]> gcc.gnu.org Git - gcc.git/blob - gcc/tree-scalar-evolution.c
re PR tree-optimization/22236 (wrong code for casts and scev)
[gcc.git] / gcc / tree-scalar-evolution.c
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
51 - When the definition is a MODIFY_EXPR: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
129 Example 2: Illustration of the algorithm on nested loops.
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
157
158 Example 3: Higher degree polynomials.
159
160 | loop_1
161 | a = phi (2, b)
162 | c = phi (5, d)
163 | b = a + 1
164 | d = c + a
165 | endloop
166
167 a -> {2, +, 1}_1
168 b -> {3, +, 1}_1
169 c -> {5, +, a}_1
170 d -> {5 + a, +, a}_1
171
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
174
175 Example 4: Lucas, Fibonacci, or mixers in general.
176
177 | loop_1
178 | a = phi (1, b)
179 | c = phi (3, d)
180 | b = c
181 | d = c + a
182 | endloop
183
184 a -> (1, c)_1
185 c -> {3, +, a}_1
186
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
192
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
195
196 Example 5: Flip-flops, or exchangers.
197
198 | loop_1
199 | a = phi (1, b)
200 | c = phi (3, d)
201 | b = c
202 | d = a
203 | endloop
204
205 a -> (1, c)_1
206 c -> (3, a)_1
207
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
210
211 a -> |1, 3|_1
212 c -> |3, 1|_1
213
214 This transformation is not yet implemented.
215
216 Further readings:
217
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
225
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
229
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
232 */
233
234 #include "config.h"
235 #include "system.h"
236 #include "coretypes.h"
237 #include "tm.h"
238 #include "ggc.h"
239 #include "tree.h"
240 #include "real.h"
241
242 /* These RTL headers are needed for basic-block.h. */
243 #include "rtl.h"
244 #include "basic-block.h"
245 #include "diagnostic.h"
246 #include "tree-flow.h"
247 #include "tree-dump.h"
248 #include "timevar.h"
249 #include "cfgloop.h"
250 #include "tree-chrec.h"
251 #include "tree-scalar-evolution.h"
252 #include "tree-pass.h"
253 #include "flags.h"
254
255 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
256 static tree resolve_mixers (struct loop *, tree);
257
258 /* The cached information about a ssa name VAR, claiming that inside LOOP,
259 the value of VAR can be expressed as CHREC. */
260
261 struct scev_info_str
262 {
263 tree var;
264 tree chrec;
265 };
266
267 /* Counters for the scev database. */
268 static unsigned nb_set_scev = 0;
269 static unsigned nb_get_scev = 0;
270
271 /* The following trees are unique elements. Thus the comparison of
272 another element to these elements should be done on the pointer to
273 these trees, and not on their value. */
274
275 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
276 tree chrec_not_analyzed_yet;
277
278 /* Reserved to the cases where the analyzer has detected an
279 undecidable property at compile time. */
280 tree chrec_dont_know;
281
282 /* When the analyzer has detected that a property will never
283 happen, then it qualifies it with chrec_known. */
284 tree chrec_known;
285
286 static bitmap already_instantiated;
287
288 static htab_t scalar_evolution_info;
289
290 \f
291 /* Constructs a new SCEV_INFO_STR structure. */
292
293 static inline struct scev_info_str *
294 new_scev_info_str (tree var)
295 {
296 struct scev_info_str *res;
297
298 res = xmalloc (sizeof (struct scev_info_str));
299 res->var = var;
300 res->chrec = chrec_not_analyzed_yet;
301
302 return res;
303 }
304
305 /* Computes a hash function for database element ELT. */
306
307 static hashval_t
308 hash_scev_info (const void *elt)
309 {
310 return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
311 }
312
313 /* Compares database elements E1 and E2. */
314
315 static int
316 eq_scev_info (const void *e1, const void *e2)
317 {
318 const struct scev_info_str *elt1 = e1;
319 const struct scev_info_str *elt2 = e2;
320
321 return elt1->var == elt2->var;
322 }
323
324 /* Deletes database element E. */
325
326 static void
327 del_scev_info (void *e)
328 {
329 free (e);
330 }
331
332 /* Get the index corresponding to VAR in the current LOOP. If
333 it's the first time we ask for this VAR, then we return
334 chrec_not_analyzed_yet for this VAR and return its index. */
335
336 static tree *
337 find_var_scev_info (tree var)
338 {
339 struct scev_info_str *res;
340 struct scev_info_str tmp;
341 PTR *slot;
342
343 tmp.var = var;
344 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
345
346 if (!*slot)
347 *slot = new_scev_info_str (var);
348 res = *slot;
349
350 return &res->chrec;
351 }
352
353 /* Return true when CHREC contains symbolic names defined in
354 LOOP_NB. */
355
356 bool
357 chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
358 {
359 if (chrec == NULL_TREE)
360 return false;
361
362 if (TREE_INVARIANT (chrec))
363 return false;
364
365 if (TREE_CODE (chrec) == VAR_DECL
366 || TREE_CODE (chrec) == PARM_DECL
367 || TREE_CODE (chrec) == FUNCTION_DECL
368 || TREE_CODE (chrec) == LABEL_DECL
369 || TREE_CODE (chrec) == RESULT_DECL
370 || TREE_CODE (chrec) == FIELD_DECL)
371 return true;
372
373 if (TREE_CODE (chrec) == SSA_NAME)
374 {
375 tree def = SSA_NAME_DEF_STMT (chrec);
376 struct loop *def_loop = loop_containing_stmt (def);
377 struct loop *loop = current_loops->parray[loop_nb];
378
379 if (def_loop == NULL)
380 return false;
381
382 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
383 return true;
384
385 return false;
386 }
387
388 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
389 {
390 case 3:
391 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 2),
392 loop_nb))
393 return true;
394
395 case 2:
396 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 1),
397 loop_nb))
398 return true;
399
400 case 1:
401 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 0),
402 loop_nb))
403 return true;
404
405 default:
406 return false;
407 }
408 }
409
410 /* Return true when PHI is a loop-phi-node. */
411
412 static bool
413 loop_phi_node_p (tree phi)
414 {
415 /* The implementation of this function is based on the following
416 property: "all the loop-phi-nodes of a loop are contained in the
417 loop's header basic block". */
418
419 return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
420 }
421
422 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
423 In general, in the case of multivariate evolutions we want to get
424 the evolution in different loops. LOOP specifies the level for
425 which to get the evolution.
426
427 Example:
428
429 | for (j = 0; j < 100; j++)
430 | {
431 | for (k = 0; k < 100; k++)
432 | {
433 | i = k + j; - Here the value of i is a function of j, k.
434 | }
435 | ... = i - Here the value of i is a function of j.
436 | }
437 | ... = i - Here the value of i is a scalar.
438
439 Example:
440
441 | i_0 = ...
442 | loop_1 10 times
443 | i_1 = phi (i_0, i_2)
444 | i_2 = i_1 + 2
445 | endloop
446
447 This loop has the same effect as:
448 LOOP_1 has the same effect as:
449
450 | i_1 = i_0 + 20
451
452 The overall effect of the loop, "i_0 + 20" in the previous example,
453 is obtained by passing in the parameters: LOOP = 1,
454 EVOLUTION_FN = {i_0, +, 2}_1.
455 */
456
457 static tree
458 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
459 {
460 bool val = false;
461
462 if (evolution_fn == chrec_dont_know)
463 return chrec_dont_know;
464
465 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
466 {
467 if (CHREC_VARIABLE (evolution_fn) >= (unsigned) loop->num)
468 {
469 struct loop *inner_loop =
470 current_loops->parray[CHREC_VARIABLE (evolution_fn)];
471 tree nb_iter = number_of_iterations_in_loop (inner_loop);
472
473 if (nb_iter == chrec_dont_know)
474 return chrec_dont_know;
475 else
476 {
477 tree res;
478
479 /* Number of iterations is off by one (the ssa name we
480 analyze must be defined before the exit). */
481 nb_iter = chrec_fold_minus (chrec_type (nb_iter),
482 nb_iter,
483 build_int_cst_type (chrec_type (nb_iter), 1));
484
485 /* evolution_fn is the evolution function in LOOP. Get
486 its value in the nb_iter-th iteration. */
487 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
488
489 /* Continue the computation until ending on a parent of LOOP. */
490 return compute_overall_effect_of_inner_loop (loop, res);
491 }
492 }
493 else
494 return evolution_fn;
495 }
496
497 /* If the evolution function is an invariant, there is nothing to do. */
498 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
499 return evolution_fn;
500
501 else
502 return chrec_dont_know;
503 }
504
505 /* Determine whether the CHREC is always positive/negative. If the expression
506 cannot be statically analyzed, return false, otherwise set the answer into
507 VALUE. */
508
509 bool
510 chrec_is_positive (tree chrec, bool *value)
511 {
512 bool value0, value1;
513 bool value2;
514 tree end_value;
515 tree nb_iter;
516
517 switch (TREE_CODE (chrec))
518 {
519 case POLYNOMIAL_CHREC:
520 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
521 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
522 return false;
523
524 /* FIXME -- overflows. */
525 if (value0 == value1)
526 {
527 *value = value0;
528 return true;
529 }
530
531 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
532 and the proof consists in showing that the sign never
533 changes during the execution of the loop, from 0 to
534 loop->nb_iterations. */
535 if (!evolution_function_is_affine_p (chrec))
536 return false;
537
538 nb_iter = number_of_iterations_in_loop
539 (current_loops->parray[CHREC_VARIABLE (chrec)]);
540
541 if (chrec_contains_undetermined (nb_iter))
542 return false;
543
544 nb_iter = chrec_fold_minus
545 (chrec_type (nb_iter), nb_iter,
546 build_int_cst (chrec_type (nb_iter), 1));
547
548 #if 0
549 /* TODO -- If the test is after the exit, we may decrease the number of
550 iterations by one. */
551 if (after_exit)
552 nb_iter = chrec_fold_minus
553 (chrec_type (nb_iter), nb_iter,
554 build_int_cst (chrec_type (nb_iter), 1));
555 #endif
556
557 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
558
559 if (!chrec_is_positive (end_value, &value2))
560 return false;
561
562 *value = value0;
563 return value0 == value1;
564
565 case INTEGER_CST:
566 *value = (tree_int_cst_sgn (chrec) == 1);
567 return true;
568
569 default:
570 return false;
571 }
572 }
573
574 /* Associate CHREC to SCALAR. */
575
576 static void
577 set_scalar_evolution (tree scalar, tree chrec)
578 {
579 tree *scalar_info;
580
581 if (TREE_CODE (scalar) != SSA_NAME)
582 return;
583
584 scalar_info = find_var_scev_info (scalar);
585
586 if (dump_file)
587 {
588 if (dump_flags & TDF_DETAILS)
589 {
590 fprintf (dump_file, "(set_scalar_evolution \n");
591 fprintf (dump_file, " (scalar = ");
592 print_generic_expr (dump_file, scalar, 0);
593 fprintf (dump_file, ")\n (scalar_evolution = ");
594 print_generic_expr (dump_file, chrec, 0);
595 fprintf (dump_file, "))\n");
596 }
597 if (dump_flags & TDF_STATS)
598 nb_set_scev++;
599 }
600
601 *scalar_info = chrec;
602 }
603
604 /* Retrieve the chrec associated to SCALAR in the LOOP. */
605
606 static tree
607 get_scalar_evolution (tree scalar)
608 {
609 tree res;
610
611 if (dump_file)
612 {
613 if (dump_flags & TDF_DETAILS)
614 {
615 fprintf (dump_file, "(get_scalar_evolution \n");
616 fprintf (dump_file, " (scalar = ");
617 print_generic_expr (dump_file, scalar, 0);
618 fprintf (dump_file, ")\n");
619 }
620 if (dump_flags & TDF_STATS)
621 nb_get_scev++;
622 }
623
624 switch (TREE_CODE (scalar))
625 {
626 case SSA_NAME:
627 res = *find_var_scev_info (scalar);
628 break;
629
630 case REAL_CST:
631 case INTEGER_CST:
632 res = scalar;
633 break;
634
635 default:
636 res = chrec_not_analyzed_yet;
637 break;
638 }
639
640 if (dump_file && (dump_flags & TDF_DETAILS))
641 {
642 fprintf (dump_file, " (scalar_evolution = ");
643 print_generic_expr (dump_file, res, 0);
644 fprintf (dump_file, "))\n");
645 }
646
647 return res;
648 }
649
650 /* Helper function for add_to_evolution. Returns the evolution
651 function for an assignment of the form "a = b + c", where "a" and
652 "b" are on the strongly connected component. CHREC_BEFORE is the
653 information that we already have collected up to this point.
654 TO_ADD is the evolution of "c".
655
656 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
657 evolution the expression TO_ADD, otherwise construct an evolution
658 part for this loop. */
659
660 static tree
661 add_to_evolution_1 (unsigned loop_nb,
662 tree chrec_before,
663 tree to_add)
664 {
665 switch (TREE_CODE (chrec_before))
666 {
667 case POLYNOMIAL_CHREC:
668 if (CHREC_VARIABLE (chrec_before) <= loop_nb)
669 {
670 unsigned var;
671 tree left, right;
672 tree type = chrec_type (chrec_before);
673
674 /* When there is no evolution part in this loop, build it. */
675 if (CHREC_VARIABLE (chrec_before) < loop_nb)
676 {
677 var = loop_nb;
678 left = chrec_before;
679 right = build_int_cst (type, 0);
680 }
681 else
682 {
683 var = CHREC_VARIABLE (chrec_before);
684 left = CHREC_LEFT (chrec_before);
685 right = CHREC_RIGHT (chrec_before);
686 }
687
688 return build_polynomial_chrec
689 (var, left, chrec_fold_plus (type, right, to_add));
690 }
691 else
692 /* Search the evolution in LOOP_NB. */
693 return build_polynomial_chrec
694 (CHREC_VARIABLE (chrec_before),
695 add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before), to_add),
696 CHREC_RIGHT (chrec_before));
697
698 default:
699 /* These nodes do not depend on a loop. */
700 if (chrec_before == chrec_dont_know)
701 return chrec_dont_know;
702 return build_polynomial_chrec (loop_nb, chrec_before, to_add);
703 }
704 }
705
706 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
707 of LOOP_NB.
708
709 Description (provided for completeness, for those who read code in
710 a plane, and for my poor 62 bytes brain that would have forgotten
711 all this in the next two or three months):
712
713 The algorithm of translation of programs from the SSA representation
714 into the chrecs syntax is based on a pattern matching. After having
715 reconstructed the overall tree expression for a loop, there are only
716 two cases that can arise:
717
718 1. a = loop-phi (init, a + expr)
719 2. a = loop-phi (init, expr)
720
721 where EXPR is either a scalar constant with respect to the analyzed
722 loop (this is a degree 0 polynomial), or an expression containing
723 other loop-phi definitions (these are higher degree polynomials).
724
725 Examples:
726
727 1.
728 | init = ...
729 | loop_1
730 | a = phi (init, a + 5)
731 | endloop
732
733 2.
734 | inita = ...
735 | initb = ...
736 | loop_1
737 | a = phi (inita, 2 * b + 3)
738 | b = phi (initb, b + 1)
739 | endloop
740
741 For the first case, the semantics of the SSA representation is:
742
743 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
744
745 that is, there is a loop index "x" that determines the scalar value
746 of the variable during the loop execution. During the first
747 iteration, the value is that of the initial condition INIT, while
748 during the subsequent iterations, it is the sum of the initial
749 condition with the sum of all the values of EXPR from the initial
750 iteration to the before last considered iteration.
751
752 For the second case, the semantics of the SSA program is:
753
754 | a (x) = init, if x = 0;
755 | expr (x - 1), otherwise.
756
757 The second case corresponds to the PEELED_CHREC, whose syntax is
758 close to the syntax of a loop-phi-node:
759
760 | phi (init, expr) vs. (init, expr)_x
761
762 The proof of the translation algorithm for the first case is a
763 proof by structural induction based on the degree of EXPR.
764
765 Degree 0:
766 When EXPR is a constant with respect to the analyzed loop, or in
767 other words when EXPR is a polynomial of degree 0, the evolution of
768 the variable A in the loop is an affine function with an initial
769 condition INIT, and a step EXPR. In order to show this, we start
770 from the semantics of the SSA representation:
771
772 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
773
774 and since "expr (j)" is a constant with respect to "j",
775
776 f (x) = init + x * expr
777
778 Finally, based on the semantics of the pure sum chrecs, by
779 identification we get the corresponding chrecs syntax:
780
781 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
782 f (x) -> {init, +, expr}_x
783
784 Higher degree:
785 Suppose that EXPR is a polynomial of degree N with respect to the
786 analyzed loop_x for which we have already determined that it is
787 written under the chrecs syntax:
788
789 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
790
791 We start from the semantics of the SSA program:
792
793 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
794 |
795 | f (x) = init + \sum_{j = 0}^{x - 1}
796 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
797 |
798 | f (x) = init + \sum_{j = 0}^{x - 1}
799 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
800 |
801 | f (x) = init + \sum_{k = 0}^{n - 1}
802 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
803 |
804 | f (x) = init + \sum_{k = 0}^{n - 1}
805 | (b_k * \binom{x}{k + 1})
806 |
807 | f (x) = init + b_0 * \binom{x}{1} + ...
808 | + b_{n-1} * \binom{x}{n}
809 |
810 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
811 | + b_{n-1} * \binom{x}{n}
812 |
813
814 And finally from the definition of the chrecs syntax, we identify:
815 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
816
817 This shows the mechanism that stands behind the add_to_evolution
818 function. An important point is that the use of symbolic
819 parameters avoids the need of an analysis schedule.
820
821 Example:
822
823 | inita = ...
824 | initb = ...
825 | loop_1
826 | a = phi (inita, a + 2 + b)
827 | b = phi (initb, b + 1)
828 | endloop
829
830 When analyzing "a", the algorithm keeps "b" symbolically:
831
832 | a -> {inita, +, 2 + b}_1
833
834 Then, after instantiation, the analyzer ends on the evolution:
835
836 | a -> {inita, +, 2 + initb, +, 1}_1
837
838 */
839
840 static tree
841 add_to_evolution (unsigned loop_nb,
842 tree chrec_before,
843 enum tree_code code,
844 tree to_add)
845 {
846 tree type = chrec_type (to_add);
847 tree res = NULL_TREE;
848
849 if (to_add == NULL_TREE)
850 return chrec_before;
851
852 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
853 instantiated at this point. */
854 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
855 /* This should not happen. */
856 return chrec_dont_know;
857
858 if (dump_file && (dump_flags & TDF_DETAILS))
859 {
860 fprintf (dump_file, "(add_to_evolution \n");
861 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
862 fprintf (dump_file, " (chrec_before = ");
863 print_generic_expr (dump_file, chrec_before, 0);
864 fprintf (dump_file, ")\n (to_add = ");
865 print_generic_expr (dump_file, to_add, 0);
866 fprintf (dump_file, ")\n");
867 }
868
869 if (code == MINUS_EXPR)
870 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
871 ? build_real (type, dconstm1)
872 : build_int_cst_type (type, -1));
873
874 res = add_to_evolution_1 (loop_nb, chrec_before, to_add);
875
876 if (dump_file && (dump_flags & TDF_DETAILS))
877 {
878 fprintf (dump_file, " (res = ");
879 print_generic_expr (dump_file, res, 0);
880 fprintf (dump_file, "))\n");
881 }
882
883 return res;
884 }
885
886 /* Helper function. */
887
888 static inline tree
889 set_nb_iterations_in_loop (struct loop *loop,
890 tree res)
891 {
892 res = chrec_fold_plus (chrec_type (res), res,
893 build_int_cst_type (chrec_type (res), 1));
894
895 /* FIXME HWI: However we want to store one iteration less than the
896 count of the loop in order to be compatible with the other
897 nb_iter computations in loop-iv. This also allows the
898 representation of nb_iters that are equal to MAX_INT. */
899 if (TREE_CODE (res) == INTEGER_CST
900 && (TREE_INT_CST_LOW (res) == 0
901 || TREE_OVERFLOW (res)))
902 res = chrec_dont_know;
903
904 if (dump_file && (dump_flags & TDF_DETAILS))
905 {
906 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
907 print_generic_expr (dump_file, res, 0);
908 fprintf (dump_file, "))\n");
909 }
910
911 loop->nb_iterations = res;
912 return res;
913 }
914
915 \f
916
917 /* This section selects the loops that will be good candidates for the
918 scalar evolution analysis. For the moment, greedily select all the
919 loop nests we could analyze. */
920
921 /* Return true when it is possible to analyze the condition expression
922 EXPR. */
923
924 static bool
925 analyzable_condition (tree expr)
926 {
927 tree condition;
928
929 if (TREE_CODE (expr) != COND_EXPR)
930 return false;
931
932 condition = TREE_OPERAND (expr, 0);
933
934 switch (TREE_CODE (condition))
935 {
936 case SSA_NAME:
937 return true;
938
939 case LT_EXPR:
940 case LE_EXPR:
941 case GT_EXPR:
942 case GE_EXPR:
943 case EQ_EXPR:
944 case NE_EXPR:
945 return true;
946
947 default:
948 return false;
949 }
950
951 return false;
952 }
953
954 /* For a loop with a single exit edge, return the COND_EXPR that
955 guards the exit edge. If the expression is too difficult to
956 analyze, then give up. */
957
958 tree
959 get_loop_exit_condition (struct loop *loop)
960 {
961 tree res = NULL_TREE;
962 edge exit_edge = loop->single_exit;
963
964
965 if (dump_file && (dump_flags & TDF_DETAILS))
966 fprintf (dump_file, "(get_loop_exit_condition \n ");
967
968 if (exit_edge)
969 {
970 tree expr;
971
972 expr = last_stmt (exit_edge->src);
973 if (analyzable_condition (expr))
974 res = expr;
975 }
976
977 if (dump_file && (dump_flags & TDF_DETAILS))
978 {
979 print_generic_expr (dump_file, res, 0);
980 fprintf (dump_file, ")\n");
981 }
982
983 return res;
984 }
985
986 /* Recursively determine and enqueue the exit conditions for a loop. */
987
988 static void
989 get_exit_conditions_rec (struct loop *loop,
990 VEC(tree,heap) **exit_conditions)
991 {
992 if (!loop)
993 return;
994
995 /* Recurse on the inner loops, then on the next (sibling) loops. */
996 get_exit_conditions_rec (loop->inner, exit_conditions);
997 get_exit_conditions_rec (loop->next, exit_conditions);
998
999 if (loop->single_exit)
1000 {
1001 tree loop_condition = get_loop_exit_condition (loop);
1002
1003 if (loop_condition)
1004 VEC_safe_push (tree, heap, *exit_conditions, loop_condition);
1005 }
1006 }
1007
1008 /* Select the candidate loop nests for the analysis. This function
1009 initializes the EXIT_CONDITIONS array. */
1010
1011 static void
1012 select_loops_exit_conditions (struct loops *loops,
1013 VEC(tree,heap) **exit_conditions)
1014 {
1015 struct loop *function_body = loops->parray[0];
1016
1017 get_exit_conditions_rec (function_body->inner, exit_conditions);
1018 }
1019
1020 \f
1021 /* Depth first search algorithm. */
1022
1023 static bool follow_ssa_edge (struct loop *loop, tree, tree, tree *);
1024
1025 /* Follow the ssa edge into the right hand side RHS of an assignment.
1026 Return true if the strongly connected component has been found. */
1027
1028 static bool
1029 follow_ssa_edge_in_rhs (struct loop *loop,
1030 tree at_stmt,
1031 tree rhs,
1032 tree halting_phi,
1033 tree *evolution_of_loop)
1034 {
1035 bool res = false;
1036 tree rhs0, rhs1;
1037 tree type_rhs = TREE_TYPE (rhs);
1038
1039 /* The RHS is one of the following cases:
1040 - an SSA_NAME,
1041 - an INTEGER_CST,
1042 - a PLUS_EXPR,
1043 - a MINUS_EXPR,
1044 - an ASSERT_EXPR,
1045 - other cases are not yet handled. */
1046 switch (TREE_CODE (rhs))
1047 {
1048 case NOP_EXPR:
1049 /* This assignment is under the form "a_1 = (cast) rhs. */
1050 res = follow_ssa_edge_in_rhs (loop, at_stmt, TREE_OPERAND (rhs, 0),
1051 halting_phi, evolution_of_loop);
1052 *evolution_of_loop = chrec_convert (TREE_TYPE (rhs),
1053 *evolution_of_loop, at_stmt);
1054 break;
1055
1056 case INTEGER_CST:
1057 /* This assignment is under the form "a_1 = 7". */
1058 res = false;
1059 break;
1060
1061 case SSA_NAME:
1062 /* This assignment is under the form: "a_1 = b_2". */
1063 res = follow_ssa_edge
1064 (loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop);
1065 break;
1066
1067 case PLUS_EXPR:
1068 /* This case is under the form "rhs0 + rhs1". */
1069 rhs0 = TREE_OPERAND (rhs, 0);
1070 rhs1 = TREE_OPERAND (rhs, 1);
1071 STRIP_TYPE_NOPS (rhs0);
1072 STRIP_TYPE_NOPS (rhs1);
1073
1074 if (TREE_CODE (rhs0) == SSA_NAME)
1075 {
1076 if (TREE_CODE (rhs1) == SSA_NAME)
1077 {
1078 /* Match an assignment under the form:
1079 "a = b + c". */
1080 res = follow_ssa_edge
1081 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1082 evolution_of_loop);
1083
1084 if (res)
1085 *evolution_of_loop = add_to_evolution
1086 (loop->num,
1087 chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1088 PLUS_EXPR, rhs1);
1089
1090 else
1091 {
1092 res = follow_ssa_edge
1093 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1094 evolution_of_loop);
1095
1096 if (res)
1097 *evolution_of_loop = add_to_evolution
1098 (loop->num,
1099 chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1100 PLUS_EXPR, rhs0);
1101 }
1102 }
1103
1104 else
1105 {
1106 /* Match an assignment under the form:
1107 "a = b + ...". */
1108 res = follow_ssa_edge
1109 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1110 evolution_of_loop);
1111 if (res)
1112 *evolution_of_loop = add_to_evolution
1113 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1114 at_stmt),
1115 PLUS_EXPR, rhs1);
1116 }
1117 }
1118
1119 else if (TREE_CODE (rhs1) == SSA_NAME)
1120 {
1121 /* Match an assignment under the form:
1122 "a = ... + c". */
1123 res = follow_ssa_edge
1124 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1125 evolution_of_loop);
1126 if (res)
1127 *evolution_of_loop = add_to_evolution
1128 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1129 at_stmt),
1130 PLUS_EXPR, rhs0);
1131 }
1132
1133 else
1134 /* Otherwise, match an assignment under the form:
1135 "a = ... + ...". */
1136 /* And there is nothing to do. */
1137 res = false;
1138
1139 break;
1140
1141 case MINUS_EXPR:
1142 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1143 rhs0 = TREE_OPERAND (rhs, 0);
1144 rhs1 = TREE_OPERAND (rhs, 1);
1145 STRIP_TYPE_NOPS (rhs0);
1146 STRIP_TYPE_NOPS (rhs1);
1147
1148 if (TREE_CODE (rhs0) == SSA_NAME)
1149 {
1150 /* Match an assignment under the form:
1151 "a = b - ...". */
1152 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1153 evolution_of_loop);
1154 if (res)
1155 *evolution_of_loop = add_to_evolution
1156 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1157 at_stmt),
1158 MINUS_EXPR, rhs1);
1159 }
1160 else
1161 /* Otherwise, match an assignment under the form:
1162 "a = ... - ...". */
1163 /* And there is nothing to do. */
1164 res = false;
1165
1166 break;
1167
1168 case MULT_EXPR:
1169 /* This case is under the form "opnd0 = rhs0 * rhs1". */
1170 rhs0 = TREE_OPERAND (rhs, 0);
1171 rhs1 = TREE_OPERAND (rhs, 1);
1172 STRIP_TYPE_NOPS (rhs0);
1173 STRIP_TYPE_NOPS (rhs1);
1174
1175 if (TREE_CODE (rhs0) == SSA_NAME)
1176 {
1177 if (TREE_CODE (rhs1) == SSA_NAME)
1178 {
1179 /* Match an assignment under the form:
1180 "a = b * c". */
1181 res = follow_ssa_edge
1182 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1183 evolution_of_loop);
1184
1185 if (res)
1186 *evolution_of_loop = chrec_dont_know;
1187
1188 else
1189 {
1190 res = follow_ssa_edge
1191 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1192 evolution_of_loop);
1193
1194 if (res)
1195 *evolution_of_loop = chrec_dont_know;
1196 }
1197 }
1198
1199 else
1200 {
1201 /* Match an assignment under the form:
1202 "a = b * ...". */
1203 res = follow_ssa_edge
1204 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1205 evolution_of_loop);
1206 if (res)
1207 *evolution_of_loop = chrec_dont_know;
1208 }
1209 }
1210
1211 else if (TREE_CODE (rhs1) == SSA_NAME)
1212 {
1213 /* Match an assignment under the form:
1214 "a = ... * c". */
1215 res = follow_ssa_edge
1216 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1217 evolution_of_loop);
1218 if (res)
1219 *evolution_of_loop = chrec_dont_know;
1220 }
1221
1222 else
1223 /* Otherwise, match an assignment under the form:
1224 "a = ... * ...". */
1225 /* And there is nothing to do. */
1226 res = false;
1227
1228 break;
1229
1230 case ASSERT_EXPR:
1231 {
1232 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1233 It must be handled as a copy assignment of the form a_1 = a_2. */
1234 tree op0 = ASSERT_EXPR_VAR (rhs);
1235 if (TREE_CODE (op0) == SSA_NAME)
1236 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1237 halting_phi, evolution_of_loop);
1238 else
1239 res = false;
1240 break;
1241 }
1242
1243
1244 default:
1245 res = false;
1246 break;
1247 }
1248
1249 return res;
1250 }
1251
1252 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1253
1254 static bool
1255 backedge_phi_arg_p (tree phi, int i)
1256 {
1257 edge e = PHI_ARG_EDGE (phi, i);
1258
1259 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1260 about updating it anywhere, and this should work as well most of the
1261 time. */
1262 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1263 return true;
1264
1265 return false;
1266 }
1267
1268 /* Helper function for one branch of the condition-phi-node. Return
1269 true if the strongly connected component has been found following
1270 this path. */
1271
1272 static inline bool
1273 follow_ssa_edge_in_condition_phi_branch (int i,
1274 struct loop *loop,
1275 tree condition_phi,
1276 tree halting_phi,
1277 tree *evolution_of_branch,
1278 tree init_cond)
1279 {
1280 tree branch = PHI_ARG_DEF (condition_phi, i);
1281 *evolution_of_branch = chrec_dont_know;
1282
1283 /* Do not follow back edges (they must belong to an irreducible loop, which
1284 we really do not want to worry about). */
1285 if (backedge_phi_arg_p (condition_phi, i))
1286 return false;
1287
1288 if (TREE_CODE (branch) == SSA_NAME)
1289 {
1290 *evolution_of_branch = init_cond;
1291 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1292 evolution_of_branch);
1293 }
1294
1295 /* This case occurs when one of the condition branches sets
1296 the variable to a constant: i.e. a phi-node like
1297 "a_2 = PHI <a_7(5), 2(6)>;".
1298
1299 FIXME: This case have to be refined correctly:
1300 in some cases it is possible to say something better than
1301 chrec_dont_know, for example using a wrap-around notation. */
1302 return false;
1303 }
1304
1305 /* This function merges the branches of a condition-phi-node in a
1306 loop. */
1307
1308 static bool
1309 follow_ssa_edge_in_condition_phi (struct loop *loop,
1310 tree condition_phi,
1311 tree halting_phi,
1312 tree *evolution_of_loop)
1313 {
1314 int i;
1315 tree init = *evolution_of_loop;
1316 tree evolution_of_branch;
1317
1318 if (!follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1319 halting_phi,
1320 &evolution_of_branch,
1321 init))
1322 return false;
1323 *evolution_of_loop = evolution_of_branch;
1324
1325 for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1326 {
1327 /* Quickly give up when the evolution of one of the branches is
1328 not known. */
1329 if (*evolution_of_loop == chrec_dont_know)
1330 return true;
1331
1332 if (!follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1333 halting_phi,
1334 &evolution_of_branch,
1335 init))
1336 return false;
1337
1338 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1339 evolution_of_branch);
1340 }
1341
1342 return true;
1343 }
1344
1345 /* Follow an SSA edge in an inner loop. It computes the overall
1346 effect of the loop, and following the symbolic initial conditions,
1347 it follows the edges in the parent loop. The inner loop is
1348 considered as a single statement. */
1349
1350 static bool
1351 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1352 tree loop_phi_node,
1353 tree halting_phi,
1354 tree *evolution_of_loop)
1355 {
1356 struct loop *loop = loop_containing_stmt (loop_phi_node);
1357 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1358
1359 /* Sometimes, the inner loop is too difficult to analyze, and the
1360 result of the analysis is a symbolic parameter. */
1361 if (ev == PHI_RESULT (loop_phi_node))
1362 {
1363 bool res = false;
1364 int i;
1365
1366 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1367 {
1368 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1369 basic_block bb;
1370
1371 /* Follow the edges that exit the inner loop. */
1372 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1373 if (!flow_bb_inside_loop_p (loop, bb))
1374 res = res || follow_ssa_edge_in_rhs (outer_loop, loop_phi_node,
1375 arg, halting_phi,
1376 evolution_of_loop);
1377 }
1378
1379 /* If the path crosses this loop-phi, give up. */
1380 if (res == true)
1381 *evolution_of_loop = chrec_dont_know;
1382
1383 return res;
1384 }
1385
1386 /* Otherwise, compute the overall effect of the inner loop. */
1387 ev = compute_overall_effect_of_inner_loop (loop, ev);
1388 return follow_ssa_edge_in_rhs (outer_loop, loop_phi_node, ev, halting_phi,
1389 evolution_of_loop);
1390 }
1391
1392 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1393 path that is analyzed on the return walk. */
1394
1395 static bool
1396 follow_ssa_edge (struct loop *loop,
1397 tree def,
1398 tree halting_phi,
1399 tree *evolution_of_loop)
1400 {
1401 struct loop *def_loop;
1402
1403 if (TREE_CODE (def) == NOP_EXPR)
1404 return false;
1405
1406 def_loop = loop_containing_stmt (def);
1407
1408 switch (TREE_CODE (def))
1409 {
1410 case PHI_NODE:
1411 if (!loop_phi_node_p (def))
1412 /* DEF is a condition-phi-node. Follow the branches, and
1413 record their evolutions. Finally, merge the collected
1414 information and set the approximation to the main
1415 variable. */
1416 return follow_ssa_edge_in_condition_phi
1417 (loop, def, halting_phi, evolution_of_loop);
1418
1419 /* When the analyzed phi is the halting_phi, the
1420 depth-first search is over: we have found a path from
1421 the halting_phi to itself in the loop. */
1422 if (def == halting_phi)
1423 return true;
1424
1425 /* Otherwise, the evolution of the HALTING_PHI depends
1426 on the evolution of another loop-phi-node, i.e. the
1427 evolution function is a higher degree polynomial. */
1428 if (def_loop == loop)
1429 return false;
1430
1431 /* Inner loop. */
1432 if (flow_loop_nested_p (loop, def_loop))
1433 return follow_ssa_edge_inner_loop_phi
1434 (loop, def, halting_phi, evolution_of_loop);
1435
1436 /* Outer loop. */
1437 return false;
1438
1439 case MODIFY_EXPR:
1440 return follow_ssa_edge_in_rhs (loop, def,
1441 TREE_OPERAND (def, 1),
1442 halting_phi,
1443 evolution_of_loop);
1444
1445 default:
1446 /* At this level of abstraction, the program is just a set
1447 of MODIFY_EXPRs and PHI_NODEs. In principle there is no
1448 other node to be handled. */
1449 return false;
1450 }
1451 }
1452
1453 \f
1454
1455 /* Given a LOOP_PHI_NODE, this function determines the evolution
1456 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1457
1458 static tree
1459 analyze_evolution_in_loop (tree loop_phi_node,
1460 tree init_cond)
1461 {
1462 int i;
1463 tree evolution_function = chrec_not_analyzed_yet;
1464 struct loop *loop = loop_containing_stmt (loop_phi_node);
1465 basic_block bb;
1466
1467 if (dump_file && (dump_flags & TDF_DETAILS))
1468 {
1469 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1470 fprintf (dump_file, " (loop_phi_node = ");
1471 print_generic_expr (dump_file, loop_phi_node, 0);
1472 fprintf (dump_file, ")\n");
1473 }
1474
1475 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1476 {
1477 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1478 tree ssa_chain, ev_fn;
1479 bool res;
1480
1481 /* Select the edges that enter the loop body. */
1482 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1483 if (!flow_bb_inside_loop_p (loop, bb))
1484 continue;
1485
1486 if (TREE_CODE (arg) == SSA_NAME)
1487 {
1488 ssa_chain = SSA_NAME_DEF_STMT (arg);
1489
1490 /* Pass in the initial condition to the follow edge function. */
1491 ev_fn = init_cond;
1492 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn);
1493 }
1494 else
1495 res = false;
1496
1497 /* When it is impossible to go back on the same
1498 loop_phi_node by following the ssa edges, the
1499 evolution is represented by a peeled chrec, i.e. the
1500 first iteration, EV_FN has the value INIT_COND, then
1501 all the other iterations it has the value of ARG.
1502 For the moment, PEELED_CHREC nodes are not built. */
1503 if (!res)
1504 ev_fn = chrec_dont_know;
1505
1506 /* When there are multiple back edges of the loop (which in fact never
1507 happens currently, but nevertheless), merge their evolutions. */
1508 evolution_function = chrec_merge (evolution_function, ev_fn);
1509 }
1510
1511 if (dump_file && (dump_flags & TDF_DETAILS))
1512 {
1513 fprintf (dump_file, " (evolution_function = ");
1514 print_generic_expr (dump_file, evolution_function, 0);
1515 fprintf (dump_file, "))\n");
1516 }
1517
1518 return evolution_function;
1519 }
1520
1521 /* Given a loop-phi-node, return the initial conditions of the
1522 variable on entry of the loop. When the CCP has propagated
1523 constants into the loop-phi-node, the initial condition is
1524 instantiated, otherwise the initial condition is kept symbolic.
1525 This analyzer does not analyze the evolution outside the current
1526 loop, and leaves this task to the on-demand tree reconstructor. */
1527
1528 static tree
1529 analyze_initial_condition (tree loop_phi_node)
1530 {
1531 int i;
1532 tree init_cond = chrec_not_analyzed_yet;
1533 struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1534
1535 if (dump_file && (dump_flags & TDF_DETAILS))
1536 {
1537 fprintf (dump_file, "(analyze_initial_condition \n");
1538 fprintf (dump_file, " (loop_phi_node = \n");
1539 print_generic_expr (dump_file, loop_phi_node, 0);
1540 fprintf (dump_file, ")\n");
1541 }
1542
1543 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1544 {
1545 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1546 basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1547
1548 /* When the branch is oriented to the loop's body, it does
1549 not contribute to the initial condition. */
1550 if (flow_bb_inside_loop_p (loop, bb))
1551 continue;
1552
1553 if (init_cond == chrec_not_analyzed_yet)
1554 {
1555 init_cond = branch;
1556 continue;
1557 }
1558
1559 if (TREE_CODE (branch) == SSA_NAME)
1560 {
1561 init_cond = chrec_dont_know;
1562 break;
1563 }
1564
1565 init_cond = chrec_merge (init_cond, branch);
1566 }
1567
1568 /* Ooops -- a loop without an entry??? */
1569 if (init_cond == chrec_not_analyzed_yet)
1570 init_cond = chrec_dont_know;
1571
1572 if (dump_file && (dump_flags & TDF_DETAILS))
1573 {
1574 fprintf (dump_file, " (init_cond = ");
1575 print_generic_expr (dump_file, init_cond, 0);
1576 fprintf (dump_file, "))\n");
1577 }
1578
1579 return init_cond;
1580 }
1581
1582 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1583
1584 static tree
1585 interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1586 {
1587 tree res;
1588 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1589 tree init_cond;
1590
1591 if (phi_loop != loop)
1592 {
1593 struct loop *subloop;
1594 tree evolution_fn = analyze_scalar_evolution
1595 (phi_loop, PHI_RESULT (loop_phi_node));
1596
1597 /* Dive one level deeper. */
1598 subloop = superloop_at_depth (phi_loop, loop->depth + 1);
1599
1600 /* Interpret the subloop. */
1601 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1602 return res;
1603 }
1604
1605 /* Otherwise really interpret the loop phi. */
1606 init_cond = analyze_initial_condition (loop_phi_node);
1607 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1608
1609 return res;
1610 }
1611
1612 /* This function merges the branches of a condition-phi-node,
1613 contained in the outermost loop, and whose arguments are already
1614 analyzed. */
1615
1616 static tree
1617 interpret_condition_phi (struct loop *loop, tree condition_phi)
1618 {
1619 int i;
1620 tree res = chrec_not_analyzed_yet;
1621
1622 for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1623 {
1624 tree branch_chrec;
1625
1626 if (backedge_phi_arg_p (condition_phi, i))
1627 {
1628 res = chrec_dont_know;
1629 break;
1630 }
1631
1632 branch_chrec = analyze_scalar_evolution
1633 (loop, PHI_ARG_DEF (condition_phi, i));
1634
1635 res = chrec_merge (res, branch_chrec);
1636 }
1637
1638 return res;
1639 }
1640
1641 /* Interpret the right hand side of a modify_expr OPND1. If we didn't
1642 analyze this node before, follow the definitions until ending
1643 either on an analyzed modify_expr, or on a loop-phi-node. On the
1644 return path, this function propagates evolutions (ala constant copy
1645 propagation). OPND1 is not a GIMPLE expression because we could
1646 analyze the effect of an inner loop: see interpret_loop_phi. */
1647
1648 static tree
1649 interpret_rhs_modify_expr (struct loop *loop, tree at_stmt,
1650 tree opnd1, tree type)
1651 {
1652 tree res, opnd10, opnd11, chrec10, chrec11;
1653
1654 if (is_gimple_min_invariant (opnd1))
1655 return chrec_convert (type, opnd1, at_stmt);
1656
1657 switch (TREE_CODE (opnd1))
1658 {
1659 case PLUS_EXPR:
1660 opnd10 = TREE_OPERAND (opnd1, 0);
1661 opnd11 = TREE_OPERAND (opnd1, 1);
1662 chrec10 = analyze_scalar_evolution (loop, opnd10);
1663 chrec11 = analyze_scalar_evolution (loop, opnd11);
1664 chrec10 = chrec_convert (type, chrec10, at_stmt);
1665 chrec11 = chrec_convert (type, chrec11, at_stmt);
1666 res = chrec_fold_plus (type, chrec10, chrec11);
1667 break;
1668
1669 case MINUS_EXPR:
1670 opnd10 = TREE_OPERAND (opnd1, 0);
1671 opnd11 = TREE_OPERAND (opnd1, 1);
1672 chrec10 = analyze_scalar_evolution (loop, opnd10);
1673 chrec11 = analyze_scalar_evolution (loop, opnd11);
1674 chrec10 = chrec_convert (type, chrec10, at_stmt);
1675 chrec11 = chrec_convert (type, chrec11, at_stmt);
1676 res = chrec_fold_minus (type, chrec10, chrec11);
1677 break;
1678
1679 case NEGATE_EXPR:
1680 opnd10 = TREE_OPERAND (opnd1, 0);
1681 chrec10 = analyze_scalar_evolution (loop, opnd10);
1682 chrec10 = chrec_convert (type, chrec10, at_stmt);
1683 res = chrec_fold_minus (type, build_int_cst (type, 0), chrec10);
1684 break;
1685
1686 case MULT_EXPR:
1687 opnd10 = TREE_OPERAND (opnd1, 0);
1688 opnd11 = TREE_OPERAND (opnd1, 1);
1689 chrec10 = analyze_scalar_evolution (loop, opnd10);
1690 chrec11 = analyze_scalar_evolution (loop, opnd11);
1691 chrec10 = chrec_convert (type, chrec10, at_stmt);
1692 chrec11 = chrec_convert (type, chrec11, at_stmt);
1693 res = chrec_fold_multiply (type, chrec10, chrec11);
1694 break;
1695
1696 case SSA_NAME:
1697 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1),
1698 at_stmt);
1699 break;
1700
1701 case ASSERT_EXPR:
1702 opnd10 = ASSERT_EXPR_VAR (opnd1);
1703 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd10),
1704 at_stmt);
1705 break;
1706
1707 case NOP_EXPR:
1708 case CONVERT_EXPR:
1709 opnd10 = TREE_OPERAND (opnd1, 0);
1710 chrec10 = analyze_scalar_evolution (loop, opnd10);
1711 res = chrec_convert (type, chrec10, at_stmt);
1712 break;
1713
1714 default:
1715 res = chrec_dont_know;
1716 break;
1717 }
1718
1719 return res;
1720 }
1721
1722 \f
1723
1724 /* This section contains all the entry points:
1725 - number_of_iterations_in_loop,
1726 - analyze_scalar_evolution,
1727 - instantiate_parameters.
1728 */
1729
1730 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1731 common ancestor of DEF_LOOP and USE_LOOP. */
1732
1733 static tree
1734 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1735 struct loop *def_loop,
1736 tree ev)
1737 {
1738 tree res;
1739 if (def_loop == wrto_loop)
1740 return ev;
1741
1742 def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
1743 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1744
1745 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1746 }
1747
1748 /* Helper recursive function. */
1749
1750 static tree
1751 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1752 {
1753 tree def, type = TREE_TYPE (var);
1754 basic_block bb;
1755 struct loop *def_loop;
1756
1757 if (loop == NULL)
1758 return chrec_dont_know;
1759
1760 if (TREE_CODE (var) != SSA_NAME)
1761 return interpret_rhs_modify_expr (loop, NULL_TREE, var, type);
1762
1763 def = SSA_NAME_DEF_STMT (var);
1764 bb = bb_for_stmt (def);
1765 def_loop = bb ? bb->loop_father : NULL;
1766
1767 if (bb == NULL
1768 || !flow_bb_inside_loop_p (loop, bb))
1769 {
1770 /* Keep the symbolic form. */
1771 res = var;
1772 goto set_and_end;
1773 }
1774
1775 if (res != chrec_not_analyzed_yet)
1776 {
1777 if (loop != bb->loop_father)
1778 res = compute_scalar_evolution_in_loop
1779 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1780
1781 goto set_and_end;
1782 }
1783
1784 if (loop != def_loop)
1785 {
1786 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1787 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1788
1789 goto set_and_end;
1790 }
1791
1792 switch (TREE_CODE (def))
1793 {
1794 case MODIFY_EXPR:
1795 res = interpret_rhs_modify_expr (loop, def, TREE_OPERAND (def, 1), type);
1796 break;
1797
1798 case PHI_NODE:
1799 if (loop_phi_node_p (def))
1800 res = interpret_loop_phi (loop, def);
1801 else
1802 res = interpret_condition_phi (loop, def);
1803 break;
1804
1805 default:
1806 res = chrec_dont_know;
1807 break;
1808 }
1809
1810 set_and_end:
1811
1812 /* Keep the symbolic form. */
1813 if (res == chrec_dont_know)
1814 res = var;
1815
1816 if (loop == def_loop)
1817 set_scalar_evolution (var, res);
1818
1819 return res;
1820 }
1821
1822 /* Entry point for the scalar evolution analyzer.
1823 Analyzes and returns the scalar evolution of the ssa_name VAR.
1824 LOOP_NB is the identifier number of the loop in which the variable
1825 is used.
1826
1827 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1828 pointer to the statement that uses this variable, in order to
1829 determine the evolution function of the variable, use the following
1830 calls:
1831
1832 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1833 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1834 tree chrec_instantiated = instantiate_parameters
1835 (loop_nb, chrec_with_symbols);
1836 */
1837
1838 tree
1839 analyze_scalar_evolution (struct loop *loop, tree var)
1840 {
1841 tree res;
1842
1843 if (dump_file && (dump_flags & TDF_DETAILS))
1844 {
1845 fprintf (dump_file, "(analyze_scalar_evolution \n");
1846 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1847 fprintf (dump_file, " (scalar = ");
1848 print_generic_expr (dump_file, var, 0);
1849 fprintf (dump_file, ")\n");
1850 }
1851
1852 res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
1853
1854 if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
1855 res = var;
1856
1857 if (dump_file && (dump_flags & TDF_DETAILS))
1858 fprintf (dump_file, ")\n");
1859
1860 return res;
1861 }
1862
1863 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1864 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
1865 of VERSION). */
1866
1867 static tree
1868 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
1869 tree version)
1870 {
1871 bool val = false;
1872 tree ev = version;
1873
1874 while (1)
1875 {
1876 ev = analyze_scalar_evolution (use_loop, ev);
1877 ev = resolve_mixers (use_loop, ev);
1878
1879 if (use_loop == wrto_loop)
1880 return ev;
1881
1882 /* If the value of the use changes in the inner loop, we cannot express
1883 its value in the outer loop (we might try to return interval chrec,
1884 but we do not have a user for it anyway) */
1885 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
1886 || !val)
1887 return chrec_dont_know;
1888
1889 use_loop = use_loop->outer;
1890 }
1891 }
1892
1893 /* Returns instantiated value for VERSION in CACHE. */
1894
1895 static tree
1896 get_instantiated_value (htab_t cache, tree version)
1897 {
1898 struct scev_info_str *info, pattern;
1899
1900 pattern.var = version;
1901 info = htab_find (cache, &pattern);
1902
1903 if (info)
1904 return info->chrec;
1905 else
1906 return NULL_TREE;
1907 }
1908
1909 /* Sets instantiated value for VERSION to VAL in CACHE. */
1910
1911 static void
1912 set_instantiated_value (htab_t cache, tree version, tree val)
1913 {
1914 struct scev_info_str *info, pattern;
1915 PTR *slot;
1916
1917 pattern.var = version;
1918 slot = htab_find_slot (cache, &pattern, INSERT);
1919
1920 if (*slot)
1921 info = *slot;
1922 else
1923 info = *slot = new_scev_info_str (version);
1924 info->chrec = val;
1925 }
1926
1927 /* Analyze all the parameters of the chrec that were left under a symbolic form,
1928 with respect to LOOP. CHREC is the chrec to instantiate. If
1929 ALLOW_SUPERLOOP_CHRECS is true, replacing loop invariants with
1930 outer loop chrecs is done. CACHE is the cache of already instantiated
1931 values. */
1932
1933 static tree
1934 instantiate_parameters_1 (struct loop *loop, tree chrec,
1935 bool allow_superloop_chrecs,
1936 htab_t cache)
1937 {
1938 tree res, op0, op1, op2;
1939 basic_block def_bb;
1940 struct loop *def_loop;
1941
1942 if (automatically_generated_chrec_p (chrec)
1943 || is_gimple_min_invariant (chrec))
1944 return chrec;
1945
1946 switch (TREE_CODE (chrec))
1947 {
1948 case SSA_NAME:
1949 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
1950
1951 /* A parameter (or loop invariant and we do not want to include
1952 evolutions in outer loops), nothing to do. */
1953 if (!def_bb
1954 || (!allow_superloop_chrecs
1955 && !flow_bb_inside_loop_p (loop, def_bb)))
1956 return chrec;
1957
1958 /* We cache the value of instantiated variable to avoid exponential
1959 time complexity due to reevaluations. We also store the convenient
1960 value in the cache in order to prevent infinite recursion -- we do
1961 not want to instantiate the SSA_NAME if it is in a mixer
1962 structure. This is used for avoiding the instantiation of
1963 recursively defined functions, such as:
1964
1965 | a_2 -> {0, +, 1, +, a_2}_1 */
1966
1967 res = get_instantiated_value (cache, chrec);
1968 if (res)
1969 return res;
1970
1971 /* Store the convenient value for chrec in the structure. If it
1972 is defined outside of the loop, we may just leave it in symbolic
1973 form, otherwise we need to admit that we do not know its behavior
1974 inside the loop. */
1975 res = !flow_bb_inside_loop_p (loop, def_bb) ? chrec : chrec_dont_know;
1976 set_instantiated_value (cache, chrec, res);
1977
1978 /* To make things even more complicated, instantiate_parameters_1
1979 calls analyze_scalar_evolution that may call # of iterations
1980 analysis that may in turn call instantiate_parameters_1 again.
1981 To prevent the infinite recursion, keep also the bitmap of
1982 ssa names that are being instantiated globally. */
1983 if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
1984 return res;
1985
1986 def_loop = find_common_loop (loop, def_bb->loop_father);
1987
1988 /* If the analysis yields a parametric chrec, instantiate the
1989 result again. */
1990 bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
1991 res = analyze_scalar_evolution (def_loop, chrec);
1992 if (res != chrec_dont_know)
1993 res = instantiate_parameters_1 (loop, res, allow_superloop_chrecs,
1994 cache);
1995 bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
1996
1997 /* Store the correct value to the cache. */
1998 set_instantiated_value (cache, chrec, res);
1999 return res;
2000
2001 case POLYNOMIAL_CHREC:
2002 op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
2003 allow_superloop_chrecs, cache);
2004 if (op0 == chrec_dont_know)
2005 return chrec_dont_know;
2006
2007 op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
2008 allow_superloop_chrecs, cache);
2009 if (op1 == chrec_dont_know)
2010 return chrec_dont_know;
2011
2012 if (CHREC_LEFT (chrec) != op0
2013 || CHREC_RIGHT (chrec) != op1)
2014 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2015 return chrec;
2016
2017 case PLUS_EXPR:
2018 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2019 allow_superloop_chrecs, cache);
2020 if (op0 == chrec_dont_know)
2021 return chrec_dont_know;
2022
2023 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2024 allow_superloop_chrecs, cache);
2025 if (op1 == chrec_dont_know)
2026 return chrec_dont_know;
2027
2028 if (TREE_OPERAND (chrec, 0) != op0
2029 || TREE_OPERAND (chrec, 1) != op1)
2030 chrec = chrec_fold_plus (TREE_TYPE (chrec), op0, op1);
2031 return chrec;
2032
2033 case MINUS_EXPR:
2034 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2035 allow_superloop_chrecs, cache);
2036 if (op0 == chrec_dont_know)
2037 return chrec_dont_know;
2038
2039 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2040 allow_superloop_chrecs, cache);
2041 if (op1 == chrec_dont_know)
2042 return chrec_dont_know;
2043
2044 if (TREE_OPERAND (chrec, 0) != op0
2045 || TREE_OPERAND (chrec, 1) != op1)
2046 chrec = chrec_fold_minus (TREE_TYPE (chrec), op0, op1);
2047 return chrec;
2048
2049 case MULT_EXPR:
2050 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2051 allow_superloop_chrecs, cache);
2052 if (op0 == chrec_dont_know)
2053 return chrec_dont_know;
2054
2055 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2056 allow_superloop_chrecs, cache);
2057 if (op1 == chrec_dont_know)
2058 return chrec_dont_know;
2059
2060 if (TREE_OPERAND (chrec, 0) != op0
2061 || TREE_OPERAND (chrec, 1) != op1)
2062 chrec = chrec_fold_multiply (TREE_TYPE (chrec), op0, op1);
2063 return chrec;
2064
2065 case NOP_EXPR:
2066 case CONVERT_EXPR:
2067 case NON_LVALUE_EXPR:
2068 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2069 allow_superloop_chrecs, cache);
2070 if (op0 == chrec_dont_know)
2071 return chrec_dont_know;
2072
2073 if (op0 == TREE_OPERAND (chrec, 0))
2074 return chrec;
2075
2076 return chrec_convert (TREE_TYPE (chrec), op0, NULL_TREE);
2077
2078 case SCEV_NOT_KNOWN:
2079 return chrec_dont_know;
2080
2081 case SCEV_KNOWN:
2082 return chrec_known;
2083
2084 default:
2085 break;
2086 }
2087
2088 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2089 {
2090 case 3:
2091 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2092 allow_superloop_chrecs, cache);
2093 if (op0 == chrec_dont_know)
2094 return chrec_dont_know;
2095
2096 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2097 allow_superloop_chrecs, cache);
2098 if (op1 == chrec_dont_know)
2099 return chrec_dont_know;
2100
2101 op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
2102 allow_superloop_chrecs, cache);
2103 if (op2 == chrec_dont_know)
2104 return chrec_dont_know;
2105
2106 if (op0 == TREE_OPERAND (chrec, 0)
2107 && op1 == TREE_OPERAND (chrec, 1)
2108 && op2 == TREE_OPERAND (chrec, 2))
2109 return chrec;
2110
2111 return fold_build3 (TREE_CODE (chrec),
2112 TREE_TYPE (chrec), op0, op1, op2);
2113
2114 case 2:
2115 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2116 allow_superloop_chrecs, cache);
2117 if (op0 == chrec_dont_know)
2118 return chrec_dont_know;
2119
2120 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2121 allow_superloop_chrecs, cache);
2122 if (op1 == chrec_dont_know)
2123 return chrec_dont_know;
2124
2125 if (op0 == TREE_OPERAND (chrec, 0)
2126 && op1 == TREE_OPERAND (chrec, 1))
2127 return chrec;
2128 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2129
2130 case 1:
2131 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2132 allow_superloop_chrecs, cache);
2133 if (op0 == chrec_dont_know)
2134 return chrec_dont_know;
2135 if (op0 == TREE_OPERAND (chrec, 0))
2136 return chrec;
2137 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2138
2139 case 0:
2140 return chrec;
2141
2142 default:
2143 break;
2144 }
2145
2146 /* Too complicated to handle. */
2147 return chrec_dont_know;
2148 }
2149
2150 /* Analyze all the parameters of the chrec that were left under a
2151 symbolic form. LOOP is the loop in which symbolic names have to
2152 be analyzed and instantiated. */
2153
2154 tree
2155 instantiate_parameters (struct loop *loop,
2156 tree chrec)
2157 {
2158 tree res;
2159 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2160
2161 if (dump_file && (dump_flags & TDF_DETAILS))
2162 {
2163 fprintf (dump_file, "(instantiate_parameters \n");
2164 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2165 fprintf (dump_file, " (chrec = ");
2166 print_generic_expr (dump_file, chrec, 0);
2167 fprintf (dump_file, ")\n");
2168 }
2169
2170 res = instantiate_parameters_1 (loop, chrec, true, cache);
2171
2172 if (dump_file && (dump_flags & TDF_DETAILS))
2173 {
2174 fprintf (dump_file, " (res = ");
2175 print_generic_expr (dump_file, res, 0);
2176 fprintf (dump_file, "))\n");
2177 }
2178
2179 htab_delete (cache);
2180
2181 return res;
2182 }
2183
2184 /* Similar to instantiate_parameters, but does not introduce the
2185 evolutions in outer loops for LOOP invariants in CHREC. */
2186
2187 static tree
2188 resolve_mixers (struct loop *loop, tree chrec)
2189 {
2190 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2191 tree ret = instantiate_parameters_1 (loop, chrec, false, cache);
2192 htab_delete (cache);
2193 return ret;
2194 }
2195
2196 /* Entry point for the analysis of the number of iterations pass.
2197 This function tries to safely approximate the number of iterations
2198 the loop will run. When this property is not decidable at compile
2199 time, the result is chrec_dont_know. Otherwise the result is
2200 a scalar or a symbolic parameter.
2201
2202 Example of analysis: suppose that the loop has an exit condition:
2203
2204 "if (b > 49) goto end_loop;"
2205
2206 and that in a previous analysis we have determined that the
2207 variable 'b' has an evolution function:
2208
2209 "EF = {23, +, 5}_2".
2210
2211 When we evaluate the function at the point 5, i.e. the value of the
2212 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2213 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2214 the loop body has been executed 6 times. */
2215
2216 tree
2217 number_of_iterations_in_loop (struct loop *loop)
2218 {
2219 tree res, type;
2220 edge exit;
2221 struct tree_niter_desc niter_desc;
2222
2223 /* Determine whether the number_of_iterations_in_loop has already
2224 been computed. */
2225 res = loop->nb_iterations;
2226 if (res)
2227 return res;
2228 res = chrec_dont_know;
2229
2230 if (dump_file && (dump_flags & TDF_DETAILS))
2231 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2232
2233 exit = loop->single_exit;
2234 if (!exit)
2235 goto end;
2236
2237 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
2238 goto end;
2239
2240 type = TREE_TYPE (niter_desc.niter);
2241 if (integer_nonzerop (niter_desc.may_be_zero))
2242 res = build_int_cst (type, 0);
2243 else if (integer_zerop (niter_desc.may_be_zero))
2244 res = niter_desc.niter;
2245 else
2246 res = chrec_dont_know;
2247
2248 end:
2249 return set_nb_iterations_in_loop (loop, res);
2250 }
2251
2252 /* One of the drivers for testing the scalar evolutions analysis.
2253 This function computes the number of iterations for all the loops
2254 from the EXIT_CONDITIONS array. */
2255
2256 static void
2257 number_of_iterations_for_all_loops (VEC(tree,heap) **exit_conditions)
2258 {
2259 unsigned int i;
2260 unsigned nb_chrec_dont_know_loops = 0;
2261 unsigned nb_static_loops = 0;
2262 tree cond;
2263
2264 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2265 {
2266 tree res = number_of_iterations_in_loop (loop_containing_stmt (cond));
2267 if (chrec_contains_undetermined (res))
2268 nb_chrec_dont_know_loops++;
2269 else
2270 nb_static_loops++;
2271 }
2272
2273 if (dump_file)
2274 {
2275 fprintf (dump_file, "\n(\n");
2276 fprintf (dump_file, "-----------------------------------------\n");
2277 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2278 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2279 fprintf (dump_file, "%d\tnb_total_loops\n", current_loops->num);
2280 fprintf (dump_file, "-----------------------------------------\n");
2281 fprintf (dump_file, ")\n\n");
2282
2283 print_loop_ir (dump_file);
2284 }
2285 }
2286
2287 \f
2288
2289 /* Counters for the stats. */
2290
2291 struct chrec_stats
2292 {
2293 unsigned nb_chrecs;
2294 unsigned nb_affine;
2295 unsigned nb_affine_multivar;
2296 unsigned nb_higher_poly;
2297 unsigned nb_chrec_dont_know;
2298 unsigned nb_undetermined;
2299 };
2300
2301 /* Reset the counters. */
2302
2303 static inline void
2304 reset_chrecs_counters (struct chrec_stats *stats)
2305 {
2306 stats->nb_chrecs = 0;
2307 stats->nb_affine = 0;
2308 stats->nb_affine_multivar = 0;
2309 stats->nb_higher_poly = 0;
2310 stats->nb_chrec_dont_know = 0;
2311 stats->nb_undetermined = 0;
2312 }
2313
2314 /* Dump the contents of a CHREC_STATS structure. */
2315
2316 static void
2317 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2318 {
2319 fprintf (file, "\n(\n");
2320 fprintf (file, "-----------------------------------------\n");
2321 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2322 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2323 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2324 stats->nb_higher_poly);
2325 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2326 fprintf (file, "-----------------------------------------\n");
2327 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2328 fprintf (file, "%d\twith undetermined coefficients\n",
2329 stats->nb_undetermined);
2330 fprintf (file, "-----------------------------------------\n");
2331 fprintf (file, "%d\tchrecs in the scev database\n",
2332 (int) htab_elements (scalar_evolution_info));
2333 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2334 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2335 fprintf (file, "-----------------------------------------\n");
2336 fprintf (file, ")\n\n");
2337 }
2338
2339 /* Gather statistics about CHREC. */
2340
2341 static void
2342 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2343 {
2344 if (dump_file && (dump_flags & TDF_STATS))
2345 {
2346 fprintf (dump_file, "(classify_chrec ");
2347 print_generic_expr (dump_file, chrec, 0);
2348 fprintf (dump_file, "\n");
2349 }
2350
2351 stats->nb_chrecs++;
2352
2353 if (chrec == NULL_TREE)
2354 {
2355 stats->nb_undetermined++;
2356 return;
2357 }
2358
2359 switch (TREE_CODE (chrec))
2360 {
2361 case POLYNOMIAL_CHREC:
2362 if (evolution_function_is_affine_p (chrec))
2363 {
2364 if (dump_file && (dump_flags & TDF_STATS))
2365 fprintf (dump_file, " affine_univariate\n");
2366 stats->nb_affine++;
2367 }
2368 else if (evolution_function_is_affine_multivariate_p (chrec))
2369 {
2370 if (dump_file && (dump_flags & TDF_STATS))
2371 fprintf (dump_file, " affine_multivariate\n");
2372 stats->nb_affine_multivar++;
2373 }
2374 else
2375 {
2376 if (dump_file && (dump_flags & TDF_STATS))
2377 fprintf (dump_file, " higher_degree_polynomial\n");
2378 stats->nb_higher_poly++;
2379 }
2380
2381 break;
2382
2383 default:
2384 break;
2385 }
2386
2387 if (chrec_contains_undetermined (chrec))
2388 {
2389 if (dump_file && (dump_flags & TDF_STATS))
2390 fprintf (dump_file, " undetermined\n");
2391 stats->nb_undetermined++;
2392 }
2393
2394 if (dump_file && (dump_flags & TDF_STATS))
2395 fprintf (dump_file, ")\n");
2396 }
2397
2398 /* One of the drivers for testing the scalar evolutions analysis.
2399 This function analyzes the scalar evolution of all the scalars
2400 defined as loop phi nodes in one of the loops from the
2401 EXIT_CONDITIONS array.
2402
2403 TODO Optimization: A loop is in canonical form if it contains only
2404 a single scalar loop phi node. All the other scalars that have an
2405 evolution in the loop are rewritten in function of this single
2406 index. This allows the parallelization of the loop. */
2407
2408 static void
2409 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree,heap) **exit_conditions)
2410 {
2411 unsigned int i;
2412 struct chrec_stats stats;
2413 tree cond;
2414
2415 reset_chrecs_counters (&stats);
2416
2417 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2418 {
2419 struct loop *loop;
2420 basic_block bb;
2421 tree phi, chrec;
2422
2423 loop = loop_containing_stmt (cond);
2424 bb = loop->header;
2425
2426 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2427 if (is_gimple_reg (PHI_RESULT (phi)))
2428 {
2429 chrec = instantiate_parameters
2430 (loop,
2431 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2432
2433 if (dump_file && (dump_flags & TDF_STATS))
2434 gather_chrec_stats (chrec, &stats);
2435 }
2436 }
2437
2438 if (dump_file && (dump_flags & TDF_STATS))
2439 dump_chrecs_stats (dump_file, &stats);
2440 }
2441
2442 /* Callback for htab_traverse, gathers information on chrecs in the
2443 hashtable. */
2444
2445 static int
2446 gather_stats_on_scev_database_1 (void **slot, void *stats)
2447 {
2448 struct scev_info_str *entry = *slot;
2449
2450 gather_chrec_stats (entry->chrec, stats);
2451
2452 return 1;
2453 }
2454
2455 /* Classify the chrecs of the whole database. */
2456
2457 void
2458 gather_stats_on_scev_database (void)
2459 {
2460 struct chrec_stats stats;
2461
2462 if (!dump_file)
2463 return;
2464
2465 reset_chrecs_counters (&stats);
2466
2467 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2468 &stats);
2469
2470 dump_chrecs_stats (dump_file, &stats);
2471 }
2472
2473 \f
2474
2475 /* Initializer. */
2476
2477 static void
2478 initialize_scalar_evolutions_analyzer (void)
2479 {
2480 /* The elements below are unique. */
2481 if (chrec_dont_know == NULL_TREE)
2482 {
2483 chrec_not_analyzed_yet = NULL_TREE;
2484 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2485 chrec_known = make_node (SCEV_KNOWN);
2486 TREE_TYPE (chrec_dont_know) = void_type_node;
2487 TREE_TYPE (chrec_known) = void_type_node;
2488 }
2489 }
2490
2491 /* Initialize the analysis of scalar evolutions for LOOPS. */
2492
2493 void
2494 scev_initialize (struct loops *loops)
2495 {
2496 unsigned i;
2497 current_loops = loops;
2498
2499 scalar_evolution_info = htab_create (100, hash_scev_info,
2500 eq_scev_info, del_scev_info);
2501 already_instantiated = BITMAP_ALLOC (NULL);
2502
2503 initialize_scalar_evolutions_analyzer ();
2504
2505 for (i = 1; i < loops->num; i++)
2506 if (loops->parray[i])
2507 loops->parray[i]->nb_iterations = NULL_TREE;
2508 }
2509
2510 /* Cleans up the information cached by the scalar evolutions analysis. */
2511
2512 void
2513 scev_reset (void)
2514 {
2515 unsigned i;
2516 struct loop *loop;
2517
2518 if (!scalar_evolution_info || !current_loops)
2519 return;
2520
2521 htab_empty (scalar_evolution_info);
2522 for (i = 1; i < current_loops->num; i++)
2523 {
2524 loop = current_loops->parray[i];
2525 if (loop)
2526 loop->nb_iterations = NULL_TREE;
2527 }
2528 }
2529
2530 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2531 its BASE and STEP if possible. If ALLOW_NONCONSTANT_STEP is true, we
2532 want STEP to be invariant in LOOP. Otherwise we require it to be an
2533 integer constant. */
2534
2535 bool
2536 simple_iv (struct loop *loop, tree stmt, tree op, tree *base, tree *step,
2537 bool allow_nonconstant_step)
2538 {
2539 basic_block bb = bb_for_stmt (stmt);
2540 tree type, ev;
2541
2542 *base = NULL_TREE;
2543 *step = NULL_TREE;
2544
2545 type = TREE_TYPE (op);
2546 if (TREE_CODE (type) != INTEGER_TYPE
2547 && TREE_CODE (type) != POINTER_TYPE)
2548 return false;
2549
2550 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op);
2551 if (chrec_contains_undetermined (ev))
2552 return false;
2553
2554 if (tree_does_not_contain_chrecs (ev)
2555 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2556 {
2557 *base = ev;
2558 return true;
2559 }
2560
2561 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2562 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2563 return false;
2564
2565 *step = CHREC_RIGHT (ev);
2566 if (allow_nonconstant_step)
2567 {
2568 if (tree_contains_chrecs (*step, NULL)
2569 || chrec_contains_symbols_defined_in_loop (*step, loop->num))
2570 return false;
2571 }
2572 else if (TREE_CODE (*step) != INTEGER_CST)
2573 return false;
2574
2575 *base = CHREC_LEFT (ev);
2576 if (tree_contains_chrecs (*base, NULL)
2577 || chrec_contains_symbols_defined_in_loop (*base, loop->num))
2578 return false;
2579
2580 return true;
2581 }
2582
2583 /* Runs the analysis of scalar evolutions. */
2584
2585 void
2586 scev_analysis (void)
2587 {
2588 VEC(tree,heap) *exit_conditions;
2589
2590 exit_conditions = VEC_alloc (tree, heap, 37);
2591 select_loops_exit_conditions (current_loops, &exit_conditions);
2592
2593 if (dump_file && (dump_flags & TDF_STATS))
2594 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
2595
2596 number_of_iterations_for_all_loops (&exit_conditions);
2597 VEC_free (tree, heap, exit_conditions);
2598 }
2599
2600 /* Finalize the scalar evolution analysis. */
2601
2602 void
2603 scev_finalize (void)
2604 {
2605 htab_delete (scalar_evolution_info);
2606 BITMAP_FREE (already_instantiated);
2607 }
2608
2609 /* Replace ssa names for that scev can prove they are constant by the
2610 appropriate constants. Also perform final value replacement in loops,
2611 in case the replacement expressions are cheap.
2612
2613 We only consider SSA names defined by phi nodes; rest is left to the
2614 ordinary constant propagation pass. */
2615
2616 void
2617 scev_const_prop (void)
2618 {
2619 basic_block bb;
2620 tree name, phi, next_phi, type, ev;
2621 struct loop *loop, *ex_loop;
2622 bitmap ssa_names_to_remove = NULL;
2623 unsigned i;
2624
2625 if (!current_loops)
2626 return;
2627
2628 FOR_EACH_BB (bb)
2629 {
2630 loop = bb->loop_father;
2631
2632 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2633 {
2634 name = PHI_RESULT (phi);
2635
2636 if (!is_gimple_reg (name))
2637 continue;
2638
2639 type = TREE_TYPE (name);
2640
2641 if (!POINTER_TYPE_P (type)
2642 && !INTEGRAL_TYPE_P (type))
2643 continue;
2644
2645 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2646 if (!is_gimple_min_invariant (ev)
2647 || !may_propagate_copy (name, ev))
2648 continue;
2649
2650 /* Replace the uses of the name. */
2651 replace_uses_by (name, ev);
2652
2653 if (!ssa_names_to_remove)
2654 ssa_names_to_remove = BITMAP_ALLOC (NULL);
2655 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2656 }
2657 }
2658
2659 /* Remove the ssa names that were replaced by constants. We do not remove them
2660 directly in the previous cycle, since this invalidates scev cache. */
2661 if (ssa_names_to_remove)
2662 {
2663 bitmap_iterator bi;
2664 unsigned i;
2665
2666 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2667 {
2668 name = ssa_name (i);
2669 phi = SSA_NAME_DEF_STMT (name);
2670
2671 gcc_assert (TREE_CODE (phi) == PHI_NODE);
2672 remove_phi_node (phi, NULL);
2673 }
2674
2675 BITMAP_FREE (ssa_names_to_remove);
2676 scev_reset ();
2677 }
2678
2679 /* Now the regular final value replacement. */
2680 for (i = current_loops->num - 1; i > 0; i--)
2681 {
2682 edge exit;
2683 tree def, stmts;
2684
2685 loop = current_loops->parray[i];
2686 if (!loop)
2687 continue;
2688
2689 /* If we do not know exact number of iterations of the loop, we cannot
2690 replace the final value. */
2691 exit = loop->single_exit;
2692 if (!exit
2693 || number_of_iterations_in_loop (loop) == chrec_dont_know)
2694 continue;
2695 ex_loop = exit->dest->loop_father;
2696
2697 for (phi = phi_nodes (exit->dest); phi; phi = next_phi)
2698 {
2699 next_phi = PHI_CHAIN (phi);
2700 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2701 if (!is_gimple_reg (def)
2702 || expr_invariant_in_loop_p (loop, def))
2703 continue;
2704
2705 if (!POINTER_TYPE_P (TREE_TYPE (def))
2706 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
2707 continue;
2708
2709 def = analyze_scalar_evolution_in_loop (ex_loop, ex_loop, def);
2710 if (!tree_does_not_contain_chrecs (def)
2711 || chrec_contains_symbols_defined_in_loop (def, loop->num))
2712 continue;
2713
2714 /* If computing the expression is expensive, let it remain in
2715 loop. TODO -- we should take the cost of computing the expression
2716 in loop into account. */
2717 if (force_expr_to_var_cost (def) >= target_spill_cost)
2718 continue;
2719 def = unshare_expr (def);
2720
2721 if (is_gimple_val (def))
2722 stmts = NULL_TREE;
2723 else
2724 def = force_gimple_operand (def, &stmts, true,
2725 SSA_NAME_VAR (PHI_RESULT (phi)));
2726 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, exit), def);
2727 if (stmts)
2728 compute_phi_arg_on_exit (exit, stmts, def);
2729 }
2730 }
2731 }
This page took 0.165808 seconds and 6 git commands to generate.