]> gcc.gnu.org Git - gcc.git/blob - gcc/tree-into-ssa.c
backport: ChangeLog.tuples: ChangeLog from gimple-tuples-branch.
[gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "langhooks.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "bitmap.h"
38 #include "tree-flow.h"
39 #include "gimple.h"
40 #include "tree-inline.h"
41 #include "varray.h"
42 #include "timevar.h"
43 #include "hashtab.h"
44 #include "tree-dump.h"
45 #include "tree-pass.h"
46 #include "cfgloop.h"
47 #include "domwalk.h"
48 #include "ggc.h"
49 #include "params.h"
50 #include "vecprim.h"
51
52
53 /* This file builds the SSA form for a function as described in:
54 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
55 Computing Static Single Assignment Form and the Control Dependence
56 Graph. ACM Transactions on Programming Languages and Systems,
57 13(4):451-490, October 1991. */
58
59 /* Structure to map a variable VAR to the set of blocks that contain
60 definitions for VAR. */
61 struct def_blocks_d
62 {
63 /* The variable. */
64 tree var;
65
66 /* Blocks that contain definitions of VAR. Bit I will be set if the
67 Ith block contains a definition of VAR. */
68 bitmap def_blocks;
69
70 /* Blocks that contain a PHI node for VAR. */
71 bitmap phi_blocks;
72
73 /* Blocks where VAR is live-on-entry. Similar semantics as
74 DEF_BLOCKS. */
75 bitmap livein_blocks;
76 };
77
78
79 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
80 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
81 basic blocks where VAR is defined (assigned a new value). It also
82 contains a bitmap of all the blocks where VAR is live-on-entry
83 (i.e., there is a use of VAR in block B without a preceding
84 definition in B). The live-on-entry information is used when
85 computing PHI pruning heuristics. */
86 static htab_t def_blocks;
87
88 /* Stack of trees used to restore the global currdefs to its original
89 state after completing rewriting of a block and its dominator
90 children. Its elements have the following properties:
91
92 - An SSA_NAME (N) indicates that the current definition of the
93 underlying variable should be set to the given SSA_NAME. If the
94 symbol associated with the SSA_NAME is not a GIMPLE register, the
95 next slot in the stack must be a _DECL node (SYM). In this case,
96 the name N in the previous slot is the current reaching
97 definition for SYM.
98
99 - A _DECL node indicates that the underlying variable has no
100 current definition.
101
102 - A NULL node at the top entry is used to mark the last slot
103 associated with the current block. */
104 static VEC(tree,heap) *block_defs_stack;
105
106
107 /* Set of existing SSA names being replaced by update_ssa. */
108 static sbitmap old_ssa_names;
109
110 /* Set of new SSA names being added by update_ssa. Note that both
111 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
112 the operations done on them are presence tests. */
113 static sbitmap new_ssa_names;
114
115
116 /* Symbols whose SSA form needs to be updated or created for the first
117 time. */
118 static bitmap syms_to_rename;
119
120 /* Subset of SYMS_TO_RENAME. Contains all the GIMPLE register symbols
121 that have been marked for renaming. */
122 static bitmap regs_to_rename;
123
124 /* Subset of SYMS_TO_RENAME. Contains all the memory symbols
125 that have been marked for renaming. */
126 static bitmap mem_syms_to_rename;
127
128 /* Set of SSA names that have been marked to be released after they
129 were registered in the replacement table. They will be finally
130 released after we finish updating the SSA web. */
131 static bitmap names_to_release;
132
133 /* For each block, the PHI nodes that need to be rewritten are stored into
134 these vectors. */
135 typedef VEC(gimple, heap) *gimple_vec;
136 DEF_VEC_P (gimple_vec);
137 DEF_VEC_ALLOC_P (gimple_vec, heap);
138
139 static VEC(gimple_vec, heap) *phis_to_rewrite;
140
141 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
142 static bitmap blocks_with_phis_to_rewrite;
143
144 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
145 to grow as the callers to register_new_name_mapping will typically
146 create new names on the fly. FIXME. Currently set to 1/3 to avoid
147 frequent reallocations but still need to find a reasonable growth
148 strategy. */
149 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
150
151 /* Tuple used to represent replacement mappings. */
152 struct repl_map_d
153 {
154 tree name;
155 bitmap set;
156 };
157
158
159 /* NEW -> OLD_SET replacement table. If we are replacing several
160 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
161 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
162 static htab_t repl_tbl;
163
164 /* true if register_new_name_mapping needs to initialize the data
165 structures needed by update_ssa. */
166 static bool need_to_initialize_update_ssa_p = true;
167
168 /* true if update_ssa needs to update virtual operands. */
169 static bool need_to_update_vops_p = false;
170
171 /* Statistics kept by update_ssa to use in the virtual mapping
172 heuristic. If the number of virtual mappings is beyond certain
173 threshold, the updater will switch from using the mappings into
174 renaming the virtual symbols from scratch. In some cases, the
175 large number of name mappings for virtual names causes significant
176 slowdowns in the PHI insertion code. */
177 struct update_ssa_stats_d
178 {
179 unsigned num_virtual_mappings;
180 unsigned num_total_mappings;
181 bitmap virtual_symbols;
182 unsigned num_virtual_symbols;
183 };
184 static struct update_ssa_stats_d update_ssa_stats;
185
186 /* Global data to attach to the main dominator walk structure. */
187 struct mark_def_sites_global_data
188 {
189 /* This bitmap contains the variables which are set before they
190 are used in a basic block. */
191 bitmap kills;
192
193 /* Bitmap of names to rename. */
194 sbitmap names_to_rename;
195
196 /* Set of blocks that mark_def_sites deems interesting for the
197 renamer to process. */
198 sbitmap interesting_blocks;
199 };
200
201
202 /* Information stored for SSA names. */
203 struct ssa_name_info
204 {
205 /* The current reaching definition replacing this SSA name. */
206 tree current_def;
207
208 /* This field indicates whether or not the variable may need PHI nodes.
209 See the enum's definition for more detailed information about the
210 states. */
211 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
212
213 /* Age of this record (so that info_for_ssa_name table can be cleared
214 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
215 are assumed to be null. */
216 unsigned age;
217 };
218
219 /* The information associated with names. */
220 typedef struct ssa_name_info *ssa_name_info_p;
221 DEF_VEC_P (ssa_name_info_p);
222 DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
223
224 static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
225 static unsigned current_info_for_ssa_name_age;
226
227 /* The set of blocks affected by update_ssa. */
228 static bitmap blocks_to_update;
229
230 /* The main entry point to the SSA renamer (rewrite_blocks) may be
231 called several times to do different, but related, tasks.
232 Initially, we need it to rename the whole program into SSA form.
233 At other times, we may need it to only rename into SSA newly
234 exposed symbols. Finally, we can also call it to incrementally fix
235 an already built SSA web. */
236 enum rewrite_mode {
237 /* Convert the whole function into SSA form. */
238 REWRITE_ALL,
239
240 /* Incrementally update the SSA web by replacing existing SSA
241 names with new ones. See update_ssa for details. */
242 REWRITE_UPDATE
243 };
244
245
246
247
248 /* Prototypes for debugging functions. */
249 extern void dump_tree_ssa (FILE *);
250 extern void debug_tree_ssa (void);
251 extern void debug_def_blocks (void);
252 extern void dump_tree_ssa_stats (FILE *);
253 extern void debug_tree_ssa_stats (void);
254 extern void dump_update_ssa (FILE *);
255 extern void debug_update_ssa (void);
256 extern void dump_names_replaced_by (FILE *, tree);
257 extern void debug_names_replaced_by (tree);
258 extern void dump_def_blocks (FILE *);
259 extern void debug_def_blocks (void);
260 extern void dump_defs_stack (FILE *, int);
261 extern void debug_defs_stack (int);
262 extern void dump_currdefs (FILE *);
263 extern void debug_currdefs (void);
264
265 /* Return true if STMT needs to be rewritten. When renaming a subset
266 of the variables, not all statements will be processed. This is
267 decided in mark_def_sites. */
268
269 static inline bool
270 rewrite_uses_p (gimple stmt)
271 {
272 return gimple_visited_p (stmt);
273 }
274
275
276 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
277
278 static inline void
279 set_rewrite_uses (gimple stmt, bool rewrite_p)
280 {
281 gimple_set_visited (stmt, rewrite_p);
282 }
283
284
285 /* Return true if the DEFs created by statement STMT should be
286 registered when marking new definition sites. This is slightly
287 different than rewrite_uses_p: it's used by update_ssa to
288 distinguish statements that need to have both uses and defs
289 processed from those that only need to have their defs processed.
290 Statements that define new SSA names only need to have their defs
291 registered, but they don't need to have their uses renamed. */
292
293 static inline bool
294 register_defs_p (gimple stmt)
295 {
296 return gimple_plf (stmt, GF_PLF_1) != 0;
297 }
298
299
300 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
301
302 static inline void
303 set_register_defs (gimple stmt, bool register_defs_p)
304 {
305 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
306 }
307
308
309 /* Get the information associated with NAME. */
310
311 static inline ssa_name_info_p
312 get_ssa_name_ann (tree name)
313 {
314 unsigned ver = SSA_NAME_VERSION (name);
315 unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
316 struct ssa_name_info *info;
317
318 if (ver >= len)
319 {
320 unsigned new_len = num_ssa_names;
321
322 VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
323 while (len++ < new_len)
324 {
325 struct ssa_name_info *info = XCNEW (struct ssa_name_info);
326 info->age = current_info_for_ssa_name_age;
327 VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
328 }
329 }
330
331 info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
332 if (info->age < current_info_for_ssa_name_age)
333 {
334 info->need_phi_state = 0;
335 info->current_def = NULL_TREE;
336 info->age = current_info_for_ssa_name_age;
337 }
338
339 return info;
340 }
341
342
343 /* Clears info for SSA names. */
344
345 static void
346 clear_ssa_name_info (void)
347 {
348 current_info_for_ssa_name_age++;
349 }
350
351
352 /* Get phi_state field for VAR. */
353
354 static inline enum need_phi_state
355 get_phi_state (tree var)
356 {
357 if (TREE_CODE (var) == SSA_NAME)
358 return get_ssa_name_ann (var)->need_phi_state;
359 else
360 return var_ann (var)->need_phi_state;
361 }
362
363
364 /* Sets phi_state field for VAR to STATE. */
365
366 static inline void
367 set_phi_state (tree var, enum need_phi_state state)
368 {
369 if (TREE_CODE (var) == SSA_NAME)
370 get_ssa_name_ann (var)->need_phi_state = state;
371 else
372 var_ann (var)->need_phi_state = state;
373 }
374
375
376 /* Return the current definition for VAR. */
377
378 tree
379 get_current_def (tree var)
380 {
381 if (TREE_CODE (var) == SSA_NAME)
382 return get_ssa_name_ann (var)->current_def;
383 else
384 return var_ann (var)->current_def;
385 }
386
387
388 /* Sets current definition of VAR to DEF. */
389
390 void
391 set_current_def (tree var, tree def)
392 {
393 if (TREE_CODE (var) == SSA_NAME)
394 get_ssa_name_ann (var)->current_def = def;
395 else
396 var_ann (var)->current_def = def;
397 }
398
399
400 /* Compute global livein information given the set of blocks where
401 an object is locally live at the start of the block (LIVEIN)
402 and the set of blocks where the object is defined (DEF_BLOCKS).
403
404 Note: This routine augments the existing local livein information
405 to include global livein (i.e., it modifies the underlying bitmap
406 for LIVEIN). */
407
408 void
409 compute_global_livein (bitmap livein ATTRIBUTE_UNUSED, bitmap def_blocks ATTRIBUTE_UNUSED)
410 {
411 basic_block bb, *worklist, *tos;
412 unsigned i;
413 bitmap_iterator bi;
414
415 tos = worklist
416 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
417
418 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
419 *tos++ = BASIC_BLOCK (i);
420
421 /* Iterate until the worklist is empty. */
422 while (tos != worklist)
423 {
424 edge e;
425 edge_iterator ei;
426
427 /* Pull a block off the worklist. */
428 bb = *--tos;
429
430 /* For each predecessor block. */
431 FOR_EACH_EDGE (e, ei, bb->preds)
432 {
433 basic_block pred = e->src;
434 int pred_index = pred->index;
435
436 /* None of this is necessary for the entry block. */
437 if (pred != ENTRY_BLOCK_PTR
438 && ! bitmap_bit_p (livein, pred_index)
439 && ! bitmap_bit_p (def_blocks, pred_index))
440 {
441 *tos++ = pred;
442 bitmap_set_bit (livein, pred_index);
443 }
444 }
445 }
446
447 free (worklist);
448 }
449
450
451 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
452 all statements in basic block BB. */
453
454 static void
455 initialize_flags_in_bb (basic_block bb)
456 {
457 gimple stmt;
458 gimple_stmt_iterator gsi;
459
460 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
461 {
462 gimple phi = gsi_stmt (gsi);
463 set_rewrite_uses (phi, false);
464 set_register_defs (phi, false);
465 }
466
467 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
468 {
469 stmt = gsi_stmt (gsi);
470
471 /* We are going to use the operand cache API, such as
472 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
473 cache for each statement should be up-to-date. */
474 gcc_assert (!gimple_modified_p (stmt));
475 set_rewrite_uses (stmt, false);
476 set_register_defs (stmt, false);
477 }
478 }
479
480 /* Mark block BB as interesting for update_ssa. */
481
482 static void
483 mark_block_for_update (basic_block bb)
484 {
485 gcc_assert (blocks_to_update != NULL);
486 if (bitmap_bit_p (blocks_to_update, bb->index))
487 return;
488 bitmap_set_bit (blocks_to_update, bb->index);
489 initialize_flags_in_bb (bb);
490 }
491
492 /* Return the set of blocks where variable VAR is defined and the blocks
493 where VAR is live on entry (livein). If no entry is found in
494 DEF_BLOCKS, a new one is created and returned. */
495
496 static inline struct def_blocks_d *
497 get_def_blocks_for (tree var)
498 {
499 struct def_blocks_d db, *db_p;
500 void **slot;
501
502 db.var = var;
503 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
504 if (*slot == NULL)
505 {
506 db_p = XNEW (struct def_blocks_d);
507 db_p->var = var;
508 db_p->def_blocks = BITMAP_ALLOC (NULL);
509 db_p->phi_blocks = BITMAP_ALLOC (NULL);
510 db_p->livein_blocks = BITMAP_ALLOC (NULL);
511 *slot = (void *) db_p;
512 }
513 else
514 db_p = (struct def_blocks_d *) *slot;
515
516 return db_p;
517 }
518
519
520 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
521 VAR is defined by a PHI node. */
522
523 static void
524 set_def_block (tree var, basic_block bb, bool phi_p)
525 {
526 struct def_blocks_d *db_p;
527 enum need_phi_state state;
528
529 state = get_phi_state (var);
530 db_p = get_def_blocks_for (var);
531
532 /* Set the bit corresponding to the block where VAR is defined. */
533 bitmap_set_bit (db_p->def_blocks, bb->index);
534 if (phi_p)
535 bitmap_set_bit (db_p->phi_blocks, bb->index);
536
537 /* Keep track of whether or not we may need to insert PHI nodes.
538
539 If we are in the UNKNOWN state, then this is the first definition
540 of VAR. Additionally, we have not seen any uses of VAR yet, so
541 we do not need a PHI node for this variable at this time (i.e.,
542 transition to NEED_PHI_STATE_NO).
543
544 If we are in any other state, then we either have multiple definitions
545 of this variable occurring in different blocks or we saw a use of the
546 variable which was not dominated by the block containing the
547 definition(s). In this case we may need a PHI node, so enter
548 state NEED_PHI_STATE_MAYBE. */
549 if (state == NEED_PHI_STATE_UNKNOWN)
550 set_phi_state (var, NEED_PHI_STATE_NO);
551 else
552 set_phi_state (var, NEED_PHI_STATE_MAYBE);
553 }
554
555
556 /* Mark block BB as having VAR live at the entry to BB. */
557
558 static void
559 set_livein_block (tree var, basic_block bb)
560 {
561 struct def_blocks_d *db_p;
562 enum need_phi_state state = get_phi_state (var);
563
564 db_p = get_def_blocks_for (var);
565
566 /* Set the bit corresponding to the block where VAR is live in. */
567 bitmap_set_bit (db_p->livein_blocks, bb->index);
568
569 /* Keep track of whether or not we may need to insert PHI nodes.
570
571 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
572 by the single block containing the definition(s) of this variable. If
573 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
574 NEED_PHI_STATE_MAYBE. */
575 if (state == NEED_PHI_STATE_NO)
576 {
577 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
578
579 if (def_block_index == -1
580 || ! dominated_by_p (CDI_DOMINATORS, bb,
581 BASIC_BLOCK (def_block_index)))
582 set_phi_state (var, NEED_PHI_STATE_MAYBE);
583 }
584 else
585 set_phi_state (var, NEED_PHI_STATE_MAYBE);
586 }
587
588
589 /* Return true if symbol SYM is marked for renaming. */
590
591 static inline bool
592 symbol_marked_for_renaming (tree sym)
593 {
594 return bitmap_bit_p (syms_to_rename, DECL_UID (sym));
595 }
596
597
598 /* Return true if NAME is in OLD_SSA_NAMES. */
599
600 static inline bool
601 is_old_name (tree name)
602 {
603 unsigned ver = SSA_NAME_VERSION (name);
604 return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
605 }
606
607
608 /* Return true if NAME is in NEW_SSA_NAMES. */
609
610 static inline bool
611 is_new_name (tree name)
612 {
613 unsigned ver = SSA_NAME_VERSION (name);
614 return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
615 }
616
617
618 /* Hashing and equality functions for REPL_TBL. */
619
620 static hashval_t
621 repl_map_hash (const void *p)
622 {
623 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
624 }
625
626 static int
627 repl_map_eq (const void *p1, const void *p2)
628 {
629 return ((const struct repl_map_d *)p1)->name
630 == ((const struct repl_map_d *)p2)->name;
631 }
632
633 static void
634 repl_map_free (void *p)
635 {
636 BITMAP_FREE (((struct repl_map_d *)p)->set);
637 free (p);
638 }
639
640
641 /* Return the names replaced by NEW (i.e., REPL_TBL[NEW].SET). */
642
643 static inline bitmap
644 names_replaced_by (tree new)
645 {
646 struct repl_map_d m;
647 void **slot;
648
649 m.name = new;
650 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
651
652 /* If N was not registered in the replacement table, return NULL. */
653 if (slot == NULL || *slot == NULL)
654 return NULL;
655
656 return ((struct repl_map_d *) *slot)->set;
657 }
658
659
660 /* Add OLD to REPL_TBL[NEW].SET. */
661
662 static inline void
663 add_to_repl_tbl (tree new, tree old)
664 {
665 struct repl_map_d m, *mp;
666 void **slot;
667
668 m.name = new;
669 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
670 if (*slot == NULL)
671 {
672 mp = XNEW (struct repl_map_d);
673 mp->name = new;
674 mp->set = BITMAP_ALLOC (NULL);
675 *slot = (void *) mp;
676 }
677 else
678 mp = (struct repl_map_d *) *slot;
679
680 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
681 }
682
683
684 /* Add a new mapping NEW -> OLD REPL_TBL. Every entry N_i in REPL_TBL
685 represents the set of names O_1 ... O_j replaced by N_i. This is
686 used by update_ssa and its helpers to introduce new SSA names in an
687 already formed SSA web. */
688
689 static void
690 add_new_name_mapping (tree new, tree old)
691 {
692 timevar_push (TV_TREE_SSA_INCREMENTAL);
693
694 /* OLD and NEW must be different SSA names for the same symbol. */
695 gcc_assert (new != old && SSA_NAME_VAR (new) == SSA_NAME_VAR (old));
696
697 /* If this mapping is for virtual names, we will need to update
698 virtual operands. If this is a mapping for .MEM, then we gather
699 the symbols associated with each name. */
700 if (!is_gimple_reg (new))
701 {
702 tree sym;
703
704 need_to_update_vops_p = true;
705
706 update_ssa_stats.num_virtual_mappings++;
707 update_ssa_stats.num_virtual_symbols++;
708
709 /* Keep counts of virtual mappings and symbols to use in the
710 virtual mapping heuristic. If we have large numbers of
711 virtual mappings for a relatively low number of symbols, it
712 will make more sense to rename the symbols from scratch.
713 Otherwise, the insertion of PHI nodes for each of the old
714 names in these mappings will be very slow. */
715 sym = SSA_NAME_VAR (new);
716 bitmap_set_bit (update_ssa_stats.virtual_symbols, DECL_UID (sym));
717 }
718
719 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
720 caller may have created new names since the set was created. */
721 if (new_ssa_names->n_bits <= num_ssa_names - 1)
722 {
723 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
724 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
725 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
726 }
727
728 /* Update the REPL_TBL table. */
729 add_to_repl_tbl (new, old);
730
731 /* If OLD had already been registered as a new name, then all the
732 names that OLD replaces should also be replaced by NEW. */
733 if (is_new_name (old))
734 bitmap_ior_into (names_replaced_by (new), names_replaced_by (old));
735
736 /* Register NEW and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
737 respectively. */
738 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new));
739 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
740
741 /* Update mapping counter to use in the virtual mapping heuristic. */
742 update_ssa_stats.num_total_mappings++;
743
744 timevar_pop (TV_TREE_SSA_INCREMENTAL);
745 }
746
747
748 /* Call back for walk_dominator_tree used to collect definition sites
749 for every variable in the function. For every statement S in block
750 BB:
751
752 1- Variables defined by S in the DEFS of S are marked in the bitmap
753 WALK_DATA->GLOBAL_DATA->KILLS.
754
755 2- If S uses a variable VAR and there is no preceding kill of VAR,
756 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
757
758 This information is used to determine which variables are live
759 across block boundaries to reduce the number of PHI nodes
760 we create. */
761
762 static void
763 mark_def_sites (struct dom_walk_data *walk_data, basic_block bb,
764 gimple_stmt_iterator gsi)
765 {
766 struct mark_def_sites_global_data *gd;
767 bitmap kills;
768 tree def;
769 gimple stmt;
770 use_operand_p use_p;
771 ssa_op_iter iter;
772
773 /* Since this is the first time that we rewrite the program into SSA
774 form, force an operand scan on every statement. */
775 stmt = gsi_stmt (gsi);
776 update_stmt (stmt);
777
778 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
779 kills = gd->kills;
780
781 gcc_assert (blocks_to_update == NULL);
782 set_register_defs (stmt, false);
783 set_rewrite_uses (stmt, false);
784
785 /* If a variable is used before being set, then the variable is live
786 across a block boundary, so mark it live-on-entry to BB. */
787 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
788 {
789 tree sym = USE_FROM_PTR (use_p);
790 gcc_assert (DECL_P (sym));
791 if (!bitmap_bit_p (kills, DECL_UID (sym)))
792 set_livein_block (sym, bb);
793 set_rewrite_uses (stmt, true);
794 }
795
796 /* Now process the defs. Mark BB as the definition block and add
797 each def to the set of killed symbols. */
798 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
799 {
800 gcc_assert (DECL_P (def));
801 set_def_block (def, bb, false);
802 bitmap_set_bit (kills, DECL_UID (def));
803 set_register_defs (stmt, true);
804 }
805
806 /* If we found the statement interesting then also mark the block BB
807 as interesting. */
808 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
809 SET_BIT (gd->interesting_blocks, bb->index);
810 }
811
812 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
813 in the dfs numbering of the dominance tree. */
814
815 struct dom_dfsnum
816 {
817 /* Basic block whose index this entry corresponds to. */
818 unsigned bb_index;
819
820 /* The dfs number of this node. */
821 unsigned dfs_num;
822 };
823
824 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
825 for qsort. */
826
827 static int
828 cmp_dfsnum (const void *a, const void *b)
829 {
830 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
831 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
832
833 return (int) da->dfs_num - (int) db->dfs_num;
834 }
835
836 /* Among the intervals starting at the N points specified in DEFS, find
837 the one that contains S, and return its bb_index. */
838
839 static unsigned
840 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
841 {
842 unsigned f = 0, t = n, m;
843
844 while (t > f + 1)
845 {
846 m = (f + t) / 2;
847 if (defs[m].dfs_num <= s)
848 f = m;
849 else
850 t = m;
851 }
852
853 return defs[f].bb_index;
854 }
855
856 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
857 KILLS is a bitmap of blocks where the value is defined before any use. */
858
859 static void
860 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
861 {
862 VEC(int, heap) *worklist;
863 bitmap_iterator bi;
864 unsigned i, b, p, u, top;
865 bitmap live_phis;
866 basic_block def_bb, use_bb;
867 edge e;
868 edge_iterator ei;
869 bitmap to_remove;
870 struct dom_dfsnum *defs;
871 unsigned n_defs, adef;
872
873 if (bitmap_empty_p (uses))
874 {
875 bitmap_clear (phis);
876 return;
877 }
878
879 /* The phi must dominate a use, or an argument of a live phi. Also, we
880 do not create any phi nodes in def blocks, unless they are also livein. */
881 to_remove = BITMAP_ALLOC (NULL);
882 bitmap_and_compl (to_remove, kills, uses);
883 bitmap_and_compl_into (phis, to_remove);
884 if (bitmap_empty_p (phis))
885 {
886 BITMAP_FREE (to_remove);
887 return;
888 }
889
890 /* We want to remove the unnecessary phi nodes, but we do not want to compute
891 liveness information, as that may be linear in the size of CFG, and if
892 there are lot of different variables to rewrite, this may lead to quadratic
893 behavior.
894
895 Instead, we basically emulate standard dce. We put all uses to worklist,
896 then for each of them find the nearest def that dominates them. If this
897 def is a phi node, we mark it live, and if it was not live before, we
898 add the predecessors of its basic block to the worklist.
899
900 To quickly locate the nearest def that dominates use, we use dfs numbering
901 of the dominance tree (that is already available in order to speed up
902 queries). For each def, we have the interval given by the dfs number on
903 entry to and on exit from the corresponding subtree in the dominance tree.
904 The nearest dominator for a given use is the smallest of these intervals
905 that contains entry and exit dfs numbers for the basic block with the use.
906 If we store the bounds for all the uses to an array and sort it, we can
907 locate the nearest dominating def in logarithmic time by binary search.*/
908 bitmap_ior (to_remove, kills, phis);
909 n_defs = bitmap_count_bits (to_remove);
910 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
911 defs[0].bb_index = 1;
912 defs[0].dfs_num = 0;
913 adef = 1;
914 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
915 {
916 def_bb = BASIC_BLOCK (i);
917 defs[adef].bb_index = i;
918 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
919 defs[adef + 1].bb_index = i;
920 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
921 adef += 2;
922 }
923 BITMAP_FREE (to_remove);
924 gcc_assert (adef == 2 * n_defs + 1);
925 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
926 gcc_assert (defs[0].bb_index == 1);
927
928 /* Now each DEFS entry contains the number of the basic block to that the
929 dfs number corresponds. Change them to the number of basic block that
930 corresponds to the interval following the dfs number. Also, for the
931 dfs_out numbers, increase the dfs number by one (so that it corresponds
932 to the start of the following interval, not to the end of the current
933 one). We use WORKLIST as a stack. */
934 worklist = VEC_alloc (int, heap, n_defs + 1);
935 VEC_quick_push (int, worklist, 1);
936 top = 1;
937 n_defs = 1;
938 for (i = 1; i < adef; i++)
939 {
940 b = defs[i].bb_index;
941 if (b == top)
942 {
943 /* This is a closing element. Interval corresponding to the top
944 of the stack after removing it follows. */
945 VEC_pop (int, worklist);
946 top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
947 defs[n_defs].bb_index = top;
948 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
949 }
950 else
951 {
952 /* Opening element. Nothing to do, just push it to the stack and move
953 it to the correct position. */
954 defs[n_defs].bb_index = defs[i].bb_index;
955 defs[n_defs].dfs_num = defs[i].dfs_num;
956 VEC_quick_push (int, worklist, b);
957 top = b;
958 }
959
960 /* If this interval starts at the same point as the previous one, cancel
961 the previous one. */
962 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
963 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
964 else
965 n_defs++;
966 }
967 VEC_pop (int, worklist);
968 gcc_assert (VEC_empty (int, worklist));
969
970 /* Now process the uses. */
971 live_phis = BITMAP_ALLOC (NULL);
972 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
973 {
974 VEC_safe_push (int, heap, worklist, i);
975 }
976
977 while (!VEC_empty (int, worklist))
978 {
979 b = VEC_pop (int, worklist);
980 if (b == ENTRY_BLOCK)
981 continue;
982
983 /* If there is a phi node in USE_BB, it is made live. Otherwise,
984 find the def that dominates the immediate dominator of USE_BB
985 (the kill in USE_BB does not dominate the use). */
986 if (bitmap_bit_p (phis, b))
987 p = b;
988 else
989 {
990 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
991 p = find_dfsnum_interval (defs, n_defs,
992 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
993 if (!bitmap_bit_p (phis, p))
994 continue;
995 }
996
997 /* If the phi node is already live, there is nothing to do. */
998 if (bitmap_bit_p (live_phis, p))
999 continue;
1000
1001 /* Mark the phi as live, and add the new uses to the worklist. */
1002 bitmap_set_bit (live_phis, p);
1003 def_bb = BASIC_BLOCK (p);
1004 FOR_EACH_EDGE (e, ei, def_bb->preds)
1005 {
1006 u = e->src->index;
1007 if (bitmap_bit_p (uses, u))
1008 continue;
1009
1010 /* In case there is a kill directly in the use block, do not record
1011 the use (this is also necessary for correctness, as we assume that
1012 uses dominated by a def directly in their block have been filtered
1013 out before). */
1014 if (bitmap_bit_p (kills, u))
1015 continue;
1016
1017 bitmap_set_bit (uses, u);
1018 VEC_safe_push (int, heap, worklist, u);
1019 }
1020 }
1021
1022 VEC_free (int, heap, worklist);
1023 bitmap_copy (phis, live_phis);
1024 BITMAP_FREE (live_phis);
1025 free (defs);
1026 }
1027
1028 /* Return the set of blocks where variable VAR is defined and the blocks
1029 where VAR is live on entry (livein). Return NULL, if no entry is
1030 found in DEF_BLOCKS. */
1031
1032 static inline struct def_blocks_d *
1033 find_def_blocks_for (tree var)
1034 {
1035 struct def_blocks_d dm;
1036 dm.var = var;
1037 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
1038 }
1039
1040
1041 /* Retrieve or create a default definition for symbol SYM. */
1042
1043 static inline tree
1044 get_default_def_for (tree sym)
1045 {
1046 tree ddef = gimple_default_def (cfun, sym);
1047
1048 if (ddef == NULL_TREE)
1049 {
1050 ddef = make_ssa_name (sym, gimple_build_nop ());
1051 set_default_def (sym, ddef);
1052 }
1053
1054 return ddef;
1055 }
1056
1057
1058 /* Marks phi node PHI in basic block BB for rewrite. */
1059
1060 static void
1061 mark_phi_for_rewrite (basic_block bb, gimple phi)
1062 {
1063 gimple_vec phis;
1064 unsigned i, idx = bb->index;
1065
1066 if (rewrite_uses_p (phi))
1067 return;
1068
1069 set_rewrite_uses (phi, true);
1070
1071 if (!blocks_with_phis_to_rewrite)
1072 return;
1073
1074 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
1075 VEC_reserve (gimple_vec, heap, phis_to_rewrite, last_basic_block + 1);
1076 for (i = VEC_length (gimple_vec, phis_to_rewrite); i <= idx; i++)
1077 VEC_quick_push (gimple_vec, phis_to_rewrite, NULL);
1078
1079 phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
1080 if (!phis)
1081 phis = VEC_alloc (gimple, heap, 10);
1082
1083 VEC_safe_push (gimple, heap, phis, phi);
1084 VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
1085 }
1086
1087
1088 /* Insert PHI nodes for variable VAR using the iterated dominance
1089 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
1090 function assumes that the caller is incrementally updating the
1091 existing SSA form, in which case VAR may be an SSA name instead of
1092 a symbol.
1093
1094 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1095 PHI node for VAR. On exit, only the nodes that received a PHI node
1096 for VAR will be present in PHI_INSERTION_POINTS. */
1097
1098 static void
1099 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1100 {
1101 unsigned bb_index;
1102 edge e;
1103 gimple phi;
1104 basic_block bb;
1105 bitmap_iterator bi;
1106 struct def_blocks_d *def_map;
1107
1108 def_map = find_def_blocks_for (var);
1109 gcc_assert (def_map);
1110
1111 /* Remove the blocks where we already have PHI nodes for VAR. */
1112 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1113
1114 /* Remove obviously useless phi nodes. */
1115 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1116 def_map->livein_blocks);
1117
1118 /* And insert the PHI nodes. */
1119 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1120 {
1121 bb = BASIC_BLOCK (bb_index);
1122 if (update_p)
1123 mark_block_for_update (bb);
1124
1125 phi = NULL;
1126
1127 if (TREE_CODE (var) == SSA_NAME)
1128 {
1129 /* If we are rewriting SSA names, create the LHS of the PHI
1130 node by duplicating VAR. This is useful in the case of
1131 pointers, to also duplicate pointer attributes (alias
1132 information, in particular). */
1133 edge_iterator ei;
1134 tree new_lhs;
1135
1136 gcc_assert (update_p);
1137 phi = create_phi_node (var, bb);
1138
1139 new_lhs = duplicate_ssa_name (var, phi);
1140 gimple_phi_set_result (phi, new_lhs);
1141 add_new_name_mapping (new_lhs, var);
1142
1143 /* Add VAR to every argument slot of PHI. We need VAR in
1144 every argument so that rewrite_update_phi_arguments knows
1145 which name is this PHI node replacing. If VAR is a
1146 symbol marked for renaming, this is not necessary, the
1147 renamer will use the symbol on the LHS to get its
1148 reaching definition. */
1149 FOR_EACH_EDGE (e, ei, bb->preds)
1150 add_phi_arg (phi, var, e);
1151 }
1152 else
1153 {
1154 gcc_assert (DECL_P (var));
1155 phi = create_phi_node (var, bb);
1156 }
1157
1158 /* Mark this PHI node as interesting for update_ssa. */
1159 set_register_defs (phi, true);
1160 mark_phi_for_rewrite (bb, phi);
1161 }
1162 }
1163
1164
1165 /* Insert PHI nodes at the dominance frontier of blocks with variable
1166 definitions. DFS contains the dominance frontier information for
1167 the flowgraph. */
1168
1169 static void
1170 insert_phi_nodes (bitmap *dfs)
1171 {
1172 referenced_var_iterator rvi;
1173 tree var;
1174
1175 timevar_push (TV_TREE_INSERT_PHI_NODES);
1176
1177 FOR_EACH_REFERENCED_VAR (var, rvi)
1178 {
1179 struct def_blocks_d *def_map;
1180 bitmap idf;
1181
1182 def_map = find_def_blocks_for (var);
1183 if (def_map == NULL)
1184 continue;
1185
1186 if (get_phi_state (var) != NEED_PHI_STATE_NO)
1187 {
1188 idf = compute_idf (def_map->def_blocks, dfs);
1189 insert_phi_nodes_for (var, idf, false);
1190 BITMAP_FREE (idf);
1191 }
1192 }
1193
1194 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1195 }
1196
1197
1198 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1199 register DEF (an SSA_NAME) to be a new definition for SYM. */
1200
1201 static void
1202 register_new_def (tree def, tree sym)
1203 {
1204 tree currdef;
1205
1206 /* If this variable is set in a single basic block and all uses are
1207 dominated by the set(s) in that single basic block, then there is
1208 no reason to record anything for this variable in the block local
1209 definition stacks. Doing so just wastes time and memory.
1210
1211 This is the same test to prune the set of variables which may
1212 need PHI nodes. So we just use that information since it's already
1213 computed and available for us to use. */
1214 if (get_phi_state (sym) == NEED_PHI_STATE_NO)
1215 {
1216 set_current_def (sym, def);
1217 return;
1218 }
1219
1220 currdef = get_current_def (sym);
1221
1222 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1223 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1224 in the stack so that we know which symbol is being defined by
1225 this SSA name when we unwind the stack. */
1226 if (currdef && !is_gimple_reg (sym))
1227 VEC_safe_push (tree, heap, block_defs_stack, sym);
1228
1229 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1230 stack is later used by the dominator tree callbacks to restore
1231 the reaching definitions for all the variables defined in the
1232 block after a recursive visit to all its immediately dominated
1233 blocks. If there is no current reaching definition, then just
1234 record the underlying _DECL node. */
1235 VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
1236
1237 /* Set the current reaching definition for SYM to be DEF. */
1238 set_current_def (sym, def);
1239 }
1240
1241
1242 /* Perform a depth-first traversal of the dominator tree looking for
1243 variables to rename. BB is the block where to start searching.
1244 Renaming is a five step process:
1245
1246 1- Every definition made by PHI nodes at the start of the blocks is
1247 registered as the current definition for the corresponding variable.
1248
1249 2- Every statement in BB is rewritten. USE and VUSE operands are
1250 rewritten with their corresponding reaching definition. DEF and
1251 VDEF targets are registered as new definitions.
1252
1253 3- All the PHI nodes in successor blocks of BB are visited. The
1254 argument corresponding to BB is replaced with its current reaching
1255 definition.
1256
1257 4- Recursively rewrite every dominator child block of BB.
1258
1259 5- Restore (in reverse order) the current reaching definition for every
1260 new definition introduced in this block. This is done so that when
1261 we return from the recursive call, all the current reaching
1262 definitions are restored to the names that were valid in the
1263 dominator parent of BB. */
1264
1265 /* SSA Rewriting Step 1. Initialization, create a block local stack
1266 of reaching definitions for new SSA names produced in this block
1267 (BLOCK_DEFS). Register new definitions for every PHI node in the
1268 block. */
1269
1270 static void
1271 rewrite_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1272 basic_block bb)
1273 {
1274 gimple phi;
1275 gimple_stmt_iterator gsi;
1276
1277 if (dump_file && (dump_flags & TDF_DETAILS))
1278 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1279
1280 /* Mark the unwind point for this block. */
1281 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1282
1283 /* Step 1. Register new definitions for every PHI node in the block.
1284 Conceptually, all the PHI nodes are executed in parallel and each PHI
1285 node introduces a new version for the associated variable. */
1286 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1287 {
1288 tree result;
1289
1290 phi = gsi_stmt (gsi);
1291 result = gimple_phi_result (phi);
1292 gcc_assert (is_gimple_reg (result));
1293 register_new_def (result, SSA_NAME_VAR (result));
1294 }
1295 }
1296
1297
1298 /* Return the current definition for variable VAR. If none is found,
1299 create a new SSA name to act as the zeroth definition for VAR. */
1300
1301 static tree
1302 get_reaching_def (tree var)
1303 {
1304 tree currdef;
1305
1306 /* Lookup the current reaching definition for VAR. */
1307 currdef = get_current_def (var);
1308
1309 /* If there is no reaching definition for VAR, create and register a
1310 default definition for it (if needed). */
1311 if (currdef == NULL_TREE)
1312 {
1313 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1314 currdef = get_default_def_for (sym);
1315 set_current_def (var, currdef);
1316 }
1317
1318 /* Return the current reaching definition for VAR, or the default
1319 definition, if we had to create one. */
1320 return currdef;
1321 }
1322
1323
1324 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1325 the block with its immediate reaching definitions. Update the current
1326 definition of a variable when a new real or virtual definition is found. */
1327
1328 static void
1329 rewrite_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1330 basic_block bb ATTRIBUTE_UNUSED, gimple_stmt_iterator si)
1331 {
1332 gimple stmt;
1333 use_operand_p use_p;
1334 def_operand_p def_p;
1335 ssa_op_iter iter;
1336
1337 stmt = gsi_stmt (si);
1338
1339 /* If mark_def_sites decided that we don't need to rewrite this
1340 statement, ignore it. */
1341 gcc_assert (blocks_to_update == NULL);
1342 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1343 return;
1344
1345 if (dump_file && (dump_flags & TDF_DETAILS))
1346 {
1347 fprintf (dump_file, "Renaming statement ");
1348 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1349 fprintf (dump_file, "\n");
1350 }
1351
1352 /* Step 1. Rewrite USES in the statement. */
1353 if (rewrite_uses_p (stmt))
1354 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1355 {
1356 tree var = USE_FROM_PTR (use_p);
1357 gcc_assert (DECL_P (var));
1358 SET_USE (use_p, get_reaching_def (var));
1359 }
1360
1361 /* Step 2. Register the statement's DEF operands. */
1362 if (register_defs_p (stmt))
1363 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1364 {
1365 tree var = DEF_FROM_PTR (def_p);
1366 gcc_assert (DECL_P (var));
1367 SET_DEF (def_p, make_ssa_name (var, stmt));
1368 register_new_def (DEF_FROM_PTR (def_p), var);
1369 }
1370 }
1371
1372
1373 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1374 PHI nodes. For every PHI node found, add a new argument containing the
1375 current reaching definition for the variable and the edge through which
1376 that definition is reaching the PHI node. */
1377
1378 static void
1379 rewrite_add_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1380 basic_block bb)
1381 {
1382 edge e;
1383 edge_iterator ei;
1384
1385 FOR_EACH_EDGE (e, ei, bb->succs)
1386 {
1387 gimple phi;
1388 gimple_stmt_iterator gsi;
1389
1390 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1391 gsi_next (&gsi))
1392 {
1393 tree currdef;
1394 phi = gsi_stmt (gsi);
1395 currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1396 add_phi_arg (phi, currdef, e);
1397 }
1398 }
1399 }
1400
1401
1402 /* Called after visiting all the statements in basic block BB and all
1403 of its dominator children. Restore CURRDEFS to its original value. */
1404
1405 static void
1406 rewrite_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1407 basic_block bb ATTRIBUTE_UNUSED)
1408 {
1409 /* Restore CURRDEFS to its original state. */
1410 while (VEC_length (tree, block_defs_stack) > 0)
1411 {
1412 tree tmp = VEC_pop (tree, block_defs_stack);
1413 tree saved_def, var;
1414
1415 if (tmp == NULL_TREE)
1416 break;
1417
1418 if (TREE_CODE (tmp) == SSA_NAME)
1419 {
1420 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1421 current definition of its underlying variable. Note that
1422 if the SSA_NAME is not for a GIMPLE register, the symbol
1423 being defined is stored in the next slot in the stack.
1424 This mechanism is needed because an SSA name for a
1425 non-register symbol may be the definition for more than
1426 one symbol (e.g., SFTs, aliased variables, etc). */
1427 saved_def = tmp;
1428 var = SSA_NAME_VAR (saved_def);
1429 if (!is_gimple_reg (var))
1430 var = VEC_pop (tree, block_defs_stack);
1431 }
1432 else
1433 {
1434 /* If we recorded anything else, it must have been a _DECL
1435 node and its current reaching definition must have been
1436 NULL. */
1437 saved_def = NULL;
1438 var = tmp;
1439 }
1440
1441 set_current_def (var, saved_def);
1442 }
1443 }
1444
1445
1446 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1447
1448 void
1449 dump_decl_set (FILE *file, bitmap set)
1450 {
1451 if (set)
1452 {
1453 bitmap_iterator bi;
1454 unsigned i;
1455
1456 fprintf (file, "{ ");
1457
1458 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1459 {
1460 print_generic_expr (file, referenced_var (i), 0);
1461 fprintf (file, " ");
1462 }
1463
1464 fprintf (file, "}\n");
1465 }
1466 else
1467 fprintf (file, "NIL\n");
1468 }
1469
1470
1471 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1472
1473 void
1474 debug_decl_set (bitmap set)
1475 {
1476 dump_decl_set (stderr, set);
1477 }
1478
1479
1480 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1481 stack up to a maximum of N levels. If N is -1, the whole stack is
1482 dumped. New levels are created when the dominator tree traversal
1483 used for renaming enters a new sub-tree. */
1484
1485 void
1486 dump_defs_stack (FILE *file, int n)
1487 {
1488 int i, j;
1489
1490 fprintf (file, "\n\nRenaming stack");
1491 if (n > 0)
1492 fprintf (file, " (up to %d levels)", n);
1493 fprintf (file, "\n\n");
1494
1495 i = 1;
1496 fprintf (file, "Level %d (current level)\n", i);
1497 for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
1498 {
1499 tree name, var;
1500
1501 name = VEC_index (tree, block_defs_stack, j);
1502 if (name == NULL_TREE)
1503 {
1504 i++;
1505 if (n > 0 && i > n)
1506 break;
1507 fprintf (file, "\nLevel %d\n", i);
1508 continue;
1509 }
1510
1511 if (DECL_P (name))
1512 {
1513 var = name;
1514 name = NULL_TREE;
1515 }
1516 else
1517 {
1518 var = SSA_NAME_VAR (name);
1519 if (!is_gimple_reg (var))
1520 {
1521 j--;
1522 var = VEC_index (tree, block_defs_stack, j);
1523 }
1524 }
1525
1526 fprintf (file, " Previous CURRDEF (");
1527 print_generic_expr (file, var, 0);
1528 fprintf (file, ") = ");
1529 if (name)
1530 print_generic_expr (file, name, 0);
1531 else
1532 fprintf (file, "<NIL>");
1533 fprintf (file, "\n");
1534 }
1535 }
1536
1537
1538 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1539 stack up to a maximum of N levels. If N is -1, the whole stack is
1540 dumped. New levels are created when the dominator tree traversal
1541 used for renaming enters a new sub-tree. */
1542
1543 void
1544 debug_defs_stack (int n)
1545 {
1546 dump_defs_stack (stderr, n);
1547 }
1548
1549
1550 /* Dump the current reaching definition of every symbol to FILE. */
1551
1552 void
1553 dump_currdefs (FILE *file)
1554 {
1555 referenced_var_iterator i;
1556 tree var;
1557
1558 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1559 FOR_EACH_REFERENCED_VAR (var, i)
1560 if (syms_to_rename == NULL || bitmap_bit_p (syms_to_rename, DECL_UID (var)))
1561 {
1562 fprintf (file, "CURRDEF (");
1563 print_generic_expr (file, var, 0);
1564 fprintf (file, ") = ");
1565 if (get_current_def (var))
1566 print_generic_expr (file, get_current_def (var), 0);
1567 else
1568 fprintf (file, "<NIL>");
1569 fprintf (file, "\n");
1570 }
1571 }
1572
1573
1574 /* Dump the current reaching definition of every symbol to stderr. */
1575
1576 void
1577 debug_currdefs (void)
1578 {
1579 dump_currdefs (stderr);
1580 }
1581
1582
1583 /* Dump SSA information to FILE. */
1584
1585 void
1586 dump_tree_ssa (FILE *file)
1587 {
1588 const char *funcname
1589 = lang_hooks.decl_printable_name (current_function_decl, 2);
1590
1591 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1592
1593 dump_def_blocks (file);
1594 dump_defs_stack (file, -1);
1595 dump_currdefs (file);
1596 dump_tree_ssa_stats (file);
1597 }
1598
1599
1600 /* Dump SSA information to stderr. */
1601
1602 void
1603 debug_tree_ssa (void)
1604 {
1605 dump_tree_ssa (stderr);
1606 }
1607
1608
1609 /* Dump statistics for the hash table HTAB. */
1610
1611 static void
1612 htab_statistics (FILE *file, htab_t htab)
1613 {
1614 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1615 (long) htab_size (htab),
1616 (long) htab_elements (htab),
1617 htab_collisions (htab));
1618 }
1619
1620
1621 /* Dump SSA statistics on FILE. */
1622
1623 void
1624 dump_tree_ssa_stats (FILE *file)
1625 {
1626 if (def_blocks || repl_tbl)
1627 fprintf (file, "\nHash table statistics:\n");
1628
1629 if (def_blocks)
1630 {
1631 fprintf (file, " def_blocks: ");
1632 htab_statistics (file, def_blocks);
1633 }
1634
1635 if (repl_tbl)
1636 {
1637 fprintf (file, " repl_tbl: ");
1638 htab_statistics (file, repl_tbl);
1639 }
1640
1641 if (def_blocks || repl_tbl)
1642 fprintf (file, "\n");
1643 }
1644
1645
1646 /* Dump SSA statistics on stderr. */
1647
1648 void
1649 debug_tree_ssa_stats (void)
1650 {
1651 dump_tree_ssa_stats (stderr);
1652 }
1653
1654
1655 /* Hashing and equality functions for DEF_BLOCKS. */
1656
1657 static hashval_t
1658 def_blocks_hash (const void *p)
1659 {
1660 return htab_hash_pointer
1661 ((const void *)((const struct def_blocks_d *)p)->var);
1662 }
1663
1664 static int
1665 def_blocks_eq (const void *p1, const void *p2)
1666 {
1667 return ((const struct def_blocks_d *)p1)->var
1668 == ((const struct def_blocks_d *)p2)->var;
1669 }
1670
1671
1672 /* Free memory allocated by one entry in DEF_BLOCKS. */
1673
1674 static void
1675 def_blocks_free (void *p)
1676 {
1677 struct def_blocks_d *entry = (struct def_blocks_d *) p;
1678 BITMAP_FREE (entry->def_blocks);
1679 BITMAP_FREE (entry->phi_blocks);
1680 BITMAP_FREE (entry->livein_blocks);
1681 free (entry);
1682 }
1683
1684
1685 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1686
1687 static int
1688 debug_def_blocks_r (void **slot, void *data)
1689 {
1690 FILE *file = (FILE *) data;
1691 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1692
1693 fprintf (file, "VAR: ");
1694 print_generic_expr (file, db_p->var, dump_flags);
1695 bitmap_print (file, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1696 bitmap_print (file, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}");
1697 bitmap_print (file, db_p->phi_blocks, ", PHI_BLOCKS: { ", "}\n");
1698
1699 return 1;
1700 }
1701
1702
1703 /* Dump the DEF_BLOCKS hash table on FILE. */
1704
1705 void
1706 dump_def_blocks (FILE *file)
1707 {
1708 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1709 if (def_blocks)
1710 htab_traverse (def_blocks, debug_def_blocks_r, file);
1711 }
1712
1713
1714 /* Dump the DEF_BLOCKS hash table on stderr. */
1715
1716 void
1717 debug_def_blocks (void)
1718 {
1719 dump_def_blocks (stderr);
1720 }
1721
1722
1723 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1724
1725 static inline void
1726 register_new_update_single (tree new_name, tree old_name)
1727 {
1728 tree currdef = get_current_def (old_name);
1729
1730 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1731 This stack is later used by the dominator tree callbacks to
1732 restore the reaching definitions for all the variables
1733 defined in the block after a recursive visit to all its
1734 immediately dominated blocks. */
1735 VEC_reserve (tree, heap, block_defs_stack, 2);
1736 VEC_quick_push (tree, block_defs_stack, currdef);
1737 VEC_quick_push (tree, block_defs_stack, old_name);
1738
1739 /* Set the current reaching definition for OLD_NAME to be
1740 NEW_NAME. */
1741 set_current_def (old_name, new_name);
1742 }
1743
1744
1745 /* Register NEW_NAME to be the new reaching definition for all the
1746 names in OLD_NAMES. Used by the incremental SSA update routines to
1747 replace old SSA names with new ones. */
1748
1749 static inline void
1750 register_new_update_set (tree new_name, bitmap old_names)
1751 {
1752 bitmap_iterator bi;
1753 unsigned i;
1754
1755 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1756 register_new_update_single (new_name, ssa_name (i));
1757 }
1758
1759
1760 /* Initialization of block data structures for the incremental SSA
1761 update pass. Create a block local stack of reaching definitions
1762 for new SSA names produced in this block (BLOCK_DEFS). Register
1763 new definitions for every PHI node in the block. */
1764
1765 static void
1766 rewrite_update_init_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1767 basic_block bb)
1768 {
1769 edge e;
1770 edge_iterator ei;
1771 bool is_abnormal_phi;
1772 gimple_stmt_iterator gsi;
1773
1774 if (dump_file && (dump_flags & TDF_DETAILS))
1775 fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
1776 bb->index);
1777
1778 /* Mark the unwind point for this block. */
1779 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1780
1781 if (!bitmap_bit_p (blocks_to_update, bb->index))
1782 return;
1783
1784 /* Mark the LHS if any of the arguments flows through an abnormal
1785 edge. */
1786 is_abnormal_phi = false;
1787 FOR_EACH_EDGE (e, ei, bb->preds)
1788 if (e->flags & EDGE_ABNORMAL)
1789 {
1790 is_abnormal_phi = true;
1791 break;
1792 }
1793
1794 /* If any of the PHI nodes is a replacement for a name in
1795 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
1796 register it as a new definition for its corresponding name. Also
1797 register definitions for names whose underlying symbols are
1798 marked for renaming. */
1799 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1800 {
1801 tree lhs, lhs_sym;
1802 gimple phi = gsi_stmt (gsi);
1803
1804 if (!register_defs_p (phi))
1805 continue;
1806
1807 lhs = gimple_phi_result (phi);
1808 lhs_sym = SSA_NAME_VAR (lhs);
1809
1810 if (symbol_marked_for_renaming (lhs_sym))
1811 register_new_update_single (lhs, lhs_sym);
1812 else
1813 {
1814
1815 /* If LHS is a new name, register a new definition for all
1816 the names replaced by LHS. */
1817 if (is_new_name (lhs))
1818 register_new_update_set (lhs, names_replaced_by (lhs));
1819
1820 /* If LHS is an OLD name, register it as a new definition
1821 for itself. */
1822 if (is_old_name (lhs))
1823 register_new_update_single (lhs, lhs);
1824 }
1825
1826 if (is_abnormal_phi)
1827 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
1828 }
1829 }
1830
1831
1832 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
1833 the current reaching definition of every name re-written in BB to
1834 the original reaching definition before visiting BB. This
1835 unwinding must be done in the opposite order to what is done in
1836 register_new_update_set. */
1837
1838 static void
1839 rewrite_update_fini_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1840 basic_block bb ATTRIBUTE_UNUSED)
1841 {
1842 while (VEC_length (tree, block_defs_stack) > 0)
1843 {
1844 tree var = VEC_pop (tree, block_defs_stack);
1845 tree saved_def;
1846
1847 /* NULL indicates the unwind stop point for this block (see
1848 rewrite_update_init_block). */
1849 if (var == NULL)
1850 return;
1851
1852 saved_def = VEC_pop (tree, block_defs_stack);
1853 set_current_def (var, saved_def);
1854 }
1855 }
1856
1857
1858 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1859 it is a symbol marked for renaming, replace it with USE_P's current
1860 reaching definition. */
1861
1862 static inline void
1863 maybe_replace_use (use_operand_p use_p)
1864 {
1865 tree rdef = NULL_TREE;
1866 tree use = USE_FROM_PTR (use_p);
1867 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1868
1869 if (symbol_marked_for_renaming (sym))
1870 rdef = get_reaching_def (sym);
1871 else if (is_old_name (use))
1872 rdef = get_reaching_def (use);
1873
1874 if (rdef && rdef != use)
1875 SET_USE (use_p, rdef);
1876 }
1877
1878
1879 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1880 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1881 register it as the current definition for the names replaced by
1882 DEF_P. */
1883
1884 static inline void
1885 maybe_register_def (def_operand_p def_p, gimple stmt)
1886 {
1887 tree def = DEF_FROM_PTR (def_p);
1888 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1889
1890 /* If DEF is a naked symbol that needs renaming, create a new
1891 name for it. */
1892 if (symbol_marked_for_renaming (sym))
1893 {
1894 if (DECL_P (def))
1895 {
1896 def = make_ssa_name (def, stmt);
1897 SET_DEF (def_p, def);
1898 }
1899
1900 register_new_update_single (def, sym);
1901 }
1902 else
1903 {
1904 /* If DEF is a new name, register it as a new definition
1905 for all the names replaced by DEF. */
1906 if (is_new_name (def))
1907 register_new_update_set (def, names_replaced_by (def));
1908
1909 /* If DEF is an old name, register DEF as a new
1910 definition for itself. */
1911 if (is_old_name (def))
1912 register_new_update_single (def, def);
1913 }
1914 }
1915
1916
1917 /* Update every variable used in the statement pointed-to by SI. The
1918 statement is assumed to be in SSA form already. Names in
1919 OLD_SSA_NAMES used by SI will be updated to their current reaching
1920 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1921 will be registered as a new definition for their corresponding name
1922 in OLD_SSA_NAMES. */
1923
1924 static void
1925 rewrite_update_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1926 basic_block bb ATTRIBUTE_UNUSED,
1927 gimple_stmt_iterator si)
1928 {
1929 gimple stmt;
1930 use_operand_p use_p;
1931 def_operand_p def_p;
1932 ssa_op_iter iter;
1933
1934 stmt = gsi_stmt (si);
1935
1936 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
1937
1938 /* Only update marked statements. */
1939 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1940 return;
1941
1942 if (dump_file && (dump_flags & TDF_DETAILS))
1943 {
1944 fprintf (dump_file, "Updating SSA information for statement ");
1945 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1946 fprintf (dump_file, "\n");
1947 }
1948
1949 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1950 symbol is marked for renaming. */
1951 if (rewrite_uses_p (stmt))
1952 {
1953 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1954 maybe_replace_use (use_p);
1955
1956 if (need_to_update_vops_p)
1957 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_VIRTUAL_USES)
1958 maybe_replace_use (use_p);
1959 }
1960
1961 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1962 Also register definitions for names whose underlying symbol is
1963 marked for renaming. */
1964 if (register_defs_p (stmt))
1965 {
1966 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1967 maybe_register_def (def_p, stmt);
1968
1969 if (need_to_update_vops_p)
1970 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_VIRTUAL_DEFS)
1971 maybe_register_def (def_p, stmt);
1972 }
1973 }
1974
1975
1976 /* Visit all the successor blocks of BB looking for PHI nodes. For
1977 every PHI node found, check if any of its arguments is in
1978 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1979 definition, replace it. */
1980
1981 static void
1982 rewrite_update_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1983 basic_block bb)
1984 {
1985 edge e;
1986 edge_iterator ei;
1987 unsigned i;
1988
1989 FOR_EACH_EDGE (e, ei, bb->succs)
1990 {
1991 gimple phi;
1992 gimple_vec phis;
1993
1994 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1995 continue;
1996
1997 phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
1998 for (i = 0; VEC_iterate (gimple, phis, i, phi); i++)
1999 {
2000 tree arg, lhs_sym;
2001 use_operand_p arg_p;
2002
2003 gcc_assert (rewrite_uses_p (phi));
2004
2005 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2006 arg = USE_FROM_PTR (arg_p);
2007
2008 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2009 continue;
2010
2011 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2012
2013 if (arg == NULL_TREE)
2014 {
2015 /* When updating a PHI node for a recently introduced
2016 symbol we may find NULL arguments. That's why we
2017 take the symbol from the LHS of the PHI node. */
2018 SET_USE (arg_p, get_reaching_def (lhs_sym));
2019 }
2020 else
2021 {
2022 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2023
2024 if (symbol_marked_for_renaming (sym))
2025 SET_USE (arg_p, get_reaching_def (sym));
2026 else if (is_old_name (arg))
2027 SET_USE (arg_p, get_reaching_def (arg));
2028 }
2029
2030 if (e->flags & EDGE_ABNORMAL)
2031 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2032 }
2033 }
2034 }
2035
2036
2037 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2038 form.
2039
2040 ENTRY indicates the block where to start. Every block dominated by
2041 ENTRY will be rewritten.
2042
2043 WHAT indicates what actions will be taken by the renamer (see enum
2044 rewrite_mode).
2045
2046 BLOCKS are the set of interesting blocks for the dominator walker
2047 to process. If this set is NULL, then all the nodes dominated
2048 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2049 are not present in BLOCKS are ignored. */
2050
2051 static void
2052 rewrite_blocks (basic_block entry, enum rewrite_mode what, sbitmap blocks)
2053 {
2054 struct dom_walk_data walk_data;
2055
2056 /* Rewrite all the basic blocks in the program. */
2057 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2058
2059 /* Setup callbacks for the generic dominator tree walker. */
2060 memset (&walk_data, 0, sizeof (walk_data));
2061
2062 walk_data.dom_direction = CDI_DOMINATORS;
2063 walk_data.interesting_blocks = blocks;
2064
2065 if (what == REWRITE_ALL)
2066 walk_data.before_dom_children_before_stmts = rewrite_initialize_block;
2067 else
2068 walk_data.before_dom_children_before_stmts = rewrite_update_init_block;
2069
2070 if (what == REWRITE_ALL)
2071 walk_data.before_dom_children_walk_stmts = rewrite_stmt;
2072 else if (what == REWRITE_UPDATE)
2073 walk_data.before_dom_children_walk_stmts = rewrite_update_stmt;
2074 else
2075 gcc_unreachable ();
2076
2077 if (what == REWRITE_ALL)
2078 walk_data.before_dom_children_after_stmts = rewrite_add_phi_arguments;
2079 else if (what == REWRITE_UPDATE)
2080 walk_data.before_dom_children_after_stmts = rewrite_update_phi_arguments;
2081 else
2082 gcc_unreachable ();
2083
2084 if (what == REWRITE_ALL)
2085 walk_data.after_dom_children_after_stmts = rewrite_finalize_block;
2086 else if (what == REWRITE_UPDATE)
2087 walk_data.after_dom_children_after_stmts = rewrite_update_fini_block;
2088 else
2089 gcc_unreachable ();
2090
2091 block_defs_stack = VEC_alloc (tree, heap, 10);
2092
2093 /* Initialize the dominator walker. */
2094 init_walk_dominator_tree (&walk_data);
2095
2096 /* Recursively walk the dominator tree rewriting each statement in
2097 each basic block. */
2098 walk_dominator_tree (&walk_data, entry);
2099
2100 /* Finalize the dominator walker. */
2101 fini_walk_dominator_tree (&walk_data);
2102
2103 /* Debugging dumps. */
2104 if (dump_file && (dump_flags & TDF_STATS))
2105 {
2106 dump_dfa_stats (dump_file);
2107 if (def_blocks)
2108 dump_tree_ssa_stats (dump_file);
2109 }
2110
2111 VEC_free (tree, heap, block_defs_stack);
2112
2113 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2114 }
2115
2116
2117 /* Block initialization routine for mark_def_sites. Clear the
2118 KILLS bitmap at the start of each block. */
2119
2120 static void
2121 mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
2122 basic_block bb ATTRIBUTE_UNUSED)
2123 {
2124 struct mark_def_sites_global_data *gd;
2125 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2126 bitmap_clear (gd->kills);
2127 }
2128
2129
2130 /* Mark the definition site blocks for each variable, so that we know
2131 where the variable is actually live.
2132
2133 INTERESTING_BLOCKS will be filled in with all the blocks that
2134 should be processed by the renamer. It is assumed to be
2135 initialized and zeroed by the caller. */
2136
2137 static void
2138 mark_def_site_blocks (sbitmap interesting_blocks)
2139 {
2140 struct dom_walk_data walk_data;
2141 struct mark_def_sites_global_data mark_def_sites_global_data;
2142
2143 /* Setup callbacks for the generic dominator tree walker to find and
2144 mark definition sites. */
2145 walk_data.walk_stmts_backward = false;
2146 walk_data.dom_direction = CDI_DOMINATORS;
2147 walk_data.initialize_block_local_data = NULL;
2148 walk_data.before_dom_children_before_stmts = mark_def_sites_initialize_block;
2149 walk_data.before_dom_children_walk_stmts = mark_def_sites;
2150 walk_data.before_dom_children_after_stmts = NULL;
2151 walk_data.after_dom_children_before_stmts = NULL;
2152 walk_data.after_dom_children_walk_stmts = NULL;
2153 walk_data.after_dom_children_after_stmts = NULL;
2154 walk_data.interesting_blocks = NULL;
2155
2156 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2157 large enough to accommodate all the variables referenced in the
2158 function, not just the ones we are renaming. */
2159 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2160
2161 /* Create the set of interesting blocks that will be filled by
2162 mark_def_sites. */
2163 mark_def_sites_global_data.interesting_blocks = interesting_blocks;
2164 walk_data.global_data = &mark_def_sites_global_data;
2165
2166 /* We do not have any local data. */
2167 walk_data.block_local_data_size = 0;
2168
2169 /* Initialize the dominator walker. */
2170 init_walk_dominator_tree (&walk_data);
2171
2172 /* Recursively walk the dominator tree. */
2173 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2174
2175 /* Finalize the dominator walker. */
2176 fini_walk_dominator_tree (&walk_data);
2177
2178 /* We no longer need this bitmap, clear and free it. */
2179 BITMAP_FREE (mark_def_sites_global_data.kills);
2180 }
2181
2182
2183 /* Initialize internal data needed during renaming. */
2184
2185 static void
2186 init_ssa_renamer (void)
2187 {
2188 tree var;
2189 referenced_var_iterator rvi;
2190
2191 cfun->gimple_df->in_ssa_p = false;
2192
2193 /* Allocate memory for the DEF_BLOCKS hash table. */
2194 gcc_assert (def_blocks == NULL);
2195 def_blocks = htab_create (num_referenced_vars, def_blocks_hash,
2196 def_blocks_eq, def_blocks_free);
2197
2198 FOR_EACH_REFERENCED_VAR(var, rvi)
2199 set_current_def (var, NULL_TREE);
2200 }
2201
2202
2203 /* Deallocate internal data structures used by the renamer. */
2204
2205 static void
2206 fini_ssa_renamer (void)
2207 {
2208 if (def_blocks)
2209 {
2210 htab_delete (def_blocks);
2211 def_blocks = NULL;
2212 }
2213
2214 cfun->gimple_df->in_ssa_p = true;
2215 }
2216
2217 /* Main entry point into the SSA builder. The renaming process
2218 proceeds in four main phases:
2219
2220 1- Compute dominance frontier and immediate dominators, needed to
2221 insert PHI nodes and rename the function in dominator tree
2222 order.
2223
2224 2- Find and mark all the blocks that define variables
2225 (mark_def_site_blocks).
2226
2227 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2228
2229 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2230
2231 Steps 3 and 4 are done using the dominator tree walker
2232 (walk_dominator_tree). */
2233
2234 static unsigned int
2235 rewrite_into_ssa (void)
2236 {
2237 bitmap *dfs;
2238 basic_block bb;
2239 sbitmap interesting_blocks;
2240
2241 timevar_push (TV_TREE_SSA_OTHER);
2242
2243 /* Initialize operand data structures. */
2244 init_ssa_operands ();
2245
2246 /* Initialize internal data needed by the renamer. */
2247 init_ssa_renamer ();
2248
2249 /* Initialize the set of interesting blocks. The callback
2250 mark_def_sites will add to this set those blocks that the renamer
2251 should process. */
2252 interesting_blocks = sbitmap_alloc (last_basic_block);
2253 sbitmap_zero (interesting_blocks);
2254
2255 /* Initialize dominance frontier. */
2256 dfs = XNEWVEC (bitmap, last_basic_block);
2257 FOR_EACH_BB (bb)
2258 dfs[bb->index] = BITMAP_ALLOC (NULL);
2259
2260 /* 1- Compute dominance frontiers. */
2261 calculate_dominance_info (CDI_DOMINATORS);
2262 compute_dominance_frontiers (dfs);
2263
2264 /* 2- Find and mark definition sites. */
2265 mark_def_site_blocks (interesting_blocks);
2266
2267 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2268 insert_phi_nodes (dfs);
2269
2270 /* 4- Rename all the blocks. */
2271 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL, interesting_blocks);
2272
2273 /* Free allocated memory. */
2274 FOR_EACH_BB (bb)
2275 BITMAP_FREE (dfs[bb->index]);
2276 free (dfs);
2277 sbitmap_free (interesting_blocks);
2278
2279 fini_ssa_renamer ();
2280
2281 timevar_pop (TV_TREE_SSA_OTHER);
2282 return 0;
2283 }
2284
2285
2286 struct gimple_opt_pass pass_build_ssa =
2287 {
2288 {
2289 GIMPLE_PASS,
2290 "ssa", /* name */
2291 NULL, /* gate */
2292 rewrite_into_ssa, /* execute */
2293 NULL, /* sub */
2294 NULL, /* next */
2295 0, /* static_pass_number */
2296 0, /* tv_id */
2297 PROP_cfg | PROP_referenced_vars, /* properties_required */
2298 PROP_ssa, /* properties_provided */
2299 0, /* properties_destroyed */
2300 0, /* todo_flags_start */
2301 TODO_dump_func
2302 | TODO_verify_ssa
2303 | TODO_remove_unused_locals /* todo_flags_finish */
2304 }
2305 };
2306
2307
2308 /* Mark the definition of VAR at STMT and BB as interesting for the
2309 renamer. BLOCKS is the set of blocks that need updating. */
2310
2311 static void
2312 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2313 {
2314 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2315 set_register_defs (stmt, true);
2316
2317 if (insert_phi_p)
2318 {
2319 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2320
2321 set_def_block (var, bb, is_phi_p);
2322
2323 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2324 site for both itself and all the old names replaced by it. */
2325 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2326 {
2327 bitmap_iterator bi;
2328 unsigned i;
2329 bitmap set = names_replaced_by (var);
2330 if (set)
2331 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2332 set_def_block (ssa_name (i), bb, is_phi_p);
2333 }
2334 }
2335 }
2336
2337
2338 /* Mark the use of VAR at STMT and BB as interesting for the
2339 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2340 nodes. */
2341
2342 static inline void
2343 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2344 {
2345 basic_block def_bb = gimple_bb (stmt);
2346
2347 mark_block_for_update (def_bb);
2348 mark_block_for_update (bb);
2349
2350 if (gimple_code (stmt) == GIMPLE_PHI)
2351 mark_phi_for_rewrite (def_bb, stmt);
2352 else
2353 set_rewrite_uses (stmt, true);
2354
2355 /* If VAR has not been defined in BB, then it is live-on-entry
2356 to BB. Note that we cannot just use the block holding VAR's
2357 definition because if VAR is one of the names in OLD_SSA_NAMES,
2358 it will have several definitions (itself and all the names that
2359 replace it). */
2360 if (insert_phi_p)
2361 {
2362 struct def_blocks_d *db_p = get_def_blocks_for (var);
2363 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2364 set_livein_block (var, bb);
2365 }
2366 }
2367
2368
2369 /* Do a dominator walk starting at BB processing statements that
2370 reference symbols in SYMS_TO_RENAME. This is very similar to
2371 mark_def_sites, but the scan handles statements whose operands may
2372 already be SSA names.
2373
2374 If INSERT_PHI_P is true, mark those uses as live in the
2375 corresponding block. This is later used by the PHI placement
2376 algorithm to make PHI pruning decisions.
2377
2378 FIXME. Most of this would be unnecessary if we could associate a
2379 symbol to all the SSA names that reference it. But that
2380 sounds like it would be expensive to maintain. Still, it
2381 would be interesting to see if it makes better sense to do
2382 that. */
2383
2384 static void
2385 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2386 {
2387 basic_block son;
2388 gimple_stmt_iterator si;
2389 edge e;
2390 edge_iterator ei;
2391
2392 mark_block_for_update (bb);
2393
2394 /* Process PHI nodes marking interesting those that define or use
2395 the symbols that we are interested in. */
2396 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2397 {
2398 gimple phi = gsi_stmt (si);
2399 tree lhs_sym, lhs = gimple_phi_result (phi);
2400
2401 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2402
2403 if (!symbol_marked_for_renaming (lhs_sym))
2404 continue;
2405
2406 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2407
2408 /* Mark the uses in phi nodes as interesting. It would be more correct
2409 to process the arguments of the phi nodes of the successor edges of
2410 BB at the end of prepare_block_for_update, however, that turns out
2411 to be significantly more expensive. Doing it here is conservatively
2412 correct -- it may only cause us to believe a value to be live in a
2413 block that also contains its definition, and thus insert a few more
2414 phi nodes for it. */
2415 FOR_EACH_EDGE (e, ei, bb->preds)
2416 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2417 }
2418
2419 /* Process the statements. */
2420 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2421 {
2422 gimple stmt;
2423 ssa_op_iter i;
2424 use_operand_p use_p;
2425 def_operand_p def_p;
2426
2427 stmt = gsi_stmt (si);
2428
2429 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
2430 {
2431 tree use = USE_FROM_PTR (use_p);
2432 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2433 if (symbol_marked_for_renaming (sym))
2434 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2435 }
2436
2437 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_ALL_DEFS)
2438 {
2439 tree def = DEF_FROM_PTR (def_p);
2440 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2441 if (symbol_marked_for_renaming (sym))
2442 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2443 }
2444 }
2445
2446 /* Now visit all the blocks dominated by BB. */
2447 for (son = first_dom_son (CDI_DOMINATORS, bb);
2448 son;
2449 son = next_dom_son (CDI_DOMINATORS, son))
2450 prepare_block_for_update (son, insert_phi_p);
2451 }
2452
2453
2454 /* Helper for prepare_names_to_update. Mark all the use sites for
2455 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2456 prepare_names_to_update. */
2457
2458 static void
2459 prepare_use_sites_for (tree name, bool insert_phi_p)
2460 {
2461 use_operand_p use_p;
2462 imm_use_iterator iter;
2463
2464 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2465 {
2466 gimple stmt = USE_STMT (use_p);
2467 basic_block bb = gimple_bb (stmt);
2468
2469 if (gimple_code (stmt) == GIMPLE_PHI)
2470 {
2471 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2472 edge e = gimple_phi_arg_edge (stmt, ix);
2473 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2474 }
2475 else
2476 {
2477 /* For regular statements, mark this as an interesting use
2478 for NAME. */
2479 mark_use_interesting (name, stmt, bb, insert_phi_p);
2480 }
2481 }
2482 }
2483
2484
2485 /* Helper for prepare_names_to_update. Mark the definition site for
2486 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2487 prepare_names_to_update. */
2488
2489 static void
2490 prepare_def_site_for (tree name, bool insert_phi_p)
2491 {
2492 gimple stmt;
2493 basic_block bb;
2494
2495 gcc_assert (names_to_release == NULL
2496 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2497
2498 stmt = SSA_NAME_DEF_STMT (name);
2499 bb = gimple_bb (stmt);
2500 if (bb)
2501 {
2502 gcc_assert (bb->index < last_basic_block);
2503 mark_block_for_update (bb);
2504 mark_def_interesting (name, stmt, bb, insert_phi_p);
2505 }
2506 }
2507
2508
2509 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2510 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2511 PHI nodes for newly created names. */
2512
2513 static void
2514 prepare_names_to_update (bool insert_phi_p)
2515 {
2516 unsigned i = 0;
2517 bitmap_iterator bi;
2518 sbitmap_iterator sbi;
2519
2520 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2521 remove it from NEW_SSA_NAMES so that we don't try to visit its
2522 defining basic block (which most likely doesn't exist). Notice
2523 that we cannot do the same with names in OLD_SSA_NAMES because we
2524 want to replace existing instances. */
2525 if (names_to_release)
2526 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2527 RESET_BIT (new_ssa_names, i);
2528
2529 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2530 names may be considered to be live-in on blocks that contain
2531 definitions for their replacements. */
2532 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2533 prepare_def_site_for (ssa_name (i), insert_phi_p);
2534
2535 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2536 OLD_SSA_NAMES, but we have to ignore its definition site. */
2537 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2538 {
2539 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2540 prepare_def_site_for (ssa_name (i), insert_phi_p);
2541 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2542 }
2543 }
2544
2545
2546 /* Dump all the names replaced by NAME to FILE. */
2547
2548 void
2549 dump_names_replaced_by (FILE *file, tree name)
2550 {
2551 unsigned i;
2552 bitmap old_set;
2553 bitmap_iterator bi;
2554
2555 print_generic_expr (file, name, 0);
2556 fprintf (file, " -> { ");
2557
2558 old_set = names_replaced_by (name);
2559 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2560 {
2561 print_generic_expr (file, ssa_name (i), 0);
2562 fprintf (file, " ");
2563 }
2564
2565 fprintf (file, "}\n");
2566 }
2567
2568
2569 /* Dump all the names replaced by NAME to stderr. */
2570
2571 void
2572 debug_names_replaced_by (tree name)
2573 {
2574 dump_names_replaced_by (stderr, name);
2575 }
2576
2577
2578 /* Dump SSA update information to FILE. */
2579
2580 void
2581 dump_update_ssa (FILE *file)
2582 {
2583 unsigned i = 0;
2584 bitmap_iterator bi;
2585
2586 if (!need_ssa_update_p ())
2587 return;
2588
2589 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2590 {
2591 sbitmap_iterator sbi;
2592
2593 fprintf (file, "\nSSA replacement table\n");
2594 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2595 "O_1, ..., O_j\n\n");
2596
2597 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2598 dump_names_replaced_by (file, ssa_name (i));
2599
2600 fprintf (file, "\n");
2601 fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2602 update_ssa_stats.num_virtual_mappings);
2603 fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
2604 update_ssa_stats.num_total_mappings
2605 - update_ssa_stats.num_virtual_mappings);
2606 fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
2607 update_ssa_stats.num_total_mappings);
2608
2609 fprintf (file, "\nNumber of virtual symbols: %u\n",
2610 update_ssa_stats.num_virtual_symbols);
2611 }
2612
2613 if (syms_to_rename && !bitmap_empty_p (syms_to_rename))
2614 {
2615 fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2616 dump_decl_set (file, syms_to_rename);
2617 }
2618
2619 if (names_to_release && !bitmap_empty_p (names_to_release))
2620 {
2621 fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2622 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2623 {
2624 print_generic_expr (file, ssa_name (i), 0);
2625 fprintf (file, " ");
2626 }
2627 }
2628
2629 fprintf (file, "\n\n");
2630 }
2631
2632
2633 /* Dump SSA update information to stderr. */
2634
2635 void
2636 debug_update_ssa (void)
2637 {
2638 dump_update_ssa (stderr);
2639 }
2640
2641
2642 /* Initialize data structures used for incremental SSA updates. */
2643
2644 static void
2645 init_update_ssa (void)
2646 {
2647 /* Reserve more space than the current number of names. The calls to
2648 add_new_name_mapping are typically done after creating new SSA
2649 names, so we'll need to reallocate these arrays. */
2650 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2651 sbitmap_zero (old_ssa_names);
2652
2653 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2654 sbitmap_zero (new_ssa_names);
2655
2656 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2657 need_to_initialize_update_ssa_p = false;
2658 need_to_update_vops_p = false;
2659 syms_to_rename = BITMAP_ALLOC (NULL);
2660 regs_to_rename = BITMAP_ALLOC (NULL);
2661 mem_syms_to_rename = BITMAP_ALLOC (NULL);
2662 names_to_release = NULL;
2663 memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2664 update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2665 }
2666
2667
2668 /* Deallocate data structures used for incremental SSA updates. */
2669
2670 void
2671 delete_update_ssa (void)
2672 {
2673 unsigned i;
2674 bitmap_iterator bi;
2675
2676 sbitmap_free (old_ssa_names);
2677 old_ssa_names = NULL;
2678
2679 sbitmap_free (new_ssa_names);
2680 new_ssa_names = NULL;
2681
2682 htab_delete (repl_tbl);
2683 repl_tbl = NULL;
2684
2685 need_to_initialize_update_ssa_p = true;
2686 need_to_update_vops_p = false;
2687 BITMAP_FREE (syms_to_rename);
2688 BITMAP_FREE (regs_to_rename);
2689 BITMAP_FREE (mem_syms_to_rename);
2690 BITMAP_FREE (update_ssa_stats.virtual_symbols);
2691
2692 if (names_to_release)
2693 {
2694 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2695 release_ssa_name (ssa_name (i));
2696 BITMAP_FREE (names_to_release);
2697 }
2698
2699 clear_ssa_name_info ();
2700
2701 fini_ssa_renamer ();
2702
2703 if (blocks_with_phis_to_rewrite)
2704 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2705 {
2706 gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
2707
2708 VEC_free (gimple, heap, phis);
2709 VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
2710 }
2711
2712 BITMAP_FREE (blocks_with_phis_to_rewrite);
2713 BITMAP_FREE (blocks_to_update);
2714 }
2715
2716
2717 /* Create a new name for OLD_NAME in statement STMT and replace the
2718 operand pointed to by DEF_P with the newly created name. Return
2719 the new name and register the replacement mapping <NEW, OLD> in
2720 update_ssa's tables. */
2721
2722 tree
2723 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2724 {
2725 tree new_name = duplicate_ssa_name (old_name, stmt);
2726
2727 SET_DEF (def, new_name);
2728
2729 if (gimple_code (stmt) == GIMPLE_PHI)
2730 {
2731 edge e;
2732 edge_iterator ei;
2733 basic_block bb = gimple_bb (stmt);
2734
2735 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2736 FOR_EACH_EDGE (e, ei, bb->preds)
2737 if (e->flags & EDGE_ABNORMAL)
2738 {
2739 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2740 break;
2741 }
2742 }
2743
2744 register_new_name_mapping (new_name, old_name);
2745
2746 /* For the benefit of passes that will be updating the SSA form on
2747 their own, set the current reaching definition of OLD_NAME to be
2748 NEW_NAME. */
2749 set_current_def (old_name, new_name);
2750
2751 return new_name;
2752 }
2753
2754
2755 /* Register name NEW to be a replacement for name OLD. This function
2756 must be called for every replacement that should be performed by
2757 update_ssa. */
2758
2759 void
2760 register_new_name_mapping (tree new ATTRIBUTE_UNUSED, tree old ATTRIBUTE_UNUSED)
2761 {
2762 if (need_to_initialize_update_ssa_p)
2763 init_update_ssa ();
2764
2765 add_new_name_mapping (new, old);
2766 }
2767
2768
2769 /* Register symbol SYM to be renamed by update_ssa. */
2770
2771 void
2772 mark_sym_for_renaming (tree sym)
2773 {
2774 if (need_to_initialize_update_ssa_p)
2775 init_update_ssa ();
2776
2777 bitmap_set_bit (syms_to_rename, DECL_UID (sym));
2778
2779 if (!is_gimple_reg (sym))
2780 {
2781 need_to_update_vops_p = true;
2782 if (memory_partition (sym))
2783 bitmap_set_bit (syms_to_rename, DECL_UID (memory_partition (sym)));
2784 }
2785 }
2786
2787
2788 /* Register all the symbols in SET to be renamed by update_ssa. */
2789
2790 void
2791 mark_set_for_renaming (bitmap set)
2792 {
2793 bitmap_iterator bi;
2794 unsigned i;
2795
2796 if (set == NULL || bitmap_empty_p (set))
2797 return;
2798
2799 if (need_to_initialize_update_ssa_p)
2800 init_update_ssa ();
2801
2802 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2803 mark_sym_for_renaming (referenced_var (i));
2804 }
2805
2806
2807 /* Return true if there is any work to be done by update_ssa. */
2808
2809 bool
2810 need_ssa_update_p (void)
2811 {
2812 return syms_to_rename || old_ssa_names || new_ssa_names;
2813 }
2814
2815 /* Return true if SSA name mappings have been registered for SSA updating. */
2816
2817 bool
2818 name_mappings_registered_p (void)
2819 {
2820 return repl_tbl && htab_elements (repl_tbl) > 0;
2821 }
2822
2823 /* Return true if name N has been registered in the replacement table. */
2824
2825 bool
2826 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2827 {
2828 if (!need_ssa_update_p ())
2829 return false;
2830
2831 return is_new_name (n)
2832 || is_old_name (n)
2833 || symbol_marked_for_renaming (SSA_NAME_VAR (n));
2834 }
2835
2836
2837 /* Return the set of all the SSA names marked to be replaced. */
2838
2839 bitmap
2840 ssa_names_to_replace (void)
2841 {
2842 unsigned i = 0;
2843 bitmap ret;
2844 sbitmap_iterator sbi;
2845
2846 ret = BITMAP_ALLOC (NULL);
2847 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2848 bitmap_set_bit (ret, i);
2849
2850 return ret;
2851 }
2852
2853
2854 /* Mark NAME to be released after update_ssa has finished. */
2855
2856 void
2857 release_ssa_name_after_update_ssa (tree name)
2858 {
2859 gcc_assert (!need_to_initialize_update_ssa_p);
2860
2861 if (names_to_release == NULL)
2862 names_to_release = BITMAP_ALLOC (NULL);
2863
2864 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2865 }
2866
2867
2868 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2869 frontier information. BLOCKS is the set of blocks to be updated.
2870
2871 This is slightly different than the regular PHI insertion
2872 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2873 real names (i.e., GIMPLE registers) are inserted:
2874
2875 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2876 nodes inside the region affected by the block that defines VAR
2877 and the blocks that define all its replacements. All these
2878 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2879
2880 First, we compute the entry point to the region (ENTRY). This is
2881 given by the nearest common dominator to all the definition
2882 blocks. When computing the iterated dominance frontier (IDF), any
2883 block not strictly dominated by ENTRY is ignored.
2884
2885 We then call the standard PHI insertion algorithm with the pruned
2886 IDF.
2887
2888 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2889 names is not pruned. PHI nodes are inserted at every IDF block. */
2890
2891 static void
2892 insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
2893 unsigned update_flags)
2894 {
2895 basic_block entry;
2896 struct def_blocks_d *db;
2897 bitmap idf, pruned_idf;
2898 bitmap_iterator bi;
2899 unsigned i;
2900
2901 #if defined ENABLE_CHECKING
2902 if (TREE_CODE (var) == SSA_NAME)
2903 gcc_assert (is_old_name (var));
2904 else
2905 gcc_assert (symbol_marked_for_renaming (var));
2906 #endif
2907
2908 /* Get all the definition sites for VAR. */
2909 db = find_def_blocks_for (var);
2910
2911 /* No need to do anything if there were no definitions to VAR. */
2912 if (db == NULL || bitmap_empty_p (db->def_blocks))
2913 return;
2914
2915 /* Compute the initial iterated dominance frontier. */
2916 idf = compute_idf (db->def_blocks, dfs);
2917 pruned_idf = BITMAP_ALLOC (NULL);
2918
2919 if (TREE_CODE (var) == SSA_NAME)
2920 {
2921 if (update_flags == TODO_update_ssa)
2922 {
2923 /* If doing regular SSA updates for GIMPLE registers, we are
2924 only interested in IDF blocks dominated by the nearest
2925 common dominator of all the definition blocks. */
2926 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
2927 db->def_blocks);
2928 if (entry != ENTRY_BLOCK_PTR)
2929 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
2930 if (BASIC_BLOCK (i) != entry
2931 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
2932 bitmap_set_bit (pruned_idf, i);
2933 }
2934 else
2935 {
2936 /* Otherwise, do not prune the IDF for VAR. */
2937 gcc_assert (update_flags == TODO_update_ssa_full_phi);
2938 bitmap_copy (pruned_idf, idf);
2939 }
2940 }
2941 else
2942 {
2943 /* Otherwise, VAR is a symbol that needs to be put into SSA form
2944 for the first time, so we need to compute the full IDF for
2945 it. */
2946 bitmap_copy (pruned_idf, idf);
2947 }
2948
2949 if (!bitmap_empty_p (pruned_idf))
2950 {
2951 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
2952 are included in the region to be updated. The feeding blocks
2953 are important to guarantee that the PHI arguments are renamed
2954 properly. */
2955
2956 /* FIXME, this is not needed if we are updating symbols. We are
2957 already starting at the ENTRY block anyway. */
2958 bitmap_ior_into (blocks, pruned_idf);
2959 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
2960 {
2961 edge e;
2962 edge_iterator ei;
2963 basic_block bb = BASIC_BLOCK (i);
2964
2965 FOR_EACH_EDGE (e, ei, bb->preds)
2966 if (e->src->index >= 0)
2967 bitmap_set_bit (blocks, e->src->index);
2968 }
2969
2970 insert_phi_nodes_for (var, pruned_idf, true);
2971 }
2972
2973 BITMAP_FREE (pruned_idf);
2974 BITMAP_FREE (idf);
2975 }
2976
2977
2978 /* Heuristic to determine whether SSA name mappings for virtual names
2979 should be discarded and their symbols rewritten from scratch. When
2980 there is a large number of mappings for virtual names, the
2981 insertion of PHI nodes for the old names in the mappings takes
2982 considerable more time than if we inserted PHI nodes for the
2983 symbols instead.
2984
2985 Currently the heuristic takes these stats into account:
2986
2987 - Number of mappings for virtual SSA names.
2988 - Number of distinct virtual symbols involved in those mappings.
2989
2990 If the number of virtual mappings is much larger than the number of
2991 virtual symbols, then it will be faster to compute PHI insertion
2992 spots for the symbols. Even if this involves traversing the whole
2993 CFG, which is what happens when symbols are renamed from scratch. */
2994
2995 static bool
2996 switch_virtuals_to_full_rewrite_p (void)
2997 {
2998 if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
2999 return false;
3000
3001 if (update_ssa_stats.num_virtual_mappings
3002 > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
3003 * update_ssa_stats.num_virtual_symbols)
3004 return true;
3005
3006 return false;
3007 }
3008
3009
3010 /* Remove every virtual mapping and mark all the affected virtual
3011 symbols for renaming. */
3012
3013 static void
3014 switch_virtuals_to_full_rewrite (void)
3015 {
3016 unsigned i = 0;
3017 sbitmap_iterator sbi;
3018
3019 if (dump_file)
3020 {
3021 fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
3022 fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
3023 update_ssa_stats.num_virtual_mappings);
3024 fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
3025 update_ssa_stats.num_virtual_symbols);
3026 fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
3027 "faster than processing\nthe name mappings.\n\n");
3028 }
3029
3030 /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
3031 Note that it is not really necessary to remove the mappings from
3032 REPL_TBL, that would only waste time. */
3033 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
3034 if (!is_gimple_reg (ssa_name (i)))
3035 RESET_BIT (new_ssa_names, i);
3036
3037 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3038 if (!is_gimple_reg (ssa_name (i)))
3039 RESET_BIT (old_ssa_names, i);
3040
3041 mark_set_for_renaming (update_ssa_stats.virtual_symbols);
3042 }
3043
3044
3045 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3046 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3047
3048 1- The names in OLD_SSA_NAMES dominated by the definitions of
3049 NEW_SSA_NAMES are all re-written to be reached by the
3050 appropriate definition from NEW_SSA_NAMES.
3051
3052 2- If needed, new PHI nodes are added to the iterated dominance
3053 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3054
3055 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3056 calling register_new_name_mapping for every pair of names that the
3057 caller wants to replace.
3058
3059 The caller identifies the new names that have been inserted and the
3060 names that need to be replaced by calling register_new_name_mapping
3061 for every pair <NEW, OLD>. Note that the function assumes that the
3062 new names have already been inserted in the IL.
3063
3064 For instance, given the following code:
3065
3066 1 L0:
3067 2 x_1 = PHI (0, x_5)
3068 3 if (x_1 < 10)
3069 4 if (x_1 > 7)
3070 5 y_2 = 0
3071 6 else
3072 7 y_3 = x_1 + x_7
3073 8 endif
3074 9 x_5 = x_1 + 1
3075 10 goto L0;
3076 11 endif
3077
3078 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3079
3080 1 L0:
3081 2 x_1 = PHI (0, x_5)
3082 3 if (x_1 < 10)
3083 4 x_10 = ...
3084 5 if (x_1 > 7)
3085 6 y_2 = 0
3086 7 else
3087 8 x_11 = ...
3088 9 y_3 = x_1 + x_7
3089 10 endif
3090 11 x_5 = x_1 + 1
3091 12 goto L0;
3092 13 endif
3093
3094 We want to replace all the uses of x_1 with the new definitions of
3095 x_10 and x_11. Note that the only uses that should be replaced are
3096 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3097 *not* be replaced (this is why we cannot just mark symbol 'x' for
3098 renaming).
3099
3100 Additionally, we may need to insert a PHI node at line 11 because
3101 that is a merge point for x_10 and x_11. So the use of x_1 at line
3102 11 will be replaced with the new PHI node. The insertion of PHI
3103 nodes is optional. They are not strictly necessary to preserve the
3104 SSA form, and depending on what the caller inserted, they may not
3105 even be useful for the optimizers. UPDATE_FLAGS controls various
3106 aspects of how update_ssa operates, see the documentation for
3107 TODO_update_ssa*. */
3108
3109 void
3110 update_ssa (unsigned update_flags)
3111 {
3112 basic_block bb, start_bb;
3113 bitmap_iterator bi;
3114 unsigned i = 0;
3115 sbitmap tmp;
3116 bool insert_phi_p;
3117 sbitmap_iterator sbi;
3118
3119 if (!need_ssa_update_p ())
3120 return;
3121
3122 timevar_push (TV_TREE_SSA_INCREMENTAL);
3123
3124 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3125 if (!phis_to_rewrite)
3126 phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block);
3127 blocks_to_update = BITMAP_ALLOC (NULL);
3128
3129 /* Ensure that the dominance information is up-to-date. */
3130 calculate_dominance_info (CDI_DOMINATORS);
3131
3132 /* Only one update flag should be set. */
3133 gcc_assert (update_flags == TODO_update_ssa
3134 || update_flags == TODO_update_ssa_no_phi
3135 || update_flags == TODO_update_ssa_full_phi
3136 || update_flags == TODO_update_ssa_only_virtuals);
3137
3138 /* If we only need to update virtuals, remove all the mappings for
3139 real names before proceeding. The caller is responsible for
3140 having dealt with the name mappings before calling update_ssa. */
3141 if (update_flags == TODO_update_ssa_only_virtuals)
3142 {
3143 sbitmap_zero (old_ssa_names);
3144 sbitmap_zero (new_ssa_names);
3145 htab_empty (repl_tbl);
3146 }
3147
3148 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3149
3150 if (insert_phi_p)
3151 {
3152 /* If the caller requested PHI nodes to be added, initialize
3153 live-in information data structures (DEF_BLOCKS). */
3154
3155 /* For each SSA name N, the DEF_BLOCKS table describes where the
3156 name is defined, which blocks have PHI nodes for N, and which
3157 blocks have uses of N (i.e., N is live-on-entry in those
3158 blocks). */
3159 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
3160 def_blocks_eq, def_blocks_free);
3161 }
3162 else
3163 {
3164 def_blocks = NULL;
3165 }
3166
3167 /* Heuristic to avoid massive slow downs when the replacement
3168 mappings include lots of virtual names. */
3169 if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
3170 switch_virtuals_to_full_rewrite ();
3171
3172 /* If there are symbols to rename, identify those symbols that are
3173 GIMPLE registers into the set REGS_TO_RENAME and those that are
3174 memory symbols into the set MEM_SYMS_TO_RENAME. */
3175 if (!bitmap_empty_p (syms_to_rename))
3176 {
3177 unsigned i;
3178 bitmap_iterator bi;
3179
3180 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
3181 {
3182 tree sym = referenced_var (i);
3183 if (is_gimple_reg (sym))
3184 bitmap_set_bit (regs_to_rename, i);
3185 else
3186 {
3187 /* Memory partitioning information may have been
3188 computed after the symbol was marked for renaming,
3189 if SYM is inside a partition also mark the partition
3190 for renaming. */
3191 tree mpt = memory_partition (sym);
3192 if (mpt)
3193 bitmap_set_bit (syms_to_rename, DECL_UID (mpt));
3194 }
3195 }
3196
3197 /* Memory symbols are those not in REGS_TO_RENAME. */
3198 bitmap_and_compl (mem_syms_to_rename, syms_to_rename, regs_to_rename);
3199 }
3200
3201 /* If there are names defined in the replacement table, prepare
3202 definition and use sites for all the names in NEW_SSA_NAMES and
3203 OLD_SSA_NAMES. */
3204 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3205 {
3206 prepare_names_to_update (insert_phi_p);
3207
3208 /* If all the names in NEW_SSA_NAMES had been marked for
3209 removal, and there are no symbols to rename, then there's
3210 nothing else to do. */
3211 if (sbitmap_first_set_bit (new_ssa_names) < 0
3212 && bitmap_empty_p (syms_to_rename))
3213 goto done;
3214 }
3215
3216 /* Next, determine the block at which to start the renaming process. */
3217 if (!bitmap_empty_p (syms_to_rename))
3218 {
3219 /* If we have to rename some symbols from scratch, we need to
3220 start the process at the root of the CFG. FIXME, it should
3221 be possible to determine the nearest block that had a
3222 definition for each of the symbols that are marked for
3223 updating. For now this seems more work than it's worth. */
3224 start_bb = ENTRY_BLOCK_PTR;
3225
3226 /* Traverse the CFG looking for existing definitions and uses of
3227 symbols in SYMS_TO_RENAME. Mark interesting blocks and
3228 statements and set local live-in information for the PHI
3229 placement heuristics. */
3230 prepare_block_for_update (start_bb, insert_phi_p);
3231 }
3232 else
3233 {
3234 /* Otherwise, the entry block to the region is the nearest
3235 common dominator for the blocks in BLOCKS. */
3236 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3237 blocks_to_update);
3238 }
3239
3240 /* If requested, insert PHI nodes at the iterated dominance frontier
3241 of every block, creating new definitions for names in OLD_SSA_NAMES
3242 and for symbols in SYMS_TO_RENAME. */
3243 if (insert_phi_p)
3244 {
3245 bitmap *dfs;
3246
3247 /* If the caller requested PHI nodes to be added, compute
3248 dominance frontiers. */
3249 dfs = XNEWVEC (bitmap, last_basic_block);
3250 FOR_EACH_BB (bb)
3251 dfs[bb->index] = BITMAP_ALLOC (NULL);
3252 compute_dominance_frontiers (dfs);
3253
3254 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3255 {
3256 sbitmap_iterator sbi;
3257
3258 /* insert_update_phi_nodes_for will call add_new_name_mapping
3259 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3260 will grow while we are traversing it (but it will not
3261 gain any new members). Copy OLD_SSA_NAMES to a temporary
3262 for traversal. */
3263 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
3264 sbitmap_copy (tmp, old_ssa_names);
3265 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3266 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3267 update_flags);
3268 sbitmap_free (tmp);
3269 }
3270
3271 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
3272 insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks_to_update,
3273 update_flags);
3274
3275 FOR_EACH_BB (bb)
3276 BITMAP_FREE (dfs[bb->index]);
3277 free (dfs);
3278
3279 /* Insertion of PHI nodes may have added blocks to the region.
3280 We need to re-compute START_BB to include the newly added
3281 blocks. */
3282 if (start_bb != ENTRY_BLOCK_PTR)
3283 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3284 blocks_to_update);
3285 }
3286
3287 /* Reset the current definition for name and symbol before renaming
3288 the sub-graph. */
3289 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3290 set_current_def (ssa_name (i), NULL_TREE);
3291
3292 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
3293 set_current_def (referenced_var (i), NULL_TREE);
3294
3295 /* Now start the renaming process at START_BB. */
3296 tmp = sbitmap_alloc (last_basic_block);
3297 sbitmap_zero (tmp);
3298 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3299 SET_BIT (tmp, i);
3300
3301 rewrite_blocks (start_bb, REWRITE_UPDATE, tmp);
3302
3303 sbitmap_free (tmp);
3304
3305 /* Debugging dumps. */
3306 if (dump_file)
3307 {
3308 int c;
3309 unsigned i;
3310
3311 dump_update_ssa (dump_file);
3312
3313 fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
3314 start_bb->index);
3315
3316 c = 0;
3317 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3318 c++;
3319 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3320 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
3321 c, PERCENT (c, last_basic_block));
3322
3323 if (dump_flags & TDF_DETAILS)
3324 {
3325 fprintf (dump_file, "Affected blocks: ");
3326 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3327 fprintf (dump_file, "%u ", i);
3328 fprintf (dump_file, "\n");
3329 }
3330
3331 fprintf (dump_file, "\n\n");
3332 }
3333
3334 /* Free allocated memory. */
3335 done:
3336 delete_update_ssa ();
3337
3338 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3339 }
This page took 0.187729 seconds and 5 git commands to generate.