]> gcc.gnu.org Git - gcc.git/blob - gcc/tree-ssa-live.h
* mangle.c (get_identifier_nocopy): Add cast.
[gcc.git] / gcc / tree-ssa-live.h
1 /* Routines for liveness in SSA trees.
2 Copyright (C) 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #ifndef _TREE_SSA_LIVE_H
24 #define _TREE_SSA_LIVE_H 1
25
26 #include "partition.h"
27
28 /* Used to create the variable mapping when we go out of SSA form. */
29 typedef struct _var_map
30 {
31 /* The partition of all variables. */
32 partition var_partition;
33
34 /* Vector for compacting partitions. */
35 int *partition_to_compact;
36 int *compact_to_partition;
37
38 /* Mapping of partition numbers to vars. */
39 tree *partition_to_var;
40
41 /* Current number of partitions. */
42 unsigned int num_partitions;
43
44 /* Original partition size. */
45 unsigned int partition_size;
46
47 /* Reference count, if required. */
48 int *ref_count;
49 } *var_map;
50
51 #define VAR_ANN_PARTITION(ann) (ann->partition)
52 #define VAR_ANN_ROOT_INDEX(ann) (ann->root_index)
53
54 #define NO_PARTITION -1
55
56 /* Flags to pass to compact_var_map */
57
58 #define VARMAP_NORMAL 0
59 #define VARMAP_NO_SINGLE_DEFS 1
60
61 extern var_map init_var_map (int);
62 extern void delete_var_map (var_map);
63 extern void dump_var_map (FILE *, var_map);
64 extern int var_union (var_map, tree, tree);
65 extern void change_partition_var (var_map, tree, int);
66 extern void compact_var_map (var_map, int);
67 extern tree make_ssa_temp (tree);
68
69 static inline int num_var_partitions (var_map);
70 static inline tree var_to_partition_to_var (var_map, tree);
71 static inline tree partition_to_var (var_map, int);
72 static inline int var_to_partition (var_map, tree);
73 static inline tree version_to_var (var_map, int);
74 static inline int version_ref_count (var_map, tree);
75 static inline void register_ssa_partition (var_map, tree, bool);
76
77 #define SSA_VAR_MAP_REF_COUNT 0x01
78 extern var_map create_ssa_var_map (int);
79
80
81 /* Number of partitions in MAP. */
82
83 static inline int
84 num_var_partitions (var_map map)
85 {
86 return map->num_partitions;
87 }
88
89
90 /* Return the reference count for SSA_VAR's partition in MAP. */
91
92 static inline int
93 version_ref_count (var_map map, tree ssa_var)
94 {
95 int version = SSA_NAME_VERSION (ssa_var);
96 #ifdef ENABLE_CHECKING
97 if (!map->ref_count)
98 abort ();
99 #endif
100 return map->ref_count[version];
101 }
102
103
104 /* Given partition index I from MAP, return the variable which represents that
105 partition. */
106
107 static inline tree
108 partition_to_var (var_map map, int i)
109 {
110 if (map->compact_to_partition)
111 i = map->compact_to_partition[i];
112 i = partition_find (map->var_partition, i);
113 return map->partition_to_var[i];
114 }
115
116
117 /* Given ssa_name VERSION, if it has a partition in MAP, return the var it
118 is associated with. Otherwise return NULL. */
119
120 static inline tree version_to_var (var_map map, int version)
121 {
122 int part;
123 part = partition_find (map->var_partition, version);
124 if (map->partition_to_compact)
125 part = map->partition_to_compact[part];
126 if (part == NO_PARTITION)
127 return NULL_TREE;
128
129 return partition_to_var (map, part);
130 }
131
132
133 /* Given VAR, return the partition number in MAP which contains it.
134 NO_PARTITION is returned if its not in any partition. */
135
136 static inline int
137 var_to_partition (var_map map, tree var)
138 {
139 var_ann_t ann;
140 int part;
141
142 if (TREE_CODE (var) == SSA_NAME)
143 {
144 part = partition_find (map->var_partition, SSA_NAME_VERSION (var));
145 if (map->partition_to_compact)
146 part = map->partition_to_compact[part];
147 }
148 else
149 {
150 ann = var_ann (var);
151 if (ann->out_of_ssa_tag)
152 part = VAR_ANN_PARTITION (ann);
153 else
154 part = NO_PARTITION;
155 }
156 return part;
157 }
158
159
160 /* Given VAR, return the variable which represents the entire partition
161 it is a member of in MAP. NULL is returned if it is not in a partition. */
162
163 static inline tree
164 var_to_partition_to_var (var_map map, tree var)
165 {
166 int part;
167
168 part = var_to_partition (map, var);
169 if (part == NO_PARTITION)
170 return NULL_TREE;
171 return partition_to_var (map, part);
172 }
173
174
175 /* This routine registers a partition for SSA_VAR with MAP. IS_USE is used
176 to count references. Any unregistered partitions may be compacted out
177 later. */
178
179 static inline void
180 register_ssa_partition (var_map map, tree ssa_var, bool is_use)
181 {
182 int version;
183
184 #if defined ENABLE_CHECKING
185 if (TREE_CODE (ssa_var) != SSA_NAME)
186 abort ();
187
188 if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
189 {
190 fprintf (stderr, "Illegally registering a virtual SSA name :");
191 print_generic_expr (stderr, ssa_var, TDF_SLIM);
192 fprintf (stderr, " in the SSA->Normal phase.\n");
193 abort();
194 }
195 #endif
196
197 version = SSA_NAME_VERSION (ssa_var);
198 if (is_use && map->ref_count)
199 map->ref_count[version]++;
200
201 if (map->partition_to_var[version] == NULL_TREE)
202 map->partition_to_var[SSA_NAME_VERSION (ssa_var)] = ssa_var;
203 }
204
205
206 /* ---------------- live on entry/exit info ------------------------------
207
208 This structure is used to represent live range information on SSA based
209 trees. A partition map must be provided, and based on the active partitions,
210 live-on-entry information and live-on-exit information can be calculated.
211 As well, partitions are marked as to whether they are global (live
212 outside the basic block they are defined in).
213
214 The live-on-entry information is per variable. It provide a bitmap for
215 each variable which has a bit set for each basic block that the variable
216 is live on entry to that block.
217
218 The live-on-exit information is per block. It provides a bitmap for each
219 block indicating which partitions are live on exit from the block.
220
221 For the purposes of this implementation, we treat the elements of a PHI
222 as follows:
223
224 Uses in a PHI are considered LIVE-ON-EXIT to the block from which they
225 originate. They are *NOT* considered live on entry to the block
226 containing the PHI node.
227
228 The Def of a PHI node is *not* considered live on entry to the block.
229 It is considered to be "define early" in the block. Picture it as each
230 block having a stmt (or block-preheader) before the first real stmt in
231 the block which defines all the variables that are defined by PHIs.
232
233 ----------------------------------------------------------------------- */
234
235
236 typedef struct tree_live_info_d
237 {
238 /* Var map this relates to. */
239 var_map map;
240
241 /* Bitmap indicating which partitions are global. */
242 bitmap global;
243
244 /* Bitmap of live on entry blocks for partition elements. */
245 bitmap *livein;
246
247 /* Number of basic blocks when live on exit calculated. */
248 int num_blocks;
249
250 /* Bitmap of what variables are live on exit for a basic blocks. */
251 bitmap *liveout;
252 } *tree_live_info_p;
253
254
255 extern tree_live_info_p calculate_live_on_entry (var_map);
256 extern void calculate_live_on_exit (tree_live_info_p);
257 extern void delete_tree_live_info (tree_live_info_p);
258
259 #define LIVEDUMP_ENTRY 0x01
260 #define LIVEDUMP_EXIT 0x02
261 #define LIVEDUMP_ALL (LIVEDUMP_ENTRY | LIVEDUMP_EXIT)
262 extern void dump_live_info (FILE *, tree_live_info_p, int);
263
264 static inline int partition_is_global (tree_live_info_p, int);
265 static inline bitmap live_entry_blocks (tree_live_info_p, int);
266 static inline bitmap live_on_exit (tree_live_info_p, basic_block);
267 static inline var_map live_var_map (tree_live_info_p);
268 static inline void live_merge_and_clear (tree_live_info_p, int, int);
269 static inline void make_live_on_entry (tree_live_info_p, basic_block, int);
270
271
272 /* Return TRUE if P is marked as a global in LIVE. */
273
274 static inline int
275 partition_is_global (tree_live_info_p live, int p)
276 {
277 if (!live->global)
278 abort ();
279
280 return bitmap_bit_p (live->global, p);
281 }
282
283
284 /* Return the bitmap from LIVE representing the live on entry blocks for
285 partition P. */
286
287 static inline bitmap
288 live_entry_blocks (tree_live_info_p live, int p)
289 {
290 if (!live->livein)
291 abort ();
292
293 return live->livein[p];
294 }
295
296
297 /* Return the bitmap from LIVE representing the live on exit partitions from
298 block BB. */
299
300 static inline bitmap
301 live_on_exit (tree_live_info_p live, basic_block bb)
302 {
303 if (!live->liveout)
304 abort();
305
306 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
307 abort ();
308
309 return live->liveout[bb->index];
310 }
311
312
313 /* Return the partition map which the information in LIVE utilizes. */
314
315 static inline var_map
316 live_var_map (tree_live_info_p live)
317 {
318 return live->map;
319 }
320
321
322 /* Merge the live on entry information in LIVE for partitions P1 and P2. Place
323 the result into P1. Clear P2. */
324
325 static inline void
326 live_merge_and_clear (tree_live_info_p live, int p1, int p2)
327 {
328 bitmap_a_or_b (live->livein[p1], live->livein[p1], live->livein[p2]);
329 bitmap_zero (live->livein[p2]);
330 }
331
332
333 /* Mark partition P as live on entry to basic block BB in LIVE. */
334
335 static inline void
336 make_live_on_entry (tree_live_info_p live, basic_block bb , int p)
337 {
338 bitmap_set_bit (live->livein[p], bb->index);
339 bitmap_set_bit (live->global, p);
340 }
341
342
343 /* A tree_partition_associator (TPA)object is a base structure which allows
344 partitions to be associated with a tree object.
345
346 A varray of tree elements represent each distinct tree item.
347 A parallel int array represents the first partition number associated with
348 the tree.
349 This partition number is then used as in index into the next_partition
350 array, which returns the index of the next partition which is associated
351 with the tree. TPA_NONE indicates the end of the list.
352 A varray paralleling the partition list 'partition_to_tree_map' is used
353 to indicate which tree index the partition is in. */
354
355 typedef struct tree_partition_associator_d
356 {
357 varray_type trees;
358 varray_type first_partition;
359 int *next_partition;
360 int *partition_to_tree_map;
361 int num_trees;
362 int uncompressed_num;
363 var_map map;
364 } *tpa_p;
365
366 /* Value returned when there are no more partitions associated with a tree. */
367 #define TPA_NONE -1
368
369 static inline tree tpa_tree (tpa_p, int);
370 static inline int tpa_first_partition (tpa_p, int);
371 static inline int tpa_next_partition (tpa_p, int);
372 static inline int tpa_num_trees (tpa_p);
373 static inline int tpa_find_tree (tpa_p, int);
374 static inline void tpa_decompact (tpa_p);
375 extern tpa_p tpa_init (var_map);
376 extern void tpa_delete (tpa_p);
377 extern void tpa_dump (FILE *, tpa_p);
378 extern void tpa_remove_partition (tpa_p, int, int);
379 extern int tpa_compact (tpa_p);
380
381
382 /* Return the number of distinct tree nodes in TPA. */
383
384 static inline int
385 tpa_num_trees (tpa_p tpa)
386 {
387 return tpa->num_trees;
388 }
389
390
391 /* Return the tree node for index I in TPA. */
392
393 static inline tree
394 tpa_tree (tpa_p tpa, int i)
395 {
396 return VARRAY_TREE (tpa->trees, i);
397 }
398
399
400 /* Return the first partition associated with tree list I in TPA. */
401
402 static inline int
403 tpa_first_partition (tpa_p tpa, int i)
404 {
405 return VARRAY_INT (tpa->first_partition, i);
406 }
407
408
409 /* Return the next partition after partition I in TPA's list. */
410
411 static inline int
412 tpa_next_partition (tpa_p tpa, int i)
413 {
414 return tpa->next_partition[i];
415 }
416
417
418 /* Return the tree index from TPA whose list contains partition I.
419 TPA_NONE is returned if I is not associated with any list. */
420
421 static inline int
422 tpa_find_tree (tpa_p tpa, int i)
423 {
424 int index;
425
426 index = tpa->partition_to_tree_map[i];
427 /* When compressed, any index higher than the number of tree elements is
428 a compressed element, so return TPA_NONE. */
429 if (index != TPA_NONE && index >= tpa_num_trees (tpa))
430 {
431 #ifdef ENABLE_CHECKING
432 if (tpa->uncompressed_num == -1)
433 abort ();
434 #endif
435 index = TPA_NONE;
436 }
437
438 return index;
439 }
440
441
442 /* This function removes any compaction which was performed on TPA. */
443
444 static inline void
445 tpa_decompact(tpa_p tpa)
446 {
447 #ifdef ENABLE_CHECKING
448 if (tpa->uncompressed_num == -1)
449 abort ();
450 #endif
451 tpa->num_trees = tpa->uncompressed_num;
452 }
453
454
455 /* Once a var_map has been created and compressed, a complimentary root_var
456 object can be built. This creates a list of all the root variables from
457 which ssa version names are derived. Each root variable has a list of
458 which partitions are versions of that root.
459
460 This is implemented using the tree_partition_associator.
461
462 The tree vector is used to represent the root variable.
463 The list of partitions represent SSA versions of the root variable. */
464
465 typedef tpa_p root_var_p;
466
467 static inline tree root_var (root_var_p, int);
468 static inline int root_var_first_partition (root_var_p, int);
469 static inline int root_var_next_partition (root_var_p, int);
470 static inline int root_var_num (root_var_p);
471 static inline void root_var_dump (FILE *, root_var_p);
472 static inline void root_var_remove_partition (root_var_p, int, int);
473 static inline void root_var_delete (root_var_p);
474 static inline int root_var_find (root_var_p, int);
475 static inline int root_var_compact (root_var_p);
476 static inline void root_var_decompact (tpa_p);
477
478 extern root_var_p root_var_init (var_map);
479
480 /* Value returned when there are no more partitions associated with a root
481 variable. */
482 #define ROOT_VAR_NONE TPA_NONE
483
484
485 /* Return the number of distinct root variables in RV. */
486
487 static inline int
488 root_var_num (root_var_p rv)
489 {
490 return tpa_num_trees (rv);
491 }
492
493
494 /* Return root variable I from RV. */
495
496 static inline tree
497 root_var (root_var_p rv, int i)
498 {
499 return tpa_tree (rv, i);
500 }
501
502
503 /* Return the first partition in RV belonging to root variable list I. */
504
505 static inline int
506 root_var_first_partition (root_var_p rv, int i)
507 {
508 return tpa_first_partition (rv, i);
509 }
510
511
512 /* Return the next partition after partition I in a root list from RV. */
513
514 static inline int
515 root_var_next_partition (root_var_p rv, int i)
516 {
517 return tpa_next_partition (rv, i);
518 }
519
520
521 /* Send debug info for root_var list RV to file F. */
522
523 static inline void
524 root_var_dump (FILE *f, root_var_p rv)
525 {
526 fprintf (f, "\nRoot Var dump\n");
527 tpa_dump (f, rv);
528 fprintf (f, "\n");
529 }
530
531
532 /* Destroy root_var object RV. */
533
534 static inline void
535 root_var_delete (root_var_p rv)
536 {
537 tpa_delete (rv);
538 }
539
540
541 /* Remove partition PARTITION_INDEX from root_var list ROOT_INDEX in RV. */
542
543 static inline void
544 root_var_remove_partition (root_var_p rv, int root_index, int partition_index)
545 {
546 tpa_remove_partition (rv, root_index, partition_index);
547 }
548
549
550 /* Return the root_var list index for partition I in RV. */
551
552 static inline int
553 root_var_find (root_var_p rv, int i)
554 {
555 return tpa_find_tree (rv, i);
556 }
557
558
559 /* Hide single element lists in RV. */
560
561 static inline int
562 root_var_compact (root_var_p rv)
563 {
564 return tpa_compact (rv);
565 }
566
567
568 /* Expose the single element lists in RV. */
569
570 static inline void
571 root_var_decompact (root_var_p rv)
572 {
573 tpa_decompact (rv);
574 }
575
576
577 /* A TYPE_VAR object is similar to a root_var object, except this associates
578 partitions with their type rather than their root variable. This is used to
579 coalesce memory locations based on type. */
580
581 typedef tpa_p type_var_p;
582
583 static inline tree type_var (type_var_p, int);
584 static inline int type_var_first_partition (type_var_p, int);
585 static inline int type_var_next_partition (type_var_p, int);
586 static inline int type_var_num (type_var_p);
587 static inline void type_var_dump (FILE *, type_var_p);
588 static inline void type_var_remove_partition (type_var_p, int, int);
589 static inline void type_var_delete (type_var_p);
590 static inline int type_var_find (type_var_p, int);
591 static inline int type_var_compact (type_var_p);
592 static inline void type_var_decompact (type_var_p);
593
594 extern type_var_p type_var_init (var_map);
595
596 /* Value returned when there is no partitions associated with a list. */
597 #define TYPE_VAR_NONE TPA_NONE
598
599
600 /* Return the number of distinct type lists in TV. */
601
602 static inline int
603 type_var_num (type_var_p tv)
604 {
605 return tpa_num_trees (tv);
606 }
607
608
609 /* Return the type of list I in TV. */
610
611 static inline tree
612 type_var (type_var_p tv, int i)
613 {
614 return tpa_tree (tv, i);
615 }
616
617
618 /* Return the first partition belonging to type list I in TV. */
619
620 static inline int
621 type_var_first_partition (type_var_p tv, int i)
622 {
623 return tpa_first_partition (tv, i);
624 }
625
626
627 /* Return the next partition after partition I in a type list within TV. */
628
629 static inline int
630 type_var_next_partition (type_var_p tv, int i)
631 {
632 return tpa_next_partition (tv, i);
633 }
634
635
636 /* Send debug info for type_var object TV to file F. */
637
638 static inline void
639 type_var_dump (FILE *f, type_var_p tv)
640 {
641 fprintf (f, "\nType Var dump\n");
642 tpa_dump (f, tv);
643 fprintf (f, "\n");
644 }
645
646
647 /* Delete type_var object TV. */
648
649 static inline void
650 type_var_delete (type_var_p tv)
651 {
652 tpa_delete (tv);
653 }
654
655
656 /* Remove partition PARTITION_INDEX from type list TYPE_INDEX in TV. */
657
658 static inline void
659 type_var_remove_partition (type_var_p tv, int type_index, int partition_index)
660 {
661 tpa_remove_partition (tv, type_index, partition_index);
662 }
663
664
665 /* Return the type index in TV for the list partition I is in. */
666
667 static inline int
668 type_var_find (type_var_p tv, int i)
669 {
670 return tpa_find_tree (tv, i);
671 }
672
673
674 /* Hide single element lists in TV. */
675
676 static inline int
677 type_var_compact (type_var_p tv)
678 {
679 return tpa_compact (tv);
680 }
681
682
683 /* Expose single element lists in TV. */
684
685 static inline void
686 type_var_decompact (type_var_p tv)
687 {
688 tpa_decompact (tv);
689 }
690
691 /* This set of routines implements a coalesce_list. This is an object which
692 is used to track pairs of partitions which are desirable to coalesce
693 together at some point. Costs are associated with each pair, and when
694 all desired information has been collected, the object can be used to
695 order the pairs for processing. */
696
697 /* This structure defines a pair for coalescing. */
698
699 typedef struct partition_pair_d
700 {
701 int first_partition;
702 int second_partition;
703 int cost;
704 struct partition_pair_d *next;
705 } *partition_pair_p;
706
707 /* This structure maintains the list of coalesce pairs.
708 When add_mode is true, list is a triangular shaped list of coalesce pairs.
709 The smaller partition number is used to index the list, and the larger is
710 index is located in a partition_pair_p object. These lists are sorted from
711 smallest to largest by 'second_partition'. New coalesce pairs are allowed
712 to be added in this mode.
713 When add_mode is false, the lists have all been merged into list[0]. The
714 rest of the lists are not used. list[0] is ordered from most desirable
715 coalesce to least desirable. pop_best_coalesce() retrieves the pairs
716 one at a time. */
717
718 typedef struct coalesce_list_d
719 {
720 var_map map;
721 partition_pair_p *list;
722 bool add_mode;
723 } *coalesce_list_p;
724
725 extern coalesce_list_p create_coalesce_list (var_map);
726 extern void add_coalesce (coalesce_list_p, int, int, int);
727 extern void sort_coalesce_list (coalesce_list_p);
728 extern void dump_coalesce_list (FILE *, coalesce_list_p);
729 extern void delete_coalesce_list (coalesce_list_p);
730
731 #define NO_BEST_COALESCE -1
732 extern int pop_best_coalesce (coalesce_list_p, int *, int *);
733
734 extern conflict_graph build_tree_conflict_graph (tree_live_info_p, tpa_p,
735 coalesce_list_p);
736 extern void coalesce_tpa_members (tpa_p tpa, conflict_graph graph, var_map map,
737 coalesce_list_p cl, FILE *);
738
739
740 #endif /* _TREE_SSA_LIVE_H */
This page took 0.066263 seconds and 5 git commands to generate.