]> gcc.gnu.org Git - gcc.git/blob - gcc/tree-ssa-dse.c
[multiple changes]
[gcc.git] / gcc / tree-ssa-dse.c
1 /* Dead store elimination
2 Copyright (C) 2004 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "errors.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "basic-block.h"
31 #include "timevar.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "tree-pass.h"
35 #include "tree-dump.h"
36 #include "domwalk.h"
37 #include "flags.h"
38
39 /* This file implements dead store elimination.
40
41 A dead store is a store into a memory location which will later be
42 overwritten by another store without any intervening loads. In this
43 case the earlier store can be deleted.
44
45 In our SSA + virtual operand world we use immediate uses of virtual
46 operands to detect dead stores. If a store's virtual definition
47 is used precisely once by a later store to the same location which
48 post dominates the first store, then the first store is dead.
49
50 The single use of the store's virtual definition ensures that
51 there are no intervening aliased loads and the requirement that
52 the second load post dominate the first ensures that if the earlier
53 store executes, then the later stores will execute before the function
54 exits.
55
56 It may help to think of this as first moving the earlier store to
57 the point immediately before the later store. Again, the single
58 use of the virtual definition and the post-dominance relationship
59 ensure that such movement would be safe. Clearly if there are
60 back to back stores, then the second is redundant.
61
62 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
63 may also help in understanding this code since it discusses the
64 relationship between dead store and redundant load elimination. In
65 fact, they are the same transformation applied to different views of
66 the CFG. */
67
68
69 struct dse_global_data
70 {
71 /* This is the global bitmap for store statements.
72
73 Each statement has a unique ID. When we encounter a store statement
74 that we want to record, set the bit corresponding to the statement's
75 unique ID in this bitmap. */
76 bitmap stores;
77 };
78
79 /* We allocate a bitmap-per-block for stores which are encountered
80 during the scan of that block. This allows us to restore the
81 global bitmap of stores when we finish processing a block. */
82 struct dse_block_local_data
83 {
84 bitmap stores;
85 };
86
87 static bool gate_dse (void);
88 static void tree_ssa_dse (void);
89 static void dse_initialize_block_local_data (struct dom_walk_data *,
90 basic_block,
91 bool);
92 static void dse_optimize_stmt (struct dom_walk_data *,
93 basic_block,
94 block_stmt_iterator);
95 static void dse_record_phis (struct dom_walk_data *, basic_block);
96 static void dse_finalize_block (struct dom_walk_data *, basic_block);
97 static void fix_phi_uses (tree, tree);
98 static void fix_stmt_v_may_defs (tree, tree);
99 static void record_voperand_set (bitmap, bitmap *, unsigned int);
100
101 static unsigned max_stmt_uid; /* Maximal uid of a statement. Uids to phi
102 nodes are assigned using the versions of
103 ssa names they define. */
104
105 /* Returns uid of statement STMT. */
106
107 static unsigned
108 get_stmt_uid (tree stmt)
109 {
110 if (TREE_CODE (stmt) == PHI_NODE)
111 return SSA_NAME_VERSION (PHI_RESULT (stmt)) + max_stmt_uid;
112
113 return stmt_ann (stmt)->uid;
114 }
115
116 /* Function indicating whether we ought to include information for 'var'
117 when calculating immediate uses. For this pass we only want use
118 information for virtual variables. */
119
120 static bool
121 need_imm_uses_for (tree var)
122 {
123 return !is_gimple_reg (var);
124 }
125
126
127 /* Replace uses in PHI which match V_MAY_DEF_RESULTs in STMT with the
128 corresponding V_MAY_DEF_OP in STMT. */
129
130 static void
131 fix_phi_uses (tree phi, tree stmt)
132 {
133 stmt_ann_t ann = stmt_ann (stmt);
134 v_may_def_optype v_may_defs;
135 unsigned int i;
136 int j;
137
138 get_stmt_operands (stmt);
139 v_may_defs = V_MAY_DEF_OPS (ann);
140
141 /* Walk each V_MAY_DEF in STMT. */
142 for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
143 {
144 tree v_may_def = V_MAY_DEF_RESULT (v_may_defs, i);
145
146 /* Find any uses in the PHI which match V_MAY_DEF and replace
147 them with the appropriate V_MAY_DEF_OP. */
148 for (j = 0; j < PHI_NUM_ARGS (phi); j++)
149 if (v_may_def == PHI_ARG_DEF (phi, j))
150 SET_PHI_ARG_DEF (phi, j, V_MAY_DEF_OP (v_may_defs, i));
151 }
152 }
153
154 /* Replace the V_MAY_DEF_OPs in STMT1 which match V_MAY_DEF_RESULTs
155 in STMT2 with the appropriate V_MAY_DEF_OPs from STMT2. */
156
157 static void
158 fix_stmt_v_may_defs (tree stmt1, tree stmt2)
159 {
160 stmt_ann_t ann1 = stmt_ann (stmt1);
161 stmt_ann_t ann2 = stmt_ann (stmt2);
162 v_may_def_optype v_may_defs1;
163 v_may_def_optype v_may_defs2;
164 unsigned int i, j;
165
166 get_stmt_operands (stmt1);
167 get_stmt_operands (stmt2);
168 v_may_defs1 = V_MAY_DEF_OPS (ann1);
169 v_may_defs2 = V_MAY_DEF_OPS (ann2);
170
171 /* Walk each V_MAY_DEF_OP in stmt1. */
172 for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs1); i++)
173 {
174 tree v_may_def1 = V_MAY_DEF_OP (v_may_defs1, i);
175
176 /* Find the appropriate V_MAY_DEF_RESULT in STMT2. */
177 for (j = 0; j < NUM_V_MAY_DEFS (v_may_defs2); j++)
178 {
179 if (v_may_def1 == V_MAY_DEF_RESULT (v_may_defs2, j))
180 {
181 /* Update. */
182 SET_V_MAY_DEF_OP (v_may_defs1, i, V_MAY_DEF_OP (v_may_defs2, j));
183 break;
184 }
185 }
186
187 /* If we did not find a corresponding V_MAY_DEF_RESULT, then something
188 has gone terribly wrong. */
189 gcc_assert (j != NUM_V_MAY_DEFS (v_may_defs2));
190 }
191 }
192
193
194 /* Set bit UID in bitmaps GLOBAL and *LOCAL, creating *LOCAL as needed. */
195 static void
196 record_voperand_set (bitmap global, bitmap *local, unsigned int uid)
197 {
198 /* Lazily allocate the bitmap. Note that we do not get a notification
199 when the block local data structures die, so we allocate the local
200 bitmap backed by the GC system. */
201 if (*local == NULL)
202 *local = BITMAP_GGC_ALLOC ();
203
204 /* Set the bit in the local and global bitmaps. */
205 bitmap_set_bit (*local, uid);
206 bitmap_set_bit (global, uid);
207 }
208 /* Initialize block local data structures. */
209
210 static void
211 dse_initialize_block_local_data (struct dom_walk_data *walk_data,
212 basic_block bb ATTRIBUTE_UNUSED,
213 bool recycled)
214 {
215 struct dse_block_local_data *bd
216 = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);
217
218 /* If we are given a recycled block local data structure, ensure any
219 bitmap associated with the block is cleared. */
220 if (recycled)
221 {
222 if (bd->stores)
223 bitmap_clear (bd->stores);
224 }
225 }
226
227 /* Attempt to eliminate dead stores in the statement referenced by BSI.
228
229 A dead store is a store into a memory location which will later be
230 overwritten by another store without any intervening loads. In this
231 case the earlier store can be deleted.
232
233 In our SSA + virtual operand world we use immediate uses of virtual
234 operands to detect dead stores. If a store's virtual definition
235 is used precisely once by a later store to the same location which
236 post dominates the first store, then the first store is dead. */
237
238 static void
239 dse_optimize_stmt (struct dom_walk_data *walk_data,
240 basic_block bb ATTRIBUTE_UNUSED,
241 block_stmt_iterator bsi)
242 {
243 struct dse_block_local_data *bd
244 = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);
245 struct dse_global_data *dse_gd = walk_data->global_data;
246 tree stmt = bsi_stmt (bsi);
247 stmt_ann_t ann = stmt_ann (stmt);
248 v_may_def_optype v_may_defs;
249
250 get_stmt_operands (stmt);
251 v_may_defs = V_MAY_DEF_OPS (ann);
252
253 /* If this statement has no virtual uses, then there is nothing
254 to do. */
255 if (NUM_V_MAY_DEFS (v_may_defs) == 0)
256 return;
257
258 /* We know we have virtual definitions. If this is a MODIFY_EXPR that's
259 not also a function call, then record it into our table. */
260 if (get_call_expr_in (stmt))
261 return;
262
263 if (ann->has_volatile_ops)
264 return;
265
266 if (TREE_CODE (stmt) == MODIFY_EXPR)
267 {
268 dataflow_t df = get_immediate_uses (stmt);
269 unsigned int num_uses = num_immediate_uses (df);
270 tree use;
271 tree skipped_phi;
272
273
274 /* If there are no uses then there is nothing left to do. */
275 if (num_uses == 0)
276 {
277 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
278 return;
279 }
280
281 use = immediate_use (df, 0);
282 skipped_phi = NULL;
283
284 /* Skip through any PHI nodes we have already seen if the PHI
285 represents the only use of this store.
286
287 Note this does not handle the case where the store has
288 multiple V_MAY_DEFs which all reach a set of PHI nodes in the
289 same block. */
290 while (num_uses == 1
291 && TREE_CODE (use) == PHI_NODE
292 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use)))
293 {
294 /* Record the first PHI we skip so that we can fix its
295 uses if we find that STMT is a dead store. */
296 if (!skipped_phi)
297 skipped_phi = use;
298
299 /* Skip past this PHI and loop again in case we had a PHI
300 chain. */
301 df = get_immediate_uses (use);
302 num_uses = num_immediate_uses (df);
303 use = immediate_use (df, 0);
304 }
305
306 /* If we have precisely one immediate use at this point, then we may
307 have found redundant store. */
308 if (num_uses == 1
309 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use))
310 && operand_equal_p (TREE_OPERAND (stmt, 0),
311 TREE_OPERAND (use, 0), 0))
312 {
313 /* We need to fix the operands if either the first PHI we
314 skipped, or the store which we are not deleting if we did
315 not skip any PHIs. */
316 if (skipped_phi)
317 fix_phi_uses (skipped_phi, stmt);
318 else
319 fix_stmt_v_may_defs (use, stmt);
320
321 if (dump_file && (dump_flags & TDF_DETAILS))
322 {
323 fprintf (dump_file, " Deleted dead store '");
324 print_generic_expr (dump_file, bsi_stmt (bsi), dump_flags);
325 fprintf (dump_file, "'\n");
326 }
327
328 /* Any immediate uses which reference STMT need to instead
329 reference the new consumer, either SKIPPED_PHI or USE.
330 This allows us to cascade dead stores. */
331 redirect_immediate_uses (stmt, skipped_phi ? skipped_phi : use);
332
333 /* Be sure to remove any dataflow information attached to
334 this statement. */
335 free_df_for_stmt (stmt);
336
337 /* And release any SSA_NAMEs set in this statement back to the
338 SSA_NAME manager. */
339 release_defs (stmt);
340
341 /* Finally remove the dead store. */
342 bsi_remove (&bsi);
343 }
344
345 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
346 }
347 }
348
349 /* Record that we have seen the PHIs at the start of BB which correspond
350 to virtual operands. */
351 static void
352 dse_record_phis (struct dom_walk_data *walk_data, basic_block bb)
353 {
354 struct dse_block_local_data *bd
355 = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);
356 struct dse_global_data *dse_gd = walk_data->global_data;
357 tree phi;
358
359 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
360 if (need_imm_uses_for (PHI_RESULT (phi)))
361 record_voperand_set (dse_gd->stores,
362 &bd->stores,
363 get_stmt_uid (phi));
364 }
365
366 static void
367 dse_finalize_block (struct dom_walk_data *walk_data,
368 basic_block bb ATTRIBUTE_UNUSED)
369 {
370 struct dse_block_local_data *bd
371 = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);
372 struct dse_global_data *dse_gd = walk_data->global_data;
373 bitmap stores = dse_gd->stores;
374 unsigned int i;
375 bitmap_iterator bi;
376
377 /* Unwind the stores noted in this basic block. */
378 if (bd->stores)
379 EXECUTE_IF_SET_IN_BITMAP (bd->stores, 0, i, bi)
380 {
381 bitmap_clear_bit (stores, i);
382 }
383 }
384
385 static void
386 tree_ssa_dse (void)
387 {
388 struct dom_walk_data walk_data;
389 struct dse_global_data dse_gd;
390 basic_block bb;
391
392 /* Create a UID for each statement in the function. Ordering of the
393 UIDs is not important for this pass. */
394 max_stmt_uid = 0;
395 FOR_EACH_BB (bb)
396 {
397 block_stmt_iterator bsi;
398
399 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
400 stmt_ann (bsi_stmt (bsi))->uid = max_stmt_uid++;
401 }
402
403 /* We might consider making this a property of each pass so that it
404 can be [re]computed on an as-needed basis. Particularly since
405 this pass could be seen as an extension of DCE which needs post
406 dominators. */
407 calculate_dominance_info (CDI_POST_DOMINATORS);
408
409 /* We also need immediate use information for virtual operands. */
410 compute_immediate_uses (TDFA_USE_VOPS, need_imm_uses_for);
411
412 /* Dead store elimination is fundamentally a walk of the post-dominator
413 tree and a backwards walk of statements within each block. */
414 walk_data.walk_stmts_backward = true;
415 walk_data.dom_direction = CDI_POST_DOMINATORS;
416 walk_data.initialize_block_local_data = dse_initialize_block_local_data;
417 walk_data.before_dom_children_before_stmts = NULL;
418 walk_data.before_dom_children_walk_stmts = dse_optimize_stmt;
419 walk_data.before_dom_children_after_stmts = dse_record_phis;
420 walk_data.after_dom_children_before_stmts = NULL;
421 walk_data.after_dom_children_walk_stmts = NULL;
422 walk_data.after_dom_children_after_stmts = dse_finalize_block;
423
424 walk_data.block_local_data_size = sizeof (struct dse_block_local_data);
425
426 /* This is the main hash table for the dead store elimination pass. */
427 dse_gd.stores = BITMAP_XMALLOC ();
428 walk_data.global_data = &dse_gd;
429
430 /* Initialize the dominator walker. */
431 init_walk_dominator_tree (&walk_data);
432
433 /* Recursively walk the dominator tree. */
434 walk_dominator_tree (&walk_data, EXIT_BLOCK_PTR);
435
436 /* Finalize the dominator walker. */
437 fini_walk_dominator_tree (&walk_data);
438
439 /* Release the main bitmap. */
440 BITMAP_XFREE (dse_gd.stores);
441
442 /* Free dataflow information. It's probably out of date now anyway. */
443 free_df ();
444
445 /* For now, just wipe the post-dominator information. */
446 free_dominance_info (CDI_POST_DOMINATORS);
447 }
448
449 static bool
450 gate_dse (void)
451 {
452 return flag_tree_dse != 0;
453 }
454
455 struct tree_opt_pass pass_dse = {
456 "dse", /* name */
457 gate_dse, /* gate */
458 tree_ssa_dse, /* execute */
459 NULL, /* sub */
460 NULL, /* next */
461 0, /* static_pass_number */
462 TV_TREE_DSE, /* tv_id */
463 PROP_cfg | PROP_ssa
464 | PROP_alias, /* properties_required */
465 0, /* properties_provided */
466 0, /* properties_destroyed */
467 0, /* todo_flags_start */
468 TODO_dump_func | TODO_ggc_collect /* todo_flags_finish */
469 | TODO_verify_ssa,
470 0 /* letter */
471 };
This page took 0.064979 seconds and 5 git commands to generate.