s
, lhsc
, j
, lhsp
); j
++)
3797 process_constraint (new_constraint (*lhsp
, rhs
));
3801 /* Otherwise, just a regular assignment statement. Only care about
3802 operations with pointer result, others are dealt with as escape
3803 points if they have pointer operands. */
3804 else if (is_gimple_assign (t
)
3805 && could_have_pointers (gimple_assign_lhs (t
)))
3807 /* Otherwise, just a regular assignment statement. */
3808 tree lhsop
= gimple_assign_lhs (t
);
3809 tree rhsop
= (gimple_num_ops (t
) == 2) ? gimple_assign_rhs1 (t
) : NULL
;
3811 if (rhsop
&& AGGREGATE_TYPE_P (TREE_TYPE (lhsop
)))
3812 do_structure_copy (lhsop
, rhsop
);
3816 struct constraint_expr temp
;
3817 get_constraint_for (lhsop
, &lhsc
);
3819 if (gimple_assign_rhs_code (t
) == POINTER_PLUS_EXPR
)
3820 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t
),
3821 gimple_assign_rhs2 (t
), &rhsc
);
3822 else if ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t
))
3823 && !(POINTER_TYPE_P (gimple_expr_type (t
))
3824 && !POINTER_TYPE_P (TREE_TYPE (rhsop
))))
3825 || gimple_assign_single_p (t
))
3826 get_constraint_for (rhsop
, &rhsc
);
3829 temp
.type
= ADDRESSOF
;
3830 temp
.var
= anything_id
;
3832 VEC_safe_push (ce_s
, heap
, rhsc
, &temp
);
3834 for (j
= 0; VEC_iterate (ce_s
, lhsc
, j
, c
); j
++)
3836 struct constraint_expr
*c2
;
3839 for (k
= 0; VEC_iterate (ce_s
, rhsc
, k
, c2
); k
++)
3840 process_constraint (new_constraint (*c
, *c2
));
3844 else if (gimple_code (t
) == GIMPLE_CHANGE_DYNAMIC_TYPE
)
3848 get_constraint_for (gimple_cdt_location (t
), &lhsc
);
3849 for (j
= 0; VEC_iterate (ce_s
, lhsc
, j
, c
); ++j
)
3850 get_varinfo (c
->var
)->no_tbaa_pruning
= true;
3853 stmt_escape_type
= is_escape_site (t
);
3854 if (stmt_escape_type
== ESCAPE_STORED_IN_GLOBAL
)
3856 gcc_assert (is_gimple_assign (t
));
3857 if (gimple_assign_rhs_code (t
) == ADDR_EXPR
)
3859 tree rhs
= gimple_assign_rhs1 (t
);
3860 tree base
= get_base_address (TREE_OPERAND (rhs
, 0));
3863 || !is_global_var (base
)))
3864 make_escape_constraint (rhs
);
3866 else if (get_gimple_rhs_class (gimple_assign_rhs_code (t
))
3867 == GIMPLE_SINGLE_RHS
)
3869 if (could_have_pointers (gimple_assign_rhs1 (t
)))
3870 make_escape_constraint (gimple_assign_rhs1 (t
));
3875 else if (stmt_escape_type
== ESCAPE_BAD_CAST
)
3877 gcc_assert (is_gimple_assign (t
));
3878 gcc_assert (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t
))
3879 || gimple_assign_rhs_code (t
) == VIEW_CONVERT_EXPR
);
3880 make_escape_constraint (gimple_assign_rhs1 (t
));
3882 else if (stmt_escape_type
== ESCAPE_TO_ASM
)
3885 for (i
= 0; i
< gimple_asm_noutputs (t
); ++i
)
3887 tree op
= TREE_VALUE (gimple_asm_output_op (t
, i
));
3888 if (op
&& could_have_pointers (op
))
3889 /* Strictly we'd only need the constraints from ESCAPED and
3891 make_escape_constraint (op
);
3893 for (i
= 0; i
< gimple_asm_ninputs (t
); ++i
)
3895 tree op
= TREE_VALUE (gimple_asm_input_op (t
, i
));
3896 if (op
&& could_have_pointers (op
))
3897 /* Strictly we'd only need the constraint to ESCAPED. */
3898 make_escape_constraint (op
);
3902 /* After promoting variables and computing aliasing we will
3903 need to re-scan most statements. FIXME: Try to minimize the
3904 number of statements re-scanned. It's not really necessary to
3905 re-scan *all* statements. */
3907 gimple_set_modified (origt
, true);
3908 VEC_free (ce_s
, heap
, rhsc
);
3909 VEC_free (ce_s
, heap
, lhsc
);
3913 /* Find the first varinfo in the same variable as START that overlaps with
3915 Effectively, walk the chain of fields for the variable START to find the
3916 first field that overlaps with OFFSET.
3917 Return NULL if we can't find one. */
3920 first_vi_for_offset (varinfo_t start
, unsigned HOST_WIDE_INT offset
)
3922 varinfo_t curr
= start
;
3925 /* We may not find a variable in the field list with the actual
3926 offset when when we have glommed a structure to a variable.
3927 In that case, however, offset should still be within the size
3929 if (offset
>= curr
->offset
&& offset
< (curr
->offset
+ curr
->size
))
3937 /* Insert the varinfo FIELD into the field list for BASE, at the front
3941 insert_into_field_list (varinfo_t base
, varinfo_t field
)
3943 varinfo_t prev
= base
;
3944 varinfo_t curr
= base
->next
;
3950 /* Insert the varinfo FIELD into the field list for BASE, ordered by
3954 insert_into_field_list_sorted (varinfo_t base
, varinfo_t field
)
3956 varinfo_t prev
= base
;
3957 varinfo_t curr
= base
->next
;
3968 if (field
->offset
<= curr
->offset
)
3973 field
->next
= prev
->next
;
3978 /* This structure is used during pushing fields onto the fieldstack
3979 to track the offset of the field, since bitpos_of_field gives it
3980 relative to its immediate containing type, and we want it relative
3981 to the ultimate containing object. */
3985 /* Offset from the base of the base containing object to this field. */
3986 HOST_WIDE_INT offset
;
3988 /* Size, in bits, of the field. */
3989 unsigned HOST_WIDE_INT size
;
3991 unsigned has_unknown_size
: 1;
3993 unsigned may_have_pointers
: 1;
3995 typedef struct fieldoff fieldoff_s
;
3997 DEF_VEC_O(fieldoff_s
);
3998 DEF_VEC_ALLOC_O(fieldoff_s
,heap
);
4000 /* qsort comparison function for two fieldoff's PA and PB */
4003 fieldoff_compare (const void *pa
, const void *pb
)
4005 const fieldoff_s
*foa
= (const fieldoff_s
*)pa
;
4006 const fieldoff_s
*fob
= (const fieldoff_s
*)pb
;
4007 unsigned HOST_WIDE_INT foasize
, fobsize
;
4009 if (foa
->offset
< fob
->offset
)
4011 else if (foa
->offset
> fob
->offset
)
4014 foasize
= foa
->size
;
4015 fobsize
= fob
->size
;
4016 if (foasize
< fobsize
)
4018 else if (foasize
> fobsize
)
4023 /* Sort a fieldstack according to the field offset and sizes. */
4025 sort_fieldstack (VEC(fieldoff_s
,heap
) *fieldstack
)
4027 qsort (VEC_address (fieldoff_s
, fieldstack
),
4028 VEC_length (fieldoff_s
, fieldstack
),
4029 sizeof (fieldoff_s
),
4033 /* Return true if V is a tree that we can have subvars for.
4034 Normally, this is any aggregate type. Also complex
4035 types which are not gimple registers can have subvars. */
4038 var_can_have_subvars (const_tree v
)
4040 /* Volatile variables should never have subvars. */
4041 if (TREE_THIS_VOLATILE (v
))
4044 /* Non decls or memory tags can never have subvars. */
4045 if (!DECL_P (v
) || MTAG_P (v
))
4048 /* Aggregates without overlapping fields can have subvars. */
4049 if (TREE_CODE (TREE_TYPE (v
)) == RECORD_TYPE
)
4055 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
4056 the fields of TYPE onto fieldstack, recording their offsets along
4059 OFFSET is used to keep track of the offset in this entire
4060 structure, rather than just the immediately containing structure.
4061 Returns the number of fields pushed. */
4064 push_fields_onto_fieldstack (tree type
, VEC(fieldoff_s
,heap
) **fieldstack
,
4065 HOST_WIDE_INT offset
)
4070 if (TREE_CODE (type
) != RECORD_TYPE
)
4073 /* If the vector of fields is growing too big, bail out early.
4074 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
4076 if (VEC_length (fieldoff_s
, *fieldstack
) > MAX_FIELDS_FOR_FIELD_SENSITIVE
)
4079 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
4080 if (TREE_CODE (field
) == FIELD_DECL
)
4084 HOST_WIDE_INT foff
= bitpos_of_field (field
);
4086 if (!var_can_have_subvars (field
)
4087 || TREE_CODE (TREE_TYPE (field
)) == QUAL_UNION_TYPE
4088 || TREE_CODE (TREE_TYPE (field
)) == UNION_TYPE
)
4090 else if (!(pushed
= push_fields_onto_fieldstack
4091 (TREE_TYPE (field
), fieldstack
, offset
+ foff
))
4092 && (DECL_SIZE (field
)
4093 && !integer_zerop (DECL_SIZE (field
))))
4094 /* Empty structures may have actual size, like in C++. So
4095 see if we didn't push any subfields and the size is
4096 nonzero, push the field onto the stack. */
4101 fieldoff_s
*pair
= NULL
;
4102 bool has_unknown_size
= false;
4104 if (!VEC_empty (fieldoff_s
, *fieldstack
))
4105 pair
= VEC_last (fieldoff_s
, *fieldstack
);
4107 if (!DECL_SIZE (field
)
4108 || !host_integerp (DECL_SIZE (field
), 1))
4109 has_unknown_size
= true;
4111 /* If adjacent fields do not contain pointers merge them. */
4113 && !pair
->may_have_pointers
4114 && !could_have_pointers (field
)
4115 && !pair
->has_unknown_size
4116 && !has_unknown_size
4117 && pair
->offset
+ (HOST_WIDE_INT
)pair
->size
== offset
+ foff
)
4119 pair
= VEC_last (fieldoff_s
, *fieldstack
);
4120 pair
->size
+= TREE_INT_CST_LOW (DECL_SIZE (field
));
4124 pair
= VEC_safe_push (fieldoff_s
, heap
, *fieldstack
, NULL
);
4125 pair
->offset
= offset
+ foff
;
4126 pair
->has_unknown_size
= has_unknown_size
;
4127 if (!has_unknown_size
)
4128 pair
->size
= TREE_INT_CST_LOW (DECL_SIZE (field
));
4131 pair
->may_have_pointers
= could_have_pointers (field
);
4142 /* Create a constraint ID = &FROM. */
4145 make_constraint_from (varinfo_t vi
, int from
)
4147 struct constraint_expr lhs
, rhs
;
4155 rhs
.type
= ADDRESSOF
;
4156 process_constraint (new_constraint (lhs
, rhs
));
4159 /* Count the number of arguments DECL has, and set IS_VARARGS to true
4160 if it is a varargs function. */
4163 count_num_arguments (tree decl
, bool *is_varargs
)
4168 for (t
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
4172 if (TREE_VALUE (t
) == void_type_node
)
4182 /* Creation function node for DECL, using NAME, and return the index
4183 of the variable we've created for the function. */
4186 create_function_info_for (tree decl
, const char *name
)
4188 unsigned int index
= VEC_length (varinfo_t
, varmap
);
4192 bool is_varargs
= false;
4194 /* Create the variable info. */
4196 vi
= new_var_info (decl
, index
, name
);
4200 vi
->fullsize
= count_num_arguments (decl
, &is_varargs
) + 1;
4201 insert_vi_for_tree (vi
->decl
, vi
);
4202 VEC_safe_push (varinfo_t
, heap
, varmap
, vi
);
4206 /* If it's varargs, we don't know how many arguments it has, so we
4212 vi
->is_unknown_size_var
= true;
4217 arg
= DECL_ARGUMENTS (decl
);
4219 /* Set up variables for each argument. */
4220 for (i
= 1; i
< vi
->fullsize
; i
++)
4223 const char *newname
;
4225 unsigned int newindex
;
4226 tree argdecl
= decl
;
4231 newindex
= VEC_length (varinfo_t
, varmap
);
4232 asprintf (&tempname
, "%s.arg%d", name
, i
-1);
4233 newname
= ggc_strdup (tempname
);
4236 argvi
= new_var_info (argdecl
, newindex
, newname
);
4237 argvi
->decl
= argdecl
;
4238 VEC_safe_push (varinfo_t
, heap
, varmap
, argvi
);
4241 argvi
->is_full_var
= true;
4242 argvi
->fullsize
= vi
->fullsize
;
4243 insert_into_field_list_sorted (vi
, argvi
);
4244 stats
.total_vars
++;
4247 insert_vi_for_tree (arg
, argvi
);
4248 arg
= TREE_CHAIN (arg
);
4252 /* Create a variable for the return var. */
4253 if (DECL_RESULT (decl
) != NULL
4254 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl
))))
4257 const char *newname
;
4259 unsigned int newindex
;
4260 tree resultdecl
= decl
;
4264 if (DECL_RESULT (decl
))
4265 resultdecl
= DECL_RESULT (decl
);
4267 newindex
= VEC_length (varinfo_t
, varmap
);
4268 asprintf (&tempname
, "%s.result", name
);
4269 newname
= ggc_strdup (tempname
);
4272 resultvi
= new_var_info (resultdecl
, newindex
, newname
);
4273 resultvi
->decl
= resultdecl
;
4274 VEC_safe_push (varinfo_t
, heap
, varmap
, resultvi
);
4275 resultvi
->offset
= i
;
4277 resultvi
->fullsize
= vi
->fullsize
;
4278 resultvi
->is_full_var
= true;
4279 insert_into_field_list_sorted (vi
, resultvi
);
4280 stats
.total_vars
++;
4281 if (DECL_RESULT (decl
))
4282 insert_vi_for_tree (DECL_RESULT (decl
), resultvi
);
4288 /* Return true if FIELDSTACK contains fields that overlap.
4289 FIELDSTACK is assumed to be sorted by offset. */
4292 check_for_overlaps (VEC (fieldoff_s
,heap
) *fieldstack
)
4294 fieldoff_s
*fo
= NULL
;
4296 HOST_WIDE_INT lastoffset
= -1;
4298 for (i
= 0; VEC_iterate (fieldoff_s
, fieldstack
, i
, fo
); i
++)
4300 if (fo
->offset
== lastoffset
)
4302 lastoffset
= fo
->offset
;
4307 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
4308 This will also create any varinfo structures necessary for fields
4312 create_variable_info_for (tree decl
, const char *name
)
4314 unsigned int index
= VEC_length (varinfo_t
, varmap
);
4316 tree decl_type
= TREE_TYPE (decl
);
4317 tree declsize
= DECL_P (decl
) ? DECL_SIZE (decl
) : TYPE_SIZE (decl_type
);
4318 bool is_global
= DECL_P (decl
) ? is_global_var (decl
) : false;
4319 VEC (fieldoff_s
,heap
) *fieldstack
= NULL
;
4321 if (TREE_CODE (decl
) == FUNCTION_DECL
&& in_ipa_mode
)
4322 return create_function_info_for (decl
, name
);
4324 if (var_can_have_subvars (decl
) && use_field_sensitive
4326 || var_ann (decl
)->noalias_state
== 0)
4328 || !var_ann (decl
)->is_heapvar
))
4329 push_fields_onto_fieldstack (decl_type
, &fieldstack
, 0);
4331 /* If the variable doesn't have subvars, we may end up needing to
4332 sort the field list and create fake variables for all the
4334 vi
= new_var_info (decl
, index
, name
);
4338 || !host_integerp (declsize
, 1))
4340 vi
->is_unknown_size_var
= true;
4346 vi
->fullsize
= TREE_INT_CST_LOW (declsize
);
4347 vi
->size
= vi
->fullsize
;
4350 insert_vi_for_tree (vi
->decl
, vi
);
4351 VEC_safe_push (varinfo_t
, heap
, varmap
, vi
);
4352 if (is_global
&& (!flag_whole_program
|| !in_ipa_mode
)
4353 && could_have_pointers (decl
))
4356 && var_ann (decl
)->noalias_state
== NO_ALIAS_ANYTHING
)
4357 make_constraint_from (vi
, vi
->id
);
4359 make_constraint_from (vi
, escaped_id
);
4363 if (use_field_sensitive
4364 && !vi
->is_unknown_size_var
4365 && var_can_have_subvars (decl
)
4366 && VEC_length (fieldoff_s
, fieldstack
) > 1
4367 && VEC_length (fieldoff_s
, fieldstack
) <= MAX_FIELDS_FOR_FIELD_SENSITIVE
)
4369 unsigned int newindex
= VEC_length (varinfo_t
, varmap
);
4370 fieldoff_s
*fo
= NULL
;
4371 bool notokay
= false;
4374 for (i
= 0; !notokay
&& VEC_iterate (fieldoff_s
, fieldstack
, i
, fo
); i
++)
4376 if (fo
->has_unknown_size
4384 /* We can't sort them if we have a field with a variable sized type,
4385 which will make notokay = true. In that case, we are going to return
4386 without creating varinfos for the fields anyway, so sorting them is a
4390 sort_fieldstack (fieldstack
);
4391 /* Due to some C++ FE issues, like PR 22488, we might end up
4392 what appear to be overlapping fields even though they,
4393 in reality, do not overlap. Until the C++ FE is fixed,
4394 we will simply disable field-sensitivity for these cases. */
4395 notokay
= check_for_overlaps (fieldstack
);
4399 if (VEC_length (fieldoff_s
, fieldstack
) != 0)
4400 fo
= VEC_index (fieldoff_s
, fieldstack
, 0);
4402 if (fo
== NULL
|| notokay
)
4404 vi
->is_unknown_size_var
= 1;
4407 vi
->is_full_var
= true;
4408 VEC_free (fieldoff_s
, heap
, fieldstack
);
4412 vi
->size
= fo
->size
;
4413 vi
->offset
= fo
->offset
;
4414 for (i
= VEC_length (fieldoff_s
, fieldstack
) - 1;
4415 i
>= 1 && VEC_iterate (fieldoff_s
, fieldstack
, i
, fo
);
4419 const char *newname
= "NULL";
4422 newindex
= VEC_length (varinfo_t
, varmap
);
4425 asprintf (&tempname
, "%s." HOST_WIDE_INT_PRINT_DEC
4426 "+" HOST_WIDE_INT_PRINT_DEC
,
4427 vi
->name
, fo
->offset
, fo
->size
);
4428 newname
= ggc_strdup (tempname
);
4431 newvi
= new_var_info (decl
, newindex
, newname
);
4432 newvi
->offset
= fo
->offset
;
4433 newvi
->size
= fo
->size
;
4434 newvi
->fullsize
= vi
->fullsize
;
4435 insert_into_field_list (vi
, newvi
);
4436 VEC_safe_push (varinfo_t
, heap
, varmap
, newvi
);
4437 if (is_global
&& (!flag_whole_program
|| !in_ipa_mode
)
4438 && fo
->may_have_pointers
)
4439 make_constraint_from (newvi
, escaped_id
);
4445 vi
->is_full_var
= true;
4447 VEC_free (fieldoff_s
, heap
, fieldstack
);
4452 /* Print out the points-to solution for VAR to FILE. */
4455 dump_solution_for_var (FILE *file
, unsigned int var
)
4457 varinfo_t vi
= get_varinfo (var
);
4461 if (find (var
) != var
)
4463 varinfo_t vipt
= get_varinfo (find (var
));
4464 fprintf (file
, "%s = same as %s\n", vi
->name
, vipt
->name
);
4468 fprintf (file
, "%s = { ", vi
->name
);
4469 EXECUTE_IF_SET_IN_BITMAP (vi
->solution
, 0, i
, bi
)
4471 fprintf (file
, "%s ", get_varinfo (i
)->name
);
4473 fprintf (file
, "}");
4474 if (vi
->no_tbaa_pruning
)
4475 fprintf (file
, " no-tbaa-pruning");
4476 fprintf (file
, "\n");
4480 /* Print the points-to solution for VAR to stdout. */
4483 debug_solution_for_var (unsigned int var
)
4485 dump_solution_for_var (stdout
, var
);
4488 /* Create varinfo structures for all of the variables in the
4489 function for intraprocedural mode. */
4492 intra_create_variable_infos (void)
4495 struct constraint_expr lhs
, rhs
;
4497 /* For each incoming pointer argument arg, create the constraint ARG
4498 = NONLOCAL or a dummy variable if flag_argument_noalias is set. */
4499 for (t
= DECL_ARGUMENTS (current_function_decl
); t
; t
= TREE_CHAIN (t
))
4503 if (!could_have_pointers (t
))
4506 /* If flag_argument_noalias is set, then function pointer
4507 arguments are guaranteed not to point to each other. In that
4508 case, create an artificial variable PARM_NOALIAS and the
4509 constraint ARG = &PARM_NOALIAS. */
4510 if (POINTER_TYPE_P (TREE_TYPE (t
)) && flag_argument_noalias
> 0)
4513 tree heapvar
= heapvar_lookup (t
);
4517 lhs
.var
= get_vi_for_tree (t
)->id
;
4519 if (heapvar
== NULL_TREE
)
4522 heapvar
= create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t
)),
4524 DECL_EXTERNAL (heapvar
) = 1;
4525 if (gimple_referenced_vars (cfun
))
4526 add_referenced_var (heapvar
);
4528 heapvar_insert (t
, heapvar
);
4530 ann
= get_var_ann (heapvar
);
4531 ann
->is_heapvar
= 1;
4532 if (flag_argument_noalias
== 1)
4533 ann
->noalias_state
= NO_ALIAS
;
4534 else if (flag_argument_noalias
== 2)
4535 ann
->noalias_state
= NO_ALIAS_GLOBAL
;
4536 else if (flag_argument_noalias
== 3)
4537 ann
->noalias_state
= NO_ALIAS_ANYTHING
;
4542 vi
= get_vi_for_tree (heapvar
);
4543 vi
->is_artificial_var
= 1;
4544 vi
->is_heap_var
= 1;
4546 rhs
.type
= ADDRESSOF
;
4548 for (p
= get_varinfo (lhs
.var
); p
; p
= p
->next
)
4550 struct constraint_expr temp
= lhs
;
4552 process_constraint (new_constraint (temp
, rhs
));
4557 varinfo_t arg_vi
= get_vi_for_tree (t
);
4559 for (p
= arg_vi
; p
; p
= p
->next
)
4560 make_constraint_from (p
, nonlocal_id
);
4564 /* Add a constraint for the incoming static chain parameter. */
4565 if (cfun
->static_chain_decl
!= NULL_TREE
)
4567 varinfo_t p
, chain_vi
= get_vi_for_tree (cfun
->static_chain_decl
);
4569 for (p
= chain_vi
; p
; p
= p
->next
)
4570 make_constraint_from (p
, nonlocal_id
);
4574 /* Structure used to put solution bitmaps in a hashtable so they can
4575 be shared among variables with the same points-to set. */
4577 typedef struct shared_bitmap_info
4581 } *shared_bitmap_info_t
;
4582 typedef const struct shared_bitmap_info
*const_shared_bitmap_info_t
;
4584 static htab_t shared_bitmap_table
;
4586 /* Hash function for a shared_bitmap_info_t */
4589 shared_bitmap_hash (const void *p
)
4591 const_shared_bitmap_info_t
const bi
= (const_shared_bitmap_info_t
) p
;
4592 return bi
->hashcode
;
4595 /* Equality function for two shared_bitmap_info_t's. */
4598 shared_bitmap_eq (const void *p1
, const void *p2
)
4600 const_shared_bitmap_info_t
const sbi1
= (const_shared_bitmap_info_t
) p1
;
4601 const_shared_bitmap_info_t
const sbi2
= (const_shared_bitmap_info_t
) p2
;
4602 return bitmap_equal_p (sbi1
->pt_vars
, sbi2
->pt_vars
);
4605 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
4606 existing instance if there is one, NULL otherwise. */
4609 shared_bitmap_lookup (bitmap pt_vars
)
4612 struct shared_bitmap_info sbi
;
4614 sbi
.pt_vars
= pt_vars
;
4615 sbi
.hashcode
= bitmap_hash (pt_vars
);
4617 slot
= htab_find_slot_with_hash (shared_bitmap_table
, &sbi
,
4618 sbi
.hashcode
, NO_INSERT
);
4622 return ((shared_bitmap_info_t
) *slot
)->pt_vars
;
4626 /* Add a bitmap to the shared bitmap hashtable. */
4629 shared_bitmap_add (bitmap pt_vars
)
4632 shared_bitmap_info_t sbi
= XNEW (struct shared_bitmap_info
);
4634 sbi
->pt_vars
= pt_vars
;
4635 sbi
->hashcode
= bitmap_hash (pt_vars
);
4637 slot
= htab_find_slot_with_hash (shared_bitmap_table
, sbi
,
4638 sbi
->hashcode
, INSERT
);
4639 gcc_assert (!*slot
);
4640 *slot
= (void *) sbi
;
4644 /* Set bits in INTO corresponding to the variable uids in solution set
4645 FROM, which came from variable PTR.
4646 For variables that are actually dereferenced, we also use type
4647 based alias analysis to prune the points-to sets.
4648 IS_DEREFED is true if PTR was directly dereferenced, which we use to
4649 help determine whether we are we are allowed to prune using TBAA.
4650 If NO_TBAA_PRUNING is true, we do not perform any TBAA pruning of
4651 the from set. Returns the number of pruned variables. */
4654 set_uids_in_ptset (tree ptr
, bitmap into
, bitmap from
, bool is_derefed
,
4655 bool no_tbaa_pruning
)
4659 unsigned pruned
= 0;
4661 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr
)));
4663 EXECUTE_IF_SET_IN_BITMAP (from
, 0, i
, bi
)
4665 varinfo_t vi
= get_varinfo (i
);
4667 /* The only artificial variables that are allowed in a may-alias
4668 set are heap variables. */
4669 if (vi
->is_artificial_var
&& !vi
->is_heap_var
)
4672 if (TREE_CODE (vi
->decl
) == VAR_DECL
4673 || TREE_CODE (vi
->decl
) == PARM_DECL
4674 || TREE_CODE (vi
->decl
) == RESULT_DECL
)
4676 /* Just add VI->DECL to the alias set.
4677 Don't type prune artificial vars or points-to sets
4678 for pointers that have not been dereferenced or with
4679 type-based pruning disabled. */
4680 if (vi
->is_artificial_var
4683 bitmap_set_bit (into
, DECL_UID (vi
->decl
));
4686 alias_set_type var_alias_set
, mem_alias_set
;
4687 var_alias_set
= get_alias_set (vi
->decl
);
4688 mem_alias_set
= get_alias_set (TREE_TYPE (TREE_TYPE (ptr
)));
4689 if (may_alias_p (SSA_NAME_VAR (ptr
), mem_alias_set
,
4690 vi
->decl
, var_alias_set
, true))
4691 bitmap_set_bit (into
, DECL_UID (vi
->decl
));
4702 static bool have_alias_info
= false;
4704 /* Emit a note for the pointer initialization point DEF. */
4707 emit_pointer_definition (gimple def
)
4709 if (gimple_code (def
) == GIMPLE_PHI
)
4714 FOR_EACH_PHI_ARG (argp
, def
, oi
, SSA_OP_USE
)
4716 tree arg
= USE_FROM_PTR (argp
);
4717 if (TREE_CODE (arg
) == SSA_NAME
)
4718 emit_pointer_definition (SSA_NAME_DEF_STMT (arg
));
4720 inform (0, "initialized from %qE", arg
);
4723 else if (!gimple_nop_p (def
))
4724 inform (gimple_location (def
), "initialized from here");
4727 /* Emit a strict aliasing warning for dereferencing the pointer PTR. */
4730 emit_alias_warning (tree ptr
)
4732 gimple def
= SSA_NAME_DEF_STMT (ptr
);
4734 imm_use_iterator ui
;
4735 unsigned warned
= 0;
4737 FOR_EACH_IMM_USE_STMT (use
, ui
, ptr
)
4739 tree deref
= NULL_TREE
;
4741 if (gimple_has_lhs (use
))
4743 tree lhs
= get_base_address (gimple_get_lhs (use
));
4745 && INDIRECT_REF_P (lhs
)
4746 && TREE_OPERAND (lhs
, 0) == ptr
)
4749 if (gimple_assign_single_p (use
))
4751 tree rhs
= get_base_address (gimple_assign_rhs1 (use
));
4753 && INDIRECT_REF_P (rhs
)
4754 && TREE_OPERAND (rhs
, 0) == ptr
)
4757 else if (is_gimple_call (use
))
4760 for (i
= 0; i
< gimple_call_num_args (use
); ++i
)
4762 tree op
= get_base_address (gimple_call_arg (use
, i
));
4764 && INDIRECT_REF_P (op
)
4765 && TREE_OPERAND (op
, 0) == ptr
)
4770 && !TREE_NO_WARNING (deref
))
4772 TREE_NO_WARNING (deref
) = 1;
4773 warning_at (gimple_location (use
), OPT_Wstrict_aliasing
,
4774 "dereferencing pointer %qD does break strict-aliasing "
4775 "rules", SSA_NAME_VAR (ptr
));
4780 emit_pointer_definition (def
);
4783 /* Given a pointer variable P, fill in its points-to set, or return
4785 Rather than return false for variables that point-to anything, we
4786 instead find the corresponding SMT, and merge in its aliases. In
4787 addition to these aliases, we also set the bits for the SMT's
4788 themselves and their subsets, as SMT's are still in use by
4789 non-SSA_NAME's, and pruning may eliminate every one of their
4790 aliases. In such a case, if we did not include the right set of
4791 SMT's in the points-to set of the variable, we'd end up with
4792 statements that do not conflict but should. */
4795 find_what_p_points_to (tree p
)
4800 if (!have_alias_info
)
4803 /* For parameters, get at the points-to set for the actual parm
4805 if (TREE_CODE (p
) == SSA_NAME
4806 && TREE_CODE (SSA_NAME_VAR (p
)) == PARM_DECL
4807 && SSA_NAME_IS_DEFAULT_DEF (p
))
4808 lookup_p
= SSA_NAME_VAR (p
);
4810 vi
= lookup_vi_for_tree (lookup_p
);
4813 if (vi
->is_artificial_var
)
4816 /* See if this is a field or a structure. */
4817 if (vi
->size
!= vi
->fullsize
)
4819 /* Nothing currently asks about structure fields directly,
4820 but when they do, we need code here to hand back the
4826 struct ptr_info_def
*pi
= get_ptr_info (p
);
4827 unsigned int i
, pruned
;
4829 bool was_pt_anything
= false;
4830 bitmap finished_solution
;
4833 if (!pi
->memory_tag_needed
)
4836 /* This variable may have been collapsed, let's get the real
4838 vi
= get_varinfo (find (vi
->id
));
4840 /* Translate artificial variables into SSA_NAME_PTR_INFO
4842 EXECUTE_IF_SET_IN_BITMAP (vi
->solution
, 0, i
, bi
)
4844 varinfo_t vi
= get_varinfo (i
);
4846 if (vi
->is_artificial_var
)
4848 /* FIXME. READONLY should be handled better so that
4849 flow insensitive aliasing can disregard writable
4851 if (vi
->id
== nothing_id
)
4853 else if (vi
->id
== anything_id
4854 || vi
->id
== nonlocal_id
4855 || vi
->id
== escaped_id
4856 || vi
->id
== callused_id
)
4857 was_pt_anything
= 1;
4858 else if (vi
->id
== readonly_id
)
4859 was_pt_anything
= 1;
4860 else if (vi
->id
== integer_id
)
4861 was_pt_anything
= 1;
4862 else if (vi
->is_heap_var
)
4863 pi
->pt_global_mem
= 1;
4867 /* Instead of doing extra work, simply do not create
4868 points-to information for pt_anything pointers. This
4869 will cause the operand scanner to fall back to the
4870 type-based SMT and its aliases. Which is the best
4871 we could do here for the points-to set as well. */
4872 if (was_pt_anything
)
4875 /* Share the final set of variables when possible. */
4876 finished_solution
= BITMAP_GGC_ALLOC ();
4877 stats
.points_to_sets_created
++;
4879 pruned
= set_uids_in_ptset (p
, finished_solution
, vi
->solution
,
4880 pi
->is_dereferenced
,
4881 vi
->no_tbaa_pruning
);
4882 result
= shared_bitmap_lookup (finished_solution
);
4886 shared_bitmap_add (finished_solution
);
4887 pi
->pt_vars
= finished_solution
;
4891 pi
->pt_vars
= result
;
4892 bitmap_clear (finished_solution
);
4895 if (bitmap_empty_p (pi
->pt_vars
))
4899 && pi
->is_dereferenced
4900 && warn_strict_aliasing
> 0
4901 && !SSA_NAME_IS_DEFAULT_DEF (p
))
4903 if (dump_file
&& dump_flags
& TDF_DETAILS
)
4905 fprintf (dump_file
, "alias warning for ");
4906 print_generic_expr (dump_file
, p
, 0);
4907 fprintf (dump_file
, "\n");
4909 emit_alias_warning (p
);
4920 /* Mark the ESCAPED solution as call clobbered. Returns false if
4921 pt_anything escaped which needs all locals that have their address
4922 taken marked call clobbered as well. */
4925 clobber_what_escaped (void)
4931 if (!have_alias_info
)
4934 /* This variable may have been collapsed, let's get the real
4935 variable for escaped_id. */
4936 vi
= get_varinfo (find (escaped_id
));
4938 /* If call-used memory escapes we need to include it in the
4939 set of escaped variables. This can happen if a pure
4940 function returns a pointer and this pointer escapes. */
4941 if (bitmap_bit_p (vi
->solution
, callused_id
))
4943 varinfo_t cu_vi
= get_varinfo (find (callused_id
));
4944 bitmap_ior_into (vi
->solution
, cu_vi
->solution
);
4947 /* Mark variables in the solution call-clobbered. */
4948 EXECUTE_IF_SET_IN_BITMAP (vi
->solution
, 0, i
, bi
)
4950 varinfo_t vi
= get_varinfo (i
);
4952 if (vi
->is_artificial_var
)
4954 /* nothing_id and readonly_id do not cause any
4955 call clobber ops. For anything_id and integer_id
4956 we need to clobber all addressable vars. */
4957 if (vi
->id
== anything_id
4958 || vi
->id
== integer_id
)
4962 /* Only artificial heap-vars are further interesting. */
4963 if (vi
->is_artificial_var
&& !vi
->is_heap_var
)
4966 if ((TREE_CODE (vi
->decl
) == VAR_DECL
4967 || TREE_CODE (vi
->decl
) == PARM_DECL
4968 || TREE_CODE (vi
->decl
) == RESULT_DECL
)
4969 && !unmodifiable_var_p (vi
->decl
))
4970 mark_call_clobbered (vi
->decl
, ESCAPE_TO_CALL
);
4976 /* Compute the call-used variables. */
4979 compute_call_used_vars (void)
4984 bool has_anything_id
= false;
4986 if (!have_alias_info
)
4989 /* This variable may have been collapsed, let's get the real
4990 variable for escaped_id. */
4991 vi
= get_varinfo (find (callused_id
));
4993 /* Mark variables in the solution call-clobbered. */
4994 EXECUTE_IF_SET_IN_BITMAP (vi
->solution
, 0, i
, bi
)
4996 varinfo_t vi
= get_varinfo (i
);
4998 if (vi
->is_artificial_var
)
5000 /* For anything_id and integer_id we need to make
5001 all local addressable vars call-used. */
5002 if (vi
->id
== anything_id
5003 || vi
->id
== integer_id
)
5004 has_anything_id
= true;
5007 /* Only artificial heap-vars are further interesting. */
5008 if (vi
->is_artificial_var
&& !vi
->is_heap_var
)
5011 if ((TREE_CODE (vi
->decl
) == VAR_DECL
5012 || TREE_CODE (vi
->decl
) == PARM_DECL
5013 || TREE_CODE (vi
->decl
) == RESULT_DECL
)
5014 && !unmodifiable_var_p (vi
->decl
))
5015 bitmap_set_bit (gimple_call_used_vars (cfun
), DECL_UID (vi
->decl
));
5018 /* If anything is call-used, add all addressable locals to the set. */
5019 if (has_anything_id
)
5020 bitmap_ior_into (gimple_call_used_vars (cfun
),
5021 gimple_addressable_vars (cfun
));
5025 /* Dump points-to information to OUTFILE. */
5028 dump_sa_points_to_info (FILE *outfile
)
5032 fprintf (outfile
, "\nPoints-to sets\n\n");
5034 if (dump_flags
& TDF_STATS
)
5036 fprintf (outfile
, "Stats:\n");
5037 fprintf (outfile
, "Total vars: %d\n", stats
.total_vars
);
5038 fprintf (outfile
, "Non-pointer vars: %d\n",
5039 stats
.nonpointer_vars
);
5040 fprintf (outfile
, "Statically unified vars: %d\n",
5041 stats
.unified_vars_static
);
5042 fprintf (outfile
, "Dynamically unified vars: %d\n",
5043 stats
.unified_vars_dynamic
);
5044 fprintf (outfile
, "Iterations: %d\n", stats
.iterations
);
5045 fprintf (outfile
, "Number of edges: %d\n", stats
.num_edges
);
5046 fprintf (outfile
, "Number of implicit edges: %d\n",
5047 stats
.num_implicit_edges
);
5050 for (i
= 0; i
< VEC_length (varinfo_t
, varmap
); i
++)
5051 dump_solution_for_var (outfile
, i
);
5055 /* Debug points-to information to stderr. */
5058 debug_sa_points_to_info (void)
5060 dump_sa_points_to_info (stderr
);
5064 /* Initialize the always-existing constraint variables for NULL
5065 ANYTHING, READONLY, and INTEGER */
5068 init_base_vars (void)
5070 struct constraint_expr lhs
, rhs
;
5072 /* Create the NULL variable, used to represent that a variable points
5074 nothing_tree
= create_tmp_var_raw (void_type_node
, "NULL");
5075 var_nothing
= new_var_info (nothing_tree
, nothing_id
, "NULL");
5076 insert_vi_for_tree (nothing_tree
, var_nothing
);
5077 var_nothing
->is_artificial_var
= 1;
5078 var_nothing
->offset
= 0;
5079 var_nothing
->size
= ~0;
5080 var_nothing
->fullsize
= ~0;
5081 var_nothing
->is_special_var
= 1;
5082 VEC_safe_push (varinfo_t
, heap
, varmap
, var_nothing
);
5084 /* Create the ANYTHING variable, used to represent that a variable
5085 points to some unknown piece of memory. */
5086 anything_tree
= create_tmp_var_raw (void_type_node
, "ANYTHING");
5087 var_anything
= new_var_info (anything_tree
, anything_id
, "ANYTHING");
5088 insert_vi_for_tree (anything_tree
, var_anything
);
5089 var_anything
->is_artificial_var
= 1;
5090 var_anything
->size
= ~0;
5091 var_anything
->offset
= 0;
5092 var_anything
->next
= NULL
;
5093 var_anything
->fullsize
= ~0;
5094 var_anything
->is_special_var
= 1;
5096 /* Anything points to anything. This makes deref constraints just
5097 work in the presence of linked list and other p = *p type loops,
5098 by saying that *ANYTHING = ANYTHING. */
5099 VEC_safe_push (varinfo_t
, heap
, varmap
, var_anything
);
5101 lhs
.var
= anything_id
;
5103 rhs
.type
= ADDRESSOF
;
5104 rhs
.var
= anything_id
;
5107 /* This specifically does not use process_constraint because
5108 process_constraint ignores all anything = anything constraints, since all
5109 but this one are redundant. */
5110 VEC_safe_push (constraint_t
, heap
, constraints
, new_constraint (lhs
, rhs
));
5112 /* Create the READONLY variable, used to represent that a variable
5113 points to readonly memory. */
5114 readonly_tree
= create_tmp_var_raw (void_type_node
, "READONLY");
5115 var_readonly
= new_var_info (readonly_tree
, readonly_id
, "READONLY");
5116 var_readonly
->is_artificial_var
= 1;
5117 var_readonly
->offset
= 0;
5118 var_readonly
->size
= ~0;
5119 var_readonly
->fullsize
= ~0;
5120 var_readonly
->next
= NULL
;
5121 var_readonly
->is_special_var
= 1;
5122 insert_vi_for_tree (readonly_tree
, var_readonly
);
5123 VEC_safe_push (varinfo_t
, heap
, varmap
, var_readonly
);
5125 /* readonly memory points to anything, in order to make deref
5126 easier. In reality, it points to anything the particular
5127 readonly variable can point to, but we don't track this
5130 lhs
.var
= readonly_id
;
5132 rhs
.type
= ADDRESSOF
;
5133 rhs
.var
= readonly_id
; /* FIXME */
5135 process_constraint (new_constraint (lhs
, rhs
));
5137 /* Create the ESCAPED variable, used to represent the set of escaped
5139 escaped_tree
= create_tmp_var_raw (void_type_node
, "ESCAPED");
5140 var_escaped
= new_var_info (escaped_tree
, escaped_id
, "ESCAPED");
5141 insert_vi_for_tree (escaped_tree
, var_escaped
);
5142 var_escaped
->is_artificial_var
= 1;
5143 var_escaped
->offset
= 0;
5144 var_escaped
->size
= ~0;
5145 var_escaped
->fullsize
= ~0;
5146 var_escaped
->is_special_var
= 0;
5147 VEC_safe_push (varinfo_t
, heap
, varmap
, var_escaped
);
5148 gcc_assert (VEC_index (varinfo_t
, varmap
, 3) == var_escaped
);
5150 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
5152 lhs
.var
= escaped_id
;
5155 rhs
.var
= escaped_id
;
5157 process_constraint (new_constraint (lhs
, rhs
));
5159 /* Create the NONLOCAL variable, used to represent the set of nonlocal
5161 nonlocal_tree
= create_tmp_var_raw (void_type_node
, "NONLOCAL");
5162 var_nonlocal
= new_var_info (nonlocal_tree
, nonlocal_id
, "NONLOCAL");
5163 insert_vi_for_tree (nonlocal_tree
, var_nonlocal
);
5164 var_nonlocal
->is_artificial_var
= 1;
5165 var_nonlocal
->offset
= 0;
5166 var_nonlocal
->size
= ~0;
5167 var_nonlocal
->fullsize
= ~0;
5168 var_nonlocal
->is_special_var
= 1;
5169 VEC_safe_push (varinfo_t
, heap
, varmap
, var_nonlocal
);
5171 /* Nonlocal memory points to escaped (which includes nonlocal),
5172 in order to make deref easier. */
5174 lhs
.var
= nonlocal_id
;
5176 rhs
.type
= ADDRESSOF
;
5177 rhs
.var
= escaped_id
;
5179 process_constraint (new_constraint (lhs
, rhs
));
5181 /* Create the CALLUSED variable, used to represent the set of call-used
5183 callused_tree
= create_tmp_var_raw (void_type_node
, "CALLUSED");
5184 var_callused
= new_var_info (callused_tree
, callused_id
, "CALLUSED");
5185 insert_vi_for_tree (callused_tree
, var_callused
);
5186 var_callused
->is_artificial_var
= 1;
5187 var_callused
->offset
= 0;
5188 var_callused
->size
= ~0;
5189 var_callused
->fullsize
= ~0;
5190 var_callused
->is_special_var
= 0;
5191 VEC_safe_push (varinfo_t
, heap
, varmap
, var_callused
);
5193 /* CALLUSED = *CALLUSED, because call-used is may-deref'd at calls, etc. */
5195 lhs
.var
= callused_id
;
5198 rhs
.var
= callused_id
;
5200 process_constraint (new_constraint (lhs
, rhs
));
5202 /* Create the INTEGER variable, used to represent that a variable points
5204 integer_tree
= create_tmp_var_raw (void_type_node
, "INTEGER");
5205 var_integer
= new_var_info (integer_tree
, integer_id
, "INTEGER");
5206 insert_vi_for_tree (integer_tree
, var_integer
);
5207 var_integer
->is_artificial_var
= 1;
5208 var_integer
->size
= ~0;
5209 var_integer
->fullsize
= ~0;
5210 var_integer
->offset
= 0;
5211 var_integer
->next
= NULL
;
5212 var_integer
->is_special_var
= 1;
5213 VEC_safe_push (varinfo_t
, heap
, varmap
, var_integer
);
5215 /* INTEGER = ANYTHING, because we don't know where a dereference of
5216 a random integer will point to. */
5218 lhs
.var
= integer_id
;
5220 rhs
.type
= ADDRESSOF
;
5221 rhs
.var
= anything_id
;
5223 process_constraint (new_constraint (lhs
, rhs
));
5225 /* *ESCAPED = &ESCAPED. This is true because we have to assume
5226 everything pointed to by escaped can also point to escaped. */
5228 lhs
.var
= escaped_id
;
5230 rhs
.type
= ADDRESSOF
;
5231 rhs
.var
= escaped_id
;
5233 process_constraint (new_constraint (lhs
, rhs
));
5235 /* *ESCAPED = &NONLOCAL. This is true because we have to assume
5236 everything pointed to by escaped can also point to nonlocal. */
5238 lhs
.var
= escaped_id
;
5240 rhs
.type
= ADDRESSOF
;
5241 rhs
.var
= nonlocal_id
;
5243 process_constraint (new_constraint (lhs
, rhs
));
5246 /* Initialize things necessary to perform PTA */
5249 init_alias_vars (void)
5251 use_field_sensitive
= (MAX_FIELDS_FOR_FIELD_SENSITIVE
> 1);
5253 bitmap_obstack_initialize (&pta_obstack
);
5254 bitmap_obstack_initialize (&oldpta_obstack
);
5255 bitmap_obstack_initialize (&predbitmap_obstack
);
5257 constraint_pool
= create_alloc_pool ("Constraint pool",
5258 sizeof (struct constraint
), 30);
5259 variable_info_pool
= create_alloc_pool ("Variable info pool",
5260 sizeof (struct variable_info
), 30);
5261 constraints
= VEC_alloc (constraint_t
, heap
, 8);
5262 varmap
= VEC_alloc (varinfo_t
, heap
, 8);
5263 vi_for_tree
= pointer_map_create ();
5265 memset (&stats
, 0, sizeof (stats
));
5266 shared_bitmap_table
= htab_create (511, shared_bitmap_hash
,
5267 shared_bitmap_eq
, free
);
5271 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
5272 predecessor edges. */
5275 remove_preds_and_fake_succs (constraint_graph_t graph
)
5279 /* Clear the implicit ref and address nodes from the successor
5281 for (i
= 0; i
< FIRST_REF_NODE
; i
++)
5283 if (graph
->succs
[i
])
5284 bitmap_clear_range (graph
->succs
[i
], FIRST_REF_NODE
,
5285 FIRST_REF_NODE
* 2);
5288 /* Free the successor list for the non-ref nodes. */
5289 for (i
= FIRST_REF_NODE
; i
< graph
->size
; i
++)
5291 if (graph
->succs
[i
])
5292 BITMAP_FREE (graph
->succs
[i
]);
5295 /* Now reallocate the size of the successor list as, and blow away
5296 the predecessor bitmaps. */
5297 graph
->size
= VEC_length (varinfo_t
, varmap
);
5298 graph
->succs
= XRESIZEVEC (bitmap
, graph
->succs
, graph
->size
);
5300 free (graph
->implicit_preds
);
5301 graph
->implicit_preds
= NULL
;
5302 free (graph
->preds
);
5303 graph
->preds
= NULL
;
5304 bitmap_obstack_release (&predbitmap_obstack
);
5307 /* Compute the set of variables we can't TBAA prune. */
5310 compute_tbaa_pruning (void)
5312 unsigned int size
= VEC_length (varinfo_t
, varmap
);
5317 changed
= sbitmap_alloc (size
);
5318 sbitmap_zero (changed
);
5320 /* Mark all initial no_tbaa_pruning nodes as changed. */
5322 for (i
= 0; i
< size
; ++i
)
5324 varinfo_t ivi
= get_varinfo (i
);
5326 if (find (i
) == i
&& ivi
->no_tbaa_pruning
)
5329 if ((graph
->succs
[i
] && !bitmap_empty_p (graph
->succs
[i
]))
5330 || VEC_length (constraint_t
, graph
->complex[i
]) > 0)
5332 SET_BIT (changed
, i
);
5338 while (changed_count
> 0)
5340 struct topo_info
*ti
= init_topo_info ();
5343 compute_topo_order (graph
, ti
);
5345 while (VEC_length (unsigned, ti
->topo_order
) != 0)
5349 i
= VEC_pop (unsigned, ti
->topo_order
);
5351 /* If this variable is not a representative, skip it. */
5355 /* If the node has changed, we need to process the complex
5356 constraints and outgoing edges again. */
5357 if (TEST_BIT (changed
, i
))
5361 VEC(constraint_t
,heap
) *complex = graph
->complex[i
];
5363 RESET_BIT (changed
, i
);
5366 /* Process the complex copy constraints. */
5367 for (j
= 0; VEC_iterate (constraint_t
, complex, j
, c
); ++j
)
5369 if (c
->lhs
.type
== SCALAR
&& c
->rhs
.type
== SCALAR
)
5371 varinfo_t lhsvi
= get_varinfo (find (c
->lhs
.var
));
5373 if (!lhsvi
->no_tbaa_pruning
)
5375 lhsvi
->no_tbaa_pruning
= true;
5376 if (!TEST_BIT (changed
, lhsvi
->id
))
5378 SET_BIT (changed
, lhsvi
->id
);
5385 /* Propagate to all successors. */
5386 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->succs
[i
], 0, j
, bi
)
5388 unsigned int to
= find (j
);
5389 varinfo_t tovi
= get_varinfo (to
);
5391 /* Don't propagate to ourselves. */
5395 if (!tovi
->no_tbaa_pruning
)
5397 tovi
->no_tbaa_pruning
= true;
5398 if (!TEST_BIT (changed
, to
))
5400 SET_BIT (changed
, to
);
5408 free_topo_info (ti
);
5411 sbitmap_free (changed
);
5415 for (i
= 0; i
< size
; ++i
)
5417 varinfo_t ivi
= get_varinfo (i
);
5418 varinfo_t ivip
= get_varinfo (find (i
));
5420 if (ivip
->no_tbaa_pruning
)
5422 tree var
= ivi
->decl
;
5424 if (TREE_CODE (var
) == SSA_NAME
)
5425 var
= SSA_NAME_VAR (var
);
5427 if (POINTER_TYPE_P (TREE_TYPE (var
)))
5429 DECL_NO_TBAA_P (var
) = 1;
5431 /* Tell the RTL layer that this pointer can alias
5433 DECL_POINTER_ALIAS_SET (var
) = 0;
5440 /* Create points-to sets for the current function. See the comments
5441 at the start of the file for an algorithmic overview. */
5444 compute_points_to_sets (void)
5446 struct scc_info
*si
;
5449 timevar_push (TV_TREE_PTA
);
5452 init_alias_heapvars ();
5454 intra_create_variable_infos ();
5456 /* Now walk all statements and derive aliases. */
5459 gimple_stmt_iterator gsi
;
5461 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5463 gimple phi
= gsi_stmt (gsi
);
5465 if (is_gimple_reg (gimple_phi_result (phi
)))
5466 find_func_aliases (phi
);
5469 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); )
5471 gimple stmt
= gsi_stmt (gsi
);
5473 find_func_aliases (stmt
);
5475 /* The information in GIMPLE_CHANGE_DYNAMIC_TYPE statements
5476 has now been captured, and we can remove them. */
5477 if (gimple_code (stmt
) == GIMPLE_CHANGE_DYNAMIC_TYPE
)
5478 gsi_remove (&gsi
, true);
5487 fprintf (dump_file
, "Points-to analysis\n\nConstraints:\n\n");
5488 dump_constraints (dump_file
);
5493 "\nCollapsing static cycles and doing variable "
5496 init_graph (VEC_length (varinfo_t
, varmap
) * 2);
5499 fprintf (dump_file
, "Building predecessor graph\n");
5500 build_pred_graph ();
5503 fprintf (dump_file
, "Detecting pointer and location "
5505 si
= perform_var_substitution (graph
);
5508 fprintf (dump_file
, "Rewriting constraints and unifying "
5510 rewrite_constraints (graph
, si
);
5511 free_var_substitution_info (si
);
5513 build_succ_graph ();
5515 if (dump_file
&& (dump_flags
& TDF_GRAPH
))
5516 dump_constraint_graph (dump_file
);
5518 move_complex_constraints (graph
);
5521 fprintf (dump_file
, "Uniting pointer but not location equivalent "
5523 unite_pointer_equivalences (graph
);
5526 fprintf (dump_file
, "Finding indirect cycles\n");
5527 find_indirect_cycles (graph
);
5529 /* Implicit nodes and predecessors are no longer necessary at this
5531 remove_preds_and_fake_succs (graph
);
5534 fprintf (dump_file
, "Solving graph\n");
5536 solve_graph (graph
);
5538 compute_tbaa_pruning ();
5541 dump_sa_points_to_info (dump_file
);
5543 have_alias_info
= true;
5545 timevar_pop (TV_TREE_PTA
);
5549 /* Delete created points-to sets. */
5552 delete_points_to_sets (void)
5556 htab_delete (shared_bitmap_table
);
5557 if (dump_file
&& (dump_flags
& TDF_STATS
))
5558 fprintf (dump_file
, "Points to sets created:%d\n",
5559 stats
.points_to_sets_created
);
5561 pointer_map_destroy (vi_for_tree
);
5562 bitmap_obstack_release (&pta_obstack
);
5563 VEC_free (constraint_t
, heap
, constraints
);
5565 for (i
= 0; i
< graph
->size
; i
++)
5566 VEC_free (constraint_t
, heap
, graph
->complex[i
]);
5567 free (graph
->complex);
5570 free (graph
->succs
);
5572 free (graph
->pe_rep
);
5573 free (graph
->indirect_cycles
);
5576 VEC_free (varinfo_t
, heap
, varmap
);
5577 free_alloc_pool (variable_info_pool
);
5578 free_alloc_pool (constraint_pool
);
5579 have_alias_info
= false;
5582 /* Return true if we should execute IPA PTA. */
5586 return (flag_ipa_pta
5587 /* Don't bother doing anything if the program has errors. */
5588 && !(errorcount
|| sorrycount
));
5591 /* Execute the driver for IPA PTA. */
5593 ipa_pta_execute (void)
5595 struct cgraph_node
*node
;
5596 struct scc_info
*si
;
5599 init_alias_heapvars ();
5602 for (node
= cgraph_nodes
; node
; node
= node
->next
)
5604 if (!node
->analyzed
|| cgraph_is_master_clone (node
))
5608 varid
= create_function_info_for (node
->decl
,
5609 cgraph_node_name (node
));
5610 if (node
->local
.externally_visible
)
5612 varinfo_t fi
= get_varinfo (varid
);
5613 for (; fi
; fi
= fi
->next
)
5614 make_constraint_from (fi
, anything_id
);
5618 for (node
= cgraph_nodes
; node
; node
= node
->next
)
5620 if (node
->analyzed
&& cgraph_is_master_clone (node
))
5622 struct function
*func
= DECL_STRUCT_FUNCTION (node
->decl
);
5624 tree old_func_decl
= current_function_decl
;
5627 "Generating constraints for %s\n",
5628 cgraph_node_name (node
));
5630 current_function_decl
= node
->decl
;
5632 FOR_EACH_BB_FN (bb
, func
)
5634 gimple_stmt_iterator gsi
;
5636 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
5639 gimple phi
= gsi_stmt (gsi
);
5641 if (is_gimple_reg (gimple_phi_result (phi
)))
5642 find_func_aliases (phi
);
5645 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5646 find_func_aliases (gsi_stmt (gsi
));
5648 current_function_decl
= old_func_decl
;
5653 /* Make point to anything. */
5659 fprintf (dump_file
, "Points-to analysis\n\nConstraints:\n\n");
5660 dump_constraints (dump_file
);
5665 "\nCollapsing static cycles and doing variable "
5668 init_graph (VEC_length (varinfo_t
, varmap
) * 2);
5669 build_pred_graph ();
5670 si
= perform_var_substitution (graph
);
5671 rewrite_constraints (graph
, si
);
5672 free_var_substitution_info (si
);
5674 build_succ_graph ();
5675 move_complex_constraints (graph
);
5676 unite_pointer_equivalences (graph
);
5677 find_indirect_cycles (graph
);
5679 /* Implicit nodes and predecessors are no longer necessary at this
5681 remove_preds_and_fake_succs (graph
);
5684 fprintf (dump_file
, "\nSolving graph\n");
5686 solve_graph (graph
);
5689 dump_sa_points_to_info (dump_file
);
5692 delete_alias_heapvars ();
5693 delete_points_to_sets ();
5697 struct simple_ipa_opt_pass pass_ipa_pta
=
5702 gate_ipa_pta
, /* gate */
5703 ipa_pta_execute
, /* execute */
5706 0, /* static_pass_number */
5707 TV_IPA_PTA
, /* tv_id */
5708 0, /* properties_required */
5709 0, /* properties_provided */
5710 0, /* properties_destroyed */
5711 0, /* todo_flags_start */
5712 TODO_update_ssa
/* todo_flags_finish */
5716 /* Initialize the heapvar for statement mapping. */
5718 init_alias_heapvars (void)
5720 if (!heapvar_for_stmt
)
5721 heapvar_for_stmt
= htab_create_ggc (11, tree_map_hash
, tree_map_eq
,
5726 delete_alias_heapvars (void)
5728 htab_delete (heapvar_for_stmt
);
5729 heapvar_for_stmt
= NULL
;
5732 #include "gt-tree-ssa-structalias.h"