]> gcc.gnu.org Git - gcc.git/blob - gcc/tree-cfg.c
alias.c (init_alias_analysis): Use VEC_safe_grow_cleared.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "ggc.h"
37 #include "langhooks.h"
38 #include "diagnostic.h"
39 #include "tree-flow.h"
40 #include "timevar.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "toplev.h"
44 #include "except.h"
45 #include "cfgloop.h"
46 #include "cfglayout.h"
47 #include "hashtab.h"
48 #include "tree-ssa-propagate.h"
49 #include "value-prof.h"
50
51 /* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
53
54 /* Local declarations. */
55
56 /* Initial capacity for the basic block array. */
57 static const int initial_cfg_capacity = 20;
58
59 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
62 hash table to prevent problems with duplication of SWITCH_EXPRs.
63
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
66
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
71
72 struct edge_to_cases_elt
73 {
74 /* The edge itself. Necessary for hashing and equality tests. */
75 edge e;
76
77 /* The case labels associated with this edge. We link these up via
78 their TREE_CHAIN field, then we wipe out the TREE_CHAIN fields
79 when we destroy the hash table. This prevents problems when copying
80 SWITCH_EXPRs. */
81 tree case_labels;
82 };
83
84 static htab_t edge_to_cases;
85
86 /* CFG statistics. */
87 struct cfg_stats_d
88 {
89 long num_merged_labels;
90 };
91
92 static struct cfg_stats_d cfg_stats;
93
94 /* Nonzero if we found a computed goto while building basic blocks. */
95 static bool found_computed_goto;
96
97 /* Basic blocks and flowgraphs. */
98 static basic_block create_bb (void *, void *, basic_block);
99 static void make_blocks (tree);
100 static void factor_computed_gotos (void);
101
102 /* Edges. */
103 static void make_edges (void);
104 static void make_cond_expr_edges (basic_block);
105 static void make_switch_expr_edges (basic_block);
106 static void make_goto_expr_edges (basic_block);
107 static edge tree_redirect_edge_and_branch (edge, basic_block);
108 static edge tree_try_redirect_by_replacing_jump (edge, basic_block);
109 static unsigned int split_critical_edges (void);
110
111 /* Various helpers. */
112 static inline bool stmt_starts_bb_p (tree, tree);
113 static int tree_verify_flow_info (void);
114 static void tree_make_forwarder_block (edge);
115 static void tree_cfg2vcg (FILE *);
116 static inline void change_bb_for_stmt (tree t, basic_block bb);
117
118 /* Flowgraph optimization and cleanup. */
119 static void tree_merge_blocks (basic_block, basic_block);
120 static bool tree_can_merge_blocks_p (basic_block, basic_block);
121 static void remove_bb (basic_block);
122 static edge find_taken_edge_computed_goto (basic_block, tree);
123 static edge find_taken_edge_cond_expr (basic_block, tree);
124 static edge find_taken_edge_switch_expr (basic_block, tree);
125 static tree find_case_label_for_value (tree, tree);
126
127 void
128 init_empty_tree_cfg (void)
129 {
130 /* Initialize the basic block array. */
131 init_flow ();
132 profile_status = PROFILE_ABSENT;
133 n_basic_blocks = NUM_FIXED_BLOCKS;
134 last_basic_block = NUM_FIXED_BLOCKS;
135 basic_block_info = VEC_alloc (basic_block, gc, initial_cfg_capacity);
136 VEC_safe_grow_cleared (basic_block, gc, basic_block_info,
137 initial_cfg_capacity);
138
139 /* Build a mapping of labels to their associated blocks. */
140 label_to_block_map = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
142 initial_cfg_capacity);
143
144 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
145 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
146 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
147 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
148 }
149
150 /*---------------------------------------------------------------------------
151 Create basic blocks
152 ---------------------------------------------------------------------------*/
153
154 /* Entry point to the CFG builder for trees. TP points to the list of
155 statements to be added to the flowgraph. */
156
157 static void
158 build_tree_cfg (tree *tp)
159 {
160 /* Register specific tree functions. */
161 tree_register_cfg_hooks ();
162
163 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
164
165 init_empty_tree_cfg ();
166
167 found_computed_goto = 0;
168 make_blocks (*tp);
169
170 /* Computed gotos are hell to deal with, especially if there are
171 lots of them with a large number of destinations. So we factor
172 them to a common computed goto location before we build the
173 edge list. After we convert back to normal form, we will un-factor
174 the computed gotos since factoring introduces an unwanted jump. */
175 if (found_computed_goto)
176 factor_computed_gotos ();
177
178 /* Make sure there is always at least one block, even if it's empty. */
179 if (n_basic_blocks == NUM_FIXED_BLOCKS)
180 create_empty_bb (ENTRY_BLOCK_PTR);
181
182 /* Adjust the size of the array. */
183 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
184 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
185
186 /* To speed up statement iterator walks, we first purge dead labels. */
187 cleanup_dead_labels ();
188
189 /* Group case nodes to reduce the number of edges.
190 We do this after cleaning up dead labels because otherwise we miss
191 a lot of obvious case merging opportunities. */
192 group_case_labels ();
193
194 /* Create the edges of the flowgraph. */
195 make_edges ();
196
197 /* Debugging dumps. */
198
199 /* Write the flowgraph to a VCG file. */
200 {
201 int local_dump_flags;
202 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
203 if (vcg_file)
204 {
205 tree_cfg2vcg (vcg_file);
206 dump_end (TDI_vcg, vcg_file);
207 }
208 }
209
210 #ifdef ENABLE_CHECKING
211 verify_stmts ();
212 #endif
213
214 /* Dump a textual representation of the flowgraph. */
215 if (dump_file)
216 dump_tree_cfg (dump_file, dump_flags);
217 }
218
219 static unsigned int
220 execute_build_cfg (void)
221 {
222 build_tree_cfg (&DECL_SAVED_TREE (current_function_decl));
223 return 0;
224 }
225
226 struct tree_opt_pass pass_build_cfg =
227 {
228 "cfg", /* name */
229 NULL, /* gate */
230 execute_build_cfg, /* execute */
231 NULL, /* sub */
232 NULL, /* next */
233 0, /* static_pass_number */
234 TV_TREE_CFG, /* tv_id */
235 PROP_gimple_leh, /* properties_required */
236 PROP_cfg, /* properties_provided */
237 0, /* properties_destroyed */
238 0, /* todo_flags_start */
239 TODO_verify_stmts, /* todo_flags_finish */
240 0 /* letter */
241 };
242
243 /* Search the CFG for any computed gotos. If found, factor them to a
244 common computed goto site. Also record the location of that site so
245 that we can un-factor the gotos after we have converted back to
246 normal form. */
247
248 static void
249 factor_computed_gotos (void)
250 {
251 basic_block bb;
252 tree factored_label_decl = NULL;
253 tree var = NULL;
254 tree factored_computed_goto_label = NULL;
255 tree factored_computed_goto = NULL;
256
257 /* We know there are one or more computed gotos in this function.
258 Examine the last statement in each basic block to see if the block
259 ends with a computed goto. */
260
261 FOR_EACH_BB (bb)
262 {
263 block_stmt_iterator bsi = bsi_last (bb);
264 tree last;
265
266 if (bsi_end_p (bsi))
267 continue;
268 last = bsi_stmt (bsi);
269
270 /* Ignore the computed goto we create when we factor the original
271 computed gotos. */
272 if (last == factored_computed_goto)
273 continue;
274
275 /* If the last statement is a computed goto, factor it. */
276 if (computed_goto_p (last))
277 {
278 tree assignment;
279
280 /* The first time we find a computed goto we need to create
281 the factored goto block and the variable each original
282 computed goto will use for their goto destination. */
283 if (! factored_computed_goto)
284 {
285 basic_block new_bb = create_empty_bb (bb);
286 block_stmt_iterator new_bsi = bsi_start (new_bb);
287
288 /* Create the destination of the factored goto. Each original
289 computed goto will put its desired destination into this
290 variable and jump to the label we create immediately
291 below. */
292 var = create_tmp_var (ptr_type_node, "gotovar");
293
294 /* Build a label for the new block which will contain the
295 factored computed goto. */
296 factored_label_decl = create_artificial_label ();
297 factored_computed_goto_label
298 = build1 (LABEL_EXPR, void_type_node, factored_label_decl);
299 bsi_insert_after (&new_bsi, factored_computed_goto_label,
300 BSI_NEW_STMT);
301
302 /* Build our new computed goto. */
303 factored_computed_goto = build1 (GOTO_EXPR, void_type_node, var);
304 bsi_insert_after (&new_bsi, factored_computed_goto,
305 BSI_NEW_STMT);
306 }
307
308 /* Copy the original computed goto's destination into VAR. */
309 assignment = build2_gimple (GIMPLE_MODIFY_STMT,
310 var, GOTO_DESTINATION (last));
311 bsi_insert_before (&bsi, assignment, BSI_SAME_STMT);
312
313 /* And re-vector the computed goto to the new destination. */
314 GOTO_DESTINATION (last) = factored_label_decl;
315 }
316 }
317 }
318
319
320 /* Build a flowgraph for the statement_list STMT_LIST. */
321
322 static void
323 make_blocks (tree stmt_list)
324 {
325 tree_stmt_iterator i = tsi_start (stmt_list);
326 tree stmt = NULL;
327 bool start_new_block = true;
328 bool first_stmt_of_list = true;
329 basic_block bb = ENTRY_BLOCK_PTR;
330
331 while (!tsi_end_p (i))
332 {
333 tree prev_stmt;
334
335 prev_stmt = stmt;
336 stmt = tsi_stmt (i);
337
338 /* If the statement starts a new basic block or if we have determined
339 in a previous pass that we need to create a new block for STMT, do
340 so now. */
341 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
342 {
343 if (!first_stmt_of_list)
344 stmt_list = tsi_split_statement_list_before (&i);
345 bb = create_basic_block (stmt_list, NULL, bb);
346 start_new_block = false;
347 }
348
349 /* Now add STMT to BB and create the subgraphs for special statement
350 codes. */
351 set_bb_for_stmt (stmt, bb);
352
353 if (computed_goto_p (stmt))
354 found_computed_goto = true;
355
356 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
357 next iteration. */
358 if (stmt_ends_bb_p (stmt))
359 start_new_block = true;
360
361 tsi_next (&i);
362 first_stmt_of_list = false;
363 }
364 }
365
366
367 /* Create and return a new empty basic block after bb AFTER. */
368
369 static basic_block
370 create_bb (void *h, void *e, basic_block after)
371 {
372 basic_block bb;
373
374 gcc_assert (!e);
375
376 /* Create and initialize a new basic block. Since alloc_block uses
377 ggc_alloc_cleared to allocate a basic block, we do not have to
378 clear the newly allocated basic block here. */
379 bb = alloc_block ();
380
381 bb->index = last_basic_block;
382 bb->flags = BB_NEW;
383 bb->stmt_list = h ? (tree) h : alloc_stmt_list ();
384
385 /* Add the new block to the linked list of blocks. */
386 link_block (bb, after);
387
388 /* Grow the basic block array if needed. */
389 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
390 {
391 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
392 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
393 }
394
395 /* Add the newly created block to the array. */
396 SET_BASIC_BLOCK (last_basic_block, bb);
397
398 n_basic_blocks++;
399 last_basic_block++;
400
401 return bb;
402 }
403
404
405 /*---------------------------------------------------------------------------
406 Edge creation
407 ---------------------------------------------------------------------------*/
408
409 /* Fold COND_EXPR_COND of each COND_EXPR. */
410
411 void
412 fold_cond_expr_cond (void)
413 {
414 basic_block bb;
415
416 FOR_EACH_BB (bb)
417 {
418 tree stmt = last_stmt (bb);
419
420 if (stmt
421 && TREE_CODE (stmt) == COND_EXPR)
422 {
423 tree cond = fold (COND_EXPR_COND (stmt));
424 if (integer_zerop (cond))
425 COND_EXPR_COND (stmt) = boolean_false_node;
426 else if (integer_onep (cond))
427 COND_EXPR_COND (stmt) = boolean_true_node;
428 }
429 }
430 }
431
432 /* Join all the blocks in the flowgraph. */
433
434 static void
435 make_edges (void)
436 {
437 basic_block bb;
438 struct omp_region *cur_region = NULL;
439
440 /* Create an edge from entry to the first block with executable
441 statements in it. */
442 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
443
444 /* Traverse the basic block array placing edges. */
445 FOR_EACH_BB (bb)
446 {
447 tree last = last_stmt (bb);
448 bool fallthru;
449
450 if (last)
451 {
452 enum tree_code code = TREE_CODE (last);
453 switch (code)
454 {
455 case GOTO_EXPR:
456 make_goto_expr_edges (bb);
457 fallthru = false;
458 break;
459 case RETURN_EXPR:
460 make_edge (bb, EXIT_BLOCK_PTR, 0);
461 fallthru = false;
462 break;
463 case COND_EXPR:
464 make_cond_expr_edges (bb);
465 fallthru = false;
466 break;
467 case SWITCH_EXPR:
468 make_switch_expr_edges (bb);
469 fallthru = false;
470 break;
471 case RESX_EXPR:
472 make_eh_edges (last);
473 fallthru = false;
474 break;
475
476 case CALL_EXPR:
477 /* If this function receives a nonlocal goto, then we need to
478 make edges from this call site to all the nonlocal goto
479 handlers. */
480 if (tree_can_make_abnormal_goto (last))
481 make_abnormal_goto_edges (bb, true);
482
483 /* If this statement has reachable exception handlers, then
484 create abnormal edges to them. */
485 make_eh_edges (last);
486
487 /* Some calls are known not to return. */
488 fallthru = !(call_expr_flags (last) & ECF_NORETURN);
489 break;
490
491 case MODIFY_EXPR:
492 gcc_unreachable ();
493
494 case GIMPLE_MODIFY_STMT:
495 if (is_ctrl_altering_stmt (last))
496 {
497 /* A GIMPLE_MODIFY_STMT may have a CALL_EXPR on its RHS and
498 the CALL_EXPR may have an abnormal edge. Search the RHS
499 for this case and create any required edges. */
500 if (tree_can_make_abnormal_goto (last))
501 make_abnormal_goto_edges (bb, true);
502
503 make_eh_edges (last);
504 }
505 fallthru = true;
506 break;
507
508 case OMP_PARALLEL:
509 case OMP_FOR:
510 case OMP_SINGLE:
511 case OMP_MASTER:
512 case OMP_ORDERED:
513 case OMP_CRITICAL:
514 case OMP_SECTION:
515 cur_region = new_omp_region (bb, code, cur_region);
516 fallthru = true;
517 break;
518
519 case OMP_SECTIONS:
520 cur_region = new_omp_region (bb, code, cur_region);
521 fallthru = false;
522 break;
523
524 case OMP_RETURN:
525 /* In the case of an OMP_SECTION, the edge will go somewhere
526 other than the next block. This will be created later. */
527 cur_region->exit = bb;
528 fallthru = cur_region->type != OMP_SECTION;
529 cur_region = cur_region->outer;
530 break;
531
532 case OMP_CONTINUE:
533 cur_region->cont = bb;
534 switch (cur_region->type)
535 {
536 case OMP_FOR:
537 /* ??? Technically there should be a some sort of loopback
538 edge here, but it goes to a block that doesn't exist yet,
539 and without it, updating the ssa form would be a real
540 bear. Fortunately, we don't yet do ssa before expanding
541 these nodes. */
542 break;
543
544 case OMP_SECTIONS:
545 /* Wire up the edges into and out of the nested sections. */
546 /* ??? Similarly wrt loopback. */
547 {
548 struct omp_region *i;
549 for (i = cur_region->inner; i ; i = i->next)
550 {
551 gcc_assert (i->type == OMP_SECTION);
552 make_edge (cur_region->entry, i->entry, 0);
553 make_edge (i->exit, bb, EDGE_FALLTHRU);
554 }
555 }
556 break;
557
558 default:
559 gcc_unreachable ();
560 }
561 fallthru = true;
562 break;
563
564 default:
565 gcc_assert (!stmt_ends_bb_p (last));
566 fallthru = true;
567 }
568 }
569 else
570 fallthru = true;
571
572 if (fallthru)
573 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
574 }
575
576 if (root_omp_region)
577 free_omp_regions ();
578
579 /* Fold COND_EXPR_COND of each COND_EXPR. */
580 fold_cond_expr_cond ();
581
582 /* Clean up the graph and warn for unreachable code. */
583 cleanup_tree_cfg ();
584 }
585
586
587 /* Create the edges for a COND_EXPR starting at block BB.
588 At this point, both clauses must contain only simple gotos. */
589
590 static void
591 make_cond_expr_edges (basic_block bb)
592 {
593 tree entry = last_stmt (bb);
594 basic_block then_bb, else_bb;
595 tree then_label, else_label;
596 edge e;
597
598 gcc_assert (entry);
599 gcc_assert (TREE_CODE (entry) == COND_EXPR);
600
601 /* Entry basic blocks for each component. */
602 then_label = GOTO_DESTINATION (COND_EXPR_THEN (entry));
603 else_label = GOTO_DESTINATION (COND_EXPR_ELSE (entry));
604 then_bb = label_to_block (then_label);
605 else_bb = label_to_block (else_label);
606
607 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
608 #ifdef USE_MAPPED_LOCATION
609 e->goto_locus = EXPR_LOCATION (COND_EXPR_THEN (entry));
610 #else
611 e->goto_locus = EXPR_LOCUS (COND_EXPR_THEN (entry));
612 #endif
613 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
614 if (e)
615 {
616 #ifdef USE_MAPPED_LOCATION
617 e->goto_locus = EXPR_LOCATION (COND_EXPR_ELSE (entry));
618 #else
619 e->goto_locus = EXPR_LOCUS (COND_EXPR_ELSE (entry));
620 #endif
621 }
622 }
623
624 /* Hashing routine for EDGE_TO_CASES. */
625
626 static hashval_t
627 edge_to_cases_hash (const void *p)
628 {
629 edge e = ((struct edge_to_cases_elt *)p)->e;
630
631 /* Hash on the edge itself (which is a pointer). */
632 return htab_hash_pointer (e);
633 }
634
635 /* Equality routine for EDGE_TO_CASES, edges are unique, so testing
636 for equality is just a pointer comparison. */
637
638 static int
639 edge_to_cases_eq (const void *p1, const void *p2)
640 {
641 edge e1 = ((struct edge_to_cases_elt *)p1)->e;
642 edge e2 = ((struct edge_to_cases_elt *)p2)->e;
643
644 return e1 == e2;
645 }
646
647 /* Called for each element in the hash table (P) as we delete the
648 edge to cases hash table.
649
650 Clear all the TREE_CHAINs to prevent problems with copying of
651 SWITCH_EXPRs and structure sharing rules, then free the hash table
652 element. */
653
654 static void
655 edge_to_cases_cleanup (void *p)
656 {
657 struct edge_to_cases_elt *elt = (struct edge_to_cases_elt *) p;
658 tree t, next;
659
660 for (t = elt->case_labels; t; t = next)
661 {
662 next = TREE_CHAIN (t);
663 TREE_CHAIN (t) = NULL;
664 }
665 free (p);
666 }
667
668 /* Start recording information mapping edges to case labels. */
669
670 void
671 start_recording_case_labels (void)
672 {
673 gcc_assert (edge_to_cases == NULL);
674
675 edge_to_cases = htab_create (37,
676 edge_to_cases_hash,
677 edge_to_cases_eq,
678 edge_to_cases_cleanup);
679 }
680
681 /* Return nonzero if we are recording information for case labels. */
682
683 static bool
684 recording_case_labels_p (void)
685 {
686 return (edge_to_cases != NULL);
687 }
688
689 /* Stop recording information mapping edges to case labels and
690 remove any information we have recorded. */
691 void
692 end_recording_case_labels (void)
693 {
694 htab_delete (edge_to_cases);
695 edge_to_cases = NULL;
696 }
697
698 /* Record that CASE_LABEL (a CASE_LABEL_EXPR) references edge E. */
699
700 static void
701 record_switch_edge (edge e, tree case_label)
702 {
703 struct edge_to_cases_elt *elt;
704 void **slot;
705
706 /* Build a hash table element so we can see if E is already
707 in the table. */
708 elt = XNEW (struct edge_to_cases_elt);
709 elt->e = e;
710 elt->case_labels = case_label;
711
712 slot = htab_find_slot (edge_to_cases, elt, INSERT);
713
714 if (*slot == NULL)
715 {
716 /* E was not in the hash table. Install E into the hash table. */
717 *slot = (void *)elt;
718 }
719 else
720 {
721 /* E was already in the hash table. Free ELT as we do not need it
722 anymore. */
723 free (elt);
724
725 /* Get the entry stored in the hash table. */
726 elt = (struct edge_to_cases_elt *) *slot;
727
728 /* Add it to the chain of CASE_LABEL_EXPRs referencing E. */
729 TREE_CHAIN (case_label) = elt->case_labels;
730 elt->case_labels = case_label;
731 }
732 }
733
734 /* If we are inside a {start,end}_recording_cases block, then return
735 a chain of CASE_LABEL_EXPRs from T which reference E.
736
737 Otherwise return NULL. */
738
739 static tree
740 get_cases_for_edge (edge e, tree t)
741 {
742 struct edge_to_cases_elt elt, *elt_p;
743 void **slot;
744 size_t i, n;
745 tree vec;
746
747 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
748 chains available. Return NULL so the caller can detect this case. */
749 if (!recording_case_labels_p ())
750 return NULL;
751
752 restart:
753 elt.e = e;
754 elt.case_labels = NULL;
755 slot = htab_find_slot (edge_to_cases, &elt, NO_INSERT);
756
757 if (slot)
758 {
759 elt_p = (struct edge_to_cases_elt *)*slot;
760 return elt_p->case_labels;
761 }
762
763 /* If we did not find E in the hash table, then this must be the first
764 time we have been queried for information about E & T. Add all the
765 elements from T to the hash table then perform the query again. */
766
767 vec = SWITCH_LABELS (t);
768 n = TREE_VEC_LENGTH (vec);
769 for (i = 0; i < n; i++)
770 {
771 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
772 basic_block label_bb = label_to_block (lab);
773 record_switch_edge (find_edge (e->src, label_bb), TREE_VEC_ELT (vec, i));
774 }
775 goto restart;
776 }
777
778 /* Create the edges for a SWITCH_EXPR starting at block BB.
779 At this point, the switch body has been lowered and the
780 SWITCH_LABELS filled in, so this is in effect a multi-way branch. */
781
782 static void
783 make_switch_expr_edges (basic_block bb)
784 {
785 tree entry = last_stmt (bb);
786 size_t i, n;
787 tree vec;
788
789 vec = SWITCH_LABELS (entry);
790 n = TREE_VEC_LENGTH (vec);
791
792 for (i = 0; i < n; ++i)
793 {
794 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
795 basic_block label_bb = label_to_block (lab);
796 make_edge (bb, label_bb, 0);
797 }
798 }
799
800
801 /* Return the basic block holding label DEST. */
802
803 basic_block
804 label_to_block_fn (struct function *ifun, tree dest)
805 {
806 int uid = LABEL_DECL_UID (dest);
807
808 /* We would die hard when faced by an undefined label. Emit a label to
809 the very first basic block. This will hopefully make even the dataflow
810 and undefined variable warnings quite right. */
811 if ((errorcount || sorrycount) && uid < 0)
812 {
813 block_stmt_iterator bsi =
814 bsi_start (BASIC_BLOCK (NUM_FIXED_BLOCKS));
815 tree stmt;
816
817 stmt = build1 (LABEL_EXPR, void_type_node, dest);
818 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
819 uid = LABEL_DECL_UID (dest);
820 }
821 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
822 <= (unsigned int) uid)
823 return NULL;
824 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
825 }
826
827 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
828 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
829
830 void
831 make_abnormal_goto_edges (basic_block bb, bool for_call)
832 {
833 basic_block target_bb;
834 block_stmt_iterator bsi;
835
836 FOR_EACH_BB (target_bb)
837 for (bsi = bsi_start (target_bb); !bsi_end_p (bsi); bsi_next (&bsi))
838 {
839 tree target = bsi_stmt (bsi);
840
841 if (TREE_CODE (target) != LABEL_EXPR)
842 break;
843
844 target = LABEL_EXPR_LABEL (target);
845
846 /* Make an edge to every label block that has been marked as a
847 potential target for a computed goto or a non-local goto. */
848 if ((FORCED_LABEL (target) && !for_call)
849 || (DECL_NONLOCAL (target) && for_call))
850 {
851 make_edge (bb, target_bb, EDGE_ABNORMAL);
852 break;
853 }
854 }
855 }
856
857 /* Create edges for a goto statement at block BB. */
858
859 static void
860 make_goto_expr_edges (basic_block bb)
861 {
862 block_stmt_iterator last = bsi_last (bb);
863 tree goto_t = bsi_stmt (last);
864
865 /* A simple GOTO creates normal edges. */
866 if (simple_goto_p (goto_t))
867 {
868 tree dest = GOTO_DESTINATION (goto_t);
869 edge e = make_edge (bb, label_to_block (dest), EDGE_FALLTHRU);
870 #ifdef USE_MAPPED_LOCATION
871 e->goto_locus = EXPR_LOCATION (goto_t);
872 #else
873 e->goto_locus = EXPR_LOCUS (goto_t);
874 #endif
875 bsi_remove (&last, true);
876 return;
877 }
878
879 /* A computed GOTO creates abnormal edges. */
880 make_abnormal_goto_edges (bb, false);
881 }
882
883
884 /*---------------------------------------------------------------------------
885 Flowgraph analysis
886 ---------------------------------------------------------------------------*/
887
888 /* Cleanup useless labels in basic blocks. This is something we wish
889 to do early because it allows us to group case labels before creating
890 the edges for the CFG, and it speeds up block statement iterators in
891 all passes later on.
892 We only run this pass once, running it more than once is probably not
893 profitable. */
894
895 /* A map from basic block index to the leading label of that block. */
896 static tree *label_for_bb;
897
898 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
899 static void
900 update_eh_label (struct eh_region *region)
901 {
902 tree old_label = get_eh_region_tree_label (region);
903 if (old_label)
904 {
905 tree new_label;
906 basic_block bb = label_to_block (old_label);
907
908 /* ??? After optimizing, there may be EH regions with labels
909 that have already been removed from the function body, so
910 there is no basic block for them. */
911 if (! bb)
912 return;
913
914 new_label = label_for_bb[bb->index];
915 set_eh_region_tree_label (region, new_label);
916 }
917 }
918
919 /* Given LABEL return the first label in the same basic block. */
920 static tree
921 main_block_label (tree label)
922 {
923 basic_block bb = label_to_block (label);
924
925 /* label_to_block possibly inserted undefined label into the chain. */
926 if (!label_for_bb[bb->index])
927 label_for_bb[bb->index] = label;
928 return label_for_bb[bb->index];
929 }
930
931 /* Cleanup redundant labels. This is a three-step process:
932 1) Find the leading label for each block.
933 2) Redirect all references to labels to the leading labels.
934 3) Cleanup all useless labels. */
935
936 void
937 cleanup_dead_labels (void)
938 {
939 basic_block bb;
940 label_for_bb = XCNEWVEC (tree, last_basic_block);
941
942 /* Find a suitable label for each block. We use the first user-defined
943 label if there is one, or otherwise just the first label we see. */
944 FOR_EACH_BB (bb)
945 {
946 block_stmt_iterator i;
947
948 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
949 {
950 tree label, stmt = bsi_stmt (i);
951
952 if (TREE_CODE (stmt) != LABEL_EXPR)
953 break;
954
955 label = LABEL_EXPR_LABEL (stmt);
956
957 /* If we have not yet seen a label for the current block,
958 remember this one and see if there are more labels. */
959 if (! label_for_bb[bb->index])
960 {
961 label_for_bb[bb->index] = label;
962 continue;
963 }
964
965 /* If we did see a label for the current block already, but it
966 is an artificially created label, replace it if the current
967 label is a user defined label. */
968 if (! DECL_ARTIFICIAL (label)
969 && DECL_ARTIFICIAL (label_for_bb[bb->index]))
970 {
971 label_for_bb[bb->index] = label;
972 break;
973 }
974 }
975 }
976
977 /* Now redirect all jumps/branches to the selected label.
978 First do so for each block ending in a control statement. */
979 FOR_EACH_BB (bb)
980 {
981 tree stmt = last_stmt (bb);
982 if (!stmt)
983 continue;
984
985 switch (TREE_CODE (stmt))
986 {
987 case COND_EXPR:
988 {
989 tree true_branch, false_branch;
990
991 true_branch = COND_EXPR_THEN (stmt);
992 false_branch = COND_EXPR_ELSE (stmt);
993
994 GOTO_DESTINATION (true_branch)
995 = main_block_label (GOTO_DESTINATION (true_branch));
996 GOTO_DESTINATION (false_branch)
997 = main_block_label (GOTO_DESTINATION (false_branch));
998
999 break;
1000 }
1001
1002 case SWITCH_EXPR:
1003 {
1004 size_t i;
1005 tree vec = SWITCH_LABELS (stmt);
1006 size_t n = TREE_VEC_LENGTH (vec);
1007
1008 /* Replace all destination labels. */
1009 for (i = 0; i < n; ++i)
1010 {
1011 tree elt = TREE_VEC_ELT (vec, i);
1012 tree label = main_block_label (CASE_LABEL (elt));
1013 CASE_LABEL (elt) = label;
1014 }
1015 break;
1016 }
1017
1018 /* We have to handle GOTO_EXPRs until they're removed, and we don't
1019 remove them until after we've created the CFG edges. */
1020 case GOTO_EXPR:
1021 if (! computed_goto_p (stmt))
1022 {
1023 GOTO_DESTINATION (stmt)
1024 = main_block_label (GOTO_DESTINATION (stmt));
1025 break;
1026 }
1027
1028 default:
1029 break;
1030 }
1031 }
1032
1033 for_each_eh_region (update_eh_label);
1034
1035 /* Finally, purge dead labels. All user-defined labels and labels that
1036 can be the target of non-local gotos and labels which have their
1037 address taken are preserved. */
1038 FOR_EACH_BB (bb)
1039 {
1040 block_stmt_iterator i;
1041 tree label_for_this_bb = label_for_bb[bb->index];
1042
1043 if (! label_for_this_bb)
1044 continue;
1045
1046 for (i = bsi_start (bb); !bsi_end_p (i); )
1047 {
1048 tree label, stmt = bsi_stmt (i);
1049
1050 if (TREE_CODE (stmt) != LABEL_EXPR)
1051 break;
1052
1053 label = LABEL_EXPR_LABEL (stmt);
1054
1055 if (label == label_for_this_bb
1056 || ! DECL_ARTIFICIAL (label)
1057 || DECL_NONLOCAL (label)
1058 || FORCED_LABEL (label))
1059 bsi_next (&i);
1060 else
1061 bsi_remove (&i, true);
1062 }
1063 }
1064
1065 free (label_for_bb);
1066 }
1067
1068 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1069 and scan the sorted vector of cases. Combine the ones jumping to the
1070 same label.
1071 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1072
1073 void
1074 group_case_labels (void)
1075 {
1076 basic_block bb;
1077
1078 FOR_EACH_BB (bb)
1079 {
1080 tree stmt = last_stmt (bb);
1081 if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
1082 {
1083 tree labels = SWITCH_LABELS (stmt);
1084 int old_size = TREE_VEC_LENGTH (labels);
1085 int i, j, new_size = old_size;
1086 tree default_case = TREE_VEC_ELT (labels, old_size - 1);
1087 tree default_label;
1088
1089 /* The default label is always the last case in a switch
1090 statement after gimplification. */
1091 default_label = CASE_LABEL (default_case);
1092
1093 /* Look for possible opportunities to merge cases.
1094 Ignore the last element of the label vector because it
1095 must be the default case. */
1096 i = 0;
1097 while (i < old_size - 1)
1098 {
1099 tree base_case, base_label, base_high;
1100 base_case = TREE_VEC_ELT (labels, i);
1101
1102 gcc_assert (base_case);
1103 base_label = CASE_LABEL (base_case);
1104
1105 /* Discard cases that have the same destination as the
1106 default case. */
1107 if (base_label == default_label)
1108 {
1109 TREE_VEC_ELT (labels, i) = NULL_TREE;
1110 i++;
1111 new_size--;
1112 continue;
1113 }
1114
1115 base_high = CASE_HIGH (base_case) ?
1116 CASE_HIGH (base_case) : CASE_LOW (base_case);
1117 i++;
1118 /* Try to merge case labels. Break out when we reach the end
1119 of the label vector or when we cannot merge the next case
1120 label with the current one. */
1121 while (i < old_size - 1)
1122 {
1123 tree merge_case = TREE_VEC_ELT (labels, i);
1124 tree merge_label = CASE_LABEL (merge_case);
1125 tree t = int_const_binop (PLUS_EXPR, base_high,
1126 integer_one_node, 1);
1127
1128 /* Merge the cases if they jump to the same place,
1129 and their ranges are consecutive. */
1130 if (merge_label == base_label
1131 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1132 {
1133 base_high = CASE_HIGH (merge_case) ?
1134 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1135 CASE_HIGH (base_case) = base_high;
1136 TREE_VEC_ELT (labels, i) = NULL_TREE;
1137 new_size--;
1138 i++;
1139 }
1140 else
1141 break;
1142 }
1143 }
1144
1145 /* Compress the case labels in the label vector, and adjust the
1146 length of the vector. */
1147 for (i = 0, j = 0; i < new_size; i++)
1148 {
1149 while (! TREE_VEC_ELT (labels, j))
1150 j++;
1151 TREE_VEC_ELT (labels, i) = TREE_VEC_ELT (labels, j++);
1152 }
1153 TREE_VEC_LENGTH (labels) = new_size;
1154 }
1155 }
1156 }
1157
1158 /* Checks whether we can merge block B into block A. */
1159
1160 static bool
1161 tree_can_merge_blocks_p (basic_block a, basic_block b)
1162 {
1163 tree stmt;
1164 block_stmt_iterator bsi;
1165 tree phi;
1166
1167 if (!single_succ_p (a))
1168 return false;
1169
1170 if (single_succ_edge (a)->flags & EDGE_ABNORMAL)
1171 return false;
1172
1173 if (single_succ (a) != b)
1174 return false;
1175
1176 if (!single_pred_p (b))
1177 return false;
1178
1179 if (b == EXIT_BLOCK_PTR)
1180 return false;
1181
1182 /* If A ends by a statement causing exceptions or something similar, we
1183 cannot merge the blocks. */
1184 stmt = last_stmt (a);
1185 if (stmt && stmt_ends_bb_p (stmt))
1186 return false;
1187
1188 /* Do not allow a block with only a non-local label to be merged. */
1189 if (stmt && TREE_CODE (stmt) == LABEL_EXPR
1190 && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
1191 return false;
1192
1193 /* It must be possible to eliminate all phi nodes in B. If ssa form
1194 is not up-to-date, we cannot eliminate any phis; however, if only
1195 some symbols as whole are marked for renaming, this is not a problem,
1196 as phi nodes for those symbols are irrelevant in updating anyway. */
1197 phi = phi_nodes (b);
1198 if (phi)
1199 {
1200 if (name_mappings_registered_p ())
1201 return false;
1202
1203 for (; phi; phi = PHI_CHAIN (phi))
1204 if (!is_gimple_reg (PHI_RESULT (phi))
1205 && !may_propagate_copy (PHI_RESULT (phi), PHI_ARG_DEF (phi, 0)))
1206 return false;
1207 }
1208
1209 /* Do not remove user labels. */
1210 for (bsi = bsi_start (b); !bsi_end_p (bsi); bsi_next (&bsi))
1211 {
1212 stmt = bsi_stmt (bsi);
1213 if (TREE_CODE (stmt) != LABEL_EXPR)
1214 break;
1215 if (!DECL_ARTIFICIAL (LABEL_EXPR_LABEL (stmt)))
1216 return false;
1217 }
1218
1219 /* Protect the loop latches. */
1220 if (current_loops
1221 && b->loop_father->latch == b)
1222 return false;
1223
1224 return true;
1225 }
1226
1227 /* Replaces all uses of NAME by VAL. */
1228
1229 void
1230 replace_uses_by (tree name, tree val)
1231 {
1232 imm_use_iterator imm_iter;
1233 use_operand_p use;
1234 tree stmt;
1235 edge e;
1236
1237 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1238 {
1239 if (TREE_CODE (stmt) != PHI_NODE)
1240 push_stmt_changes (&stmt);
1241
1242 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1243 {
1244 replace_exp (use, val);
1245
1246 if (TREE_CODE (stmt) == PHI_NODE)
1247 {
1248 e = PHI_ARG_EDGE (stmt, PHI_ARG_INDEX_FROM_USE (use));
1249 if (e->flags & EDGE_ABNORMAL)
1250 {
1251 /* This can only occur for virtual operands, since
1252 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1253 would prevent replacement. */
1254 gcc_assert (!is_gimple_reg (name));
1255 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1256 }
1257 }
1258 }
1259
1260 if (TREE_CODE (stmt) != PHI_NODE)
1261 {
1262 tree rhs;
1263
1264 fold_stmt_inplace (stmt);
1265
1266 /* FIXME. This should go in pop_stmt_changes. */
1267 rhs = get_rhs (stmt);
1268 if (TREE_CODE (rhs) == ADDR_EXPR)
1269 recompute_tree_invariant_for_addr_expr (rhs);
1270
1271 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1272
1273 pop_stmt_changes (&stmt);
1274 }
1275 }
1276
1277 gcc_assert (zero_imm_uses_p (name));
1278
1279 /* Also update the trees stored in loop structures. */
1280 if (current_loops)
1281 {
1282 struct loop *loop;
1283 loop_iterator li;
1284
1285 FOR_EACH_LOOP (li, loop, 0)
1286 {
1287 substitute_in_loop_info (loop, name, val);
1288 }
1289 }
1290 }
1291
1292 /* Merge block B into block A. */
1293
1294 static void
1295 tree_merge_blocks (basic_block a, basic_block b)
1296 {
1297 block_stmt_iterator bsi;
1298 tree_stmt_iterator last;
1299 tree phi;
1300
1301 if (dump_file)
1302 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1303
1304 /* Remove all single-valued PHI nodes from block B of the form
1305 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1306 bsi = bsi_last (a);
1307 for (phi = phi_nodes (b); phi; phi = phi_nodes (b))
1308 {
1309 tree def = PHI_RESULT (phi), use = PHI_ARG_DEF (phi, 0);
1310 tree copy;
1311 bool may_replace_uses = may_propagate_copy (def, use);
1312
1313 /* In case we have loops to care about, do not propagate arguments of
1314 loop closed ssa phi nodes. */
1315 if (current_loops
1316 && is_gimple_reg (def)
1317 && TREE_CODE (use) == SSA_NAME
1318 && a->loop_father != b->loop_father)
1319 may_replace_uses = false;
1320
1321 if (!may_replace_uses)
1322 {
1323 gcc_assert (is_gimple_reg (def));
1324
1325 /* Note that just emitting the copies is fine -- there is no problem
1326 with ordering of phi nodes. This is because A is the single
1327 predecessor of B, therefore results of the phi nodes cannot
1328 appear as arguments of the phi nodes. */
1329 copy = build2_gimple (GIMPLE_MODIFY_STMT, def, use);
1330 bsi_insert_after (&bsi, copy, BSI_NEW_STMT);
1331 SSA_NAME_DEF_STMT (def) = copy;
1332 }
1333 else
1334 replace_uses_by (def, use);
1335
1336 remove_phi_node (phi, NULL, false);
1337 }
1338
1339 /* Ensure that B follows A. */
1340 move_block_after (b, a);
1341
1342 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1343 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1344
1345 /* Remove labels from B and set bb_for_stmt to A for other statements. */
1346 for (bsi = bsi_start (b); !bsi_end_p (bsi);)
1347 {
1348 if (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
1349 {
1350 tree label = bsi_stmt (bsi);
1351
1352 bsi_remove (&bsi, false);
1353 /* Now that we can thread computed gotos, we might have
1354 a situation where we have a forced label in block B
1355 However, the label at the start of block B might still be
1356 used in other ways (think about the runtime checking for
1357 Fortran assigned gotos). So we can not just delete the
1358 label. Instead we move the label to the start of block A. */
1359 if (FORCED_LABEL (LABEL_EXPR_LABEL (label)))
1360 {
1361 block_stmt_iterator dest_bsi = bsi_start (a);
1362 bsi_insert_before (&dest_bsi, label, BSI_NEW_STMT);
1363 }
1364 }
1365 else
1366 {
1367 change_bb_for_stmt (bsi_stmt (bsi), a);
1368 bsi_next (&bsi);
1369 }
1370 }
1371
1372 /* Merge the chains. */
1373 last = tsi_last (a->stmt_list);
1374 tsi_link_after (&last, b->stmt_list, TSI_NEW_STMT);
1375 b->stmt_list = NULL;
1376 }
1377
1378
1379 /* Return the one of two successors of BB that is not reachable by a
1380 reached by a complex edge, if there is one. Else, return BB. We use
1381 this in optimizations that use post-dominators for their heuristics,
1382 to catch the cases in C++ where function calls are involved. */
1383
1384 basic_block
1385 single_noncomplex_succ (basic_block bb)
1386 {
1387 edge e0, e1;
1388 if (EDGE_COUNT (bb->succs) != 2)
1389 return bb;
1390
1391 e0 = EDGE_SUCC (bb, 0);
1392 e1 = EDGE_SUCC (bb, 1);
1393 if (e0->flags & EDGE_COMPLEX)
1394 return e1->dest;
1395 if (e1->flags & EDGE_COMPLEX)
1396 return e0->dest;
1397
1398 return bb;
1399 }
1400
1401
1402 /* Walk the function tree removing unnecessary statements.
1403
1404 * Empty statement nodes are removed
1405
1406 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1407
1408 * Unnecessary COND_EXPRs are removed
1409
1410 * Some unnecessary BIND_EXPRs are removed
1411
1412 Clearly more work could be done. The trick is doing the analysis
1413 and removal fast enough to be a net improvement in compile times.
1414
1415 Note that when we remove a control structure such as a COND_EXPR
1416 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1417 to ensure we eliminate all the useless code. */
1418
1419 struct rus_data
1420 {
1421 tree *last_goto;
1422 bool repeat;
1423 bool may_throw;
1424 bool may_branch;
1425 bool has_label;
1426 };
1427
1428 static void remove_useless_stmts_1 (tree *, struct rus_data *);
1429
1430 static bool
1431 remove_useless_stmts_warn_notreached (tree stmt)
1432 {
1433 if (EXPR_HAS_LOCATION (stmt))
1434 {
1435 location_t loc = EXPR_LOCATION (stmt);
1436 if (LOCATION_LINE (loc) > 0)
1437 {
1438 warning (0, "%Hwill never be executed", &loc);
1439 return true;
1440 }
1441 }
1442
1443 switch (TREE_CODE (stmt))
1444 {
1445 case STATEMENT_LIST:
1446 {
1447 tree_stmt_iterator i;
1448 for (i = tsi_start (stmt); !tsi_end_p (i); tsi_next (&i))
1449 if (remove_useless_stmts_warn_notreached (tsi_stmt (i)))
1450 return true;
1451 }
1452 break;
1453
1454 case COND_EXPR:
1455 if (remove_useless_stmts_warn_notreached (COND_EXPR_COND (stmt)))
1456 return true;
1457 if (remove_useless_stmts_warn_notreached (COND_EXPR_THEN (stmt)))
1458 return true;
1459 if (remove_useless_stmts_warn_notreached (COND_EXPR_ELSE (stmt)))
1460 return true;
1461 break;
1462
1463 case TRY_FINALLY_EXPR:
1464 case TRY_CATCH_EXPR:
1465 if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 0)))
1466 return true;
1467 if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 1)))
1468 return true;
1469 break;
1470
1471 case CATCH_EXPR:
1472 return remove_useless_stmts_warn_notreached (CATCH_BODY (stmt));
1473 case EH_FILTER_EXPR:
1474 return remove_useless_stmts_warn_notreached (EH_FILTER_FAILURE (stmt));
1475 case BIND_EXPR:
1476 return remove_useless_stmts_warn_notreached (BIND_EXPR_BLOCK (stmt));
1477
1478 default:
1479 /* Not a live container. */
1480 break;
1481 }
1482
1483 return false;
1484 }
1485
1486 static void
1487 remove_useless_stmts_cond (tree *stmt_p, struct rus_data *data)
1488 {
1489 tree then_clause, else_clause, cond;
1490 bool save_has_label, then_has_label, else_has_label;
1491
1492 save_has_label = data->has_label;
1493 data->has_label = false;
1494 data->last_goto = NULL;
1495
1496 remove_useless_stmts_1 (&COND_EXPR_THEN (*stmt_p), data);
1497
1498 then_has_label = data->has_label;
1499 data->has_label = false;
1500 data->last_goto = NULL;
1501
1502 remove_useless_stmts_1 (&COND_EXPR_ELSE (*stmt_p), data);
1503
1504 else_has_label = data->has_label;
1505 data->has_label = save_has_label | then_has_label | else_has_label;
1506
1507 then_clause = COND_EXPR_THEN (*stmt_p);
1508 else_clause = COND_EXPR_ELSE (*stmt_p);
1509 cond = fold (COND_EXPR_COND (*stmt_p));
1510
1511 /* If neither arm does anything at all, we can remove the whole IF. */
1512 if (!TREE_SIDE_EFFECTS (then_clause) && !TREE_SIDE_EFFECTS (else_clause))
1513 {
1514 *stmt_p = build_empty_stmt ();
1515 data->repeat = true;
1516 }
1517
1518 /* If there are no reachable statements in an arm, then we can
1519 zap the entire conditional. */
1520 else if (integer_nonzerop (cond) && !else_has_label)
1521 {
1522 if (warn_notreached)
1523 remove_useless_stmts_warn_notreached (else_clause);
1524 *stmt_p = then_clause;
1525 data->repeat = true;
1526 }
1527 else if (integer_zerop (cond) && !then_has_label)
1528 {
1529 if (warn_notreached)
1530 remove_useless_stmts_warn_notreached (then_clause);
1531 *stmt_p = else_clause;
1532 data->repeat = true;
1533 }
1534
1535 /* Check a couple of simple things on then/else with single stmts. */
1536 else
1537 {
1538 tree then_stmt = expr_only (then_clause);
1539 tree else_stmt = expr_only (else_clause);
1540
1541 /* Notice branches to a common destination. */
1542 if (then_stmt && else_stmt
1543 && TREE_CODE (then_stmt) == GOTO_EXPR
1544 && TREE_CODE (else_stmt) == GOTO_EXPR
1545 && (GOTO_DESTINATION (then_stmt) == GOTO_DESTINATION (else_stmt)))
1546 {
1547 *stmt_p = then_stmt;
1548 data->repeat = true;
1549 }
1550
1551 /* If the THEN/ELSE clause merely assigns a value to a variable or
1552 parameter which is already known to contain that value, then
1553 remove the useless THEN/ELSE clause. */
1554 else if (TREE_CODE (cond) == VAR_DECL || TREE_CODE (cond) == PARM_DECL)
1555 {
1556 if (else_stmt
1557 && TREE_CODE (else_stmt) == GIMPLE_MODIFY_STMT
1558 && GIMPLE_STMT_OPERAND (else_stmt, 0) == cond
1559 && integer_zerop (GIMPLE_STMT_OPERAND (else_stmt, 1)))
1560 COND_EXPR_ELSE (*stmt_p) = alloc_stmt_list ();
1561 }
1562 else if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
1563 && (TREE_CODE (TREE_OPERAND (cond, 0)) == VAR_DECL
1564 || TREE_CODE (TREE_OPERAND (cond, 0)) == PARM_DECL)
1565 && TREE_CONSTANT (TREE_OPERAND (cond, 1)))
1566 {
1567 tree stmt = (TREE_CODE (cond) == EQ_EXPR
1568 ? then_stmt : else_stmt);
1569 tree *location = (TREE_CODE (cond) == EQ_EXPR
1570 ? &COND_EXPR_THEN (*stmt_p)
1571 : &COND_EXPR_ELSE (*stmt_p));
1572
1573 if (stmt
1574 && TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1575 && GIMPLE_STMT_OPERAND (stmt, 0) == TREE_OPERAND (cond, 0)
1576 && GIMPLE_STMT_OPERAND (stmt, 1) == TREE_OPERAND (cond, 1))
1577 *location = alloc_stmt_list ();
1578 }
1579 }
1580
1581 /* Protect GOTOs in the arm of COND_EXPRs from being removed. They
1582 would be re-introduced during lowering. */
1583 data->last_goto = NULL;
1584 }
1585
1586
1587 static void
1588 remove_useless_stmts_tf (tree *stmt_p, struct rus_data *data)
1589 {
1590 bool save_may_branch, save_may_throw;
1591 bool this_may_branch, this_may_throw;
1592
1593 /* Collect may_branch and may_throw information for the body only. */
1594 save_may_branch = data->may_branch;
1595 save_may_throw = data->may_throw;
1596 data->may_branch = false;
1597 data->may_throw = false;
1598 data->last_goto = NULL;
1599
1600 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
1601
1602 this_may_branch = data->may_branch;
1603 this_may_throw = data->may_throw;
1604 data->may_branch |= save_may_branch;
1605 data->may_throw |= save_may_throw;
1606 data->last_goto = NULL;
1607
1608 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
1609
1610 /* If the body is empty, then we can emit the FINALLY block without
1611 the enclosing TRY_FINALLY_EXPR. */
1612 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 0)))
1613 {
1614 *stmt_p = TREE_OPERAND (*stmt_p, 1);
1615 data->repeat = true;
1616 }
1617
1618 /* If the handler is empty, then we can emit the TRY block without
1619 the enclosing TRY_FINALLY_EXPR. */
1620 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
1621 {
1622 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1623 data->repeat = true;
1624 }
1625
1626 /* If the body neither throws, nor branches, then we can safely
1627 string the TRY and FINALLY blocks together. */
1628 else if (!this_may_branch && !this_may_throw)
1629 {
1630 tree stmt = *stmt_p;
1631 *stmt_p = TREE_OPERAND (stmt, 0);
1632 append_to_statement_list (TREE_OPERAND (stmt, 1), stmt_p);
1633 data->repeat = true;
1634 }
1635 }
1636
1637
1638 static void
1639 remove_useless_stmts_tc (tree *stmt_p, struct rus_data *data)
1640 {
1641 bool save_may_throw, this_may_throw;
1642 tree_stmt_iterator i;
1643 tree stmt;
1644
1645 /* Collect may_throw information for the body only. */
1646 save_may_throw = data->may_throw;
1647 data->may_throw = false;
1648 data->last_goto = NULL;
1649
1650 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
1651
1652 this_may_throw = data->may_throw;
1653 data->may_throw = save_may_throw;
1654
1655 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1656 if (!this_may_throw)
1657 {
1658 if (warn_notreached)
1659 remove_useless_stmts_warn_notreached (TREE_OPERAND (*stmt_p, 1));
1660 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1661 data->repeat = true;
1662 return;
1663 }
1664
1665 /* Process the catch clause specially. We may be able to tell that
1666 no exceptions propagate past this point. */
1667
1668 this_may_throw = true;
1669 i = tsi_start (TREE_OPERAND (*stmt_p, 1));
1670 stmt = tsi_stmt (i);
1671 data->last_goto = NULL;
1672
1673 switch (TREE_CODE (stmt))
1674 {
1675 case CATCH_EXPR:
1676 for (; !tsi_end_p (i); tsi_next (&i))
1677 {
1678 stmt = tsi_stmt (i);
1679 /* If we catch all exceptions, then the body does not
1680 propagate exceptions past this point. */
1681 if (CATCH_TYPES (stmt) == NULL)
1682 this_may_throw = false;
1683 data->last_goto = NULL;
1684 remove_useless_stmts_1 (&CATCH_BODY (stmt), data);
1685 }
1686 break;
1687
1688 case EH_FILTER_EXPR:
1689 if (EH_FILTER_MUST_NOT_THROW (stmt))
1690 this_may_throw = false;
1691 else if (EH_FILTER_TYPES (stmt) == NULL)
1692 this_may_throw = false;
1693 remove_useless_stmts_1 (&EH_FILTER_FAILURE (stmt), data);
1694 break;
1695
1696 default:
1697 /* Otherwise this is a cleanup. */
1698 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
1699
1700 /* If the cleanup is empty, then we can emit the TRY block without
1701 the enclosing TRY_CATCH_EXPR. */
1702 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
1703 {
1704 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1705 data->repeat = true;
1706 }
1707 break;
1708 }
1709 data->may_throw |= this_may_throw;
1710 }
1711
1712
1713 static void
1714 remove_useless_stmts_bind (tree *stmt_p, struct rus_data *data)
1715 {
1716 tree block;
1717
1718 /* First remove anything underneath the BIND_EXPR. */
1719 remove_useless_stmts_1 (&BIND_EXPR_BODY (*stmt_p), data);
1720
1721 /* If the BIND_EXPR has no variables, then we can pull everything
1722 up one level and remove the BIND_EXPR, unless this is the toplevel
1723 BIND_EXPR for the current function or an inlined function.
1724
1725 When this situation occurs we will want to apply this
1726 optimization again. */
1727 block = BIND_EXPR_BLOCK (*stmt_p);
1728 if (BIND_EXPR_VARS (*stmt_p) == NULL_TREE
1729 && *stmt_p != DECL_SAVED_TREE (current_function_decl)
1730 && (! block
1731 || ! BLOCK_ABSTRACT_ORIGIN (block)
1732 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
1733 != FUNCTION_DECL)))
1734 {
1735 *stmt_p = BIND_EXPR_BODY (*stmt_p);
1736 data->repeat = true;
1737 }
1738 }
1739
1740
1741 static void
1742 remove_useless_stmts_goto (tree *stmt_p, struct rus_data *data)
1743 {
1744 tree dest = GOTO_DESTINATION (*stmt_p);
1745
1746 data->may_branch = true;
1747 data->last_goto = NULL;
1748
1749 /* Record the last goto expr, so that we can delete it if unnecessary. */
1750 if (TREE_CODE (dest) == LABEL_DECL)
1751 data->last_goto = stmt_p;
1752 }
1753
1754
1755 static void
1756 remove_useless_stmts_label (tree *stmt_p, struct rus_data *data)
1757 {
1758 tree label = LABEL_EXPR_LABEL (*stmt_p);
1759
1760 data->has_label = true;
1761
1762 /* We do want to jump across non-local label receiver code. */
1763 if (DECL_NONLOCAL (label))
1764 data->last_goto = NULL;
1765
1766 else if (data->last_goto && GOTO_DESTINATION (*data->last_goto) == label)
1767 {
1768 *data->last_goto = build_empty_stmt ();
1769 data->repeat = true;
1770 }
1771
1772 /* ??? Add something here to delete unused labels. */
1773 }
1774
1775
1776 /* If the function is "const" or "pure", then clear TREE_SIDE_EFFECTS on its
1777 decl. This allows us to eliminate redundant or useless
1778 calls to "const" functions.
1779
1780 Gimplifier already does the same operation, but we may notice functions
1781 being const and pure once their calls has been gimplified, so we need
1782 to update the flag. */
1783
1784 static void
1785 update_call_expr_flags (tree call)
1786 {
1787 tree decl = get_callee_fndecl (call);
1788 if (!decl)
1789 return;
1790 if (call_expr_flags (call) & (ECF_CONST | ECF_PURE))
1791 TREE_SIDE_EFFECTS (call) = 0;
1792 if (TREE_NOTHROW (decl))
1793 TREE_NOTHROW (call) = 1;
1794 }
1795
1796
1797 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1798
1799 void
1800 notice_special_calls (tree t)
1801 {
1802 int flags = call_expr_flags (t);
1803
1804 if (flags & ECF_MAY_BE_ALLOCA)
1805 current_function_calls_alloca = true;
1806 if (flags & ECF_RETURNS_TWICE)
1807 current_function_calls_setjmp = true;
1808 }
1809
1810
1811 /* Clear flags set by notice_special_calls. Used by dead code removal
1812 to update the flags. */
1813
1814 void
1815 clear_special_calls (void)
1816 {
1817 current_function_calls_alloca = false;
1818 current_function_calls_setjmp = false;
1819 }
1820
1821
1822 static void
1823 remove_useless_stmts_1 (tree *tp, struct rus_data *data)
1824 {
1825 tree t = *tp, op;
1826
1827 switch (TREE_CODE (t))
1828 {
1829 case COND_EXPR:
1830 remove_useless_stmts_cond (tp, data);
1831 break;
1832
1833 case TRY_FINALLY_EXPR:
1834 remove_useless_stmts_tf (tp, data);
1835 break;
1836
1837 case TRY_CATCH_EXPR:
1838 remove_useless_stmts_tc (tp, data);
1839 break;
1840
1841 case BIND_EXPR:
1842 remove_useless_stmts_bind (tp, data);
1843 break;
1844
1845 case GOTO_EXPR:
1846 remove_useless_stmts_goto (tp, data);
1847 break;
1848
1849 case LABEL_EXPR:
1850 remove_useless_stmts_label (tp, data);
1851 break;
1852
1853 case RETURN_EXPR:
1854 fold_stmt (tp);
1855 data->last_goto = NULL;
1856 data->may_branch = true;
1857 break;
1858
1859 case CALL_EXPR:
1860 fold_stmt (tp);
1861 data->last_goto = NULL;
1862 notice_special_calls (t);
1863 update_call_expr_flags (t);
1864 if (tree_could_throw_p (t))
1865 data->may_throw = true;
1866 break;
1867
1868 case MODIFY_EXPR:
1869 gcc_unreachable ();
1870
1871 case GIMPLE_MODIFY_STMT:
1872 data->last_goto = NULL;
1873 fold_stmt (tp);
1874 op = get_call_expr_in (t);
1875 if (op)
1876 {
1877 update_call_expr_flags (op);
1878 notice_special_calls (op);
1879 }
1880 if (tree_could_throw_p (t))
1881 data->may_throw = true;
1882 break;
1883
1884 case STATEMENT_LIST:
1885 {
1886 tree_stmt_iterator i = tsi_start (t);
1887 while (!tsi_end_p (i))
1888 {
1889 t = tsi_stmt (i);
1890 if (IS_EMPTY_STMT (t))
1891 {
1892 tsi_delink (&i);
1893 continue;
1894 }
1895
1896 remove_useless_stmts_1 (tsi_stmt_ptr (i), data);
1897
1898 t = tsi_stmt (i);
1899 if (TREE_CODE (t) == STATEMENT_LIST)
1900 {
1901 tsi_link_before (&i, t, TSI_SAME_STMT);
1902 tsi_delink (&i);
1903 }
1904 else
1905 tsi_next (&i);
1906 }
1907 }
1908 break;
1909 case ASM_EXPR:
1910 fold_stmt (tp);
1911 data->last_goto = NULL;
1912 break;
1913
1914 default:
1915 data->last_goto = NULL;
1916 break;
1917 }
1918 }
1919
1920 static unsigned int
1921 remove_useless_stmts (void)
1922 {
1923 struct rus_data data;
1924
1925 clear_special_calls ();
1926
1927 do
1928 {
1929 memset (&data, 0, sizeof (data));
1930 remove_useless_stmts_1 (&DECL_SAVED_TREE (current_function_decl), &data);
1931 }
1932 while (data.repeat);
1933 return 0;
1934 }
1935
1936
1937 struct tree_opt_pass pass_remove_useless_stmts =
1938 {
1939 "useless", /* name */
1940 NULL, /* gate */
1941 remove_useless_stmts, /* execute */
1942 NULL, /* sub */
1943 NULL, /* next */
1944 0, /* static_pass_number */
1945 0, /* tv_id */
1946 PROP_gimple_any, /* properties_required */
1947 0, /* properties_provided */
1948 0, /* properties_destroyed */
1949 0, /* todo_flags_start */
1950 TODO_dump_func, /* todo_flags_finish */
1951 0 /* letter */
1952 };
1953
1954 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1955
1956 static void
1957 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1958 {
1959 tree phi;
1960
1961 /* Since this block is no longer reachable, we can just delete all
1962 of its PHI nodes. */
1963 phi = phi_nodes (bb);
1964 while (phi)
1965 {
1966 tree next = PHI_CHAIN (phi);
1967 remove_phi_node (phi, NULL_TREE, true);
1968 phi = next;
1969 }
1970
1971 /* Remove edges to BB's successors. */
1972 while (EDGE_COUNT (bb->succs) > 0)
1973 remove_edge (EDGE_SUCC (bb, 0));
1974 }
1975
1976
1977 /* Remove statements of basic block BB. */
1978
1979 static void
1980 remove_bb (basic_block bb)
1981 {
1982 block_stmt_iterator i;
1983 #ifdef USE_MAPPED_LOCATION
1984 source_location loc = UNKNOWN_LOCATION;
1985 #else
1986 source_locus loc = 0;
1987 #endif
1988
1989 if (dump_file)
1990 {
1991 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1992 if (dump_flags & TDF_DETAILS)
1993 {
1994 dump_bb (bb, dump_file, 0);
1995 fprintf (dump_file, "\n");
1996 }
1997 }
1998
1999 if (current_loops)
2000 {
2001 struct loop *loop = bb->loop_father;
2002
2003 /* If a loop gets removed, clean up the information associated
2004 with it. */
2005 if (loop->latch == bb
2006 || loop->header == bb)
2007 free_numbers_of_iterations_estimates_loop (loop);
2008 }
2009
2010 /* Remove all the instructions in the block. */
2011 for (i = bsi_start (bb); !bsi_end_p (i);)
2012 {
2013 tree stmt = bsi_stmt (i);
2014 if (TREE_CODE (stmt) == LABEL_EXPR
2015 && (FORCED_LABEL (LABEL_EXPR_LABEL (stmt))
2016 || DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt))))
2017 {
2018 basic_block new_bb;
2019 block_stmt_iterator new_bsi;
2020
2021 /* A non-reachable non-local label may still be referenced.
2022 But it no longer needs to carry the extra semantics of
2023 non-locality. */
2024 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
2025 {
2026 DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)) = 0;
2027 FORCED_LABEL (LABEL_EXPR_LABEL (stmt)) = 1;
2028 }
2029
2030 new_bb = bb->prev_bb;
2031 new_bsi = bsi_start (new_bb);
2032 bsi_remove (&i, false);
2033 bsi_insert_before (&new_bsi, stmt, BSI_NEW_STMT);
2034 }
2035 else
2036 {
2037 /* Release SSA definitions if we are in SSA. Note that we
2038 may be called when not in SSA. For example,
2039 final_cleanup calls this function via
2040 cleanup_tree_cfg. */
2041 if (gimple_in_ssa_p (cfun))
2042 release_defs (stmt);
2043
2044 bsi_remove (&i, true);
2045 }
2046
2047 /* Don't warn for removed gotos. Gotos are often removed due to
2048 jump threading, thus resulting in bogus warnings. Not great,
2049 since this way we lose warnings for gotos in the original
2050 program that are indeed unreachable. */
2051 if (TREE_CODE (stmt) != GOTO_EXPR && EXPR_HAS_LOCATION (stmt) && !loc)
2052 {
2053 #ifdef USE_MAPPED_LOCATION
2054 if (EXPR_HAS_LOCATION (stmt))
2055 loc = EXPR_LOCATION (stmt);
2056 #else
2057 source_locus t;
2058 t = EXPR_LOCUS (stmt);
2059 if (t && LOCATION_LINE (*t) > 0)
2060 loc = t;
2061 #endif
2062 }
2063 }
2064
2065 /* If requested, give a warning that the first statement in the
2066 block is unreachable. We walk statements backwards in the
2067 loop above, so the last statement we process is the first statement
2068 in the block. */
2069 #ifdef USE_MAPPED_LOCATION
2070 if (loc > BUILTINS_LOCATION)
2071 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
2072 #else
2073 if (loc)
2074 warning (OPT_Wunreachable_code, "%Hwill never be executed", loc);
2075 #endif
2076
2077 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2078 }
2079
2080
2081 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2082 predicate VAL, return the edge that will be taken out of the block.
2083 If VAL does not match a unique edge, NULL is returned. */
2084
2085 edge
2086 find_taken_edge (basic_block bb, tree val)
2087 {
2088 tree stmt;
2089
2090 stmt = last_stmt (bb);
2091
2092 gcc_assert (stmt);
2093 gcc_assert (is_ctrl_stmt (stmt));
2094 gcc_assert (val);
2095
2096 if (! is_gimple_min_invariant (val))
2097 return NULL;
2098
2099 if (TREE_CODE (stmt) == COND_EXPR)
2100 return find_taken_edge_cond_expr (bb, val);
2101
2102 if (TREE_CODE (stmt) == SWITCH_EXPR)
2103 return find_taken_edge_switch_expr (bb, val);
2104
2105 if (computed_goto_p (stmt))
2106 return find_taken_edge_computed_goto (bb, TREE_OPERAND( val, 0));
2107
2108 gcc_unreachable ();
2109 }
2110
2111 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2112 statement, determine which of the outgoing edges will be taken out of the
2113 block. Return NULL if either edge may be taken. */
2114
2115 static edge
2116 find_taken_edge_computed_goto (basic_block bb, tree val)
2117 {
2118 basic_block dest;
2119 edge e = NULL;
2120
2121 dest = label_to_block (val);
2122 if (dest)
2123 {
2124 e = find_edge (bb, dest);
2125 gcc_assert (e != NULL);
2126 }
2127
2128 return e;
2129 }
2130
2131 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2132 statement, determine which of the two edges will be taken out of the
2133 block. Return NULL if either edge may be taken. */
2134
2135 static edge
2136 find_taken_edge_cond_expr (basic_block bb, tree val)
2137 {
2138 edge true_edge, false_edge;
2139
2140 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2141
2142 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2143 return (integer_zerop (val) ? false_edge : true_edge);
2144 }
2145
2146 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2147 statement, determine which edge will be taken out of the block. Return
2148 NULL if any edge may be taken. */
2149
2150 static edge
2151 find_taken_edge_switch_expr (basic_block bb, tree val)
2152 {
2153 tree switch_expr, taken_case;
2154 basic_block dest_bb;
2155 edge e;
2156
2157 switch_expr = last_stmt (bb);
2158 taken_case = find_case_label_for_value (switch_expr, val);
2159 dest_bb = label_to_block (CASE_LABEL (taken_case));
2160
2161 e = find_edge (bb, dest_bb);
2162 gcc_assert (e);
2163 return e;
2164 }
2165
2166
2167 /* Return the CASE_LABEL_EXPR that SWITCH_EXPR will take for VAL.
2168 We can make optimal use here of the fact that the case labels are
2169 sorted: We can do a binary search for a case matching VAL. */
2170
2171 static tree
2172 find_case_label_for_value (tree switch_expr, tree val)
2173 {
2174 tree vec = SWITCH_LABELS (switch_expr);
2175 size_t low, high, n = TREE_VEC_LENGTH (vec);
2176 tree default_case = TREE_VEC_ELT (vec, n - 1);
2177
2178 for (low = -1, high = n - 1; high - low > 1; )
2179 {
2180 size_t i = (high + low) / 2;
2181 tree t = TREE_VEC_ELT (vec, i);
2182 int cmp;
2183
2184 /* Cache the result of comparing CASE_LOW and val. */
2185 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2186
2187 if (cmp > 0)
2188 high = i;
2189 else
2190 low = i;
2191
2192 if (CASE_HIGH (t) == NULL)
2193 {
2194 /* A singe-valued case label. */
2195 if (cmp == 0)
2196 return t;
2197 }
2198 else
2199 {
2200 /* A case range. We can only handle integer ranges. */
2201 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2202 return t;
2203 }
2204 }
2205
2206 return default_case;
2207 }
2208
2209
2210
2211
2212 /*---------------------------------------------------------------------------
2213 Debugging functions
2214 ---------------------------------------------------------------------------*/
2215
2216 /* Dump tree-specific information of block BB to file OUTF. */
2217
2218 void
2219 tree_dump_bb (basic_block bb, FILE *outf, int indent)
2220 {
2221 dump_generic_bb (outf, bb, indent, TDF_VOPS|TDF_MEMSYMS);
2222 }
2223
2224
2225 /* Dump a basic block on stderr. */
2226
2227 void
2228 debug_tree_bb (basic_block bb)
2229 {
2230 dump_bb (bb, stderr, 0);
2231 }
2232
2233
2234 /* Dump basic block with index N on stderr. */
2235
2236 basic_block
2237 debug_tree_bb_n (int n)
2238 {
2239 debug_tree_bb (BASIC_BLOCK (n));
2240 return BASIC_BLOCK (n);
2241 }
2242
2243
2244 /* Dump the CFG on stderr.
2245
2246 FLAGS are the same used by the tree dumping functions
2247 (see TDF_* in tree-pass.h). */
2248
2249 void
2250 debug_tree_cfg (int flags)
2251 {
2252 dump_tree_cfg (stderr, flags);
2253 }
2254
2255
2256 /* Dump the program showing basic block boundaries on the given FILE.
2257
2258 FLAGS are the same used by the tree dumping functions (see TDF_* in
2259 tree.h). */
2260
2261 void
2262 dump_tree_cfg (FILE *file, int flags)
2263 {
2264 if (flags & TDF_DETAILS)
2265 {
2266 const char *funcname
2267 = lang_hooks.decl_printable_name (current_function_decl, 2);
2268
2269 fputc ('\n', file);
2270 fprintf (file, ";; Function %s\n\n", funcname);
2271 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2272 n_basic_blocks, n_edges, last_basic_block);
2273
2274 brief_dump_cfg (file);
2275 fprintf (file, "\n");
2276 }
2277
2278 if (flags & TDF_STATS)
2279 dump_cfg_stats (file);
2280
2281 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2282 }
2283
2284
2285 /* Dump CFG statistics on FILE. */
2286
2287 void
2288 dump_cfg_stats (FILE *file)
2289 {
2290 static long max_num_merged_labels = 0;
2291 unsigned long size, total = 0;
2292 long num_edges;
2293 basic_block bb;
2294 const char * const fmt_str = "%-30s%-13s%12s\n";
2295 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2296 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2297 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2298 const char *funcname
2299 = lang_hooks.decl_printable_name (current_function_decl, 2);
2300
2301
2302 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2303
2304 fprintf (file, "---------------------------------------------------------\n");
2305 fprintf (file, fmt_str, "", " Number of ", "Memory");
2306 fprintf (file, fmt_str, "", " instances ", "used ");
2307 fprintf (file, "---------------------------------------------------------\n");
2308
2309 size = n_basic_blocks * sizeof (struct basic_block_def);
2310 total += size;
2311 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2312 SCALE (size), LABEL (size));
2313
2314 num_edges = 0;
2315 FOR_EACH_BB (bb)
2316 num_edges += EDGE_COUNT (bb->succs);
2317 size = num_edges * sizeof (struct edge_def);
2318 total += size;
2319 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2320
2321 fprintf (file, "---------------------------------------------------------\n");
2322 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2323 LABEL (total));
2324 fprintf (file, "---------------------------------------------------------\n");
2325 fprintf (file, "\n");
2326
2327 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2328 max_num_merged_labels = cfg_stats.num_merged_labels;
2329
2330 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2331 cfg_stats.num_merged_labels, max_num_merged_labels);
2332
2333 fprintf (file, "\n");
2334 }
2335
2336
2337 /* Dump CFG statistics on stderr. Keep extern so that it's always
2338 linked in the final executable. */
2339
2340 void
2341 debug_cfg_stats (void)
2342 {
2343 dump_cfg_stats (stderr);
2344 }
2345
2346
2347 /* Dump the flowgraph to a .vcg FILE. */
2348
2349 static void
2350 tree_cfg2vcg (FILE *file)
2351 {
2352 edge e;
2353 edge_iterator ei;
2354 basic_block bb;
2355 const char *funcname
2356 = lang_hooks.decl_printable_name (current_function_decl, 2);
2357
2358 /* Write the file header. */
2359 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2360 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2361 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2362
2363 /* Write blocks and edges. */
2364 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2365 {
2366 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2367 e->dest->index);
2368
2369 if (e->flags & EDGE_FAKE)
2370 fprintf (file, " linestyle: dotted priority: 10");
2371 else
2372 fprintf (file, " linestyle: solid priority: 100");
2373
2374 fprintf (file, " }\n");
2375 }
2376 fputc ('\n', file);
2377
2378 FOR_EACH_BB (bb)
2379 {
2380 enum tree_code head_code, end_code;
2381 const char *head_name, *end_name;
2382 int head_line = 0;
2383 int end_line = 0;
2384 tree first = first_stmt (bb);
2385 tree last = last_stmt (bb);
2386
2387 if (first)
2388 {
2389 head_code = TREE_CODE (first);
2390 head_name = tree_code_name[head_code];
2391 head_line = get_lineno (first);
2392 }
2393 else
2394 head_name = "no-statement";
2395
2396 if (last)
2397 {
2398 end_code = TREE_CODE (last);
2399 end_name = tree_code_name[end_code];
2400 end_line = get_lineno (last);
2401 }
2402 else
2403 end_name = "no-statement";
2404
2405 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2406 bb->index, bb->index, head_name, head_line, end_name,
2407 end_line);
2408
2409 FOR_EACH_EDGE (e, ei, bb->succs)
2410 {
2411 if (e->dest == EXIT_BLOCK_PTR)
2412 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2413 else
2414 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2415
2416 if (e->flags & EDGE_FAKE)
2417 fprintf (file, " priority: 10 linestyle: dotted");
2418 else
2419 fprintf (file, " priority: 100 linestyle: solid");
2420
2421 fprintf (file, " }\n");
2422 }
2423
2424 if (bb->next_bb != EXIT_BLOCK_PTR)
2425 fputc ('\n', file);
2426 }
2427
2428 fputs ("}\n\n", file);
2429 }
2430
2431
2432
2433 /*---------------------------------------------------------------------------
2434 Miscellaneous helpers
2435 ---------------------------------------------------------------------------*/
2436
2437 /* Return true if T represents a stmt that always transfers control. */
2438
2439 bool
2440 is_ctrl_stmt (tree t)
2441 {
2442 return (TREE_CODE (t) == COND_EXPR
2443 || TREE_CODE (t) == SWITCH_EXPR
2444 || TREE_CODE (t) == GOTO_EXPR
2445 || TREE_CODE (t) == RETURN_EXPR
2446 || TREE_CODE (t) == RESX_EXPR);
2447 }
2448
2449
2450 /* Return true if T is a statement that may alter the flow of control
2451 (e.g., a call to a non-returning function). */
2452
2453 bool
2454 is_ctrl_altering_stmt (tree t)
2455 {
2456 tree call;
2457
2458 gcc_assert (t);
2459 call = get_call_expr_in (t);
2460 if (call)
2461 {
2462 /* A non-pure/const CALL_EXPR alters flow control if the current
2463 function has nonlocal labels. */
2464 if (TREE_SIDE_EFFECTS (call) && current_function_has_nonlocal_label)
2465 return true;
2466
2467 /* A CALL_EXPR also alters control flow if it does not return. */
2468 if (call_expr_flags (call) & ECF_NORETURN)
2469 return true;
2470 }
2471
2472 /* OpenMP directives alter control flow. */
2473 if (OMP_DIRECTIVE_P (t))
2474 return true;
2475
2476 /* If a statement can throw, it alters control flow. */
2477 return tree_can_throw_internal (t);
2478 }
2479
2480
2481 /* Return true if T is a computed goto. */
2482
2483 bool
2484 computed_goto_p (tree t)
2485 {
2486 return (TREE_CODE (t) == GOTO_EXPR
2487 && TREE_CODE (GOTO_DESTINATION (t)) != LABEL_DECL);
2488 }
2489
2490
2491 /* Return true if T is a simple local goto. */
2492
2493 bool
2494 simple_goto_p (tree t)
2495 {
2496 return (TREE_CODE (t) == GOTO_EXPR
2497 && TREE_CODE (GOTO_DESTINATION (t)) == LABEL_DECL);
2498 }
2499
2500
2501 /* Return true if T can make an abnormal transfer of control flow.
2502 Transfers of control flow associated with EH are excluded. */
2503
2504 bool
2505 tree_can_make_abnormal_goto (tree t)
2506 {
2507 if (computed_goto_p (t))
2508 return true;
2509 if (TREE_CODE (t) == GIMPLE_MODIFY_STMT)
2510 t = GIMPLE_STMT_OPERAND (t, 1);
2511 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2512 t = TREE_OPERAND (t, 0);
2513 if (TREE_CODE (t) == CALL_EXPR)
2514 return TREE_SIDE_EFFECTS (t) && current_function_has_nonlocal_label;
2515 return false;
2516 }
2517
2518
2519 /* Return true if T should start a new basic block. PREV_T is the
2520 statement preceding T. It is used when T is a label or a case label.
2521 Labels should only start a new basic block if their previous statement
2522 wasn't a label. Otherwise, sequence of labels would generate
2523 unnecessary basic blocks that only contain a single label. */
2524
2525 static inline bool
2526 stmt_starts_bb_p (tree t, tree prev_t)
2527 {
2528 if (t == NULL_TREE)
2529 return false;
2530
2531 /* LABEL_EXPRs start a new basic block only if the preceding
2532 statement wasn't a label of the same type. This prevents the
2533 creation of consecutive blocks that have nothing but a single
2534 label. */
2535 if (TREE_CODE (t) == LABEL_EXPR)
2536 {
2537 /* Nonlocal and computed GOTO targets always start a new block. */
2538 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (t))
2539 || FORCED_LABEL (LABEL_EXPR_LABEL (t)))
2540 return true;
2541
2542 if (prev_t && TREE_CODE (prev_t) == LABEL_EXPR)
2543 {
2544 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (prev_t)))
2545 return true;
2546
2547 cfg_stats.num_merged_labels++;
2548 return false;
2549 }
2550 else
2551 return true;
2552 }
2553
2554 return false;
2555 }
2556
2557
2558 /* Return true if T should end a basic block. */
2559
2560 bool
2561 stmt_ends_bb_p (tree t)
2562 {
2563 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2564 }
2565
2566
2567 /* Add gotos that used to be represented implicitly in the CFG. */
2568
2569 void
2570 disband_implicit_edges (void)
2571 {
2572 basic_block bb;
2573 block_stmt_iterator last;
2574 edge e;
2575 edge_iterator ei;
2576 tree stmt, label;
2577
2578 FOR_EACH_BB (bb)
2579 {
2580 last = bsi_last (bb);
2581 stmt = last_stmt (bb);
2582
2583 if (stmt && TREE_CODE (stmt) == COND_EXPR)
2584 {
2585 /* Remove superfluous gotos from COND_EXPR branches. Moved
2586 from cfg_remove_useless_stmts here since it violates the
2587 invariants for tree--cfg correspondence and thus fits better
2588 here where we do it anyway. */
2589 e = find_edge (bb, bb->next_bb);
2590 if (e)
2591 {
2592 if (e->flags & EDGE_TRUE_VALUE)
2593 COND_EXPR_THEN (stmt) = build_empty_stmt ();
2594 else if (e->flags & EDGE_FALSE_VALUE)
2595 COND_EXPR_ELSE (stmt) = build_empty_stmt ();
2596 else
2597 gcc_unreachable ();
2598 e->flags |= EDGE_FALLTHRU;
2599 }
2600
2601 continue;
2602 }
2603
2604 if (stmt && TREE_CODE (stmt) == RETURN_EXPR)
2605 {
2606 /* Remove the RETURN_EXPR if we may fall though to the exit
2607 instead. */
2608 gcc_assert (single_succ_p (bb));
2609 gcc_assert (single_succ (bb) == EXIT_BLOCK_PTR);
2610
2611 if (bb->next_bb == EXIT_BLOCK_PTR
2612 && !TREE_OPERAND (stmt, 0))
2613 {
2614 bsi_remove (&last, true);
2615 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2616 }
2617 continue;
2618 }
2619
2620 /* There can be no fallthru edge if the last statement is a control
2621 one. */
2622 if (stmt && is_ctrl_stmt (stmt))
2623 continue;
2624
2625 /* Find a fallthru edge and emit the goto if necessary. */
2626 FOR_EACH_EDGE (e, ei, bb->succs)
2627 if (e->flags & EDGE_FALLTHRU)
2628 break;
2629
2630 if (!e || e->dest == bb->next_bb)
2631 continue;
2632
2633 gcc_assert (e->dest != EXIT_BLOCK_PTR);
2634 label = tree_block_label (e->dest);
2635
2636 stmt = build1 (GOTO_EXPR, void_type_node, label);
2637 #ifdef USE_MAPPED_LOCATION
2638 SET_EXPR_LOCATION (stmt, e->goto_locus);
2639 #else
2640 SET_EXPR_LOCUS (stmt, e->goto_locus);
2641 #endif
2642 bsi_insert_after (&last, stmt, BSI_NEW_STMT);
2643 e->flags &= ~EDGE_FALLTHRU;
2644 }
2645 }
2646
2647 /* Remove block annotations and other datastructures. */
2648
2649 void
2650 delete_tree_cfg_annotations (void)
2651 {
2652 label_to_block_map = NULL;
2653 }
2654
2655
2656 /* Return the first statement in basic block BB. */
2657
2658 tree
2659 first_stmt (basic_block bb)
2660 {
2661 block_stmt_iterator i = bsi_start (bb);
2662 return !bsi_end_p (i) ? bsi_stmt (i) : NULL_TREE;
2663 }
2664
2665
2666 /* Return the last statement in basic block BB. */
2667
2668 tree
2669 last_stmt (basic_block bb)
2670 {
2671 block_stmt_iterator b = bsi_last (bb);
2672 return !bsi_end_p (b) ? bsi_stmt (b) : NULL_TREE;
2673 }
2674
2675
2676 /* Return the last statement of an otherwise empty block. Return NULL
2677 if the block is totally empty, or if it contains more than one
2678 statement. */
2679
2680 tree
2681 last_and_only_stmt (basic_block bb)
2682 {
2683 block_stmt_iterator i = bsi_last (bb);
2684 tree last, prev;
2685
2686 if (bsi_end_p (i))
2687 return NULL_TREE;
2688
2689 last = bsi_stmt (i);
2690 bsi_prev (&i);
2691 if (bsi_end_p (i))
2692 return last;
2693
2694 /* Empty statements should no longer appear in the instruction stream.
2695 Everything that might have appeared before should be deleted by
2696 remove_useless_stmts, and the optimizers should just bsi_remove
2697 instead of smashing with build_empty_stmt.
2698
2699 Thus the only thing that should appear here in a block containing
2700 one executable statement is a label. */
2701 prev = bsi_stmt (i);
2702 if (TREE_CODE (prev) == LABEL_EXPR)
2703 return last;
2704 else
2705 return NULL_TREE;
2706 }
2707
2708
2709 /* Mark BB as the basic block holding statement T. */
2710
2711 void
2712 set_bb_for_stmt (tree t, basic_block bb)
2713 {
2714 if (TREE_CODE (t) == PHI_NODE)
2715 PHI_BB (t) = bb;
2716 else if (TREE_CODE (t) == STATEMENT_LIST)
2717 {
2718 tree_stmt_iterator i;
2719 for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
2720 set_bb_for_stmt (tsi_stmt (i), bb);
2721 }
2722 else
2723 {
2724 stmt_ann_t ann = get_stmt_ann (t);
2725 ann->bb = bb;
2726
2727 /* If the statement is a label, add the label to block-to-labels map
2728 so that we can speed up edge creation for GOTO_EXPRs. */
2729 if (TREE_CODE (t) == LABEL_EXPR)
2730 {
2731 int uid;
2732
2733 t = LABEL_EXPR_LABEL (t);
2734 uid = LABEL_DECL_UID (t);
2735 if (uid == -1)
2736 {
2737 unsigned old_len = VEC_length (basic_block, label_to_block_map);
2738 LABEL_DECL_UID (t) = uid = cfun->last_label_uid++;
2739 if (old_len <= (unsigned) uid)
2740 {
2741 unsigned new_len = 3 * uid / 2;
2742
2743 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
2744 new_len);
2745 }
2746 }
2747 else
2748 /* We're moving an existing label. Make sure that we've
2749 removed it from the old block. */
2750 gcc_assert (!bb
2751 || !VEC_index (basic_block, label_to_block_map, uid));
2752 VEC_replace (basic_block, label_to_block_map, uid, bb);
2753 }
2754 }
2755 }
2756
2757 /* Faster version of set_bb_for_stmt that assume that statement is being moved
2758 from one basic block to another.
2759 For BB splitting we can run into quadratic case, so performance is quite
2760 important and knowing that the tables are big enough, change_bb_for_stmt
2761 can inline as leaf function. */
2762 static inline void
2763 change_bb_for_stmt (tree t, basic_block bb)
2764 {
2765 get_stmt_ann (t)->bb = bb;
2766 if (TREE_CODE (t) == LABEL_EXPR)
2767 VEC_replace (basic_block, label_to_block_map,
2768 LABEL_DECL_UID (LABEL_EXPR_LABEL (t)), bb);
2769 }
2770
2771 /* Finds iterator for STMT. */
2772
2773 extern block_stmt_iterator
2774 bsi_for_stmt (tree stmt)
2775 {
2776 block_stmt_iterator bsi;
2777
2778 for (bsi = bsi_start (bb_for_stmt (stmt)); !bsi_end_p (bsi); bsi_next (&bsi))
2779 if (bsi_stmt (bsi) == stmt)
2780 return bsi;
2781
2782 gcc_unreachable ();
2783 }
2784
2785 /* Mark statement T as modified, and update it. */
2786 static inline void
2787 update_modified_stmts (tree t)
2788 {
2789 if (TREE_CODE (t) == STATEMENT_LIST)
2790 {
2791 tree_stmt_iterator i;
2792 tree stmt;
2793 for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
2794 {
2795 stmt = tsi_stmt (i);
2796 update_stmt_if_modified (stmt);
2797 }
2798 }
2799 else
2800 update_stmt_if_modified (t);
2801 }
2802
2803 /* Insert statement (or statement list) T before the statement
2804 pointed-to by iterator I. M specifies how to update iterator I
2805 after insertion (see enum bsi_iterator_update). */
2806
2807 void
2808 bsi_insert_before (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
2809 {
2810 set_bb_for_stmt (t, i->bb);
2811 update_modified_stmts (t);
2812 tsi_link_before (&i->tsi, t, m);
2813 }
2814
2815
2816 /* Insert statement (or statement list) T after the statement
2817 pointed-to by iterator I. M specifies how to update iterator I
2818 after insertion (see enum bsi_iterator_update). */
2819
2820 void
2821 bsi_insert_after (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
2822 {
2823 set_bb_for_stmt (t, i->bb);
2824 update_modified_stmts (t);
2825 tsi_link_after (&i->tsi, t, m);
2826 }
2827
2828
2829 /* Remove the statement pointed to by iterator I. The iterator is updated
2830 to the next statement.
2831
2832 When REMOVE_EH_INFO is true we remove the statement pointed to by
2833 iterator I from the EH tables. Otherwise we do not modify the EH
2834 tables.
2835
2836 Generally, REMOVE_EH_INFO should be true when the statement is going to
2837 be removed from the IL and not reinserted elsewhere. */
2838
2839 void
2840 bsi_remove (block_stmt_iterator *i, bool remove_eh_info)
2841 {
2842 tree t = bsi_stmt (*i);
2843 set_bb_for_stmt (t, NULL);
2844 delink_stmt_imm_use (t);
2845 tsi_delink (&i->tsi);
2846 mark_stmt_modified (t);
2847 if (remove_eh_info)
2848 {
2849 remove_stmt_from_eh_region (t);
2850 gimple_remove_stmt_histograms (cfun, t);
2851 }
2852 }
2853
2854
2855 /* Move the statement at FROM so it comes right after the statement at TO. */
2856
2857 void
2858 bsi_move_after (block_stmt_iterator *from, block_stmt_iterator *to)
2859 {
2860 tree stmt = bsi_stmt (*from);
2861 bsi_remove (from, false);
2862 bsi_insert_after (to, stmt, BSI_SAME_STMT);
2863 }
2864
2865
2866 /* Move the statement at FROM so it comes right before the statement at TO. */
2867
2868 void
2869 bsi_move_before (block_stmt_iterator *from, block_stmt_iterator *to)
2870 {
2871 tree stmt = bsi_stmt (*from);
2872 bsi_remove (from, false);
2873 bsi_insert_before (to, stmt, BSI_SAME_STMT);
2874 }
2875
2876
2877 /* Move the statement at FROM to the end of basic block BB. */
2878
2879 void
2880 bsi_move_to_bb_end (block_stmt_iterator *from, basic_block bb)
2881 {
2882 block_stmt_iterator last = bsi_last (bb);
2883
2884 /* Have to check bsi_end_p because it could be an empty block. */
2885 if (!bsi_end_p (last) && is_ctrl_stmt (bsi_stmt (last)))
2886 bsi_move_before (from, &last);
2887 else
2888 bsi_move_after (from, &last);
2889 }
2890
2891
2892 /* Replace the contents of the statement pointed to by iterator BSI
2893 with STMT. If UPDATE_EH_INFO is true, the exception handling
2894 information of the original statement is moved to the new statement. */
2895
2896 void
2897 bsi_replace (const block_stmt_iterator *bsi, tree stmt, bool update_eh_info)
2898 {
2899 int eh_region;
2900 tree orig_stmt = bsi_stmt (*bsi);
2901
2902 SET_EXPR_LOCUS (stmt, EXPR_LOCUS (orig_stmt));
2903 set_bb_for_stmt (stmt, bsi->bb);
2904
2905 /* Preserve EH region information from the original statement, if
2906 requested by the caller. */
2907 if (update_eh_info)
2908 {
2909 eh_region = lookup_stmt_eh_region (orig_stmt);
2910 if (eh_region >= 0)
2911 {
2912 remove_stmt_from_eh_region (orig_stmt);
2913 add_stmt_to_eh_region (stmt, eh_region);
2914 gimple_duplicate_stmt_histograms (cfun, stmt, cfun, orig_stmt);
2915 gimple_remove_stmt_histograms (cfun, orig_stmt);
2916 }
2917 }
2918
2919 delink_stmt_imm_use (orig_stmt);
2920 *bsi_stmt_ptr (*bsi) = stmt;
2921 mark_stmt_modified (stmt);
2922 update_modified_stmts (stmt);
2923 }
2924
2925
2926 /* Insert the statement pointed-to by BSI into edge E. Every attempt
2927 is made to place the statement in an existing basic block, but
2928 sometimes that isn't possible. When it isn't possible, the edge is
2929 split and the statement is added to the new block.
2930
2931 In all cases, the returned *BSI points to the correct location. The
2932 return value is true if insertion should be done after the location,
2933 or false if it should be done before the location. If new basic block
2934 has to be created, it is stored in *NEW_BB. */
2935
2936 static bool
2937 tree_find_edge_insert_loc (edge e, block_stmt_iterator *bsi,
2938 basic_block *new_bb)
2939 {
2940 basic_block dest, src;
2941 tree tmp;
2942
2943 dest = e->dest;
2944 restart:
2945
2946 /* If the destination has one predecessor which has no PHI nodes,
2947 insert there. Except for the exit block.
2948
2949 The requirement for no PHI nodes could be relaxed. Basically we
2950 would have to examine the PHIs to prove that none of them used
2951 the value set by the statement we want to insert on E. That
2952 hardly seems worth the effort. */
2953 if (single_pred_p (dest)
2954 && ! phi_nodes (dest)
2955 && dest != EXIT_BLOCK_PTR)
2956 {
2957 *bsi = bsi_start (dest);
2958 if (bsi_end_p (*bsi))
2959 return true;
2960
2961 /* Make sure we insert after any leading labels. */
2962 tmp = bsi_stmt (*bsi);
2963 while (TREE_CODE (tmp) == LABEL_EXPR)
2964 {
2965 bsi_next (bsi);
2966 if (bsi_end_p (*bsi))
2967 break;
2968 tmp = bsi_stmt (*bsi);
2969 }
2970
2971 if (bsi_end_p (*bsi))
2972 {
2973 *bsi = bsi_last (dest);
2974 return true;
2975 }
2976 else
2977 return false;
2978 }
2979
2980 /* If the source has one successor, the edge is not abnormal and
2981 the last statement does not end a basic block, insert there.
2982 Except for the entry block. */
2983 src = e->src;
2984 if ((e->flags & EDGE_ABNORMAL) == 0
2985 && single_succ_p (src)
2986 && src != ENTRY_BLOCK_PTR)
2987 {
2988 *bsi = bsi_last (src);
2989 if (bsi_end_p (*bsi))
2990 return true;
2991
2992 tmp = bsi_stmt (*bsi);
2993 if (!stmt_ends_bb_p (tmp))
2994 return true;
2995
2996 /* Insert code just before returning the value. We may need to decompose
2997 the return in the case it contains non-trivial operand. */
2998 if (TREE_CODE (tmp) == RETURN_EXPR)
2999 {
3000 tree op = TREE_OPERAND (tmp, 0);
3001 if (op && !is_gimple_val (op))
3002 {
3003 gcc_assert (TREE_CODE (op) == GIMPLE_MODIFY_STMT);
3004 bsi_insert_before (bsi, op, BSI_NEW_STMT);
3005 TREE_OPERAND (tmp, 0) = GIMPLE_STMT_OPERAND (op, 0);
3006 }
3007 bsi_prev (bsi);
3008 return true;
3009 }
3010 }
3011
3012 /* Otherwise, create a new basic block, and split this edge. */
3013 dest = split_edge (e);
3014 if (new_bb)
3015 *new_bb = dest;
3016 e = single_pred_edge (dest);
3017 goto restart;
3018 }
3019
3020
3021 /* This routine will commit all pending edge insertions, creating any new
3022 basic blocks which are necessary. */
3023
3024 void
3025 bsi_commit_edge_inserts (void)
3026 {
3027 basic_block bb;
3028 edge e;
3029 edge_iterator ei;
3030
3031 bsi_commit_one_edge_insert (single_succ_edge (ENTRY_BLOCK_PTR), NULL);
3032
3033 FOR_EACH_BB (bb)
3034 FOR_EACH_EDGE (e, ei, bb->succs)
3035 bsi_commit_one_edge_insert (e, NULL);
3036 }
3037
3038
3039 /* Commit insertions pending at edge E. If a new block is created, set NEW_BB
3040 to this block, otherwise set it to NULL. */
3041
3042 void
3043 bsi_commit_one_edge_insert (edge e, basic_block *new_bb)
3044 {
3045 if (new_bb)
3046 *new_bb = NULL;
3047 if (PENDING_STMT (e))
3048 {
3049 block_stmt_iterator bsi;
3050 tree stmt = PENDING_STMT (e);
3051
3052 PENDING_STMT (e) = NULL_TREE;
3053
3054 if (tree_find_edge_insert_loc (e, &bsi, new_bb))
3055 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
3056 else
3057 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
3058 }
3059 }
3060
3061
3062 /* Add STMT to the pending list of edge E. No actual insertion is
3063 made until a call to bsi_commit_edge_inserts () is made. */
3064
3065 void
3066 bsi_insert_on_edge (edge e, tree stmt)
3067 {
3068 append_to_statement_list (stmt, &PENDING_STMT (e));
3069 }
3070
3071 /* Similar to bsi_insert_on_edge+bsi_commit_edge_inserts. If a new
3072 block has to be created, it is returned. */
3073
3074 basic_block
3075 bsi_insert_on_edge_immediate (edge e, tree stmt)
3076 {
3077 block_stmt_iterator bsi;
3078 basic_block new_bb = NULL;
3079
3080 gcc_assert (!PENDING_STMT (e));
3081
3082 if (tree_find_edge_insert_loc (e, &bsi, &new_bb))
3083 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
3084 else
3085 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
3086
3087 return new_bb;
3088 }
3089
3090 /*---------------------------------------------------------------------------
3091 Tree specific functions for CFG manipulation
3092 ---------------------------------------------------------------------------*/
3093
3094 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
3095
3096 static void
3097 reinstall_phi_args (edge new_edge, edge old_edge)
3098 {
3099 tree var, phi;
3100
3101 if (!PENDING_STMT (old_edge))
3102 return;
3103
3104 for (var = PENDING_STMT (old_edge), phi = phi_nodes (new_edge->dest);
3105 var && phi;
3106 var = TREE_CHAIN (var), phi = PHI_CHAIN (phi))
3107 {
3108 tree result = TREE_PURPOSE (var);
3109 tree arg = TREE_VALUE (var);
3110
3111 gcc_assert (result == PHI_RESULT (phi));
3112
3113 add_phi_arg (phi, arg, new_edge);
3114 }
3115
3116 PENDING_STMT (old_edge) = NULL;
3117 }
3118
3119 /* Returns the basic block after which the new basic block created
3120 by splitting edge EDGE_IN should be placed. Tries to keep the new block
3121 near its "logical" location. This is of most help to humans looking
3122 at debugging dumps. */
3123
3124 static basic_block
3125 split_edge_bb_loc (edge edge_in)
3126 {
3127 basic_block dest = edge_in->dest;
3128
3129 if (dest->prev_bb && find_edge (dest->prev_bb, dest))
3130 return edge_in->src;
3131 else
3132 return dest->prev_bb;
3133 }
3134
3135 /* Split a (typically critical) edge EDGE_IN. Return the new block.
3136 Abort on abnormal edges. */
3137
3138 static basic_block
3139 tree_split_edge (edge edge_in)
3140 {
3141 basic_block new_bb, after_bb, dest;
3142 edge new_edge, e;
3143
3144 /* Abnormal edges cannot be split. */
3145 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
3146
3147 dest = edge_in->dest;
3148
3149 after_bb = split_edge_bb_loc (edge_in);
3150
3151 new_bb = create_empty_bb (after_bb);
3152 new_bb->frequency = EDGE_FREQUENCY (edge_in);
3153 new_bb->count = edge_in->count;
3154 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
3155 new_edge->probability = REG_BR_PROB_BASE;
3156 new_edge->count = edge_in->count;
3157
3158 e = redirect_edge_and_branch (edge_in, new_bb);
3159 gcc_assert (e);
3160 reinstall_phi_args (new_edge, e);
3161
3162 return new_bb;
3163 }
3164
3165
3166 /* Return true when BB has label LABEL in it. */
3167
3168 static bool
3169 has_label_p (basic_block bb, tree label)
3170 {
3171 block_stmt_iterator bsi;
3172
3173 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3174 {
3175 tree stmt = bsi_stmt (bsi);
3176
3177 if (TREE_CODE (stmt) != LABEL_EXPR)
3178 return false;
3179 if (LABEL_EXPR_LABEL (stmt) == label)
3180 return true;
3181 }
3182 return false;
3183 }
3184
3185
3186 /* Callback for walk_tree, check that all elements with address taken are
3187 properly noticed as such. The DATA is an int* that is 1 if TP was seen
3188 inside a PHI node. */
3189
3190 static tree
3191 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3192 {
3193 tree t = *tp, x;
3194 bool in_phi = (data != NULL);
3195
3196 if (TYPE_P (t))
3197 *walk_subtrees = 0;
3198
3199 /* Check operand N for being valid GIMPLE and give error MSG if not. */
3200 #define CHECK_OP(N, MSG) \
3201 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
3202 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
3203
3204 switch (TREE_CODE (t))
3205 {
3206 case SSA_NAME:
3207 if (SSA_NAME_IN_FREE_LIST (t))
3208 {
3209 error ("SSA name in freelist but still referenced");
3210 return *tp;
3211 }
3212 break;
3213
3214 case ASSERT_EXPR:
3215 x = fold (ASSERT_EXPR_COND (t));
3216 if (x == boolean_false_node)
3217 {
3218 error ("ASSERT_EXPR with an always-false condition");
3219 return *tp;
3220 }
3221 break;
3222
3223 case MODIFY_EXPR:
3224 gcc_unreachable ();
3225
3226 case GIMPLE_MODIFY_STMT:
3227 x = GIMPLE_STMT_OPERAND (t, 0);
3228 if (TREE_CODE (x) == BIT_FIELD_REF
3229 && is_gimple_reg (TREE_OPERAND (x, 0)))
3230 {
3231 error ("GIMPLE register modified with BIT_FIELD_REF");
3232 return t;
3233 }
3234 break;
3235
3236 case ADDR_EXPR:
3237 {
3238 bool old_invariant;
3239 bool old_constant;
3240 bool old_side_effects;
3241 bool new_invariant;
3242 bool new_constant;
3243 bool new_side_effects;
3244
3245 /* ??? tree-ssa-alias.c may have overlooked dead PHI nodes, missing
3246 dead PHIs that take the address of something. But if the PHI
3247 result is dead, the fact that it takes the address of anything
3248 is irrelevant. Because we can not tell from here if a PHI result
3249 is dead, we just skip this check for PHIs altogether. This means
3250 we may be missing "valid" checks, but what can you do?
3251 This was PR19217. */
3252 if (in_phi)
3253 break;
3254
3255 old_invariant = TREE_INVARIANT (t);
3256 old_constant = TREE_CONSTANT (t);
3257 old_side_effects = TREE_SIDE_EFFECTS (t);
3258
3259 recompute_tree_invariant_for_addr_expr (t);
3260 new_invariant = TREE_INVARIANT (t);
3261 new_side_effects = TREE_SIDE_EFFECTS (t);
3262 new_constant = TREE_CONSTANT (t);
3263
3264 if (old_invariant != new_invariant)
3265 {
3266 error ("invariant not recomputed when ADDR_EXPR changed");
3267 return t;
3268 }
3269
3270 if (old_constant != new_constant)
3271 {
3272 error ("constant not recomputed when ADDR_EXPR changed");
3273 return t;
3274 }
3275 if (old_side_effects != new_side_effects)
3276 {
3277 error ("side effects not recomputed when ADDR_EXPR changed");
3278 return t;
3279 }
3280
3281 /* Skip any references (they will be checked when we recurse down the
3282 tree) and ensure that any variable used as a prefix is marked
3283 addressable. */
3284 for (x = TREE_OPERAND (t, 0);
3285 handled_component_p (x);
3286 x = TREE_OPERAND (x, 0))
3287 ;
3288
3289 if (TREE_CODE (x) != VAR_DECL && TREE_CODE (x) != PARM_DECL)
3290 return NULL;
3291 if (!TREE_ADDRESSABLE (x))
3292 {
3293 error ("address taken, but ADDRESSABLE bit not set");
3294 return x;
3295 }
3296 break;
3297 }
3298
3299 case COND_EXPR:
3300 x = COND_EXPR_COND (t);
3301 if (TREE_CODE (TREE_TYPE (x)) != BOOLEAN_TYPE)
3302 {
3303 error ("non-boolean used in condition");
3304 return x;
3305 }
3306 if (!is_gimple_condexpr (x))
3307 {
3308 error ("invalid conditional operand");
3309 return x;
3310 }
3311 break;
3312
3313 case NOP_EXPR:
3314 case CONVERT_EXPR:
3315 case FIX_TRUNC_EXPR:
3316 case FLOAT_EXPR:
3317 case NEGATE_EXPR:
3318 case ABS_EXPR:
3319 case BIT_NOT_EXPR:
3320 case NON_LVALUE_EXPR:
3321 case TRUTH_NOT_EXPR:
3322 CHECK_OP (0, "invalid operand to unary operator");
3323 break;
3324
3325 case REALPART_EXPR:
3326 case IMAGPART_EXPR:
3327 case COMPONENT_REF:
3328 case ARRAY_REF:
3329 case ARRAY_RANGE_REF:
3330 case BIT_FIELD_REF:
3331 case VIEW_CONVERT_EXPR:
3332 /* We have a nest of references. Verify that each of the operands
3333 that determine where to reference is either a constant or a variable,
3334 verify that the base is valid, and then show we've already checked
3335 the subtrees. */
3336 while (handled_component_p (t))
3337 {
3338 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3339 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3340 else if (TREE_CODE (t) == ARRAY_REF
3341 || TREE_CODE (t) == ARRAY_RANGE_REF)
3342 {
3343 CHECK_OP (1, "invalid array index");
3344 if (TREE_OPERAND (t, 2))
3345 CHECK_OP (2, "invalid array lower bound");
3346 if (TREE_OPERAND (t, 3))
3347 CHECK_OP (3, "invalid array stride");
3348 }
3349 else if (TREE_CODE (t) == BIT_FIELD_REF)
3350 {
3351 CHECK_OP (1, "invalid operand to BIT_FIELD_REF");
3352 CHECK_OP (2, "invalid operand to BIT_FIELD_REF");
3353 }
3354
3355 t = TREE_OPERAND (t, 0);
3356 }
3357
3358 if (!CONSTANT_CLASS_P (t) && !is_gimple_lvalue (t))
3359 {
3360 error ("invalid reference prefix");
3361 return t;
3362 }
3363 *walk_subtrees = 0;
3364 break;
3365
3366 case LT_EXPR:
3367 case LE_EXPR:
3368 case GT_EXPR:
3369 case GE_EXPR:
3370 case EQ_EXPR:
3371 case NE_EXPR:
3372 case UNORDERED_EXPR:
3373 case ORDERED_EXPR:
3374 case UNLT_EXPR:
3375 case UNLE_EXPR:
3376 case UNGT_EXPR:
3377 case UNGE_EXPR:
3378 case UNEQ_EXPR:
3379 case LTGT_EXPR:
3380 case PLUS_EXPR:
3381 case MINUS_EXPR:
3382 case MULT_EXPR:
3383 case TRUNC_DIV_EXPR:
3384 case CEIL_DIV_EXPR:
3385 case FLOOR_DIV_EXPR:
3386 case ROUND_DIV_EXPR:
3387 case TRUNC_MOD_EXPR:
3388 case CEIL_MOD_EXPR:
3389 case FLOOR_MOD_EXPR:
3390 case ROUND_MOD_EXPR:
3391 case RDIV_EXPR:
3392 case EXACT_DIV_EXPR:
3393 case MIN_EXPR:
3394 case MAX_EXPR:
3395 case LSHIFT_EXPR:
3396 case RSHIFT_EXPR:
3397 case LROTATE_EXPR:
3398 case RROTATE_EXPR:
3399 case BIT_IOR_EXPR:
3400 case BIT_XOR_EXPR:
3401 case BIT_AND_EXPR:
3402 CHECK_OP (0, "invalid operand to binary operator");
3403 CHECK_OP (1, "invalid operand to binary operator");
3404 break;
3405
3406 case CONSTRUCTOR:
3407 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3408 *walk_subtrees = 0;
3409 break;
3410
3411 default:
3412 break;
3413 }
3414 return NULL;
3415
3416 #undef CHECK_OP
3417 }
3418
3419
3420 /* Verify STMT, return true if STMT is not in GIMPLE form.
3421 TODO: Implement type checking. */
3422
3423 static bool
3424 verify_stmt (tree stmt, bool last_in_block)
3425 {
3426 tree addr;
3427
3428 if (OMP_DIRECTIVE_P (stmt))
3429 {
3430 /* OpenMP directives are validated by the FE and never operated
3431 on by the optimizers. Furthermore, OMP_FOR may contain
3432 non-gimple expressions when the main index variable has had
3433 its address taken. This does not affect the loop itself
3434 because the header of an OMP_FOR is merely used to determine
3435 how to setup the parallel iteration. */
3436 return false;
3437 }
3438
3439 if (!is_gimple_stmt (stmt))
3440 {
3441 error ("is not a valid GIMPLE statement");
3442 goto fail;
3443 }
3444
3445 addr = walk_tree (&stmt, verify_expr, NULL, NULL);
3446 if (addr)
3447 {
3448 debug_generic_stmt (addr);
3449 return true;
3450 }
3451
3452 /* If the statement is marked as part of an EH region, then it is
3453 expected that the statement could throw. Verify that when we
3454 have optimizations that simplify statements such that we prove
3455 that they cannot throw, that we update other data structures
3456 to match. */
3457 if (lookup_stmt_eh_region (stmt) >= 0)
3458 {
3459 if (!tree_could_throw_p (stmt))
3460 {
3461 error ("statement marked for throw, but doesn%'t");
3462 goto fail;
3463 }
3464 if (!last_in_block && tree_can_throw_internal (stmt))
3465 {
3466 error ("statement marked for throw in middle of block");
3467 goto fail;
3468 }
3469 }
3470
3471 return false;
3472
3473 fail:
3474 debug_generic_stmt (stmt);
3475 return true;
3476 }
3477
3478
3479 /* Return true when the T can be shared. */
3480
3481 static bool
3482 tree_node_can_be_shared (tree t)
3483 {
3484 if (IS_TYPE_OR_DECL_P (t)
3485 || is_gimple_min_invariant (t)
3486 || TREE_CODE (t) == SSA_NAME
3487 || t == error_mark_node
3488 || TREE_CODE (t) == IDENTIFIER_NODE)
3489 return true;
3490
3491 if (TREE_CODE (t) == CASE_LABEL_EXPR)
3492 return true;
3493
3494 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3495 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
3496 || TREE_CODE (t) == COMPONENT_REF
3497 || TREE_CODE (t) == REALPART_EXPR
3498 || TREE_CODE (t) == IMAGPART_EXPR)
3499 t = TREE_OPERAND (t, 0);
3500
3501 if (DECL_P (t))
3502 return true;
3503
3504 return false;
3505 }
3506
3507
3508 /* Called via walk_trees. Verify tree sharing. */
3509
3510 static tree
3511 verify_node_sharing (tree * tp, int *walk_subtrees, void *data)
3512 {
3513 htab_t htab = (htab_t) data;
3514 void **slot;
3515
3516 if (tree_node_can_be_shared (*tp))
3517 {
3518 *walk_subtrees = false;
3519 return NULL;
3520 }
3521
3522 slot = htab_find_slot (htab, *tp, INSERT);
3523 if (*slot)
3524 return (tree) *slot;
3525 *slot = *tp;
3526
3527 return NULL;
3528 }
3529
3530
3531 /* Helper function for verify_gimple_tuples. */
3532
3533 static tree
3534 verify_gimple_tuples_1 (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
3535 void *data ATTRIBUTE_UNUSED)
3536 {
3537 switch (TREE_CODE (*tp))
3538 {
3539 case MODIFY_EXPR:
3540 error ("unexpected non-tuple");
3541 debug_tree (*tp);
3542 gcc_unreachable ();
3543 return NULL_TREE;
3544
3545 default:
3546 return NULL_TREE;
3547 }
3548 }
3549
3550 /* Verify that there are no trees that should have been converted to
3551 gimple tuples. Return true if T contains a node that should have
3552 been converted to a gimple tuple, but hasn't. */
3553
3554 static bool
3555 verify_gimple_tuples (tree t)
3556 {
3557 return walk_tree (&t, verify_gimple_tuples_1, NULL, NULL) != NULL;
3558 }
3559
3560 /* Verify the GIMPLE statement chain. */
3561
3562 void
3563 verify_stmts (void)
3564 {
3565 basic_block bb;
3566 block_stmt_iterator bsi;
3567 bool err = false;
3568 htab_t htab;
3569 tree addr;
3570
3571 timevar_push (TV_TREE_STMT_VERIFY);
3572 htab = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
3573
3574 FOR_EACH_BB (bb)
3575 {
3576 tree phi;
3577 int i;
3578
3579 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3580 {
3581 int phi_num_args = PHI_NUM_ARGS (phi);
3582
3583 if (bb_for_stmt (phi) != bb)
3584 {
3585 error ("bb_for_stmt (phi) is set to a wrong basic block");
3586 err |= true;
3587 }
3588
3589 for (i = 0; i < phi_num_args; i++)
3590 {
3591 tree t = PHI_ARG_DEF (phi, i);
3592 tree addr;
3593
3594 /* Addressable variables do have SSA_NAMEs but they
3595 are not considered gimple values. */
3596 if (TREE_CODE (t) != SSA_NAME
3597 && TREE_CODE (t) != FUNCTION_DECL
3598 && !is_gimple_val (t))
3599 {
3600 error ("PHI def is not a GIMPLE value");
3601 debug_generic_stmt (phi);
3602 debug_generic_stmt (t);
3603 err |= true;
3604 }
3605
3606 addr = walk_tree (&t, verify_expr, (void *) 1, NULL);
3607 if (addr)
3608 {
3609 debug_generic_stmt (addr);
3610 err |= true;
3611 }
3612
3613 addr = walk_tree (&t, verify_node_sharing, htab, NULL);
3614 if (addr)
3615 {
3616 error ("incorrect sharing of tree nodes");
3617 debug_generic_stmt (phi);
3618 debug_generic_stmt (addr);
3619 err |= true;
3620 }
3621 }
3622 }
3623
3624 for (bsi = bsi_start (bb); !bsi_end_p (bsi); )
3625 {
3626 tree stmt = bsi_stmt (bsi);
3627
3628 err |= verify_gimple_tuples (stmt);
3629
3630 if (bb_for_stmt (stmt) != bb)
3631 {
3632 error ("bb_for_stmt (stmt) is set to a wrong basic block");
3633 err |= true;
3634 }
3635
3636 bsi_next (&bsi);
3637 err |= verify_stmt (stmt, bsi_end_p (bsi));
3638 addr = walk_tree (&stmt, verify_node_sharing, htab, NULL);
3639 if (addr)
3640 {
3641 error ("incorrect sharing of tree nodes");
3642 debug_generic_stmt (stmt);
3643 debug_generic_stmt (addr);
3644 err |= true;
3645 }
3646 }
3647 }
3648
3649 if (err)
3650 internal_error ("verify_stmts failed");
3651
3652 htab_delete (htab);
3653 verify_histograms ();
3654 timevar_pop (TV_TREE_STMT_VERIFY);
3655 }
3656
3657
3658 /* Verifies that the flow information is OK. */
3659
3660 static int
3661 tree_verify_flow_info (void)
3662 {
3663 int err = 0;
3664 basic_block bb;
3665 block_stmt_iterator bsi;
3666 tree stmt;
3667 edge e;
3668 edge_iterator ei;
3669
3670 if (ENTRY_BLOCK_PTR->stmt_list)
3671 {
3672 error ("ENTRY_BLOCK has a statement list associated with it");
3673 err = 1;
3674 }
3675
3676 if (EXIT_BLOCK_PTR->stmt_list)
3677 {
3678 error ("EXIT_BLOCK has a statement list associated with it");
3679 err = 1;
3680 }
3681
3682 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
3683 if (e->flags & EDGE_FALLTHRU)
3684 {
3685 error ("fallthru to exit from bb %d", e->src->index);
3686 err = 1;
3687 }
3688
3689 FOR_EACH_BB (bb)
3690 {
3691 bool found_ctrl_stmt = false;
3692
3693 stmt = NULL_TREE;
3694
3695 /* Skip labels on the start of basic block. */
3696 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3697 {
3698 tree prev_stmt = stmt;
3699
3700 stmt = bsi_stmt (bsi);
3701
3702 if (TREE_CODE (stmt) != LABEL_EXPR)
3703 break;
3704
3705 if (prev_stmt && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
3706 {
3707 error ("nonlocal label ");
3708 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3709 fprintf (stderr, " is not first in a sequence of labels in bb %d",
3710 bb->index);
3711 err = 1;
3712 }
3713
3714 if (label_to_block (LABEL_EXPR_LABEL (stmt)) != bb)
3715 {
3716 error ("label ");
3717 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3718 fprintf (stderr, " to block does not match in bb %d",
3719 bb->index);
3720 err = 1;
3721 }
3722
3723 if (decl_function_context (LABEL_EXPR_LABEL (stmt))
3724 != current_function_decl)
3725 {
3726 error ("label ");
3727 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3728 fprintf (stderr, " has incorrect context in bb %d",
3729 bb->index);
3730 err = 1;
3731 }
3732 }
3733
3734 /* Verify that body of basic block BB is free of control flow. */
3735 for (; !bsi_end_p (bsi); bsi_next (&bsi))
3736 {
3737 tree stmt = bsi_stmt (bsi);
3738
3739 if (found_ctrl_stmt)
3740 {
3741 error ("control flow in the middle of basic block %d",
3742 bb->index);
3743 err = 1;
3744 }
3745
3746 if (stmt_ends_bb_p (stmt))
3747 found_ctrl_stmt = true;
3748
3749 if (TREE_CODE (stmt) == LABEL_EXPR)
3750 {
3751 error ("label ");
3752 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3753 fprintf (stderr, " in the middle of basic block %d", bb->index);
3754 err = 1;
3755 }
3756 }
3757
3758 bsi = bsi_last (bb);
3759 if (bsi_end_p (bsi))
3760 continue;
3761
3762 stmt = bsi_stmt (bsi);
3763
3764 err |= verify_eh_edges (stmt);
3765
3766 if (is_ctrl_stmt (stmt))
3767 {
3768 FOR_EACH_EDGE (e, ei, bb->succs)
3769 if (e->flags & EDGE_FALLTHRU)
3770 {
3771 error ("fallthru edge after a control statement in bb %d",
3772 bb->index);
3773 err = 1;
3774 }
3775 }
3776
3777 if (TREE_CODE (stmt) != COND_EXPR)
3778 {
3779 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
3780 after anything else but if statement. */
3781 FOR_EACH_EDGE (e, ei, bb->succs)
3782 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
3783 {
3784 error ("true/false edge after a non-COND_EXPR in bb %d",
3785 bb->index);
3786 err = 1;
3787 }
3788 }
3789
3790 switch (TREE_CODE (stmt))
3791 {
3792 case COND_EXPR:
3793 {
3794 edge true_edge;
3795 edge false_edge;
3796 if (TREE_CODE (COND_EXPR_THEN (stmt)) != GOTO_EXPR
3797 || TREE_CODE (COND_EXPR_ELSE (stmt)) != GOTO_EXPR)
3798 {
3799 error ("structured COND_EXPR at the end of bb %d", bb->index);
3800 err = 1;
3801 }
3802
3803 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
3804
3805 if (!true_edge || !false_edge
3806 || !(true_edge->flags & EDGE_TRUE_VALUE)
3807 || !(false_edge->flags & EDGE_FALSE_VALUE)
3808 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
3809 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
3810 || EDGE_COUNT (bb->succs) >= 3)
3811 {
3812 error ("wrong outgoing edge flags at end of bb %d",
3813 bb->index);
3814 err = 1;
3815 }
3816
3817 if (!has_label_p (true_edge->dest,
3818 GOTO_DESTINATION (COND_EXPR_THEN (stmt))))
3819 {
3820 error ("%<then%> label does not match edge at end of bb %d",
3821 bb->index);
3822 err = 1;
3823 }
3824
3825 if (!has_label_p (false_edge->dest,
3826 GOTO_DESTINATION (COND_EXPR_ELSE (stmt))))
3827 {
3828 error ("%<else%> label does not match edge at end of bb %d",
3829 bb->index);
3830 err = 1;
3831 }
3832 }
3833 break;
3834
3835 case GOTO_EXPR:
3836 if (simple_goto_p (stmt))
3837 {
3838 error ("explicit goto at end of bb %d", bb->index);
3839 err = 1;
3840 }
3841 else
3842 {
3843 /* FIXME. We should double check that the labels in the
3844 destination blocks have their address taken. */
3845 FOR_EACH_EDGE (e, ei, bb->succs)
3846 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
3847 | EDGE_FALSE_VALUE))
3848 || !(e->flags & EDGE_ABNORMAL))
3849 {
3850 error ("wrong outgoing edge flags at end of bb %d",
3851 bb->index);
3852 err = 1;
3853 }
3854 }
3855 break;
3856
3857 case RETURN_EXPR:
3858 if (!single_succ_p (bb)
3859 || (single_succ_edge (bb)->flags
3860 & (EDGE_FALLTHRU | EDGE_ABNORMAL
3861 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3862 {
3863 error ("wrong outgoing edge flags at end of bb %d", bb->index);
3864 err = 1;
3865 }
3866 if (single_succ (bb) != EXIT_BLOCK_PTR)
3867 {
3868 error ("return edge does not point to exit in bb %d",
3869 bb->index);
3870 err = 1;
3871 }
3872 break;
3873
3874 case SWITCH_EXPR:
3875 {
3876 tree prev;
3877 edge e;
3878 size_t i, n;
3879 tree vec;
3880
3881 vec = SWITCH_LABELS (stmt);
3882 n = TREE_VEC_LENGTH (vec);
3883
3884 /* Mark all the destination basic blocks. */
3885 for (i = 0; i < n; ++i)
3886 {
3887 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
3888 basic_block label_bb = label_to_block (lab);
3889
3890 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
3891 label_bb->aux = (void *)1;
3892 }
3893
3894 /* Verify that the case labels are sorted. */
3895 prev = TREE_VEC_ELT (vec, 0);
3896 for (i = 1; i < n - 1; ++i)
3897 {
3898 tree c = TREE_VEC_ELT (vec, i);
3899 if (! CASE_LOW (c))
3900 {
3901 error ("found default case not at end of case vector");
3902 err = 1;
3903 continue;
3904 }
3905 if (! tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
3906 {
3907 error ("case labels not sorted: ");
3908 print_generic_expr (stderr, prev, 0);
3909 fprintf (stderr," is greater than ");
3910 print_generic_expr (stderr, c, 0);
3911 fprintf (stderr," but comes before it.\n");
3912 err = 1;
3913 }
3914 prev = c;
3915 }
3916 if (CASE_LOW (TREE_VEC_ELT (vec, n - 1)))
3917 {
3918 error ("no default case found at end of case vector");
3919 err = 1;
3920 }
3921
3922 FOR_EACH_EDGE (e, ei, bb->succs)
3923 {
3924 if (!e->dest->aux)
3925 {
3926 error ("extra outgoing edge %d->%d",
3927 bb->index, e->dest->index);
3928 err = 1;
3929 }
3930 e->dest->aux = (void *)2;
3931 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
3932 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3933 {
3934 error ("wrong outgoing edge flags at end of bb %d",
3935 bb->index);
3936 err = 1;
3937 }
3938 }
3939
3940 /* Check that we have all of them. */
3941 for (i = 0; i < n; ++i)
3942 {
3943 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
3944 basic_block label_bb = label_to_block (lab);
3945
3946 if (label_bb->aux != (void *)2)
3947 {
3948 error ("missing edge %i->%i",
3949 bb->index, label_bb->index);
3950 err = 1;
3951 }
3952 }
3953
3954 FOR_EACH_EDGE (e, ei, bb->succs)
3955 e->dest->aux = (void *)0;
3956 }
3957
3958 default: ;
3959 }
3960 }
3961
3962 if (dom_computed[CDI_DOMINATORS] >= DOM_NO_FAST_QUERY)
3963 verify_dominators (CDI_DOMINATORS);
3964
3965 return err;
3966 }
3967
3968
3969 /* Updates phi nodes after creating a forwarder block joined
3970 by edge FALLTHRU. */
3971
3972 static void
3973 tree_make_forwarder_block (edge fallthru)
3974 {
3975 edge e;
3976 edge_iterator ei;
3977 basic_block dummy, bb;
3978 tree phi, new_phi, var;
3979
3980 dummy = fallthru->src;
3981 bb = fallthru->dest;
3982
3983 if (single_pred_p (bb))
3984 return;
3985
3986 /* If we redirected a branch we must create new PHI nodes at the
3987 start of BB. */
3988 for (phi = phi_nodes (dummy); phi; phi = PHI_CHAIN (phi))
3989 {
3990 var = PHI_RESULT (phi);
3991 new_phi = create_phi_node (var, bb);
3992 SSA_NAME_DEF_STMT (var) = new_phi;
3993 SET_PHI_RESULT (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
3994 add_phi_arg (new_phi, PHI_RESULT (phi), fallthru);
3995 }
3996
3997 /* Ensure that the PHI node chain is in the same order. */
3998 set_phi_nodes (bb, phi_reverse (phi_nodes (bb)));
3999
4000 /* Add the arguments we have stored on edges. */
4001 FOR_EACH_EDGE (e, ei, bb->preds)
4002 {
4003 if (e == fallthru)
4004 continue;
4005
4006 flush_pending_stmts (e);
4007 }
4008 }
4009
4010
4011 /* Return a non-special label in the head of basic block BLOCK.
4012 Create one if it doesn't exist. */
4013
4014 tree
4015 tree_block_label (basic_block bb)
4016 {
4017 block_stmt_iterator i, s = bsi_start (bb);
4018 bool first = true;
4019 tree label, stmt;
4020
4021 for (i = s; !bsi_end_p (i); first = false, bsi_next (&i))
4022 {
4023 stmt = bsi_stmt (i);
4024 if (TREE_CODE (stmt) != LABEL_EXPR)
4025 break;
4026 label = LABEL_EXPR_LABEL (stmt);
4027 if (!DECL_NONLOCAL (label))
4028 {
4029 if (!first)
4030 bsi_move_before (&i, &s);
4031 return label;
4032 }
4033 }
4034
4035 label = create_artificial_label ();
4036 stmt = build1 (LABEL_EXPR, void_type_node, label);
4037 bsi_insert_before (&s, stmt, BSI_NEW_STMT);
4038 return label;
4039 }
4040
4041
4042 /* Attempt to perform edge redirection by replacing a possibly complex
4043 jump instruction by a goto or by removing the jump completely.
4044 This can apply only if all edges now point to the same block. The
4045 parameters and return values are equivalent to
4046 redirect_edge_and_branch. */
4047
4048 static edge
4049 tree_try_redirect_by_replacing_jump (edge e, basic_block target)
4050 {
4051 basic_block src = e->src;
4052 block_stmt_iterator b;
4053 tree stmt;
4054
4055 /* We can replace or remove a complex jump only when we have exactly
4056 two edges. */
4057 if (EDGE_COUNT (src->succs) != 2
4058 /* Verify that all targets will be TARGET. Specifically, the
4059 edge that is not E must also go to TARGET. */
4060 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4061 return NULL;
4062
4063 b = bsi_last (src);
4064 if (bsi_end_p (b))
4065 return NULL;
4066 stmt = bsi_stmt (b);
4067
4068 if (TREE_CODE (stmt) == COND_EXPR
4069 || TREE_CODE (stmt) == SWITCH_EXPR)
4070 {
4071 bsi_remove (&b, true);
4072 e = ssa_redirect_edge (e, target);
4073 e->flags = EDGE_FALLTHRU;
4074 return e;
4075 }
4076
4077 return NULL;
4078 }
4079
4080
4081 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4082 edge representing the redirected branch. */
4083
4084 static edge
4085 tree_redirect_edge_and_branch (edge e, basic_block dest)
4086 {
4087 basic_block bb = e->src;
4088 block_stmt_iterator bsi;
4089 edge ret;
4090 tree label, stmt;
4091
4092 if (e->flags & EDGE_ABNORMAL)
4093 return NULL;
4094
4095 if (e->src != ENTRY_BLOCK_PTR
4096 && (ret = tree_try_redirect_by_replacing_jump (e, dest)))
4097 return ret;
4098
4099 if (e->dest == dest)
4100 return NULL;
4101
4102 label = tree_block_label (dest);
4103
4104 bsi = bsi_last (bb);
4105 stmt = bsi_end_p (bsi) ? NULL : bsi_stmt (bsi);
4106
4107 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
4108 {
4109 case COND_EXPR:
4110 stmt = (e->flags & EDGE_TRUE_VALUE
4111 ? COND_EXPR_THEN (stmt)
4112 : COND_EXPR_ELSE (stmt));
4113 GOTO_DESTINATION (stmt) = label;
4114 break;
4115
4116 case GOTO_EXPR:
4117 /* No non-abnormal edges should lead from a non-simple goto, and
4118 simple ones should be represented implicitly. */
4119 gcc_unreachable ();
4120
4121 case SWITCH_EXPR:
4122 {
4123 tree cases = get_cases_for_edge (e, stmt);
4124
4125 /* If we have a list of cases associated with E, then use it
4126 as it's a lot faster than walking the entire case vector. */
4127 if (cases)
4128 {
4129 edge e2 = find_edge (e->src, dest);
4130 tree last, first;
4131
4132 first = cases;
4133 while (cases)
4134 {
4135 last = cases;
4136 CASE_LABEL (cases) = label;
4137 cases = TREE_CHAIN (cases);
4138 }
4139
4140 /* If there was already an edge in the CFG, then we need
4141 to move all the cases associated with E to E2. */
4142 if (e2)
4143 {
4144 tree cases2 = get_cases_for_edge (e2, stmt);
4145
4146 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4147 TREE_CHAIN (cases2) = first;
4148 }
4149 }
4150 else
4151 {
4152 tree vec = SWITCH_LABELS (stmt);
4153 size_t i, n = TREE_VEC_LENGTH (vec);
4154
4155 for (i = 0; i < n; i++)
4156 {
4157 tree elt = TREE_VEC_ELT (vec, i);
4158
4159 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4160 CASE_LABEL (elt) = label;
4161 }
4162 }
4163
4164 break;
4165 }
4166
4167 case RETURN_EXPR:
4168 bsi_remove (&bsi, true);
4169 e->flags |= EDGE_FALLTHRU;
4170 break;
4171
4172 default:
4173 /* Otherwise it must be a fallthru edge, and we don't need to
4174 do anything besides redirecting it. */
4175 gcc_assert (e->flags & EDGE_FALLTHRU);
4176 break;
4177 }
4178
4179 /* Update/insert PHI nodes as necessary. */
4180
4181 /* Now update the edges in the CFG. */
4182 e = ssa_redirect_edge (e, dest);
4183
4184 return e;
4185 }
4186
4187
4188 /* Simple wrapper, as we can always redirect fallthru edges. */
4189
4190 static basic_block
4191 tree_redirect_edge_and_branch_force (edge e, basic_block dest)
4192 {
4193 e = tree_redirect_edge_and_branch (e, dest);
4194 gcc_assert (e);
4195
4196 return NULL;
4197 }
4198
4199
4200 /* Splits basic block BB after statement STMT (but at least after the
4201 labels). If STMT is NULL, BB is split just after the labels. */
4202
4203 static basic_block
4204 tree_split_block (basic_block bb, void *stmt)
4205 {
4206 block_stmt_iterator bsi;
4207 tree_stmt_iterator tsi_tgt;
4208 tree act;
4209 basic_block new_bb;
4210 edge e;
4211 edge_iterator ei;
4212
4213 new_bb = create_empty_bb (bb);
4214
4215 /* Redirect the outgoing edges. */
4216 new_bb->succs = bb->succs;
4217 bb->succs = NULL;
4218 FOR_EACH_EDGE (e, ei, new_bb->succs)
4219 e->src = new_bb;
4220
4221 if (stmt && TREE_CODE ((tree) stmt) == LABEL_EXPR)
4222 stmt = NULL;
4223
4224 /* Move everything from BSI to the new basic block. */
4225 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4226 {
4227 act = bsi_stmt (bsi);
4228 if (TREE_CODE (act) == LABEL_EXPR)
4229 continue;
4230
4231 if (!stmt)
4232 break;
4233
4234 if (stmt == act)
4235 {
4236 bsi_next (&bsi);
4237 break;
4238 }
4239 }
4240
4241 if (bsi_end_p (bsi))
4242 return new_bb;
4243
4244 /* Split the statement list - avoid re-creating new containers as this
4245 brings ugly quadratic memory consumption in the inliner.
4246 (We are still quadratic since we need to update stmt BB pointers,
4247 sadly.) */
4248 new_bb->stmt_list = tsi_split_statement_list_before (&bsi.tsi);
4249 for (tsi_tgt = tsi_start (new_bb->stmt_list);
4250 !tsi_end_p (tsi_tgt); tsi_next (&tsi_tgt))
4251 change_bb_for_stmt (tsi_stmt (tsi_tgt), new_bb);
4252
4253 return new_bb;
4254 }
4255
4256
4257 /* Moves basic block BB after block AFTER. */
4258
4259 static bool
4260 tree_move_block_after (basic_block bb, basic_block after)
4261 {
4262 if (bb->prev_bb == after)
4263 return true;
4264
4265 unlink_block (bb);
4266 link_block (bb, after);
4267
4268 return true;
4269 }
4270
4271
4272 /* Return true if basic_block can be duplicated. */
4273
4274 static bool
4275 tree_can_duplicate_bb_p (basic_block bb ATTRIBUTE_UNUSED)
4276 {
4277 return true;
4278 }
4279
4280
4281 /* Create a duplicate of the basic block BB. NOTE: This does not
4282 preserve SSA form. */
4283
4284 static basic_block
4285 tree_duplicate_bb (basic_block bb)
4286 {
4287 basic_block new_bb;
4288 block_stmt_iterator bsi, bsi_tgt;
4289 tree phi;
4290
4291 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
4292
4293 /* Copy the PHI nodes. We ignore PHI node arguments here because
4294 the incoming edges have not been setup yet. */
4295 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4296 {
4297 tree copy = create_phi_node (PHI_RESULT (phi), new_bb);
4298 create_new_def_for (PHI_RESULT (copy), copy, PHI_RESULT_PTR (copy));
4299 }
4300
4301 /* Keep the chain of PHI nodes in the same order so that they can be
4302 updated by ssa_redirect_edge. */
4303 set_phi_nodes (new_bb, phi_reverse (phi_nodes (new_bb)));
4304
4305 bsi_tgt = bsi_start (new_bb);
4306 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4307 {
4308 def_operand_p def_p;
4309 ssa_op_iter op_iter;
4310 tree stmt, copy;
4311 int region;
4312
4313 stmt = bsi_stmt (bsi);
4314 if (TREE_CODE (stmt) == LABEL_EXPR)
4315 continue;
4316
4317 /* Create a new copy of STMT and duplicate STMT's virtual
4318 operands. */
4319 copy = unshare_expr (stmt);
4320 bsi_insert_after (&bsi_tgt, copy, BSI_NEW_STMT);
4321 copy_virtual_operands (copy, stmt);
4322 region = lookup_stmt_eh_region (stmt);
4323 if (region >= 0)
4324 add_stmt_to_eh_region (copy, region);
4325 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
4326
4327 /* Create new names for all the definitions created by COPY and
4328 add replacement mappings for each new name. */
4329 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
4330 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
4331 }
4332
4333 return new_bb;
4334 }
4335
4336
4337 /* Basic block BB_COPY was created by code duplication. Add phi node
4338 arguments for edges going out of BB_COPY. The blocks that were
4339 duplicated have BB_DUPLICATED set. */
4340
4341 void
4342 add_phi_args_after_copy_bb (basic_block bb_copy)
4343 {
4344 basic_block bb, dest;
4345 edge e, e_copy;
4346 edge_iterator ei;
4347 tree phi, phi_copy, phi_next, def;
4348
4349 bb = get_bb_original (bb_copy);
4350
4351 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
4352 {
4353 if (!phi_nodes (e_copy->dest))
4354 continue;
4355
4356 if (e_copy->dest->flags & BB_DUPLICATED)
4357 dest = get_bb_original (e_copy->dest);
4358 else
4359 dest = e_copy->dest;
4360
4361 e = find_edge (bb, dest);
4362 if (!e)
4363 {
4364 /* During loop unrolling the target of the latch edge is copied.
4365 In this case we are not looking for edge to dest, but to
4366 duplicated block whose original was dest. */
4367 FOR_EACH_EDGE (e, ei, bb->succs)
4368 if ((e->dest->flags & BB_DUPLICATED)
4369 && get_bb_original (e->dest) == dest)
4370 break;
4371
4372 gcc_assert (e != NULL);
4373 }
4374
4375 for (phi = phi_nodes (e->dest), phi_copy = phi_nodes (e_copy->dest);
4376 phi;
4377 phi = phi_next, phi_copy = PHI_CHAIN (phi_copy))
4378 {
4379 phi_next = PHI_CHAIN (phi);
4380 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
4381 add_phi_arg (phi_copy, def, e_copy);
4382 }
4383 }
4384 }
4385
4386 /* Blocks in REGION_COPY array of length N_REGION were created by
4387 duplication of basic blocks. Add phi node arguments for edges
4388 going from these blocks. */
4389
4390 void
4391 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region)
4392 {
4393 unsigned i;
4394
4395 for (i = 0; i < n_region; i++)
4396 region_copy[i]->flags |= BB_DUPLICATED;
4397
4398 for (i = 0; i < n_region; i++)
4399 add_phi_args_after_copy_bb (region_copy[i]);
4400
4401 for (i = 0; i < n_region; i++)
4402 region_copy[i]->flags &= ~BB_DUPLICATED;
4403 }
4404
4405 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
4406 important exit edge EXIT. By important we mean that no SSA name defined
4407 inside region is live over the other exit edges of the region. All entry
4408 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
4409 to the duplicate of the region. SSA form, dominance and loop information
4410 is updated. The new basic blocks are stored to REGION_COPY in the same
4411 order as they had in REGION, provided that REGION_COPY is not NULL.
4412 The function returns false if it is unable to copy the region,
4413 true otherwise. */
4414
4415 bool
4416 tree_duplicate_sese_region (edge entry, edge exit,
4417 basic_block *region, unsigned n_region,
4418 basic_block *region_copy)
4419 {
4420 unsigned i, n_doms;
4421 bool free_region_copy = false, copying_header = false;
4422 struct loop *loop = entry->dest->loop_father;
4423 edge exit_copy;
4424 basic_block *doms;
4425 edge redirected;
4426 int total_freq = 0, entry_freq = 0;
4427 gcov_type total_count = 0, entry_count = 0;
4428
4429 if (!can_copy_bbs_p (region, n_region))
4430 return false;
4431
4432 /* Some sanity checking. Note that we do not check for all possible
4433 missuses of the functions. I.e. if you ask to copy something weird,
4434 it will work, but the state of structures probably will not be
4435 correct. */
4436 for (i = 0; i < n_region; i++)
4437 {
4438 /* We do not handle subloops, i.e. all the blocks must belong to the
4439 same loop. */
4440 if (region[i]->loop_father != loop)
4441 return false;
4442
4443 if (region[i] != entry->dest
4444 && region[i] == loop->header)
4445 return false;
4446 }
4447
4448 loop->copy = loop;
4449
4450 /* In case the function is used for loop header copying (which is the primary
4451 use), ensure that EXIT and its copy will be new latch and entry edges. */
4452 if (loop->header == entry->dest)
4453 {
4454 copying_header = true;
4455 loop->copy = loop->outer;
4456
4457 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
4458 return false;
4459
4460 for (i = 0; i < n_region; i++)
4461 if (region[i] != exit->src
4462 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
4463 return false;
4464 }
4465
4466 if (!region_copy)
4467 {
4468 region_copy = XNEWVEC (basic_block, n_region);
4469 free_region_copy = true;
4470 }
4471
4472 gcc_assert (!need_ssa_update_p ());
4473
4474 /* Record blocks outside the region that are dominated by something
4475 inside. */
4476 doms = XNEWVEC (basic_block, n_basic_blocks);
4477 initialize_original_copy_tables ();
4478
4479 n_doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region, doms);
4480
4481 if (entry->dest->count)
4482 {
4483 total_count = entry->dest->count;
4484 entry_count = entry->count;
4485 /* Fix up corner cases, to avoid division by zero or creation of negative
4486 frequencies. */
4487 if (entry_count > total_count)
4488 entry_count = total_count;
4489 }
4490 else
4491 {
4492 total_freq = entry->dest->frequency;
4493 entry_freq = EDGE_FREQUENCY (entry);
4494 /* Fix up corner cases, to avoid division by zero or creation of negative
4495 frequencies. */
4496 if (total_freq == 0)
4497 total_freq = 1;
4498 else if (entry_freq > total_freq)
4499 entry_freq = total_freq;
4500 }
4501
4502 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
4503 split_edge_bb_loc (entry));
4504 if (total_count)
4505 {
4506 scale_bbs_frequencies_gcov_type (region, n_region,
4507 total_count - entry_count,
4508 total_count);
4509 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
4510 total_count);
4511 }
4512 else
4513 {
4514 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
4515 total_freq);
4516 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
4517 }
4518
4519 if (copying_header)
4520 {
4521 loop->header = exit->dest;
4522 loop->latch = exit->src;
4523 }
4524
4525 /* Redirect the entry and add the phi node arguments. */
4526 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
4527 gcc_assert (redirected != NULL);
4528 flush_pending_stmts (entry);
4529
4530 /* Concerning updating of dominators: We must recount dominators
4531 for entry block and its copy. Anything that is outside of the
4532 region, but was dominated by something inside needs recounting as
4533 well. */
4534 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
4535 doms[n_doms++] = get_bb_original (entry->dest);
4536 iterate_fix_dominators (CDI_DOMINATORS, doms, n_doms);
4537 free (doms);
4538
4539 /* Add the other PHI node arguments. */
4540 add_phi_args_after_copy (region_copy, n_region);
4541
4542 /* Update the SSA web. */
4543 update_ssa (TODO_update_ssa);
4544
4545 if (free_region_copy)
4546 free (region_copy);
4547
4548 free_original_copy_tables ();
4549 return true;
4550 }
4551
4552 /*
4553 DEF_VEC_P(basic_block);
4554 DEF_VEC_ALLOC_P(basic_block,heap);
4555 */
4556
4557 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
4558 adding blocks when the dominator traversal reaches EXIT. This
4559 function silently assumes that ENTRY strictly dominates EXIT. */
4560
4561 static void
4562 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
4563 VEC(basic_block,heap) **bbs_p)
4564 {
4565 basic_block son;
4566
4567 for (son = first_dom_son (CDI_DOMINATORS, entry);
4568 son;
4569 son = next_dom_son (CDI_DOMINATORS, son))
4570 {
4571 VEC_safe_push (basic_block, heap, *bbs_p, son);
4572 if (son != exit)
4573 gather_blocks_in_sese_region (son, exit, bbs_p);
4574 }
4575 }
4576
4577
4578 struct move_stmt_d
4579 {
4580 tree block;
4581 tree from_context;
4582 tree to_context;
4583 bitmap vars_to_remove;
4584 htab_t new_label_map;
4585 bool remap_decls_p;
4586 };
4587
4588 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
4589 contained in *TP and change the DECL_CONTEXT of every local
4590 variable referenced in *TP. */
4591
4592 static tree
4593 move_stmt_r (tree *tp, int *walk_subtrees, void *data)
4594 {
4595 struct move_stmt_d *p = (struct move_stmt_d *) data;
4596 tree t = *tp;
4597
4598 if (p->block
4599 && (EXPR_P (t) || GIMPLE_STMT_P (t)))
4600 TREE_BLOCK (t) = p->block;
4601
4602 if (OMP_DIRECTIVE_P (t)
4603 && TREE_CODE (t) != OMP_RETURN
4604 && TREE_CODE (t) != OMP_CONTINUE)
4605 {
4606 /* Do not remap variables inside OMP directives. Variables
4607 referenced in clauses and directive header belong to the
4608 parent function and should not be moved into the child
4609 function. */
4610 bool save_remap_decls_p = p->remap_decls_p;
4611 p->remap_decls_p = false;
4612 *walk_subtrees = 0;
4613
4614 walk_tree (&OMP_BODY (t), move_stmt_r, p, NULL);
4615
4616 p->remap_decls_p = save_remap_decls_p;
4617 }
4618 else if (DECL_P (t) && DECL_CONTEXT (t) == p->from_context)
4619 {
4620 if (TREE_CODE (t) == LABEL_DECL)
4621 {
4622 if (p->new_label_map)
4623 {
4624 struct tree_map in, *out;
4625 in.from = t;
4626 out = htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
4627 if (out)
4628 *tp = t = out->to;
4629 }
4630
4631 DECL_CONTEXT (t) = p->to_context;
4632 }
4633 else if (p->remap_decls_p)
4634 {
4635 DECL_CONTEXT (t) = p->to_context;
4636
4637 if (TREE_CODE (t) == VAR_DECL)
4638 {
4639 struct function *f = DECL_STRUCT_FUNCTION (p->to_context);
4640 f->unexpanded_var_list
4641 = tree_cons (0, t, f->unexpanded_var_list);
4642
4643 /* Mark T to be removed from the original function,
4644 otherwise it will be given a DECL_RTL when the
4645 original function is expanded. */
4646 bitmap_set_bit (p->vars_to_remove, DECL_UID (t));
4647 }
4648 }
4649 }
4650 else if (TYPE_P (t))
4651 *walk_subtrees = 0;
4652
4653 return NULL_TREE;
4654 }
4655
4656
4657 /* Move basic block BB from function CFUN to function DEST_FN. The
4658 block is moved out of the original linked list and placed after
4659 block AFTER in the new list. Also, the block is removed from the
4660 original array of blocks and placed in DEST_FN's array of blocks.
4661 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
4662 updated to reflect the moved edges.
4663
4664 On exit, local variables that need to be removed from
4665 CFUN->UNEXPANDED_VAR_LIST will have been added to VARS_TO_REMOVE. */
4666
4667 static void
4668 move_block_to_fn (struct function *dest_cfun, basic_block bb,
4669 basic_block after, bool update_edge_count_p,
4670 bitmap vars_to_remove, htab_t new_label_map, int eh_offset)
4671 {
4672 struct control_flow_graph *cfg;
4673 edge_iterator ei;
4674 edge e;
4675 block_stmt_iterator si;
4676 struct move_stmt_d d;
4677 unsigned old_len, new_len;
4678
4679 /* Link BB to the new linked list. */
4680 move_block_after (bb, after);
4681
4682 /* Update the edge count in the corresponding flowgraphs. */
4683 if (update_edge_count_p)
4684 FOR_EACH_EDGE (e, ei, bb->succs)
4685 {
4686 cfun->cfg->x_n_edges--;
4687 dest_cfun->cfg->x_n_edges++;
4688 }
4689
4690 /* Remove BB from the original basic block array. */
4691 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
4692 cfun->cfg->x_n_basic_blocks--;
4693
4694 /* Grow DEST_CFUN's basic block array if needed. */
4695 cfg = dest_cfun->cfg;
4696 cfg->x_n_basic_blocks++;
4697 if (bb->index > cfg->x_last_basic_block)
4698 cfg->x_last_basic_block = bb->index;
4699
4700 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
4701 if ((unsigned) cfg->x_last_basic_block >= old_len)
4702 {
4703 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
4704 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
4705 new_len);
4706 }
4707
4708 VEC_replace (basic_block, cfg->x_basic_block_info,
4709 cfg->x_last_basic_block, bb);
4710
4711 /* The statements in BB need to be associated with a new TREE_BLOCK.
4712 Labels need to be associated with a new label-to-block map. */
4713 memset (&d, 0, sizeof (d));
4714 d.vars_to_remove = vars_to_remove;
4715
4716 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4717 {
4718 tree stmt = bsi_stmt (si);
4719 int region;
4720
4721 d.from_context = cfun->decl;
4722 d.to_context = dest_cfun->decl;
4723 d.remap_decls_p = true;
4724 d.new_label_map = new_label_map;
4725 if (TREE_BLOCK (stmt))
4726 d.block = DECL_INITIAL (dest_cfun->decl);
4727
4728 walk_tree (&stmt, move_stmt_r, &d, NULL);
4729
4730 if (TREE_CODE (stmt) == LABEL_EXPR)
4731 {
4732 tree label = LABEL_EXPR_LABEL (stmt);
4733 int uid = LABEL_DECL_UID (label);
4734
4735 gcc_assert (uid > -1);
4736
4737 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
4738 if (old_len <= (unsigned) uid)
4739 {
4740 new_len = 3 * uid / 2;
4741 VEC_safe_grow_cleared (basic_block, gc,
4742 cfg->x_label_to_block_map, new_len);
4743 }
4744
4745 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
4746 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
4747
4748 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
4749
4750 if (uid >= dest_cfun->last_label_uid)
4751 dest_cfun->last_label_uid = uid + 1;
4752 }
4753 else if (TREE_CODE (stmt) == RESX_EXPR && eh_offset != 0)
4754 TREE_OPERAND (stmt, 0) =
4755 build_int_cst (NULL_TREE,
4756 TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0))
4757 + eh_offset);
4758
4759 region = lookup_stmt_eh_region (stmt);
4760 if (region >= 0)
4761 {
4762 add_stmt_to_eh_region_fn (dest_cfun, stmt, region + eh_offset);
4763 remove_stmt_from_eh_region (stmt);
4764 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
4765 gimple_remove_stmt_histograms (cfun, stmt);
4766 }
4767 }
4768 }
4769
4770 /* Examine the statements in BB (which is in SRC_CFUN); find and return
4771 the outermost EH region. Use REGION as the incoming base EH region. */
4772
4773 static int
4774 find_outermost_region_in_block (struct function *src_cfun,
4775 basic_block bb, int region)
4776 {
4777 block_stmt_iterator si;
4778
4779 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4780 {
4781 tree stmt = bsi_stmt (si);
4782 int stmt_region;
4783
4784 if (TREE_CODE (stmt) == RESX_EXPR)
4785 stmt_region = TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0));
4786 else
4787 stmt_region = lookup_stmt_eh_region_fn (src_cfun, stmt);
4788 if (stmt_region > 0)
4789 {
4790 if (region < 0)
4791 region = stmt_region;
4792 else if (stmt_region != region)
4793 {
4794 region = eh_region_outermost (src_cfun, stmt_region, region);
4795 gcc_assert (region != -1);
4796 }
4797 }
4798 }
4799
4800 return region;
4801 }
4802
4803 static tree
4804 new_label_mapper (tree decl, void *data)
4805 {
4806 htab_t hash = (htab_t) data;
4807 struct tree_map *m;
4808 void **slot;
4809
4810 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
4811
4812 m = xmalloc (sizeof (struct tree_map));
4813 m->hash = DECL_UID (decl);
4814 m->from = decl;
4815 m->to = create_artificial_label ();
4816 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
4817
4818 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
4819 gcc_assert (*slot == NULL);
4820
4821 *slot = m;
4822
4823 return m->to;
4824 }
4825
4826 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
4827 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
4828 single basic block in the original CFG and the new basic block is
4829 returned. DEST_CFUN must not have a CFG yet.
4830
4831 Note that the region need not be a pure SESE region. Blocks inside
4832 the region may contain calls to abort/exit. The only restriction
4833 is that ENTRY_BB should be the only entry point and it must
4834 dominate EXIT_BB.
4835
4836 All local variables referenced in the region are assumed to be in
4837 the corresponding BLOCK_VARS and unexpanded variable lists
4838 associated with DEST_CFUN. */
4839
4840 basic_block
4841 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
4842 basic_block exit_bb)
4843 {
4844 VEC(basic_block,heap) *bbs;
4845 basic_block after, bb, *entry_pred, *exit_succ;
4846 struct function *saved_cfun;
4847 int *entry_flag, *exit_flag, eh_offset;
4848 unsigned i, num_entry_edges, num_exit_edges;
4849 edge e;
4850 edge_iterator ei;
4851 bitmap vars_to_remove;
4852 htab_t new_label_map;
4853
4854 saved_cfun = cfun;
4855
4856 /* Collect all the blocks in the region. Manually add ENTRY_BB
4857 because it won't be added by dfs_enumerate_from. */
4858 calculate_dominance_info (CDI_DOMINATORS);
4859
4860 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
4861 region. */
4862 gcc_assert (entry_bb != exit_bb
4863 && (!exit_bb
4864 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
4865
4866 bbs = NULL;
4867 VEC_safe_push (basic_block, heap, bbs, entry_bb);
4868 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
4869
4870 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
4871 the predecessor edges to ENTRY_BB and the successor edges to
4872 EXIT_BB so that we can re-attach them to the new basic block that
4873 will replace the region. */
4874 num_entry_edges = EDGE_COUNT (entry_bb->preds);
4875 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
4876 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
4877 i = 0;
4878 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
4879 {
4880 entry_flag[i] = e->flags;
4881 entry_pred[i++] = e->src;
4882 remove_edge (e);
4883 }
4884
4885 if (exit_bb)
4886 {
4887 num_exit_edges = EDGE_COUNT (exit_bb->succs);
4888 exit_succ = (basic_block *) xcalloc (num_exit_edges,
4889 sizeof (basic_block));
4890 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
4891 i = 0;
4892 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
4893 {
4894 exit_flag[i] = e->flags;
4895 exit_succ[i++] = e->dest;
4896 remove_edge (e);
4897 }
4898 }
4899 else
4900 {
4901 num_exit_edges = 0;
4902 exit_succ = NULL;
4903 exit_flag = NULL;
4904 }
4905
4906 /* Switch context to the child function to initialize DEST_FN's CFG. */
4907 gcc_assert (dest_cfun->cfg == NULL);
4908 cfun = dest_cfun;
4909
4910 init_empty_tree_cfg ();
4911
4912 /* Initialize EH information for the new function. */
4913 eh_offset = 0;
4914 new_label_map = NULL;
4915 if (saved_cfun->eh)
4916 {
4917 int region = -1;
4918
4919 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
4920 region = find_outermost_region_in_block (saved_cfun, bb, region);
4921
4922 init_eh_for_function ();
4923 if (region != -1)
4924 {
4925 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
4926 eh_offset = duplicate_eh_regions (saved_cfun, new_label_mapper,
4927 new_label_map, region, 0);
4928 }
4929 }
4930
4931 cfun = saved_cfun;
4932
4933 /* Move blocks from BBS into DEST_CFUN. */
4934 gcc_assert (VEC_length (basic_block, bbs) >= 2);
4935 after = dest_cfun->cfg->x_entry_block_ptr;
4936 vars_to_remove = BITMAP_ALLOC (NULL);
4937 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
4938 {
4939 /* No need to update edge counts on the last block. It has
4940 already been updated earlier when we detached the region from
4941 the original CFG. */
4942 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, vars_to_remove,
4943 new_label_map, eh_offset);
4944 after = bb;
4945 }
4946
4947 if (new_label_map)
4948 htab_delete (new_label_map);
4949
4950 /* Remove the variables marked in VARS_TO_REMOVE from
4951 CFUN->UNEXPANDED_VAR_LIST. Otherwise, they will be given a
4952 DECL_RTL in the context of CFUN. */
4953 if (!bitmap_empty_p (vars_to_remove))
4954 {
4955 tree *p;
4956
4957 for (p = &cfun->unexpanded_var_list; *p; )
4958 {
4959 tree var = TREE_VALUE (*p);
4960 if (bitmap_bit_p (vars_to_remove, DECL_UID (var)))
4961 {
4962 *p = TREE_CHAIN (*p);
4963 continue;
4964 }
4965
4966 p = &TREE_CHAIN (*p);
4967 }
4968 }
4969
4970 BITMAP_FREE (vars_to_remove);
4971
4972 /* Rewire the entry and exit blocks. The successor to the entry
4973 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
4974 the child function. Similarly, the predecessor of DEST_FN's
4975 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
4976 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
4977 various CFG manipulation function get to the right CFG.
4978
4979 FIXME, this is silly. The CFG ought to become a parameter to
4980 these helpers. */
4981 cfun = dest_cfun;
4982 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
4983 if (exit_bb)
4984 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
4985 cfun = saved_cfun;
4986
4987 /* Back in the original function, the SESE region has disappeared,
4988 create a new basic block in its place. */
4989 bb = create_empty_bb (entry_pred[0]);
4990 for (i = 0; i < num_entry_edges; i++)
4991 make_edge (entry_pred[i], bb, entry_flag[i]);
4992
4993 for (i = 0; i < num_exit_edges; i++)
4994 make_edge (bb, exit_succ[i], exit_flag[i]);
4995
4996 if (exit_bb)
4997 {
4998 free (exit_flag);
4999 free (exit_succ);
5000 }
5001 free (entry_flag);
5002 free (entry_pred);
5003 free_dominance_info (CDI_DOMINATORS);
5004 free_dominance_info (CDI_POST_DOMINATORS);
5005 VEC_free (basic_block, heap, bbs);
5006
5007 return bb;
5008 }
5009
5010
5011 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree.h) */
5012
5013 void
5014 dump_function_to_file (tree fn, FILE *file, int flags)
5015 {
5016 tree arg, vars, var;
5017 bool ignore_topmost_bind = false, any_var = false;
5018 basic_block bb;
5019 tree chain;
5020 struct function *saved_cfun;
5021
5022 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
5023
5024 arg = DECL_ARGUMENTS (fn);
5025 while (arg)
5026 {
5027 print_generic_expr (file, arg, dump_flags);
5028 if (TREE_CHAIN (arg))
5029 fprintf (file, ", ");
5030 arg = TREE_CHAIN (arg);
5031 }
5032 fprintf (file, ")\n");
5033
5034 if (flags & TDF_DETAILS)
5035 dump_eh_tree (file, DECL_STRUCT_FUNCTION (fn));
5036 if (flags & TDF_RAW)
5037 {
5038 dump_node (fn, TDF_SLIM | flags, file);
5039 return;
5040 }
5041
5042 /* Switch CFUN to point to FN. */
5043 saved_cfun = cfun;
5044 cfun = DECL_STRUCT_FUNCTION (fn);
5045
5046 /* When GIMPLE is lowered, the variables are no longer available in
5047 BIND_EXPRs, so display them separately. */
5048 if (cfun && cfun->decl == fn && cfun->unexpanded_var_list)
5049 {
5050 ignore_topmost_bind = true;
5051
5052 fprintf (file, "{\n");
5053 for (vars = cfun->unexpanded_var_list; vars; vars = TREE_CHAIN (vars))
5054 {
5055 var = TREE_VALUE (vars);
5056
5057 print_generic_decl (file, var, flags);
5058 fprintf (file, "\n");
5059
5060 any_var = true;
5061 }
5062 }
5063
5064 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
5065 {
5066 /* Make a CFG based dump. */
5067 check_bb_profile (ENTRY_BLOCK_PTR, file);
5068 if (!ignore_topmost_bind)
5069 fprintf (file, "{\n");
5070
5071 if (any_var && n_basic_blocks)
5072 fprintf (file, "\n");
5073
5074 FOR_EACH_BB (bb)
5075 dump_generic_bb (file, bb, 2, flags);
5076
5077 fprintf (file, "}\n");
5078 check_bb_profile (EXIT_BLOCK_PTR, file);
5079 }
5080 else
5081 {
5082 int indent;
5083
5084 /* Make a tree based dump. */
5085 chain = DECL_SAVED_TREE (fn);
5086
5087 if (chain && TREE_CODE (chain) == BIND_EXPR)
5088 {
5089 if (ignore_topmost_bind)
5090 {
5091 chain = BIND_EXPR_BODY (chain);
5092 indent = 2;
5093 }
5094 else
5095 indent = 0;
5096 }
5097 else
5098 {
5099 if (!ignore_topmost_bind)
5100 fprintf (file, "{\n");
5101 indent = 2;
5102 }
5103
5104 if (any_var)
5105 fprintf (file, "\n");
5106
5107 print_generic_stmt_indented (file, chain, flags, indent);
5108 if (ignore_topmost_bind)
5109 fprintf (file, "}\n");
5110 }
5111
5112 fprintf (file, "\n\n");
5113
5114 /* Restore CFUN. */
5115 cfun = saved_cfun;
5116 }
5117
5118
5119 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
5120
5121 void
5122 debug_function (tree fn, int flags)
5123 {
5124 dump_function_to_file (fn, stderr, flags);
5125 }
5126
5127
5128 /* Pretty print of the loops intermediate representation. */
5129 static void print_loop (FILE *, struct loop *, int);
5130 static void print_pred_bbs (FILE *, basic_block bb);
5131 static void print_succ_bbs (FILE *, basic_block bb);
5132
5133
5134 /* Print on FILE the indexes for the predecessors of basic_block BB. */
5135
5136 static void
5137 print_pred_bbs (FILE *file, basic_block bb)
5138 {
5139 edge e;
5140 edge_iterator ei;
5141
5142 FOR_EACH_EDGE (e, ei, bb->preds)
5143 fprintf (file, "bb_%d ", e->src->index);
5144 }
5145
5146
5147 /* Print on FILE the indexes for the successors of basic_block BB. */
5148
5149 static void
5150 print_succ_bbs (FILE *file, basic_block bb)
5151 {
5152 edge e;
5153 edge_iterator ei;
5154
5155 FOR_EACH_EDGE (e, ei, bb->succs)
5156 fprintf (file, "bb_%d ", e->dest->index);
5157 }
5158
5159
5160 /* Pretty print LOOP on FILE, indented INDENT spaces. */
5161
5162 static void
5163 print_loop (FILE *file, struct loop *loop, int indent)
5164 {
5165 char *s_indent;
5166 basic_block bb;
5167
5168 if (loop == NULL)
5169 return;
5170
5171 s_indent = (char *) alloca ((size_t) indent + 1);
5172 memset ((void *) s_indent, ' ', (size_t) indent);
5173 s_indent[indent] = '\0';
5174
5175 /* Print the loop's header. */
5176 fprintf (file, "%sloop_%d\n", s_indent, loop->num);
5177
5178 /* Print the loop's body. */
5179 fprintf (file, "%s{\n", s_indent);
5180 FOR_EACH_BB (bb)
5181 if (bb->loop_father == loop)
5182 {
5183 /* Print the basic_block's header. */
5184 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
5185 print_pred_bbs (file, bb);
5186 fprintf (file, "}, succs = {");
5187 print_succ_bbs (file, bb);
5188 fprintf (file, "})\n");
5189
5190 /* Print the basic_block's body. */
5191 fprintf (file, "%s {\n", s_indent);
5192 tree_dump_bb (bb, file, indent + 4);
5193 fprintf (file, "%s }\n", s_indent);
5194 }
5195
5196 print_loop (file, loop->inner, indent + 2);
5197 fprintf (file, "%s}\n", s_indent);
5198 print_loop (file, loop->next, indent);
5199 }
5200
5201
5202 /* Follow a CFG edge from the entry point of the program, and on entry
5203 of a loop, pretty print the loop structure on FILE. */
5204
5205 void
5206 print_loop_ir (FILE *file)
5207 {
5208 basic_block bb;
5209
5210 bb = BASIC_BLOCK (NUM_FIXED_BLOCKS);
5211 if (bb && bb->loop_father)
5212 print_loop (file, bb->loop_father, 0);
5213 }
5214
5215
5216 /* Debugging loops structure at tree level. */
5217
5218 void
5219 debug_loop_ir (void)
5220 {
5221 print_loop_ir (stderr);
5222 }
5223
5224
5225 /* Return true if BB ends with a call, possibly followed by some
5226 instructions that must stay with the call. Return false,
5227 otherwise. */
5228
5229 static bool
5230 tree_block_ends_with_call_p (basic_block bb)
5231 {
5232 block_stmt_iterator bsi = bsi_last (bb);
5233 return get_call_expr_in (bsi_stmt (bsi)) != NULL;
5234 }
5235
5236
5237 /* Return true if BB ends with a conditional branch. Return false,
5238 otherwise. */
5239
5240 static bool
5241 tree_block_ends_with_condjump_p (basic_block bb)
5242 {
5243 tree stmt = last_stmt (bb);
5244 return (stmt && TREE_CODE (stmt) == COND_EXPR);
5245 }
5246
5247
5248 /* Return true if we need to add fake edge to exit at statement T.
5249 Helper function for tree_flow_call_edges_add. */
5250
5251 static bool
5252 need_fake_edge_p (tree t)
5253 {
5254 tree call;
5255
5256 /* NORETURN and LONGJMP calls already have an edge to exit.
5257 CONST and PURE calls do not need one.
5258 We don't currently check for CONST and PURE here, although
5259 it would be a good idea, because those attributes are
5260 figured out from the RTL in mark_constant_function, and
5261 the counter incrementation code from -fprofile-arcs
5262 leads to different results from -fbranch-probabilities. */
5263 call = get_call_expr_in (t);
5264 if (call
5265 && !(call_expr_flags (call) & ECF_NORETURN))
5266 return true;
5267
5268 if (TREE_CODE (t) == ASM_EXPR
5269 && (ASM_VOLATILE_P (t) || ASM_INPUT_P (t)))
5270 return true;
5271
5272 return false;
5273 }
5274
5275
5276 /* Add fake edges to the function exit for any non constant and non
5277 noreturn calls, volatile inline assembly in the bitmap of blocks
5278 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
5279 the number of blocks that were split.
5280
5281 The goal is to expose cases in which entering a basic block does
5282 not imply that all subsequent instructions must be executed. */
5283
5284 static int
5285 tree_flow_call_edges_add (sbitmap blocks)
5286 {
5287 int i;
5288 int blocks_split = 0;
5289 int last_bb = last_basic_block;
5290 bool check_last_block = false;
5291
5292 if (n_basic_blocks == NUM_FIXED_BLOCKS)
5293 return 0;
5294
5295 if (! blocks)
5296 check_last_block = true;
5297 else
5298 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
5299
5300 /* In the last basic block, before epilogue generation, there will be
5301 a fallthru edge to EXIT. Special care is required if the last insn
5302 of the last basic block is a call because make_edge folds duplicate
5303 edges, which would result in the fallthru edge also being marked
5304 fake, which would result in the fallthru edge being removed by
5305 remove_fake_edges, which would result in an invalid CFG.
5306
5307 Moreover, we can't elide the outgoing fake edge, since the block
5308 profiler needs to take this into account in order to solve the minimal
5309 spanning tree in the case that the call doesn't return.
5310
5311 Handle this by adding a dummy instruction in a new last basic block. */
5312 if (check_last_block)
5313 {
5314 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
5315 block_stmt_iterator bsi = bsi_last (bb);
5316 tree t = NULL_TREE;
5317 if (!bsi_end_p (bsi))
5318 t = bsi_stmt (bsi);
5319
5320 if (t && need_fake_edge_p (t))
5321 {
5322 edge e;
5323
5324 e = find_edge (bb, EXIT_BLOCK_PTR);
5325 if (e)
5326 {
5327 bsi_insert_on_edge (e, build_empty_stmt ());
5328 bsi_commit_edge_inserts ();
5329 }
5330 }
5331 }
5332
5333 /* Now add fake edges to the function exit for any non constant
5334 calls since there is no way that we can determine if they will
5335 return or not... */
5336 for (i = 0; i < last_bb; i++)
5337 {
5338 basic_block bb = BASIC_BLOCK (i);
5339 block_stmt_iterator bsi;
5340 tree stmt, last_stmt;
5341
5342 if (!bb)
5343 continue;
5344
5345 if (blocks && !TEST_BIT (blocks, i))
5346 continue;
5347
5348 bsi = bsi_last (bb);
5349 if (!bsi_end_p (bsi))
5350 {
5351 last_stmt = bsi_stmt (bsi);
5352 do
5353 {
5354 stmt = bsi_stmt (bsi);
5355 if (need_fake_edge_p (stmt))
5356 {
5357 edge e;
5358 /* The handling above of the final block before the
5359 epilogue should be enough to verify that there is
5360 no edge to the exit block in CFG already.
5361 Calling make_edge in such case would cause us to
5362 mark that edge as fake and remove it later. */
5363 #ifdef ENABLE_CHECKING
5364 if (stmt == last_stmt)
5365 {
5366 e = find_edge (bb, EXIT_BLOCK_PTR);
5367 gcc_assert (e == NULL);
5368 }
5369 #endif
5370
5371 /* Note that the following may create a new basic block
5372 and renumber the existing basic blocks. */
5373 if (stmt != last_stmt)
5374 {
5375 e = split_block (bb, stmt);
5376 if (e)
5377 blocks_split++;
5378 }
5379 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
5380 }
5381 bsi_prev (&bsi);
5382 }
5383 while (!bsi_end_p (bsi));
5384 }
5385 }
5386
5387 if (blocks_split)
5388 verify_flow_info ();
5389
5390 return blocks_split;
5391 }
5392
5393 /* Purge dead abnormal call edges from basic block BB. */
5394
5395 bool
5396 tree_purge_dead_abnormal_call_edges (basic_block bb)
5397 {
5398 bool changed = tree_purge_dead_eh_edges (bb);
5399
5400 if (current_function_has_nonlocal_label)
5401 {
5402 tree stmt = last_stmt (bb);
5403 edge_iterator ei;
5404 edge e;
5405
5406 if (!(stmt && tree_can_make_abnormal_goto (stmt)))
5407 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
5408 {
5409 if (e->flags & EDGE_ABNORMAL)
5410 {
5411 remove_edge (e);
5412 changed = true;
5413 }
5414 else
5415 ei_next (&ei);
5416 }
5417
5418 /* See tree_purge_dead_eh_edges below. */
5419 if (changed)
5420 free_dominance_info (CDI_DOMINATORS);
5421 }
5422
5423 return changed;
5424 }
5425
5426 /* Purge dead EH edges from basic block BB. */
5427
5428 bool
5429 tree_purge_dead_eh_edges (basic_block bb)
5430 {
5431 bool changed = false;
5432 edge e;
5433 edge_iterator ei;
5434 tree stmt = last_stmt (bb);
5435
5436 if (stmt && tree_can_throw_internal (stmt))
5437 return false;
5438
5439 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
5440 {
5441 if (e->flags & EDGE_EH)
5442 {
5443 remove_edge (e);
5444 changed = true;
5445 }
5446 else
5447 ei_next (&ei);
5448 }
5449
5450 /* Removal of dead EH edges might change dominators of not
5451 just immediate successors. E.g. when bb1 is changed so that
5452 it no longer can throw and bb1->bb3 and bb1->bb4 are dead
5453 eh edges purged by this function in:
5454 0
5455 / \
5456 v v
5457 1-->2
5458 / \ |
5459 v v |
5460 3-->4 |
5461 \ v
5462 --->5
5463 |
5464 -
5465 idom(bb5) must be recomputed. For now just free the dominance
5466 info. */
5467 if (changed)
5468 free_dominance_info (CDI_DOMINATORS);
5469
5470 return changed;
5471 }
5472
5473 bool
5474 tree_purge_all_dead_eh_edges (bitmap blocks)
5475 {
5476 bool changed = false;
5477 unsigned i;
5478 bitmap_iterator bi;
5479
5480 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
5481 {
5482 changed |= tree_purge_dead_eh_edges (BASIC_BLOCK (i));
5483 }
5484
5485 return changed;
5486 }
5487
5488 /* This function is called whenever a new edge is created or
5489 redirected. */
5490
5491 static void
5492 tree_execute_on_growing_pred (edge e)
5493 {
5494 basic_block bb = e->dest;
5495
5496 if (phi_nodes (bb))
5497 reserve_phi_args_for_new_edge (bb);
5498 }
5499
5500 /* This function is called immediately before edge E is removed from
5501 the edge vector E->dest->preds. */
5502
5503 static void
5504 tree_execute_on_shrinking_pred (edge e)
5505 {
5506 if (phi_nodes (e->dest))
5507 remove_phi_args (e);
5508 }
5509
5510 /*---------------------------------------------------------------------------
5511 Helper functions for Loop versioning
5512 ---------------------------------------------------------------------------*/
5513
5514 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
5515 of 'first'. Both of them are dominated by 'new_head' basic block. When
5516 'new_head' was created by 'second's incoming edge it received phi arguments
5517 on the edge by split_edge(). Later, additional edge 'e' was created to
5518 connect 'new_head' and 'first'. Now this routine adds phi args on this
5519 additional edge 'e' that new_head to second edge received as part of edge
5520 splitting.
5521 */
5522
5523 static void
5524 tree_lv_adjust_loop_header_phi (basic_block first, basic_block second,
5525 basic_block new_head, edge e)
5526 {
5527 tree phi1, phi2;
5528 edge e2 = find_edge (new_head, second);
5529
5530 /* Because NEW_HEAD has been created by splitting SECOND's incoming
5531 edge, we should always have an edge from NEW_HEAD to SECOND. */
5532 gcc_assert (e2 != NULL);
5533
5534 /* Browse all 'second' basic block phi nodes and add phi args to
5535 edge 'e' for 'first' head. PHI args are always in correct order. */
5536
5537 for (phi2 = phi_nodes (second), phi1 = phi_nodes (first);
5538 phi2 && phi1;
5539 phi2 = PHI_CHAIN (phi2), phi1 = PHI_CHAIN (phi1))
5540 {
5541 tree def = PHI_ARG_DEF (phi2, e2->dest_idx);
5542 add_phi_arg (phi1, def, e);
5543 }
5544 }
5545
5546 /* Adds a if else statement to COND_BB with condition COND_EXPR.
5547 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
5548 the destination of the ELSE part. */
5549 static void
5550 tree_lv_add_condition_to_bb (basic_block first_head, basic_block second_head,
5551 basic_block cond_bb, void *cond_e)
5552 {
5553 block_stmt_iterator bsi;
5554 tree goto1 = NULL_TREE;
5555 tree goto2 = NULL_TREE;
5556 tree new_cond_expr = NULL_TREE;
5557 tree cond_expr = (tree) cond_e;
5558 edge e0;
5559
5560 /* Build new conditional expr */
5561 goto1 = build1 (GOTO_EXPR, void_type_node, tree_block_label (first_head));
5562 goto2 = build1 (GOTO_EXPR, void_type_node, tree_block_label (second_head));
5563 new_cond_expr = build3 (COND_EXPR, void_type_node, cond_expr, goto1, goto2);
5564
5565 /* Add new cond in cond_bb. */
5566 bsi = bsi_start (cond_bb);
5567 bsi_insert_after (&bsi, new_cond_expr, BSI_NEW_STMT);
5568 /* Adjust edges appropriately to connect new head with first head
5569 as well as second head. */
5570 e0 = single_succ_edge (cond_bb);
5571 e0->flags &= ~EDGE_FALLTHRU;
5572 e0->flags |= EDGE_FALSE_VALUE;
5573 }
5574
5575 struct cfg_hooks tree_cfg_hooks = {
5576 "tree",
5577 tree_verify_flow_info,
5578 tree_dump_bb, /* dump_bb */
5579 create_bb, /* create_basic_block */
5580 tree_redirect_edge_and_branch,/* redirect_edge_and_branch */
5581 tree_redirect_edge_and_branch_force,/* redirect_edge_and_branch_force */
5582 remove_bb, /* delete_basic_block */
5583 tree_split_block, /* split_block */
5584 tree_move_block_after, /* move_block_after */
5585 tree_can_merge_blocks_p, /* can_merge_blocks_p */
5586 tree_merge_blocks, /* merge_blocks */
5587 tree_predict_edge, /* predict_edge */
5588 tree_predicted_by_p, /* predicted_by_p */
5589 tree_can_duplicate_bb_p, /* can_duplicate_block_p */
5590 tree_duplicate_bb, /* duplicate_block */
5591 tree_split_edge, /* split_edge */
5592 tree_make_forwarder_block, /* make_forward_block */
5593 NULL, /* tidy_fallthru_edge */
5594 tree_block_ends_with_call_p, /* block_ends_with_call_p */
5595 tree_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
5596 tree_flow_call_edges_add, /* flow_call_edges_add */
5597 tree_execute_on_growing_pred, /* execute_on_growing_pred */
5598 tree_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
5599 tree_duplicate_loop_to_header_edge, /* duplicate loop for trees */
5600 tree_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5601 tree_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
5602 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
5603 flush_pending_stmts /* flush_pending_stmts */
5604 };
5605
5606
5607 /* Split all critical edges. */
5608
5609 static unsigned int
5610 split_critical_edges (void)
5611 {
5612 basic_block bb;
5613 edge e;
5614 edge_iterator ei;
5615
5616 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
5617 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
5618 mappings around the calls to split_edge. */
5619 start_recording_case_labels ();
5620 FOR_ALL_BB (bb)
5621 {
5622 FOR_EACH_EDGE (e, ei, bb->succs)
5623 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
5624 {
5625 split_edge (e);
5626 }
5627 }
5628 end_recording_case_labels ();
5629 return 0;
5630 }
5631
5632 struct tree_opt_pass pass_split_crit_edges =
5633 {
5634 "crited", /* name */
5635 NULL, /* gate */
5636 split_critical_edges, /* execute */
5637 NULL, /* sub */
5638 NULL, /* next */
5639 0, /* static_pass_number */
5640 TV_TREE_SPLIT_EDGES, /* tv_id */
5641 PROP_cfg, /* properties required */
5642 PROP_no_crit_edges, /* properties_provided */
5643 0, /* properties_destroyed */
5644 0, /* todo_flags_start */
5645 TODO_dump_func, /* todo_flags_finish */
5646 0 /* letter */
5647 };
5648
5649 \f
5650 /* Return EXP if it is a valid GIMPLE rvalue, else gimplify it into
5651 a temporary, make sure and register it to be renamed if necessary,
5652 and finally return the temporary. Put the statements to compute
5653 EXP before the current statement in BSI. */
5654
5655 tree
5656 gimplify_val (block_stmt_iterator *bsi, tree type, tree exp)
5657 {
5658 tree t, new_stmt, orig_stmt;
5659
5660 if (is_gimple_val (exp))
5661 return exp;
5662
5663 t = make_rename_temp (type, NULL);
5664 new_stmt = build2_gimple (GIMPLE_MODIFY_STMT, t, exp);
5665
5666 orig_stmt = bsi_stmt (*bsi);
5667 SET_EXPR_LOCUS (new_stmt, EXPR_LOCUS (orig_stmt));
5668 TREE_BLOCK (new_stmt) = TREE_BLOCK (orig_stmt);
5669
5670 bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);
5671 if (gimple_in_ssa_p (cfun))
5672 mark_symbols_for_renaming (new_stmt);
5673
5674 return t;
5675 }
5676
5677 /* Build a ternary operation and gimplify it. Emit code before BSI.
5678 Return the gimple_val holding the result. */
5679
5680 tree
5681 gimplify_build3 (block_stmt_iterator *bsi, enum tree_code code,
5682 tree type, tree a, tree b, tree c)
5683 {
5684 tree ret;
5685
5686 ret = fold_build3 (code, type, a, b, c);
5687 STRIP_NOPS (ret);
5688
5689 return gimplify_val (bsi, type, ret);
5690 }
5691
5692 /* Build a binary operation and gimplify it. Emit code before BSI.
5693 Return the gimple_val holding the result. */
5694
5695 tree
5696 gimplify_build2 (block_stmt_iterator *bsi, enum tree_code code,
5697 tree type, tree a, tree b)
5698 {
5699 tree ret;
5700
5701 ret = fold_build2 (code, type, a, b);
5702 STRIP_NOPS (ret);
5703
5704 return gimplify_val (bsi, type, ret);
5705 }
5706
5707 /* Build a unary operation and gimplify it. Emit code before BSI.
5708 Return the gimple_val holding the result. */
5709
5710 tree
5711 gimplify_build1 (block_stmt_iterator *bsi, enum tree_code code, tree type,
5712 tree a)
5713 {
5714 tree ret;
5715
5716 ret = fold_build1 (code, type, a);
5717 STRIP_NOPS (ret);
5718
5719 return gimplify_val (bsi, type, ret);
5720 }
5721
5722
5723 \f
5724 /* Emit return warnings. */
5725
5726 static unsigned int
5727 execute_warn_function_return (void)
5728 {
5729 #ifdef USE_MAPPED_LOCATION
5730 source_location location;
5731 #else
5732 location_t *locus;
5733 #endif
5734 tree last;
5735 edge e;
5736 edge_iterator ei;
5737
5738 /* If we have a path to EXIT, then we do return. */
5739 if (TREE_THIS_VOLATILE (cfun->decl)
5740 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
5741 {
5742 #ifdef USE_MAPPED_LOCATION
5743 location = UNKNOWN_LOCATION;
5744 #else
5745 locus = NULL;
5746 #endif
5747 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5748 {
5749 last = last_stmt (e->src);
5750 if (TREE_CODE (last) == RETURN_EXPR
5751 #ifdef USE_MAPPED_LOCATION
5752 && (location = EXPR_LOCATION (last)) != UNKNOWN_LOCATION)
5753 #else
5754 && (locus = EXPR_LOCUS (last)) != NULL)
5755 #endif
5756 break;
5757 }
5758 #ifdef USE_MAPPED_LOCATION
5759 if (location == UNKNOWN_LOCATION)
5760 location = cfun->function_end_locus;
5761 warning (0, "%H%<noreturn%> function does return", &location);
5762 #else
5763 if (!locus)
5764 locus = &cfun->function_end_locus;
5765 warning (0, "%H%<noreturn%> function does return", locus);
5766 #endif
5767 }
5768
5769 /* If we see "return;" in some basic block, then we do reach the end
5770 without returning a value. */
5771 else if (warn_return_type
5772 && !TREE_NO_WARNING (cfun->decl)
5773 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
5774 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
5775 {
5776 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5777 {
5778 tree last = last_stmt (e->src);
5779 if (TREE_CODE (last) == RETURN_EXPR
5780 && TREE_OPERAND (last, 0) == NULL
5781 && !TREE_NO_WARNING (last))
5782 {
5783 #ifdef USE_MAPPED_LOCATION
5784 location = EXPR_LOCATION (last);
5785 if (location == UNKNOWN_LOCATION)
5786 location = cfun->function_end_locus;
5787 warning (0, "%Hcontrol reaches end of non-void function", &location);
5788 #else
5789 locus = EXPR_LOCUS (last);
5790 if (!locus)
5791 locus = &cfun->function_end_locus;
5792 warning (0, "%Hcontrol reaches end of non-void function", locus);
5793 #endif
5794 TREE_NO_WARNING (cfun->decl) = 1;
5795 break;
5796 }
5797 }
5798 }
5799 return 0;
5800 }
5801
5802
5803 /* Given a basic block B which ends with a conditional and has
5804 precisely two successors, determine which of the edges is taken if
5805 the conditional is true and which is taken if the conditional is
5806 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
5807
5808 void
5809 extract_true_false_edges_from_block (basic_block b,
5810 edge *true_edge,
5811 edge *false_edge)
5812 {
5813 edge e = EDGE_SUCC (b, 0);
5814
5815 if (e->flags & EDGE_TRUE_VALUE)
5816 {
5817 *true_edge = e;
5818 *false_edge = EDGE_SUCC (b, 1);
5819 }
5820 else
5821 {
5822 *false_edge = e;
5823 *true_edge = EDGE_SUCC (b, 1);
5824 }
5825 }
5826
5827 struct tree_opt_pass pass_warn_function_return =
5828 {
5829 NULL, /* name */
5830 NULL, /* gate */
5831 execute_warn_function_return, /* execute */
5832 NULL, /* sub */
5833 NULL, /* next */
5834 0, /* static_pass_number */
5835 0, /* tv_id */
5836 PROP_cfg, /* properties_required */
5837 0, /* properties_provided */
5838 0, /* properties_destroyed */
5839 0, /* todo_flags_start */
5840 0, /* todo_flags_finish */
5841 0 /* letter */
5842 };
5843
5844 /* Emit noreturn warnings. */
5845
5846 static unsigned int
5847 execute_warn_function_noreturn (void)
5848 {
5849 if (warn_missing_noreturn
5850 && !TREE_THIS_VOLATILE (cfun->decl)
5851 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
5852 && !lang_hooks.function.missing_noreturn_ok_p (cfun->decl))
5853 warning (OPT_Wmissing_noreturn, "%Jfunction might be possible candidate "
5854 "for attribute %<noreturn%>",
5855 cfun->decl);
5856 return 0;
5857 }
5858
5859 struct tree_opt_pass pass_warn_function_noreturn =
5860 {
5861 NULL, /* name */
5862 NULL, /* gate */
5863 execute_warn_function_noreturn, /* execute */
5864 NULL, /* sub */
5865 NULL, /* next */
5866 0, /* static_pass_number */
5867 0, /* tv_id */
5868 PROP_cfg, /* properties_required */
5869 0, /* properties_provided */
5870 0, /* properties_destroyed */
5871 0, /* todo_flags_start */
5872 0, /* todo_flags_finish */
5873 0 /* letter */
5874 };
This page took 0.26722 seconds and 6 git commands to generate.