]> gcc.gnu.org Git - gcc.git/blob - gcc/tree-ssa-ccp.c
gcc.c (PLUGIN_COND): Always enable unless -fno-use-linker-plugin or -fno-lto is speci...
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 References:
102
103 Constant propagation with conditional branches,
104 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
105
106 Building an Optimizing Compiler,
107 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
108
109 Advanced Compiler Design and Implementation,
110 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
111
112 #include "config.h"
113 #include "system.h"
114 #include "coretypes.h"
115 #include "tm.h"
116 #include "tree.h"
117 #include "stor-layout.h"
118 #include "flags.h"
119 #include "tm_p.h"
120 #include "basic-block.h"
121 #include "function.h"
122 #include "gimple-pretty-print.h"
123 #include "hash-table.h"
124 #include "tree-ssa-alias.h"
125 #include "internal-fn.h"
126 #include "gimple-fold.h"
127 #include "tree-eh.h"
128 #include "gimple-expr.h"
129 #include "is-a.h"
130 #include "gimple.h"
131 #include "gimplify.h"
132 #include "gimple-iterator.h"
133 #include "gimple-ssa.h"
134 #include "tree-cfg.h"
135 #include "tree-phinodes.h"
136 #include "ssa-iterators.h"
137 #include "stringpool.h"
138 #include "tree-ssanames.h"
139 #include "tree-pass.h"
140 #include "tree-ssa-propagate.h"
141 #include "value-prof.h"
142 #include "langhooks.h"
143 #include "target.h"
144 #include "diagnostic-core.h"
145 #include "dbgcnt.h"
146 #include "params.h"
147
148
149 /* Possible lattice values. */
150 typedef enum
151 {
152 UNINITIALIZED,
153 UNDEFINED,
154 CONSTANT,
155 VARYING
156 } ccp_lattice_t;
157
158 struct prop_value_d {
159 /* Lattice value. */
160 ccp_lattice_t lattice_val;
161
162 /* Propagated value. */
163 tree value;
164
165 /* Mask that applies to the propagated value during CCP. For
166 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
167 double_int mask;
168 };
169
170 typedef struct prop_value_d prop_value_t;
171
172 /* Array of propagated constant values. After propagation,
173 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
174 the constant is held in an SSA name representing a memory store
175 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
176 memory reference used to store (i.e., the LHS of the assignment
177 doing the store). */
178 static prop_value_t *const_val;
179 static unsigned n_const_val;
180
181 static void canonicalize_value (prop_value_t *);
182 static bool ccp_fold_stmt (gimple_stmt_iterator *);
183
184 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
185
186 static void
187 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
188 {
189 switch (val.lattice_val)
190 {
191 case UNINITIALIZED:
192 fprintf (outf, "%sUNINITIALIZED", prefix);
193 break;
194 case UNDEFINED:
195 fprintf (outf, "%sUNDEFINED", prefix);
196 break;
197 case VARYING:
198 fprintf (outf, "%sVARYING", prefix);
199 break;
200 case CONSTANT:
201 if (TREE_CODE (val.value) != INTEGER_CST
202 || val.mask.is_zero ())
203 {
204 fprintf (outf, "%sCONSTANT ", prefix);
205 print_generic_expr (outf, val.value, dump_flags);
206 }
207 else
208 {
209 double_int cval = tree_to_double_int (val.value).and_not (val.mask);
210 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
211 prefix, cval.high, cval.low);
212 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
213 val.mask.high, val.mask.low);
214 }
215 break;
216 default:
217 gcc_unreachable ();
218 }
219 }
220
221
222 /* Print lattice value VAL to stderr. */
223
224 void debug_lattice_value (prop_value_t val);
225
226 DEBUG_FUNCTION void
227 debug_lattice_value (prop_value_t val)
228 {
229 dump_lattice_value (stderr, "", val);
230 fprintf (stderr, "\n");
231 }
232
233
234 /* Compute a default value for variable VAR and store it in the
235 CONST_VAL array. The following rules are used to get default
236 values:
237
238 1- Global and static variables that are declared constant are
239 considered CONSTANT.
240
241 2- Any other value is considered UNDEFINED. This is useful when
242 considering PHI nodes. PHI arguments that are undefined do not
243 change the constant value of the PHI node, which allows for more
244 constants to be propagated.
245
246 3- Variables defined by statements other than assignments and PHI
247 nodes are considered VARYING.
248
249 4- Initial values of variables that are not GIMPLE registers are
250 considered VARYING. */
251
252 static prop_value_t
253 get_default_value (tree var)
254 {
255 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
256 gimple stmt;
257
258 stmt = SSA_NAME_DEF_STMT (var);
259
260 if (gimple_nop_p (stmt))
261 {
262 /* Variables defined by an empty statement are those used
263 before being initialized. If VAR is a local variable, we
264 can assume initially that it is UNDEFINED, otherwise we must
265 consider it VARYING. */
266 if (!virtual_operand_p (var)
267 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
268 val.lattice_val = UNDEFINED;
269 else
270 {
271 val.lattice_val = VARYING;
272 val.mask = double_int_minus_one;
273 if (flag_tree_bit_ccp)
274 {
275 double_int nonzero_bits = get_nonzero_bits (var);
276 double_int mask
277 = double_int::mask (TYPE_PRECISION (TREE_TYPE (var)));
278 if (nonzero_bits != double_int_minus_one && nonzero_bits != mask)
279 {
280 val.lattice_val = CONSTANT;
281 val.value = build_zero_cst (TREE_TYPE (var));
282 /* CCP wants the bits above precision set. */
283 val.mask = nonzero_bits | ~mask;
284 }
285 }
286 }
287 }
288 else if (is_gimple_assign (stmt))
289 {
290 tree cst;
291 if (gimple_assign_single_p (stmt)
292 && DECL_P (gimple_assign_rhs1 (stmt))
293 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
294 {
295 val.lattice_val = CONSTANT;
296 val.value = cst;
297 }
298 else
299 {
300 /* Any other variable defined by an assignment is considered
301 UNDEFINED. */
302 val.lattice_val = UNDEFINED;
303 }
304 }
305 else if ((is_gimple_call (stmt)
306 && gimple_call_lhs (stmt) != NULL_TREE)
307 || gimple_code (stmt) == GIMPLE_PHI)
308 {
309 /* A variable defined by a call or a PHI node is considered
310 UNDEFINED. */
311 val.lattice_val = UNDEFINED;
312 }
313 else
314 {
315 /* Otherwise, VAR will never take on a constant value. */
316 val.lattice_val = VARYING;
317 val.mask = double_int_minus_one;
318 }
319
320 return val;
321 }
322
323
324 /* Get the constant value associated with variable VAR. */
325
326 static inline prop_value_t *
327 get_value (tree var)
328 {
329 prop_value_t *val;
330
331 if (const_val == NULL
332 || SSA_NAME_VERSION (var) >= n_const_val)
333 return NULL;
334
335 val = &const_val[SSA_NAME_VERSION (var)];
336 if (val->lattice_val == UNINITIALIZED)
337 *val = get_default_value (var);
338
339 canonicalize_value (val);
340
341 return val;
342 }
343
344 /* Return the constant tree value associated with VAR. */
345
346 static inline tree
347 get_constant_value (tree var)
348 {
349 prop_value_t *val;
350 if (TREE_CODE (var) != SSA_NAME)
351 {
352 if (is_gimple_min_invariant (var))
353 return var;
354 return NULL_TREE;
355 }
356 val = get_value (var);
357 if (val
358 && val->lattice_val == CONSTANT
359 && (TREE_CODE (val->value) != INTEGER_CST
360 || val->mask.is_zero ()))
361 return val->value;
362 return NULL_TREE;
363 }
364
365 /* Sets the value associated with VAR to VARYING. */
366
367 static inline void
368 set_value_varying (tree var)
369 {
370 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
371
372 val->lattice_val = VARYING;
373 val->value = NULL_TREE;
374 val->mask = double_int_minus_one;
375 }
376
377 /* For float types, modify the value of VAL to make ccp work correctly
378 for non-standard values (-0, NaN):
379
380 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
381 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
382 This is to fix the following problem (see PR 29921): Suppose we have
383
384 x = 0.0 * y
385
386 and we set value of y to NaN. This causes value of x to be set to NaN.
387 When we later determine that y is in fact VARYING, fold uses the fact
388 that HONOR_NANS is false, and we try to change the value of x to 0,
389 causing an ICE. With HONOR_NANS being false, the real appearance of
390 NaN would cause undefined behavior, though, so claiming that y (and x)
391 are UNDEFINED initially is correct.
392
393 For other constants, make sure to drop TREE_OVERFLOW. */
394
395 static void
396 canonicalize_value (prop_value_t *val)
397 {
398 enum machine_mode mode;
399 tree type;
400 REAL_VALUE_TYPE d;
401
402 if (val->lattice_val != CONSTANT)
403 return;
404
405 if (TREE_OVERFLOW_P (val->value))
406 val->value = drop_tree_overflow (val->value);
407
408 if (TREE_CODE (val->value) != REAL_CST)
409 return;
410
411 d = TREE_REAL_CST (val->value);
412 type = TREE_TYPE (val->value);
413 mode = TYPE_MODE (type);
414
415 if (!HONOR_SIGNED_ZEROS (mode)
416 && REAL_VALUE_MINUS_ZERO (d))
417 {
418 val->value = build_real (type, dconst0);
419 return;
420 }
421
422 if (!HONOR_NANS (mode)
423 && REAL_VALUE_ISNAN (d))
424 {
425 val->lattice_val = UNDEFINED;
426 val->value = NULL;
427 return;
428 }
429 }
430
431 /* Return whether the lattice transition is valid. */
432
433 static bool
434 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
435 {
436 /* Lattice transitions must always be monotonically increasing in
437 value. */
438 if (old_val.lattice_val < new_val.lattice_val)
439 return true;
440
441 if (old_val.lattice_val != new_val.lattice_val)
442 return false;
443
444 if (!old_val.value && !new_val.value)
445 return true;
446
447 /* Now both lattice values are CONSTANT. */
448
449 /* Allow transitioning from PHI <&x, not executable> == &x
450 to PHI <&x, &y> == common alignment. */
451 if (TREE_CODE (old_val.value) != INTEGER_CST
452 && TREE_CODE (new_val.value) == INTEGER_CST)
453 return true;
454
455 /* Bit-lattices have to agree in the still valid bits. */
456 if (TREE_CODE (old_val.value) == INTEGER_CST
457 && TREE_CODE (new_val.value) == INTEGER_CST)
458 return tree_to_double_int (old_val.value).and_not (new_val.mask)
459 == tree_to_double_int (new_val.value).and_not (new_val.mask);
460
461 /* Otherwise constant values have to agree. */
462 return operand_equal_p (old_val.value, new_val.value, 0);
463 }
464
465 /* Set the value for variable VAR to NEW_VAL. Return true if the new
466 value is different from VAR's previous value. */
467
468 static bool
469 set_lattice_value (tree var, prop_value_t new_val)
470 {
471 /* We can deal with old UNINITIALIZED values just fine here. */
472 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
473
474 canonicalize_value (&new_val);
475
476 /* We have to be careful to not go up the bitwise lattice
477 represented by the mask.
478 ??? This doesn't seem to be the best place to enforce this. */
479 if (new_val.lattice_val == CONSTANT
480 && old_val->lattice_val == CONSTANT
481 && TREE_CODE (new_val.value) == INTEGER_CST
482 && TREE_CODE (old_val->value) == INTEGER_CST)
483 {
484 double_int diff;
485 diff = tree_to_double_int (new_val.value)
486 ^ tree_to_double_int (old_val->value);
487 new_val.mask = new_val.mask | old_val->mask | diff;
488 }
489
490 gcc_assert (valid_lattice_transition (*old_val, new_val));
491
492 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
493 caller that this was a non-transition. */
494 if (old_val->lattice_val != new_val.lattice_val
495 || (new_val.lattice_val == CONSTANT
496 && TREE_CODE (new_val.value) == INTEGER_CST
497 && (TREE_CODE (old_val->value) != INTEGER_CST
498 || new_val.mask != old_val->mask)))
499 {
500 /* ??? We would like to delay creation of INTEGER_CSTs from
501 partially constants here. */
502
503 if (dump_file && (dump_flags & TDF_DETAILS))
504 {
505 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
506 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
507 }
508
509 *old_val = new_val;
510
511 gcc_assert (new_val.lattice_val != UNINITIALIZED);
512 return true;
513 }
514
515 return false;
516 }
517
518 static prop_value_t get_value_for_expr (tree, bool);
519 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
520 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
521 tree, double_int, double_int,
522 tree, double_int, double_int);
523
524 /* Return a double_int that can be used for bitwise simplifications
525 from VAL. */
526
527 static double_int
528 value_to_double_int (prop_value_t val)
529 {
530 if (val.value
531 && TREE_CODE (val.value) == INTEGER_CST)
532 return tree_to_double_int (val.value);
533 else
534 return double_int_zero;
535 }
536
537 /* Return the value for the address expression EXPR based on alignment
538 information. */
539
540 static prop_value_t
541 get_value_from_alignment (tree expr)
542 {
543 tree type = TREE_TYPE (expr);
544 prop_value_t val;
545 unsigned HOST_WIDE_INT bitpos;
546 unsigned int align;
547
548 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
549
550 get_pointer_alignment_1 (expr, &align, &bitpos);
551 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
552 ? double_int::mask (TYPE_PRECISION (type))
553 : double_int_minus_one)
554 .and_not (double_int::from_uhwi (align / BITS_PER_UNIT - 1));
555 val.lattice_val = val.mask.is_minus_one () ? VARYING : CONSTANT;
556 if (val.lattice_val == CONSTANT)
557 val.value
558 = double_int_to_tree (type,
559 double_int::from_uhwi (bitpos / BITS_PER_UNIT));
560 else
561 val.value = NULL_TREE;
562
563 return val;
564 }
565
566 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
567 return constant bits extracted from alignment information for
568 invariant addresses. */
569
570 static prop_value_t
571 get_value_for_expr (tree expr, bool for_bits_p)
572 {
573 prop_value_t val;
574
575 if (TREE_CODE (expr) == SSA_NAME)
576 {
577 val = *get_value (expr);
578 if (for_bits_p
579 && val.lattice_val == CONSTANT
580 && TREE_CODE (val.value) == ADDR_EXPR)
581 val = get_value_from_alignment (val.value);
582 }
583 else if (is_gimple_min_invariant (expr)
584 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
585 {
586 val.lattice_val = CONSTANT;
587 val.value = expr;
588 val.mask = double_int_zero;
589 canonicalize_value (&val);
590 }
591 else if (TREE_CODE (expr) == ADDR_EXPR)
592 val = get_value_from_alignment (expr);
593 else
594 {
595 val.lattice_val = VARYING;
596 val.mask = double_int_minus_one;
597 val.value = NULL_TREE;
598 }
599 return val;
600 }
601
602 /* Return the likely CCP lattice value for STMT.
603
604 If STMT has no operands, then return CONSTANT.
605
606 Else if undefinedness of operands of STMT cause its value to be
607 undefined, then return UNDEFINED.
608
609 Else if any operands of STMT are constants, then return CONSTANT.
610
611 Else return VARYING. */
612
613 static ccp_lattice_t
614 likely_value (gimple stmt)
615 {
616 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
617 tree use;
618 ssa_op_iter iter;
619 unsigned i;
620
621 enum gimple_code code = gimple_code (stmt);
622
623 /* This function appears to be called only for assignments, calls,
624 conditionals, and switches, due to the logic in visit_stmt. */
625 gcc_assert (code == GIMPLE_ASSIGN
626 || code == GIMPLE_CALL
627 || code == GIMPLE_COND
628 || code == GIMPLE_SWITCH);
629
630 /* If the statement has volatile operands, it won't fold to a
631 constant value. */
632 if (gimple_has_volatile_ops (stmt))
633 return VARYING;
634
635 /* Arrive here for more complex cases. */
636 has_constant_operand = false;
637 has_undefined_operand = false;
638 all_undefined_operands = true;
639 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
640 {
641 prop_value_t *val = get_value (use);
642
643 if (val->lattice_val == UNDEFINED)
644 has_undefined_operand = true;
645 else
646 all_undefined_operands = false;
647
648 if (val->lattice_val == CONSTANT)
649 has_constant_operand = true;
650 }
651
652 /* There may be constants in regular rhs operands. For calls we
653 have to ignore lhs, fndecl and static chain, otherwise only
654 the lhs. */
655 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
656 i < gimple_num_ops (stmt); ++i)
657 {
658 tree op = gimple_op (stmt, i);
659 if (!op || TREE_CODE (op) == SSA_NAME)
660 continue;
661 if (is_gimple_min_invariant (op))
662 has_constant_operand = true;
663 }
664
665 if (has_constant_operand)
666 all_undefined_operands = false;
667
668 if (has_undefined_operand
669 && code == GIMPLE_CALL
670 && gimple_call_internal_p (stmt))
671 switch (gimple_call_internal_fn (stmt))
672 {
673 /* These 3 builtins use the first argument just as a magic
674 way how to find out a decl uid. */
675 case IFN_GOMP_SIMD_LANE:
676 case IFN_GOMP_SIMD_VF:
677 case IFN_GOMP_SIMD_LAST_LANE:
678 has_undefined_operand = false;
679 break;
680 default:
681 break;
682 }
683
684 /* If the operation combines operands like COMPLEX_EXPR make sure to
685 not mark the result UNDEFINED if only one part of the result is
686 undefined. */
687 if (has_undefined_operand && all_undefined_operands)
688 return UNDEFINED;
689 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
690 {
691 switch (gimple_assign_rhs_code (stmt))
692 {
693 /* Unary operators are handled with all_undefined_operands. */
694 case PLUS_EXPR:
695 case MINUS_EXPR:
696 case POINTER_PLUS_EXPR:
697 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
698 Not bitwise operators, one VARYING operand may specify the
699 result completely. Not logical operators for the same reason.
700 Not COMPLEX_EXPR as one VARYING operand makes the result partly
701 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
702 the undefined operand may be promoted. */
703 return UNDEFINED;
704
705 case ADDR_EXPR:
706 /* If any part of an address is UNDEFINED, like the index
707 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
708 return UNDEFINED;
709
710 default:
711 ;
712 }
713 }
714 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
715 fall back to CONSTANT. During iteration UNDEFINED may still drop
716 to CONSTANT. */
717 if (has_undefined_operand)
718 return CONSTANT;
719
720 /* We do not consider virtual operands here -- load from read-only
721 memory may have only VARYING virtual operands, but still be
722 constant. */
723 if (has_constant_operand
724 || gimple_references_memory_p (stmt))
725 return CONSTANT;
726
727 return VARYING;
728 }
729
730 /* Returns true if STMT cannot be constant. */
731
732 static bool
733 surely_varying_stmt_p (gimple stmt)
734 {
735 /* If the statement has operands that we cannot handle, it cannot be
736 constant. */
737 if (gimple_has_volatile_ops (stmt))
738 return true;
739
740 /* If it is a call and does not return a value or is not a
741 builtin and not an indirect call or a call to function with
742 assume_aligned/alloc_align attribute, it is varying. */
743 if (is_gimple_call (stmt))
744 {
745 tree fndecl, fntype = gimple_call_fntype (stmt);
746 if (!gimple_call_lhs (stmt)
747 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
748 && !DECL_BUILT_IN (fndecl)
749 && !lookup_attribute ("assume_aligned",
750 TYPE_ATTRIBUTES (fntype))
751 && !lookup_attribute ("alloc_align",
752 TYPE_ATTRIBUTES (fntype))))
753 return true;
754 }
755
756 /* Any other store operation is not interesting. */
757 else if (gimple_vdef (stmt))
758 return true;
759
760 /* Anything other than assignments and conditional jumps are not
761 interesting for CCP. */
762 if (gimple_code (stmt) != GIMPLE_ASSIGN
763 && gimple_code (stmt) != GIMPLE_COND
764 && gimple_code (stmt) != GIMPLE_SWITCH
765 && gimple_code (stmt) != GIMPLE_CALL)
766 return true;
767
768 return false;
769 }
770
771 /* Initialize local data structures for CCP. */
772
773 static void
774 ccp_initialize (void)
775 {
776 basic_block bb;
777
778 n_const_val = num_ssa_names;
779 const_val = XCNEWVEC (prop_value_t, n_const_val);
780
781 /* Initialize simulation flags for PHI nodes and statements. */
782 FOR_EACH_BB_FN (bb, cfun)
783 {
784 gimple_stmt_iterator i;
785
786 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
787 {
788 gimple stmt = gsi_stmt (i);
789 bool is_varying;
790
791 /* If the statement is a control insn, then we do not
792 want to avoid simulating the statement once. Failure
793 to do so means that those edges will never get added. */
794 if (stmt_ends_bb_p (stmt))
795 is_varying = false;
796 else
797 is_varying = surely_varying_stmt_p (stmt);
798
799 if (is_varying)
800 {
801 tree def;
802 ssa_op_iter iter;
803
804 /* If the statement will not produce a constant, mark
805 all its outputs VARYING. */
806 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
807 set_value_varying (def);
808 }
809 prop_set_simulate_again (stmt, !is_varying);
810 }
811 }
812
813 /* Now process PHI nodes. We never clear the simulate_again flag on
814 phi nodes, since we do not know which edges are executable yet,
815 except for phi nodes for virtual operands when we do not do store ccp. */
816 FOR_EACH_BB_FN (bb, cfun)
817 {
818 gimple_stmt_iterator i;
819
820 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
821 {
822 gimple phi = gsi_stmt (i);
823
824 if (virtual_operand_p (gimple_phi_result (phi)))
825 prop_set_simulate_again (phi, false);
826 else
827 prop_set_simulate_again (phi, true);
828 }
829 }
830 }
831
832 /* Debug count support. Reset the values of ssa names
833 VARYING when the total number ssa names analyzed is
834 beyond the debug count specified. */
835
836 static void
837 do_dbg_cnt (void)
838 {
839 unsigned i;
840 for (i = 0; i < num_ssa_names; i++)
841 {
842 if (!dbg_cnt (ccp))
843 {
844 const_val[i].lattice_val = VARYING;
845 const_val[i].mask = double_int_minus_one;
846 const_val[i].value = NULL_TREE;
847 }
848 }
849 }
850
851
852 /* Do final substitution of propagated values, cleanup the flowgraph and
853 free allocated storage.
854
855 Return TRUE when something was optimized. */
856
857 static bool
858 ccp_finalize (void)
859 {
860 bool something_changed;
861 unsigned i;
862
863 do_dbg_cnt ();
864
865 /* Derive alignment and misalignment information from partially
866 constant pointers in the lattice or nonzero bits from partially
867 constant integers. */
868 for (i = 1; i < num_ssa_names; ++i)
869 {
870 tree name = ssa_name (i);
871 prop_value_t *val;
872 unsigned int tem, align;
873
874 if (!name
875 || (!POINTER_TYPE_P (TREE_TYPE (name))
876 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
877 /* Don't record nonzero bits before IPA to avoid
878 using too much memory. */
879 || first_pass_instance)))
880 continue;
881
882 val = get_value (name);
883 if (val->lattice_val != CONSTANT
884 || TREE_CODE (val->value) != INTEGER_CST)
885 continue;
886
887 if (POINTER_TYPE_P (TREE_TYPE (name)))
888 {
889 /* Trailing mask bits specify the alignment, trailing value
890 bits the misalignment. */
891 tem = val->mask.low;
892 align = (tem & -tem);
893 if (align > 1)
894 set_ptr_info_alignment (get_ptr_info (name), align,
895 (TREE_INT_CST_LOW (val->value)
896 & (align - 1)));
897 }
898 else
899 {
900 double_int nonzero_bits = val->mask;
901 nonzero_bits = nonzero_bits | tree_to_double_int (val->value);
902 nonzero_bits &= get_nonzero_bits (name);
903 set_nonzero_bits (name, nonzero_bits);
904 }
905 }
906
907 /* Perform substitutions based on the known constant values. */
908 something_changed = substitute_and_fold (get_constant_value,
909 ccp_fold_stmt, true);
910
911 free (const_val);
912 const_val = NULL;
913 return something_changed;;
914 }
915
916
917 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
918 in VAL1.
919
920 any M UNDEFINED = any
921 any M VARYING = VARYING
922 Ci M Cj = Ci if (i == j)
923 Ci M Cj = VARYING if (i != j)
924 */
925
926 static void
927 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
928 {
929 if (val1->lattice_val == UNDEFINED)
930 {
931 /* UNDEFINED M any = any */
932 *val1 = *val2;
933 }
934 else if (val2->lattice_val == UNDEFINED)
935 {
936 /* any M UNDEFINED = any
937 Nothing to do. VAL1 already contains the value we want. */
938 ;
939 }
940 else if (val1->lattice_val == VARYING
941 || val2->lattice_val == VARYING)
942 {
943 /* any M VARYING = VARYING. */
944 val1->lattice_val = VARYING;
945 val1->mask = double_int_minus_one;
946 val1->value = NULL_TREE;
947 }
948 else if (val1->lattice_val == CONSTANT
949 && val2->lattice_val == CONSTANT
950 && TREE_CODE (val1->value) == INTEGER_CST
951 && TREE_CODE (val2->value) == INTEGER_CST)
952 {
953 /* Ci M Cj = Ci if (i == j)
954 Ci M Cj = VARYING if (i != j)
955
956 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
957 drop to varying. */
958 val1->mask = val1->mask | val2->mask
959 | (tree_to_double_int (val1->value)
960 ^ tree_to_double_int (val2->value));
961 if (val1->mask.is_minus_one ())
962 {
963 val1->lattice_val = VARYING;
964 val1->value = NULL_TREE;
965 }
966 }
967 else if (val1->lattice_val == CONSTANT
968 && val2->lattice_val == CONSTANT
969 && simple_cst_equal (val1->value, val2->value) == 1)
970 {
971 /* Ci M Cj = Ci if (i == j)
972 Ci M Cj = VARYING if (i != j)
973
974 VAL1 already contains the value we want for equivalent values. */
975 }
976 else if (val1->lattice_val == CONSTANT
977 && val2->lattice_val == CONSTANT
978 && (TREE_CODE (val1->value) == ADDR_EXPR
979 || TREE_CODE (val2->value) == ADDR_EXPR))
980 {
981 /* When not equal addresses are involved try meeting for
982 alignment. */
983 prop_value_t tem = *val2;
984 if (TREE_CODE (val1->value) == ADDR_EXPR)
985 *val1 = get_value_for_expr (val1->value, true);
986 if (TREE_CODE (val2->value) == ADDR_EXPR)
987 tem = get_value_for_expr (val2->value, true);
988 ccp_lattice_meet (val1, &tem);
989 }
990 else
991 {
992 /* Any other combination is VARYING. */
993 val1->lattice_val = VARYING;
994 val1->mask = double_int_minus_one;
995 val1->value = NULL_TREE;
996 }
997 }
998
999
1000 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1001 lattice values to determine PHI_NODE's lattice value. The value of a
1002 PHI node is determined calling ccp_lattice_meet with all the arguments
1003 of the PHI node that are incoming via executable edges. */
1004
1005 static enum ssa_prop_result
1006 ccp_visit_phi_node (gimple phi)
1007 {
1008 unsigned i;
1009 prop_value_t *old_val, new_val;
1010
1011 if (dump_file && (dump_flags & TDF_DETAILS))
1012 {
1013 fprintf (dump_file, "\nVisiting PHI node: ");
1014 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1015 }
1016
1017 old_val = get_value (gimple_phi_result (phi));
1018 switch (old_val->lattice_val)
1019 {
1020 case VARYING:
1021 return SSA_PROP_VARYING;
1022
1023 case CONSTANT:
1024 new_val = *old_val;
1025 break;
1026
1027 case UNDEFINED:
1028 new_val.lattice_val = UNDEFINED;
1029 new_val.value = NULL_TREE;
1030 break;
1031
1032 default:
1033 gcc_unreachable ();
1034 }
1035
1036 for (i = 0; i < gimple_phi_num_args (phi); i++)
1037 {
1038 /* Compute the meet operator over all the PHI arguments flowing
1039 through executable edges. */
1040 edge e = gimple_phi_arg_edge (phi, i);
1041
1042 if (dump_file && (dump_flags & TDF_DETAILS))
1043 {
1044 fprintf (dump_file,
1045 "\n Argument #%d (%d -> %d %sexecutable)\n",
1046 i, e->src->index, e->dest->index,
1047 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1048 }
1049
1050 /* If the incoming edge is executable, Compute the meet operator for
1051 the existing value of the PHI node and the current PHI argument. */
1052 if (e->flags & EDGE_EXECUTABLE)
1053 {
1054 tree arg = gimple_phi_arg (phi, i)->def;
1055 prop_value_t arg_val = get_value_for_expr (arg, false);
1056
1057 ccp_lattice_meet (&new_val, &arg_val);
1058
1059 if (dump_file && (dump_flags & TDF_DETAILS))
1060 {
1061 fprintf (dump_file, "\t");
1062 print_generic_expr (dump_file, arg, dump_flags);
1063 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1064 fprintf (dump_file, "\n");
1065 }
1066
1067 if (new_val.lattice_val == VARYING)
1068 break;
1069 }
1070 }
1071
1072 if (dump_file && (dump_flags & TDF_DETAILS))
1073 {
1074 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1075 fprintf (dump_file, "\n\n");
1076 }
1077
1078 /* Make the transition to the new value. */
1079 if (set_lattice_value (gimple_phi_result (phi), new_val))
1080 {
1081 if (new_val.lattice_val == VARYING)
1082 return SSA_PROP_VARYING;
1083 else
1084 return SSA_PROP_INTERESTING;
1085 }
1086 else
1087 return SSA_PROP_NOT_INTERESTING;
1088 }
1089
1090 /* Return the constant value for OP or OP otherwise. */
1091
1092 static tree
1093 valueize_op (tree op)
1094 {
1095 if (TREE_CODE (op) == SSA_NAME)
1096 {
1097 tree tem = get_constant_value (op);
1098 if (tem)
1099 return tem;
1100 }
1101 return op;
1102 }
1103
1104 /* CCP specific front-end to the non-destructive constant folding
1105 routines.
1106
1107 Attempt to simplify the RHS of STMT knowing that one or more
1108 operands are constants.
1109
1110 If simplification is possible, return the simplified RHS,
1111 otherwise return the original RHS or NULL_TREE. */
1112
1113 static tree
1114 ccp_fold (gimple stmt)
1115 {
1116 location_t loc = gimple_location (stmt);
1117 switch (gimple_code (stmt))
1118 {
1119 case GIMPLE_COND:
1120 {
1121 /* Handle comparison operators that can appear in GIMPLE form. */
1122 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1123 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1124 enum tree_code code = gimple_cond_code (stmt);
1125 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1126 }
1127
1128 case GIMPLE_SWITCH:
1129 {
1130 /* Return the constant switch index. */
1131 return valueize_op (gimple_switch_index (stmt));
1132 }
1133
1134 case GIMPLE_ASSIGN:
1135 case GIMPLE_CALL:
1136 return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
1137
1138 default:
1139 gcc_unreachable ();
1140 }
1141 }
1142
1143 /* Apply the operation CODE in type TYPE to the value, mask pair
1144 RVAL and RMASK representing a value of type RTYPE and set
1145 the value, mask pair *VAL and *MASK to the result. */
1146
1147 static void
1148 bit_value_unop_1 (enum tree_code code, tree type,
1149 double_int *val, double_int *mask,
1150 tree rtype, double_int rval, double_int rmask)
1151 {
1152 switch (code)
1153 {
1154 case BIT_NOT_EXPR:
1155 *mask = rmask;
1156 *val = ~rval;
1157 break;
1158
1159 case NEGATE_EXPR:
1160 {
1161 double_int temv, temm;
1162 /* Return ~rval + 1. */
1163 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1164 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1165 type, temv, temm,
1166 type, double_int_one, double_int_zero);
1167 break;
1168 }
1169
1170 CASE_CONVERT:
1171 {
1172 bool uns;
1173
1174 /* First extend mask and value according to the original type. */
1175 uns = TYPE_UNSIGNED (rtype);
1176 *mask = rmask.ext (TYPE_PRECISION (rtype), uns);
1177 *val = rval.ext (TYPE_PRECISION (rtype), uns);
1178
1179 /* Then extend mask and value according to the target type. */
1180 uns = TYPE_UNSIGNED (type);
1181 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1182 *val = (*val).ext (TYPE_PRECISION (type), uns);
1183 break;
1184 }
1185
1186 default:
1187 *mask = double_int_minus_one;
1188 break;
1189 }
1190 }
1191
1192 /* Apply the operation CODE in type TYPE to the value, mask pairs
1193 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1194 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1195
1196 static void
1197 bit_value_binop_1 (enum tree_code code, tree type,
1198 double_int *val, double_int *mask,
1199 tree r1type, double_int r1val, double_int r1mask,
1200 tree r2type, double_int r2val, double_int r2mask)
1201 {
1202 bool uns = TYPE_UNSIGNED (type);
1203 /* Assume we'll get a constant result. Use an initial varying value,
1204 we fall back to varying in the end if necessary. */
1205 *mask = double_int_minus_one;
1206 switch (code)
1207 {
1208 case BIT_AND_EXPR:
1209 /* The mask is constant where there is a known not
1210 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1211 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1212 *val = r1val & r2val;
1213 break;
1214
1215 case BIT_IOR_EXPR:
1216 /* The mask is constant where there is a known
1217 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1218 *mask = (r1mask | r2mask)
1219 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1220 *val = r1val | r2val;
1221 break;
1222
1223 case BIT_XOR_EXPR:
1224 /* m1 | m2 */
1225 *mask = r1mask | r2mask;
1226 *val = r1val ^ r2val;
1227 break;
1228
1229 case LROTATE_EXPR:
1230 case RROTATE_EXPR:
1231 if (r2mask.is_zero ())
1232 {
1233 HOST_WIDE_INT shift = r2val.low;
1234 if (code == RROTATE_EXPR)
1235 shift = -shift;
1236 *mask = r1mask.lrotate (shift, TYPE_PRECISION (type));
1237 *val = r1val.lrotate (shift, TYPE_PRECISION (type));
1238 }
1239 break;
1240
1241 case LSHIFT_EXPR:
1242 case RSHIFT_EXPR:
1243 /* ??? We can handle partially known shift counts if we know
1244 its sign. That way we can tell that (x << (y | 8)) & 255
1245 is zero. */
1246 if (r2mask.is_zero ())
1247 {
1248 HOST_WIDE_INT shift = r2val.low;
1249 if (code == RSHIFT_EXPR)
1250 shift = -shift;
1251 /* We need to know if we are doing a left or a right shift
1252 to properly shift in zeros for left shift and unsigned
1253 right shifts and the sign bit for signed right shifts.
1254 For signed right shifts we shift in varying in case
1255 the sign bit was varying. */
1256 if (shift > 0)
1257 {
1258 *mask = r1mask.llshift (shift, TYPE_PRECISION (type));
1259 *val = r1val.llshift (shift, TYPE_PRECISION (type));
1260 }
1261 else if (shift < 0)
1262 {
1263 shift = -shift;
1264 *mask = r1mask.rshift (shift, TYPE_PRECISION (type), !uns);
1265 *val = r1val.rshift (shift, TYPE_PRECISION (type), !uns);
1266 }
1267 else
1268 {
1269 *mask = r1mask;
1270 *val = r1val;
1271 }
1272 }
1273 break;
1274
1275 case PLUS_EXPR:
1276 case POINTER_PLUS_EXPR:
1277 {
1278 double_int lo, hi;
1279 /* Do the addition with unknown bits set to zero, to give carry-ins of
1280 zero wherever possible. */
1281 lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1282 lo = lo.ext (TYPE_PRECISION (type), uns);
1283 /* Do the addition with unknown bits set to one, to give carry-ins of
1284 one wherever possible. */
1285 hi = (r1val | r1mask) + (r2val | r2mask);
1286 hi = hi.ext (TYPE_PRECISION (type), uns);
1287 /* Each bit in the result is known if (a) the corresponding bits in
1288 both inputs are known, and (b) the carry-in to that bit position
1289 is known. We can check condition (b) by seeing if we got the same
1290 result with minimised carries as with maximised carries. */
1291 *mask = r1mask | r2mask | (lo ^ hi);
1292 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1293 /* It shouldn't matter whether we choose lo or hi here. */
1294 *val = lo;
1295 break;
1296 }
1297
1298 case MINUS_EXPR:
1299 {
1300 double_int temv, temm;
1301 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1302 r2type, r2val, r2mask);
1303 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1304 r1type, r1val, r1mask,
1305 r2type, temv, temm);
1306 break;
1307 }
1308
1309 case MULT_EXPR:
1310 {
1311 /* Just track trailing zeros in both operands and transfer
1312 them to the other. */
1313 int r1tz = (r1val | r1mask).trailing_zeros ();
1314 int r2tz = (r2val | r2mask).trailing_zeros ();
1315 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1316 {
1317 *mask = double_int_zero;
1318 *val = double_int_zero;
1319 }
1320 else if (r1tz + r2tz > 0)
1321 {
1322 *mask = ~double_int::mask (r1tz + r2tz);
1323 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1324 *val = double_int_zero;
1325 }
1326 break;
1327 }
1328
1329 case EQ_EXPR:
1330 case NE_EXPR:
1331 {
1332 double_int m = r1mask | r2mask;
1333 if (r1val.and_not (m) != r2val.and_not (m))
1334 {
1335 *mask = double_int_zero;
1336 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1337 }
1338 else
1339 {
1340 /* We know the result of a comparison is always one or zero. */
1341 *mask = double_int_one;
1342 *val = double_int_zero;
1343 }
1344 break;
1345 }
1346
1347 case GE_EXPR:
1348 case GT_EXPR:
1349 {
1350 double_int tem = r1val;
1351 r1val = r2val;
1352 r2val = tem;
1353 tem = r1mask;
1354 r1mask = r2mask;
1355 r2mask = tem;
1356 code = swap_tree_comparison (code);
1357 }
1358 /* Fallthru. */
1359 case LT_EXPR:
1360 case LE_EXPR:
1361 {
1362 int minmax, maxmin;
1363 /* If the most significant bits are not known we know nothing. */
1364 if (r1mask.is_negative () || r2mask.is_negative ())
1365 break;
1366
1367 /* For comparisons the signedness is in the comparison operands. */
1368 uns = TYPE_UNSIGNED (r1type);
1369
1370 /* If we know the most significant bits we know the values
1371 value ranges by means of treating varying bits as zero
1372 or one. Do a cross comparison of the max/min pairs. */
1373 maxmin = (r1val | r1mask).cmp (r2val.and_not (r2mask), uns);
1374 minmax = r1val.and_not (r1mask).cmp (r2val | r2mask, uns);
1375 if (maxmin < 0) /* r1 is less than r2. */
1376 {
1377 *mask = double_int_zero;
1378 *val = double_int_one;
1379 }
1380 else if (minmax > 0) /* r1 is not less or equal to r2. */
1381 {
1382 *mask = double_int_zero;
1383 *val = double_int_zero;
1384 }
1385 else if (maxmin == minmax) /* r1 and r2 are equal. */
1386 {
1387 /* This probably should never happen as we'd have
1388 folded the thing during fully constant value folding. */
1389 *mask = double_int_zero;
1390 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1391 }
1392 else
1393 {
1394 /* We know the result of a comparison is always one or zero. */
1395 *mask = double_int_one;
1396 *val = double_int_zero;
1397 }
1398 break;
1399 }
1400
1401 default:;
1402 }
1403 }
1404
1405 /* Return the propagation value when applying the operation CODE to
1406 the value RHS yielding type TYPE. */
1407
1408 static prop_value_t
1409 bit_value_unop (enum tree_code code, tree type, tree rhs)
1410 {
1411 prop_value_t rval = get_value_for_expr (rhs, true);
1412 double_int value, mask;
1413 prop_value_t val;
1414
1415 if (rval.lattice_val == UNDEFINED)
1416 return rval;
1417
1418 gcc_assert ((rval.lattice_val == CONSTANT
1419 && TREE_CODE (rval.value) == INTEGER_CST)
1420 || rval.mask.is_minus_one ());
1421 bit_value_unop_1 (code, type, &value, &mask,
1422 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1423 if (!mask.is_minus_one ())
1424 {
1425 val.lattice_val = CONSTANT;
1426 val.mask = mask;
1427 /* ??? Delay building trees here. */
1428 val.value = double_int_to_tree (type, value);
1429 }
1430 else
1431 {
1432 val.lattice_val = VARYING;
1433 val.value = NULL_TREE;
1434 val.mask = double_int_minus_one;
1435 }
1436 return val;
1437 }
1438
1439 /* Return the propagation value when applying the operation CODE to
1440 the values RHS1 and RHS2 yielding type TYPE. */
1441
1442 static prop_value_t
1443 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1444 {
1445 prop_value_t r1val = get_value_for_expr (rhs1, true);
1446 prop_value_t r2val = get_value_for_expr (rhs2, true);
1447 double_int value, mask;
1448 prop_value_t val;
1449
1450 if (r1val.lattice_val == UNDEFINED
1451 || r2val.lattice_val == UNDEFINED)
1452 {
1453 val.lattice_val = VARYING;
1454 val.value = NULL_TREE;
1455 val.mask = double_int_minus_one;
1456 return val;
1457 }
1458
1459 gcc_assert ((r1val.lattice_val == CONSTANT
1460 && TREE_CODE (r1val.value) == INTEGER_CST)
1461 || r1val.mask.is_minus_one ());
1462 gcc_assert ((r2val.lattice_val == CONSTANT
1463 && TREE_CODE (r2val.value) == INTEGER_CST)
1464 || r2val.mask.is_minus_one ());
1465 bit_value_binop_1 (code, type, &value, &mask,
1466 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
1467 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
1468 if (!mask.is_minus_one ())
1469 {
1470 val.lattice_val = CONSTANT;
1471 val.mask = mask;
1472 /* ??? Delay building trees here. */
1473 val.value = double_int_to_tree (type, value);
1474 }
1475 else
1476 {
1477 val.lattice_val = VARYING;
1478 val.value = NULL_TREE;
1479 val.mask = double_int_minus_one;
1480 }
1481 return val;
1482 }
1483
1484 /* Return the propagation value for __builtin_assume_aligned
1485 and functions with assume_aligned or alloc_aligned attribute.
1486 For __builtin_assume_aligned, ATTR is NULL_TREE,
1487 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1488 is false, for alloc_aligned attribute ATTR is non-NULL and
1489 ALLOC_ALIGNED is true. */
1490
1491 static prop_value_t
1492 bit_value_assume_aligned (gimple stmt, tree attr, prop_value_t ptrval,
1493 bool alloc_aligned)
1494 {
1495 tree align, misalign = NULL_TREE, type;
1496 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1497 prop_value_t alignval;
1498 double_int value, mask;
1499 prop_value_t val;
1500
1501 if (attr == NULL_TREE)
1502 {
1503 tree ptr = gimple_call_arg (stmt, 0);
1504 type = TREE_TYPE (ptr);
1505 ptrval = get_value_for_expr (ptr, true);
1506 }
1507 else
1508 {
1509 tree lhs = gimple_call_lhs (stmt);
1510 type = TREE_TYPE (lhs);
1511 }
1512
1513 if (ptrval.lattice_val == UNDEFINED)
1514 return ptrval;
1515 gcc_assert ((ptrval.lattice_val == CONSTANT
1516 && TREE_CODE (ptrval.value) == INTEGER_CST)
1517 || ptrval.mask.is_minus_one ());
1518 if (attr == NULL_TREE)
1519 {
1520 /* Get aligni and misaligni from __builtin_assume_aligned. */
1521 align = gimple_call_arg (stmt, 1);
1522 if (!tree_fits_uhwi_p (align))
1523 return ptrval;
1524 aligni = tree_to_uhwi (align);
1525 if (gimple_call_num_args (stmt) > 2)
1526 {
1527 misalign = gimple_call_arg (stmt, 2);
1528 if (!tree_fits_uhwi_p (misalign))
1529 return ptrval;
1530 misaligni = tree_to_uhwi (misalign);
1531 }
1532 }
1533 else
1534 {
1535 /* Get aligni and misaligni from assume_aligned or
1536 alloc_align attributes. */
1537 if (TREE_VALUE (attr) == NULL_TREE)
1538 return ptrval;
1539 attr = TREE_VALUE (attr);
1540 align = TREE_VALUE (attr);
1541 if (!tree_fits_uhwi_p (align))
1542 return ptrval;
1543 aligni = tree_to_uhwi (align);
1544 if (alloc_aligned)
1545 {
1546 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1547 return ptrval;
1548 align = gimple_call_arg (stmt, aligni - 1);
1549 if (!tree_fits_uhwi_p (align))
1550 return ptrval;
1551 aligni = tree_to_uhwi (align);
1552 }
1553 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1554 {
1555 misalign = TREE_VALUE (TREE_CHAIN (attr));
1556 if (!tree_fits_uhwi_p (misalign))
1557 return ptrval;
1558 misaligni = tree_to_uhwi (misalign);
1559 }
1560 }
1561 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1562 return ptrval;
1563
1564 align = build_int_cst_type (type, -aligni);
1565 alignval = get_value_for_expr (align, true);
1566 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1567 type, value_to_double_int (ptrval), ptrval.mask,
1568 type, value_to_double_int (alignval), alignval.mask);
1569 if (!mask.is_minus_one ())
1570 {
1571 val.lattice_val = CONSTANT;
1572 val.mask = mask;
1573 gcc_assert ((mask.low & (aligni - 1)) == 0);
1574 gcc_assert ((value.low & (aligni - 1)) == 0);
1575 value.low |= misaligni;
1576 /* ??? Delay building trees here. */
1577 val.value = double_int_to_tree (type, value);
1578 }
1579 else
1580 {
1581 val.lattice_val = VARYING;
1582 val.value = NULL_TREE;
1583 val.mask = double_int_minus_one;
1584 }
1585 return val;
1586 }
1587
1588 /* Evaluate statement STMT.
1589 Valid only for assignments, calls, conditionals, and switches. */
1590
1591 static prop_value_t
1592 evaluate_stmt (gimple stmt)
1593 {
1594 prop_value_t val;
1595 tree simplified = NULL_TREE;
1596 ccp_lattice_t likelyvalue = likely_value (stmt);
1597 bool is_constant = false;
1598 unsigned int align;
1599
1600 if (dump_file && (dump_flags & TDF_DETAILS))
1601 {
1602 fprintf (dump_file, "which is likely ");
1603 switch (likelyvalue)
1604 {
1605 case CONSTANT:
1606 fprintf (dump_file, "CONSTANT");
1607 break;
1608 case UNDEFINED:
1609 fprintf (dump_file, "UNDEFINED");
1610 break;
1611 case VARYING:
1612 fprintf (dump_file, "VARYING");
1613 break;
1614 default:;
1615 }
1616 fprintf (dump_file, "\n");
1617 }
1618
1619 /* If the statement is likely to have a CONSTANT result, then try
1620 to fold the statement to determine the constant value. */
1621 /* FIXME. This is the only place that we call ccp_fold.
1622 Since likely_value never returns CONSTANT for calls, we will
1623 not attempt to fold them, including builtins that may profit. */
1624 if (likelyvalue == CONSTANT)
1625 {
1626 fold_defer_overflow_warnings ();
1627 simplified = ccp_fold (stmt);
1628 is_constant = simplified && is_gimple_min_invariant (simplified);
1629 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1630 if (is_constant)
1631 {
1632 /* The statement produced a constant value. */
1633 val.lattice_val = CONSTANT;
1634 val.value = simplified;
1635 val.mask = double_int_zero;
1636 }
1637 }
1638 /* If the statement is likely to have a VARYING result, then do not
1639 bother folding the statement. */
1640 else if (likelyvalue == VARYING)
1641 {
1642 enum gimple_code code = gimple_code (stmt);
1643 if (code == GIMPLE_ASSIGN)
1644 {
1645 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1646
1647 /* Other cases cannot satisfy is_gimple_min_invariant
1648 without folding. */
1649 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1650 simplified = gimple_assign_rhs1 (stmt);
1651 }
1652 else if (code == GIMPLE_SWITCH)
1653 simplified = gimple_switch_index (stmt);
1654 else
1655 /* These cannot satisfy is_gimple_min_invariant without folding. */
1656 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1657 is_constant = simplified && is_gimple_min_invariant (simplified);
1658 if (is_constant)
1659 {
1660 /* The statement produced a constant value. */
1661 val.lattice_val = CONSTANT;
1662 val.value = simplified;
1663 val.mask = double_int_zero;
1664 }
1665 }
1666
1667 /* Resort to simplification for bitwise tracking. */
1668 if (flag_tree_bit_ccp
1669 && (likelyvalue == CONSTANT || is_gimple_call (stmt))
1670 && !is_constant)
1671 {
1672 enum gimple_code code = gimple_code (stmt);
1673 val.lattice_val = VARYING;
1674 val.value = NULL_TREE;
1675 val.mask = double_int_minus_one;
1676 if (code == GIMPLE_ASSIGN)
1677 {
1678 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1679 tree rhs1 = gimple_assign_rhs1 (stmt);
1680 switch (get_gimple_rhs_class (subcode))
1681 {
1682 case GIMPLE_SINGLE_RHS:
1683 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1684 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1685 val = get_value_for_expr (rhs1, true);
1686 break;
1687
1688 case GIMPLE_UNARY_RHS:
1689 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1690 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1691 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
1692 || POINTER_TYPE_P (gimple_expr_type (stmt))))
1693 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
1694 break;
1695
1696 case GIMPLE_BINARY_RHS:
1697 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1698 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1699 {
1700 tree lhs = gimple_assign_lhs (stmt);
1701 tree rhs2 = gimple_assign_rhs2 (stmt);
1702 val = bit_value_binop (subcode,
1703 TREE_TYPE (lhs), rhs1, rhs2);
1704 }
1705 break;
1706
1707 default:;
1708 }
1709 }
1710 else if (code == GIMPLE_COND)
1711 {
1712 enum tree_code code = gimple_cond_code (stmt);
1713 tree rhs1 = gimple_cond_lhs (stmt);
1714 tree rhs2 = gimple_cond_rhs (stmt);
1715 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1716 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1717 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1718 }
1719 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1720 {
1721 tree fndecl = gimple_call_fndecl (stmt);
1722 switch (DECL_FUNCTION_CODE (fndecl))
1723 {
1724 case BUILT_IN_MALLOC:
1725 case BUILT_IN_REALLOC:
1726 case BUILT_IN_CALLOC:
1727 case BUILT_IN_STRDUP:
1728 case BUILT_IN_STRNDUP:
1729 val.lattice_val = CONSTANT;
1730 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1731 val.mask = double_int::from_shwi
1732 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
1733 / BITS_PER_UNIT - 1));
1734 break;
1735
1736 case BUILT_IN_ALLOCA:
1737 case BUILT_IN_ALLOCA_WITH_ALIGN:
1738 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1739 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1740 : BIGGEST_ALIGNMENT);
1741 val.lattice_val = CONSTANT;
1742 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1743 val.mask = double_int::from_shwi (~(((HOST_WIDE_INT) align)
1744 / BITS_PER_UNIT - 1));
1745 break;
1746
1747 /* These builtins return their first argument, unmodified. */
1748 case BUILT_IN_MEMCPY:
1749 case BUILT_IN_MEMMOVE:
1750 case BUILT_IN_MEMSET:
1751 case BUILT_IN_STRCPY:
1752 case BUILT_IN_STRNCPY:
1753 case BUILT_IN_MEMCPY_CHK:
1754 case BUILT_IN_MEMMOVE_CHK:
1755 case BUILT_IN_MEMSET_CHK:
1756 case BUILT_IN_STRCPY_CHK:
1757 case BUILT_IN_STRNCPY_CHK:
1758 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1759 break;
1760
1761 case BUILT_IN_ASSUME_ALIGNED:
1762 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1763 break;
1764
1765 default:;
1766 }
1767 }
1768 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
1769 {
1770 tree fntype = gimple_call_fntype (stmt);
1771 if (fntype)
1772 {
1773 tree attrs = lookup_attribute ("assume_aligned",
1774 TYPE_ATTRIBUTES (fntype));
1775 if (attrs)
1776 val = bit_value_assume_aligned (stmt, attrs, val, false);
1777 attrs = lookup_attribute ("alloc_align",
1778 TYPE_ATTRIBUTES (fntype));
1779 if (attrs)
1780 val = bit_value_assume_aligned (stmt, attrs, val, true);
1781 }
1782 }
1783 is_constant = (val.lattice_val == CONSTANT);
1784 }
1785
1786 if (flag_tree_bit_ccp
1787 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
1788 || (!is_constant && likelyvalue != UNDEFINED))
1789 && gimple_get_lhs (stmt)
1790 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
1791 {
1792 tree lhs = gimple_get_lhs (stmt);
1793 double_int nonzero_bits = get_nonzero_bits (lhs);
1794 double_int mask = double_int::mask (TYPE_PRECISION (TREE_TYPE (lhs)));
1795 if (nonzero_bits != double_int_minus_one && nonzero_bits != mask)
1796 {
1797 if (!is_constant)
1798 {
1799 val.lattice_val = CONSTANT;
1800 val.value = build_zero_cst (TREE_TYPE (lhs));
1801 /* CCP wants the bits above precision set. */
1802 val.mask = nonzero_bits | ~mask;
1803 is_constant = true;
1804 }
1805 else
1806 {
1807 double_int valv = tree_to_double_int (val.value);
1808 if (!(valv & ~nonzero_bits & mask).is_zero ())
1809 val.value = double_int_to_tree (TREE_TYPE (lhs),
1810 valv & nonzero_bits);
1811 if (nonzero_bits.is_zero ())
1812 val.mask = double_int_zero;
1813 else
1814 val.mask = val.mask & (nonzero_bits | ~mask);
1815 }
1816 }
1817 }
1818
1819 if (!is_constant)
1820 {
1821 /* The statement produced a nonconstant value. If the statement
1822 had UNDEFINED operands, then the result of the statement
1823 should be UNDEFINED. Otherwise, the statement is VARYING. */
1824 if (likelyvalue == UNDEFINED)
1825 {
1826 val.lattice_val = likelyvalue;
1827 val.mask = double_int_zero;
1828 }
1829 else
1830 {
1831 val.lattice_val = VARYING;
1832 val.mask = double_int_minus_one;
1833 }
1834
1835 val.value = NULL_TREE;
1836 }
1837
1838 return val;
1839 }
1840
1841 typedef hash_table <pointer_hash <gimple_statement_base> > gimple_htab;
1842
1843 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1844 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1845
1846 static void
1847 insert_clobber_before_stack_restore (tree saved_val, tree var,
1848 gimple_htab *visited)
1849 {
1850 gimple stmt, clobber_stmt;
1851 tree clobber;
1852 imm_use_iterator iter;
1853 gimple_stmt_iterator i;
1854 gimple *slot;
1855
1856 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1857 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1858 {
1859 clobber = build_constructor (TREE_TYPE (var),
1860 NULL);
1861 TREE_THIS_VOLATILE (clobber) = 1;
1862 clobber_stmt = gimple_build_assign (var, clobber);
1863
1864 i = gsi_for_stmt (stmt);
1865 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1866 }
1867 else if (gimple_code (stmt) == GIMPLE_PHI)
1868 {
1869 if (!visited->is_created ())
1870 visited->create (10);
1871
1872 slot = visited->find_slot (stmt, INSERT);
1873 if (*slot != NULL)
1874 continue;
1875
1876 *slot = stmt;
1877 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
1878 visited);
1879 }
1880 else if (gimple_assign_ssa_name_copy_p (stmt))
1881 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
1882 visited);
1883 else
1884 gcc_assert (is_gimple_debug (stmt));
1885 }
1886
1887 /* Advance the iterator to the previous non-debug gimple statement in the same
1888 or dominating basic block. */
1889
1890 static inline void
1891 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
1892 {
1893 basic_block dom;
1894
1895 gsi_prev_nondebug (i);
1896 while (gsi_end_p (*i))
1897 {
1898 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
1899 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1900 return;
1901
1902 *i = gsi_last_bb (dom);
1903 }
1904 }
1905
1906 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1907 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1908
1909 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1910 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1911 that case the function gives up without inserting the clobbers. */
1912
1913 static void
1914 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
1915 {
1916 gimple stmt;
1917 tree saved_val;
1918 gimple_htab visited;
1919
1920 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
1921 {
1922 stmt = gsi_stmt (i);
1923
1924 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
1925 continue;
1926
1927 saved_val = gimple_call_lhs (stmt);
1928 if (saved_val == NULL_TREE)
1929 continue;
1930
1931 insert_clobber_before_stack_restore (saved_val, var, &visited);
1932 break;
1933 }
1934
1935 if (visited.is_created ())
1936 visited.dispose ();
1937 }
1938
1939 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1940 fixed-size array and returns the address, if found, otherwise returns
1941 NULL_TREE. */
1942
1943 static tree
1944 fold_builtin_alloca_with_align (gimple stmt)
1945 {
1946 unsigned HOST_WIDE_INT size, threshold, n_elem;
1947 tree lhs, arg, block, var, elem_type, array_type;
1948
1949 /* Get lhs. */
1950 lhs = gimple_call_lhs (stmt);
1951 if (lhs == NULL_TREE)
1952 return NULL_TREE;
1953
1954 /* Detect constant argument. */
1955 arg = get_constant_value (gimple_call_arg (stmt, 0));
1956 if (arg == NULL_TREE
1957 || TREE_CODE (arg) != INTEGER_CST
1958 || !tree_fits_uhwi_p (arg))
1959 return NULL_TREE;
1960
1961 size = tree_to_uhwi (arg);
1962
1963 /* Heuristic: don't fold large allocas. */
1964 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
1965 /* In case the alloca is located at function entry, it has the same lifetime
1966 as a declared array, so we allow a larger size. */
1967 block = gimple_block (stmt);
1968 if (!(cfun->after_inlining
1969 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
1970 threshold /= 10;
1971 if (size > threshold)
1972 return NULL_TREE;
1973
1974 /* Declare array. */
1975 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
1976 n_elem = size * 8 / BITS_PER_UNIT;
1977 array_type = build_array_type_nelts (elem_type, n_elem);
1978 var = create_tmp_var (array_type, NULL);
1979 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
1980 {
1981 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
1982 if (pi != NULL && !pi->pt.anything)
1983 {
1984 bool singleton_p;
1985 unsigned uid;
1986 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
1987 gcc_assert (singleton_p);
1988 SET_DECL_PT_UID (var, uid);
1989 }
1990 }
1991
1992 /* Fold alloca to the address of the array. */
1993 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
1994 }
1995
1996 /* Fold the stmt at *GSI with CCP specific information that propagating
1997 and regular folding does not catch. */
1998
1999 static bool
2000 ccp_fold_stmt (gimple_stmt_iterator *gsi)
2001 {
2002 gimple stmt = gsi_stmt (*gsi);
2003
2004 switch (gimple_code (stmt))
2005 {
2006 case GIMPLE_COND:
2007 {
2008 prop_value_t val;
2009 /* Statement evaluation will handle type mismatches in constants
2010 more gracefully than the final propagation. This allows us to
2011 fold more conditionals here. */
2012 val = evaluate_stmt (stmt);
2013 if (val.lattice_val != CONSTANT
2014 || !val.mask.is_zero ())
2015 return false;
2016
2017 if (dump_file)
2018 {
2019 fprintf (dump_file, "Folding predicate ");
2020 print_gimple_expr (dump_file, stmt, 0, 0);
2021 fprintf (dump_file, " to ");
2022 print_generic_expr (dump_file, val.value, 0);
2023 fprintf (dump_file, "\n");
2024 }
2025
2026 if (integer_zerop (val.value))
2027 gimple_cond_make_false (stmt);
2028 else
2029 gimple_cond_make_true (stmt);
2030
2031 return true;
2032 }
2033
2034 case GIMPLE_CALL:
2035 {
2036 tree lhs = gimple_call_lhs (stmt);
2037 int flags = gimple_call_flags (stmt);
2038 tree val;
2039 tree argt;
2040 bool changed = false;
2041 unsigned i;
2042
2043 /* If the call was folded into a constant make sure it goes
2044 away even if we cannot propagate into all uses because of
2045 type issues. */
2046 if (lhs
2047 && TREE_CODE (lhs) == SSA_NAME
2048 && (val = get_constant_value (lhs))
2049 /* Don't optimize away calls that have side-effects. */
2050 && (flags & (ECF_CONST|ECF_PURE)) != 0
2051 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2052 {
2053 tree new_rhs = unshare_expr (val);
2054 bool res;
2055 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2056 TREE_TYPE (new_rhs)))
2057 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2058 res = update_call_from_tree (gsi, new_rhs);
2059 gcc_assert (res);
2060 return true;
2061 }
2062
2063 /* Internal calls provide no argument types, so the extra laxity
2064 for normal calls does not apply. */
2065 if (gimple_call_internal_p (stmt))
2066 return false;
2067
2068 /* The heuristic of fold_builtin_alloca_with_align differs before and
2069 after inlining, so we don't require the arg to be changed into a
2070 constant for folding, but just to be constant. */
2071 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
2072 {
2073 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2074 if (new_rhs)
2075 {
2076 bool res = update_call_from_tree (gsi, new_rhs);
2077 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2078 gcc_assert (res);
2079 insert_clobbers_for_var (*gsi, var);
2080 return true;
2081 }
2082 }
2083
2084 /* Propagate into the call arguments. Compared to replace_uses_in
2085 this can use the argument slot types for type verification
2086 instead of the current argument type. We also can safely
2087 drop qualifiers here as we are dealing with constants anyway. */
2088 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2089 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2090 ++i, argt = TREE_CHAIN (argt))
2091 {
2092 tree arg = gimple_call_arg (stmt, i);
2093 if (TREE_CODE (arg) == SSA_NAME
2094 && (val = get_constant_value (arg))
2095 && useless_type_conversion_p
2096 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2097 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2098 {
2099 gimple_call_set_arg (stmt, i, unshare_expr (val));
2100 changed = true;
2101 }
2102 }
2103
2104 return changed;
2105 }
2106
2107 case GIMPLE_ASSIGN:
2108 {
2109 tree lhs = gimple_assign_lhs (stmt);
2110 tree val;
2111
2112 /* If we have a load that turned out to be constant replace it
2113 as we cannot propagate into all uses in all cases. */
2114 if (gimple_assign_single_p (stmt)
2115 && TREE_CODE (lhs) == SSA_NAME
2116 && (val = get_constant_value (lhs)))
2117 {
2118 tree rhs = unshare_expr (val);
2119 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2120 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2121 gimple_assign_set_rhs_from_tree (gsi, rhs);
2122 return true;
2123 }
2124
2125 return false;
2126 }
2127
2128 default:
2129 return false;
2130 }
2131 }
2132
2133 /* Visit the assignment statement STMT. Set the value of its LHS to the
2134 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2135 creates virtual definitions, set the value of each new name to that
2136 of the RHS (if we can derive a constant out of the RHS).
2137 Value-returning call statements also perform an assignment, and
2138 are handled here. */
2139
2140 static enum ssa_prop_result
2141 visit_assignment (gimple stmt, tree *output_p)
2142 {
2143 prop_value_t val;
2144 enum ssa_prop_result retval;
2145
2146 tree lhs = gimple_get_lhs (stmt);
2147
2148 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
2149 || gimple_call_lhs (stmt) != NULL_TREE);
2150
2151 if (gimple_assign_single_p (stmt)
2152 && gimple_assign_rhs_code (stmt) == SSA_NAME)
2153 /* For a simple copy operation, we copy the lattice values. */
2154 val = *get_value (gimple_assign_rhs1 (stmt));
2155 else
2156 /* Evaluate the statement, which could be
2157 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2158 val = evaluate_stmt (stmt);
2159
2160 retval = SSA_PROP_NOT_INTERESTING;
2161
2162 /* Set the lattice value of the statement's output. */
2163 if (TREE_CODE (lhs) == SSA_NAME)
2164 {
2165 /* If STMT is an assignment to an SSA_NAME, we only have one
2166 value to set. */
2167 if (set_lattice_value (lhs, val))
2168 {
2169 *output_p = lhs;
2170 if (val.lattice_val == VARYING)
2171 retval = SSA_PROP_VARYING;
2172 else
2173 retval = SSA_PROP_INTERESTING;
2174 }
2175 }
2176
2177 return retval;
2178 }
2179
2180
2181 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2182 if it can determine which edge will be taken. Otherwise, return
2183 SSA_PROP_VARYING. */
2184
2185 static enum ssa_prop_result
2186 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2187 {
2188 prop_value_t val;
2189 basic_block block;
2190
2191 block = gimple_bb (stmt);
2192 val = evaluate_stmt (stmt);
2193 if (val.lattice_val != CONSTANT
2194 || !val.mask.is_zero ())
2195 return SSA_PROP_VARYING;
2196
2197 /* Find which edge out of the conditional block will be taken and add it
2198 to the worklist. If no single edge can be determined statically,
2199 return SSA_PROP_VARYING to feed all the outgoing edges to the
2200 propagation engine. */
2201 *taken_edge_p = find_taken_edge (block, val.value);
2202 if (*taken_edge_p)
2203 return SSA_PROP_INTERESTING;
2204 else
2205 return SSA_PROP_VARYING;
2206 }
2207
2208
2209 /* Evaluate statement STMT. If the statement produces an output value and
2210 its evaluation changes the lattice value of its output, return
2211 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2212 output value.
2213
2214 If STMT is a conditional branch and we can determine its truth
2215 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2216 value, return SSA_PROP_VARYING. */
2217
2218 static enum ssa_prop_result
2219 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2220 {
2221 tree def;
2222 ssa_op_iter iter;
2223
2224 if (dump_file && (dump_flags & TDF_DETAILS))
2225 {
2226 fprintf (dump_file, "\nVisiting statement:\n");
2227 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2228 }
2229
2230 switch (gimple_code (stmt))
2231 {
2232 case GIMPLE_ASSIGN:
2233 /* If the statement is an assignment that produces a single
2234 output value, evaluate its RHS to see if the lattice value of
2235 its output has changed. */
2236 return visit_assignment (stmt, output_p);
2237
2238 case GIMPLE_CALL:
2239 /* A value-returning call also performs an assignment. */
2240 if (gimple_call_lhs (stmt) != NULL_TREE)
2241 return visit_assignment (stmt, output_p);
2242 break;
2243
2244 case GIMPLE_COND:
2245 case GIMPLE_SWITCH:
2246 /* If STMT is a conditional branch, see if we can determine
2247 which branch will be taken. */
2248 /* FIXME. It appears that we should be able to optimize
2249 computed GOTOs here as well. */
2250 return visit_cond_stmt (stmt, taken_edge_p);
2251
2252 default:
2253 break;
2254 }
2255
2256 /* Any other kind of statement is not interesting for constant
2257 propagation and, therefore, not worth simulating. */
2258 if (dump_file && (dump_flags & TDF_DETAILS))
2259 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2260
2261 /* Definitions made by statements other than assignments to
2262 SSA_NAMEs represent unknown modifications to their outputs.
2263 Mark them VARYING. */
2264 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2265 {
2266 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2267 set_lattice_value (def, v);
2268 }
2269
2270 return SSA_PROP_VARYING;
2271 }
2272
2273
2274 /* Main entry point for SSA Conditional Constant Propagation. */
2275
2276 static unsigned int
2277 do_ssa_ccp (void)
2278 {
2279 unsigned int todo = 0;
2280 calculate_dominance_info (CDI_DOMINATORS);
2281 ccp_initialize ();
2282 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2283 if (ccp_finalize ())
2284 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2285 free_dominance_info (CDI_DOMINATORS);
2286 return todo;
2287 }
2288
2289
2290 static bool
2291 gate_ccp (void)
2292 {
2293 return flag_tree_ccp != 0;
2294 }
2295
2296
2297 namespace {
2298
2299 const pass_data pass_data_ccp =
2300 {
2301 GIMPLE_PASS, /* type */
2302 "ccp", /* name */
2303 OPTGROUP_NONE, /* optinfo_flags */
2304 true, /* has_gate */
2305 true, /* has_execute */
2306 TV_TREE_CCP, /* tv_id */
2307 ( PROP_cfg | PROP_ssa ), /* properties_required */
2308 0, /* properties_provided */
2309 0, /* properties_destroyed */
2310 0, /* todo_flags_start */
2311 ( TODO_verify_ssa | TODO_update_address_taken
2312 | TODO_verify_stmts ), /* todo_flags_finish */
2313 };
2314
2315 class pass_ccp : public gimple_opt_pass
2316 {
2317 public:
2318 pass_ccp (gcc::context *ctxt)
2319 : gimple_opt_pass (pass_data_ccp, ctxt)
2320 {}
2321
2322 /* opt_pass methods: */
2323 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2324 bool gate () { return gate_ccp (); }
2325 unsigned int execute () { return do_ssa_ccp (); }
2326
2327 }; // class pass_ccp
2328
2329 } // anon namespace
2330
2331 gimple_opt_pass *
2332 make_pass_ccp (gcc::context *ctxt)
2333 {
2334 return new pass_ccp (ctxt);
2335 }
2336
2337
2338
2339 /* Try to optimize out __builtin_stack_restore. Optimize it out
2340 if there is another __builtin_stack_restore in the same basic
2341 block and no calls or ASM_EXPRs are in between, or if this block's
2342 only outgoing edge is to EXIT_BLOCK and there are no calls or
2343 ASM_EXPRs after this __builtin_stack_restore. */
2344
2345 static tree
2346 optimize_stack_restore (gimple_stmt_iterator i)
2347 {
2348 tree callee;
2349 gimple stmt;
2350
2351 basic_block bb = gsi_bb (i);
2352 gimple call = gsi_stmt (i);
2353
2354 if (gimple_code (call) != GIMPLE_CALL
2355 || gimple_call_num_args (call) != 1
2356 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2357 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2358 return NULL_TREE;
2359
2360 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2361 {
2362 stmt = gsi_stmt (i);
2363 if (gimple_code (stmt) == GIMPLE_ASM)
2364 return NULL_TREE;
2365 if (gimple_code (stmt) != GIMPLE_CALL)
2366 continue;
2367
2368 callee = gimple_call_fndecl (stmt);
2369 if (!callee
2370 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2371 /* All regular builtins are ok, just obviously not alloca. */
2372 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2373 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2374 return NULL_TREE;
2375
2376 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2377 goto second_stack_restore;
2378 }
2379
2380 if (!gsi_end_p (i))
2381 return NULL_TREE;
2382
2383 /* Allow one successor of the exit block, or zero successors. */
2384 switch (EDGE_COUNT (bb->succs))
2385 {
2386 case 0:
2387 break;
2388 case 1:
2389 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2390 return NULL_TREE;
2391 break;
2392 default:
2393 return NULL_TREE;
2394 }
2395 second_stack_restore:
2396
2397 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2398 If there are multiple uses, then the last one should remove the call.
2399 In any case, whether the call to __builtin_stack_save can be removed
2400 or not is irrelevant to removing the call to __builtin_stack_restore. */
2401 if (has_single_use (gimple_call_arg (call, 0)))
2402 {
2403 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2404 if (is_gimple_call (stack_save))
2405 {
2406 callee = gimple_call_fndecl (stack_save);
2407 if (callee
2408 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2409 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2410 {
2411 gimple_stmt_iterator stack_save_gsi;
2412 tree rhs;
2413
2414 stack_save_gsi = gsi_for_stmt (stack_save);
2415 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2416 update_call_from_tree (&stack_save_gsi, rhs);
2417 }
2418 }
2419 }
2420
2421 /* No effect, so the statement will be deleted. */
2422 return integer_zero_node;
2423 }
2424
2425 /* If va_list type is a simple pointer and nothing special is needed,
2426 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2427 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2428 pointer assignment. */
2429
2430 static tree
2431 optimize_stdarg_builtin (gimple call)
2432 {
2433 tree callee, lhs, rhs, cfun_va_list;
2434 bool va_list_simple_ptr;
2435 location_t loc = gimple_location (call);
2436
2437 if (gimple_code (call) != GIMPLE_CALL)
2438 return NULL_TREE;
2439
2440 callee = gimple_call_fndecl (call);
2441
2442 cfun_va_list = targetm.fn_abi_va_list (callee);
2443 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2444 && (TREE_TYPE (cfun_va_list) == void_type_node
2445 || TREE_TYPE (cfun_va_list) == char_type_node);
2446
2447 switch (DECL_FUNCTION_CODE (callee))
2448 {
2449 case BUILT_IN_VA_START:
2450 if (!va_list_simple_ptr
2451 || targetm.expand_builtin_va_start != NULL
2452 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2453 return NULL_TREE;
2454
2455 if (gimple_call_num_args (call) != 2)
2456 return NULL_TREE;
2457
2458 lhs = gimple_call_arg (call, 0);
2459 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2460 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2461 != TYPE_MAIN_VARIANT (cfun_va_list))
2462 return NULL_TREE;
2463
2464 lhs = build_fold_indirect_ref_loc (loc, lhs);
2465 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2466 1, integer_zero_node);
2467 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2468 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2469
2470 case BUILT_IN_VA_COPY:
2471 if (!va_list_simple_ptr)
2472 return NULL_TREE;
2473
2474 if (gimple_call_num_args (call) != 2)
2475 return NULL_TREE;
2476
2477 lhs = gimple_call_arg (call, 0);
2478 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2479 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2480 != TYPE_MAIN_VARIANT (cfun_va_list))
2481 return NULL_TREE;
2482
2483 lhs = build_fold_indirect_ref_loc (loc, lhs);
2484 rhs = gimple_call_arg (call, 1);
2485 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2486 != TYPE_MAIN_VARIANT (cfun_va_list))
2487 return NULL_TREE;
2488
2489 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2490 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2491
2492 case BUILT_IN_VA_END:
2493 /* No effect, so the statement will be deleted. */
2494 return integer_zero_node;
2495
2496 default:
2497 gcc_unreachable ();
2498 }
2499 }
2500
2501 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2502 the incoming jumps. Return true if at least one jump was changed. */
2503
2504 static bool
2505 optimize_unreachable (gimple_stmt_iterator i)
2506 {
2507 basic_block bb = gsi_bb (i);
2508 gimple_stmt_iterator gsi;
2509 gimple stmt;
2510 edge_iterator ei;
2511 edge e;
2512 bool ret;
2513
2514 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2515 {
2516 stmt = gsi_stmt (gsi);
2517
2518 if (is_gimple_debug (stmt))
2519 continue;
2520
2521 if (gimple_code (stmt) == GIMPLE_LABEL)
2522 {
2523 /* Verify we do not need to preserve the label. */
2524 if (FORCED_LABEL (gimple_label_label (stmt)))
2525 return false;
2526
2527 continue;
2528 }
2529
2530 /* Only handle the case that __builtin_unreachable is the first statement
2531 in the block. We rely on DCE to remove stmts without side-effects
2532 before __builtin_unreachable. */
2533 if (gsi_stmt (gsi) != gsi_stmt (i))
2534 return false;
2535 }
2536
2537 ret = false;
2538 FOR_EACH_EDGE (e, ei, bb->preds)
2539 {
2540 gsi = gsi_last_bb (e->src);
2541 if (gsi_end_p (gsi))
2542 continue;
2543
2544 stmt = gsi_stmt (gsi);
2545 if (gimple_code (stmt) == GIMPLE_COND)
2546 {
2547 if (e->flags & EDGE_TRUE_VALUE)
2548 gimple_cond_make_false (stmt);
2549 else if (e->flags & EDGE_FALSE_VALUE)
2550 gimple_cond_make_true (stmt);
2551 else
2552 gcc_unreachable ();
2553 update_stmt (stmt);
2554 }
2555 else
2556 {
2557 /* Todo: handle other cases, f.i. switch statement. */
2558 continue;
2559 }
2560
2561 ret = true;
2562 }
2563
2564 return ret;
2565 }
2566
2567 /* A simple pass that attempts to fold all builtin functions. This pass
2568 is run after we've propagated as many constants as we can. */
2569
2570 static unsigned int
2571 execute_fold_all_builtins (void)
2572 {
2573 bool cfg_changed = false;
2574 basic_block bb;
2575 unsigned int todoflags = 0;
2576
2577 FOR_EACH_BB_FN (bb, cfun)
2578 {
2579 gimple_stmt_iterator i;
2580 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2581 {
2582 gimple stmt, old_stmt;
2583 tree callee, result;
2584 enum built_in_function fcode;
2585
2586 stmt = gsi_stmt (i);
2587
2588 if (gimple_code (stmt) != GIMPLE_CALL)
2589 {
2590 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2591 after the last GIMPLE DSE they aren't needed and might
2592 unnecessarily keep the SSA_NAMEs live. */
2593 if (gimple_clobber_p (stmt))
2594 {
2595 tree lhs = gimple_assign_lhs (stmt);
2596 if (TREE_CODE (lhs) == MEM_REF
2597 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
2598 {
2599 unlink_stmt_vdef (stmt);
2600 gsi_remove (&i, true);
2601 release_defs (stmt);
2602 continue;
2603 }
2604 }
2605 gsi_next (&i);
2606 continue;
2607 }
2608 callee = gimple_call_fndecl (stmt);
2609 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2610 {
2611 gsi_next (&i);
2612 continue;
2613 }
2614 fcode = DECL_FUNCTION_CODE (callee);
2615
2616 result = gimple_fold_builtin (stmt);
2617
2618 if (result)
2619 gimple_remove_stmt_histograms (cfun, stmt);
2620
2621 if (!result)
2622 switch (DECL_FUNCTION_CODE (callee))
2623 {
2624 case BUILT_IN_CONSTANT_P:
2625 /* Resolve __builtin_constant_p. If it hasn't been
2626 folded to integer_one_node by now, it's fairly
2627 certain that the value simply isn't constant. */
2628 result = integer_zero_node;
2629 break;
2630
2631 case BUILT_IN_ASSUME_ALIGNED:
2632 /* Remove __builtin_assume_aligned. */
2633 result = gimple_call_arg (stmt, 0);
2634 break;
2635
2636 case BUILT_IN_STACK_RESTORE:
2637 result = optimize_stack_restore (i);
2638 if (result)
2639 break;
2640 gsi_next (&i);
2641 continue;
2642
2643 case BUILT_IN_UNREACHABLE:
2644 if (optimize_unreachable (i))
2645 cfg_changed = true;
2646 break;
2647
2648 case BUILT_IN_VA_START:
2649 case BUILT_IN_VA_END:
2650 case BUILT_IN_VA_COPY:
2651 /* These shouldn't be folded before pass_stdarg. */
2652 result = optimize_stdarg_builtin (stmt);
2653 if (result)
2654 break;
2655 /* FALLTHRU */
2656
2657 default:
2658 gsi_next (&i);
2659 continue;
2660 }
2661
2662 if (result == NULL_TREE)
2663 break;
2664
2665 if (dump_file && (dump_flags & TDF_DETAILS))
2666 {
2667 fprintf (dump_file, "Simplified\n ");
2668 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2669 }
2670
2671 old_stmt = stmt;
2672 if (!update_call_from_tree (&i, result))
2673 {
2674 gimplify_and_update_call_from_tree (&i, result);
2675 todoflags |= TODO_update_address_taken;
2676 }
2677
2678 stmt = gsi_stmt (i);
2679 update_stmt (stmt);
2680
2681 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2682 && gimple_purge_dead_eh_edges (bb))
2683 cfg_changed = true;
2684
2685 if (dump_file && (dump_flags & TDF_DETAILS))
2686 {
2687 fprintf (dump_file, "to\n ");
2688 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2689 fprintf (dump_file, "\n");
2690 }
2691
2692 /* Retry the same statement if it changed into another
2693 builtin, there might be new opportunities now. */
2694 if (gimple_code (stmt) != GIMPLE_CALL)
2695 {
2696 gsi_next (&i);
2697 continue;
2698 }
2699 callee = gimple_call_fndecl (stmt);
2700 if (!callee
2701 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2702 || DECL_FUNCTION_CODE (callee) == fcode)
2703 gsi_next (&i);
2704 }
2705 }
2706
2707 /* Delete unreachable blocks. */
2708 if (cfg_changed)
2709 todoflags |= TODO_cleanup_cfg;
2710
2711 return todoflags;
2712 }
2713
2714
2715 namespace {
2716
2717 const pass_data pass_data_fold_builtins =
2718 {
2719 GIMPLE_PASS, /* type */
2720 "fab", /* name */
2721 OPTGROUP_NONE, /* optinfo_flags */
2722 false, /* has_gate */
2723 true, /* has_execute */
2724 TV_NONE, /* tv_id */
2725 ( PROP_cfg | PROP_ssa ), /* properties_required */
2726 0, /* properties_provided */
2727 0, /* properties_destroyed */
2728 0, /* todo_flags_start */
2729 ( TODO_verify_ssa | TODO_update_ssa ), /* todo_flags_finish */
2730 };
2731
2732 class pass_fold_builtins : public gimple_opt_pass
2733 {
2734 public:
2735 pass_fold_builtins (gcc::context *ctxt)
2736 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
2737 {}
2738
2739 /* opt_pass methods: */
2740 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
2741 unsigned int execute () { return execute_fold_all_builtins (); }
2742
2743 }; // class pass_fold_builtins
2744
2745 } // anon namespace
2746
2747 gimple_opt_pass *
2748 make_pass_fold_builtins (gcc::context *ctxt)
2749 {
2750 return new pass_fold_builtins (ctxt);
2751 }
This page took 0.155732 seconds and 5 git commands to generate.