]> gcc.gnu.org Git - gcc.git/blob - gcc/stupid.c
Update FSF address.
[gcc.git] / gcc / stupid.c
1 /* Dummy data flow analysis for GNU compiler in nonoptimizing mode.
2 Copyright (C) 1987, 1991, 1994 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file performs stupid register allocation, which is used
23 when cc1 gets the -noreg switch (which is when cc does not get -O).
24
25 Stupid register allocation goes in place of the the flow_analysis,
26 local_alloc and global_alloc passes. combine_instructions cannot
27 be done with stupid allocation because the data flow info that it needs
28 is not computed here.
29
30 In stupid allocation, the only user-defined variables that can
31 go in registers are those declared "register". They are assumed
32 to have a life span equal to their scope. Other user variables
33 are given stack slots in the rtl-generation pass and are not
34 represented as pseudo regs. A compiler-generated temporary
35 is assumed to live from its first mention to its last mention.
36
37 Since each pseudo-reg's life span is just an interval, it can be
38 represented as a pair of numbers, each of which identifies an insn by
39 its position in the function (number of insns before it). The first
40 thing done for stupid allocation is to compute such a number for each
41 insn. It is called the suid. Then the life-interval of each
42 pseudo reg is computed. Then the pseudo regs are ordered by priority
43 and assigned hard regs in priority order. */
44
45 #include <stdio.h>
46 #include "config.h"
47 #include "rtl.h"
48 #include "hard-reg-set.h"
49 #include "regs.h"
50 #include "flags.h"
51 \f
52 /* Vector mapping INSN_UIDs to suids.
53 The suids are like uids but increase monotonically always.
54 We use them to see whether a subroutine call came
55 between a variable's birth and its death. */
56
57 static int *uid_suid;
58
59 /* Get the suid of an insn. */
60
61 #define INSN_SUID(INSN) (uid_suid[INSN_UID (INSN)])
62
63 /* Record the suid of the last CALL_INSN
64 so we can tell whether a pseudo reg crosses any calls. */
65
66 static int last_call_suid;
67
68 /* Element N is suid of insn where life span of pseudo reg N ends.
69 Element is 0 if register N has not been seen yet on backward scan. */
70
71 static int *reg_where_dead;
72
73 /* Element N is suid of insn where life span of pseudo reg N begins. */
74
75 static int *reg_where_born;
76
77 /* Numbers of pseudo-regs to be allocated, highest priority first. */
78
79 static int *reg_order;
80
81 /* Indexed by reg number (hard or pseudo), nonzero if register is live
82 at the current point in the instruction stream. */
83
84 static char *regs_live;
85
86 /* Indexed by reg number, nonzero if reg was used in a SUBREG that changes
87 its size. */
88
89 static char *regs_change_size;
90
91 /* Indexed by insn's suid, the set of hard regs live after that insn. */
92
93 static HARD_REG_SET *after_insn_hard_regs;
94
95 /* Record that hard reg REGNO is live after insn INSN. */
96
97 #define MARK_LIVE_AFTER(INSN,REGNO) \
98 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (INSN)], (REGNO))
99
100 static int stupid_reg_compare PROTO((int *, int *));
101 static int stupid_find_reg PROTO((int, enum reg_class, enum machine_mode,
102 int, int, int));
103 static void stupid_mark_refs PROTO((rtx, rtx));
104 \f
105 /* Stupid life analysis is for the case where only variables declared
106 `register' go in registers. For this case, we mark all
107 pseudo-registers that belong to register variables as
108 dying in the last instruction of the function, and all other
109 pseudo registers as dying in the last place they are referenced.
110 Hard registers are marked as dying in the last reference before
111 the end or before each store into them. */
112
113 void
114 stupid_life_analysis (f, nregs, file)
115 rtx f;
116 int nregs;
117 FILE *file;
118 {
119 register int i;
120 register rtx last, insn;
121 int max_uid, max_suid;
122
123 bzero (regs_ever_live, sizeof regs_ever_live);
124
125 regs_live = (char *) alloca (nregs);
126
127 /* First find the last real insn, and count the number of insns,
128 and assign insns their suids. */
129
130 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
131 if (INSN_UID (insn) > i)
132 i = INSN_UID (insn);
133
134 max_uid = i + 1;
135 uid_suid = (int *) alloca ((i + 1) * sizeof (int));
136
137 /* Compute the mapping from uids to suids.
138 Suids are numbers assigned to insns, like uids,
139 except that suids increase monotonically through the code. */
140
141 last = 0; /* In case of empty function body */
142 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
143 {
144 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
145 last = insn;
146
147 INSN_SUID (insn) = ++i;
148 }
149
150 last_call_suid = i + 1;
151 max_suid = i + 1;
152
153 max_regno = nregs;
154
155 /* Allocate tables to record info about regs. */
156
157 reg_where_dead = (int *) alloca (nregs * sizeof (int));
158 bzero ((char *) reg_where_dead, nregs * sizeof (int));
159
160 reg_where_born = (int *) alloca (nregs * sizeof (int));
161 bzero ((char *) reg_where_born, nregs * sizeof (int));
162
163 reg_order = (int *) alloca (nregs * sizeof (int));
164 bzero ((char *) reg_order, nregs * sizeof (int));
165
166 regs_change_size = (char *) alloca (nregs * sizeof (char));
167 bzero ((char *) regs_change_size, nregs * sizeof (char));
168
169 reg_renumber = (short *) oballoc (nregs * sizeof (short));
170 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
171 reg_renumber[i] = i;
172
173 for (i = FIRST_VIRTUAL_REGISTER; i < max_regno; i++)
174 reg_renumber[i] = -1;
175
176 after_insn_hard_regs
177 = (HARD_REG_SET *) alloca (max_suid * sizeof (HARD_REG_SET));
178
179 bzero ((char *) after_insn_hard_regs, max_suid * sizeof (HARD_REG_SET));
180
181 /* Allocate and zero out many data structures
182 that will record the data from lifetime analysis. */
183
184 allocate_for_life_analysis ();
185
186 for (i = 0; i < max_regno; i++)
187 reg_n_deaths[i] = 1;
188
189 bzero (regs_live, nregs);
190
191 /* Find where each pseudo register is born and dies,
192 by scanning all insns from the end to the start
193 and noting all mentions of the registers.
194
195 Also find where each hard register is live
196 and record that info in after_insn_hard_regs.
197 regs_live[I] is 1 if hard reg I is live
198 at the current point in the scan. */
199
200 for (insn = last; insn; insn = PREV_INSN (insn))
201 {
202 register HARD_REG_SET *p = after_insn_hard_regs + INSN_SUID (insn);
203
204 /* Copy the info in regs_live into the element of after_insn_hard_regs
205 for the current position in the rtl code. */
206
207 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
208 if (regs_live[i])
209 SET_HARD_REG_BIT (*p, i);
210
211 /* Update which hard regs are currently live
212 and also the birth and death suids of pseudo regs
213 based on the pattern of this insn. */
214
215 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
216 stupid_mark_refs (PATTERN (insn), insn);
217
218 /* Mark all call-clobbered regs as live after each call insn
219 so that a pseudo whose life span includes this insn
220 will not go in one of them.
221 Then mark those regs as all dead for the continuing scan
222 of the insns before the call. */
223
224 if (GET_CODE (insn) == CALL_INSN)
225 {
226 last_call_suid = INSN_SUID (insn);
227 IOR_HARD_REG_SET (after_insn_hard_regs[last_call_suid],
228 call_used_reg_set);
229
230 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
231 if (call_used_regs[i])
232 regs_live[i] = 0;
233
234 /* It is important that this be done after processing the insn's
235 pattern because we want the function result register to still
236 be live if it's also used to pass arguments. */
237 stupid_mark_refs (CALL_INSN_FUNCTION_USAGE (insn), insn);
238 }
239 }
240
241 /* Now decide the order in which to allocate the pseudo registers. */
242
243 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
244 reg_order[i] = i;
245
246 qsort (&reg_order[LAST_VIRTUAL_REGISTER + 1],
247 max_regno - LAST_VIRTUAL_REGISTER - 1, sizeof (int),
248 stupid_reg_compare);
249
250 /* Now, in that order, try to find hard registers for those pseudo regs. */
251
252 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
253 {
254 register int r = reg_order[i];
255
256 /* Some regnos disappear from the rtl. Ignore them to avoid crash. */
257 if (regno_reg_rtx[r] == 0)
258 continue;
259
260 /* Now find the best hard-register class for this pseudo register */
261 if (N_REG_CLASSES > 1)
262 reg_renumber[r] = stupid_find_reg (reg_n_calls_crossed[r],
263 reg_preferred_class (r),
264 PSEUDO_REGNO_MODE (r),
265 reg_where_born[r],
266 reg_where_dead[r],
267 regs_change_size[r]);
268
269 /* If no reg available in that class, try alternate class. */
270 if (reg_renumber[r] == -1 && reg_alternate_class (r) != NO_REGS)
271 reg_renumber[r] = stupid_find_reg (reg_n_calls_crossed[r],
272 reg_alternate_class (r),
273 PSEUDO_REGNO_MODE (r),
274 reg_where_born[r],
275 reg_where_dead[r],
276 regs_change_size[r]);
277 }
278
279 if (file)
280 dump_flow_info (file);
281 }
282
283 /* Comparison function for qsort.
284 Returns -1 (1) if register *R1P is higher priority than *R2P. */
285
286 static int
287 stupid_reg_compare (r1p, r2p)
288 int *r1p, *r2p;
289 {
290 register int r1 = *r1p, r2 = *r2p;
291 register int len1 = reg_where_dead[r1] - reg_where_born[r1];
292 register int len2 = reg_where_dead[r2] - reg_where_born[r2];
293 int tem;
294
295 tem = len2 - len1;
296 if (tem != 0)
297 return tem;
298
299 tem = reg_n_refs[r1] - reg_n_refs[r2];
300 if (tem != 0)
301 return tem;
302
303 /* If regs are equally good, sort by regno,
304 so that the results of qsort leave nothing to chance. */
305 return r1 - r2;
306 }
307 \f
308 /* Find a block of SIZE words of hard registers in reg_class CLASS
309 that can hold a value of machine-mode MODE
310 (but actually we test only the first of the block for holding MODE)
311 currently free from after insn whose suid is BIRTH
312 through the insn whose suid is DEATH,
313 and return the number of the first of them.
314 Return -1 if such a block cannot be found.
315
316 If CALL_PRESERVED is nonzero, insist on registers preserved
317 over subroutine calls, and return -1 if cannot find such.
318
319 If CHANGES_SIZE is nonzero, it means this register was used as the
320 operand of a SUBREG that changes its size. */
321
322 static int
323 stupid_find_reg (call_preserved, class, mode,
324 born_insn, dead_insn, changes_size)
325 int call_preserved;
326 enum reg_class class;
327 enum machine_mode mode;
328 int born_insn, dead_insn;
329 int changes_size;
330 {
331 register int i, ins;
332 #ifdef HARD_REG_SET
333 register /* Declare them register if they are scalars. */
334 #endif
335 HARD_REG_SET used, this_reg;
336 #ifdef ELIMINABLE_REGS
337 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
338 #endif
339
340 COPY_HARD_REG_SET (used,
341 call_preserved ? call_used_reg_set : fixed_reg_set);
342
343 #ifdef ELIMINABLE_REGS
344 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
345 SET_HARD_REG_BIT (used, eliminables[i].from);
346 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
347 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
348 #endif
349 #else
350 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
351 #endif
352
353 for (ins = born_insn; ins < dead_insn; ins++)
354 IOR_HARD_REG_SET (used, after_insn_hard_regs[ins]);
355
356 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
357
358 #ifdef CLASS_CANNOT_CHANGE_SIZE
359 if (changes_size)
360 IOR_HARD_REG_SET (used,
361 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
362 #endif
363
364 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
365 {
366 #ifdef REG_ALLOC_ORDER
367 int regno = reg_alloc_order[i];
368 #else
369 int regno = i;
370 #endif
371
372 /* If a register has screwy overlap problems,
373 don't use it at all if not optimizing.
374 Actually this is only for the 387 stack register,
375 and it's because subsequent code won't work. */
376 #ifdef OVERLAPPING_REGNO_P
377 if (OVERLAPPING_REGNO_P (regno))
378 continue;
379 #endif
380
381 if (! TEST_HARD_REG_BIT (used, regno)
382 && HARD_REGNO_MODE_OK (regno, mode))
383 {
384 register int j;
385 register int size1 = HARD_REGNO_NREGS (regno, mode);
386 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
387 if (j == size1)
388 {
389 CLEAR_HARD_REG_SET (this_reg);
390 while (--j >= 0)
391 SET_HARD_REG_BIT (this_reg, regno + j);
392 for (ins = born_insn; ins < dead_insn; ins++)
393 {
394 IOR_HARD_REG_SET (after_insn_hard_regs[ins], this_reg);
395 }
396 return regno;
397 }
398 #ifndef REG_ALLOC_ORDER
399 i += j; /* Skip starting points we know will lose */
400 #endif
401 }
402 }
403
404 return -1;
405 }
406 \f
407 /* Walk X, noting all assignments and references to registers
408 and recording what they imply about life spans.
409 INSN is the current insn, supplied so we can find its suid. */
410
411 static void
412 stupid_mark_refs (x, insn)
413 rtx x, insn;
414 {
415 register RTX_CODE code;
416 register char *fmt;
417 register int regno, i;
418
419 if (x == 0)
420 return;
421
422 code = GET_CODE (x);
423
424 if (code == SET || code == CLOBBER)
425 {
426 if (SET_DEST (x) != 0 && GET_CODE (SET_DEST (x)) == REG)
427 {
428 /* Register is being assigned. */
429 regno = REGNO (SET_DEST (x));
430
431 /* For hard regs, update the where-live info. */
432 if (regno < FIRST_PSEUDO_REGISTER)
433 {
434 register int j
435 = HARD_REGNO_NREGS (regno, GET_MODE (SET_DEST (x)));
436
437 while (--j >= 0)
438 {
439 regs_ever_live[regno+j] = 1;
440 regs_live[regno+j] = 0;
441
442 /* The following line is for unused outputs;
443 they do get stored even though never used again. */
444 MARK_LIVE_AFTER (insn, regno);
445
446 /* When a hard reg is clobbered, mark it in use
447 just before this insn, so it is live all through. */
448 if (code == CLOBBER && INSN_SUID (insn) > 0)
449 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (insn) - 1],
450 regno);
451 }
452 }
453 /* For pseudo regs, record where born, where dead, number of
454 times used, and whether live across a call. */
455 else
456 {
457 /* Update the life-interval bounds of this pseudo reg. */
458
459 /* When a pseudo-reg is CLOBBERed, it is born just before
460 the clobbering insn. When setting, just after. */
461 int where_born = INSN_SUID (insn) - (code == CLOBBER);
462
463 reg_where_born[regno] = where_born;
464
465 /* The reg must live at least one insn even
466 in it is never again used--because it has to go
467 in SOME hard reg. Mark it as dying after the current
468 insn so that it will conflict with any other outputs of
469 this insn. */
470 if (reg_where_dead[regno] < where_born + 2)
471 {
472 reg_where_dead[regno] = where_born + 2;
473 regs_live[regno] = 1;
474 }
475
476 /* Count the refs of this reg. */
477 reg_n_refs[regno]++;
478
479 if (last_call_suid < reg_where_dead[regno])
480 reg_n_calls_crossed[regno] += 1;
481 }
482 }
483
484 /* Record references from the value being set,
485 or from addresses in the place being set if that's not a reg.
486 If setting a SUBREG, we treat the entire reg as *used*. */
487 if (code == SET)
488 {
489 stupid_mark_refs (SET_SRC (x), insn);
490 if (GET_CODE (SET_DEST (x)) != REG)
491 stupid_mark_refs (SET_DEST (x), insn);
492 }
493 return;
494 }
495
496 else if (code == SUBREG
497 && GET_CODE (SUBREG_REG (x)) == REG
498 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
499 && (GET_MODE_SIZE (GET_MODE (x))
500 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
501 && (INTEGRAL_MODE_P (GET_MODE (x))
502 || INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (x)))))
503 regs_change_size[REGNO (SUBREG_REG (x))] = 1;
504
505 /* Register value being used, not set. */
506
507 else if (code == REG)
508 {
509 regno = REGNO (x);
510 if (regno < FIRST_PSEUDO_REGISTER)
511 {
512 /* Hard reg: mark it live for continuing scan of previous insns. */
513 register int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
514 while (--j >= 0)
515 {
516 regs_ever_live[regno+j] = 1;
517 regs_live[regno+j] = 1;
518 }
519 }
520 else
521 {
522 /* Pseudo reg: record first use, last use and number of uses. */
523
524 reg_where_born[regno] = INSN_SUID (insn);
525 reg_n_refs[regno]++;
526 if (regs_live[regno] == 0)
527 {
528 regs_live[regno] = 1;
529 reg_where_dead[regno] = INSN_SUID (insn);
530 }
531 }
532 return;
533 }
534
535 /* Recursive scan of all other rtx's. */
536
537 fmt = GET_RTX_FORMAT (code);
538 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
539 {
540 if (fmt[i] == 'e')
541 stupid_mark_refs (XEXP (x, i), insn);
542 if (fmt[i] == 'E')
543 {
544 register int j;
545 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
546 stupid_mark_refs (XVECEXP (x, i, j), insn);
547 }
548 }
549 }
This page took 0.066888 seconds and 6 git commands to generate.