]> gcc.gnu.org Git - gcc.git/blob - gcc/stor-layout.c
coretypes.h: Include hash-table.h and hash-set.h for host files.
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "input.h"
26 #include "alias.h"
27 #include "symtab.h"
28 #include "tree.h"
29 #include "fold-const.h"
30 #include "stor-layout.h"
31 #include "stringpool.h"
32 #include "varasm.h"
33 #include "print-tree.h"
34 #include "rtl.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "hard-reg-set.h"
38 #include "function.h"
39 #include "insn-config.h"
40 #include "expmed.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "emit-rtl.h"
45 #include "stmt.h"
46 #include "expr.h"
47 #include "diagnostic-core.h"
48 #include "target.h"
49 #include "langhooks.h"
50 #include "regs.h"
51 #include "params.h"
52 #include "is-a.h"
53 #include "plugin-api.h"
54 #include "ipa-ref.h"
55 #include "cgraph.h"
56 #include "tree-inline.h"
57 #include "tree-dump.h"
58 #include "gimplify.h"
59
60 /* Data type for the expressions representing sizes of data types.
61 It is the first integer type laid out. */
62 tree sizetype_tab[(int) stk_type_kind_last];
63
64 /* If nonzero, this is an upper limit on alignment of structure fields.
65 The value is measured in bits. */
66 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
67
68 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
69 in the address spaces' address_mode, not pointer_mode. Set only by
70 internal_reference_types called only by a front end. */
71 static int reference_types_internal = 0;
72
73 static tree self_referential_size (tree);
74 static void finalize_record_size (record_layout_info);
75 static void finalize_type_size (tree);
76 static void place_union_field (record_layout_info, tree);
77 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
78 HOST_WIDE_INT, tree);
79 extern void debug_rli (record_layout_info);
80 \f
81 /* Show that REFERENCE_TYPES are internal and should use address_mode.
82 Called only by front end. */
83
84 void
85 internal_reference_types (void)
86 {
87 reference_types_internal = 1;
88 }
89
90 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
91 to serve as the actual size-expression for a type or decl. */
92
93 tree
94 variable_size (tree size)
95 {
96 /* Obviously. */
97 if (TREE_CONSTANT (size))
98 return size;
99
100 /* If the size is self-referential, we can't make a SAVE_EXPR (see
101 save_expr for the rationale). But we can do something else. */
102 if (CONTAINS_PLACEHOLDER_P (size))
103 return self_referential_size (size);
104
105 /* If we are in the global binding level, we can't make a SAVE_EXPR
106 since it may end up being shared across functions, so it is up
107 to the front-end to deal with this case. */
108 if (lang_hooks.decls.global_bindings_p ())
109 return size;
110
111 return save_expr (size);
112 }
113
114 /* An array of functions used for self-referential size computation. */
115 static GTY(()) vec<tree, va_gc> *size_functions;
116
117 /* Return true if T is a self-referential component reference. */
118
119 static bool
120 self_referential_component_ref_p (tree t)
121 {
122 if (TREE_CODE (t) != COMPONENT_REF)
123 return false;
124
125 while (REFERENCE_CLASS_P (t))
126 t = TREE_OPERAND (t, 0);
127
128 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
129 }
130
131 /* Similar to copy_tree_r but do not copy component references involving
132 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
133 and substituted in substitute_in_expr. */
134
135 static tree
136 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
137 {
138 enum tree_code code = TREE_CODE (*tp);
139
140 /* Stop at types, decls, constants like copy_tree_r. */
141 if (TREE_CODE_CLASS (code) == tcc_type
142 || TREE_CODE_CLASS (code) == tcc_declaration
143 || TREE_CODE_CLASS (code) == tcc_constant)
144 {
145 *walk_subtrees = 0;
146 return NULL_TREE;
147 }
148
149 /* This is the pattern built in ada/make_aligning_type. */
150 else if (code == ADDR_EXPR
151 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
152 {
153 *walk_subtrees = 0;
154 return NULL_TREE;
155 }
156
157 /* Default case: the component reference. */
158 else if (self_referential_component_ref_p (*tp))
159 {
160 *walk_subtrees = 0;
161 return NULL_TREE;
162 }
163
164 /* We're not supposed to have them in self-referential size trees
165 because we wouldn't properly control when they are evaluated.
166 However, not creating superfluous SAVE_EXPRs requires accurate
167 tracking of readonly-ness all the way down to here, which we
168 cannot always guarantee in practice. So punt in this case. */
169 else if (code == SAVE_EXPR)
170 return error_mark_node;
171
172 else if (code == STATEMENT_LIST)
173 gcc_unreachable ();
174
175 return copy_tree_r (tp, walk_subtrees, data);
176 }
177
178 /* Given a SIZE expression that is self-referential, return an equivalent
179 expression to serve as the actual size expression for a type. */
180
181 static tree
182 self_referential_size (tree size)
183 {
184 static unsigned HOST_WIDE_INT fnno = 0;
185 vec<tree> self_refs = vNULL;
186 tree param_type_list = NULL, param_decl_list = NULL;
187 tree t, ref, return_type, fntype, fnname, fndecl;
188 unsigned int i;
189 char buf[128];
190 vec<tree, va_gc> *args = NULL;
191
192 /* Do not factor out simple operations. */
193 t = skip_simple_constant_arithmetic (size);
194 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
195 return size;
196
197 /* Collect the list of self-references in the expression. */
198 find_placeholder_in_expr (size, &self_refs);
199 gcc_assert (self_refs.length () > 0);
200
201 /* Obtain a private copy of the expression. */
202 t = size;
203 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
204 return size;
205 size = t;
206
207 /* Build the parameter and argument lists in parallel; also
208 substitute the former for the latter in the expression. */
209 vec_alloc (args, self_refs.length ());
210 FOR_EACH_VEC_ELT (self_refs, i, ref)
211 {
212 tree subst, param_name, param_type, param_decl;
213
214 if (DECL_P (ref))
215 {
216 /* We shouldn't have true variables here. */
217 gcc_assert (TREE_READONLY (ref));
218 subst = ref;
219 }
220 /* This is the pattern built in ada/make_aligning_type. */
221 else if (TREE_CODE (ref) == ADDR_EXPR)
222 subst = ref;
223 /* Default case: the component reference. */
224 else
225 subst = TREE_OPERAND (ref, 1);
226
227 sprintf (buf, "p%d", i);
228 param_name = get_identifier (buf);
229 param_type = TREE_TYPE (ref);
230 param_decl
231 = build_decl (input_location, PARM_DECL, param_name, param_type);
232 DECL_ARG_TYPE (param_decl) = param_type;
233 DECL_ARTIFICIAL (param_decl) = 1;
234 TREE_READONLY (param_decl) = 1;
235
236 size = substitute_in_expr (size, subst, param_decl);
237
238 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
239 param_decl_list = chainon (param_decl, param_decl_list);
240 args->quick_push (ref);
241 }
242
243 self_refs.release ();
244
245 /* Append 'void' to indicate that the number of parameters is fixed. */
246 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
247
248 /* The 3 lists have been created in reverse order. */
249 param_type_list = nreverse (param_type_list);
250 param_decl_list = nreverse (param_decl_list);
251
252 /* Build the function type. */
253 return_type = TREE_TYPE (size);
254 fntype = build_function_type (return_type, param_type_list);
255
256 /* Build the function declaration. */
257 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
258 fnname = get_file_function_name (buf);
259 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
260 for (t = param_decl_list; t; t = DECL_CHAIN (t))
261 DECL_CONTEXT (t) = fndecl;
262 DECL_ARGUMENTS (fndecl) = param_decl_list;
263 DECL_RESULT (fndecl)
264 = build_decl (input_location, RESULT_DECL, 0, return_type);
265 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
266
267 /* The function has been created by the compiler and we don't
268 want to emit debug info for it. */
269 DECL_ARTIFICIAL (fndecl) = 1;
270 DECL_IGNORED_P (fndecl) = 1;
271
272 /* It is supposed to be "const" and never throw. */
273 TREE_READONLY (fndecl) = 1;
274 TREE_NOTHROW (fndecl) = 1;
275
276 /* We want it to be inlined when this is deemed profitable, as
277 well as discarded if every call has been integrated. */
278 DECL_DECLARED_INLINE_P (fndecl) = 1;
279
280 /* It is made up of a unique return statement. */
281 DECL_INITIAL (fndecl) = make_node (BLOCK);
282 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
283 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
284 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
285 TREE_STATIC (fndecl) = 1;
286
287 /* Put it onto the list of size functions. */
288 vec_safe_push (size_functions, fndecl);
289
290 /* Replace the original expression with a call to the size function. */
291 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
292 }
293
294 /* Take, queue and compile all the size functions. It is essential that
295 the size functions be gimplified at the very end of the compilation
296 in order to guarantee transparent handling of self-referential sizes.
297 Otherwise the GENERIC inliner would not be able to inline them back
298 at each of their call sites, thus creating artificial non-constant
299 size expressions which would trigger nasty problems later on. */
300
301 void
302 finalize_size_functions (void)
303 {
304 unsigned int i;
305 tree fndecl;
306
307 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
308 {
309 allocate_struct_function (fndecl, false);
310 set_cfun (NULL);
311 dump_function (TDI_original, fndecl);
312 gimplify_function_tree (fndecl);
313 cgraph_node::finalize_function (fndecl, false);
314 }
315
316 vec_free (size_functions);
317 }
318 \f
319 /* Return the machine mode to use for a nonscalar of SIZE bits. The
320 mode must be in class MCLASS, and have exactly that many value bits;
321 it may have padding as well. If LIMIT is nonzero, modes of wider
322 than MAX_FIXED_MODE_SIZE will not be used. */
323
324 machine_mode
325 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
326 {
327 machine_mode mode;
328 int i;
329
330 if (limit && size > MAX_FIXED_MODE_SIZE)
331 return BLKmode;
332
333 /* Get the first mode which has this size, in the specified class. */
334 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
335 mode = GET_MODE_WIDER_MODE (mode))
336 if (GET_MODE_PRECISION (mode) == size)
337 return mode;
338
339 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
340 for (i = 0; i < NUM_INT_N_ENTS; i ++)
341 if (int_n_data[i].bitsize == size
342 && int_n_enabled_p[i])
343 return int_n_data[i].m;
344
345 return BLKmode;
346 }
347
348 /* Similar, except passed a tree node. */
349
350 machine_mode
351 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
352 {
353 unsigned HOST_WIDE_INT uhwi;
354 unsigned int ui;
355
356 if (!tree_fits_uhwi_p (size))
357 return BLKmode;
358 uhwi = tree_to_uhwi (size);
359 ui = uhwi;
360 if (uhwi != ui)
361 return BLKmode;
362 return mode_for_size (ui, mclass, limit);
363 }
364
365 /* Similar, but never return BLKmode; return the narrowest mode that
366 contains at least the requested number of value bits. */
367
368 machine_mode
369 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
370 {
371 machine_mode mode = VOIDmode;
372 int i;
373
374 /* Get the first mode which has at least this size, in the
375 specified class. */
376 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
377 mode = GET_MODE_WIDER_MODE (mode))
378 if (GET_MODE_PRECISION (mode) >= size)
379 break;
380
381 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
382 for (i = 0; i < NUM_INT_N_ENTS; i ++)
383 if (int_n_data[i].bitsize >= size
384 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
385 && int_n_enabled_p[i])
386 mode = int_n_data[i].m;
387
388 if (mode == VOIDmode)
389 gcc_unreachable ();
390
391 return mode;
392 }
393
394 /* Find an integer mode of the exact same size, or BLKmode on failure. */
395
396 machine_mode
397 int_mode_for_mode (machine_mode mode)
398 {
399 switch (GET_MODE_CLASS (mode))
400 {
401 case MODE_INT:
402 case MODE_PARTIAL_INT:
403 break;
404
405 case MODE_COMPLEX_INT:
406 case MODE_COMPLEX_FLOAT:
407 case MODE_FLOAT:
408 case MODE_DECIMAL_FLOAT:
409 case MODE_VECTOR_INT:
410 case MODE_VECTOR_FLOAT:
411 case MODE_FRACT:
412 case MODE_ACCUM:
413 case MODE_UFRACT:
414 case MODE_UACCUM:
415 case MODE_VECTOR_FRACT:
416 case MODE_VECTOR_ACCUM:
417 case MODE_VECTOR_UFRACT:
418 case MODE_VECTOR_UACCUM:
419 case MODE_POINTER_BOUNDS:
420 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
421 break;
422
423 case MODE_RANDOM:
424 if (mode == BLKmode)
425 break;
426
427 /* ... fall through ... */
428
429 case MODE_CC:
430 default:
431 gcc_unreachable ();
432 }
433
434 return mode;
435 }
436
437 /* Find a mode that can be used for efficient bitwise operations on MODE.
438 Return BLKmode if no such mode exists. */
439
440 machine_mode
441 bitwise_mode_for_mode (machine_mode mode)
442 {
443 /* Quick exit if we already have a suitable mode. */
444 unsigned int bitsize = GET_MODE_BITSIZE (mode);
445 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
446 return mode;
447
448 /* Reuse the sanity checks from int_mode_for_mode. */
449 gcc_checking_assert ((int_mode_for_mode (mode), true));
450
451 /* Try to replace complex modes with complex modes. In general we
452 expect both components to be processed independently, so we only
453 care whether there is a register for the inner mode. */
454 if (COMPLEX_MODE_P (mode))
455 {
456 machine_mode trial = mode;
457 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
458 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
459 if (trial != BLKmode
460 && have_regs_of_mode[GET_MODE_INNER (trial)])
461 return trial;
462 }
463
464 /* Try to replace vector modes with vector modes. Also try using vector
465 modes if an integer mode would be too big. */
466 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
467 {
468 machine_mode trial = mode;
469 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
470 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
471 if (trial != BLKmode
472 && have_regs_of_mode[trial]
473 && targetm.vector_mode_supported_p (trial))
474 return trial;
475 }
476
477 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
478 return mode_for_size (bitsize, MODE_INT, true);
479 }
480
481 /* Find a type that can be used for efficient bitwise operations on MODE.
482 Return null if no such mode exists. */
483
484 tree
485 bitwise_type_for_mode (machine_mode mode)
486 {
487 mode = bitwise_mode_for_mode (mode);
488 if (mode == BLKmode)
489 return NULL_TREE;
490
491 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
492 tree inner_type = build_nonstandard_integer_type (inner_size, true);
493
494 if (VECTOR_MODE_P (mode))
495 return build_vector_type_for_mode (inner_type, mode);
496
497 if (COMPLEX_MODE_P (mode))
498 return build_complex_type (inner_type);
499
500 gcc_checking_assert (GET_MODE_INNER (mode) == VOIDmode);
501 return inner_type;
502 }
503
504 /* Find a mode that is suitable for representing a vector with
505 NUNITS elements of mode INNERMODE. Returns BLKmode if there
506 is no suitable mode. */
507
508 machine_mode
509 mode_for_vector (machine_mode innermode, unsigned nunits)
510 {
511 machine_mode mode;
512
513 /* First, look for a supported vector type. */
514 if (SCALAR_FLOAT_MODE_P (innermode))
515 mode = MIN_MODE_VECTOR_FLOAT;
516 else if (SCALAR_FRACT_MODE_P (innermode))
517 mode = MIN_MODE_VECTOR_FRACT;
518 else if (SCALAR_UFRACT_MODE_P (innermode))
519 mode = MIN_MODE_VECTOR_UFRACT;
520 else if (SCALAR_ACCUM_MODE_P (innermode))
521 mode = MIN_MODE_VECTOR_ACCUM;
522 else if (SCALAR_UACCUM_MODE_P (innermode))
523 mode = MIN_MODE_VECTOR_UACCUM;
524 else
525 mode = MIN_MODE_VECTOR_INT;
526
527 /* Do not check vector_mode_supported_p here. We'll do that
528 later in vector_type_mode. */
529 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
530 if (GET_MODE_NUNITS (mode) == nunits
531 && GET_MODE_INNER (mode) == innermode)
532 break;
533
534 /* For integers, try mapping it to a same-sized scalar mode. */
535 if (mode == VOIDmode
536 && GET_MODE_CLASS (innermode) == MODE_INT)
537 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
538 MODE_INT, 0);
539
540 if (mode == VOIDmode
541 || (GET_MODE_CLASS (mode) == MODE_INT
542 && !have_regs_of_mode[mode]))
543 return BLKmode;
544
545 return mode;
546 }
547
548 /* Return the alignment of MODE. This will be bounded by 1 and
549 BIGGEST_ALIGNMENT. */
550
551 unsigned int
552 get_mode_alignment (machine_mode mode)
553 {
554 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
555 }
556
557 /* Return the precision of the mode, or for a complex or vector mode the
558 precision of the mode of its elements. */
559
560 unsigned int
561 element_precision (machine_mode mode)
562 {
563 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
564 mode = GET_MODE_INNER (mode);
565
566 return GET_MODE_PRECISION (mode);
567 }
568
569 /* Return the natural mode of an array, given that it is SIZE bytes in
570 total and has elements of type ELEM_TYPE. */
571
572 static machine_mode
573 mode_for_array (tree elem_type, tree size)
574 {
575 tree elem_size;
576 unsigned HOST_WIDE_INT int_size, int_elem_size;
577 bool limit_p;
578
579 /* One-element arrays get the component type's mode. */
580 elem_size = TYPE_SIZE (elem_type);
581 if (simple_cst_equal (size, elem_size))
582 return TYPE_MODE (elem_type);
583
584 limit_p = true;
585 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
586 {
587 int_size = tree_to_uhwi (size);
588 int_elem_size = tree_to_uhwi (elem_size);
589 if (int_elem_size > 0
590 && int_size % int_elem_size == 0
591 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
592 int_size / int_elem_size))
593 limit_p = false;
594 }
595 return mode_for_size_tree (size, MODE_INT, limit_p);
596 }
597 \f
598 /* Subroutine of layout_decl: Force alignment required for the data type.
599 But if the decl itself wants greater alignment, don't override that. */
600
601 static inline void
602 do_type_align (tree type, tree decl)
603 {
604 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
605 {
606 DECL_ALIGN (decl) = TYPE_ALIGN (type);
607 if (TREE_CODE (decl) == FIELD_DECL)
608 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
609 }
610 }
611
612 /* Set the size, mode and alignment of a ..._DECL node.
613 TYPE_DECL does need this for C++.
614 Note that LABEL_DECL and CONST_DECL nodes do not need this,
615 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
616 Don't call layout_decl for them.
617
618 KNOWN_ALIGN is the amount of alignment we can assume this
619 decl has with no special effort. It is relevant only for FIELD_DECLs
620 and depends on the previous fields.
621 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
622 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
623 the record will be aligned to suit. */
624
625 void
626 layout_decl (tree decl, unsigned int known_align)
627 {
628 tree type = TREE_TYPE (decl);
629 enum tree_code code = TREE_CODE (decl);
630 rtx rtl = NULL_RTX;
631 location_t loc = DECL_SOURCE_LOCATION (decl);
632
633 if (code == CONST_DECL)
634 return;
635
636 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
637 || code == TYPE_DECL ||code == FIELD_DECL);
638
639 rtl = DECL_RTL_IF_SET (decl);
640
641 if (type == error_mark_node)
642 type = void_type_node;
643
644 /* Usually the size and mode come from the data type without change,
645 however, the front-end may set the explicit width of the field, so its
646 size may not be the same as the size of its type. This happens with
647 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
648 also happens with other fields. For example, the C++ front-end creates
649 zero-sized fields corresponding to empty base classes, and depends on
650 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
651 size in bytes from the size in bits. If we have already set the mode,
652 don't set it again since we can be called twice for FIELD_DECLs. */
653
654 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
655 if (DECL_MODE (decl) == VOIDmode)
656 DECL_MODE (decl) = TYPE_MODE (type);
657
658 if (DECL_SIZE (decl) == 0)
659 {
660 DECL_SIZE (decl) = TYPE_SIZE (type);
661 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
662 }
663 else if (DECL_SIZE_UNIT (decl) == 0)
664 DECL_SIZE_UNIT (decl)
665 = fold_convert_loc (loc, sizetype,
666 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
667 bitsize_unit_node));
668
669 if (code != FIELD_DECL)
670 /* For non-fields, update the alignment from the type. */
671 do_type_align (type, decl);
672 else
673 /* For fields, it's a bit more complicated... */
674 {
675 bool old_user_align = DECL_USER_ALIGN (decl);
676 bool zero_bitfield = false;
677 bool packed_p = DECL_PACKED (decl);
678 unsigned int mfa;
679
680 if (DECL_BIT_FIELD (decl))
681 {
682 DECL_BIT_FIELD_TYPE (decl) = type;
683
684 /* A zero-length bit-field affects the alignment of the next
685 field. In essence such bit-fields are not influenced by
686 any packing due to #pragma pack or attribute packed. */
687 if (integer_zerop (DECL_SIZE (decl))
688 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
689 {
690 zero_bitfield = true;
691 packed_p = false;
692 if (PCC_BITFIELD_TYPE_MATTERS)
693 do_type_align (type, decl);
694 else
695 {
696 #ifdef EMPTY_FIELD_BOUNDARY
697 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
698 {
699 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
700 DECL_USER_ALIGN (decl) = 0;
701 }
702 #endif
703 }
704 }
705
706 /* See if we can use an ordinary integer mode for a bit-field.
707 Conditions are: a fixed size that is correct for another mode,
708 occupying a complete byte or bytes on proper boundary. */
709 if (TYPE_SIZE (type) != 0
710 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
711 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
712 {
713 machine_mode xmode
714 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
715 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
716
717 if (xmode != BLKmode
718 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
719 && (known_align == 0 || known_align >= xalign))
720 {
721 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
722 DECL_MODE (decl) = xmode;
723 DECL_BIT_FIELD (decl) = 0;
724 }
725 }
726
727 /* Turn off DECL_BIT_FIELD if we won't need it set. */
728 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
729 && known_align >= TYPE_ALIGN (type)
730 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
731 DECL_BIT_FIELD (decl) = 0;
732 }
733 else if (packed_p && DECL_USER_ALIGN (decl))
734 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
735 round up; we'll reduce it again below. We want packing to
736 supersede USER_ALIGN inherited from the type, but defer to
737 alignment explicitly specified on the field decl. */;
738 else
739 do_type_align (type, decl);
740
741 /* If the field is packed and not explicitly aligned, give it the
742 minimum alignment. Note that do_type_align may set
743 DECL_USER_ALIGN, so we need to check old_user_align instead. */
744 if (packed_p
745 && !old_user_align)
746 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
747
748 if (! packed_p && ! DECL_USER_ALIGN (decl))
749 {
750 /* Some targets (i.e. i386, VMS) limit struct field alignment
751 to a lower boundary than alignment of variables unless
752 it was overridden by attribute aligned. */
753 #ifdef BIGGEST_FIELD_ALIGNMENT
754 DECL_ALIGN (decl)
755 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
756 #endif
757 #ifdef ADJUST_FIELD_ALIGN
758 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
759 #endif
760 }
761
762 if (zero_bitfield)
763 mfa = initial_max_fld_align * BITS_PER_UNIT;
764 else
765 mfa = maximum_field_alignment;
766 /* Should this be controlled by DECL_USER_ALIGN, too? */
767 if (mfa != 0)
768 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
769 }
770
771 /* Evaluate nonconstant size only once, either now or as soon as safe. */
772 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
773 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
774 if (DECL_SIZE_UNIT (decl) != 0
775 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
776 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
777
778 /* If requested, warn about definitions of large data objects. */
779 if (warn_larger_than
780 && (code == VAR_DECL || code == PARM_DECL)
781 && ! DECL_EXTERNAL (decl))
782 {
783 tree size = DECL_SIZE_UNIT (decl);
784
785 if (size != 0 && TREE_CODE (size) == INTEGER_CST
786 && compare_tree_int (size, larger_than_size) > 0)
787 {
788 int size_as_int = TREE_INT_CST_LOW (size);
789
790 if (compare_tree_int (size, size_as_int) == 0)
791 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
792 else
793 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
794 decl, larger_than_size);
795 }
796 }
797
798 /* If the RTL was already set, update its mode and mem attributes. */
799 if (rtl)
800 {
801 PUT_MODE (rtl, DECL_MODE (decl));
802 SET_DECL_RTL (decl, 0);
803 set_mem_attributes (rtl, decl, 1);
804 SET_DECL_RTL (decl, rtl);
805 }
806 }
807
808 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
809 a previous call to layout_decl and calls it again. */
810
811 void
812 relayout_decl (tree decl)
813 {
814 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
815 DECL_MODE (decl) = VOIDmode;
816 if (!DECL_USER_ALIGN (decl))
817 DECL_ALIGN (decl) = 0;
818 SET_DECL_RTL (decl, 0);
819
820 layout_decl (decl, 0);
821 }
822 \f
823 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
824 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
825 is to be passed to all other layout functions for this record. It is the
826 responsibility of the caller to call `free' for the storage returned.
827 Note that garbage collection is not permitted until we finish laying
828 out the record. */
829
830 record_layout_info
831 start_record_layout (tree t)
832 {
833 record_layout_info rli = XNEW (struct record_layout_info_s);
834
835 rli->t = t;
836
837 /* If the type has a minimum specified alignment (via an attribute
838 declaration, for example) use it -- otherwise, start with a
839 one-byte alignment. */
840 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
841 rli->unpacked_align = rli->record_align;
842 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
843
844 #ifdef STRUCTURE_SIZE_BOUNDARY
845 /* Packed structures don't need to have minimum size. */
846 if (! TYPE_PACKED (t))
847 {
848 unsigned tmp;
849
850 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
851 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
852 if (maximum_field_alignment != 0)
853 tmp = MIN (tmp, maximum_field_alignment);
854 rli->record_align = MAX (rli->record_align, tmp);
855 }
856 #endif
857
858 rli->offset = size_zero_node;
859 rli->bitpos = bitsize_zero_node;
860 rli->prev_field = 0;
861 rli->pending_statics = 0;
862 rli->packed_maybe_necessary = 0;
863 rli->remaining_in_alignment = 0;
864
865 return rli;
866 }
867
868 /* Return the combined bit position for the byte offset OFFSET and the
869 bit position BITPOS.
870
871 These functions operate on byte and bit positions present in FIELD_DECLs
872 and assume that these expressions result in no (intermediate) overflow.
873 This assumption is necessary to fold the expressions as much as possible,
874 so as to avoid creating artificially variable-sized types in languages
875 supporting variable-sized types like Ada. */
876
877 tree
878 bit_from_pos (tree offset, tree bitpos)
879 {
880 if (TREE_CODE (offset) == PLUS_EXPR)
881 offset = size_binop (PLUS_EXPR,
882 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
883 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
884 else
885 offset = fold_convert (bitsizetype, offset);
886 return size_binop (PLUS_EXPR, bitpos,
887 size_binop (MULT_EXPR, offset, bitsize_unit_node));
888 }
889
890 /* Return the combined truncated byte position for the byte offset OFFSET and
891 the bit position BITPOS. */
892
893 tree
894 byte_from_pos (tree offset, tree bitpos)
895 {
896 tree bytepos;
897 if (TREE_CODE (bitpos) == MULT_EXPR
898 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
899 bytepos = TREE_OPERAND (bitpos, 0);
900 else
901 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
902 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
903 }
904
905 /* Split the bit position POS into a byte offset *POFFSET and a bit
906 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
907
908 void
909 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
910 tree pos)
911 {
912 tree toff_align = bitsize_int (off_align);
913 if (TREE_CODE (pos) == MULT_EXPR
914 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
915 {
916 *poffset = size_binop (MULT_EXPR,
917 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
918 size_int (off_align / BITS_PER_UNIT));
919 *pbitpos = bitsize_zero_node;
920 }
921 else
922 {
923 *poffset = size_binop (MULT_EXPR,
924 fold_convert (sizetype,
925 size_binop (FLOOR_DIV_EXPR, pos,
926 toff_align)),
927 size_int (off_align / BITS_PER_UNIT));
928 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
929 }
930 }
931
932 /* Given a pointer to bit and byte offsets and an offset alignment,
933 normalize the offsets so they are within the alignment. */
934
935 void
936 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
937 {
938 /* If the bit position is now larger than it should be, adjust it
939 downwards. */
940 if (compare_tree_int (*pbitpos, off_align) >= 0)
941 {
942 tree offset, bitpos;
943 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
944 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
945 *pbitpos = bitpos;
946 }
947 }
948
949 /* Print debugging information about the information in RLI. */
950
951 DEBUG_FUNCTION void
952 debug_rli (record_layout_info rli)
953 {
954 print_node_brief (stderr, "type", rli->t, 0);
955 print_node_brief (stderr, "\noffset", rli->offset, 0);
956 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
957
958 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
959 rli->record_align, rli->unpacked_align,
960 rli->offset_align);
961
962 /* The ms_struct code is the only that uses this. */
963 if (targetm.ms_bitfield_layout_p (rli->t))
964 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
965
966 if (rli->packed_maybe_necessary)
967 fprintf (stderr, "packed may be necessary\n");
968
969 if (!vec_safe_is_empty (rli->pending_statics))
970 {
971 fprintf (stderr, "pending statics:\n");
972 debug_vec_tree (rli->pending_statics);
973 }
974 }
975
976 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
977 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
978
979 void
980 normalize_rli (record_layout_info rli)
981 {
982 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
983 }
984
985 /* Returns the size in bytes allocated so far. */
986
987 tree
988 rli_size_unit_so_far (record_layout_info rli)
989 {
990 return byte_from_pos (rli->offset, rli->bitpos);
991 }
992
993 /* Returns the size in bits allocated so far. */
994
995 tree
996 rli_size_so_far (record_layout_info rli)
997 {
998 return bit_from_pos (rli->offset, rli->bitpos);
999 }
1000
1001 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
1002 the next available location within the record is given by KNOWN_ALIGN.
1003 Update the variable alignment fields in RLI, and return the alignment
1004 to give the FIELD. */
1005
1006 unsigned int
1007 update_alignment_for_field (record_layout_info rli, tree field,
1008 unsigned int known_align)
1009 {
1010 /* The alignment required for FIELD. */
1011 unsigned int desired_align;
1012 /* The type of this field. */
1013 tree type = TREE_TYPE (field);
1014 /* True if the field was explicitly aligned by the user. */
1015 bool user_align;
1016 bool is_bitfield;
1017
1018 /* Do not attempt to align an ERROR_MARK node */
1019 if (TREE_CODE (type) == ERROR_MARK)
1020 return 0;
1021
1022 /* Lay out the field so we know what alignment it needs. */
1023 layout_decl (field, known_align);
1024 desired_align = DECL_ALIGN (field);
1025 user_align = DECL_USER_ALIGN (field);
1026
1027 is_bitfield = (type != error_mark_node
1028 && DECL_BIT_FIELD_TYPE (field)
1029 && ! integer_zerop (TYPE_SIZE (type)));
1030
1031 /* Record must have at least as much alignment as any field.
1032 Otherwise, the alignment of the field within the record is
1033 meaningless. */
1034 if (targetm.ms_bitfield_layout_p (rli->t))
1035 {
1036 /* Here, the alignment of the underlying type of a bitfield can
1037 affect the alignment of a record; even a zero-sized field
1038 can do this. The alignment should be to the alignment of
1039 the type, except that for zero-size bitfields this only
1040 applies if there was an immediately prior, nonzero-size
1041 bitfield. (That's the way it is, experimentally.) */
1042 if ((!is_bitfield && !DECL_PACKED (field))
1043 || ((DECL_SIZE (field) == NULL_TREE
1044 || !integer_zerop (DECL_SIZE (field)))
1045 ? !DECL_PACKED (field)
1046 : (rli->prev_field
1047 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1048 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1049 {
1050 unsigned int type_align = TYPE_ALIGN (type);
1051 type_align = MAX (type_align, desired_align);
1052 if (maximum_field_alignment != 0)
1053 type_align = MIN (type_align, maximum_field_alignment);
1054 rli->record_align = MAX (rli->record_align, type_align);
1055 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1056 }
1057 }
1058 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1059 {
1060 /* Named bit-fields cause the entire structure to have the
1061 alignment implied by their type. Some targets also apply the same
1062 rules to unnamed bitfields. */
1063 if (DECL_NAME (field) != 0
1064 || targetm.align_anon_bitfield ())
1065 {
1066 unsigned int type_align = TYPE_ALIGN (type);
1067
1068 #ifdef ADJUST_FIELD_ALIGN
1069 if (! TYPE_USER_ALIGN (type))
1070 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1071 #endif
1072
1073 /* Targets might chose to handle unnamed and hence possibly
1074 zero-width bitfield. Those are not influenced by #pragmas
1075 or packed attributes. */
1076 if (integer_zerop (DECL_SIZE (field)))
1077 {
1078 if (initial_max_fld_align)
1079 type_align = MIN (type_align,
1080 initial_max_fld_align * BITS_PER_UNIT);
1081 }
1082 else if (maximum_field_alignment != 0)
1083 type_align = MIN (type_align, maximum_field_alignment);
1084 else if (DECL_PACKED (field))
1085 type_align = MIN (type_align, BITS_PER_UNIT);
1086
1087 /* The alignment of the record is increased to the maximum
1088 of the current alignment, the alignment indicated on the
1089 field (i.e., the alignment specified by an __aligned__
1090 attribute), and the alignment indicated by the type of
1091 the field. */
1092 rli->record_align = MAX (rli->record_align, desired_align);
1093 rli->record_align = MAX (rli->record_align, type_align);
1094
1095 if (warn_packed)
1096 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1097 user_align |= TYPE_USER_ALIGN (type);
1098 }
1099 }
1100 else
1101 {
1102 rli->record_align = MAX (rli->record_align, desired_align);
1103 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1104 }
1105
1106 TYPE_USER_ALIGN (rli->t) |= user_align;
1107
1108 return desired_align;
1109 }
1110
1111 /* Called from place_field to handle unions. */
1112
1113 static void
1114 place_union_field (record_layout_info rli, tree field)
1115 {
1116 update_alignment_for_field (rli, field, /*known_align=*/0);
1117
1118 DECL_FIELD_OFFSET (field) = size_zero_node;
1119 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1120 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1121
1122 /* If this is an ERROR_MARK return *after* having set the
1123 field at the start of the union. This helps when parsing
1124 invalid fields. */
1125 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1126 return;
1127
1128 /* We assume the union's size will be a multiple of a byte so we don't
1129 bother with BITPOS. */
1130 if (TREE_CODE (rli->t) == UNION_TYPE)
1131 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1132 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1133 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1134 DECL_SIZE_UNIT (field), rli->offset);
1135 }
1136
1137 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1138 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1139 units of alignment than the underlying TYPE. */
1140 static int
1141 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1142 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1143 {
1144 /* Note that the calculation of OFFSET might overflow; we calculate it so
1145 that we still get the right result as long as ALIGN is a power of two. */
1146 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1147
1148 offset = offset % align;
1149 return ((offset + size + align - 1) / align
1150 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1151 }
1152
1153 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1154 is a FIELD_DECL to be added after those fields already present in
1155 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1156 callers that desire that behavior must manually perform that step.) */
1157
1158 void
1159 place_field (record_layout_info rli, tree field)
1160 {
1161 /* The alignment required for FIELD. */
1162 unsigned int desired_align;
1163 /* The alignment FIELD would have if we just dropped it into the
1164 record as it presently stands. */
1165 unsigned int known_align;
1166 unsigned int actual_align;
1167 /* The type of this field. */
1168 tree type = TREE_TYPE (field);
1169
1170 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1171
1172 /* If FIELD is static, then treat it like a separate variable, not
1173 really like a structure field. If it is a FUNCTION_DECL, it's a
1174 method. In both cases, all we do is lay out the decl, and we do
1175 it *after* the record is laid out. */
1176 if (TREE_CODE (field) == VAR_DECL)
1177 {
1178 vec_safe_push (rli->pending_statics, field);
1179 return;
1180 }
1181
1182 /* Enumerators and enum types which are local to this class need not
1183 be laid out. Likewise for initialized constant fields. */
1184 else if (TREE_CODE (field) != FIELD_DECL)
1185 return;
1186
1187 /* Unions are laid out very differently than records, so split
1188 that code off to another function. */
1189 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1190 {
1191 place_union_field (rli, field);
1192 return;
1193 }
1194
1195 else if (TREE_CODE (type) == ERROR_MARK)
1196 {
1197 /* Place this field at the current allocation position, so we
1198 maintain monotonicity. */
1199 DECL_FIELD_OFFSET (field) = rli->offset;
1200 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1201 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1202 return;
1203 }
1204
1205 /* Work out the known alignment so far. Note that A & (-A) is the
1206 value of the least-significant bit in A that is one. */
1207 if (! integer_zerop (rli->bitpos))
1208 known_align = (tree_to_uhwi (rli->bitpos)
1209 & - tree_to_uhwi (rli->bitpos));
1210 else if (integer_zerop (rli->offset))
1211 known_align = 0;
1212 else if (tree_fits_uhwi_p (rli->offset))
1213 known_align = (BITS_PER_UNIT
1214 * (tree_to_uhwi (rli->offset)
1215 & - tree_to_uhwi (rli->offset)));
1216 else
1217 known_align = rli->offset_align;
1218
1219 desired_align = update_alignment_for_field (rli, field, known_align);
1220 if (known_align == 0)
1221 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1222
1223 if (warn_packed && DECL_PACKED (field))
1224 {
1225 if (known_align >= TYPE_ALIGN (type))
1226 {
1227 if (TYPE_ALIGN (type) > desired_align)
1228 {
1229 if (STRICT_ALIGNMENT)
1230 warning (OPT_Wattributes, "packed attribute causes "
1231 "inefficient alignment for %q+D", field);
1232 /* Don't warn if DECL_PACKED was set by the type. */
1233 else if (!TYPE_PACKED (rli->t))
1234 warning (OPT_Wattributes, "packed attribute is "
1235 "unnecessary for %q+D", field);
1236 }
1237 }
1238 else
1239 rli->packed_maybe_necessary = 1;
1240 }
1241
1242 /* Does this field automatically have alignment it needs by virtue
1243 of the fields that precede it and the record's own alignment? */
1244 if (known_align < desired_align)
1245 {
1246 /* No, we need to skip space before this field.
1247 Bump the cumulative size to multiple of field alignment. */
1248
1249 if (!targetm.ms_bitfield_layout_p (rli->t)
1250 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1251 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1252
1253 /* If the alignment is still within offset_align, just align
1254 the bit position. */
1255 if (desired_align < rli->offset_align)
1256 rli->bitpos = round_up (rli->bitpos, desired_align);
1257 else
1258 {
1259 /* First adjust OFFSET by the partial bits, then align. */
1260 rli->offset
1261 = size_binop (PLUS_EXPR, rli->offset,
1262 fold_convert (sizetype,
1263 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1264 bitsize_unit_node)));
1265 rli->bitpos = bitsize_zero_node;
1266
1267 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1268 }
1269
1270 if (! TREE_CONSTANT (rli->offset))
1271 rli->offset_align = desired_align;
1272 if (targetm.ms_bitfield_layout_p (rli->t))
1273 rli->prev_field = NULL;
1274 }
1275
1276 /* Handle compatibility with PCC. Note that if the record has any
1277 variable-sized fields, we need not worry about compatibility. */
1278 if (PCC_BITFIELD_TYPE_MATTERS
1279 && ! targetm.ms_bitfield_layout_p (rli->t)
1280 && TREE_CODE (field) == FIELD_DECL
1281 && type != error_mark_node
1282 && DECL_BIT_FIELD (field)
1283 && (! DECL_PACKED (field)
1284 /* Enter for these packed fields only to issue a warning. */
1285 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1286 && maximum_field_alignment == 0
1287 && ! integer_zerop (DECL_SIZE (field))
1288 && tree_fits_uhwi_p (DECL_SIZE (field))
1289 && tree_fits_uhwi_p (rli->offset)
1290 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1291 {
1292 unsigned int type_align = TYPE_ALIGN (type);
1293 tree dsize = DECL_SIZE (field);
1294 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1295 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1296 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1297
1298 #ifdef ADJUST_FIELD_ALIGN
1299 if (! TYPE_USER_ALIGN (type))
1300 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1301 #endif
1302
1303 /* A bit field may not span more units of alignment of its type
1304 than its type itself. Advance to next boundary if necessary. */
1305 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1306 {
1307 if (DECL_PACKED (field))
1308 {
1309 if (warn_packed_bitfield_compat == 1)
1310 inform
1311 (input_location,
1312 "offset of packed bit-field %qD has changed in GCC 4.4",
1313 field);
1314 }
1315 else
1316 rli->bitpos = round_up (rli->bitpos, type_align);
1317 }
1318
1319 if (! DECL_PACKED (field))
1320 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1321 }
1322
1323 #ifdef BITFIELD_NBYTES_LIMITED
1324 if (BITFIELD_NBYTES_LIMITED
1325 && ! targetm.ms_bitfield_layout_p (rli->t)
1326 && TREE_CODE (field) == FIELD_DECL
1327 && type != error_mark_node
1328 && DECL_BIT_FIELD_TYPE (field)
1329 && ! DECL_PACKED (field)
1330 && ! integer_zerop (DECL_SIZE (field))
1331 && tree_fits_uhwi_p (DECL_SIZE (field))
1332 && tree_fits_uhwi_p (rli->offset)
1333 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1334 {
1335 unsigned int type_align = TYPE_ALIGN (type);
1336 tree dsize = DECL_SIZE (field);
1337 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1338 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1339 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1340
1341 #ifdef ADJUST_FIELD_ALIGN
1342 if (! TYPE_USER_ALIGN (type))
1343 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1344 #endif
1345
1346 if (maximum_field_alignment != 0)
1347 type_align = MIN (type_align, maximum_field_alignment);
1348 /* ??? This test is opposite the test in the containing if
1349 statement, so this code is unreachable currently. */
1350 else if (DECL_PACKED (field))
1351 type_align = MIN (type_align, BITS_PER_UNIT);
1352
1353 /* A bit field may not span the unit of alignment of its type.
1354 Advance to next boundary if necessary. */
1355 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1356 rli->bitpos = round_up (rli->bitpos, type_align);
1357
1358 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1359 }
1360 #endif
1361
1362 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1363 A subtlety:
1364 When a bit field is inserted into a packed record, the whole
1365 size of the underlying type is used by one or more same-size
1366 adjacent bitfields. (That is, if its long:3, 32 bits is
1367 used in the record, and any additional adjacent long bitfields are
1368 packed into the same chunk of 32 bits. However, if the size
1369 changes, a new field of that size is allocated.) In an unpacked
1370 record, this is the same as using alignment, but not equivalent
1371 when packing.
1372
1373 Note: for compatibility, we use the type size, not the type alignment
1374 to determine alignment, since that matches the documentation */
1375
1376 if (targetm.ms_bitfield_layout_p (rli->t))
1377 {
1378 tree prev_saved = rli->prev_field;
1379 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1380
1381 /* This is a bitfield if it exists. */
1382 if (rli->prev_field)
1383 {
1384 /* If both are bitfields, nonzero, and the same size, this is
1385 the middle of a run. Zero declared size fields are special
1386 and handled as "end of run". (Note: it's nonzero declared
1387 size, but equal type sizes!) (Since we know that both
1388 the current and previous fields are bitfields by the
1389 time we check it, DECL_SIZE must be present for both.) */
1390 if (DECL_BIT_FIELD_TYPE (field)
1391 && !integer_zerop (DECL_SIZE (field))
1392 && !integer_zerop (DECL_SIZE (rli->prev_field))
1393 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1394 && tree_fits_uhwi_p (TYPE_SIZE (type))
1395 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1396 {
1397 /* We're in the middle of a run of equal type size fields; make
1398 sure we realign if we run out of bits. (Not decl size,
1399 type size!) */
1400 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1401
1402 if (rli->remaining_in_alignment < bitsize)
1403 {
1404 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1405
1406 /* out of bits; bump up to next 'word'. */
1407 rli->bitpos
1408 = size_binop (PLUS_EXPR, rli->bitpos,
1409 bitsize_int (rli->remaining_in_alignment));
1410 rli->prev_field = field;
1411 if (typesize < bitsize)
1412 rli->remaining_in_alignment = 0;
1413 else
1414 rli->remaining_in_alignment = typesize - bitsize;
1415 }
1416 else
1417 rli->remaining_in_alignment -= bitsize;
1418 }
1419 else
1420 {
1421 /* End of a run: if leaving a run of bitfields of the same type
1422 size, we have to "use up" the rest of the bits of the type
1423 size.
1424
1425 Compute the new position as the sum of the size for the prior
1426 type and where we first started working on that type.
1427 Note: since the beginning of the field was aligned then
1428 of course the end will be too. No round needed. */
1429
1430 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1431 {
1432 rli->bitpos
1433 = size_binop (PLUS_EXPR, rli->bitpos,
1434 bitsize_int (rli->remaining_in_alignment));
1435 }
1436 else
1437 /* We "use up" size zero fields; the code below should behave
1438 as if the prior field was not a bitfield. */
1439 prev_saved = NULL;
1440
1441 /* Cause a new bitfield to be captured, either this time (if
1442 currently a bitfield) or next time we see one. */
1443 if (!DECL_BIT_FIELD_TYPE (field)
1444 || integer_zerop (DECL_SIZE (field)))
1445 rli->prev_field = NULL;
1446 }
1447
1448 normalize_rli (rli);
1449 }
1450
1451 /* If we're starting a new run of same type size bitfields
1452 (or a run of non-bitfields), set up the "first of the run"
1453 fields.
1454
1455 That is, if the current field is not a bitfield, or if there
1456 was a prior bitfield the type sizes differ, or if there wasn't
1457 a prior bitfield the size of the current field is nonzero.
1458
1459 Note: we must be sure to test ONLY the type size if there was
1460 a prior bitfield and ONLY for the current field being zero if
1461 there wasn't. */
1462
1463 if (!DECL_BIT_FIELD_TYPE (field)
1464 || (prev_saved != NULL
1465 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1466 : !integer_zerop (DECL_SIZE (field)) ))
1467 {
1468 /* Never smaller than a byte for compatibility. */
1469 unsigned int type_align = BITS_PER_UNIT;
1470
1471 /* (When not a bitfield), we could be seeing a flex array (with
1472 no DECL_SIZE). Since we won't be using remaining_in_alignment
1473 until we see a bitfield (and come by here again) we just skip
1474 calculating it. */
1475 if (DECL_SIZE (field) != NULL
1476 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1477 && tree_fits_uhwi_p (DECL_SIZE (field)))
1478 {
1479 unsigned HOST_WIDE_INT bitsize
1480 = tree_to_uhwi (DECL_SIZE (field));
1481 unsigned HOST_WIDE_INT typesize
1482 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1483
1484 if (typesize < bitsize)
1485 rli->remaining_in_alignment = 0;
1486 else
1487 rli->remaining_in_alignment = typesize - bitsize;
1488 }
1489
1490 /* Now align (conventionally) for the new type. */
1491 type_align = TYPE_ALIGN (TREE_TYPE (field));
1492
1493 if (maximum_field_alignment != 0)
1494 type_align = MIN (type_align, maximum_field_alignment);
1495
1496 rli->bitpos = round_up (rli->bitpos, type_align);
1497
1498 /* If we really aligned, don't allow subsequent bitfields
1499 to undo that. */
1500 rli->prev_field = NULL;
1501 }
1502 }
1503
1504 /* Offset so far becomes the position of this field after normalizing. */
1505 normalize_rli (rli);
1506 DECL_FIELD_OFFSET (field) = rli->offset;
1507 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1508 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1509
1510 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1511 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1512 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1513
1514 /* If this field ended up more aligned than we thought it would be (we
1515 approximate this by seeing if its position changed), lay out the field
1516 again; perhaps we can use an integral mode for it now. */
1517 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1518 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1519 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1520 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1521 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1522 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1523 actual_align = (BITS_PER_UNIT
1524 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1525 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1526 else
1527 actual_align = DECL_OFFSET_ALIGN (field);
1528 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1529 store / extract bit field operations will check the alignment of the
1530 record against the mode of bit fields. */
1531
1532 if (known_align != actual_align)
1533 layout_decl (field, actual_align);
1534
1535 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1536 rli->prev_field = field;
1537
1538 /* Now add size of this field to the size of the record. If the size is
1539 not constant, treat the field as being a multiple of bytes and just
1540 adjust the offset, resetting the bit position. Otherwise, apportion the
1541 size amongst the bit position and offset. First handle the case of an
1542 unspecified size, which can happen when we have an invalid nested struct
1543 definition, such as struct j { struct j { int i; } }. The error message
1544 is printed in finish_struct. */
1545 if (DECL_SIZE (field) == 0)
1546 /* Do nothing. */;
1547 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1548 || TREE_OVERFLOW (DECL_SIZE (field)))
1549 {
1550 rli->offset
1551 = size_binop (PLUS_EXPR, rli->offset,
1552 fold_convert (sizetype,
1553 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1554 bitsize_unit_node)));
1555 rli->offset
1556 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1557 rli->bitpos = bitsize_zero_node;
1558 rli->offset_align = MIN (rli->offset_align, desired_align);
1559 }
1560 else if (targetm.ms_bitfield_layout_p (rli->t))
1561 {
1562 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1563
1564 /* If we ended a bitfield before the full length of the type then
1565 pad the struct out to the full length of the last type. */
1566 if ((DECL_CHAIN (field) == NULL
1567 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1568 && DECL_BIT_FIELD_TYPE (field)
1569 && !integer_zerop (DECL_SIZE (field)))
1570 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1571 bitsize_int (rli->remaining_in_alignment));
1572
1573 normalize_rli (rli);
1574 }
1575 else
1576 {
1577 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1578 normalize_rli (rli);
1579 }
1580 }
1581
1582 /* Assuming that all the fields have been laid out, this function uses
1583 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1584 indicated by RLI. */
1585
1586 static void
1587 finalize_record_size (record_layout_info rli)
1588 {
1589 tree unpadded_size, unpadded_size_unit;
1590
1591 /* Now we want just byte and bit offsets, so set the offset alignment
1592 to be a byte and then normalize. */
1593 rli->offset_align = BITS_PER_UNIT;
1594 normalize_rli (rli);
1595
1596 /* Determine the desired alignment. */
1597 #ifdef ROUND_TYPE_ALIGN
1598 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1599 rli->record_align);
1600 #else
1601 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1602 #endif
1603
1604 /* Compute the size so far. Be sure to allow for extra bits in the
1605 size in bytes. We have guaranteed above that it will be no more
1606 than a single byte. */
1607 unpadded_size = rli_size_so_far (rli);
1608 unpadded_size_unit = rli_size_unit_so_far (rli);
1609 if (! integer_zerop (rli->bitpos))
1610 unpadded_size_unit
1611 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1612
1613 /* Round the size up to be a multiple of the required alignment. */
1614 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1615 TYPE_SIZE_UNIT (rli->t)
1616 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1617
1618 if (TREE_CONSTANT (unpadded_size)
1619 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1620 && input_location != BUILTINS_LOCATION)
1621 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1622
1623 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1624 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1625 && TREE_CONSTANT (unpadded_size))
1626 {
1627 tree unpacked_size;
1628
1629 #ifdef ROUND_TYPE_ALIGN
1630 rli->unpacked_align
1631 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1632 #else
1633 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1634 #endif
1635
1636 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1637 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1638 {
1639 if (TYPE_NAME (rli->t))
1640 {
1641 tree name;
1642
1643 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1644 name = TYPE_NAME (rli->t);
1645 else
1646 name = DECL_NAME (TYPE_NAME (rli->t));
1647
1648 if (STRICT_ALIGNMENT)
1649 warning (OPT_Wpacked, "packed attribute causes inefficient "
1650 "alignment for %qE", name);
1651 else
1652 warning (OPT_Wpacked,
1653 "packed attribute is unnecessary for %qE", name);
1654 }
1655 else
1656 {
1657 if (STRICT_ALIGNMENT)
1658 warning (OPT_Wpacked,
1659 "packed attribute causes inefficient alignment");
1660 else
1661 warning (OPT_Wpacked, "packed attribute is unnecessary");
1662 }
1663 }
1664 }
1665 }
1666
1667 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1668
1669 void
1670 compute_record_mode (tree type)
1671 {
1672 tree field;
1673 machine_mode mode = VOIDmode;
1674
1675 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1676 However, if possible, we use a mode that fits in a register
1677 instead, in order to allow for better optimization down the
1678 line. */
1679 SET_TYPE_MODE (type, BLKmode);
1680
1681 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1682 return;
1683
1684 /* A record which has any BLKmode members must itself be
1685 BLKmode; it can't go in a register. Unless the member is
1686 BLKmode only because it isn't aligned. */
1687 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1688 {
1689 if (TREE_CODE (field) != FIELD_DECL)
1690 continue;
1691
1692 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1693 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1694 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1695 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1696 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1697 || ! tree_fits_uhwi_p (bit_position (field))
1698 || DECL_SIZE (field) == 0
1699 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1700 return;
1701
1702 /* If this field is the whole struct, remember its mode so
1703 that, say, we can put a double in a class into a DF
1704 register instead of forcing it to live in the stack. */
1705 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1706 mode = DECL_MODE (field);
1707
1708 /* With some targets, it is sub-optimal to access an aligned
1709 BLKmode structure as a scalar. */
1710 if (targetm.member_type_forces_blk (field, mode))
1711 return;
1712 }
1713
1714 /* If we only have one real field; use its mode if that mode's size
1715 matches the type's size. This only applies to RECORD_TYPE. This
1716 does not apply to unions. */
1717 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1718 && tree_fits_uhwi_p (TYPE_SIZE (type))
1719 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1720 SET_TYPE_MODE (type, mode);
1721 else
1722 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1723
1724 /* If structure's known alignment is less than what the scalar
1725 mode would need, and it matters, then stick with BLKmode. */
1726 if (TYPE_MODE (type) != BLKmode
1727 && STRICT_ALIGNMENT
1728 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1729 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1730 {
1731 /* If this is the only reason this type is BLKmode, then
1732 don't force containing types to be BLKmode. */
1733 TYPE_NO_FORCE_BLK (type) = 1;
1734 SET_TYPE_MODE (type, BLKmode);
1735 }
1736 }
1737
1738 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1739 out. */
1740
1741 static void
1742 finalize_type_size (tree type)
1743 {
1744 /* Normally, use the alignment corresponding to the mode chosen.
1745 However, where strict alignment is not required, avoid
1746 over-aligning structures, since most compilers do not do this
1747 alignment. */
1748 if (TYPE_MODE (type) != BLKmode
1749 && TYPE_MODE (type) != VOIDmode
1750 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1751 {
1752 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1753
1754 /* Don't override a larger alignment requirement coming from a user
1755 alignment of one of the fields. */
1756 if (mode_align >= TYPE_ALIGN (type))
1757 {
1758 TYPE_ALIGN (type) = mode_align;
1759 TYPE_USER_ALIGN (type) = 0;
1760 }
1761 }
1762
1763 /* Do machine-dependent extra alignment. */
1764 #ifdef ROUND_TYPE_ALIGN
1765 TYPE_ALIGN (type)
1766 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1767 #endif
1768
1769 /* If we failed to find a simple way to calculate the unit size
1770 of the type, find it by division. */
1771 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1772 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1773 result will fit in sizetype. We will get more efficient code using
1774 sizetype, so we force a conversion. */
1775 TYPE_SIZE_UNIT (type)
1776 = fold_convert (sizetype,
1777 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1778 bitsize_unit_node));
1779
1780 if (TYPE_SIZE (type) != 0)
1781 {
1782 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1783 TYPE_SIZE_UNIT (type)
1784 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1785 }
1786
1787 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1788 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1789 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1790 if (TYPE_SIZE_UNIT (type) != 0
1791 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1792 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1793
1794 /* Also layout any other variants of the type. */
1795 if (TYPE_NEXT_VARIANT (type)
1796 || type != TYPE_MAIN_VARIANT (type))
1797 {
1798 tree variant;
1799 /* Record layout info of this variant. */
1800 tree size = TYPE_SIZE (type);
1801 tree size_unit = TYPE_SIZE_UNIT (type);
1802 unsigned int align = TYPE_ALIGN (type);
1803 unsigned int precision = TYPE_PRECISION (type);
1804 unsigned int user_align = TYPE_USER_ALIGN (type);
1805 machine_mode mode = TYPE_MODE (type);
1806
1807 /* Copy it into all variants. */
1808 for (variant = TYPE_MAIN_VARIANT (type);
1809 variant != 0;
1810 variant = TYPE_NEXT_VARIANT (variant))
1811 {
1812 TYPE_SIZE (variant) = size;
1813 TYPE_SIZE_UNIT (variant) = size_unit;
1814 unsigned valign = align;
1815 if (TYPE_USER_ALIGN (variant))
1816 valign = MAX (valign, TYPE_ALIGN (variant));
1817 else
1818 TYPE_USER_ALIGN (variant) = user_align;
1819 TYPE_ALIGN (variant) = valign;
1820 TYPE_PRECISION (variant) = precision;
1821 SET_TYPE_MODE (variant, mode);
1822 }
1823 }
1824 }
1825
1826 /* Return a new underlying object for a bitfield started with FIELD. */
1827
1828 static tree
1829 start_bitfield_representative (tree field)
1830 {
1831 tree repr = make_node (FIELD_DECL);
1832 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1833 /* Force the representative to begin at a BITS_PER_UNIT aligned
1834 boundary - C++ may use tail-padding of a base object to
1835 continue packing bits so the bitfield region does not start
1836 at bit zero (see g++.dg/abi/bitfield5.C for example).
1837 Unallocated bits may happen for other reasons as well,
1838 for example Ada which allows explicit bit-granular structure layout. */
1839 DECL_FIELD_BIT_OFFSET (repr)
1840 = size_binop (BIT_AND_EXPR,
1841 DECL_FIELD_BIT_OFFSET (field),
1842 bitsize_int (~(BITS_PER_UNIT - 1)));
1843 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1844 DECL_SIZE (repr) = DECL_SIZE (field);
1845 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1846 DECL_PACKED (repr) = DECL_PACKED (field);
1847 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1848 return repr;
1849 }
1850
1851 /* Finish up a bitfield group that was started by creating the underlying
1852 object REPR with the last field in the bitfield group FIELD. */
1853
1854 static void
1855 finish_bitfield_representative (tree repr, tree field)
1856 {
1857 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1858 machine_mode mode;
1859 tree nextf, size;
1860
1861 size = size_diffop (DECL_FIELD_OFFSET (field),
1862 DECL_FIELD_OFFSET (repr));
1863 while (TREE_CODE (size) == COMPOUND_EXPR)
1864 size = TREE_OPERAND (size, 1);
1865 gcc_assert (tree_fits_uhwi_p (size));
1866 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1867 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1868 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1869 + tree_to_uhwi (DECL_SIZE (field)));
1870
1871 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1872 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1873
1874 /* Now nothing tells us how to pad out bitsize ... */
1875 nextf = DECL_CHAIN (field);
1876 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1877 nextf = DECL_CHAIN (nextf);
1878 if (nextf)
1879 {
1880 tree maxsize;
1881 /* If there was an error, the field may be not laid out
1882 correctly. Don't bother to do anything. */
1883 if (TREE_TYPE (nextf) == error_mark_node)
1884 return;
1885 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1886 DECL_FIELD_OFFSET (repr));
1887 if (tree_fits_uhwi_p (maxsize))
1888 {
1889 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1890 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1891 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1892 /* If the group ends within a bitfield nextf does not need to be
1893 aligned to BITS_PER_UNIT. Thus round up. */
1894 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1895 }
1896 else
1897 maxbitsize = bitsize;
1898 }
1899 else
1900 {
1901 /* ??? If you consider that tail-padding of this struct might be
1902 re-used when deriving from it we cannot really do the following
1903 and thus need to set maxsize to bitsize? Also we cannot
1904 generally rely on maxsize to fold to an integer constant, so
1905 use bitsize as fallback for this case. */
1906 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1907 DECL_FIELD_OFFSET (repr));
1908 if (tree_fits_uhwi_p (maxsize))
1909 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1910 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1911 else
1912 maxbitsize = bitsize;
1913 }
1914
1915 /* Only if we don't artificially break up the representative in
1916 the middle of a large bitfield with different possibly
1917 overlapping representatives. And all representatives start
1918 at byte offset. */
1919 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1920
1921 /* Find the smallest nice mode to use. */
1922 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1923 mode = GET_MODE_WIDER_MODE (mode))
1924 if (GET_MODE_BITSIZE (mode) >= bitsize)
1925 break;
1926 if (mode != VOIDmode
1927 && (GET_MODE_BITSIZE (mode) > maxbitsize
1928 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1929 mode = VOIDmode;
1930
1931 if (mode == VOIDmode)
1932 {
1933 /* We really want a BLKmode representative only as a last resort,
1934 considering the member b in
1935 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1936 Otherwise we simply want to split the representative up
1937 allowing for overlaps within the bitfield region as required for
1938 struct { int a : 7; int b : 7;
1939 int c : 10; int d; } __attribute__((packed));
1940 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1941 DECL_SIZE (repr) = bitsize_int (bitsize);
1942 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1943 DECL_MODE (repr) = BLKmode;
1944 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1945 bitsize / BITS_PER_UNIT);
1946 }
1947 else
1948 {
1949 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1950 DECL_SIZE (repr) = bitsize_int (modesize);
1951 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1952 DECL_MODE (repr) = mode;
1953 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1954 }
1955
1956 /* Remember whether the bitfield group is at the end of the
1957 structure or not. */
1958 DECL_CHAIN (repr) = nextf;
1959 }
1960
1961 /* Compute and set FIELD_DECLs for the underlying objects we should
1962 use for bitfield access for the structure T. */
1963
1964 void
1965 finish_bitfield_layout (tree t)
1966 {
1967 tree field, prev;
1968 tree repr = NULL_TREE;
1969
1970 /* Unions would be special, for the ease of type-punning optimizations
1971 we could use the underlying type as hint for the representative
1972 if the bitfield would fit and the representative would not exceed
1973 the union in size. */
1974 if (TREE_CODE (t) != RECORD_TYPE)
1975 return;
1976
1977 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1978 field; field = DECL_CHAIN (field))
1979 {
1980 if (TREE_CODE (field) != FIELD_DECL)
1981 continue;
1982
1983 /* In the C++ memory model, consecutive bit fields in a structure are
1984 considered one memory location and updating a memory location
1985 may not store into adjacent memory locations. */
1986 if (!repr
1987 && DECL_BIT_FIELD_TYPE (field))
1988 {
1989 /* Start new representative. */
1990 repr = start_bitfield_representative (field);
1991 }
1992 else if (repr
1993 && ! DECL_BIT_FIELD_TYPE (field))
1994 {
1995 /* Finish off new representative. */
1996 finish_bitfield_representative (repr, prev);
1997 repr = NULL_TREE;
1998 }
1999 else if (DECL_BIT_FIELD_TYPE (field))
2000 {
2001 gcc_assert (repr != NULL_TREE);
2002
2003 /* Zero-size bitfields finish off a representative and
2004 do not have a representative themselves. This is
2005 required by the C++ memory model. */
2006 if (integer_zerop (DECL_SIZE (field)))
2007 {
2008 finish_bitfield_representative (repr, prev);
2009 repr = NULL_TREE;
2010 }
2011
2012 /* We assume that either DECL_FIELD_OFFSET of the representative
2013 and each bitfield member is a constant or they are equal.
2014 This is because we need to be able to compute the bit-offset
2015 of each field relative to the representative in get_bit_range
2016 during RTL expansion.
2017 If these constraints are not met, simply force a new
2018 representative to be generated. That will at most
2019 generate worse code but still maintain correctness with
2020 respect to the C++ memory model. */
2021 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2022 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2023 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2024 DECL_FIELD_OFFSET (field), 0)))
2025 {
2026 finish_bitfield_representative (repr, prev);
2027 repr = start_bitfield_representative (field);
2028 }
2029 }
2030 else
2031 continue;
2032
2033 if (repr)
2034 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2035
2036 prev = field;
2037 }
2038
2039 if (repr)
2040 finish_bitfield_representative (repr, prev);
2041 }
2042
2043 /* Do all of the work required to layout the type indicated by RLI,
2044 once the fields have been laid out. This function will call `free'
2045 for RLI, unless FREE_P is false. Passing a value other than false
2046 for FREE_P is bad practice; this option only exists to support the
2047 G++ 3.2 ABI. */
2048
2049 void
2050 finish_record_layout (record_layout_info rli, int free_p)
2051 {
2052 tree variant;
2053
2054 /* Compute the final size. */
2055 finalize_record_size (rli);
2056
2057 /* Compute the TYPE_MODE for the record. */
2058 compute_record_mode (rli->t);
2059
2060 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2061 finalize_type_size (rli->t);
2062
2063 /* Compute bitfield representatives. */
2064 finish_bitfield_layout (rli->t);
2065
2066 /* Propagate TYPE_PACKED to variants. With C++ templates,
2067 handle_packed_attribute is too early to do this. */
2068 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2069 variant = TYPE_NEXT_VARIANT (variant))
2070 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2071
2072 /* Lay out any static members. This is done now because their type
2073 may use the record's type. */
2074 while (!vec_safe_is_empty (rli->pending_statics))
2075 layout_decl (rli->pending_statics->pop (), 0);
2076
2077 /* Clean up. */
2078 if (free_p)
2079 {
2080 vec_free (rli->pending_statics);
2081 free (rli);
2082 }
2083 }
2084 \f
2085
2086 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2087 NAME, its fields are chained in reverse on FIELDS.
2088
2089 If ALIGN_TYPE is non-null, it is given the same alignment as
2090 ALIGN_TYPE. */
2091
2092 void
2093 finish_builtin_struct (tree type, const char *name, tree fields,
2094 tree align_type)
2095 {
2096 tree tail, next;
2097
2098 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2099 {
2100 DECL_FIELD_CONTEXT (fields) = type;
2101 next = DECL_CHAIN (fields);
2102 DECL_CHAIN (fields) = tail;
2103 }
2104 TYPE_FIELDS (type) = tail;
2105
2106 if (align_type)
2107 {
2108 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2109 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2110 }
2111
2112 layout_type (type);
2113 #if 0 /* not yet, should get fixed properly later */
2114 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2115 #else
2116 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2117 TYPE_DECL, get_identifier (name), type);
2118 #endif
2119 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2120 layout_decl (TYPE_NAME (type), 0);
2121 }
2122
2123 /* Calculate the mode, size, and alignment for TYPE.
2124 For an array type, calculate the element separation as well.
2125 Record TYPE on the chain of permanent or temporary types
2126 so that dbxout will find out about it.
2127
2128 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2129 layout_type does nothing on such a type.
2130
2131 If the type is incomplete, its TYPE_SIZE remains zero. */
2132
2133 void
2134 layout_type (tree type)
2135 {
2136 gcc_assert (type);
2137
2138 if (type == error_mark_node)
2139 return;
2140
2141 /* We don't want finalize_type_size to copy an alignment attribute to
2142 variants that don't have it. */
2143 type = TYPE_MAIN_VARIANT (type);
2144
2145 /* Do nothing if type has been laid out before. */
2146 if (TYPE_SIZE (type))
2147 return;
2148
2149 switch (TREE_CODE (type))
2150 {
2151 case LANG_TYPE:
2152 /* This kind of type is the responsibility
2153 of the language-specific code. */
2154 gcc_unreachable ();
2155
2156 case BOOLEAN_TYPE:
2157 case INTEGER_TYPE:
2158 case ENUMERAL_TYPE:
2159 SET_TYPE_MODE (type,
2160 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2161 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2162 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2163 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2164 break;
2165
2166 case REAL_TYPE:
2167 SET_TYPE_MODE (type,
2168 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2169 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2170 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2171 break;
2172
2173 case FIXED_POINT_TYPE:
2174 /* TYPE_MODE (type) has been set already. */
2175 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2176 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2177 break;
2178
2179 case COMPLEX_TYPE:
2180 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2181 SET_TYPE_MODE (type,
2182 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2183 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2184 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2185 0));
2186 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2187 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2188 break;
2189
2190 case VECTOR_TYPE:
2191 {
2192 int nunits = TYPE_VECTOR_SUBPARTS (type);
2193 tree innertype = TREE_TYPE (type);
2194
2195 gcc_assert (!(nunits & (nunits - 1)));
2196
2197 /* Find an appropriate mode for the vector type. */
2198 if (TYPE_MODE (type) == VOIDmode)
2199 SET_TYPE_MODE (type,
2200 mode_for_vector (TYPE_MODE (innertype), nunits));
2201
2202 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2203 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2204 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2205 TYPE_SIZE_UNIT (innertype),
2206 size_int (nunits));
2207 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2208 bitsize_int (nunits));
2209
2210 /* For vector types, we do not default to the mode's alignment.
2211 Instead, query a target hook, defaulting to natural alignment.
2212 This prevents ABI changes depending on whether or not native
2213 vector modes are supported. */
2214 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2215
2216 /* However, if the underlying mode requires a bigger alignment than
2217 what the target hook provides, we cannot use the mode. For now,
2218 simply reject that case. */
2219 gcc_assert (TYPE_ALIGN (type)
2220 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2221 break;
2222 }
2223
2224 case VOID_TYPE:
2225 /* This is an incomplete type and so doesn't have a size. */
2226 TYPE_ALIGN (type) = 1;
2227 TYPE_USER_ALIGN (type) = 0;
2228 SET_TYPE_MODE (type, VOIDmode);
2229 break;
2230
2231 case POINTER_BOUNDS_TYPE:
2232 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2233 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2234 break;
2235
2236 case OFFSET_TYPE:
2237 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2238 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2239 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2240 integral, which may be an __intN. */
2241 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2242 TYPE_PRECISION (type) = POINTER_SIZE;
2243 break;
2244
2245 case FUNCTION_TYPE:
2246 case METHOD_TYPE:
2247 /* It's hard to see what the mode and size of a function ought to
2248 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2249 make it consistent with that. */
2250 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2251 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2252 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2253 break;
2254
2255 case POINTER_TYPE:
2256 case REFERENCE_TYPE:
2257 {
2258 machine_mode mode = TYPE_MODE (type);
2259 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2260 {
2261 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2262 mode = targetm.addr_space.address_mode (as);
2263 }
2264
2265 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2266 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2267 TYPE_UNSIGNED (type) = 1;
2268 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2269 }
2270 break;
2271
2272 case ARRAY_TYPE:
2273 {
2274 tree index = TYPE_DOMAIN (type);
2275 tree element = TREE_TYPE (type);
2276
2277 build_pointer_type (element);
2278
2279 /* We need to know both bounds in order to compute the size. */
2280 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2281 && TYPE_SIZE (element))
2282 {
2283 tree ub = TYPE_MAX_VALUE (index);
2284 tree lb = TYPE_MIN_VALUE (index);
2285 tree element_size = TYPE_SIZE (element);
2286 tree length;
2287
2288 /* Make sure that an array of zero-sized element is zero-sized
2289 regardless of its extent. */
2290 if (integer_zerop (element_size))
2291 length = size_zero_node;
2292
2293 /* The computation should happen in the original signedness so
2294 that (possible) negative values are handled appropriately
2295 when determining overflow. */
2296 else
2297 {
2298 /* ??? When it is obvious that the range is signed
2299 represent it using ssizetype. */
2300 if (TREE_CODE (lb) == INTEGER_CST
2301 && TREE_CODE (ub) == INTEGER_CST
2302 && TYPE_UNSIGNED (TREE_TYPE (lb))
2303 && tree_int_cst_lt (ub, lb))
2304 {
2305 lb = wide_int_to_tree (ssizetype,
2306 offset_int::from (lb, SIGNED));
2307 ub = wide_int_to_tree (ssizetype,
2308 offset_int::from (ub, SIGNED));
2309 }
2310 length
2311 = fold_convert (sizetype,
2312 size_binop (PLUS_EXPR,
2313 build_int_cst (TREE_TYPE (lb), 1),
2314 size_binop (MINUS_EXPR, ub, lb)));
2315 }
2316
2317 /* ??? We have no way to distinguish a null-sized array from an
2318 array spanning the whole sizetype range, so we arbitrarily
2319 decide that [0, -1] is the only valid representation. */
2320 if (integer_zerop (length)
2321 && TREE_OVERFLOW (length)
2322 && integer_zerop (lb))
2323 length = size_zero_node;
2324
2325 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2326 fold_convert (bitsizetype,
2327 length));
2328
2329 /* If we know the size of the element, calculate the total size
2330 directly, rather than do some division thing below. This
2331 optimization helps Fortran assumed-size arrays (where the
2332 size of the array is determined at runtime) substantially. */
2333 if (TYPE_SIZE_UNIT (element))
2334 TYPE_SIZE_UNIT (type)
2335 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2336 }
2337
2338 /* Now round the alignment and size,
2339 using machine-dependent criteria if any. */
2340
2341 unsigned align = TYPE_ALIGN (element);
2342 if (TYPE_USER_ALIGN (type))
2343 align = MAX (align, TYPE_ALIGN (type));
2344 else
2345 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2346 #ifdef ROUND_TYPE_ALIGN
2347 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2348 #else
2349 align = MAX (align, BITS_PER_UNIT);
2350 #endif
2351 TYPE_ALIGN (type) = align;
2352 SET_TYPE_MODE (type, BLKmode);
2353 if (TYPE_SIZE (type) != 0
2354 && ! targetm.member_type_forces_blk (type, VOIDmode)
2355 /* BLKmode elements force BLKmode aggregate;
2356 else extract/store fields may lose. */
2357 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2358 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2359 {
2360 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2361 TYPE_SIZE (type)));
2362 if (TYPE_MODE (type) != BLKmode
2363 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2364 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2365 {
2366 TYPE_NO_FORCE_BLK (type) = 1;
2367 SET_TYPE_MODE (type, BLKmode);
2368 }
2369 }
2370 /* When the element size is constant, check that it is at least as
2371 large as the element alignment. */
2372 if (TYPE_SIZE_UNIT (element)
2373 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2374 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2375 TYPE_ALIGN_UNIT. */
2376 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2377 && !integer_zerop (TYPE_SIZE_UNIT (element))
2378 && compare_tree_int (TYPE_SIZE_UNIT (element),
2379 TYPE_ALIGN_UNIT (element)) < 0)
2380 error ("alignment of array elements is greater than element size");
2381 break;
2382 }
2383
2384 case RECORD_TYPE:
2385 case UNION_TYPE:
2386 case QUAL_UNION_TYPE:
2387 {
2388 tree field;
2389 record_layout_info rli;
2390
2391 /* Initialize the layout information. */
2392 rli = start_record_layout (type);
2393
2394 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2395 in the reverse order in building the COND_EXPR that denotes
2396 its size. We reverse them again later. */
2397 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2398 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2399
2400 /* Place all the fields. */
2401 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2402 place_field (rli, field);
2403
2404 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2405 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2406
2407 /* Finish laying out the record. */
2408 finish_record_layout (rli, /*free_p=*/true);
2409 }
2410 break;
2411
2412 default:
2413 gcc_unreachable ();
2414 }
2415
2416 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2417 records and unions, finish_record_layout already called this
2418 function. */
2419 if (!RECORD_OR_UNION_TYPE_P (type))
2420 finalize_type_size (type);
2421
2422 /* We should never see alias sets on incomplete aggregates. And we
2423 should not call layout_type on not incomplete aggregates. */
2424 if (AGGREGATE_TYPE_P (type))
2425 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2426 }
2427
2428 /* Return the least alignment required for type TYPE. */
2429
2430 unsigned int
2431 min_align_of_type (tree type)
2432 {
2433 unsigned int align = TYPE_ALIGN (type);
2434 if (!TYPE_USER_ALIGN (type))
2435 {
2436 align = MIN (align, BIGGEST_ALIGNMENT);
2437 #ifdef BIGGEST_FIELD_ALIGNMENT
2438 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2439 #endif
2440 unsigned int field_align = align;
2441 #ifdef ADJUST_FIELD_ALIGN
2442 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2443 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2444 ggc_free (field);
2445 #endif
2446 align = MIN (align, field_align);
2447 }
2448 return align / BITS_PER_UNIT;
2449 }
2450
2451 /* Vector types need to re-check the target flags each time we report
2452 the machine mode. We need to do this because attribute target can
2453 change the result of vector_mode_supported_p and have_regs_of_mode
2454 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2455 change on a per-function basis. */
2456 /* ??? Possibly a better solution is to run through all the types
2457 referenced by a function and re-compute the TYPE_MODE once, rather
2458 than make the TYPE_MODE macro call a function. */
2459
2460 machine_mode
2461 vector_type_mode (const_tree t)
2462 {
2463 machine_mode mode;
2464
2465 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2466
2467 mode = t->type_common.mode;
2468 if (VECTOR_MODE_P (mode)
2469 && (!targetm.vector_mode_supported_p (mode)
2470 || !have_regs_of_mode[mode]))
2471 {
2472 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2473
2474 /* For integers, try mapping it to a same-sized scalar mode. */
2475 if (GET_MODE_CLASS (innermode) == MODE_INT)
2476 {
2477 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2478 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2479
2480 if (mode != VOIDmode && have_regs_of_mode[mode])
2481 return mode;
2482 }
2483
2484 return BLKmode;
2485 }
2486
2487 return mode;
2488 }
2489 \f
2490 /* Create and return a type for signed integers of PRECISION bits. */
2491
2492 tree
2493 make_signed_type (int precision)
2494 {
2495 tree type = make_node (INTEGER_TYPE);
2496
2497 TYPE_PRECISION (type) = precision;
2498
2499 fixup_signed_type (type);
2500 return type;
2501 }
2502
2503 /* Create and return a type for unsigned integers of PRECISION bits. */
2504
2505 tree
2506 make_unsigned_type (int precision)
2507 {
2508 tree type = make_node (INTEGER_TYPE);
2509
2510 TYPE_PRECISION (type) = precision;
2511
2512 fixup_unsigned_type (type);
2513 return type;
2514 }
2515 \f
2516 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2517 and SATP. */
2518
2519 tree
2520 make_fract_type (int precision, int unsignedp, int satp)
2521 {
2522 tree type = make_node (FIXED_POINT_TYPE);
2523
2524 TYPE_PRECISION (type) = precision;
2525
2526 if (satp)
2527 TYPE_SATURATING (type) = 1;
2528
2529 /* Lay out the type: set its alignment, size, etc. */
2530 if (unsignedp)
2531 {
2532 TYPE_UNSIGNED (type) = 1;
2533 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2534 }
2535 else
2536 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2537 layout_type (type);
2538
2539 return type;
2540 }
2541
2542 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2543 and SATP. */
2544
2545 tree
2546 make_accum_type (int precision, int unsignedp, int satp)
2547 {
2548 tree type = make_node (FIXED_POINT_TYPE);
2549
2550 TYPE_PRECISION (type) = precision;
2551
2552 if (satp)
2553 TYPE_SATURATING (type) = 1;
2554
2555 /* Lay out the type: set its alignment, size, etc. */
2556 if (unsignedp)
2557 {
2558 TYPE_UNSIGNED (type) = 1;
2559 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2560 }
2561 else
2562 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2563 layout_type (type);
2564
2565 return type;
2566 }
2567
2568 /* Initialize sizetypes so layout_type can use them. */
2569
2570 void
2571 initialize_sizetypes (void)
2572 {
2573 int precision, bprecision;
2574
2575 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2576 if (strcmp (SIZETYPE, "unsigned int") == 0)
2577 precision = INT_TYPE_SIZE;
2578 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2579 precision = LONG_TYPE_SIZE;
2580 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2581 precision = LONG_LONG_TYPE_SIZE;
2582 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2583 precision = SHORT_TYPE_SIZE;
2584 else
2585 {
2586 int i;
2587
2588 precision = -1;
2589 for (i = 0; i < NUM_INT_N_ENTS; i++)
2590 if (int_n_enabled_p[i])
2591 {
2592 char name[50];
2593 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2594
2595 if (strcmp (name, SIZETYPE) == 0)
2596 {
2597 precision = int_n_data[i].bitsize;
2598 }
2599 }
2600 if (precision == -1)
2601 gcc_unreachable ();
2602 }
2603
2604 bprecision
2605 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2606 bprecision
2607 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2608 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2609 bprecision = HOST_BITS_PER_DOUBLE_INT;
2610
2611 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2612 sizetype = make_node (INTEGER_TYPE);
2613 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2614 TYPE_PRECISION (sizetype) = precision;
2615 TYPE_UNSIGNED (sizetype) = 1;
2616 bitsizetype = make_node (INTEGER_TYPE);
2617 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2618 TYPE_PRECISION (bitsizetype) = bprecision;
2619 TYPE_UNSIGNED (bitsizetype) = 1;
2620
2621 /* Now layout both types manually. */
2622 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2623 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2624 TYPE_SIZE (sizetype) = bitsize_int (precision);
2625 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2626 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2627
2628 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2629 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2630 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2631 TYPE_SIZE_UNIT (bitsizetype)
2632 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2633 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2634
2635 /* Create the signed variants of *sizetype. */
2636 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2637 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2638 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2639 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2640 }
2641 \f
2642 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2643 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2644 for TYPE, based on the PRECISION and whether or not the TYPE
2645 IS_UNSIGNED. PRECISION need not correspond to a width supported
2646 natively by the hardware; for example, on a machine with 8-bit,
2647 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2648 61. */
2649
2650 void
2651 set_min_and_max_values_for_integral_type (tree type,
2652 int precision,
2653 signop sgn)
2654 {
2655 /* For bitfields with zero width we end up creating integer types
2656 with zero precision. Don't assign any minimum/maximum values
2657 to those types, they don't have any valid value. */
2658 if (precision < 1)
2659 return;
2660
2661 TYPE_MIN_VALUE (type)
2662 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2663 TYPE_MAX_VALUE (type)
2664 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2665 }
2666
2667 /* Set the extreme values of TYPE based on its precision in bits,
2668 then lay it out. Used when make_signed_type won't do
2669 because the tree code is not INTEGER_TYPE.
2670 E.g. for Pascal, when the -fsigned-char option is given. */
2671
2672 void
2673 fixup_signed_type (tree type)
2674 {
2675 int precision = TYPE_PRECISION (type);
2676
2677 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2678
2679 /* Lay out the type: set its alignment, size, etc. */
2680 layout_type (type);
2681 }
2682
2683 /* Set the extreme values of TYPE based on its precision in bits,
2684 then lay it out. This is used both in `make_unsigned_type'
2685 and for enumeral types. */
2686
2687 void
2688 fixup_unsigned_type (tree type)
2689 {
2690 int precision = TYPE_PRECISION (type);
2691
2692 TYPE_UNSIGNED (type) = 1;
2693
2694 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2695
2696 /* Lay out the type: set its alignment, size, etc. */
2697 layout_type (type);
2698 }
2699 \f
2700 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2701 starting at BITPOS.
2702
2703 BITREGION_START is the bit position of the first bit in this
2704 sequence of bit fields. BITREGION_END is the last bit in this
2705 sequence. If these two fields are non-zero, we should restrict the
2706 memory access to that range. Otherwise, we are allowed to touch
2707 any adjacent non bit-fields.
2708
2709 ALIGN is the alignment of the underlying object in bits.
2710 VOLATILEP says whether the bitfield is volatile. */
2711
2712 bit_field_mode_iterator
2713 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2714 HOST_WIDE_INT bitregion_start,
2715 HOST_WIDE_INT bitregion_end,
2716 unsigned int align, bool volatilep)
2717 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2718 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2719 m_bitregion_end (bitregion_end), m_align (align),
2720 m_volatilep (volatilep), m_count (0)
2721 {
2722 if (!m_bitregion_end)
2723 {
2724 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2725 the bitfield is mapped and won't trap, provided that ALIGN isn't
2726 too large. The cap is the biggest required alignment for data,
2727 or at least the word size. And force one such chunk at least. */
2728 unsigned HOST_WIDE_INT units
2729 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2730 if (bitsize <= 0)
2731 bitsize = 1;
2732 m_bitregion_end = bitpos + bitsize + units - 1;
2733 m_bitregion_end -= m_bitregion_end % units + 1;
2734 }
2735 }
2736
2737 /* Calls to this function return successively larger modes that can be used
2738 to represent the bitfield. Return true if another bitfield mode is
2739 available, storing it in *OUT_MODE if so. */
2740
2741 bool
2742 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2743 {
2744 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2745 {
2746 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2747
2748 /* Skip modes that don't have full precision. */
2749 if (unit != GET_MODE_PRECISION (m_mode))
2750 continue;
2751
2752 /* Stop if the mode is too wide to handle efficiently. */
2753 if (unit > MAX_FIXED_MODE_SIZE)
2754 break;
2755
2756 /* Don't deliver more than one multiword mode; the smallest one
2757 should be used. */
2758 if (m_count > 0 && unit > BITS_PER_WORD)
2759 break;
2760
2761 /* Skip modes that are too small. */
2762 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2763 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2764 if (subend > unit)
2765 continue;
2766
2767 /* Stop if the mode goes outside the bitregion. */
2768 HOST_WIDE_INT start = m_bitpos - substart;
2769 if (m_bitregion_start && start < m_bitregion_start)
2770 break;
2771 HOST_WIDE_INT end = start + unit;
2772 if (end > m_bitregion_end + 1)
2773 break;
2774
2775 /* Stop if the mode requires too much alignment. */
2776 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2777 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2778 break;
2779
2780 *out_mode = m_mode;
2781 m_mode = GET_MODE_WIDER_MODE (m_mode);
2782 m_count++;
2783 return true;
2784 }
2785 return false;
2786 }
2787
2788 /* Return true if smaller modes are generally preferred for this kind
2789 of bitfield. */
2790
2791 bool
2792 bit_field_mode_iterator::prefer_smaller_modes ()
2793 {
2794 return (m_volatilep
2795 ? targetm.narrow_volatile_bitfield ()
2796 : !SLOW_BYTE_ACCESS);
2797 }
2798
2799 /* Find the best machine mode to use when referencing a bit field of length
2800 BITSIZE bits starting at BITPOS.
2801
2802 BITREGION_START is the bit position of the first bit in this
2803 sequence of bit fields. BITREGION_END is the last bit in this
2804 sequence. If these two fields are non-zero, we should restrict the
2805 memory access to that range. Otherwise, we are allowed to touch
2806 any adjacent non bit-fields.
2807
2808 The underlying object is known to be aligned to a boundary of ALIGN bits.
2809 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2810 larger than LARGEST_MODE (usually SImode).
2811
2812 If no mode meets all these conditions, we return VOIDmode.
2813
2814 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2815 smallest mode meeting these conditions.
2816
2817 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2818 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2819 all the conditions.
2820
2821 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2822 decide which of the above modes should be used. */
2823
2824 machine_mode
2825 get_best_mode (int bitsize, int bitpos,
2826 unsigned HOST_WIDE_INT bitregion_start,
2827 unsigned HOST_WIDE_INT bitregion_end,
2828 unsigned int align,
2829 machine_mode largest_mode, bool volatilep)
2830 {
2831 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2832 bitregion_end, align, volatilep);
2833 machine_mode widest_mode = VOIDmode;
2834 machine_mode mode;
2835 while (iter.next_mode (&mode)
2836 /* ??? For historical reasons, reject modes that would normally
2837 receive greater alignment, even if unaligned accesses are
2838 acceptable. This has both advantages and disadvantages.
2839 Removing this check means that something like:
2840
2841 struct s { unsigned int x; unsigned int y; };
2842 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2843
2844 can be implemented using a single load and compare on
2845 64-bit machines that have no alignment restrictions.
2846 For example, on powerpc64-linux-gnu, we would generate:
2847
2848 ld 3,0(3)
2849 cntlzd 3,3
2850 srdi 3,3,6
2851 blr
2852
2853 rather than:
2854
2855 lwz 9,0(3)
2856 cmpwi 7,9,0
2857 bne 7,.L3
2858 lwz 3,4(3)
2859 cntlzw 3,3
2860 srwi 3,3,5
2861 extsw 3,3
2862 blr
2863 .p2align 4,,15
2864 .L3:
2865 li 3,0
2866 blr
2867
2868 However, accessing more than one field can make life harder
2869 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2870 has a series of unsigned short copies followed by a series of
2871 unsigned short comparisons. With this check, both the copies
2872 and comparisons remain 16-bit accesses and FRE is able
2873 to eliminate the latter. Without the check, the comparisons
2874 can be done using 2 64-bit operations, which FRE isn't able
2875 to handle in the same way.
2876
2877 Either way, it would probably be worth disabling this check
2878 during expand. One particular example where removing the
2879 check would help is the get_best_mode call in store_bit_field.
2880 If we are given a memory bitregion of 128 bits that is aligned
2881 to a 64-bit boundary, and the bitfield we want to modify is
2882 in the second half of the bitregion, this check causes
2883 store_bitfield to turn the memory into a 64-bit reference
2884 to the _first_ half of the region. We later use
2885 adjust_bitfield_address to get a reference to the correct half,
2886 but doing so looks to adjust_bitfield_address as though we are
2887 moving past the end of the original object, so it drops the
2888 associated MEM_EXPR and MEM_OFFSET. Removing the check
2889 causes store_bit_field to keep a 128-bit memory reference,
2890 so that the final bitfield reference still has a MEM_EXPR
2891 and MEM_OFFSET. */
2892 && GET_MODE_ALIGNMENT (mode) <= align
2893 && (largest_mode == VOIDmode
2894 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2895 {
2896 widest_mode = mode;
2897 if (iter.prefer_smaller_modes ())
2898 break;
2899 }
2900 return widest_mode;
2901 }
2902
2903 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2904 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2905
2906 void
2907 get_mode_bounds (machine_mode mode, int sign,
2908 machine_mode target_mode,
2909 rtx *mmin, rtx *mmax)
2910 {
2911 unsigned size = GET_MODE_PRECISION (mode);
2912 unsigned HOST_WIDE_INT min_val, max_val;
2913
2914 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2915
2916 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2917 if (mode == BImode)
2918 {
2919 if (STORE_FLAG_VALUE < 0)
2920 {
2921 min_val = STORE_FLAG_VALUE;
2922 max_val = 0;
2923 }
2924 else
2925 {
2926 min_val = 0;
2927 max_val = STORE_FLAG_VALUE;
2928 }
2929 }
2930 else if (sign)
2931 {
2932 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2933 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2934 }
2935 else
2936 {
2937 min_val = 0;
2938 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2939 }
2940
2941 *mmin = gen_int_mode (min_val, target_mode);
2942 *mmax = gen_int_mode (max_val, target_mode);
2943 }
2944
2945 #include "gt-stor-layout.h"
This page took 0.172679 seconds and 5 git commands to generate.