]> gcc.gnu.org Git - gcc.git/blob - gcc/tree-eh.c
add a hash_set based on hash_table
[gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "expr.h"
27 #include "calls.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "except.h"
31 #include "hash-set.h"
32 #include "pointer-set.h"
33 #include "basic-block.h"
34 #include "tree-ssa-alias.h"
35 #include "internal-fn.h"
36 #include "tree-eh.h"
37 #include "gimple-expr.h"
38 #include "is-a.h"
39 #include "gimple.h"
40 #include "gimple-iterator.h"
41 #include "gimple-ssa.h"
42 #include "cgraph.h"
43 #include "tree-cfg.h"
44 #include "tree-phinodes.h"
45 #include "ssa-iterators.h"
46 #include "stringpool.h"
47 #include "tree-ssanames.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "tree-inline.h"
51 #include "tree-pass.h"
52 #include "langhooks.h"
53 #include "diagnostic-core.h"
54 #include "target.h"
55 #include "cfgloop.h"
56 #include "gimple-low.h"
57
58 /* In some instances a tree and a gimple need to be stored in a same table,
59 i.e. in hash tables. This is a structure to do this. */
60 typedef union {tree *tp; tree t; gimple g;} treemple;
61
62 /* Misc functions used in this file. */
63
64 /* Remember and lookup EH landing pad data for arbitrary statements.
65 Really this means any statement that could_throw_p. We could
66 stuff this information into the stmt_ann data structure, but:
67
68 (1) We absolutely rely on this information being kept until
69 we get to rtl. Once we're done with lowering here, if we lose
70 the information there's no way to recover it!
71
72 (2) There are many more statements that *cannot* throw as
73 compared to those that can. We should be saving some amount
74 of space by only allocating memory for those that can throw. */
75
76 /* Add statement T in function IFUN to landing pad NUM. */
77
78 static void
79 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
80 {
81 struct throw_stmt_node *n;
82 void **slot;
83
84 gcc_assert (num != 0);
85
86 n = ggc_alloc<throw_stmt_node> ();
87 n->stmt = t;
88 n->lp_nr = num;
89
90 if (!get_eh_throw_stmt_table (ifun))
91 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
92 struct_ptr_eq,
93 ggc_free));
94
95 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
96 gcc_assert (!*slot);
97 *slot = n;
98 }
99
100 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
101
102 void
103 add_stmt_to_eh_lp (gimple t, int num)
104 {
105 add_stmt_to_eh_lp_fn (cfun, t, num);
106 }
107
108 /* Add statement T to the single EH landing pad in REGION. */
109
110 static void
111 record_stmt_eh_region (eh_region region, gimple t)
112 {
113 if (region == NULL)
114 return;
115 if (region->type == ERT_MUST_NOT_THROW)
116 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
117 else
118 {
119 eh_landing_pad lp = region->landing_pads;
120 if (lp == NULL)
121 lp = gen_eh_landing_pad (region);
122 else
123 gcc_assert (lp->next_lp == NULL);
124 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
125 }
126 }
127
128
129 /* Remove statement T in function IFUN from its EH landing pad. */
130
131 bool
132 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
133 {
134 struct throw_stmt_node dummy;
135 void **slot;
136
137 if (!get_eh_throw_stmt_table (ifun))
138 return false;
139
140 dummy.stmt = t;
141 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
142 NO_INSERT);
143 if (slot)
144 {
145 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
146 return true;
147 }
148 else
149 return false;
150 }
151
152
153 /* Remove statement T in the current function (cfun) from its
154 EH landing pad. */
155
156 bool
157 remove_stmt_from_eh_lp (gimple t)
158 {
159 return remove_stmt_from_eh_lp_fn (cfun, t);
160 }
161
162 /* Determine if statement T is inside an EH region in function IFUN.
163 Positive numbers indicate a landing pad index; negative numbers
164 indicate a MUST_NOT_THROW region index; zero indicates that the
165 statement is not recorded in the region table. */
166
167 int
168 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
169 {
170 struct throw_stmt_node *p, n;
171
172 if (ifun->eh->throw_stmt_table == NULL)
173 return 0;
174
175 n.stmt = t;
176 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
177 return p ? p->lp_nr : 0;
178 }
179
180 /* Likewise, but always use the current function. */
181
182 int
183 lookup_stmt_eh_lp (gimple t)
184 {
185 /* We can get called from initialized data when -fnon-call-exceptions
186 is on; prevent crash. */
187 if (!cfun)
188 return 0;
189 return lookup_stmt_eh_lp_fn (cfun, t);
190 }
191
192 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
193 nodes and LABEL_DECL nodes. We will use this during the second phase to
194 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
195
196 struct finally_tree_node
197 {
198 /* When storing a GIMPLE_TRY, we have to record a gimple. However
199 when deciding whether a GOTO to a certain LABEL_DECL (which is a
200 tree) leaves the TRY block, its necessary to record a tree in
201 this field. Thus a treemple is used. */
202 treemple child;
203 gimple parent;
204 };
205
206 /* Hashtable helpers. */
207
208 struct finally_tree_hasher : typed_free_remove <finally_tree_node>
209 {
210 typedef finally_tree_node value_type;
211 typedef finally_tree_node compare_type;
212 static inline hashval_t hash (const value_type *);
213 static inline bool equal (const value_type *, const compare_type *);
214 };
215
216 inline hashval_t
217 finally_tree_hasher::hash (const value_type *v)
218 {
219 return (intptr_t)v->child.t >> 4;
220 }
221
222 inline bool
223 finally_tree_hasher::equal (const value_type *v, const compare_type *c)
224 {
225 return v->child.t == c->child.t;
226 }
227
228 /* Note that this table is *not* marked GTY. It is short-lived. */
229 static hash_table<finally_tree_hasher> *finally_tree;
230
231 static void
232 record_in_finally_tree (treemple child, gimple parent)
233 {
234 struct finally_tree_node *n;
235 finally_tree_node **slot;
236
237 n = XNEW (struct finally_tree_node);
238 n->child = child;
239 n->parent = parent;
240
241 slot = finally_tree->find_slot (n, INSERT);
242 gcc_assert (!*slot);
243 *slot = n;
244 }
245
246 static void
247 collect_finally_tree (gimple stmt, gimple region);
248
249 /* Go through the gimple sequence. Works with collect_finally_tree to
250 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
251
252 static void
253 collect_finally_tree_1 (gimple_seq seq, gimple region)
254 {
255 gimple_stmt_iterator gsi;
256
257 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
258 collect_finally_tree (gsi_stmt (gsi), region);
259 }
260
261 static void
262 collect_finally_tree (gimple stmt, gimple region)
263 {
264 treemple temp;
265
266 switch (gimple_code (stmt))
267 {
268 case GIMPLE_LABEL:
269 temp.t = gimple_label_label (stmt);
270 record_in_finally_tree (temp, region);
271 break;
272
273 case GIMPLE_TRY:
274 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
275 {
276 temp.g = stmt;
277 record_in_finally_tree (temp, region);
278 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
279 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
280 }
281 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
282 {
283 collect_finally_tree_1 (gimple_try_eval (stmt), region);
284 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
285 }
286 break;
287
288 case GIMPLE_CATCH:
289 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
290 break;
291
292 case GIMPLE_EH_FILTER:
293 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
294 break;
295
296 case GIMPLE_EH_ELSE:
297 collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
298 collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
299 break;
300
301 default:
302 /* A type, a decl, or some kind of statement that we're not
303 interested in. Don't walk them. */
304 break;
305 }
306 }
307
308
309 /* Use the finally tree to determine if a jump from START to TARGET
310 would leave the try_finally node that START lives in. */
311
312 static bool
313 outside_finally_tree (treemple start, gimple target)
314 {
315 struct finally_tree_node n, *p;
316
317 do
318 {
319 n.child = start;
320 p = finally_tree->find (&n);
321 if (!p)
322 return true;
323 start.g = p->parent;
324 }
325 while (start.g != target);
326
327 return false;
328 }
329
330 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
331 nodes into a set of gotos, magic labels, and eh regions.
332 The eh region creation is straight-forward, but frobbing all the gotos
333 and such into shape isn't. */
334
335 /* The sequence into which we record all EH stuff. This will be
336 placed at the end of the function when we're all done. */
337 static gimple_seq eh_seq;
338
339 /* Record whether an EH region contains something that can throw,
340 indexed by EH region number. */
341 static bitmap eh_region_may_contain_throw_map;
342
343 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
344 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
345 The idea is to record a gimple statement for everything except for
346 the conditionals, which get their labels recorded. Since labels are
347 of type 'tree', we need this node to store both gimple and tree
348 objects. REPL_STMT is the sequence used to replace the goto/return
349 statement. CONT_STMT is used to store the statement that allows
350 the return/goto to jump to the original destination. */
351
352 struct goto_queue_node
353 {
354 treemple stmt;
355 location_t location;
356 gimple_seq repl_stmt;
357 gimple cont_stmt;
358 int index;
359 /* This is used when index >= 0 to indicate that stmt is a label (as
360 opposed to a goto stmt). */
361 int is_label;
362 };
363
364 /* State of the world while lowering. */
365
366 struct leh_state
367 {
368 /* What's "current" while constructing the eh region tree. These
369 correspond to variables of the same name in cfun->eh, which we
370 don't have easy access to. */
371 eh_region cur_region;
372
373 /* What's "current" for the purposes of __builtin_eh_pointer. For
374 a CATCH, this is the associated TRY. For an EH_FILTER, this is
375 the associated ALLOWED_EXCEPTIONS, etc. */
376 eh_region ehp_region;
377
378 /* Processing of TRY_FINALLY requires a bit more state. This is
379 split out into a separate structure so that we don't have to
380 copy so much when processing other nodes. */
381 struct leh_tf_state *tf;
382 };
383
384 struct leh_tf_state
385 {
386 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
387 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
388 this so that outside_finally_tree can reliably reference the tree used
389 in the collect_finally_tree data structures. */
390 gimple try_finally_expr;
391 gimple top_p;
392
393 /* While lowering a top_p usually it is expanded into multiple statements,
394 thus we need the following field to store them. */
395 gimple_seq top_p_seq;
396
397 /* The state outside this try_finally node. */
398 struct leh_state *outer;
399
400 /* The exception region created for it. */
401 eh_region region;
402
403 /* The goto queue. */
404 struct goto_queue_node *goto_queue;
405 size_t goto_queue_size;
406 size_t goto_queue_active;
407
408 /* Pointer map to help in searching goto_queue when it is large. */
409 struct pointer_map_t *goto_queue_map;
410
411 /* The set of unique labels seen as entries in the goto queue. */
412 vec<tree> dest_array;
413
414 /* A label to be added at the end of the completed transformed
415 sequence. It will be set if may_fallthru was true *at one time*,
416 though subsequent transformations may have cleared that flag. */
417 tree fallthru_label;
418
419 /* True if it is possible to fall out the bottom of the try block.
420 Cleared if the fallthru is converted to a goto. */
421 bool may_fallthru;
422
423 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
424 bool may_return;
425
426 /* True if the finally block can receive an exception edge.
427 Cleared if the exception case is handled by code duplication. */
428 bool may_throw;
429 };
430
431 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
432
433 /* Search for STMT in the goto queue. Return the replacement,
434 or null if the statement isn't in the queue. */
435
436 #define LARGE_GOTO_QUEUE 20
437
438 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
439
440 static gimple_seq
441 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
442 {
443 unsigned int i;
444 void **slot;
445
446 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
447 {
448 for (i = 0; i < tf->goto_queue_active; i++)
449 if ( tf->goto_queue[i].stmt.g == stmt.g)
450 return tf->goto_queue[i].repl_stmt;
451 return NULL;
452 }
453
454 /* If we have a large number of entries in the goto_queue, create a
455 pointer map and use that for searching. */
456
457 if (!tf->goto_queue_map)
458 {
459 tf->goto_queue_map = pointer_map_create ();
460 for (i = 0; i < tf->goto_queue_active; i++)
461 {
462 slot = pointer_map_insert (tf->goto_queue_map,
463 tf->goto_queue[i].stmt.g);
464 gcc_assert (*slot == NULL);
465 *slot = &tf->goto_queue[i];
466 }
467 }
468
469 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
470 if (slot != NULL)
471 return (((struct goto_queue_node *) *slot)->repl_stmt);
472
473 return NULL;
474 }
475
476 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
477 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
478 then we can just splat it in, otherwise we add the new stmts immediately
479 after the GIMPLE_COND and redirect. */
480
481 static void
482 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
483 gimple_stmt_iterator *gsi)
484 {
485 tree label;
486 gimple_seq new_seq;
487 treemple temp;
488 location_t loc = gimple_location (gsi_stmt (*gsi));
489
490 temp.tp = tp;
491 new_seq = find_goto_replacement (tf, temp);
492 if (!new_seq)
493 return;
494
495 if (gimple_seq_singleton_p (new_seq)
496 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
497 {
498 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
499 return;
500 }
501
502 label = create_artificial_label (loc);
503 /* Set the new label for the GIMPLE_COND */
504 *tp = label;
505
506 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
507 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
508 }
509
510 /* The real work of replace_goto_queue. Returns with TSI updated to
511 point to the next statement. */
512
513 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
514
515 static void
516 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
517 gimple_stmt_iterator *gsi)
518 {
519 gimple_seq seq;
520 treemple temp;
521 temp.g = NULL;
522
523 switch (gimple_code (stmt))
524 {
525 case GIMPLE_GOTO:
526 case GIMPLE_RETURN:
527 temp.g = stmt;
528 seq = find_goto_replacement (tf, temp);
529 if (seq)
530 {
531 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
532 gsi_remove (gsi, false);
533 return;
534 }
535 break;
536
537 case GIMPLE_COND:
538 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
539 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
540 break;
541
542 case GIMPLE_TRY:
543 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
544 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
545 break;
546 case GIMPLE_CATCH:
547 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (stmt), tf);
548 break;
549 case GIMPLE_EH_FILTER:
550 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
551 break;
552 case GIMPLE_EH_ELSE:
553 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (stmt), tf);
554 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (stmt), tf);
555 break;
556
557 default:
558 /* These won't have gotos in them. */
559 break;
560 }
561
562 gsi_next (gsi);
563 }
564
565 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
566
567 static void
568 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
569 {
570 gimple_stmt_iterator gsi = gsi_start (*seq);
571
572 while (!gsi_end_p (gsi))
573 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
574 }
575
576 /* Replace all goto queue members. */
577
578 static void
579 replace_goto_queue (struct leh_tf_state *tf)
580 {
581 if (tf->goto_queue_active == 0)
582 return;
583 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
584 replace_goto_queue_stmt_list (&eh_seq, tf);
585 }
586
587 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
588 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
589 a gimple return. */
590
591 static void
592 record_in_goto_queue (struct leh_tf_state *tf,
593 treemple new_stmt,
594 int index,
595 bool is_label,
596 location_t location)
597 {
598 size_t active, size;
599 struct goto_queue_node *q;
600
601 gcc_assert (!tf->goto_queue_map);
602
603 active = tf->goto_queue_active;
604 size = tf->goto_queue_size;
605 if (active >= size)
606 {
607 size = (size ? size * 2 : 32);
608 tf->goto_queue_size = size;
609 tf->goto_queue
610 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
611 }
612
613 q = &tf->goto_queue[active];
614 tf->goto_queue_active = active + 1;
615
616 memset (q, 0, sizeof (*q));
617 q->stmt = new_stmt;
618 q->index = index;
619 q->location = location;
620 q->is_label = is_label;
621 }
622
623 /* Record the LABEL label in the goto queue contained in TF.
624 TF is not null. */
625
626 static void
627 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
628 location_t location)
629 {
630 int index;
631 treemple temp, new_stmt;
632
633 if (!label)
634 return;
635
636 /* Computed and non-local gotos do not get processed. Given
637 their nature we can neither tell whether we've escaped the
638 finally block nor redirect them if we knew. */
639 if (TREE_CODE (label) != LABEL_DECL)
640 return;
641
642 /* No need to record gotos that don't leave the try block. */
643 temp.t = label;
644 if (!outside_finally_tree (temp, tf->try_finally_expr))
645 return;
646
647 if (! tf->dest_array.exists ())
648 {
649 tf->dest_array.create (10);
650 tf->dest_array.quick_push (label);
651 index = 0;
652 }
653 else
654 {
655 int n = tf->dest_array.length ();
656 for (index = 0; index < n; ++index)
657 if (tf->dest_array[index] == label)
658 break;
659 if (index == n)
660 tf->dest_array.safe_push (label);
661 }
662
663 /* In the case of a GOTO we want to record the destination label,
664 since with a GIMPLE_COND we have an easy access to the then/else
665 labels. */
666 new_stmt = stmt;
667 record_in_goto_queue (tf, new_stmt, index, true, location);
668 }
669
670 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
671 node, and if so record that fact in the goto queue associated with that
672 try_finally node. */
673
674 static void
675 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
676 {
677 struct leh_tf_state *tf = state->tf;
678 treemple new_stmt;
679
680 if (!tf)
681 return;
682
683 switch (gimple_code (stmt))
684 {
685 case GIMPLE_COND:
686 new_stmt.tp = gimple_op_ptr (stmt, 2);
687 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt),
688 EXPR_LOCATION (*new_stmt.tp));
689 new_stmt.tp = gimple_op_ptr (stmt, 3);
690 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt),
691 EXPR_LOCATION (*new_stmt.tp));
692 break;
693 case GIMPLE_GOTO:
694 new_stmt.g = stmt;
695 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
696 gimple_location (stmt));
697 break;
698
699 case GIMPLE_RETURN:
700 tf->may_return = true;
701 new_stmt.g = stmt;
702 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
703 break;
704
705 default:
706 gcc_unreachable ();
707 }
708 }
709
710
711 #ifdef ENABLE_CHECKING
712 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
713 was in fact structured, and we've not yet done jump threading, then none
714 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
715
716 static void
717 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
718 {
719 struct leh_tf_state *tf = state->tf;
720 size_t i, n;
721
722 if (!tf)
723 return;
724
725 n = gimple_switch_num_labels (switch_expr);
726
727 for (i = 0; i < n; ++i)
728 {
729 treemple temp;
730 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
731 temp.t = lab;
732 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
733 }
734 }
735 #else
736 #define verify_norecord_switch_expr(state, switch_expr)
737 #endif
738
739 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
740 non-null, insert it before the new branch. */
741
742 static void
743 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
744 {
745 gimple x;
746
747 /* In the case of a return, the queue node must be a gimple statement. */
748 gcc_assert (!q->is_label);
749
750 /* Note that the return value may have already been computed, e.g.,
751
752 int x;
753 int foo (void)
754 {
755 x = 0;
756 try {
757 return x;
758 } finally {
759 x++;
760 }
761 }
762
763 should return 0, not 1. We don't have to do anything to make
764 this happens because the return value has been placed in the
765 RESULT_DECL already. */
766
767 q->cont_stmt = q->stmt.g;
768
769 if (mod)
770 gimple_seq_add_seq (&q->repl_stmt, mod);
771
772 x = gimple_build_goto (finlab);
773 gimple_set_location (x, q->location);
774 gimple_seq_add_stmt (&q->repl_stmt, x);
775 }
776
777 /* Similar, but easier, for GIMPLE_GOTO. */
778
779 static void
780 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
781 struct leh_tf_state *tf)
782 {
783 gimple x;
784
785 gcc_assert (q->is_label);
786
787 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
788
789 if (mod)
790 gimple_seq_add_seq (&q->repl_stmt, mod);
791
792 x = gimple_build_goto (finlab);
793 gimple_set_location (x, q->location);
794 gimple_seq_add_stmt (&q->repl_stmt, x);
795 }
796
797 /* Emit a standard landing pad sequence into SEQ for REGION. */
798
799 static void
800 emit_post_landing_pad (gimple_seq *seq, eh_region region)
801 {
802 eh_landing_pad lp = region->landing_pads;
803 gimple x;
804
805 if (lp == NULL)
806 lp = gen_eh_landing_pad (region);
807
808 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
809 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
810
811 x = gimple_build_label (lp->post_landing_pad);
812 gimple_seq_add_stmt (seq, x);
813 }
814
815 /* Emit a RESX statement into SEQ for REGION. */
816
817 static void
818 emit_resx (gimple_seq *seq, eh_region region)
819 {
820 gimple x = gimple_build_resx (region->index);
821 gimple_seq_add_stmt (seq, x);
822 if (region->outer)
823 record_stmt_eh_region (region->outer, x);
824 }
825
826 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
827
828 static void
829 emit_eh_dispatch (gimple_seq *seq, eh_region region)
830 {
831 gimple x = gimple_build_eh_dispatch (region->index);
832 gimple_seq_add_stmt (seq, x);
833 }
834
835 /* Note that the current EH region may contain a throw, or a
836 call to a function which itself may contain a throw. */
837
838 static void
839 note_eh_region_may_contain_throw (eh_region region)
840 {
841 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
842 {
843 if (region->type == ERT_MUST_NOT_THROW)
844 break;
845 region = region->outer;
846 if (region == NULL)
847 break;
848 }
849 }
850
851 /* Check if REGION has been marked as containing a throw. If REGION is
852 NULL, this predicate is false. */
853
854 static inline bool
855 eh_region_may_contain_throw (eh_region r)
856 {
857 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
858 }
859
860 /* We want to transform
861 try { body; } catch { stuff; }
862 to
863 normal_seqence:
864 body;
865 over:
866 eh_seqence:
867 landing_pad:
868 stuff;
869 goto over;
870
871 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
872 should be placed before the second operand, or NULL. OVER is
873 an existing label that should be put at the exit, or NULL. */
874
875 static gimple_seq
876 frob_into_branch_around (gimple tp, eh_region region, tree over)
877 {
878 gimple x;
879 gimple_seq cleanup, result;
880 location_t loc = gimple_location (tp);
881
882 cleanup = gimple_try_cleanup (tp);
883 result = gimple_try_eval (tp);
884
885 if (region)
886 emit_post_landing_pad (&eh_seq, region);
887
888 if (gimple_seq_may_fallthru (cleanup))
889 {
890 if (!over)
891 over = create_artificial_label (loc);
892 x = gimple_build_goto (over);
893 gimple_set_location (x, loc);
894 gimple_seq_add_stmt (&cleanup, x);
895 }
896 gimple_seq_add_seq (&eh_seq, cleanup);
897
898 if (over)
899 {
900 x = gimple_build_label (over);
901 gimple_seq_add_stmt (&result, x);
902 }
903 return result;
904 }
905
906 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
907 Make sure to record all new labels found. */
908
909 static gimple_seq
910 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
911 location_t loc)
912 {
913 gimple region = NULL;
914 gimple_seq new_seq;
915 gimple_stmt_iterator gsi;
916
917 new_seq = copy_gimple_seq_and_replace_locals (seq);
918
919 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
920 {
921 gimple stmt = gsi_stmt (gsi);
922 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
923 {
924 tree block = gimple_block (stmt);
925 gimple_set_location (stmt, loc);
926 gimple_set_block (stmt, block);
927 }
928 }
929
930 if (outer_state->tf)
931 region = outer_state->tf->try_finally_expr;
932 collect_finally_tree_1 (new_seq, region);
933
934 return new_seq;
935 }
936
937 /* A subroutine of lower_try_finally. Create a fallthru label for
938 the given try_finally state. The only tricky bit here is that
939 we have to make sure to record the label in our outer context. */
940
941 static tree
942 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
943 {
944 tree label = tf->fallthru_label;
945 treemple temp;
946
947 if (!label)
948 {
949 label = create_artificial_label (gimple_location (tf->try_finally_expr));
950 tf->fallthru_label = label;
951 if (tf->outer->tf)
952 {
953 temp.t = label;
954 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
955 }
956 }
957 return label;
958 }
959
960 /* A subroutine of lower_try_finally. If FINALLY consits of a
961 GIMPLE_EH_ELSE node, return it. */
962
963 static inline gimple
964 get_eh_else (gimple_seq finally)
965 {
966 gimple x = gimple_seq_first_stmt (finally);
967 if (gimple_code (x) == GIMPLE_EH_ELSE)
968 {
969 gcc_assert (gimple_seq_singleton_p (finally));
970 return x;
971 }
972 return NULL;
973 }
974
975 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
976 langhook returns non-null, then the language requires that the exception
977 path out of a try_finally be treated specially. To wit: the code within
978 the finally block may not itself throw an exception. We have two choices
979 here. First we can duplicate the finally block and wrap it in a
980 must_not_throw region. Second, we can generate code like
981
982 try {
983 finally_block;
984 } catch {
985 if (fintmp == eh_edge)
986 protect_cleanup_actions;
987 }
988
989 where "fintmp" is the temporary used in the switch statement generation
990 alternative considered below. For the nonce, we always choose the first
991 option.
992
993 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
994
995 static void
996 honor_protect_cleanup_actions (struct leh_state *outer_state,
997 struct leh_state *this_state,
998 struct leh_tf_state *tf)
999 {
1000 tree protect_cleanup_actions;
1001 gimple_stmt_iterator gsi;
1002 bool finally_may_fallthru;
1003 gimple_seq finally;
1004 gimple x, eh_else;
1005
1006 /* First check for nothing to do. */
1007 if (lang_hooks.eh_protect_cleanup_actions == NULL)
1008 return;
1009 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
1010 if (protect_cleanup_actions == NULL)
1011 return;
1012
1013 finally = gimple_try_cleanup (tf->top_p);
1014 eh_else = get_eh_else (finally);
1015
1016 /* Duplicate the FINALLY block. Only need to do this for try-finally,
1017 and not for cleanups. If we've got an EH_ELSE, extract it now. */
1018 if (eh_else)
1019 {
1020 finally = gimple_eh_else_e_body (eh_else);
1021 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
1022 }
1023 else if (this_state)
1024 finally = lower_try_finally_dup_block (finally, outer_state,
1025 gimple_location (tf->try_finally_expr));
1026 finally_may_fallthru = gimple_seq_may_fallthru (finally);
1027
1028 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1029 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1030 to be in an enclosing scope, but needs to be implemented at this level
1031 to avoid a nesting violation (see wrap_temporary_cleanups in
1032 cp/decl.c). Since it's logically at an outer level, we should call
1033 terminate before we get to it, so strip it away before adding the
1034 MUST_NOT_THROW filter. */
1035 gsi = gsi_start (finally);
1036 x = gsi_stmt (gsi);
1037 if (gimple_code (x) == GIMPLE_TRY
1038 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1039 && gimple_try_catch_is_cleanup (x))
1040 {
1041 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1042 gsi_remove (&gsi, false);
1043 }
1044
1045 /* Wrap the block with protect_cleanup_actions as the action. */
1046 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1047 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1048 GIMPLE_TRY_CATCH);
1049 finally = lower_eh_must_not_throw (outer_state, x);
1050
1051 /* Drop all of this into the exception sequence. */
1052 emit_post_landing_pad (&eh_seq, tf->region);
1053 gimple_seq_add_seq (&eh_seq, finally);
1054 if (finally_may_fallthru)
1055 emit_resx (&eh_seq, tf->region);
1056
1057 /* Having now been handled, EH isn't to be considered with
1058 the rest of the outgoing edges. */
1059 tf->may_throw = false;
1060 }
1061
1062 /* A subroutine of lower_try_finally. We have determined that there is
1063 no fallthru edge out of the finally block. This means that there is
1064 no outgoing edge corresponding to any incoming edge. Restructure the
1065 try_finally node for this special case. */
1066
1067 static void
1068 lower_try_finally_nofallthru (struct leh_state *state,
1069 struct leh_tf_state *tf)
1070 {
1071 tree lab;
1072 gimple x, eh_else;
1073 gimple_seq finally;
1074 struct goto_queue_node *q, *qe;
1075
1076 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1077
1078 /* We expect that tf->top_p is a GIMPLE_TRY. */
1079 finally = gimple_try_cleanup (tf->top_p);
1080 tf->top_p_seq = gimple_try_eval (tf->top_p);
1081
1082 x = gimple_build_label (lab);
1083 gimple_seq_add_stmt (&tf->top_p_seq, x);
1084
1085 q = tf->goto_queue;
1086 qe = q + tf->goto_queue_active;
1087 for (; q < qe; ++q)
1088 if (q->index < 0)
1089 do_return_redirection (q, lab, NULL);
1090 else
1091 do_goto_redirection (q, lab, NULL, tf);
1092
1093 replace_goto_queue (tf);
1094
1095 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1096 eh_else = get_eh_else (finally);
1097 if (eh_else)
1098 {
1099 finally = gimple_eh_else_n_body (eh_else);
1100 lower_eh_constructs_1 (state, &finally);
1101 gimple_seq_add_seq (&tf->top_p_seq, finally);
1102
1103 if (tf->may_throw)
1104 {
1105 finally = gimple_eh_else_e_body (eh_else);
1106 lower_eh_constructs_1 (state, &finally);
1107
1108 emit_post_landing_pad (&eh_seq, tf->region);
1109 gimple_seq_add_seq (&eh_seq, finally);
1110 }
1111 }
1112 else
1113 {
1114 lower_eh_constructs_1 (state, &finally);
1115 gimple_seq_add_seq (&tf->top_p_seq, finally);
1116
1117 if (tf->may_throw)
1118 {
1119 emit_post_landing_pad (&eh_seq, tf->region);
1120
1121 x = gimple_build_goto (lab);
1122 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1123 gimple_seq_add_stmt (&eh_seq, x);
1124 }
1125 }
1126 }
1127
1128 /* A subroutine of lower_try_finally. We have determined that there is
1129 exactly one destination of the finally block. Restructure the
1130 try_finally node for this special case. */
1131
1132 static void
1133 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1134 {
1135 struct goto_queue_node *q, *qe;
1136 gimple x;
1137 gimple_seq finally;
1138 gimple_stmt_iterator gsi;
1139 tree finally_label;
1140 location_t loc = gimple_location (tf->try_finally_expr);
1141
1142 finally = gimple_try_cleanup (tf->top_p);
1143 tf->top_p_seq = gimple_try_eval (tf->top_p);
1144
1145 /* Since there's only one destination, and the destination edge can only
1146 either be EH or non-EH, that implies that all of our incoming edges
1147 are of the same type. Therefore we can lower EH_ELSE immediately. */
1148 x = get_eh_else (finally);
1149 if (x)
1150 {
1151 if (tf->may_throw)
1152 finally = gimple_eh_else_e_body (x);
1153 else
1154 finally = gimple_eh_else_n_body (x);
1155 }
1156
1157 lower_eh_constructs_1 (state, &finally);
1158
1159 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1160 {
1161 gimple stmt = gsi_stmt (gsi);
1162 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1163 {
1164 tree block = gimple_block (stmt);
1165 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1166 gimple_set_block (stmt, block);
1167 }
1168 }
1169
1170 if (tf->may_throw)
1171 {
1172 /* Only reachable via the exception edge. Add the given label to
1173 the head of the FINALLY block. Append a RESX at the end. */
1174 emit_post_landing_pad (&eh_seq, tf->region);
1175 gimple_seq_add_seq (&eh_seq, finally);
1176 emit_resx (&eh_seq, tf->region);
1177 return;
1178 }
1179
1180 if (tf->may_fallthru)
1181 {
1182 /* Only reachable via the fallthru edge. Do nothing but let
1183 the two blocks run together; we'll fall out the bottom. */
1184 gimple_seq_add_seq (&tf->top_p_seq, finally);
1185 return;
1186 }
1187
1188 finally_label = create_artificial_label (loc);
1189 x = gimple_build_label (finally_label);
1190 gimple_seq_add_stmt (&tf->top_p_seq, x);
1191
1192 gimple_seq_add_seq (&tf->top_p_seq, finally);
1193
1194 q = tf->goto_queue;
1195 qe = q + tf->goto_queue_active;
1196
1197 if (tf->may_return)
1198 {
1199 /* Reachable by return expressions only. Redirect them. */
1200 for (; q < qe; ++q)
1201 do_return_redirection (q, finally_label, NULL);
1202 replace_goto_queue (tf);
1203 }
1204 else
1205 {
1206 /* Reachable by goto expressions only. Redirect them. */
1207 for (; q < qe; ++q)
1208 do_goto_redirection (q, finally_label, NULL, tf);
1209 replace_goto_queue (tf);
1210
1211 if (tf->dest_array[0] == tf->fallthru_label)
1212 {
1213 /* Reachable by goto to fallthru label only. Redirect it
1214 to the new label (already created, sadly), and do not
1215 emit the final branch out, or the fallthru label. */
1216 tf->fallthru_label = NULL;
1217 return;
1218 }
1219 }
1220
1221 /* Place the original return/goto to the original destination
1222 immediately after the finally block. */
1223 x = tf->goto_queue[0].cont_stmt;
1224 gimple_seq_add_stmt (&tf->top_p_seq, x);
1225 maybe_record_in_goto_queue (state, x);
1226 }
1227
1228 /* A subroutine of lower_try_finally. There are multiple edges incoming
1229 and outgoing from the finally block. Implement this by duplicating the
1230 finally block for every destination. */
1231
1232 static void
1233 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1234 {
1235 gimple_seq finally;
1236 gimple_seq new_stmt;
1237 gimple_seq seq;
1238 gimple x, eh_else;
1239 tree tmp;
1240 location_t tf_loc = gimple_location (tf->try_finally_expr);
1241
1242 finally = gimple_try_cleanup (tf->top_p);
1243
1244 /* Notice EH_ELSE, and simplify some of the remaining code
1245 by considering FINALLY to be the normal return path only. */
1246 eh_else = get_eh_else (finally);
1247 if (eh_else)
1248 finally = gimple_eh_else_n_body (eh_else);
1249
1250 tf->top_p_seq = gimple_try_eval (tf->top_p);
1251 new_stmt = NULL;
1252
1253 if (tf->may_fallthru)
1254 {
1255 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1256 lower_eh_constructs_1 (state, &seq);
1257 gimple_seq_add_seq (&new_stmt, seq);
1258
1259 tmp = lower_try_finally_fallthru_label (tf);
1260 x = gimple_build_goto (tmp);
1261 gimple_set_location (x, tf_loc);
1262 gimple_seq_add_stmt (&new_stmt, x);
1263 }
1264
1265 if (tf->may_throw)
1266 {
1267 /* We don't need to copy the EH path of EH_ELSE,
1268 since it is only emitted once. */
1269 if (eh_else)
1270 seq = gimple_eh_else_e_body (eh_else);
1271 else
1272 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1273 lower_eh_constructs_1 (state, &seq);
1274
1275 emit_post_landing_pad (&eh_seq, tf->region);
1276 gimple_seq_add_seq (&eh_seq, seq);
1277 emit_resx (&eh_seq, tf->region);
1278 }
1279
1280 if (tf->goto_queue)
1281 {
1282 struct goto_queue_node *q, *qe;
1283 int return_index, index;
1284 struct labels_s
1285 {
1286 struct goto_queue_node *q;
1287 tree label;
1288 } *labels;
1289
1290 return_index = tf->dest_array.length ();
1291 labels = XCNEWVEC (struct labels_s, return_index + 1);
1292
1293 q = tf->goto_queue;
1294 qe = q + tf->goto_queue_active;
1295 for (; q < qe; q++)
1296 {
1297 index = q->index < 0 ? return_index : q->index;
1298
1299 if (!labels[index].q)
1300 labels[index].q = q;
1301 }
1302
1303 for (index = 0; index < return_index + 1; index++)
1304 {
1305 tree lab;
1306
1307 q = labels[index].q;
1308 if (! q)
1309 continue;
1310
1311 lab = labels[index].label
1312 = create_artificial_label (tf_loc);
1313
1314 if (index == return_index)
1315 do_return_redirection (q, lab, NULL);
1316 else
1317 do_goto_redirection (q, lab, NULL, tf);
1318
1319 x = gimple_build_label (lab);
1320 gimple_seq_add_stmt (&new_stmt, x);
1321
1322 seq = lower_try_finally_dup_block (finally, state, q->location);
1323 lower_eh_constructs_1 (state, &seq);
1324 gimple_seq_add_seq (&new_stmt, seq);
1325
1326 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1327 maybe_record_in_goto_queue (state, q->cont_stmt);
1328 }
1329
1330 for (q = tf->goto_queue; q < qe; q++)
1331 {
1332 tree lab;
1333
1334 index = q->index < 0 ? return_index : q->index;
1335
1336 if (labels[index].q == q)
1337 continue;
1338
1339 lab = labels[index].label;
1340
1341 if (index == return_index)
1342 do_return_redirection (q, lab, NULL);
1343 else
1344 do_goto_redirection (q, lab, NULL, tf);
1345 }
1346
1347 replace_goto_queue (tf);
1348 free (labels);
1349 }
1350
1351 /* Need to link new stmts after running replace_goto_queue due
1352 to not wanting to process the same goto stmts twice. */
1353 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1354 }
1355
1356 /* A subroutine of lower_try_finally. There are multiple edges incoming
1357 and outgoing from the finally block. Implement this by instrumenting
1358 each incoming edge and creating a switch statement at the end of the
1359 finally block that branches to the appropriate destination. */
1360
1361 static void
1362 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1363 {
1364 struct goto_queue_node *q, *qe;
1365 tree finally_tmp, finally_label;
1366 int return_index, eh_index, fallthru_index;
1367 int nlabels, ndests, j, last_case_index;
1368 tree last_case;
1369 vec<tree> case_label_vec;
1370 gimple_seq switch_body = NULL;
1371 gimple x, eh_else;
1372 tree tmp;
1373 gimple switch_stmt;
1374 gimple_seq finally;
1375 struct pointer_map_t *cont_map = NULL;
1376 /* The location of the TRY_FINALLY stmt. */
1377 location_t tf_loc = gimple_location (tf->try_finally_expr);
1378 /* The location of the finally block. */
1379 location_t finally_loc;
1380
1381 finally = gimple_try_cleanup (tf->top_p);
1382 eh_else = get_eh_else (finally);
1383
1384 /* Mash the TRY block to the head of the chain. */
1385 tf->top_p_seq = gimple_try_eval (tf->top_p);
1386
1387 /* The location of the finally is either the last stmt in the finally
1388 block or the location of the TRY_FINALLY itself. */
1389 x = gimple_seq_last_stmt (finally);
1390 finally_loc = x ? gimple_location (x) : tf_loc;
1391
1392 /* Prepare for switch statement generation. */
1393 nlabels = tf->dest_array.length ();
1394 return_index = nlabels;
1395 eh_index = return_index + tf->may_return;
1396 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1397 ndests = fallthru_index + tf->may_fallthru;
1398
1399 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1400 finally_label = create_artificial_label (finally_loc);
1401
1402 /* We use vec::quick_push on case_label_vec throughout this function,
1403 since we know the size in advance and allocate precisely as muce
1404 space as needed. */
1405 case_label_vec.create (ndests);
1406 last_case = NULL;
1407 last_case_index = 0;
1408
1409 /* Begin inserting code for getting to the finally block. Things
1410 are done in this order to correspond to the sequence the code is
1411 laid out. */
1412
1413 if (tf->may_fallthru)
1414 {
1415 x = gimple_build_assign (finally_tmp,
1416 build_int_cst (integer_type_node,
1417 fallthru_index));
1418 gimple_seq_add_stmt (&tf->top_p_seq, x);
1419
1420 tmp = build_int_cst (integer_type_node, fallthru_index);
1421 last_case = build_case_label (tmp, NULL,
1422 create_artificial_label (tf_loc));
1423 case_label_vec.quick_push (last_case);
1424 last_case_index++;
1425
1426 x = gimple_build_label (CASE_LABEL (last_case));
1427 gimple_seq_add_stmt (&switch_body, x);
1428
1429 tmp = lower_try_finally_fallthru_label (tf);
1430 x = gimple_build_goto (tmp);
1431 gimple_set_location (x, tf_loc);
1432 gimple_seq_add_stmt (&switch_body, x);
1433 }
1434
1435 /* For EH_ELSE, emit the exception path (plus resx) now, then
1436 subsequently we only need consider the normal path. */
1437 if (eh_else)
1438 {
1439 if (tf->may_throw)
1440 {
1441 finally = gimple_eh_else_e_body (eh_else);
1442 lower_eh_constructs_1 (state, &finally);
1443
1444 emit_post_landing_pad (&eh_seq, tf->region);
1445 gimple_seq_add_seq (&eh_seq, finally);
1446 emit_resx (&eh_seq, tf->region);
1447 }
1448
1449 finally = gimple_eh_else_n_body (eh_else);
1450 }
1451 else if (tf->may_throw)
1452 {
1453 emit_post_landing_pad (&eh_seq, tf->region);
1454
1455 x = gimple_build_assign (finally_tmp,
1456 build_int_cst (integer_type_node, eh_index));
1457 gimple_seq_add_stmt (&eh_seq, x);
1458
1459 x = gimple_build_goto (finally_label);
1460 gimple_set_location (x, tf_loc);
1461 gimple_seq_add_stmt (&eh_seq, x);
1462
1463 tmp = build_int_cst (integer_type_node, eh_index);
1464 last_case = build_case_label (tmp, NULL,
1465 create_artificial_label (tf_loc));
1466 case_label_vec.quick_push (last_case);
1467 last_case_index++;
1468
1469 x = gimple_build_label (CASE_LABEL (last_case));
1470 gimple_seq_add_stmt (&eh_seq, x);
1471 emit_resx (&eh_seq, tf->region);
1472 }
1473
1474 x = gimple_build_label (finally_label);
1475 gimple_seq_add_stmt (&tf->top_p_seq, x);
1476
1477 lower_eh_constructs_1 (state, &finally);
1478 gimple_seq_add_seq (&tf->top_p_seq, finally);
1479
1480 /* Redirect each incoming goto edge. */
1481 q = tf->goto_queue;
1482 qe = q + tf->goto_queue_active;
1483 j = last_case_index + tf->may_return;
1484 /* Prepare the assignments to finally_tmp that are executed upon the
1485 entrance through a particular edge. */
1486 for (; q < qe; ++q)
1487 {
1488 gimple_seq mod = NULL;
1489 int switch_id;
1490 unsigned int case_index;
1491
1492 if (q->index < 0)
1493 {
1494 x = gimple_build_assign (finally_tmp,
1495 build_int_cst (integer_type_node,
1496 return_index));
1497 gimple_seq_add_stmt (&mod, x);
1498 do_return_redirection (q, finally_label, mod);
1499 switch_id = return_index;
1500 }
1501 else
1502 {
1503 x = gimple_build_assign (finally_tmp,
1504 build_int_cst (integer_type_node, q->index));
1505 gimple_seq_add_stmt (&mod, x);
1506 do_goto_redirection (q, finally_label, mod, tf);
1507 switch_id = q->index;
1508 }
1509
1510 case_index = j + q->index;
1511 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1512 {
1513 tree case_lab;
1514 void **slot;
1515 tmp = build_int_cst (integer_type_node, switch_id);
1516 case_lab = build_case_label (tmp, NULL,
1517 create_artificial_label (tf_loc));
1518 /* We store the cont_stmt in the pointer map, so that we can recover
1519 it in the loop below. */
1520 if (!cont_map)
1521 cont_map = pointer_map_create ();
1522 slot = pointer_map_insert (cont_map, case_lab);
1523 *slot = q->cont_stmt;
1524 case_label_vec.quick_push (case_lab);
1525 }
1526 }
1527 for (j = last_case_index; j < last_case_index + nlabels; j++)
1528 {
1529 gimple cont_stmt;
1530 void **slot;
1531
1532 last_case = case_label_vec[j];
1533
1534 gcc_assert (last_case);
1535 gcc_assert (cont_map);
1536
1537 slot = pointer_map_contains (cont_map, last_case);
1538 gcc_assert (slot);
1539 cont_stmt = *(gimple *) slot;
1540
1541 x = gimple_build_label (CASE_LABEL (last_case));
1542 gimple_seq_add_stmt (&switch_body, x);
1543 gimple_seq_add_stmt (&switch_body, cont_stmt);
1544 maybe_record_in_goto_queue (state, cont_stmt);
1545 }
1546 if (cont_map)
1547 pointer_map_destroy (cont_map);
1548
1549 replace_goto_queue (tf);
1550
1551 /* Make sure that the last case is the default label, as one is required.
1552 Then sort the labels, which is also required in GIMPLE. */
1553 CASE_LOW (last_case) = NULL;
1554 tree tem = case_label_vec.pop ();
1555 gcc_assert (tem == last_case);
1556 sort_case_labels (case_label_vec);
1557
1558 /* Build the switch statement, setting last_case to be the default
1559 label. */
1560 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1561 case_label_vec);
1562 gimple_set_location (switch_stmt, finally_loc);
1563
1564 /* Need to link SWITCH_STMT after running replace_goto_queue
1565 due to not wanting to process the same goto stmts twice. */
1566 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1567 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1568 }
1569
1570 /* Decide whether or not we are going to duplicate the finally block.
1571 There are several considerations.
1572
1573 First, if this is Java, then the finally block contains code
1574 written by the user. It has line numbers associated with it,
1575 so duplicating the block means it's difficult to set a breakpoint.
1576 Since controlling code generation via -g is verboten, we simply
1577 never duplicate code without optimization.
1578
1579 Second, we'd like to prevent egregious code growth. One way to
1580 do this is to estimate the size of the finally block, multiply
1581 that by the number of copies we'd need to make, and compare against
1582 the estimate of the size of the switch machinery we'd have to add. */
1583
1584 static bool
1585 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1586 {
1587 int f_estimate, sw_estimate;
1588 gimple eh_else;
1589
1590 /* If there's an EH_ELSE involved, the exception path is separate
1591 and really doesn't come into play for this computation. */
1592 eh_else = get_eh_else (finally);
1593 if (eh_else)
1594 {
1595 ndests -= may_throw;
1596 finally = gimple_eh_else_n_body (eh_else);
1597 }
1598
1599 if (!optimize)
1600 {
1601 gimple_stmt_iterator gsi;
1602
1603 if (ndests == 1)
1604 return true;
1605
1606 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1607 {
1608 gimple stmt = gsi_stmt (gsi);
1609 if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1610 return false;
1611 }
1612 return true;
1613 }
1614
1615 /* Finally estimate N times, plus N gotos. */
1616 f_estimate = count_insns_seq (finally, &eni_size_weights);
1617 f_estimate = (f_estimate + 1) * ndests;
1618
1619 /* Switch statement (cost 10), N variable assignments, N gotos. */
1620 sw_estimate = 10 + 2 * ndests;
1621
1622 /* Optimize for size clearly wants our best guess. */
1623 if (optimize_function_for_size_p (cfun))
1624 return f_estimate < sw_estimate;
1625
1626 /* ??? These numbers are completely made up so far. */
1627 if (optimize > 1)
1628 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1629 else
1630 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1631 }
1632
1633 /* REG is the enclosing region for a possible cleanup region, or the region
1634 itself. Returns TRUE if such a region would be unreachable.
1635
1636 Cleanup regions within a must-not-throw region aren't actually reachable
1637 even if there are throwing stmts within them, because the personality
1638 routine will call terminate before unwinding. */
1639
1640 static bool
1641 cleanup_is_dead_in (eh_region reg)
1642 {
1643 while (reg && reg->type == ERT_CLEANUP)
1644 reg = reg->outer;
1645 return (reg && reg->type == ERT_MUST_NOT_THROW);
1646 }
1647
1648 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1649 to a sequence of labels and blocks, plus the exception region trees
1650 that record all the magic. This is complicated by the need to
1651 arrange for the FINALLY block to be executed on all exits. */
1652
1653 static gimple_seq
1654 lower_try_finally (struct leh_state *state, gimple tp)
1655 {
1656 struct leh_tf_state this_tf;
1657 struct leh_state this_state;
1658 int ndests;
1659 gimple_seq old_eh_seq;
1660
1661 /* Process the try block. */
1662
1663 memset (&this_tf, 0, sizeof (this_tf));
1664 this_tf.try_finally_expr = tp;
1665 this_tf.top_p = tp;
1666 this_tf.outer = state;
1667 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state->cur_region))
1668 {
1669 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1670 this_state.cur_region = this_tf.region;
1671 }
1672 else
1673 {
1674 this_tf.region = NULL;
1675 this_state.cur_region = state->cur_region;
1676 }
1677
1678 this_state.ehp_region = state->ehp_region;
1679 this_state.tf = &this_tf;
1680
1681 old_eh_seq = eh_seq;
1682 eh_seq = NULL;
1683
1684 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1685
1686 /* Determine if the try block is escaped through the bottom. */
1687 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1688
1689 /* Determine if any exceptions are possible within the try block. */
1690 if (this_tf.region)
1691 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1692 if (this_tf.may_throw)
1693 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1694
1695 /* Determine how many edges (still) reach the finally block. Or rather,
1696 how many destinations are reached by the finally block. Use this to
1697 determine how we process the finally block itself. */
1698
1699 ndests = this_tf.dest_array.length ();
1700 ndests += this_tf.may_fallthru;
1701 ndests += this_tf.may_return;
1702 ndests += this_tf.may_throw;
1703
1704 /* If the FINALLY block is not reachable, dike it out. */
1705 if (ndests == 0)
1706 {
1707 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1708 gimple_try_set_cleanup (tp, NULL);
1709 }
1710 /* If the finally block doesn't fall through, then any destination
1711 we might try to impose there isn't reached either. There may be
1712 some minor amount of cleanup and redirection still needed. */
1713 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1714 lower_try_finally_nofallthru (state, &this_tf);
1715
1716 /* We can easily special-case redirection to a single destination. */
1717 else if (ndests == 1)
1718 lower_try_finally_onedest (state, &this_tf);
1719 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1720 gimple_try_cleanup (tp)))
1721 lower_try_finally_copy (state, &this_tf);
1722 else
1723 lower_try_finally_switch (state, &this_tf);
1724
1725 /* If someone requested we add a label at the end of the transformed
1726 block, do so. */
1727 if (this_tf.fallthru_label)
1728 {
1729 /* This must be reached only if ndests == 0. */
1730 gimple x = gimple_build_label (this_tf.fallthru_label);
1731 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1732 }
1733
1734 this_tf.dest_array.release ();
1735 free (this_tf.goto_queue);
1736 if (this_tf.goto_queue_map)
1737 pointer_map_destroy (this_tf.goto_queue_map);
1738
1739 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1740 If there was no old eh_seq, then the append is trivially already done. */
1741 if (old_eh_seq)
1742 {
1743 if (eh_seq == NULL)
1744 eh_seq = old_eh_seq;
1745 else
1746 {
1747 gimple_seq new_eh_seq = eh_seq;
1748 eh_seq = old_eh_seq;
1749 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1750 }
1751 }
1752
1753 return this_tf.top_p_seq;
1754 }
1755
1756 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1757 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1758 exception region trees that records all the magic. */
1759
1760 static gimple_seq
1761 lower_catch (struct leh_state *state, gimple tp)
1762 {
1763 eh_region try_region = NULL;
1764 struct leh_state this_state = *state;
1765 gimple_stmt_iterator gsi;
1766 tree out_label;
1767 gimple_seq new_seq, cleanup;
1768 gimple x;
1769 location_t try_catch_loc = gimple_location (tp);
1770
1771 if (flag_exceptions)
1772 {
1773 try_region = gen_eh_region_try (state->cur_region);
1774 this_state.cur_region = try_region;
1775 }
1776
1777 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1778
1779 if (!eh_region_may_contain_throw (try_region))
1780 return gimple_try_eval (tp);
1781
1782 new_seq = NULL;
1783 emit_eh_dispatch (&new_seq, try_region);
1784 emit_resx (&new_seq, try_region);
1785
1786 this_state.cur_region = state->cur_region;
1787 this_state.ehp_region = try_region;
1788
1789 out_label = NULL;
1790 cleanup = gimple_try_cleanup (tp);
1791 for (gsi = gsi_start (cleanup);
1792 !gsi_end_p (gsi);
1793 gsi_next (&gsi))
1794 {
1795 eh_catch c;
1796 gimple gcatch;
1797 gimple_seq handler;
1798
1799 gcatch = gsi_stmt (gsi);
1800 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1801
1802 handler = gimple_catch_handler (gcatch);
1803 lower_eh_constructs_1 (&this_state, &handler);
1804
1805 c->label = create_artificial_label (UNKNOWN_LOCATION);
1806 x = gimple_build_label (c->label);
1807 gimple_seq_add_stmt (&new_seq, x);
1808
1809 gimple_seq_add_seq (&new_seq, handler);
1810
1811 if (gimple_seq_may_fallthru (new_seq))
1812 {
1813 if (!out_label)
1814 out_label = create_artificial_label (try_catch_loc);
1815
1816 x = gimple_build_goto (out_label);
1817 gimple_seq_add_stmt (&new_seq, x);
1818 }
1819 if (!c->type_list)
1820 break;
1821 }
1822
1823 gimple_try_set_cleanup (tp, new_seq);
1824
1825 return frob_into_branch_around (tp, try_region, out_label);
1826 }
1827
1828 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1829 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1830 region trees that record all the magic. */
1831
1832 static gimple_seq
1833 lower_eh_filter (struct leh_state *state, gimple tp)
1834 {
1835 struct leh_state this_state = *state;
1836 eh_region this_region = NULL;
1837 gimple inner, x;
1838 gimple_seq new_seq;
1839
1840 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1841
1842 if (flag_exceptions)
1843 {
1844 this_region = gen_eh_region_allowed (state->cur_region,
1845 gimple_eh_filter_types (inner));
1846 this_state.cur_region = this_region;
1847 }
1848
1849 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1850
1851 if (!eh_region_may_contain_throw (this_region))
1852 return gimple_try_eval (tp);
1853
1854 new_seq = NULL;
1855 this_state.cur_region = state->cur_region;
1856 this_state.ehp_region = this_region;
1857
1858 emit_eh_dispatch (&new_seq, this_region);
1859 emit_resx (&new_seq, this_region);
1860
1861 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1862 x = gimple_build_label (this_region->u.allowed.label);
1863 gimple_seq_add_stmt (&new_seq, x);
1864
1865 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1866 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1867
1868 gimple_try_set_cleanup (tp, new_seq);
1869
1870 return frob_into_branch_around (tp, this_region, NULL);
1871 }
1872
1873 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1874 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1875 plus the exception region trees that record all the magic. */
1876
1877 static gimple_seq
1878 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1879 {
1880 struct leh_state this_state = *state;
1881
1882 if (flag_exceptions)
1883 {
1884 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1885 eh_region this_region;
1886
1887 this_region = gen_eh_region_must_not_throw (state->cur_region);
1888 this_region->u.must_not_throw.failure_decl
1889 = gimple_eh_must_not_throw_fndecl (inner);
1890 this_region->u.must_not_throw.failure_loc
1891 = LOCATION_LOCUS (gimple_location (tp));
1892
1893 /* In order to get mangling applied to this decl, we must mark it
1894 used now. Otherwise, pass_ipa_free_lang_data won't think it
1895 needs to happen. */
1896 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1897
1898 this_state.cur_region = this_region;
1899 }
1900
1901 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1902
1903 return gimple_try_eval (tp);
1904 }
1905
1906 /* Implement a cleanup expression. This is similar to try-finally,
1907 except that we only execute the cleanup block for exception edges. */
1908
1909 static gimple_seq
1910 lower_cleanup (struct leh_state *state, gimple tp)
1911 {
1912 struct leh_state this_state = *state;
1913 eh_region this_region = NULL;
1914 struct leh_tf_state fake_tf;
1915 gimple_seq result;
1916 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1917
1918 if (flag_exceptions && !cleanup_dead)
1919 {
1920 this_region = gen_eh_region_cleanup (state->cur_region);
1921 this_state.cur_region = this_region;
1922 }
1923
1924 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1925
1926 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1927 return gimple_try_eval (tp);
1928
1929 /* Build enough of a try-finally state so that we can reuse
1930 honor_protect_cleanup_actions. */
1931 memset (&fake_tf, 0, sizeof (fake_tf));
1932 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1933 fake_tf.outer = state;
1934 fake_tf.region = this_region;
1935 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1936 fake_tf.may_throw = true;
1937
1938 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1939
1940 if (fake_tf.may_throw)
1941 {
1942 /* In this case honor_protect_cleanup_actions had nothing to do,
1943 and we should process this normally. */
1944 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1945 result = frob_into_branch_around (tp, this_region,
1946 fake_tf.fallthru_label);
1947 }
1948 else
1949 {
1950 /* In this case honor_protect_cleanup_actions did nearly all of
1951 the work. All we have left is to append the fallthru_label. */
1952
1953 result = gimple_try_eval (tp);
1954 if (fake_tf.fallthru_label)
1955 {
1956 gimple x = gimple_build_label (fake_tf.fallthru_label);
1957 gimple_seq_add_stmt (&result, x);
1958 }
1959 }
1960 return result;
1961 }
1962
1963 /* Main loop for lowering eh constructs. Also moves gsi to the next
1964 statement. */
1965
1966 static void
1967 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1968 {
1969 gimple_seq replace;
1970 gimple x;
1971 gimple stmt = gsi_stmt (*gsi);
1972
1973 switch (gimple_code (stmt))
1974 {
1975 case GIMPLE_CALL:
1976 {
1977 tree fndecl = gimple_call_fndecl (stmt);
1978 tree rhs, lhs;
1979
1980 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1981 switch (DECL_FUNCTION_CODE (fndecl))
1982 {
1983 case BUILT_IN_EH_POINTER:
1984 /* The front end may have generated a call to
1985 __builtin_eh_pointer (0) within a catch region. Replace
1986 this zero argument with the current catch region number. */
1987 if (state->ehp_region)
1988 {
1989 tree nr = build_int_cst (integer_type_node,
1990 state->ehp_region->index);
1991 gimple_call_set_arg (stmt, 0, nr);
1992 }
1993 else
1994 {
1995 /* The user has dome something silly. Remove it. */
1996 rhs = null_pointer_node;
1997 goto do_replace;
1998 }
1999 break;
2000
2001 case BUILT_IN_EH_FILTER:
2002 /* ??? This should never appear, but since it's a builtin it
2003 is accessible to abuse by users. Just remove it and
2004 replace the use with the arbitrary value zero. */
2005 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
2006 do_replace:
2007 lhs = gimple_call_lhs (stmt);
2008 x = gimple_build_assign (lhs, rhs);
2009 gsi_insert_before (gsi, x, GSI_SAME_STMT);
2010 /* FALLTHRU */
2011
2012 case BUILT_IN_EH_COPY_VALUES:
2013 /* Likewise this should not appear. Remove it. */
2014 gsi_remove (gsi, true);
2015 return;
2016
2017 default:
2018 break;
2019 }
2020 }
2021 /* FALLTHRU */
2022
2023 case GIMPLE_ASSIGN:
2024 /* If the stmt can throw use a new temporary for the assignment
2025 to a LHS. This makes sure the old value of the LHS is
2026 available on the EH edge. Only do so for statements that
2027 potentially fall through (no noreturn calls e.g.), otherwise
2028 this new assignment might create fake fallthru regions. */
2029 if (stmt_could_throw_p (stmt)
2030 && gimple_has_lhs (stmt)
2031 && gimple_stmt_may_fallthru (stmt)
2032 && !tree_could_throw_p (gimple_get_lhs (stmt))
2033 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2034 {
2035 tree lhs = gimple_get_lhs (stmt);
2036 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2037 gimple s = gimple_build_assign (lhs, tmp);
2038 gimple_set_location (s, gimple_location (stmt));
2039 gimple_set_block (s, gimple_block (stmt));
2040 gimple_set_lhs (stmt, tmp);
2041 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2042 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2043 DECL_GIMPLE_REG_P (tmp) = 1;
2044 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2045 }
2046 /* Look for things that can throw exceptions, and record them. */
2047 if (state->cur_region && stmt_could_throw_p (stmt))
2048 {
2049 record_stmt_eh_region (state->cur_region, stmt);
2050 note_eh_region_may_contain_throw (state->cur_region);
2051 }
2052 break;
2053
2054 case GIMPLE_COND:
2055 case GIMPLE_GOTO:
2056 case GIMPLE_RETURN:
2057 maybe_record_in_goto_queue (state, stmt);
2058 break;
2059
2060 case GIMPLE_SWITCH:
2061 verify_norecord_switch_expr (state, stmt);
2062 break;
2063
2064 case GIMPLE_TRY:
2065 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2066 replace = lower_try_finally (state, stmt);
2067 else
2068 {
2069 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
2070 if (!x)
2071 {
2072 replace = gimple_try_eval (stmt);
2073 lower_eh_constructs_1 (state, &replace);
2074 }
2075 else
2076 switch (gimple_code (x))
2077 {
2078 case GIMPLE_CATCH:
2079 replace = lower_catch (state, stmt);
2080 break;
2081 case GIMPLE_EH_FILTER:
2082 replace = lower_eh_filter (state, stmt);
2083 break;
2084 case GIMPLE_EH_MUST_NOT_THROW:
2085 replace = lower_eh_must_not_throw (state, stmt);
2086 break;
2087 case GIMPLE_EH_ELSE:
2088 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2089 gcc_unreachable ();
2090 default:
2091 replace = lower_cleanup (state, stmt);
2092 break;
2093 }
2094 }
2095
2096 /* Remove the old stmt and insert the transformed sequence
2097 instead. */
2098 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2099 gsi_remove (gsi, true);
2100
2101 /* Return since we don't want gsi_next () */
2102 return;
2103
2104 case GIMPLE_EH_ELSE:
2105 /* We should be eliminating this in lower_try_finally et al. */
2106 gcc_unreachable ();
2107
2108 default:
2109 /* A type, a decl, or some kind of statement that we're not
2110 interested in. Don't walk them. */
2111 break;
2112 }
2113
2114 gsi_next (gsi);
2115 }
2116
2117 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2118
2119 static void
2120 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2121 {
2122 gimple_stmt_iterator gsi;
2123 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2124 lower_eh_constructs_2 (state, &gsi);
2125 }
2126
2127 namespace {
2128
2129 const pass_data pass_data_lower_eh =
2130 {
2131 GIMPLE_PASS, /* type */
2132 "eh", /* name */
2133 OPTGROUP_NONE, /* optinfo_flags */
2134 TV_TREE_EH, /* tv_id */
2135 PROP_gimple_lcf, /* properties_required */
2136 PROP_gimple_leh, /* properties_provided */
2137 0, /* properties_destroyed */
2138 0, /* todo_flags_start */
2139 0, /* todo_flags_finish */
2140 };
2141
2142 class pass_lower_eh : public gimple_opt_pass
2143 {
2144 public:
2145 pass_lower_eh (gcc::context *ctxt)
2146 : gimple_opt_pass (pass_data_lower_eh, ctxt)
2147 {}
2148
2149 /* opt_pass methods: */
2150 virtual unsigned int execute (function *);
2151
2152 }; // class pass_lower_eh
2153
2154 unsigned int
2155 pass_lower_eh::execute (function *fun)
2156 {
2157 struct leh_state null_state;
2158 gimple_seq bodyp;
2159
2160 bodyp = gimple_body (current_function_decl);
2161 if (bodyp == NULL)
2162 return 0;
2163
2164 finally_tree = new hash_table<finally_tree_hasher> (31);
2165 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2166 memset (&null_state, 0, sizeof (null_state));
2167
2168 collect_finally_tree_1 (bodyp, NULL);
2169 lower_eh_constructs_1 (&null_state, &bodyp);
2170 gimple_set_body (current_function_decl, bodyp);
2171
2172 /* We assume there's a return statement, or something, at the end of
2173 the function, and thus ploping the EH sequence afterward won't
2174 change anything. */
2175 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2176 gimple_seq_add_seq (&bodyp, eh_seq);
2177
2178 /* We assume that since BODYP already existed, adding EH_SEQ to it
2179 didn't change its value, and we don't have to re-set the function. */
2180 gcc_assert (bodyp == gimple_body (current_function_decl));
2181
2182 delete finally_tree;
2183 finally_tree = NULL;
2184 BITMAP_FREE (eh_region_may_contain_throw_map);
2185 eh_seq = NULL;
2186
2187 /* If this function needs a language specific EH personality routine
2188 and the frontend didn't already set one do so now. */
2189 if (function_needs_eh_personality (fun) == eh_personality_lang
2190 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2191 DECL_FUNCTION_PERSONALITY (current_function_decl)
2192 = lang_hooks.eh_personality ();
2193
2194 return 0;
2195 }
2196
2197 } // anon namespace
2198
2199 gimple_opt_pass *
2200 make_pass_lower_eh (gcc::context *ctxt)
2201 {
2202 return new pass_lower_eh (ctxt);
2203 }
2204 \f
2205 /* Create the multiple edges from an EH_DISPATCH statement to all of
2206 the possible handlers for its EH region. Return true if there's
2207 no fallthru edge; false if there is. */
2208
2209 bool
2210 make_eh_dispatch_edges (gimple stmt)
2211 {
2212 eh_region r;
2213 eh_catch c;
2214 basic_block src, dst;
2215
2216 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2217 src = gimple_bb (stmt);
2218
2219 switch (r->type)
2220 {
2221 case ERT_TRY:
2222 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2223 {
2224 dst = label_to_block (c->label);
2225 make_edge (src, dst, 0);
2226
2227 /* A catch-all handler doesn't have a fallthru. */
2228 if (c->type_list == NULL)
2229 return false;
2230 }
2231 break;
2232
2233 case ERT_ALLOWED_EXCEPTIONS:
2234 dst = label_to_block (r->u.allowed.label);
2235 make_edge (src, dst, 0);
2236 break;
2237
2238 default:
2239 gcc_unreachable ();
2240 }
2241
2242 return true;
2243 }
2244
2245 /* Create the single EH edge from STMT to its nearest landing pad,
2246 if there is such a landing pad within the current function. */
2247
2248 void
2249 make_eh_edges (gimple stmt)
2250 {
2251 basic_block src, dst;
2252 eh_landing_pad lp;
2253 int lp_nr;
2254
2255 lp_nr = lookup_stmt_eh_lp (stmt);
2256 if (lp_nr <= 0)
2257 return;
2258
2259 lp = get_eh_landing_pad_from_number (lp_nr);
2260 gcc_assert (lp != NULL);
2261
2262 src = gimple_bb (stmt);
2263 dst = label_to_block (lp->post_landing_pad);
2264 make_edge (src, dst, EDGE_EH);
2265 }
2266
2267 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2268 do not actually perform the final edge redirection.
2269
2270 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2271 we intend to change the destination EH region as well; this means
2272 EH_LANDING_PAD_NR must already be set on the destination block label.
2273 If false, we're being called from generic cfg manipulation code and we
2274 should preserve our place within the region tree. */
2275
2276 static void
2277 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2278 {
2279 eh_landing_pad old_lp, new_lp;
2280 basic_block old_bb;
2281 gimple throw_stmt;
2282 int old_lp_nr, new_lp_nr;
2283 tree old_label, new_label;
2284 edge_iterator ei;
2285 edge e;
2286
2287 old_bb = edge_in->dest;
2288 old_label = gimple_block_label (old_bb);
2289 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2290 gcc_assert (old_lp_nr > 0);
2291 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2292
2293 throw_stmt = last_stmt (edge_in->src);
2294 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2295
2296 new_label = gimple_block_label (new_bb);
2297
2298 /* Look for an existing region that might be using NEW_BB already. */
2299 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2300 if (new_lp_nr)
2301 {
2302 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2303 gcc_assert (new_lp);
2304
2305 /* Unless CHANGE_REGION is true, the new and old landing pad
2306 had better be associated with the same EH region. */
2307 gcc_assert (change_region || new_lp->region == old_lp->region);
2308 }
2309 else
2310 {
2311 new_lp = NULL;
2312 gcc_assert (!change_region);
2313 }
2314
2315 /* Notice when we redirect the last EH edge away from OLD_BB. */
2316 FOR_EACH_EDGE (e, ei, old_bb->preds)
2317 if (e != edge_in && (e->flags & EDGE_EH))
2318 break;
2319
2320 if (new_lp)
2321 {
2322 /* NEW_LP already exists. If there are still edges into OLD_LP,
2323 there's nothing to do with the EH tree. If there are no more
2324 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2325 If CHANGE_REGION is true, then our caller is expecting to remove
2326 the landing pad. */
2327 if (e == NULL && !change_region)
2328 remove_eh_landing_pad (old_lp);
2329 }
2330 else
2331 {
2332 /* No correct landing pad exists. If there are no more edges
2333 into OLD_LP, then we can simply re-use the existing landing pad.
2334 Otherwise, we have to create a new landing pad. */
2335 if (e == NULL)
2336 {
2337 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2338 new_lp = old_lp;
2339 }
2340 else
2341 new_lp = gen_eh_landing_pad (old_lp->region);
2342 new_lp->post_landing_pad = new_label;
2343 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2344 }
2345
2346 /* Maybe move the throwing statement to the new region. */
2347 if (old_lp != new_lp)
2348 {
2349 remove_stmt_from_eh_lp (throw_stmt);
2350 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2351 }
2352 }
2353
2354 /* Redirect EH edge E to NEW_BB. */
2355
2356 edge
2357 redirect_eh_edge (edge edge_in, basic_block new_bb)
2358 {
2359 redirect_eh_edge_1 (edge_in, new_bb, false);
2360 return ssa_redirect_edge (edge_in, new_bb);
2361 }
2362
2363 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2364 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2365 The actual edge update will happen in the caller. */
2366
2367 void
2368 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2369 {
2370 tree new_lab = gimple_block_label (new_bb);
2371 bool any_changed = false;
2372 basic_block old_bb;
2373 eh_region r;
2374 eh_catch c;
2375
2376 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2377 switch (r->type)
2378 {
2379 case ERT_TRY:
2380 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2381 {
2382 old_bb = label_to_block (c->label);
2383 if (old_bb == e->dest)
2384 {
2385 c->label = new_lab;
2386 any_changed = true;
2387 }
2388 }
2389 break;
2390
2391 case ERT_ALLOWED_EXCEPTIONS:
2392 old_bb = label_to_block (r->u.allowed.label);
2393 gcc_assert (old_bb == e->dest);
2394 r->u.allowed.label = new_lab;
2395 any_changed = true;
2396 break;
2397
2398 default:
2399 gcc_unreachable ();
2400 }
2401
2402 gcc_assert (any_changed);
2403 }
2404 \f
2405 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2406
2407 bool
2408 operation_could_trap_helper_p (enum tree_code op,
2409 bool fp_operation,
2410 bool honor_trapv,
2411 bool honor_nans,
2412 bool honor_snans,
2413 tree divisor,
2414 bool *handled)
2415 {
2416 *handled = true;
2417 switch (op)
2418 {
2419 case TRUNC_DIV_EXPR:
2420 case CEIL_DIV_EXPR:
2421 case FLOOR_DIV_EXPR:
2422 case ROUND_DIV_EXPR:
2423 case EXACT_DIV_EXPR:
2424 case CEIL_MOD_EXPR:
2425 case FLOOR_MOD_EXPR:
2426 case ROUND_MOD_EXPR:
2427 case TRUNC_MOD_EXPR:
2428 case RDIV_EXPR:
2429 if (honor_snans || honor_trapv)
2430 return true;
2431 if (fp_operation)
2432 return flag_trapping_math;
2433 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2434 return true;
2435 return false;
2436
2437 case LT_EXPR:
2438 case LE_EXPR:
2439 case GT_EXPR:
2440 case GE_EXPR:
2441 case LTGT_EXPR:
2442 /* Some floating point comparisons may trap. */
2443 return honor_nans;
2444
2445 case EQ_EXPR:
2446 case NE_EXPR:
2447 case UNORDERED_EXPR:
2448 case ORDERED_EXPR:
2449 case UNLT_EXPR:
2450 case UNLE_EXPR:
2451 case UNGT_EXPR:
2452 case UNGE_EXPR:
2453 case UNEQ_EXPR:
2454 return honor_snans;
2455
2456 case CONVERT_EXPR:
2457 case FIX_TRUNC_EXPR:
2458 /* Conversion of floating point might trap. */
2459 return honor_nans;
2460
2461 case NEGATE_EXPR:
2462 case ABS_EXPR:
2463 case CONJ_EXPR:
2464 /* These operations don't trap with floating point. */
2465 if (honor_trapv)
2466 return true;
2467 return false;
2468
2469 case PLUS_EXPR:
2470 case MINUS_EXPR:
2471 case MULT_EXPR:
2472 /* Any floating arithmetic may trap. */
2473 if (fp_operation && flag_trapping_math)
2474 return true;
2475 if (honor_trapv)
2476 return true;
2477 return false;
2478
2479 case COMPLEX_EXPR:
2480 case CONSTRUCTOR:
2481 /* Constructing an object cannot trap. */
2482 return false;
2483
2484 default:
2485 /* Any floating arithmetic may trap. */
2486 if (fp_operation && flag_trapping_math)
2487 return true;
2488
2489 *handled = false;
2490 return false;
2491 }
2492 }
2493
2494 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2495 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2496 type operands that may trap. If OP is a division operator, DIVISOR contains
2497 the value of the divisor. */
2498
2499 bool
2500 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2501 tree divisor)
2502 {
2503 bool honor_nans = (fp_operation && flag_trapping_math
2504 && !flag_finite_math_only);
2505 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2506 bool handled;
2507
2508 if (TREE_CODE_CLASS (op) != tcc_comparison
2509 && TREE_CODE_CLASS (op) != tcc_unary
2510 && TREE_CODE_CLASS (op) != tcc_binary)
2511 return false;
2512
2513 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2514 honor_nans, honor_snans, divisor,
2515 &handled);
2516 }
2517
2518
2519 /* Returns true if it is possible to prove that the index of
2520 an array access REF (an ARRAY_REF expression) falls into the
2521 array bounds. */
2522
2523 static bool
2524 in_array_bounds_p (tree ref)
2525 {
2526 tree idx = TREE_OPERAND (ref, 1);
2527 tree min, max;
2528
2529 if (TREE_CODE (idx) != INTEGER_CST)
2530 return false;
2531
2532 min = array_ref_low_bound (ref);
2533 max = array_ref_up_bound (ref);
2534 if (!min
2535 || !max
2536 || TREE_CODE (min) != INTEGER_CST
2537 || TREE_CODE (max) != INTEGER_CST)
2538 return false;
2539
2540 if (tree_int_cst_lt (idx, min)
2541 || tree_int_cst_lt (max, idx))
2542 return false;
2543
2544 return true;
2545 }
2546
2547 /* Returns true if it is possible to prove that the range of
2548 an array access REF (an ARRAY_RANGE_REF expression) falls
2549 into the array bounds. */
2550
2551 static bool
2552 range_in_array_bounds_p (tree ref)
2553 {
2554 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
2555 tree range_min, range_max, min, max;
2556
2557 range_min = TYPE_MIN_VALUE (domain_type);
2558 range_max = TYPE_MAX_VALUE (domain_type);
2559 if (!range_min
2560 || !range_max
2561 || TREE_CODE (range_min) != INTEGER_CST
2562 || TREE_CODE (range_max) != INTEGER_CST)
2563 return false;
2564
2565 min = array_ref_low_bound (ref);
2566 max = array_ref_up_bound (ref);
2567 if (!min
2568 || !max
2569 || TREE_CODE (min) != INTEGER_CST
2570 || TREE_CODE (max) != INTEGER_CST)
2571 return false;
2572
2573 if (tree_int_cst_lt (range_min, min)
2574 || tree_int_cst_lt (max, range_max))
2575 return false;
2576
2577 return true;
2578 }
2579
2580 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2581 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2582 This routine expects only GIMPLE lhs or rhs input. */
2583
2584 bool
2585 tree_could_trap_p (tree expr)
2586 {
2587 enum tree_code code;
2588 bool fp_operation = false;
2589 bool honor_trapv = false;
2590 tree t, base, div = NULL_TREE;
2591
2592 if (!expr)
2593 return false;
2594
2595 code = TREE_CODE (expr);
2596 t = TREE_TYPE (expr);
2597
2598 if (t)
2599 {
2600 if (COMPARISON_CLASS_P (expr))
2601 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2602 else
2603 fp_operation = FLOAT_TYPE_P (t);
2604 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2605 }
2606
2607 if (TREE_CODE_CLASS (code) == tcc_binary)
2608 div = TREE_OPERAND (expr, 1);
2609 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2610 return true;
2611
2612 restart:
2613 switch (code)
2614 {
2615 case COMPONENT_REF:
2616 case REALPART_EXPR:
2617 case IMAGPART_EXPR:
2618 case BIT_FIELD_REF:
2619 case VIEW_CONVERT_EXPR:
2620 case WITH_SIZE_EXPR:
2621 expr = TREE_OPERAND (expr, 0);
2622 code = TREE_CODE (expr);
2623 goto restart;
2624
2625 case ARRAY_RANGE_REF:
2626 base = TREE_OPERAND (expr, 0);
2627 if (tree_could_trap_p (base))
2628 return true;
2629 if (TREE_THIS_NOTRAP (expr))
2630 return false;
2631 return !range_in_array_bounds_p (expr);
2632
2633 case ARRAY_REF:
2634 base = TREE_OPERAND (expr, 0);
2635 if (tree_could_trap_p (base))
2636 return true;
2637 if (TREE_THIS_NOTRAP (expr))
2638 return false;
2639 return !in_array_bounds_p (expr);
2640
2641 case TARGET_MEM_REF:
2642 case MEM_REF:
2643 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
2644 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
2645 return true;
2646 if (TREE_THIS_NOTRAP (expr))
2647 return false;
2648 /* We cannot prove that the access is in-bounds when we have
2649 variable-index TARGET_MEM_REFs. */
2650 if (code == TARGET_MEM_REF
2651 && (TMR_INDEX (expr) || TMR_INDEX2 (expr)))
2652 return true;
2653 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2654 {
2655 tree base = TREE_OPERAND (TREE_OPERAND (expr, 0), 0);
2656 offset_int off = mem_ref_offset (expr);
2657 if (wi::neg_p (off, SIGNED))
2658 return true;
2659 if (TREE_CODE (base) == STRING_CST)
2660 return wi::leu_p (TREE_STRING_LENGTH (base), off);
2661 else if (DECL_SIZE_UNIT (base) == NULL_TREE
2662 || TREE_CODE (DECL_SIZE_UNIT (base)) != INTEGER_CST
2663 || wi::leu_p (wi::to_offset (DECL_SIZE_UNIT (base)), off))
2664 return true;
2665 /* Now we are sure the first byte of the access is inside
2666 the object. */
2667 return false;
2668 }
2669 return true;
2670
2671 case INDIRECT_REF:
2672 return !TREE_THIS_NOTRAP (expr);
2673
2674 case ASM_EXPR:
2675 return TREE_THIS_VOLATILE (expr);
2676
2677 case CALL_EXPR:
2678 t = get_callee_fndecl (expr);
2679 /* Assume that calls to weak functions may trap. */
2680 if (!t || !DECL_P (t))
2681 return true;
2682 if (DECL_WEAK (t))
2683 return tree_could_trap_p (t);
2684 return false;
2685
2686 case FUNCTION_DECL:
2687 /* Assume that accesses to weak functions may trap, unless we know
2688 they are certainly defined in current TU or in some other
2689 LTO partition. */
2690 if (DECL_WEAK (expr) && !DECL_COMDAT (expr))
2691 {
2692 struct cgraph_node *node;
2693 if (!DECL_EXTERNAL (expr))
2694 return false;
2695 node = cgraph_node::get (expr)->function_symbol ();
2696 if (node && node->in_other_partition)
2697 return false;
2698 return true;
2699 }
2700 return false;
2701
2702 case VAR_DECL:
2703 /* Assume that accesses to weak vars may trap, unless we know
2704 they are certainly defined in current TU or in some other
2705 LTO partition. */
2706 if (DECL_WEAK (expr) && !DECL_COMDAT (expr))
2707 {
2708 varpool_node *node;
2709 if (!DECL_EXTERNAL (expr))
2710 return false;
2711 node = varpool_node::get (expr)->ultimate_alias_target ();
2712 if (node && node->in_other_partition)
2713 return false;
2714 return true;
2715 }
2716 return false;
2717
2718 default:
2719 return false;
2720 }
2721 }
2722
2723
2724 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2725 an assignment or a conditional) may throw. */
2726
2727 static bool
2728 stmt_could_throw_1_p (gimple stmt)
2729 {
2730 enum tree_code code = gimple_expr_code (stmt);
2731 bool honor_nans = false;
2732 bool honor_snans = false;
2733 bool fp_operation = false;
2734 bool honor_trapv = false;
2735 tree t;
2736 size_t i;
2737 bool handled, ret;
2738
2739 if (TREE_CODE_CLASS (code) == tcc_comparison
2740 || TREE_CODE_CLASS (code) == tcc_unary
2741 || TREE_CODE_CLASS (code) == tcc_binary)
2742 {
2743 if (is_gimple_assign (stmt)
2744 && TREE_CODE_CLASS (code) == tcc_comparison)
2745 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2746 else if (gimple_code (stmt) == GIMPLE_COND)
2747 t = TREE_TYPE (gimple_cond_lhs (stmt));
2748 else
2749 t = gimple_expr_type (stmt);
2750 fp_operation = FLOAT_TYPE_P (t);
2751 if (fp_operation)
2752 {
2753 honor_nans = flag_trapping_math && !flag_finite_math_only;
2754 honor_snans = flag_signaling_nans != 0;
2755 }
2756 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2757 honor_trapv = true;
2758 }
2759
2760 /* Check if the main expression may trap. */
2761 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2762 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2763 honor_nans, honor_snans, t,
2764 &handled);
2765 if (handled)
2766 return ret;
2767
2768 /* If the expression does not trap, see if any of the individual operands may
2769 trap. */
2770 for (i = 0; i < gimple_num_ops (stmt); i++)
2771 if (tree_could_trap_p (gimple_op (stmt, i)))
2772 return true;
2773
2774 return false;
2775 }
2776
2777
2778 /* Return true if statement STMT could throw an exception. */
2779
2780 bool
2781 stmt_could_throw_p (gimple stmt)
2782 {
2783 if (!flag_exceptions)
2784 return false;
2785
2786 /* The only statements that can throw an exception are assignments,
2787 conditionals, calls, resx, and asms. */
2788 switch (gimple_code (stmt))
2789 {
2790 case GIMPLE_RESX:
2791 return true;
2792
2793 case GIMPLE_CALL:
2794 return !gimple_call_nothrow_p (stmt);
2795
2796 case GIMPLE_ASSIGN:
2797 case GIMPLE_COND:
2798 if (!cfun->can_throw_non_call_exceptions)
2799 return false;
2800 return stmt_could_throw_1_p (stmt);
2801
2802 case GIMPLE_ASM:
2803 if (!cfun->can_throw_non_call_exceptions)
2804 return false;
2805 return gimple_asm_volatile_p (stmt);
2806
2807 default:
2808 return false;
2809 }
2810 }
2811
2812
2813 /* Return true if expression T could throw an exception. */
2814
2815 bool
2816 tree_could_throw_p (tree t)
2817 {
2818 if (!flag_exceptions)
2819 return false;
2820 if (TREE_CODE (t) == MODIFY_EXPR)
2821 {
2822 if (cfun->can_throw_non_call_exceptions
2823 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2824 return true;
2825 t = TREE_OPERAND (t, 1);
2826 }
2827
2828 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2829 t = TREE_OPERAND (t, 0);
2830 if (TREE_CODE (t) == CALL_EXPR)
2831 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2832 if (cfun->can_throw_non_call_exceptions)
2833 return tree_could_trap_p (t);
2834 return false;
2835 }
2836
2837 /* Return true if STMT can throw an exception that is not caught within
2838 the current function (CFUN). */
2839
2840 bool
2841 stmt_can_throw_external (gimple stmt)
2842 {
2843 int lp_nr;
2844
2845 if (!stmt_could_throw_p (stmt))
2846 return false;
2847
2848 lp_nr = lookup_stmt_eh_lp (stmt);
2849 return lp_nr == 0;
2850 }
2851
2852 /* Return true if STMT can throw an exception that is caught within
2853 the current function (CFUN). */
2854
2855 bool
2856 stmt_can_throw_internal (gimple stmt)
2857 {
2858 int lp_nr;
2859
2860 if (!stmt_could_throw_p (stmt))
2861 return false;
2862
2863 lp_nr = lookup_stmt_eh_lp (stmt);
2864 return lp_nr > 0;
2865 }
2866
2867 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2868 remove any entry it might have from the EH table. Return true if
2869 any change was made. */
2870
2871 bool
2872 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2873 {
2874 if (stmt_could_throw_p (stmt))
2875 return false;
2876 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2877 }
2878
2879 /* Likewise, but always use the current function. */
2880
2881 bool
2882 maybe_clean_eh_stmt (gimple stmt)
2883 {
2884 return maybe_clean_eh_stmt_fn (cfun, stmt);
2885 }
2886
2887 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2888 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2889 in the table if it should be in there. Return TRUE if a replacement was
2890 done that my require an EH edge purge. */
2891
2892 bool
2893 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2894 {
2895 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2896
2897 if (lp_nr != 0)
2898 {
2899 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2900
2901 if (new_stmt == old_stmt && new_stmt_could_throw)
2902 return false;
2903
2904 remove_stmt_from_eh_lp (old_stmt);
2905 if (new_stmt_could_throw)
2906 {
2907 add_stmt_to_eh_lp (new_stmt, lp_nr);
2908 return false;
2909 }
2910 else
2911 return true;
2912 }
2913
2914 return false;
2915 }
2916
2917 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2918 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2919 operand is the return value of duplicate_eh_regions. */
2920
2921 bool
2922 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2923 struct function *old_fun, gimple old_stmt,
2924 struct pointer_map_t *map, int default_lp_nr)
2925 {
2926 int old_lp_nr, new_lp_nr;
2927 void **slot;
2928
2929 if (!stmt_could_throw_p (new_stmt))
2930 return false;
2931
2932 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2933 if (old_lp_nr == 0)
2934 {
2935 if (default_lp_nr == 0)
2936 return false;
2937 new_lp_nr = default_lp_nr;
2938 }
2939 else if (old_lp_nr > 0)
2940 {
2941 eh_landing_pad old_lp, new_lp;
2942
2943 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
2944 slot = pointer_map_contains (map, old_lp);
2945 new_lp = (eh_landing_pad) *slot;
2946 new_lp_nr = new_lp->index;
2947 }
2948 else
2949 {
2950 eh_region old_r, new_r;
2951
2952 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
2953 slot = pointer_map_contains (map, old_r);
2954 new_r = (eh_region) *slot;
2955 new_lp_nr = -new_r->index;
2956 }
2957
2958 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2959 return true;
2960 }
2961
2962 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2963 and thus no remapping is required. */
2964
2965 bool
2966 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2967 {
2968 int lp_nr;
2969
2970 if (!stmt_could_throw_p (new_stmt))
2971 return false;
2972
2973 lp_nr = lookup_stmt_eh_lp (old_stmt);
2974 if (lp_nr == 0)
2975 return false;
2976
2977 add_stmt_to_eh_lp (new_stmt, lp_nr);
2978 return true;
2979 }
2980 \f
2981 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2982 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2983 this only handles handlers consisting of a single call, as that's the
2984 important case for C++: a destructor call for a particular object showing
2985 up in multiple handlers. */
2986
2987 static bool
2988 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2989 {
2990 gimple_stmt_iterator gsi;
2991 gimple ones, twos;
2992 unsigned int ai;
2993
2994 gsi = gsi_start (oneh);
2995 if (!gsi_one_before_end_p (gsi))
2996 return false;
2997 ones = gsi_stmt (gsi);
2998
2999 gsi = gsi_start (twoh);
3000 if (!gsi_one_before_end_p (gsi))
3001 return false;
3002 twos = gsi_stmt (gsi);
3003
3004 if (!is_gimple_call (ones)
3005 || !is_gimple_call (twos)
3006 || gimple_call_lhs (ones)
3007 || gimple_call_lhs (twos)
3008 || gimple_call_chain (ones)
3009 || gimple_call_chain (twos)
3010 || !gimple_call_same_target_p (ones, twos)
3011 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
3012 return false;
3013
3014 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
3015 if (!operand_equal_p (gimple_call_arg (ones, ai),
3016 gimple_call_arg (twos, ai), 0))
3017 return false;
3018
3019 return true;
3020 }
3021
3022 /* Optimize
3023 try { A() } finally { try { ~B() } catch { ~A() } }
3024 try { ... } finally { ~A() }
3025 into
3026 try { A() } catch { ~B() }
3027 try { ~B() ... } finally { ~A() }
3028
3029 This occurs frequently in C++, where A is a local variable and B is a
3030 temporary used in the initializer for A. */
3031
3032 static void
3033 optimize_double_finally (gimple one, gimple two)
3034 {
3035 gimple oneh;
3036 gimple_stmt_iterator gsi;
3037 gimple_seq cleanup;
3038
3039 cleanup = gimple_try_cleanup (one);
3040 gsi = gsi_start (cleanup);
3041 if (!gsi_one_before_end_p (gsi))
3042 return;
3043
3044 oneh = gsi_stmt (gsi);
3045 if (gimple_code (oneh) != GIMPLE_TRY
3046 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
3047 return;
3048
3049 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
3050 {
3051 gimple_seq seq = gimple_try_eval (oneh);
3052
3053 gimple_try_set_cleanup (one, seq);
3054 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
3055 seq = copy_gimple_seq_and_replace_locals (seq);
3056 gimple_seq_add_seq (&seq, gimple_try_eval (two));
3057 gimple_try_set_eval (two, seq);
3058 }
3059 }
3060
3061 /* Perform EH refactoring optimizations that are simpler to do when code
3062 flow has been lowered but EH structures haven't. */
3063
3064 static void
3065 refactor_eh_r (gimple_seq seq)
3066 {
3067 gimple_stmt_iterator gsi;
3068 gimple one, two;
3069
3070 one = NULL;
3071 two = NULL;
3072 gsi = gsi_start (seq);
3073 while (1)
3074 {
3075 one = two;
3076 if (gsi_end_p (gsi))
3077 two = NULL;
3078 else
3079 two = gsi_stmt (gsi);
3080 if (one
3081 && two
3082 && gimple_code (one) == GIMPLE_TRY
3083 && gimple_code (two) == GIMPLE_TRY
3084 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
3085 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
3086 optimize_double_finally (one, two);
3087 if (one)
3088 switch (gimple_code (one))
3089 {
3090 case GIMPLE_TRY:
3091 refactor_eh_r (gimple_try_eval (one));
3092 refactor_eh_r (gimple_try_cleanup (one));
3093 break;
3094 case GIMPLE_CATCH:
3095 refactor_eh_r (gimple_catch_handler (one));
3096 break;
3097 case GIMPLE_EH_FILTER:
3098 refactor_eh_r (gimple_eh_filter_failure (one));
3099 break;
3100 case GIMPLE_EH_ELSE:
3101 refactor_eh_r (gimple_eh_else_n_body (one));
3102 refactor_eh_r (gimple_eh_else_e_body (one));
3103 break;
3104 default:
3105 break;
3106 }
3107 if (two)
3108 gsi_next (&gsi);
3109 else
3110 break;
3111 }
3112 }
3113
3114 namespace {
3115
3116 const pass_data pass_data_refactor_eh =
3117 {
3118 GIMPLE_PASS, /* type */
3119 "ehopt", /* name */
3120 OPTGROUP_NONE, /* optinfo_flags */
3121 TV_TREE_EH, /* tv_id */
3122 PROP_gimple_lcf, /* properties_required */
3123 0, /* properties_provided */
3124 0, /* properties_destroyed */
3125 0, /* todo_flags_start */
3126 0, /* todo_flags_finish */
3127 };
3128
3129 class pass_refactor_eh : public gimple_opt_pass
3130 {
3131 public:
3132 pass_refactor_eh (gcc::context *ctxt)
3133 : gimple_opt_pass (pass_data_refactor_eh, ctxt)
3134 {}
3135
3136 /* opt_pass methods: */
3137 virtual bool gate (function *) { return flag_exceptions != 0; }
3138 virtual unsigned int execute (function *)
3139 {
3140 refactor_eh_r (gimple_body (current_function_decl));
3141 return 0;
3142 }
3143
3144 }; // class pass_refactor_eh
3145
3146 } // anon namespace
3147
3148 gimple_opt_pass *
3149 make_pass_refactor_eh (gcc::context *ctxt)
3150 {
3151 return new pass_refactor_eh (ctxt);
3152 }
3153 \f
3154 /* At the end of gimple optimization, we can lower RESX. */
3155
3156 static bool
3157 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
3158 {
3159 int lp_nr;
3160 eh_region src_r, dst_r;
3161 gimple_stmt_iterator gsi;
3162 gimple x;
3163 tree fn, src_nr;
3164 bool ret = false;
3165
3166 lp_nr = lookup_stmt_eh_lp (stmt);
3167 if (lp_nr != 0)
3168 dst_r = get_eh_region_from_lp_number (lp_nr);
3169 else
3170 dst_r = NULL;
3171
3172 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3173 gsi = gsi_last_bb (bb);
3174
3175 if (src_r == NULL)
3176 {
3177 /* We can wind up with no source region when pass_cleanup_eh shows
3178 that there are no entries into an eh region and deletes it, but
3179 then the block that contains the resx isn't removed. This can
3180 happen without optimization when the switch statement created by
3181 lower_try_finally_switch isn't simplified to remove the eh case.
3182
3183 Resolve this by expanding the resx node to an abort. */
3184
3185 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3186 x = gimple_build_call (fn, 0);
3187 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3188
3189 while (EDGE_COUNT (bb->succs) > 0)
3190 remove_edge (EDGE_SUCC (bb, 0));
3191 }
3192 else if (dst_r)
3193 {
3194 /* When we have a destination region, we resolve this by copying
3195 the excptr and filter values into place, and changing the edge
3196 to immediately after the landing pad. */
3197 edge e;
3198
3199 if (lp_nr < 0)
3200 {
3201 basic_block new_bb;
3202 void **slot;
3203 tree lab;
3204
3205 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3206 the failure decl into a new block, if needed. */
3207 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3208
3209 slot = pointer_map_contains (mnt_map, dst_r);
3210 if (slot == NULL)
3211 {
3212 gimple_stmt_iterator gsi2;
3213
3214 new_bb = create_empty_bb (bb);
3215 add_bb_to_loop (new_bb, bb->loop_father);
3216 lab = gimple_block_label (new_bb);
3217 gsi2 = gsi_start_bb (new_bb);
3218
3219 fn = dst_r->u.must_not_throw.failure_decl;
3220 x = gimple_build_call (fn, 0);
3221 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3222 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3223
3224 slot = pointer_map_insert (mnt_map, dst_r);
3225 *slot = lab;
3226 }
3227 else
3228 {
3229 lab = (tree) *slot;
3230 new_bb = label_to_block (lab);
3231 }
3232
3233 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3234 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3235 e->count = bb->count;
3236 e->probability = REG_BR_PROB_BASE;
3237 }
3238 else
3239 {
3240 edge_iterator ei;
3241 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3242
3243 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3244 src_nr = build_int_cst (integer_type_node, src_r->index);
3245 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3246 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3247
3248 /* Update the flags for the outgoing edge. */
3249 e = single_succ_edge (bb);
3250 gcc_assert (e->flags & EDGE_EH);
3251 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3252
3253 /* If there are no more EH users of the landing pad, delete it. */
3254 FOR_EACH_EDGE (e, ei, e->dest->preds)
3255 if (e->flags & EDGE_EH)
3256 break;
3257 if (e == NULL)
3258 {
3259 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3260 remove_eh_landing_pad (lp);
3261 }
3262 }
3263
3264 ret = true;
3265 }
3266 else
3267 {
3268 tree var;
3269
3270 /* When we don't have a destination region, this exception escapes
3271 up the call chain. We resolve this by generating a call to the
3272 _Unwind_Resume library function. */
3273
3274 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3275 with no arguments for C++ and Java. Check for that. */
3276 if (src_r->use_cxa_end_cleanup)
3277 {
3278 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3279 x = gimple_build_call (fn, 0);
3280 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3281 }
3282 else
3283 {
3284 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3285 src_nr = build_int_cst (integer_type_node, src_r->index);
3286 x = gimple_build_call (fn, 1, src_nr);
3287 var = create_tmp_var (ptr_type_node, NULL);
3288 var = make_ssa_name (var, x);
3289 gimple_call_set_lhs (x, var);
3290 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3291
3292 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3293 x = gimple_build_call (fn, 1, var);
3294 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3295 }
3296
3297 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3298 }
3299
3300 gsi_remove (&gsi, true);
3301
3302 return ret;
3303 }
3304
3305 namespace {
3306
3307 const pass_data pass_data_lower_resx =
3308 {
3309 GIMPLE_PASS, /* type */
3310 "resx", /* name */
3311 OPTGROUP_NONE, /* optinfo_flags */
3312 TV_TREE_EH, /* tv_id */
3313 PROP_gimple_lcf, /* properties_required */
3314 0, /* properties_provided */
3315 0, /* properties_destroyed */
3316 0, /* todo_flags_start */
3317 0, /* todo_flags_finish */
3318 };
3319
3320 class pass_lower_resx : public gimple_opt_pass
3321 {
3322 public:
3323 pass_lower_resx (gcc::context *ctxt)
3324 : gimple_opt_pass (pass_data_lower_resx, ctxt)
3325 {}
3326
3327 /* opt_pass methods: */
3328 virtual bool gate (function *) { return flag_exceptions != 0; }
3329 virtual unsigned int execute (function *);
3330
3331 }; // class pass_lower_resx
3332
3333 unsigned
3334 pass_lower_resx::execute (function *fun)
3335 {
3336 basic_block bb;
3337 struct pointer_map_t *mnt_map;
3338 bool dominance_invalidated = false;
3339 bool any_rewritten = false;
3340
3341 mnt_map = pointer_map_create ();
3342
3343 FOR_EACH_BB_FN (bb, fun)
3344 {
3345 gimple last = last_stmt (bb);
3346 if (last && is_gimple_resx (last))
3347 {
3348 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3349 any_rewritten = true;
3350 }
3351 }
3352
3353 pointer_map_destroy (mnt_map);
3354
3355 if (dominance_invalidated)
3356 {
3357 free_dominance_info (CDI_DOMINATORS);
3358 free_dominance_info (CDI_POST_DOMINATORS);
3359 }
3360
3361 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3362 }
3363
3364 } // anon namespace
3365
3366 gimple_opt_pass *
3367 make_pass_lower_resx (gcc::context *ctxt)
3368 {
3369 return new pass_lower_resx (ctxt);
3370 }
3371
3372 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3373 external throw. */
3374
3375 static void
3376 optimize_clobbers (basic_block bb)
3377 {
3378 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3379 bool any_clobbers = false;
3380 bool seen_stack_restore = false;
3381 edge_iterator ei;
3382 edge e;
3383
3384 /* Only optimize anything if the bb contains at least one clobber,
3385 ends with resx (checked by caller), optionally contains some
3386 debug stmts or labels, or at most one __builtin_stack_restore
3387 call, and has an incoming EH edge. */
3388 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3389 {
3390 gimple stmt = gsi_stmt (gsi);
3391 if (is_gimple_debug (stmt))
3392 continue;
3393 if (gimple_clobber_p (stmt))
3394 {
3395 any_clobbers = true;
3396 continue;
3397 }
3398 if (!seen_stack_restore
3399 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3400 {
3401 seen_stack_restore = true;
3402 continue;
3403 }
3404 if (gimple_code (stmt) == GIMPLE_LABEL)
3405 break;
3406 return;
3407 }
3408 if (!any_clobbers)
3409 return;
3410 FOR_EACH_EDGE (e, ei, bb->preds)
3411 if (e->flags & EDGE_EH)
3412 break;
3413 if (e == NULL)
3414 return;
3415 gsi = gsi_last_bb (bb);
3416 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3417 {
3418 gimple stmt = gsi_stmt (gsi);
3419 if (!gimple_clobber_p (stmt))
3420 continue;
3421 unlink_stmt_vdef (stmt);
3422 gsi_remove (&gsi, true);
3423 release_defs (stmt);
3424 }
3425 }
3426
3427 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3428 internal throw to successor BB. */
3429
3430 static int
3431 sink_clobbers (basic_block bb)
3432 {
3433 edge e;
3434 edge_iterator ei;
3435 gimple_stmt_iterator gsi, dgsi;
3436 basic_block succbb;
3437 bool any_clobbers = false;
3438 unsigned todo = 0;
3439
3440 /* Only optimize if BB has a single EH successor and
3441 all predecessor edges are EH too. */
3442 if (!single_succ_p (bb)
3443 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3444 return 0;
3445
3446 FOR_EACH_EDGE (e, ei, bb->preds)
3447 {
3448 if ((e->flags & EDGE_EH) == 0)
3449 return 0;
3450 }
3451
3452 /* And BB contains only CLOBBER stmts before the final
3453 RESX. */
3454 gsi = gsi_last_bb (bb);
3455 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3456 {
3457 gimple stmt = gsi_stmt (gsi);
3458 if (is_gimple_debug (stmt))
3459 continue;
3460 if (gimple_code (stmt) == GIMPLE_LABEL)
3461 break;
3462 if (!gimple_clobber_p (stmt))
3463 return 0;
3464 any_clobbers = true;
3465 }
3466 if (!any_clobbers)
3467 return 0;
3468
3469 edge succe = single_succ_edge (bb);
3470 succbb = succe->dest;
3471
3472 /* See if there is a virtual PHI node to take an updated virtual
3473 operand from. */
3474 gimple vphi = NULL;
3475 tree vuse = NULL_TREE;
3476 for (gsi = gsi_start_phis (succbb); !gsi_end_p (gsi); gsi_next (&gsi))
3477 {
3478 tree res = gimple_phi_result (gsi_stmt (gsi));
3479 if (virtual_operand_p (res))
3480 {
3481 vphi = gsi_stmt (gsi);
3482 vuse = res;
3483 break;
3484 }
3485 }
3486
3487 dgsi = gsi_after_labels (succbb);
3488 gsi = gsi_last_bb (bb);
3489 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3490 {
3491 gimple stmt = gsi_stmt (gsi);
3492 tree lhs;
3493 if (is_gimple_debug (stmt))
3494 continue;
3495 if (gimple_code (stmt) == GIMPLE_LABEL)
3496 break;
3497 lhs = gimple_assign_lhs (stmt);
3498 /* Unfortunately we don't have dominance info updated at this
3499 point, so checking if
3500 dominated_by_p (CDI_DOMINATORS, succbb,
3501 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3502 would be too costly. Thus, avoid sinking any clobbers that
3503 refer to non-(D) SSA_NAMEs. */
3504 if (TREE_CODE (lhs) == MEM_REF
3505 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3506 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3507 {
3508 unlink_stmt_vdef (stmt);
3509 gsi_remove (&gsi, true);
3510 release_defs (stmt);
3511 continue;
3512 }
3513
3514 /* As we do not change stmt order when sinking across a
3515 forwarder edge we can keep virtual operands in place. */
3516 gsi_remove (&gsi, false);
3517 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3518
3519 /* But adjust virtual operands if we sunk across a PHI node. */
3520 if (vuse)
3521 {
3522 gimple use_stmt;
3523 imm_use_iterator iter;
3524 use_operand_p use_p;
3525 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vuse)
3526 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3527 SET_USE (use_p, gimple_vdef (stmt));
3528 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse))
3529 {
3530 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt)) = 1;
3531 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 0;
3532 }
3533 /* Adjust the incoming virtual operand. */
3534 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe), gimple_vuse (stmt));
3535 SET_USE (gimple_vuse_op (stmt), vuse);
3536 }
3537 /* If there isn't a single predecessor but no virtual PHI node
3538 arrange for virtual operands to be renamed. */
3539 else if (gimple_vuse_op (stmt) != NULL_USE_OPERAND_P
3540 && !single_pred_p (succbb))
3541 {
3542 /* In this case there will be no use of the VDEF of this stmt.
3543 ??? Unless this is a secondary opportunity and we have not
3544 removed unreachable blocks yet, so we cannot assert this.
3545 Which also means we will end up renaming too many times. */
3546 SET_USE (gimple_vuse_op (stmt), gimple_vop (cfun));
3547 mark_virtual_operands_for_renaming (cfun);
3548 todo |= TODO_update_ssa_only_virtuals;
3549 }
3550 }
3551
3552 return todo;
3553 }
3554
3555 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3556 we have found some duplicate labels and removed some edges. */
3557
3558 static bool
3559 lower_eh_dispatch (basic_block src, gimple stmt)
3560 {
3561 gimple_stmt_iterator gsi;
3562 int region_nr;
3563 eh_region r;
3564 tree filter, fn;
3565 gimple x;
3566 bool redirected = false;
3567
3568 region_nr = gimple_eh_dispatch_region (stmt);
3569 r = get_eh_region_from_number (region_nr);
3570
3571 gsi = gsi_last_bb (src);
3572
3573 switch (r->type)
3574 {
3575 case ERT_TRY:
3576 {
3577 auto_vec<tree> labels;
3578 tree default_label = NULL;
3579 eh_catch c;
3580 edge_iterator ei;
3581 edge e;
3582 hash_set<tree> seen_values;
3583
3584 /* Collect the labels for a switch. Zero the post_landing_pad
3585 field becase we'll no longer have anything keeping these labels
3586 in existence and the optimizer will be free to merge these
3587 blocks at will. */
3588 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3589 {
3590 tree tp_node, flt_node, lab = c->label;
3591 bool have_label = false;
3592
3593 c->label = NULL;
3594 tp_node = c->type_list;
3595 flt_node = c->filter_list;
3596
3597 if (tp_node == NULL)
3598 {
3599 default_label = lab;
3600 break;
3601 }
3602 do
3603 {
3604 /* Filter out duplicate labels that arise when this handler
3605 is shadowed by an earlier one. When no labels are
3606 attached to the handler anymore, we remove
3607 the corresponding edge and then we delete unreachable
3608 blocks at the end of this pass. */
3609 if (! seen_values.contains (TREE_VALUE (flt_node)))
3610 {
3611 tree t = build_case_label (TREE_VALUE (flt_node),
3612 NULL, lab);
3613 labels.safe_push (t);
3614 seen_values.add (TREE_VALUE (flt_node));
3615 have_label = true;
3616 }
3617
3618 tp_node = TREE_CHAIN (tp_node);
3619 flt_node = TREE_CHAIN (flt_node);
3620 }
3621 while (tp_node);
3622 if (! have_label)
3623 {
3624 remove_edge (find_edge (src, label_to_block (lab)));
3625 redirected = true;
3626 }
3627 }
3628
3629 /* Clean up the edge flags. */
3630 FOR_EACH_EDGE (e, ei, src->succs)
3631 {
3632 if (e->flags & EDGE_FALLTHRU)
3633 {
3634 /* If there was no catch-all, use the fallthru edge. */
3635 if (default_label == NULL)
3636 default_label = gimple_block_label (e->dest);
3637 e->flags &= ~EDGE_FALLTHRU;
3638 }
3639 }
3640 gcc_assert (default_label != NULL);
3641
3642 /* Don't generate a switch if there's only a default case.
3643 This is common in the form of try { A; } catch (...) { B; }. */
3644 if (!labels.exists ())
3645 {
3646 e = single_succ_edge (src);
3647 e->flags |= EDGE_FALLTHRU;
3648 }
3649 else
3650 {
3651 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3652 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3653 region_nr));
3654 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3655 filter = make_ssa_name (filter, x);
3656 gimple_call_set_lhs (x, filter);
3657 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3658
3659 /* Turn the default label into a default case. */
3660 default_label = build_case_label (NULL, NULL, default_label);
3661 sort_case_labels (labels);
3662
3663 x = gimple_build_switch (filter, default_label, labels);
3664 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3665 }
3666 }
3667 break;
3668
3669 case ERT_ALLOWED_EXCEPTIONS:
3670 {
3671 edge b_e = BRANCH_EDGE (src);
3672 edge f_e = FALLTHRU_EDGE (src);
3673
3674 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3675 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3676 region_nr));
3677 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3678 filter = make_ssa_name (filter, x);
3679 gimple_call_set_lhs (x, filter);
3680 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3681
3682 r->u.allowed.label = NULL;
3683 x = gimple_build_cond (EQ_EXPR, filter,
3684 build_int_cst (TREE_TYPE (filter),
3685 r->u.allowed.filter),
3686 NULL_TREE, NULL_TREE);
3687 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3688
3689 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3690 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3691 }
3692 break;
3693
3694 default:
3695 gcc_unreachable ();
3696 }
3697
3698 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3699 gsi_remove (&gsi, true);
3700 return redirected;
3701 }
3702
3703 namespace {
3704
3705 const pass_data pass_data_lower_eh_dispatch =
3706 {
3707 GIMPLE_PASS, /* type */
3708 "ehdisp", /* name */
3709 OPTGROUP_NONE, /* optinfo_flags */
3710 TV_TREE_EH, /* tv_id */
3711 PROP_gimple_lcf, /* properties_required */
3712 0, /* properties_provided */
3713 0, /* properties_destroyed */
3714 0, /* todo_flags_start */
3715 0, /* todo_flags_finish */
3716 };
3717
3718 class pass_lower_eh_dispatch : public gimple_opt_pass
3719 {
3720 public:
3721 pass_lower_eh_dispatch (gcc::context *ctxt)
3722 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
3723 {}
3724
3725 /* opt_pass methods: */
3726 virtual bool gate (function *fun) { return fun->eh->region_tree != NULL; }
3727 virtual unsigned int execute (function *);
3728
3729 }; // class pass_lower_eh_dispatch
3730
3731 unsigned
3732 pass_lower_eh_dispatch::execute (function *fun)
3733 {
3734 basic_block bb;
3735 int flags = 0;
3736 bool redirected = false;
3737
3738 assign_filter_values ();
3739
3740 FOR_EACH_BB_FN (bb, fun)
3741 {
3742 gimple last = last_stmt (bb);
3743 if (last == NULL)
3744 continue;
3745 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3746 {
3747 redirected |= lower_eh_dispatch (bb, last);
3748 flags |= TODO_update_ssa_only_virtuals;
3749 }
3750 else if (gimple_code (last) == GIMPLE_RESX)
3751 {
3752 if (stmt_can_throw_external (last))
3753 optimize_clobbers (bb);
3754 else
3755 flags |= sink_clobbers (bb);
3756 }
3757 }
3758
3759 if (redirected)
3760 delete_unreachable_blocks ();
3761 return flags;
3762 }
3763
3764 } // anon namespace
3765
3766 gimple_opt_pass *
3767 make_pass_lower_eh_dispatch (gcc::context *ctxt)
3768 {
3769 return new pass_lower_eh_dispatch (ctxt);
3770 }
3771 \f
3772 /* Walk statements, see what regions and, optionally, landing pads
3773 are really referenced.
3774
3775 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3776 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3777
3778 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3779 regions are marked.
3780
3781 The caller is responsible for freeing the returned sbitmaps. */
3782
3783 static void
3784 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3785 {
3786 sbitmap r_reachable, lp_reachable;
3787 basic_block bb;
3788 bool mark_landing_pads = (lp_reachablep != NULL);
3789 gcc_checking_assert (r_reachablep != NULL);
3790
3791 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3792 bitmap_clear (r_reachable);
3793 *r_reachablep = r_reachable;
3794
3795 if (mark_landing_pads)
3796 {
3797 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3798 bitmap_clear (lp_reachable);
3799 *lp_reachablep = lp_reachable;
3800 }
3801 else
3802 lp_reachable = NULL;
3803
3804 FOR_EACH_BB_FN (bb, cfun)
3805 {
3806 gimple_stmt_iterator gsi;
3807
3808 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3809 {
3810 gimple stmt = gsi_stmt (gsi);
3811
3812 if (mark_landing_pads)
3813 {
3814 int lp_nr = lookup_stmt_eh_lp (stmt);
3815
3816 /* Negative LP numbers are MUST_NOT_THROW regions which
3817 are not considered BB enders. */
3818 if (lp_nr < 0)
3819 bitmap_set_bit (r_reachable, -lp_nr);
3820
3821 /* Positive LP numbers are real landing pads, and BB enders. */
3822 else if (lp_nr > 0)
3823 {
3824 gcc_assert (gsi_one_before_end_p (gsi));
3825 eh_region region = get_eh_region_from_lp_number (lp_nr);
3826 bitmap_set_bit (r_reachable, region->index);
3827 bitmap_set_bit (lp_reachable, lp_nr);
3828 }
3829 }
3830
3831 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3832 switch (gimple_code (stmt))
3833 {
3834 case GIMPLE_RESX:
3835 bitmap_set_bit (r_reachable, gimple_resx_region (stmt));
3836 break;
3837 case GIMPLE_EH_DISPATCH:
3838 bitmap_set_bit (r_reachable, gimple_eh_dispatch_region (stmt));
3839 break;
3840 default:
3841 break;
3842 }
3843 }
3844 }
3845 }
3846
3847 /* Remove unreachable handlers and unreachable landing pads. */
3848
3849 static void
3850 remove_unreachable_handlers (void)
3851 {
3852 sbitmap r_reachable, lp_reachable;
3853 eh_region region;
3854 eh_landing_pad lp;
3855 unsigned i;
3856
3857 mark_reachable_handlers (&r_reachable, &lp_reachable);
3858
3859 if (dump_file)
3860 {
3861 fprintf (dump_file, "Before removal of unreachable regions:\n");
3862 dump_eh_tree (dump_file, cfun);
3863 fprintf (dump_file, "Reachable regions: ");
3864 dump_bitmap_file (dump_file, r_reachable);
3865 fprintf (dump_file, "Reachable landing pads: ");
3866 dump_bitmap_file (dump_file, lp_reachable);
3867 }
3868
3869 if (dump_file)
3870 {
3871 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3872 if (region && !bitmap_bit_p (r_reachable, region->index))
3873 fprintf (dump_file,
3874 "Removing unreachable region %d\n",
3875 region->index);
3876 }
3877
3878 remove_unreachable_eh_regions (r_reachable);
3879
3880 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3881 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
3882 {
3883 if (dump_file)
3884 fprintf (dump_file,
3885 "Removing unreachable landing pad %d\n",
3886 lp->index);
3887 remove_eh_landing_pad (lp);
3888 }
3889
3890 if (dump_file)
3891 {
3892 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3893 dump_eh_tree (dump_file, cfun);
3894 fprintf (dump_file, "\n\n");
3895 }
3896
3897 sbitmap_free (r_reachable);
3898 sbitmap_free (lp_reachable);
3899
3900 #ifdef ENABLE_CHECKING
3901 verify_eh_tree (cfun);
3902 #endif
3903 }
3904
3905 /* Remove unreachable handlers if any landing pads have been removed after
3906 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3907
3908 void
3909 maybe_remove_unreachable_handlers (void)
3910 {
3911 eh_landing_pad lp;
3912 unsigned i;
3913
3914 if (cfun->eh == NULL)
3915 return;
3916
3917 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3918 if (lp && lp->post_landing_pad)
3919 {
3920 if (label_to_block (lp->post_landing_pad) == NULL)
3921 {
3922 remove_unreachable_handlers ();
3923 return;
3924 }
3925 }
3926 }
3927
3928 /* Remove regions that do not have landing pads. This assumes
3929 that remove_unreachable_handlers has already been run, and
3930 that we've just manipulated the landing pads since then.
3931
3932 Preserve regions with landing pads and regions that prevent
3933 exceptions from propagating further, even if these regions
3934 are not reachable. */
3935
3936 static void
3937 remove_unreachable_handlers_no_lp (void)
3938 {
3939 eh_region region;
3940 sbitmap r_reachable;
3941 unsigned i;
3942
3943 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
3944
3945 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3946 {
3947 if (! region)
3948 continue;
3949
3950 if (region->landing_pads != NULL
3951 || region->type == ERT_MUST_NOT_THROW)
3952 bitmap_set_bit (r_reachable, region->index);
3953
3954 if (dump_file
3955 && !bitmap_bit_p (r_reachable, region->index))
3956 fprintf (dump_file,
3957 "Removing unreachable region %d\n",
3958 region->index);
3959 }
3960
3961 remove_unreachable_eh_regions (r_reachable);
3962
3963 sbitmap_free (r_reachable);
3964 }
3965
3966 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3967 optimisticaly split all sorts of edges, including EH edges. The
3968 optimization passes in between may not have needed them; if not,
3969 we should undo the split.
3970
3971 Recognize this case by having one EH edge incoming to the BB and
3972 one normal edge outgoing; BB should be empty apart from the
3973 post_landing_pad label.
3974
3975 Note that this is slightly different from the empty handler case
3976 handled by cleanup_empty_eh, in that the actual handler may yet
3977 have actual code but the landing pad has been separated from the
3978 handler. As such, cleanup_empty_eh relies on this transformation
3979 having been done first. */
3980
3981 static bool
3982 unsplit_eh (eh_landing_pad lp)
3983 {
3984 basic_block bb = label_to_block (lp->post_landing_pad);
3985 gimple_stmt_iterator gsi;
3986 edge e_in, e_out;
3987
3988 /* Quickly check the edge counts on BB for singularity. */
3989 if (!single_pred_p (bb) || !single_succ_p (bb))
3990 return false;
3991 e_in = single_pred_edge (bb);
3992 e_out = single_succ_edge (bb);
3993
3994 /* Input edge must be EH and output edge must be normal. */
3995 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3996 return false;
3997
3998 /* The block must be empty except for the labels and debug insns. */
3999 gsi = gsi_after_labels (bb);
4000 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4001 gsi_next_nondebug (&gsi);
4002 if (!gsi_end_p (gsi))
4003 return false;
4004
4005 /* The destination block must not already have a landing pad
4006 for a different region. */
4007 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4008 {
4009 gimple stmt = gsi_stmt (gsi);
4010 tree lab;
4011 int lp_nr;
4012
4013 if (gimple_code (stmt) != GIMPLE_LABEL)
4014 break;
4015 lab = gimple_label_label (stmt);
4016 lp_nr = EH_LANDING_PAD_NR (lab);
4017 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4018 return false;
4019 }
4020
4021 /* The new destination block must not already be a destination of
4022 the source block, lest we merge fallthru and eh edges and get
4023 all sorts of confused. */
4024 if (find_edge (e_in->src, e_out->dest))
4025 return false;
4026
4027 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4028 thought this should have been cleaned up by a phicprop pass, but
4029 that doesn't appear to handle virtuals. Propagate by hand. */
4030 if (!gimple_seq_empty_p (phi_nodes (bb)))
4031 {
4032 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
4033 {
4034 gimple use_stmt, phi = gsi_stmt (gsi);
4035 tree lhs = gimple_phi_result (phi);
4036 tree rhs = gimple_phi_arg_def (phi, 0);
4037 use_operand_p use_p;
4038 imm_use_iterator iter;
4039
4040 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4041 {
4042 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4043 SET_USE (use_p, rhs);
4044 }
4045
4046 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
4047 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
4048
4049 remove_phi_node (&gsi, true);
4050 }
4051 }
4052
4053 if (dump_file && (dump_flags & TDF_DETAILS))
4054 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
4055 lp->index, e_out->dest->index);
4056
4057 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4058 a successor edge, humor it. But do the real CFG change with the
4059 predecessor of E_OUT in order to preserve the ordering of arguments
4060 to the PHI nodes in E_OUT->DEST. */
4061 redirect_eh_edge_1 (e_in, e_out->dest, false);
4062 redirect_edge_pred (e_out, e_in->src);
4063 e_out->flags = e_in->flags;
4064 e_out->probability = e_in->probability;
4065 e_out->count = e_in->count;
4066 remove_edge (e_in);
4067
4068 return true;
4069 }
4070
4071 /* Examine each landing pad block and see if it matches unsplit_eh. */
4072
4073 static bool
4074 unsplit_all_eh (void)
4075 {
4076 bool changed = false;
4077 eh_landing_pad lp;
4078 int i;
4079
4080 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4081 if (lp)
4082 changed |= unsplit_eh (lp);
4083
4084 return changed;
4085 }
4086
4087 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4088 to OLD_BB to NEW_BB; return true on success, false on failure.
4089
4090 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4091 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4092 Virtual PHIs may be deleted and marked for renaming. */
4093
4094 static bool
4095 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
4096 edge old_bb_out, bool change_region)
4097 {
4098 gimple_stmt_iterator ngsi, ogsi;
4099 edge_iterator ei;
4100 edge e;
4101 bitmap ophi_handled;
4102
4103 /* The destination block must not be a regular successor for any
4104 of the preds of the landing pad. Thus, avoid turning
4105 <..>
4106 | \ EH
4107 | <..>
4108 | /
4109 <..>
4110 into
4111 <..>
4112 | | EH
4113 <..>
4114 which CFG verification would choke on. See PR45172 and PR51089. */
4115 FOR_EACH_EDGE (e, ei, old_bb->preds)
4116 if (find_edge (e->src, new_bb))
4117 return false;
4118
4119 FOR_EACH_EDGE (e, ei, old_bb->preds)
4120 redirect_edge_var_map_clear (e);
4121
4122 ophi_handled = BITMAP_ALLOC (NULL);
4123
4124 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4125 for the edges we're going to move. */
4126 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
4127 {
4128 gimple ophi, nphi = gsi_stmt (ngsi);
4129 tree nresult, nop;
4130
4131 nresult = gimple_phi_result (nphi);
4132 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
4133
4134 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4135 the source ssa_name. */
4136 ophi = NULL;
4137 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4138 {
4139 ophi = gsi_stmt (ogsi);
4140 if (gimple_phi_result (ophi) == nop)
4141 break;
4142 ophi = NULL;
4143 }
4144
4145 /* If we did find the corresponding PHI, copy those inputs. */
4146 if (ophi)
4147 {
4148 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4149 if (!has_single_use (nop))
4150 {
4151 imm_use_iterator imm_iter;
4152 use_operand_p use_p;
4153
4154 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4155 {
4156 if (!gimple_debug_bind_p (USE_STMT (use_p))
4157 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4158 || gimple_bb (USE_STMT (use_p)) != new_bb))
4159 goto fail;
4160 }
4161 }
4162 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4163 FOR_EACH_EDGE (e, ei, old_bb->preds)
4164 {
4165 location_t oloc;
4166 tree oop;
4167
4168 if ((e->flags & EDGE_EH) == 0)
4169 continue;
4170 oop = gimple_phi_arg_def (ophi, e->dest_idx);
4171 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
4172 redirect_edge_var_map_add (e, nresult, oop, oloc);
4173 }
4174 }
4175 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4176 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4177 variable is unchanged from input to the block and we can simply
4178 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4179 else
4180 {
4181 location_t nloc
4182 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
4183 FOR_EACH_EDGE (e, ei, old_bb->preds)
4184 redirect_edge_var_map_add (e, nresult, nop, nloc);
4185 }
4186 }
4187
4188 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4189 we don't know what values from the other edges into NEW_BB to use. */
4190 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4191 {
4192 gimple ophi = gsi_stmt (ogsi);
4193 tree oresult = gimple_phi_result (ophi);
4194 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4195 goto fail;
4196 }
4197
4198 /* Finally, move the edges and update the PHIs. */
4199 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4200 if (e->flags & EDGE_EH)
4201 {
4202 /* ??? CFG manipluation routines do not try to update loop
4203 form on edge redirection. Do so manually here for now. */
4204 /* If we redirect a loop entry or latch edge that will either create
4205 a multiple entry loop or rotate the loop. If the loops merge
4206 we may have created a loop with multiple latches.
4207 All of this isn't easily fixed thus cancel the affected loop
4208 and mark the other loop as possibly having multiple latches. */
4209 if (e->dest == e->dest->loop_father->header)
4210 {
4211 e->dest->loop_father->header = NULL;
4212 e->dest->loop_father->latch = NULL;
4213 new_bb->loop_father->latch = NULL;
4214 loops_state_set (LOOPS_NEED_FIXUP|LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4215 }
4216 redirect_eh_edge_1 (e, new_bb, change_region);
4217 redirect_edge_succ (e, new_bb);
4218 flush_pending_stmts (e);
4219 }
4220 else
4221 ei_next (&ei);
4222
4223 BITMAP_FREE (ophi_handled);
4224 return true;
4225
4226 fail:
4227 FOR_EACH_EDGE (e, ei, old_bb->preds)
4228 redirect_edge_var_map_clear (e);
4229 BITMAP_FREE (ophi_handled);
4230 return false;
4231 }
4232
4233 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4234 old region to NEW_REGION at BB. */
4235
4236 static void
4237 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4238 eh_landing_pad lp, eh_region new_region)
4239 {
4240 gimple_stmt_iterator gsi;
4241 eh_landing_pad *pp;
4242
4243 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4244 continue;
4245 *pp = lp->next_lp;
4246
4247 lp->region = new_region;
4248 lp->next_lp = new_region->landing_pads;
4249 new_region->landing_pads = lp;
4250
4251 /* Delete the RESX that was matched within the empty handler block. */
4252 gsi = gsi_last_bb (bb);
4253 unlink_stmt_vdef (gsi_stmt (gsi));
4254 gsi_remove (&gsi, true);
4255
4256 /* Clean up E_OUT for the fallthru. */
4257 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4258 e_out->probability = REG_BR_PROB_BASE;
4259 }
4260
4261 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4262 unsplitting than unsplit_eh was prepared to handle, e.g. when
4263 multiple incoming edges and phis are involved. */
4264
4265 static bool
4266 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4267 {
4268 gimple_stmt_iterator gsi;
4269 tree lab;
4270
4271 /* We really ought not have totally lost everything following
4272 a landing pad label. Given that BB is empty, there had better
4273 be a successor. */
4274 gcc_assert (e_out != NULL);
4275
4276 /* The destination block must not already have a landing pad
4277 for a different region. */
4278 lab = NULL;
4279 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4280 {
4281 gimple stmt = gsi_stmt (gsi);
4282 int lp_nr;
4283
4284 if (gimple_code (stmt) != GIMPLE_LABEL)
4285 break;
4286 lab = gimple_label_label (stmt);
4287 lp_nr = EH_LANDING_PAD_NR (lab);
4288 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4289 return false;
4290 }
4291
4292 /* Attempt to move the PHIs into the successor block. */
4293 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4294 {
4295 if (dump_file && (dump_flags & TDF_DETAILS))
4296 fprintf (dump_file,
4297 "Unsplit EH landing pad %d to block %i "
4298 "(via cleanup_empty_eh).\n",
4299 lp->index, e_out->dest->index);
4300 return true;
4301 }
4302
4303 return false;
4304 }
4305
4306 /* Return true if edge E_FIRST is part of an empty infinite loop
4307 or leads to such a loop through a series of single successor
4308 empty bbs. */
4309
4310 static bool
4311 infinite_empty_loop_p (edge e_first)
4312 {
4313 bool inf_loop = false;
4314 edge e;
4315
4316 if (e_first->dest == e_first->src)
4317 return true;
4318
4319 e_first->src->aux = (void *) 1;
4320 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4321 {
4322 gimple_stmt_iterator gsi;
4323 if (e->dest->aux)
4324 {
4325 inf_loop = true;
4326 break;
4327 }
4328 e->dest->aux = (void *) 1;
4329 gsi = gsi_after_labels (e->dest);
4330 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4331 gsi_next_nondebug (&gsi);
4332 if (!gsi_end_p (gsi))
4333 break;
4334 }
4335 e_first->src->aux = NULL;
4336 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4337 e->dest->aux = NULL;
4338
4339 return inf_loop;
4340 }
4341
4342 /* Examine the block associated with LP to determine if it's an empty
4343 handler for its EH region. If so, attempt to redirect EH edges to
4344 an outer region. Return true the CFG was updated in any way. This
4345 is similar to jump forwarding, just across EH edges. */
4346
4347 static bool
4348 cleanup_empty_eh (eh_landing_pad lp)
4349 {
4350 basic_block bb = label_to_block (lp->post_landing_pad);
4351 gimple_stmt_iterator gsi;
4352 gimple resx;
4353 eh_region new_region;
4354 edge_iterator ei;
4355 edge e, e_out;
4356 bool has_non_eh_pred;
4357 bool ret = false;
4358 int new_lp_nr;
4359
4360 /* There can be zero or one edges out of BB. This is the quickest test. */
4361 switch (EDGE_COUNT (bb->succs))
4362 {
4363 case 0:
4364 e_out = NULL;
4365 break;
4366 case 1:
4367 e_out = single_succ_edge (bb);
4368 break;
4369 default:
4370 return false;
4371 }
4372
4373 resx = last_stmt (bb);
4374 if (resx && is_gimple_resx (resx))
4375 {
4376 if (stmt_can_throw_external (resx))
4377 optimize_clobbers (bb);
4378 else if (sink_clobbers (bb))
4379 ret = true;
4380 }
4381
4382 gsi = gsi_after_labels (bb);
4383
4384 /* Make sure to skip debug statements. */
4385 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4386 gsi_next_nondebug (&gsi);
4387
4388 /* If the block is totally empty, look for more unsplitting cases. */
4389 if (gsi_end_p (gsi))
4390 {
4391 /* For the degenerate case of an infinite loop bail out.
4392 If bb has no successors and is totally empty, which can happen e.g.
4393 because of incorrect noreturn attribute, bail out too. */
4394 if (e_out == NULL
4395 || infinite_empty_loop_p (e_out))
4396 return ret;
4397
4398 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4399 }
4400
4401 /* The block should consist only of a single RESX statement, modulo a
4402 preceding call to __builtin_stack_restore if there is no outgoing
4403 edge, since the call can be eliminated in this case. */
4404 resx = gsi_stmt (gsi);
4405 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4406 {
4407 gsi_next (&gsi);
4408 resx = gsi_stmt (gsi);
4409 }
4410 if (!is_gimple_resx (resx))
4411 return ret;
4412 gcc_assert (gsi_one_before_end_p (gsi));
4413
4414 /* Determine if there are non-EH edges, or resx edges into the handler. */
4415 has_non_eh_pred = false;
4416 FOR_EACH_EDGE (e, ei, bb->preds)
4417 if (!(e->flags & EDGE_EH))
4418 has_non_eh_pred = true;
4419
4420 /* Find the handler that's outer of the empty handler by looking at
4421 where the RESX instruction was vectored. */
4422 new_lp_nr = lookup_stmt_eh_lp (resx);
4423 new_region = get_eh_region_from_lp_number (new_lp_nr);
4424
4425 /* If there's no destination region within the current function,
4426 redirection is trivial via removing the throwing statements from
4427 the EH region, removing the EH edges, and allowing the block
4428 to go unreachable. */
4429 if (new_region == NULL)
4430 {
4431 gcc_assert (e_out == NULL);
4432 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4433 if (e->flags & EDGE_EH)
4434 {
4435 gimple stmt = last_stmt (e->src);
4436 remove_stmt_from_eh_lp (stmt);
4437 remove_edge (e);
4438 }
4439 else
4440 ei_next (&ei);
4441 goto succeed;
4442 }
4443
4444 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4445 to handle the abort and allow the blocks to go unreachable. */
4446 if (new_region->type == ERT_MUST_NOT_THROW)
4447 {
4448 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4449 if (e->flags & EDGE_EH)
4450 {
4451 gimple stmt = last_stmt (e->src);
4452 remove_stmt_from_eh_lp (stmt);
4453 add_stmt_to_eh_lp (stmt, new_lp_nr);
4454 remove_edge (e);
4455 }
4456 else
4457 ei_next (&ei);
4458 goto succeed;
4459 }
4460
4461 /* Try to redirect the EH edges and merge the PHIs into the destination
4462 landing pad block. If the merge succeeds, we'll already have redirected
4463 all the EH edges. The handler itself will go unreachable if there were
4464 no normal edges. */
4465 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4466 goto succeed;
4467
4468 /* Finally, if all input edges are EH edges, then we can (potentially)
4469 reduce the number of transfers from the runtime by moving the landing
4470 pad from the original region to the new region. This is a win when
4471 we remove the last CLEANUP region along a particular exception
4472 propagation path. Since nothing changes except for the region with
4473 which the landing pad is associated, the PHI nodes do not need to be
4474 adjusted at all. */
4475 if (!has_non_eh_pred)
4476 {
4477 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4478 if (dump_file && (dump_flags & TDF_DETAILS))
4479 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4480 lp->index, new_region->index);
4481
4482 /* ??? The CFG didn't change, but we may have rendered the
4483 old EH region unreachable. Trigger a cleanup there. */
4484 return true;
4485 }
4486
4487 return ret;
4488
4489 succeed:
4490 if (dump_file && (dump_flags & TDF_DETAILS))
4491 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4492 remove_eh_landing_pad (lp);
4493 return true;
4494 }
4495
4496 /* Do a post-order traversal of the EH region tree. Examine each
4497 post_landing_pad block and see if we can eliminate it as empty. */
4498
4499 static bool
4500 cleanup_all_empty_eh (void)
4501 {
4502 bool changed = false;
4503 eh_landing_pad lp;
4504 int i;
4505
4506 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4507 if (lp)
4508 changed |= cleanup_empty_eh (lp);
4509
4510 return changed;
4511 }
4512
4513 /* Perform cleanups and lowering of exception handling
4514 1) cleanups regions with handlers doing nothing are optimized out
4515 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4516 3) Info about regions that are containing instructions, and regions
4517 reachable via local EH edges is collected
4518 4) Eh tree is pruned for regions no longer necessary.
4519
4520 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4521 Unify those that have the same failure decl and locus.
4522 */
4523
4524 static unsigned int
4525 execute_cleanup_eh_1 (void)
4526 {
4527 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4528 looking up unreachable landing pads. */
4529 remove_unreachable_handlers ();
4530
4531 /* Watch out for the region tree vanishing due to all unreachable. */
4532 if (cfun->eh->region_tree)
4533 {
4534 bool changed = false;
4535
4536 if (optimize)
4537 changed |= unsplit_all_eh ();
4538 changed |= cleanup_all_empty_eh ();
4539
4540 if (changed)
4541 {
4542 free_dominance_info (CDI_DOMINATORS);
4543 free_dominance_info (CDI_POST_DOMINATORS);
4544
4545 /* We delayed all basic block deletion, as we may have performed
4546 cleanups on EH edges while non-EH edges were still present. */
4547 delete_unreachable_blocks ();
4548
4549 /* We manipulated the landing pads. Remove any region that no
4550 longer has a landing pad. */
4551 remove_unreachable_handlers_no_lp ();
4552
4553 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4554 }
4555 }
4556
4557 return 0;
4558 }
4559
4560 namespace {
4561
4562 const pass_data pass_data_cleanup_eh =
4563 {
4564 GIMPLE_PASS, /* type */
4565 "ehcleanup", /* name */
4566 OPTGROUP_NONE, /* optinfo_flags */
4567 TV_TREE_EH, /* tv_id */
4568 PROP_gimple_lcf, /* properties_required */
4569 0, /* properties_provided */
4570 0, /* properties_destroyed */
4571 0, /* todo_flags_start */
4572 0, /* todo_flags_finish */
4573 };
4574
4575 class pass_cleanup_eh : public gimple_opt_pass
4576 {
4577 public:
4578 pass_cleanup_eh (gcc::context *ctxt)
4579 : gimple_opt_pass (pass_data_cleanup_eh, ctxt)
4580 {}
4581
4582 /* opt_pass methods: */
4583 opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); }
4584 virtual bool gate (function *fun)
4585 {
4586 return fun->eh != NULL && fun->eh->region_tree != NULL;
4587 }
4588
4589 virtual unsigned int execute (function *);
4590
4591 }; // class pass_cleanup_eh
4592
4593 unsigned int
4594 pass_cleanup_eh::execute (function *fun)
4595 {
4596 int ret = execute_cleanup_eh_1 ();
4597
4598 /* If the function no longer needs an EH personality routine
4599 clear it. This exposes cross-language inlining opportunities
4600 and avoids references to a never defined personality routine. */
4601 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4602 && function_needs_eh_personality (fun) != eh_personality_lang)
4603 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4604
4605 return ret;
4606 }
4607
4608 } // anon namespace
4609
4610 gimple_opt_pass *
4611 make_pass_cleanup_eh (gcc::context *ctxt)
4612 {
4613 return new pass_cleanup_eh (ctxt);
4614 }
4615 \f
4616 /* Verify that BB containing STMT as the last statement, has precisely the
4617 edge that make_eh_edges would create. */
4618
4619 DEBUG_FUNCTION bool
4620 verify_eh_edges (gimple stmt)
4621 {
4622 basic_block bb = gimple_bb (stmt);
4623 eh_landing_pad lp = NULL;
4624 int lp_nr;
4625 edge_iterator ei;
4626 edge e, eh_edge;
4627
4628 lp_nr = lookup_stmt_eh_lp (stmt);
4629 if (lp_nr > 0)
4630 lp = get_eh_landing_pad_from_number (lp_nr);
4631
4632 eh_edge = NULL;
4633 FOR_EACH_EDGE (e, ei, bb->succs)
4634 {
4635 if (e->flags & EDGE_EH)
4636 {
4637 if (eh_edge)
4638 {
4639 error ("BB %i has multiple EH edges", bb->index);
4640 return true;
4641 }
4642 else
4643 eh_edge = e;
4644 }
4645 }
4646
4647 if (lp == NULL)
4648 {
4649 if (eh_edge)
4650 {
4651 error ("BB %i can not throw but has an EH edge", bb->index);
4652 return true;
4653 }
4654 return false;
4655 }
4656
4657 if (!stmt_could_throw_p (stmt))
4658 {
4659 error ("BB %i last statement has incorrectly set lp", bb->index);
4660 return true;
4661 }
4662
4663 if (eh_edge == NULL)
4664 {
4665 error ("BB %i is missing an EH edge", bb->index);
4666 return true;
4667 }
4668
4669 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4670 {
4671 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4672 return true;
4673 }
4674
4675 return false;
4676 }
4677
4678 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4679
4680 DEBUG_FUNCTION bool
4681 verify_eh_dispatch_edge (gimple stmt)
4682 {
4683 eh_region r;
4684 eh_catch c;
4685 basic_block src, dst;
4686 bool want_fallthru = true;
4687 edge_iterator ei;
4688 edge e, fall_edge;
4689
4690 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4691 src = gimple_bb (stmt);
4692
4693 FOR_EACH_EDGE (e, ei, src->succs)
4694 gcc_assert (e->aux == NULL);
4695
4696 switch (r->type)
4697 {
4698 case ERT_TRY:
4699 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4700 {
4701 dst = label_to_block (c->label);
4702 e = find_edge (src, dst);
4703 if (e == NULL)
4704 {
4705 error ("BB %i is missing an edge", src->index);
4706 return true;
4707 }
4708 e->aux = (void *)e;
4709
4710 /* A catch-all handler doesn't have a fallthru. */
4711 if (c->type_list == NULL)
4712 {
4713 want_fallthru = false;
4714 break;
4715 }
4716 }
4717 break;
4718
4719 case ERT_ALLOWED_EXCEPTIONS:
4720 dst = label_to_block (r->u.allowed.label);
4721 e = find_edge (src, dst);
4722 if (e == NULL)
4723 {
4724 error ("BB %i is missing an edge", src->index);
4725 return true;
4726 }
4727 e->aux = (void *)e;
4728 break;
4729
4730 default:
4731 gcc_unreachable ();
4732 }
4733
4734 fall_edge = NULL;
4735 FOR_EACH_EDGE (e, ei, src->succs)
4736 {
4737 if (e->flags & EDGE_FALLTHRU)
4738 {
4739 if (fall_edge != NULL)
4740 {
4741 error ("BB %i too many fallthru edges", src->index);
4742 return true;
4743 }
4744 fall_edge = e;
4745 }
4746 else if (e->aux)
4747 e->aux = NULL;
4748 else
4749 {
4750 error ("BB %i has incorrect edge", src->index);
4751 return true;
4752 }
4753 }
4754 if ((fall_edge != NULL) ^ want_fallthru)
4755 {
4756 error ("BB %i has incorrect fallthru edge", src->index);
4757 return true;
4758 }
4759
4760 return false;
4761 }
This page took 0.252841 seconds and 5 git commands to generate.