]> gcc.gnu.org Git - gcc.git/blob - gcc/tree-scalar-evolution.c
re PR tree-optimization/24716 (Wrong code generated when optimising)
[gcc.git] / gcc / tree-scalar-evolution.c
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
51 - When the definition is a MODIFY_EXPR: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
129 Example 2: Illustration of the algorithm on nested loops.
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
157
158 Example 3: Higher degree polynomials.
159
160 | loop_1
161 | a = phi (2, b)
162 | c = phi (5, d)
163 | b = a + 1
164 | d = c + a
165 | endloop
166
167 a -> {2, +, 1}_1
168 b -> {3, +, 1}_1
169 c -> {5, +, a}_1
170 d -> {5 + a, +, a}_1
171
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
174
175 Example 4: Lucas, Fibonacci, or mixers in general.
176
177 | loop_1
178 | a = phi (1, b)
179 | c = phi (3, d)
180 | b = c
181 | d = c + a
182 | endloop
183
184 a -> (1, c)_1
185 c -> {3, +, a}_1
186
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
192
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
195
196 Example 5: Flip-flops, or exchangers.
197
198 | loop_1
199 | a = phi (1, b)
200 | c = phi (3, d)
201 | b = c
202 | d = a
203 | endloop
204
205 a -> (1, c)_1
206 c -> (3, a)_1
207
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
210
211 a -> |1, 3|_1
212 c -> |3, 1|_1
213
214 This transformation is not yet implemented.
215
216 Further readings:
217
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
225
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
229
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
232 */
233
234 #include "config.h"
235 #include "system.h"
236 #include "coretypes.h"
237 #include "tm.h"
238 #include "ggc.h"
239 #include "tree.h"
240 #include "real.h"
241
242 /* These RTL headers are needed for basic-block.h. */
243 #include "rtl.h"
244 #include "basic-block.h"
245 #include "diagnostic.h"
246 #include "tree-flow.h"
247 #include "tree-dump.h"
248 #include "timevar.h"
249 #include "cfgloop.h"
250 #include "tree-chrec.h"
251 #include "tree-scalar-evolution.h"
252 #include "tree-pass.h"
253 #include "flags.h"
254 #include "params.h"
255
256 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
257 static tree resolve_mixers (struct loop *, tree);
258
259 /* The cached information about a ssa name VAR, claiming that inside LOOP,
260 the value of VAR can be expressed as CHREC. */
261
262 struct scev_info_str
263 {
264 tree var;
265 tree chrec;
266 };
267
268 /* Counters for the scev database. */
269 static unsigned nb_set_scev = 0;
270 static unsigned nb_get_scev = 0;
271
272 /* The following trees are unique elements. Thus the comparison of
273 another element to these elements should be done on the pointer to
274 these trees, and not on their value. */
275
276 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
277 tree chrec_not_analyzed_yet;
278
279 /* Reserved to the cases where the analyzer has detected an
280 undecidable property at compile time. */
281 tree chrec_dont_know;
282
283 /* When the analyzer has detected that a property will never
284 happen, then it qualifies it with chrec_known. */
285 tree chrec_known;
286
287 static bitmap already_instantiated;
288
289 static htab_t scalar_evolution_info;
290
291 \f
292 /* Constructs a new SCEV_INFO_STR structure. */
293
294 static inline struct scev_info_str *
295 new_scev_info_str (tree var)
296 {
297 struct scev_info_str *res;
298
299 res = xmalloc (sizeof (struct scev_info_str));
300 res->var = var;
301 res->chrec = chrec_not_analyzed_yet;
302
303 return res;
304 }
305
306 /* Computes a hash function for database element ELT. */
307
308 static hashval_t
309 hash_scev_info (const void *elt)
310 {
311 return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
312 }
313
314 /* Compares database elements E1 and E2. */
315
316 static int
317 eq_scev_info (const void *e1, const void *e2)
318 {
319 const struct scev_info_str *elt1 = e1;
320 const struct scev_info_str *elt2 = e2;
321
322 return elt1->var == elt2->var;
323 }
324
325 /* Deletes database element E. */
326
327 static void
328 del_scev_info (void *e)
329 {
330 free (e);
331 }
332
333 /* Get the index corresponding to VAR in the current LOOP. If
334 it's the first time we ask for this VAR, then we return
335 chrec_not_analyzed_yet for this VAR and return its index. */
336
337 static tree *
338 find_var_scev_info (tree var)
339 {
340 struct scev_info_str *res;
341 struct scev_info_str tmp;
342 PTR *slot;
343
344 tmp.var = var;
345 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
346
347 if (!*slot)
348 *slot = new_scev_info_str (var);
349 res = *slot;
350
351 return &res->chrec;
352 }
353
354 /* Return true when CHREC contains symbolic names defined in
355 LOOP_NB. */
356
357 bool
358 chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
359 {
360 if (chrec == NULL_TREE)
361 return false;
362
363 if (TREE_INVARIANT (chrec))
364 return false;
365
366 if (TREE_CODE (chrec) == VAR_DECL
367 || TREE_CODE (chrec) == PARM_DECL
368 || TREE_CODE (chrec) == FUNCTION_DECL
369 || TREE_CODE (chrec) == LABEL_DECL
370 || TREE_CODE (chrec) == RESULT_DECL
371 || TREE_CODE (chrec) == FIELD_DECL)
372 return true;
373
374 if (TREE_CODE (chrec) == SSA_NAME)
375 {
376 tree def = SSA_NAME_DEF_STMT (chrec);
377 struct loop *def_loop = loop_containing_stmt (def);
378 struct loop *loop = current_loops->parray[loop_nb];
379
380 if (def_loop == NULL)
381 return false;
382
383 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
384 return true;
385
386 return false;
387 }
388
389 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
390 {
391 case 3:
392 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 2),
393 loop_nb))
394 return true;
395
396 case 2:
397 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 1),
398 loop_nb))
399 return true;
400
401 case 1:
402 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 0),
403 loop_nb))
404 return true;
405
406 default:
407 return false;
408 }
409 }
410
411 /* Return true when PHI is a loop-phi-node. */
412
413 static bool
414 loop_phi_node_p (tree phi)
415 {
416 /* The implementation of this function is based on the following
417 property: "all the loop-phi-nodes of a loop are contained in the
418 loop's header basic block". */
419
420 return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
421 }
422
423 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
424 In general, in the case of multivariate evolutions we want to get
425 the evolution in different loops. LOOP specifies the level for
426 which to get the evolution.
427
428 Example:
429
430 | for (j = 0; j < 100; j++)
431 | {
432 | for (k = 0; k < 100; k++)
433 | {
434 | i = k + j; - Here the value of i is a function of j, k.
435 | }
436 | ... = i - Here the value of i is a function of j.
437 | }
438 | ... = i - Here the value of i is a scalar.
439
440 Example:
441
442 | i_0 = ...
443 | loop_1 10 times
444 | i_1 = phi (i_0, i_2)
445 | i_2 = i_1 + 2
446 | endloop
447
448 This loop has the same effect as:
449 LOOP_1 has the same effect as:
450
451 | i_1 = i_0 + 20
452
453 The overall effect of the loop, "i_0 + 20" in the previous example,
454 is obtained by passing in the parameters: LOOP = 1,
455 EVOLUTION_FN = {i_0, +, 2}_1.
456 */
457
458 static tree
459 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
460 {
461 bool val = false;
462
463 if (evolution_fn == chrec_dont_know)
464 return chrec_dont_know;
465
466 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
467 {
468 if (CHREC_VARIABLE (evolution_fn) >= (unsigned) loop->num)
469 {
470 struct loop *inner_loop =
471 current_loops->parray[CHREC_VARIABLE (evolution_fn)];
472 tree nb_iter = number_of_iterations_in_loop (inner_loop);
473
474 if (nb_iter == chrec_dont_know)
475 return chrec_dont_know;
476 else
477 {
478 tree res;
479
480 /* Number of iterations is off by one (the ssa name we
481 analyze must be defined before the exit). */
482 nb_iter = chrec_fold_minus (chrec_type (nb_iter),
483 nb_iter,
484 build_int_cst_type (chrec_type (nb_iter), 1));
485
486 /* evolution_fn is the evolution function in LOOP. Get
487 its value in the nb_iter-th iteration. */
488 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
489
490 /* Continue the computation until ending on a parent of LOOP. */
491 return compute_overall_effect_of_inner_loop (loop, res);
492 }
493 }
494 else
495 return evolution_fn;
496 }
497
498 /* If the evolution function is an invariant, there is nothing to do. */
499 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
500 return evolution_fn;
501
502 else
503 return chrec_dont_know;
504 }
505
506 /* Determine whether the CHREC is always positive/negative. If the expression
507 cannot be statically analyzed, return false, otherwise set the answer into
508 VALUE. */
509
510 bool
511 chrec_is_positive (tree chrec, bool *value)
512 {
513 bool value0, value1;
514 bool value2;
515 tree end_value;
516 tree nb_iter;
517
518 switch (TREE_CODE (chrec))
519 {
520 case POLYNOMIAL_CHREC:
521 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
522 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
523 return false;
524
525 /* FIXME -- overflows. */
526 if (value0 == value1)
527 {
528 *value = value0;
529 return true;
530 }
531
532 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
533 and the proof consists in showing that the sign never
534 changes during the execution of the loop, from 0 to
535 loop->nb_iterations. */
536 if (!evolution_function_is_affine_p (chrec))
537 return false;
538
539 nb_iter = number_of_iterations_in_loop
540 (current_loops->parray[CHREC_VARIABLE (chrec)]);
541
542 if (chrec_contains_undetermined (nb_iter))
543 return false;
544
545 nb_iter = chrec_fold_minus
546 (chrec_type (nb_iter), nb_iter,
547 build_int_cst (chrec_type (nb_iter), 1));
548
549 #if 0
550 /* TODO -- If the test is after the exit, we may decrease the number of
551 iterations by one. */
552 if (after_exit)
553 nb_iter = chrec_fold_minus
554 (chrec_type (nb_iter), nb_iter,
555 build_int_cst (chrec_type (nb_iter), 1));
556 #endif
557
558 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
559
560 if (!chrec_is_positive (end_value, &value2))
561 return false;
562
563 *value = value0;
564 return value0 == value1;
565
566 case INTEGER_CST:
567 *value = (tree_int_cst_sgn (chrec) == 1);
568 return true;
569
570 default:
571 return false;
572 }
573 }
574
575 /* Associate CHREC to SCALAR. */
576
577 static void
578 set_scalar_evolution (tree scalar, tree chrec)
579 {
580 tree *scalar_info;
581
582 if (TREE_CODE (scalar) != SSA_NAME)
583 return;
584
585 scalar_info = find_var_scev_info (scalar);
586
587 if (dump_file)
588 {
589 if (dump_flags & TDF_DETAILS)
590 {
591 fprintf (dump_file, "(set_scalar_evolution \n");
592 fprintf (dump_file, " (scalar = ");
593 print_generic_expr (dump_file, scalar, 0);
594 fprintf (dump_file, ")\n (scalar_evolution = ");
595 print_generic_expr (dump_file, chrec, 0);
596 fprintf (dump_file, "))\n");
597 }
598 if (dump_flags & TDF_STATS)
599 nb_set_scev++;
600 }
601
602 *scalar_info = chrec;
603 }
604
605 /* Retrieve the chrec associated to SCALAR in the LOOP. */
606
607 static tree
608 get_scalar_evolution (tree scalar)
609 {
610 tree res;
611
612 if (dump_file)
613 {
614 if (dump_flags & TDF_DETAILS)
615 {
616 fprintf (dump_file, "(get_scalar_evolution \n");
617 fprintf (dump_file, " (scalar = ");
618 print_generic_expr (dump_file, scalar, 0);
619 fprintf (dump_file, ")\n");
620 }
621 if (dump_flags & TDF_STATS)
622 nb_get_scev++;
623 }
624
625 switch (TREE_CODE (scalar))
626 {
627 case SSA_NAME:
628 res = *find_var_scev_info (scalar);
629 break;
630
631 case REAL_CST:
632 case INTEGER_CST:
633 res = scalar;
634 break;
635
636 default:
637 res = chrec_not_analyzed_yet;
638 break;
639 }
640
641 if (dump_file && (dump_flags & TDF_DETAILS))
642 {
643 fprintf (dump_file, " (scalar_evolution = ");
644 print_generic_expr (dump_file, res, 0);
645 fprintf (dump_file, "))\n");
646 }
647
648 return res;
649 }
650
651 /* Helper function for add_to_evolution. Returns the evolution
652 function for an assignment of the form "a = b + c", where "a" and
653 "b" are on the strongly connected component. CHREC_BEFORE is the
654 information that we already have collected up to this point.
655 TO_ADD is the evolution of "c".
656
657 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
658 evolution the expression TO_ADD, otherwise construct an evolution
659 part for this loop. */
660
661 static tree
662 add_to_evolution_1 (unsigned loop_nb,
663 tree chrec_before,
664 tree to_add)
665 {
666 switch (TREE_CODE (chrec_before))
667 {
668 case POLYNOMIAL_CHREC:
669 if (CHREC_VARIABLE (chrec_before) <= loop_nb)
670 {
671 unsigned var;
672 tree left, right;
673 tree type = chrec_type (chrec_before);
674
675 /* When there is no evolution part in this loop, build it. */
676 if (CHREC_VARIABLE (chrec_before) < loop_nb)
677 {
678 var = loop_nb;
679 left = chrec_before;
680 right = SCALAR_FLOAT_TYPE_P (type)
681 ? build_real (type, dconst0)
682 : build_int_cst (type, 0);
683 }
684 else
685 {
686 var = CHREC_VARIABLE (chrec_before);
687 left = CHREC_LEFT (chrec_before);
688 right = CHREC_RIGHT (chrec_before);
689 }
690
691 return build_polynomial_chrec
692 (var, left, chrec_fold_plus (type, right, to_add));
693 }
694 else
695 /* Search the evolution in LOOP_NB. */
696 return build_polynomial_chrec
697 (CHREC_VARIABLE (chrec_before),
698 add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before), to_add),
699 CHREC_RIGHT (chrec_before));
700
701 default:
702 /* These nodes do not depend on a loop. */
703 if (chrec_before == chrec_dont_know)
704 return chrec_dont_know;
705 return build_polynomial_chrec (loop_nb, chrec_before, to_add);
706 }
707 }
708
709 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
710 of LOOP_NB.
711
712 Description (provided for completeness, for those who read code in
713 a plane, and for my poor 62 bytes brain that would have forgotten
714 all this in the next two or three months):
715
716 The algorithm of translation of programs from the SSA representation
717 into the chrecs syntax is based on a pattern matching. After having
718 reconstructed the overall tree expression for a loop, there are only
719 two cases that can arise:
720
721 1. a = loop-phi (init, a + expr)
722 2. a = loop-phi (init, expr)
723
724 where EXPR is either a scalar constant with respect to the analyzed
725 loop (this is a degree 0 polynomial), or an expression containing
726 other loop-phi definitions (these are higher degree polynomials).
727
728 Examples:
729
730 1.
731 | init = ...
732 | loop_1
733 | a = phi (init, a + 5)
734 | endloop
735
736 2.
737 | inita = ...
738 | initb = ...
739 | loop_1
740 | a = phi (inita, 2 * b + 3)
741 | b = phi (initb, b + 1)
742 | endloop
743
744 For the first case, the semantics of the SSA representation is:
745
746 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
747
748 that is, there is a loop index "x" that determines the scalar value
749 of the variable during the loop execution. During the first
750 iteration, the value is that of the initial condition INIT, while
751 during the subsequent iterations, it is the sum of the initial
752 condition with the sum of all the values of EXPR from the initial
753 iteration to the before last considered iteration.
754
755 For the second case, the semantics of the SSA program is:
756
757 | a (x) = init, if x = 0;
758 | expr (x - 1), otherwise.
759
760 The second case corresponds to the PEELED_CHREC, whose syntax is
761 close to the syntax of a loop-phi-node:
762
763 | phi (init, expr) vs. (init, expr)_x
764
765 The proof of the translation algorithm for the first case is a
766 proof by structural induction based on the degree of EXPR.
767
768 Degree 0:
769 When EXPR is a constant with respect to the analyzed loop, or in
770 other words when EXPR is a polynomial of degree 0, the evolution of
771 the variable A in the loop is an affine function with an initial
772 condition INIT, and a step EXPR. In order to show this, we start
773 from the semantics of the SSA representation:
774
775 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
776
777 and since "expr (j)" is a constant with respect to "j",
778
779 f (x) = init + x * expr
780
781 Finally, based on the semantics of the pure sum chrecs, by
782 identification we get the corresponding chrecs syntax:
783
784 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
785 f (x) -> {init, +, expr}_x
786
787 Higher degree:
788 Suppose that EXPR is a polynomial of degree N with respect to the
789 analyzed loop_x for which we have already determined that it is
790 written under the chrecs syntax:
791
792 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
793
794 We start from the semantics of the SSA program:
795
796 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
797 |
798 | f (x) = init + \sum_{j = 0}^{x - 1}
799 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
800 |
801 | f (x) = init + \sum_{j = 0}^{x - 1}
802 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
803 |
804 | f (x) = init + \sum_{k = 0}^{n - 1}
805 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
806 |
807 | f (x) = init + \sum_{k = 0}^{n - 1}
808 | (b_k * \binom{x}{k + 1})
809 |
810 | f (x) = init + b_0 * \binom{x}{1} + ...
811 | + b_{n-1} * \binom{x}{n}
812 |
813 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
814 | + b_{n-1} * \binom{x}{n}
815 |
816
817 And finally from the definition of the chrecs syntax, we identify:
818 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
819
820 This shows the mechanism that stands behind the add_to_evolution
821 function. An important point is that the use of symbolic
822 parameters avoids the need of an analysis schedule.
823
824 Example:
825
826 | inita = ...
827 | initb = ...
828 | loop_1
829 | a = phi (inita, a + 2 + b)
830 | b = phi (initb, b + 1)
831 | endloop
832
833 When analyzing "a", the algorithm keeps "b" symbolically:
834
835 | a -> {inita, +, 2 + b}_1
836
837 Then, after instantiation, the analyzer ends on the evolution:
838
839 | a -> {inita, +, 2 + initb, +, 1}_1
840
841 */
842
843 static tree
844 add_to_evolution (unsigned loop_nb,
845 tree chrec_before,
846 enum tree_code code,
847 tree to_add)
848 {
849 tree type = chrec_type (to_add);
850 tree res = NULL_TREE;
851
852 if (to_add == NULL_TREE)
853 return chrec_before;
854
855 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
856 instantiated at this point. */
857 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
858 /* This should not happen. */
859 return chrec_dont_know;
860
861 if (dump_file && (dump_flags & TDF_DETAILS))
862 {
863 fprintf (dump_file, "(add_to_evolution \n");
864 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
865 fprintf (dump_file, " (chrec_before = ");
866 print_generic_expr (dump_file, chrec_before, 0);
867 fprintf (dump_file, ")\n (to_add = ");
868 print_generic_expr (dump_file, to_add, 0);
869 fprintf (dump_file, ")\n");
870 }
871
872 if (code == MINUS_EXPR)
873 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
874 ? build_real (type, dconstm1)
875 : build_int_cst_type (type, -1));
876
877 res = add_to_evolution_1 (loop_nb, chrec_before, to_add);
878
879 if (dump_file && (dump_flags & TDF_DETAILS))
880 {
881 fprintf (dump_file, " (res = ");
882 print_generic_expr (dump_file, res, 0);
883 fprintf (dump_file, "))\n");
884 }
885
886 return res;
887 }
888
889 /* Helper function. */
890
891 static inline tree
892 set_nb_iterations_in_loop (struct loop *loop,
893 tree res)
894 {
895 res = chrec_fold_plus (chrec_type (res), res,
896 build_int_cst_type (chrec_type (res), 1));
897
898 /* FIXME HWI: However we want to store one iteration less than the
899 count of the loop in order to be compatible with the other
900 nb_iter computations in loop-iv. This also allows the
901 representation of nb_iters that are equal to MAX_INT. */
902 if (TREE_CODE (res) == INTEGER_CST
903 && (TREE_INT_CST_LOW (res) == 0
904 || TREE_OVERFLOW (res)))
905 res = chrec_dont_know;
906
907 if (dump_file && (dump_flags & TDF_DETAILS))
908 {
909 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
910 print_generic_expr (dump_file, res, 0);
911 fprintf (dump_file, "))\n");
912 }
913
914 loop->nb_iterations = res;
915 return res;
916 }
917
918 \f
919
920 /* This section selects the loops that will be good candidates for the
921 scalar evolution analysis. For the moment, greedily select all the
922 loop nests we could analyze. */
923
924 /* Return true when it is possible to analyze the condition expression
925 EXPR. */
926
927 static bool
928 analyzable_condition (tree expr)
929 {
930 tree condition;
931
932 if (TREE_CODE (expr) != COND_EXPR)
933 return false;
934
935 condition = TREE_OPERAND (expr, 0);
936
937 switch (TREE_CODE (condition))
938 {
939 case SSA_NAME:
940 return true;
941
942 case LT_EXPR:
943 case LE_EXPR:
944 case GT_EXPR:
945 case GE_EXPR:
946 case EQ_EXPR:
947 case NE_EXPR:
948 return true;
949
950 default:
951 return false;
952 }
953
954 return false;
955 }
956
957 /* For a loop with a single exit edge, return the COND_EXPR that
958 guards the exit edge. If the expression is too difficult to
959 analyze, then give up. */
960
961 tree
962 get_loop_exit_condition (struct loop *loop)
963 {
964 tree res = NULL_TREE;
965 edge exit_edge = loop->single_exit;
966
967
968 if (dump_file && (dump_flags & TDF_DETAILS))
969 fprintf (dump_file, "(get_loop_exit_condition \n ");
970
971 if (exit_edge)
972 {
973 tree expr;
974
975 expr = last_stmt (exit_edge->src);
976 if (analyzable_condition (expr))
977 res = expr;
978 }
979
980 if (dump_file && (dump_flags & TDF_DETAILS))
981 {
982 print_generic_expr (dump_file, res, 0);
983 fprintf (dump_file, ")\n");
984 }
985
986 return res;
987 }
988
989 /* Recursively determine and enqueue the exit conditions for a loop. */
990
991 static void
992 get_exit_conditions_rec (struct loop *loop,
993 VEC(tree,heap) **exit_conditions)
994 {
995 if (!loop)
996 return;
997
998 /* Recurse on the inner loops, then on the next (sibling) loops. */
999 get_exit_conditions_rec (loop->inner, exit_conditions);
1000 get_exit_conditions_rec (loop->next, exit_conditions);
1001
1002 if (loop->single_exit)
1003 {
1004 tree loop_condition = get_loop_exit_condition (loop);
1005
1006 if (loop_condition)
1007 VEC_safe_push (tree, heap, *exit_conditions, loop_condition);
1008 }
1009 }
1010
1011 /* Select the candidate loop nests for the analysis. This function
1012 initializes the EXIT_CONDITIONS array. */
1013
1014 static void
1015 select_loops_exit_conditions (struct loops *loops,
1016 VEC(tree,heap) **exit_conditions)
1017 {
1018 struct loop *function_body = loops->parray[0];
1019
1020 get_exit_conditions_rec (function_body->inner, exit_conditions);
1021 }
1022
1023 \f
1024 /* Depth first search algorithm. */
1025
1026 typedef enum t_bool {
1027 t_false,
1028 t_true,
1029 t_dont_know
1030 } t_bool;
1031
1032
1033 static t_bool follow_ssa_edge (struct loop *loop, tree, tree, tree *, int);
1034
1035 /* Follow the ssa edge into the right hand side RHS of an assignment.
1036 Return true if the strongly connected component has been found. */
1037
1038 static t_bool
1039 follow_ssa_edge_in_rhs (struct loop *loop, tree at_stmt, tree rhs,
1040 tree halting_phi, tree *evolution_of_loop, int limit)
1041 {
1042 t_bool res = t_false;
1043 tree rhs0, rhs1;
1044 tree type_rhs = TREE_TYPE (rhs);
1045
1046 /* The RHS is one of the following cases:
1047 - an SSA_NAME,
1048 - an INTEGER_CST,
1049 - a PLUS_EXPR,
1050 - a MINUS_EXPR,
1051 - an ASSERT_EXPR,
1052 - other cases are not yet handled. */
1053 switch (TREE_CODE (rhs))
1054 {
1055 case NOP_EXPR:
1056 /* This assignment is under the form "a_1 = (cast) rhs. */
1057 res = follow_ssa_edge_in_rhs (loop, at_stmt, TREE_OPERAND (rhs, 0),
1058 halting_phi, evolution_of_loop, limit);
1059 *evolution_of_loop = chrec_convert (TREE_TYPE (rhs),
1060 *evolution_of_loop, at_stmt);
1061 break;
1062
1063 case INTEGER_CST:
1064 /* This assignment is under the form "a_1 = 7". */
1065 res = t_false;
1066 break;
1067
1068 case SSA_NAME:
1069 /* This assignment is under the form: "a_1 = b_2". */
1070 res = follow_ssa_edge
1071 (loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop, limit);
1072 break;
1073
1074 case PLUS_EXPR:
1075 /* This case is under the form "rhs0 + rhs1". */
1076 rhs0 = TREE_OPERAND (rhs, 0);
1077 rhs1 = TREE_OPERAND (rhs, 1);
1078 STRIP_TYPE_NOPS (rhs0);
1079 STRIP_TYPE_NOPS (rhs1);
1080
1081 if (TREE_CODE (rhs0) == SSA_NAME)
1082 {
1083 if (TREE_CODE (rhs1) == SSA_NAME)
1084 {
1085 /* Match an assignment under the form:
1086 "a = b + c". */
1087 res = follow_ssa_edge
1088 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1089 evolution_of_loop, limit);
1090
1091 if (res == t_true)
1092 *evolution_of_loop = add_to_evolution
1093 (loop->num,
1094 chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1095 PLUS_EXPR, rhs1);
1096
1097 else if (res == t_false)
1098 {
1099 res = follow_ssa_edge
1100 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1101 evolution_of_loop, limit);
1102
1103 if (res == t_true)
1104 *evolution_of_loop = add_to_evolution
1105 (loop->num,
1106 chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1107 PLUS_EXPR, rhs0);
1108
1109 else if (res == t_dont_know)
1110 *evolution_of_loop = chrec_dont_know;
1111 }
1112
1113 else if (res == t_dont_know)
1114 *evolution_of_loop = chrec_dont_know;
1115 }
1116
1117 else
1118 {
1119 /* Match an assignment under the form:
1120 "a = b + ...". */
1121 res = follow_ssa_edge
1122 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1123 evolution_of_loop, limit);
1124 if (res == t_true)
1125 *evolution_of_loop = add_to_evolution
1126 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1127 at_stmt),
1128 PLUS_EXPR, rhs1);
1129
1130 else if (res == t_dont_know)
1131 *evolution_of_loop = chrec_dont_know;
1132 }
1133 }
1134
1135 else if (TREE_CODE (rhs1) == SSA_NAME)
1136 {
1137 /* Match an assignment under the form:
1138 "a = ... + c". */
1139 res = follow_ssa_edge
1140 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1141 evolution_of_loop, limit);
1142 if (res == t_true)
1143 *evolution_of_loop = add_to_evolution
1144 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1145 at_stmt),
1146 PLUS_EXPR, rhs0);
1147
1148 else if (res == t_dont_know)
1149 *evolution_of_loop = chrec_dont_know;
1150 }
1151
1152 else
1153 /* Otherwise, match an assignment under the form:
1154 "a = ... + ...". */
1155 /* And there is nothing to do. */
1156 res = t_false;
1157
1158 break;
1159
1160 case MINUS_EXPR:
1161 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1162 rhs0 = TREE_OPERAND (rhs, 0);
1163 rhs1 = TREE_OPERAND (rhs, 1);
1164 STRIP_TYPE_NOPS (rhs0);
1165 STRIP_TYPE_NOPS (rhs1);
1166
1167 if (TREE_CODE (rhs0) == SSA_NAME)
1168 {
1169 /* Match an assignment under the form:
1170 "a = b - ...". */
1171 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1172 evolution_of_loop, limit);
1173 if (res == t_true)
1174 *evolution_of_loop = add_to_evolution
1175 (loop->num, chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1176 MINUS_EXPR, rhs1);
1177
1178 else if (res == t_dont_know)
1179 *evolution_of_loop = chrec_dont_know;
1180 }
1181 else
1182 /* Otherwise, match an assignment under the form:
1183 "a = ... - ...". */
1184 /* And there is nothing to do. */
1185 res = t_false;
1186
1187 break;
1188
1189 case MULT_EXPR:
1190 /* This case is under the form "opnd0 = rhs0 * rhs1". */
1191 rhs0 = TREE_OPERAND (rhs, 0);
1192 rhs1 = TREE_OPERAND (rhs, 1);
1193 STRIP_TYPE_NOPS (rhs0);
1194 STRIP_TYPE_NOPS (rhs1);
1195
1196 if (TREE_CODE (rhs0) == SSA_NAME)
1197 {
1198 if (TREE_CODE (rhs1) == SSA_NAME)
1199 {
1200 /* Match an assignment under the form:
1201 "a = b * c". */
1202 res = follow_ssa_edge
1203 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1204 evolution_of_loop, limit);
1205
1206 if (res == t_true || res == t_dont_know)
1207 *evolution_of_loop = chrec_dont_know;
1208
1209 else if (res == t_false)
1210 {
1211 res = follow_ssa_edge
1212 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1213 evolution_of_loop, limit);
1214
1215 if (res == t_true || res == t_dont_know)
1216 *evolution_of_loop = chrec_dont_know;
1217 }
1218 }
1219
1220 else
1221 {
1222 /* Match an assignment under the form:
1223 "a = b * ...". */
1224 res = follow_ssa_edge
1225 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1226 evolution_of_loop, limit);
1227 if (res == t_true || res == t_dont_know)
1228 *evolution_of_loop = chrec_dont_know;
1229 }
1230 }
1231
1232 else if (TREE_CODE (rhs1) == SSA_NAME)
1233 {
1234 /* Match an assignment under the form:
1235 "a = ... * c". */
1236 res = follow_ssa_edge
1237 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1238 evolution_of_loop, limit);
1239 if (res == t_true || res == t_dont_know)
1240 *evolution_of_loop = chrec_dont_know;
1241 }
1242
1243 else
1244 /* Otherwise, match an assignment under the form:
1245 "a = ... * ...". */
1246 /* And there is nothing to do. */
1247 res = t_false;
1248
1249 break;
1250
1251 case ASSERT_EXPR:
1252 {
1253 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1254 It must be handled as a copy assignment of the form a_1 = a_2. */
1255 tree op0 = ASSERT_EXPR_VAR (rhs);
1256 if (TREE_CODE (op0) == SSA_NAME)
1257 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1258 halting_phi, evolution_of_loop, limit);
1259 else
1260 res = t_false;
1261 break;
1262 }
1263
1264
1265 default:
1266 res = t_false;
1267 break;
1268 }
1269
1270 return res;
1271 }
1272
1273 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1274
1275 static bool
1276 backedge_phi_arg_p (tree phi, int i)
1277 {
1278 edge e = PHI_ARG_EDGE (phi, i);
1279
1280 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1281 about updating it anywhere, and this should work as well most of the
1282 time. */
1283 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1284 return true;
1285
1286 return false;
1287 }
1288
1289 /* Helper function for one branch of the condition-phi-node. Return
1290 true if the strongly connected component has been found following
1291 this path. */
1292
1293 static inline t_bool
1294 follow_ssa_edge_in_condition_phi_branch (int i,
1295 struct loop *loop,
1296 tree condition_phi,
1297 tree halting_phi,
1298 tree *evolution_of_branch,
1299 tree init_cond, int limit)
1300 {
1301 tree branch = PHI_ARG_DEF (condition_phi, i);
1302 *evolution_of_branch = chrec_dont_know;
1303
1304 /* Do not follow back edges (they must belong to an irreducible loop, which
1305 we really do not want to worry about). */
1306 if (backedge_phi_arg_p (condition_phi, i))
1307 return t_false;
1308
1309 if (TREE_CODE (branch) == SSA_NAME)
1310 {
1311 *evolution_of_branch = init_cond;
1312 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1313 evolution_of_branch, limit);
1314 }
1315
1316 /* This case occurs when one of the condition branches sets
1317 the variable to a constant: i.e. a phi-node like
1318 "a_2 = PHI <a_7(5), 2(6)>;".
1319
1320 FIXME: This case have to be refined correctly:
1321 in some cases it is possible to say something better than
1322 chrec_dont_know, for example using a wrap-around notation. */
1323 return t_false;
1324 }
1325
1326 /* This function merges the branches of a condition-phi-node in a
1327 loop. */
1328
1329 static t_bool
1330 follow_ssa_edge_in_condition_phi (struct loop *loop,
1331 tree condition_phi,
1332 tree halting_phi,
1333 tree *evolution_of_loop, int limit)
1334 {
1335 int i;
1336 tree init = *evolution_of_loop;
1337 tree evolution_of_branch;
1338 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1339 halting_phi,
1340 &evolution_of_branch,
1341 init, limit);
1342 if (res == t_false || res == t_dont_know)
1343 return res;
1344
1345 *evolution_of_loop = evolution_of_branch;
1346
1347 for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1348 {
1349 /* Quickly give up when the evolution of one of the branches is
1350 not known. */
1351 if (*evolution_of_loop == chrec_dont_know)
1352 return t_true;
1353
1354 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1355 halting_phi,
1356 &evolution_of_branch,
1357 init, limit);
1358 if (res == t_false || res == t_dont_know)
1359 return res;
1360
1361 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1362 evolution_of_branch);
1363 }
1364
1365 return t_true;
1366 }
1367
1368 /* Follow an SSA edge in an inner loop. It computes the overall
1369 effect of the loop, and following the symbolic initial conditions,
1370 it follows the edges in the parent loop. The inner loop is
1371 considered as a single statement. */
1372
1373 static t_bool
1374 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1375 tree loop_phi_node,
1376 tree halting_phi,
1377 tree *evolution_of_loop, int limit)
1378 {
1379 struct loop *loop = loop_containing_stmt (loop_phi_node);
1380 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1381
1382 /* Sometimes, the inner loop is too difficult to analyze, and the
1383 result of the analysis is a symbolic parameter. */
1384 if (ev == PHI_RESULT (loop_phi_node))
1385 {
1386 t_bool res = t_false;
1387 int i;
1388
1389 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1390 {
1391 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1392 basic_block bb;
1393
1394 /* Follow the edges that exit the inner loop. */
1395 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1396 if (!flow_bb_inside_loop_p (loop, bb))
1397 res = follow_ssa_edge_in_rhs (outer_loop, loop_phi_node,
1398 arg, halting_phi,
1399 evolution_of_loop, limit);
1400 if (res == t_true)
1401 break;
1402 }
1403
1404 /* If the path crosses this loop-phi, give up. */
1405 if (res == t_true)
1406 *evolution_of_loop = chrec_dont_know;
1407
1408 return res;
1409 }
1410
1411 /* Otherwise, compute the overall effect of the inner loop. */
1412 ev = compute_overall_effect_of_inner_loop (loop, ev);
1413 return follow_ssa_edge_in_rhs (outer_loop, loop_phi_node, ev, halting_phi,
1414 evolution_of_loop, limit);
1415 }
1416
1417 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1418 path that is analyzed on the return walk. */
1419
1420 static t_bool
1421 follow_ssa_edge (struct loop *loop, tree def, tree halting_phi,
1422 tree *evolution_of_loop, int limit)
1423 {
1424 struct loop *def_loop;
1425
1426 if (TREE_CODE (def) == NOP_EXPR)
1427 return t_false;
1428
1429 /* Give up if the path is longer than the MAX that we allow. */
1430 if (limit++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1431 return t_dont_know;
1432
1433 def_loop = loop_containing_stmt (def);
1434
1435 switch (TREE_CODE (def))
1436 {
1437 case PHI_NODE:
1438 if (!loop_phi_node_p (def))
1439 /* DEF is a condition-phi-node. Follow the branches, and
1440 record their evolutions. Finally, merge the collected
1441 information and set the approximation to the main
1442 variable. */
1443 return follow_ssa_edge_in_condition_phi
1444 (loop, def, halting_phi, evolution_of_loop, limit);
1445
1446 /* When the analyzed phi is the halting_phi, the
1447 depth-first search is over: we have found a path from
1448 the halting_phi to itself in the loop. */
1449 if (def == halting_phi)
1450 return t_true;
1451
1452 /* Otherwise, the evolution of the HALTING_PHI depends
1453 on the evolution of another loop-phi-node, i.e. the
1454 evolution function is a higher degree polynomial. */
1455 if (def_loop == loop)
1456 return t_false;
1457
1458 /* Inner loop. */
1459 if (flow_loop_nested_p (loop, def_loop))
1460 return follow_ssa_edge_inner_loop_phi
1461 (loop, def, halting_phi, evolution_of_loop, limit);
1462
1463 /* Outer loop. */
1464 return t_false;
1465
1466 case MODIFY_EXPR:
1467 return follow_ssa_edge_in_rhs (loop, def,
1468 TREE_OPERAND (def, 1),
1469 halting_phi,
1470 evolution_of_loop, limit);
1471
1472 default:
1473 /* At this level of abstraction, the program is just a set
1474 of MODIFY_EXPRs and PHI_NODEs. In principle there is no
1475 other node to be handled. */
1476 return t_false;
1477 }
1478 }
1479
1480 \f
1481
1482 /* Given a LOOP_PHI_NODE, this function determines the evolution
1483 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1484
1485 static tree
1486 analyze_evolution_in_loop (tree loop_phi_node,
1487 tree init_cond)
1488 {
1489 int i;
1490 tree evolution_function = chrec_not_analyzed_yet;
1491 struct loop *loop = loop_containing_stmt (loop_phi_node);
1492 basic_block bb;
1493
1494 if (dump_file && (dump_flags & TDF_DETAILS))
1495 {
1496 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1497 fprintf (dump_file, " (loop_phi_node = ");
1498 print_generic_expr (dump_file, loop_phi_node, 0);
1499 fprintf (dump_file, ")\n");
1500 }
1501
1502 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1503 {
1504 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1505 tree ssa_chain, ev_fn;
1506 t_bool res;
1507
1508 /* Select the edges that enter the loop body. */
1509 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1510 if (!flow_bb_inside_loop_p (loop, bb))
1511 continue;
1512
1513 if (TREE_CODE (arg) == SSA_NAME)
1514 {
1515 ssa_chain = SSA_NAME_DEF_STMT (arg);
1516
1517 /* Pass in the initial condition to the follow edge function. */
1518 ev_fn = init_cond;
1519 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1520 }
1521 else
1522 res = t_false;
1523
1524 /* When it is impossible to go back on the same
1525 loop_phi_node by following the ssa edges, the
1526 evolution is represented by a peeled chrec, i.e. the
1527 first iteration, EV_FN has the value INIT_COND, then
1528 all the other iterations it has the value of ARG.
1529 For the moment, PEELED_CHREC nodes are not built. */
1530 if (res != t_true)
1531 ev_fn = chrec_dont_know;
1532
1533 /* When there are multiple back edges of the loop (which in fact never
1534 happens currently, but nevertheless), merge their evolutions. */
1535 evolution_function = chrec_merge (evolution_function, ev_fn);
1536 }
1537
1538 if (dump_file && (dump_flags & TDF_DETAILS))
1539 {
1540 fprintf (dump_file, " (evolution_function = ");
1541 print_generic_expr (dump_file, evolution_function, 0);
1542 fprintf (dump_file, "))\n");
1543 }
1544
1545 return evolution_function;
1546 }
1547
1548 /* Given a loop-phi-node, return the initial conditions of the
1549 variable on entry of the loop. When the CCP has propagated
1550 constants into the loop-phi-node, the initial condition is
1551 instantiated, otherwise the initial condition is kept symbolic.
1552 This analyzer does not analyze the evolution outside the current
1553 loop, and leaves this task to the on-demand tree reconstructor. */
1554
1555 static tree
1556 analyze_initial_condition (tree loop_phi_node)
1557 {
1558 int i;
1559 tree init_cond = chrec_not_analyzed_yet;
1560 struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1561
1562 if (dump_file && (dump_flags & TDF_DETAILS))
1563 {
1564 fprintf (dump_file, "(analyze_initial_condition \n");
1565 fprintf (dump_file, " (loop_phi_node = \n");
1566 print_generic_expr (dump_file, loop_phi_node, 0);
1567 fprintf (dump_file, ")\n");
1568 }
1569
1570 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1571 {
1572 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1573 basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1574
1575 /* When the branch is oriented to the loop's body, it does
1576 not contribute to the initial condition. */
1577 if (flow_bb_inside_loop_p (loop, bb))
1578 continue;
1579
1580 if (init_cond == chrec_not_analyzed_yet)
1581 {
1582 init_cond = branch;
1583 continue;
1584 }
1585
1586 if (TREE_CODE (branch) == SSA_NAME)
1587 {
1588 init_cond = chrec_dont_know;
1589 break;
1590 }
1591
1592 init_cond = chrec_merge (init_cond, branch);
1593 }
1594
1595 /* Ooops -- a loop without an entry??? */
1596 if (init_cond == chrec_not_analyzed_yet)
1597 init_cond = chrec_dont_know;
1598
1599 if (dump_file && (dump_flags & TDF_DETAILS))
1600 {
1601 fprintf (dump_file, " (init_cond = ");
1602 print_generic_expr (dump_file, init_cond, 0);
1603 fprintf (dump_file, "))\n");
1604 }
1605
1606 return init_cond;
1607 }
1608
1609 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1610
1611 static tree
1612 interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1613 {
1614 tree res;
1615 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1616 tree init_cond;
1617
1618 if (phi_loop != loop)
1619 {
1620 struct loop *subloop;
1621 tree evolution_fn = analyze_scalar_evolution
1622 (phi_loop, PHI_RESULT (loop_phi_node));
1623
1624 /* Dive one level deeper. */
1625 subloop = superloop_at_depth (phi_loop, loop->depth + 1);
1626
1627 /* Interpret the subloop. */
1628 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1629 return res;
1630 }
1631
1632 /* Otherwise really interpret the loop phi. */
1633 init_cond = analyze_initial_condition (loop_phi_node);
1634 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1635
1636 return res;
1637 }
1638
1639 /* This function merges the branches of a condition-phi-node,
1640 contained in the outermost loop, and whose arguments are already
1641 analyzed. */
1642
1643 static tree
1644 interpret_condition_phi (struct loop *loop, tree condition_phi)
1645 {
1646 int i;
1647 tree res = chrec_not_analyzed_yet;
1648
1649 for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1650 {
1651 tree branch_chrec;
1652
1653 if (backedge_phi_arg_p (condition_phi, i))
1654 {
1655 res = chrec_dont_know;
1656 break;
1657 }
1658
1659 branch_chrec = analyze_scalar_evolution
1660 (loop, PHI_ARG_DEF (condition_phi, i));
1661
1662 res = chrec_merge (res, branch_chrec);
1663 }
1664
1665 return res;
1666 }
1667
1668 /* Interpret the right hand side of a modify_expr OPND1. If we didn't
1669 analyze this node before, follow the definitions until ending
1670 either on an analyzed modify_expr, or on a loop-phi-node. On the
1671 return path, this function propagates evolutions (ala constant copy
1672 propagation). OPND1 is not a GIMPLE expression because we could
1673 analyze the effect of an inner loop: see interpret_loop_phi. */
1674
1675 static tree
1676 interpret_rhs_modify_expr (struct loop *loop, tree at_stmt,
1677 tree opnd1, tree type)
1678 {
1679 tree res, opnd10, opnd11, chrec10, chrec11;
1680
1681 if (is_gimple_min_invariant (opnd1))
1682 return chrec_convert (type, opnd1, at_stmt);
1683
1684 switch (TREE_CODE (opnd1))
1685 {
1686 case PLUS_EXPR:
1687 opnd10 = TREE_OPERAND (opnd1, 0);
1688 opnd11 = TREE_OPERAND (opnd1, 1);
1689 chrec10 = analyze_scalar_evolution (loop, opnd10);
1690 chrec11 = analyze_scalar_evolution (loop, opnd11);
1691 chrec10 = chrec_convert (type, chrec10, at_stmt);
1692 chrec11 = chrec_convert (type, chrec11, at_stmt);
1693 res = chrec_fold_plus (type, chrec10, chrec11);
1694 break;
1695
1696 case MINUS_EXPR:
1697 opnd10 = TREE_OPERAND (opnd1, 0);
1698 opnd11 = TREE_OPERAND (opnd1, 1);
1699 chrec10 = analyze_scalar_evolution (loop, opnd10);
1700 chrec11 = analyze_scalar_evolution (loop, opnd11);
1701 chrec10 = chrec_convert (type, chrec10, at_stmt);
1702 chrec11 = chrec_convert (type, chrec11, at_stmt);
1703 res = chrec_fold_minus (type, chrec10, chrec11);
1704 break;
1705
1706 case NEGATE_EXPR:
1707 opnd10 = TREE_OPERAND (opnd1, 0);
1708 chrec10 = analyze_scalar_evolution (loop, opnd10);
1709 chrec10 = chrec_convert (type, chrec10, at_stmt);
1710 res = chrec_fold_multiply (type, chrec10, SCALAR_FLOAT_TYPE_P (type)
1711 ? build_real (type, dconstm1)
1712 : build_int_cst_type (type, -1));
1713 break;
1714
1715 case MULT_EXPR:
1716 opnd10 = TREE_OPERAND (opnd1, 0);
1717 opnd11 = TREE_OPERAND (opnd1, 1);
1718 chrec10 = analyze_scalar_evolution (loop, opnd10);
1719 chrec11 = analyze_scalar_evolution (loop, opnd11);
1720 chrec10 = chrec_convert (type, chrec10, at_stmt);
1721 chrec11 = chrec_convert (type, chrec11, at_stmt);
1722 res = chrec_fold_multiply (type, chrec10, chrec11);
1723 break;
1724
1725 case SSA_NAME:
1726 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1),
1727 at_stmt);
1728 break;
1729
1730 case ASSERT_EXPR:
1731 opnd10 = ASSERT_EXPR_VAR (opnd1);
1732 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd10),
1733 at_stmt);
1734 break;
1735
1736 case NOP_EXPR:
1737 case CONVERT_EXPR:
1738 opnd10 = TREE_OPERAND (opnd1, 0);
1739 chrec10 = analyze_scalar_evolution (loop, opnd10);
1740 res = chrec_convert (type, chrec10, at_stmt);
1741 break;
1742
1743 default:
1744 res = chrec_dont_know;
1745 break;
1746 }
1747
1748 return res;
1749 }
1750
1751 \f
1752
1753 /* This section contains all the entry points:
1754 - number_of_iterations_in_loop,
1755 - analyze_scalar_evolution,
1756 - instantiate_parameters.
1757 */
1758
1759 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1760 common ancestor of DEF_LOOP and USE_LOOP. */
1761
1762 static tree
1763 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1764 struct loop *def_loop,
1765 tree ev)
1766 {
1767 tree res;
1768 if (def_loop == wrto_loop)
1769 return ev;
1770
1771 def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
1772 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1773
1774 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1775 }
1776
1777 /* Helper recursive function. */
1778
1779 static tree
1780 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1781 {
1782 tree def, type = TREE_TYPE (var);
1783 basic_block bb;
1784 struct loop *def_loop;
1785
1786 if (loop == NULL)
1787 return chrec_dont_know;
1788
1789 if (TREE_CODE (var) != SSA_NAME)
1790 return interpret_rhs_modify_expr (loop, NULL_TREE, var, type);
1791
1792 def = SSA_NAME_DEF_STMT (var);
1793 bb = bb_for_stmt (def);
1794 def_loop = bb ? bb->loop_father : NULL;
1795
1796 if (bb == NULL
1797 || !flow_bb_inside_loop_p (loop, bb))
1798 {
1799 /* Keep the symbolic form. */
1800 res = var;
1801 goto set_and_end;
1802 }
1803
1804 if (res != chrec_not_analyzed_yet)
1805 {
1806 if (loop != bb->loop_father)
1807 res = compute_scalar_evolution_in_loop
1808 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1809
1810 goto set_and_end;
1811 }
1812
1813 if (loop != def_loop)
1814 {
1815 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1816 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1817
1818 goto set_and_end;
1819 }
1820
1821 switch (TREE_CODE (def))
1822 {
1823 case MODIFY_EXPR:
1824 res = interpret_rhs_modify_expr (loop, def, TREE_OPERAND (def, 1), type);
1825 break;
1826
1827 case PHI_NODE:
1828 if (loop_phi_node_p (def))
1829 res = interpret_loop_phi (loop, def);
1830 else
1831 res = interpret_condition_phi (loop, def);
1832 break;
1833
1834 default:
1835 res = chrec_dont_know;
1836 break;
1837 }
1838
1839 set_and_end:
1840
1841 /* Keep the symbolic form. */
1842 if (res == chrec_dont_know)
1843 res = var;
1844
1845 if (loop == def_loop)
1846 set_scalar_evolution (var, res);
1847
1848 return res;
1849 }
1850
1851 /* Entry point for the scalar evolution analyzer.
1852 Analyzes and returns the scalar evolution of the ssa_name VAR.
1853 LOOP_NB is the identifier number of the loop in which the variable
1854 is used.
1855
1856 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1857 pointer to the statement that uses this variable, in order to
1858 determine the evolution function of the variable, use the following
1859 calls:
1860
1861 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1862 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1863 tree chrec_instantiated = instantiate_parameters
1864 (loop_nb, chrec_with_symbols);
1865 */
1866
1867 tree
1868 analyze_scalar_evolution (struct loop *loop, tree var)
1869 {
1870 tree res;
1871
1872 if (dump_file && (dump_flags & TDF_DETAILS))
1873 {
1874 fprintf (dump_file, "(analyze_scalar_evolution \n");
1875 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1876 fprintf (dump_file, " (scalar = ");
1877 print_generic_expr (dump_file, var, 0);
1878 fprintf (dump_file, ")\n");
1879 }
1880
1881 res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
1882
1883 if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
1884 res = var;
1885
1886 if (dump_file && (dump_flags & TDF_DETAILS))
1887 fprintf (dump_file, ")\n");
1888
1889 return res;
1890 }
1891
1892 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1893 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
1894 of VERSION). */
1895
1896 static tree
1897 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
1898 tree version)
1899 {
1900 bool val = false;
1901 tree ev = version;
1902
1903 while (1)
1904 {
1905 ev = analyze_scalar_evolution (use_loop, ev);
1906 ev = resolve_mixers (use_loop, ev);
1907
1908 if (use_loop == wrto_loop)
1909 return ev;
1910
1911 /* If the value of the use changes in the inner loop, we cannot express
1912 its value in the outer loop (we might try to return interval chrec,
1913 but we do not have a user for it anyway) */
1914 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
1915 || !val)
1916 return chrec_dont_know;
1917
1918 use_loop = use_loop->outer;
1919 }
1920 }
1921
1922 /* Returns instantiated value for VERSION in CACHE. */
1923
1924 static tree
1925 get_instantiated_value (htab_t cache, tree version)
1926 {
1927 struct scev_info_str *info, pattern;
1928
1929 pattern.var = version;
1930 info = htab_find (cache, &pattern);
1931
1932 if (info)
1933 return info->chrec;
1934 else
1935 return NULL_TREE;
1936 }
1937
1938 /* Sets instantiated value for VERSION to VAL in CACHE. */
1939
1940 static void
1941 set_instantiated_value (htab_t cache, tree version, tree val)
1942 {
1943 struct scev_info_str *info, pattern;
1944 PTR *slot;
1945
1946 pattern.var = version;
1947 slot = htab_find_slot (cache, &pattern, INSERT);
1948
1949 if (*slot)
1950 info = *slot;
1951 else
1952 info = *slot = new_scev_info_str (version);
1953 info->chrec = val;
1954 }
1955
1956 /* Return the closed_loop_phi node for VAR. If there is none, return
1957 NULL_TREE. */
1958
1959 static tree
1960 loop_closed_phi_def (tree var)
1961 {
1962 struct loop *loop;
1963 edge exit;
1964 tree phi;
1965
1966 if (var == NULL_TREE
1967 || TREE_CODE (var) != SSA_NAME)
1968 return NULL_TREE;
1969
1970 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
1971 exit = loop->single_exit;
1972 if (!exit)
1973 return NULL_TREE;
1974
1975 for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
1976 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
1977 return PHI_RESULT (phi);
1978
1979 return NULL_TREE;
1980 }
1981
1982 /* Analyze all the parameters of the chrec that were left under a symbolic form,
1983 with respect to LOOP. CHREC is the chrec to instantiate. CACHE is the cache
1984 of already instantiated values. FLAGS modify the way chrecs are
1985 instantiated. SIZE_EXPR is used for computing the size of the expression to
1986 be instantiated, and to stop if it exceeds some limit. */
1987
1988 /* Values for FLAGS. */
1989 enum
1990 {
1991 INSERT_SUPERLOOP_CHRECS = 1, /* Loop invariants are replaced with chrecs
1992 in outer loops. */
1993 FOLD_CONVERSIONS = 2 /* The conversions that may wrap in
1994 signed/pointer type are folded, as long as the
1995 value of the chrec is preserved. */
1996 };
1997
1998 static tree
1999 instantiate_parameters_1 (struct loop *loop, tree chrec, int flags, htab_t cache,
2000 int size_expr)
2001 {
2002 tree res, op0, op1, op2;
2003 basic_block def_bb;
2004 struct loop *def_loop;
2005
2006 /* Give up if the expression is larger than the MAX that we allow. */
2007 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2008 return chrec_dont_know;
2009
2010 if (automatically_generated_chrec_p (chrec)
2011 || is_gimple_min_invariant (chrec))
2012 return chrec;
2013
2014 switch (TREE_CODE (chrec))
2015 {
2016 case SSA_NAME:
2017 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
2018
2019 /* A parameter (or loop invariant and we do not want to include
2020 evolutions in outer loops), nothing to do. */
2021 if (!def_bb
2022 || (!(flags & INSERT_SUPERLOOP_CHRECS)
2023 && !flow_bb_inside_loop_p (loop, def_bb)))
2024 return chrec;
2025
2026 /* We cache the value of instantiated variable to avoid exponential
2027 time complexity due to reevaluations. We also store the convenient
2028 value in the cache in order to prevent infinite recursion -- we do
2029 not want to instantiate the SSA_NAME if it is in a mixer
2030 structure. This is used for avoiding the instantiation of
2031 recursively defined functions, such as:
2032
2033 | a_2 -> {0, +, 1, +, a_2}_1 */
2034
2035 res = get_instantiated_value (cache, chrec);
2036 if (res)
2037 return res;
2038
2039 /* Store the convenient value for chrec in the structure. If it
2040 is defined outside of the loop, we may just leave it in symbolic
2041 form, otherwise we need to admit that we do not know its behavior
2042 inside the loop. */
2043 res = !flow_bb_inside_loop_p (loop, def_bb) ? chrec : chrec_dont_know;
2044 set_instantiated_value (cache, chrec, res);
2045
2046 /* To make things even more complicated, instantiate_parameters_1
2047 calls analyze_scalar_evolution that may call # of iterations
2048 analysis that may in turn call instantiate_parameters_1 again.
2049 To prevent the infinite recursion, keep also the bitmap of
2050 ssa names that are being instantiated globally. */
2051 if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
2052 return res;
2053
2054 def_loop = find_common_loop (loop, def_bb->loop_father);
2055
2056 /* If the analysis yields a parametric chrec, instantiate the
2057 result again. */
2058 bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2059 res = analyze_scalar_evolution (def_loop, chrec);
2060
2061 /* Don't instantiate loop-closed-ssa phi nodes. */
2062 if (TREE_CODE (res) == SSA_NAME
2063 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2064 || (loop_containing_stmt (SSA_NAME_DEF_STMT (res))->depth
2065 > def_loop->depth)))
2066 {
2067 if (res == chrec)
2068 res = loop_closed_phi_def (chrec);
2069 else
2070 res = chrec;
2071
2072 if (res == NULL_TREE)
2073 res = chrec_dont_know;
2074 }
2075
2076 else if (res != chrec_dont_know)
2077 res = instantiate_parameters_1 (loop, res, flags, cache, size_expr);
2078
2079 bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2080
2081 /* Store the correct value to the cache. */
2082 set_instantiated_value (cache, chrec, res);
2083 return res;
2084
2085 case POLYNOMIAL_CHREC:
2086 op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
2087 flags, cache, size_expr);
2088 if (op0 == chrec_dont_know)
2089 return chrec_dont_know;
2090
2091 op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
2092 flags, cache, size_expr);
2093 if (op1 == chrec_dont_know)
2094 return chrec_dont_know;
2095
2096 if (CHREC_LEFT (chrec) != op0
2097 || CHREC_RIGHT (chrec) != op1)
2098 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2099 return chrec;
2100
2101 case PLUS_EXPR:
2102 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2103 flags, cache, size_expr);
2104 if (op0 == chrec_dont_know)
2105 return chrec_dont_know;
2106
2107 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2108 flags, cache, size_expr);
2109 if (op1 == chrec_dont_know)
2110 return chrec_dont_know;
2111
2112 if (TREE_OPERAND (chrec, 0) != op0
2113 || TREE_OPERAND (chrec, 1) != op1)
2114 chrec = chrec_fold_plus (TREE_TYPE (chrec), op0, op1);
2115 return chrec;
2116
2117 case MINUS_EXPR:
2118 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2119 flags, cache, size_expr);
2120 if (op0 == chrec_dont_know)
2121 return chrec_dont_know;
2122
2123 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2124 flags, cache, size_expr);
2125 if (op1 == chrec_dont_know)
2126 return chrec_dont_know;
2127
2128 if (TREE_OPERAND (chrec, 0) != op0
2129 || TREE_OPERAND (chrec, 1) != op1)
2130 chrec = chrec_fold_minus (TREE_TYPE (chrec), op0, op1);
2131 return chrec;
2132
2133 case MULT_EXPR:
2134 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2135 flags, cache, size_expr);
2136 if (op0 == chrec_dont_know)
2137 return chrec_dont_know;
2138
2139 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2140 flags, cache, size_expr);
2141 if (op1 == chrec_dont_know)
2142 return chrec_dont_know;
2143
2144 if (TREE_OPERAND (chrec, 0) != op0
2145 || TREE_OPERAND (chrec, 1) != op1)
2146 chrec = chrec_fold_multiply (TREE_TYPE (chrec), op0, op1);
2147 return chrec;
2148
2149 case NOP_EXPR:
2150 case CONVERT_EXPR:
2151 case NON_LVALUE_EXPR:
2152 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2153 flags, cache, size_expr);
2154 if (op0 == chrec_dont_know)
2155 return chrec_dont_know;
2156
2157 if (flags & FOLD_CONVERSIONS)
2158 {
2159 tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2160 if (tmp)
2161 return tmp;
2162 }
2163
2164 if (op0 == TREE_OPERAND (chrec, 0))
2165 return chrec;
2166
2167 return chrec_convert (TREE_TYPE (chrec), op0, NULL_TREE);
2168
2169 case SCEV_NOT_KNOWN:
2170 return chrec_dont_know;
2171
2172 case SCEV_KNOWN:
2173 return chrec_known;
2174
2175 default:
2176 break;
2177 }
2178
2179 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2180 {
2181 case 3:
2182 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2183 flags, cache, size_expr);
2184 if (op0 == chrec_dont_know)
2185 return chrec_dont_know;
2186
2187 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2188 flags, cache, size_expr);
2189 if (op1 == chrec_dont_know)
2190 return chrec_dont_know;
2191
2192 op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
2193 flags, cache, size_expr);
2194 if (op2 == chrec_dont_know)
2195 return chrec_dont_know;
2196
2197 if (op0 == TREE_OPERAND (chrec, 0)
2198 && op1 == TREE_OPERAND (chrec, 1)
2199 && op2 == TREE_OPERAND (chrec, 2))
2200 return chrec;
2201
2202 return fold_build3 (TREE_CODE (chrec),
2203 TREE_TYPE (chrec), op0, op1, op2);
2204
2205 case 2:
2206 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2207 flags, cache, size_expr);
2208 if (op0 == chrec_dont_know)
2209 return chrec_dont_know;
2210
2211 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2212 flags, cache, size_expr);
2213 if (op1 == chrec_dont_know)
2214 return chrec_dont_know;
2215
2216 if (op0 == TREE_OPERAND (chrec, 0)
2217 && op1 == TREE_OPERAND (chrec, 1))
2218 return chrec;
2219 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2220
2221 case 1:
2222 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2223 flags, cache, size_expr);
2224 if (op0 == chrec_dont_know)
2225 return chrec_dont_know;
2226 if (op0 == TREE_OPERAND (chrec, 0))
2227 return chrec;
2228 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2229
2230 case 0:
2231 return chrec;
2232
2233 default:
2234 break;
2235 }
2236
2237 /* Too complicated to handle. */
2238 return chrec_dont_know;
2239 }
2240
2241 /* Analyze all the parameters of the chrec that were left under a
2242 symbolic form. LOOP is the loop in which symbolic names have to
2243 be analyzed and instantiated. */
2244
2245 tree
2246 instantiate_parameters (struct loop *loop,
2247 tree chrec)
2248 {
2249 tree res;
2250 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2251
2252 if (dump_file && (dump_flags & TDF_DETAILS))
2253 {
2254 fprintf (dump_file, "(instantiate_parameters \n");
2255 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2256 fprintf (dump_file, " (chrec = ");
2257 print_generic_expr (dump_file, chrec, 0);
2258 fprintf (dump_file, ")\n");
2259 }
2260
2261 res = instantiate_parameters_1 (loop, chrec, INSERT_SUPERLOOP_CHRECS, cache,
2262 0);
2263
2264 if (dump_file && (dump_flags & TDF_DETAILS))
2265 {
2266 fprintf (dump_file, " (res = ");
2267 print_generic_expr (dump_file, res, 0);
2268 fprintf (dump_file, "))\n");
2269 }
2270
2271 htab_delete (cache);
2272
2273 return res;
2274 }
2275
2276 /* Similar to instantiate_parameters, but does not introduce the
2277 evolutions in outer loops for LOOP invariants in CHREC, and does not
2278 care about causing overflows, as long as they do not affect value
2279 of an expression. */
2280
2281 static tree
2282 resolve_mixers (struct loop *loop, tree chrec)
2283 {
2284 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2285 tree ret = instantiate_parameters_1 (loop, chrec, FOLD_CONVERSIONS, cache, 0);
2286 htab_delete (cache);
2287 return ret;
2288 }
2289
2290 /* Entry point for the analysis of the number of iterations pass.
2291 This function tries to safely approximate the number of iterations
2292 the loop will run. When this property is not decidable at compile
2293 time, the result is chrec_dont_know. Otherwise the result is
2294 a scalar or a symbolic parameter.
2295
2296 Example of analysis: suppose that the loop has an exit condition:
2297
2298 "if (b > 49) goto end_loop;"
2299
2300 and that in a previous analysis we have determined that the
2301 variable 'b' has an evolution function:
2302
2303 "EF = {23, +, 5}_2".
2304
2305 When we evaluate the function at the point 5, i.e. the value of the
2306 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2307 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2308 the loop body has been executed 6 times. */
2309
2310 tree
2311 number_of_iterations_in_loop (struct loop *loop)
2312 {
2313 tree res, type;
2314 edge exit;
2315 struct tree_niter_desc niter_desc;
2316
2317 /* Determine whether the number_of_iterations_in_loop has already
2318 been computed. */
2319 res = loop->nb_iterations;
2320 if (res)
2321 return res;
2322 res = chrec_dont_know;
2323
2324 if (dump_file && (dump_flags & TDF_DETAILS))
2325 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2326
2327 exit = loop->single_exit;
2328 if (!exit)
2329 goto end;
2330
2331 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
2332 goto end;
2333
2334 type = TREE_TYPE (niter_desc.niter);
2335 if (integer_nonzerop (niter_desc.may_be_zero))
2336 res = build_int_cst (type, 0);
2337 else if (integer_zerop (niter_desc.may_be_zero))
2338 res = niter_desc.niter;
2339 else
2340 res = chrec_dont_know;
2341
2342 end:
2343 return set_nb_iterations_in_loop (loop, res);
2344 }
2345
2346 /* One of the drivers for testing the scalar evolutions analysis.
2347 This function computes the number of iterations for all the loops
2348 from the EXIT_CONDITIONS array. */
2349
2350 static void
2351 number_of_iterations_for_all_loops (VEC(tree,heap) **exit_conditions)
2352 {
2353 unsigned int i;
2354 unsigned nb_chrec_dont_know_loops = 0;
2355 unsigned nb_static_loops = 0;
2356 tree cond;
2357
2358 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2359 {
2360 tree res = number_of_iterations_in_loop (loop_containing_stmt (cond));
2361 if (chrec_contains_undetermined (res))
2362 nb_chrec_dont_know_loops++;
2363 else
2364 nb_static_loops++;
2365 }
2366
2367 if (dump_file)
2368 {
2369 fprintf (dump_file, "\n(\n");
2370 fprintf (dump_file, "-----------------------------------------\n");
2371 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2372 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2373 fprintf (dump_file, "%d\tnb_total_loops\n", current_loops->num);
2374 fprintf (dump_file, "-----------------------------------------\n");
2375 fprintf (dump_file, ")\n\n");
2376
2377 print_loop_ir (dump_file);
2378 }
2379 }
2380
2381 \f
2382
2383 /* Counters for the stats. */
2384
2385 struct chrec_stats
2386 {
2387 unsigned nb_chrecs;
2388 unsigned nb_affine;
2389 unsigned nb_affine_multivar;
2390 unsigned nb_higher_poly;
2391 unsigned nb_chrec_dont_know;
2392 unsigned nb_undetermined;
2393 };
2394
2395 /* Reset the counters. */
2396
2397 static inline void
2398 reset_chrecs_counters (struct chrec_stats *stats)
2399 {
2400 stats->nb_chrecs = 0;
2401 stats->nb_affine = 0;
2402 stats->nb_affine_multivar = 0;
2403 stats->nb_higher_poly = 0;
2404 stats->nb_chrec_dont_know = 0;
2405 stats->nb_undetermined = 0;
2406 }
2407
2408 /* Dump the contents of a CHREC_STATS structure. */
2409
2410 static void
2411 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2412 {
2413 fprintf (file, "\n(\n");
2414 fprintf (file, "-----------------------------------------\n");
2415 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2416 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2417 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2418 stats->nb_higher_poly);
2419 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2420 fprintf (file, "-----------------------------------------\n");
2421 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2422 fprintf (file, "%d\twith undetermined coefficients\n",
2423 stats->nb_undetermined);
2424 fprintf (file, "-----------------------------------------\n");
2425 fprintf (file, "%d\tchrecs in the scev database\n",
2426 (int) htab_elements (scalar_evolution_info));
2427 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2428 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2429 fprintf (file, "-----------------------------------------\n");
2430 fprintf (file, ")\n\n");
2431 }
2432
2433 /* Gather statistics about CHREC. */
2434
2435 static void
2436 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2437 {
2438 if (dump_file && (dump_flags & TDF_STATS))
2439 {
2440 fprintf (dump_file, "(classify_chrec ");
2441 print_generic_expr (dump_file, chrec, 0);
2442 fprintf (dump_file, "\n");
2443 }
2444
2445 stats->nb_chrecs++;
2446
2447 if (chrec == NULL_TREE)
2448 {
2449 stats->nb_undetermined++;
2450 return;
2451 }
2452
2453 switch (TREE_CODE (chrec))
2454 {
2455 case POLYNOMIAL_CHREC:
2456 if (evolution_function_is_affine_p (chrec))
2457 {
2458 if (dump_file && (dump_flags & TDF_STATS))
2459 fprintf (dump_file, " affine_univariate\n");
2460 stats->nb_affine++;
2461 }
2462 else if (evolution_function_is_affine_multivariate_p (chrec))
2463 {
2464 if (dump_file && (dump_flags & TDF_STATS))
2465 fprintf (dump_file, " affine_multivariate\n");
2466 stats->nb_affine_multivar++;
2467 }
2468 else
2469 {
2470 if (dump_file && (dump_flags & TDF_STATS))
2471 fprintf (dump_file, " higher_degree_polynomial\n");
2472 stats->nb_higher_poly++;
2473 }
2474
2475 break;
2476
2477 default:
2478 break;
2479 }
2480
2481 if (chrec_contains_undetermined (chrec))
2482 {
2483 if (dump_file && (dump_flags & TDF_STATS))
2484 fprintf (dump_file, " undetermined\n");
2485 stats->nb_undetermined++;
2486 }
2487
2488 if (dump_file && (dump_flags & TDF_STATS))
2489 fprintf (dump_file, ")\n");
2490 }
2491
2492 /* One of the drivers for testing the scalar evolutions analysis.
2493 This function analyzes the scalar evolution of all the scalars
2494 defined as loop phi nodes in one of the loops from the
2495 EXIT_CONDITIONS array.
2496
2497 TODO Optimization: A loop is in canonical form if it contains only
2498 a single scalar loop phi node. All the other scalars that have an
2499 evolution in the loop are rewritten in function of this single
2500 index. This allows the parallelization of the loop. */
2501
2502 static void
2503 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree,heap) **exit_conditions)
2504 {
2505 unsigned int i;
2506 struct chrec_stats stats;
2507 tree cond;
2508
2509 reset_chrecs_counters (&stats);
2510
2511 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2512 {
2513 struct loop *loop;
2514 basic_block bb;
2515 tree phi, chrec;
2516
2517 loop = loop_containing_stmt (cond);
2518 bb = loop->header;
2519
2520 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2521 if (is_gimple_reg (PHI_RESULT (phi)))
2522 {
2523 chrec = instantiate_parameters
2524 (loop,
2525 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2526
2527 if (dump_file && (dump_flags & TDF_STATS))
2528 gather_chrec_stats (chrec, &stats);
2529 }
2530 }
2531
2532 if (dump_file && (dump_flags & TDF_STATS))
2533 dump_chrecs_stats (dump_file, &stats);
2534 }
2535
2536 /* Callback for htab_traverse, gathers information on chrecs in the
2537 hashtable. */
2538
2539 static int
2540 gather_stats_on_scev_database_1 (void **slot, void *stats)
2541 {
2542 struct scev_info_str *entry = *slot;
2543
2544 gather_chrec_stats (entry->chrec, stats);
2545
2546 return 1;
2547 }
2548
2549 /* Classify the chrecs of the whole database. */
2550
2551 void
2552 gather_stats_on_scev_database (void)
2553 {
2554 struct chrec_stats stats;
2555
2556 if (!dump_file)
2557 return;
2558
2559 reset_chrecs_counters (&stats);
2560
2561 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2562 &stats);
2563
2564 dump_chrecs_stats (dump_file, &stats);
2565 }
2566
2567 \f
2568
2569 /* Initializer. */
2570
2571 static void
2572 initialize_scalar_evolutions_analyzer (void)
2573 {
2574 /* The elements below are unique. */
2575 if (chrec_dont_know == NULL_TREE)
2576 {
2577 chrec_not_analyzed_yet = NULL_TREE;
2578 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2579 chrec_known = make_node (SCEV_KNOWN);
2580 TREE_TYPE (chrec_dont_know) = void_type_node;
2581 TREE_TYPE (chrec_known) = void_type_node;
2582 }
2583 }
2584
2585 /* Initialize the analysis of scalar evolutions for LOOPS. */
2586
2587 void
2588 scev_initialize (struct loops *loops)
2589 {
2590 unsigned i;
2591 current_loops = loops;
2592
2593 scalar_evolution_info = htab_create (100, hash_scev_info,
2594 eq_scev_info, del_scev_info);
2595 already_instantiated = BITMAP_ALLOC (NULL);
2596
2597 initialize_scalar_evolutions_analyzer ();
2598
2599 for (i = 1; i < loops->num; i++)
2600 if (loops->parray[i])
2601 loops->parray[i]->nb_iterations = NULL_TREE;
2602 }
2603
2604 /* Cleans up the information cached by the scalar evolutions analysis. */
2605
2606 void
2607 scev_reset (void)
2608 {
2609 unsigned i;
2610 struct loop *loop;
2611
2612 if (!scalar_evolution_info || !current_loops)
2613 return;
2614
2615 htab_empty (scalar_evolution_info);
2616 for (i = 1; i < current_loops->num; i++)
2617 {
2618 loop = current_loops->parray[i];
2619 if (loop)
2620 loop->nb_iterations = NULL_TREE;
2621 }
2622 }
2623
2624 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2625 its BASE and STEP if possible. If ALLOW_NONCONSTANT_STEP is true, we
2626 want STEP to be invariant in LOOP. Otherwise we require it to be an
2627 integer constant. */
2628
2629 bool
2630 simple_iv (struct loop *loop, tree stmt, tree op, tree *base, tree *step,
2631 bool allow_nonconstant_step)
2632 {
2633 basic_block bb = bb_for_stmt (stmt);
2634 tree type, ev;
2635
2636 *base = NULL_TREE;
2637 *step = NULL_TREE;
2638
2639 type = TREE_TYPE (op);
2640 if (TREE_CODE (type) != INTEGER_TYPE
2641 && TREE_CODE (type) != POINTER_TYPE)
2642 return false;
2643
2644 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op);
2645 if (chrec_contains_undetermined (ev))
2646 return false;
2647
2648 if (tree_does_not_contain_chrecs (ev)
2649 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2650 {
2651 *base = ev;
2652 return true;
2653 }
2654
2655 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2656 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2657 return false;
2658
2659 *step = CHREC_RIGHT (ev);
2660 if (allow_nonconstant_step)
2661 {
2662 if (tree_contains_chrecs (*step, NULL)
2663 || chrec_contains_symbols_defined_in_loop (*step, loop->num))
2664 return false;
2665 }
2666 else if (TREE_CODE (*step) != INTEGER_CST)
2667 return false;
2668
2669 *base = CHREC_LEFT (ev);
2670 if (tree_contains_chrecs (*base, NULL)
2671 || chrec_contains_symbols_defined_in_loop (*base, loop->num))
2672 return false;
2673
2674 return true;
2675 }
2676
2677 /* Runs the analysis of scalar evolutions. */
2678
2679 void
2680 scev_analysis (void)
2681 {
2682 VEC(tree,heap) *exit_conditions;
2683
2684 exit_conditions = VEC_alloc (tree, heap, 37);
2685 select_loops_exit_conditions (current_loops, &exit_conditions);
2686
2687 if (dump_file && (dump_flags & TDF_STATS))
2688 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
2689
2690 number_of_iterations_for_all_loops (&exit_conditions);
2691 VEC_free (tree, heap, exit_conditions);
2692 }
2693
2694 /* Finalize the scalar evolution analysis. */
2695
2696 void
2697 scev_finalize (void)
2698 {
2699 htab_delete (scalar_evolution_info);
2700 BITMAP_FREE (already_instantiated);
2701 }
2702
2703 /* Replace ssa names for that scev can prove they are constant by the
2704 appropriate constants. Also perform final value replacement in loops,
2705 in case the replacement expressions are cheap.
2706
2707 We only consider SSA names defined by phi nodes; rest is left to the
2708 ordinary constant propagation pass. */
2709
2710 void
2711 scev_const_prop (void)
2712 {
2713 basic_block bb;
2714 tree name, phi, next_phi, type, ev;
2715 struct loop *loop, *ex_loop;
2716 bitmap ssa_names_to_remove = NULL;
2717 unsigned i;
2718
2719 if (!current_loops)
2720 return;
2721
2722 FOR_EACH_BB (bb)
2723 {
2724 loop = bb->loop_father;
2725
2726 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2727 {
2728 name = PHI_RESULT (phi);
2729
2730 if (!is_gimple_reg (name))
2731 continue;
2732
2733 type = TREE_TYPE (name);
2734
2735 if (!POINTER_TYPE_P (type)
2736 && !INTEGRAL_TYPE_P (type))
2737 continue;
2738
2739 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2740 if (!is_gimple_min_invariant (ev)
2741 || !may_propagate_copy (name, ev))
2742 continue;
2743
2744 /* Replace the uses of the name. */
2745 if (name != ev)
2746 replace_uses_by (name, ev);
2747
2748 if (!ssa_names_to_remove)
2749 ssa_names_to_remove = BITMAP_ALLOC (NULL);
2750 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2751 }
2752 }
2753
2754 /* Remove the ssa names that were replaced by constants. We do not remove them
2755 directly in the previous cycle, since this invalidates scev cache. */
2756 if (ssa_names_to_remove)
2757 {
2758 bitmap_iterator bi;
2759 unsigned i;
2760
2761 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2762 {
2763 name = ssa_name (i);
2764 phi = SSA_NAME_DEF_STMT (name);
2765
2766 gcc_assert (TREE_CODE (phi) == PHI_NODE);
2767 remove_phi_node (phi, NULL);
2768 }
2769
2770 BITMAP_FREE (ssa_names_to_remove);
2771 scev_reset ();
2772 }
2773
2774 /* Now the regular final value replacement. */
2775 for (i = current_loops->num - 1; i > 0; i--)
2776 {
2777 edge exit;
2778 tree def, stmts;
2779
2780 loop = current_loops->parray[i];
2781 if (!loop)
2782 continue;
2783
2784 /* If we do not know exact number of iterations of the loop, we cannot
2785 replace the final value. */
2786 exit = loop->single_exit;
2787 if (!exit
2788 || number_of_iterations_in_loop (loop) == chrec_dont_know)
2789 continue;
2790 ex_loop = exit->dest->loop_father;
2791
2792 for (phi = phi_nodes (exit->dest); phi; phi = next_phi)
2793 {
2794 next_phi = PHI_CHAIN (phi);
2795 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2796 if (!is_gimple_reg (def)
2797 || expr_invariant_in_loop_p (loop, def))
2798 continue;
2799
2800 if (!POINTER_TYPE_P (TREE_TYPE (def))
2801 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
2802 continue;
2803
2804 def = analyze_scalar_evolution_in_loop (ex_loop, ex_loop, def);
2805 if (!tree_does_not_contain_chrecs (def)
2806 || chrec_contains_symbols_defined_in_loop (def, loop->num)
2807 || def == PHI_RESULT (phi)
2808 || (TREE_CODE (def) == SSA_NAME
2809 && loop_containing_stmt (SSA_NAME_DEF_STMT (def))
2810 && loop_containing_stmt (phi)
2811 && loop_containing_stmt (SSA_NAME_DEF_STMT (def))
2812 == loop_containing_stmt (phi)))
2813 continue;
2814
2815 /* If computing the expression is expensive, let it remain in
2816 loop. TODO -- we should take the cost of computing the expression
2817 in loop into account. */
2818 if (force_expr_to_var_cost (def) >= target_spill_cost)
2819 continue;
2820 def = unshare_expr (def);
2821
2822 if (is_gimple_val (def))
2823 stmts = NULL_TREE;
2824 else
2825 def = force_gimple_operand (def, &stmts, true,
2826 SSA_NAME_VAR (PHI_RESULT (phi)));
2827 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, exit), def);
2828 if (stmts)
2829 compute_phi_arg_on_exit (exit, stmts, def);
2830 }
2831 }
2832 }
This page took 0.160038 seconds and 6 git commands to generate.