]> gcc.gnu.org Git - gcc.git/blob - gcc/simplify-rtx.c
combine.c (combine_simplify_rtx, [...]): Use CC0_P.
[gcc.git] / gcc / simplify-rtx.c
1 /* RTL simplification functions for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "target.h"
42
43 /* Simplification and canonicalization of RTL. */
44
45 /* Much code operates on (low, high) pairs; the low value is an
46 unsigned wide int, the high value a signed wide int. We
47 occasionally need to sign extend from low to high as if low were a
48 signed wide int. */
49 #define HWI_SIGN_EXTEND(low) \
50 ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
51
52 static rtx neg_const_int PARAMS ((enum machine_mode, rtx));
53 static int simplify_plus_minus_op_data_cmp PARAMS ((const void *,
54 const void *));
55 static rtx simplify_plus_minus PARAMS ((enum rtx_code,
56 enum machine_mode, rtx,
57 rtx, int));
58 \f
59 /* Negate a CONST_INT rtx, truncating (because a conversion from a
60 maximally negative number can overflow). */
61 static rtx
62 neg_const_int (mode, i)
63 enum machine_mode mode;
64 rtx i;
65 {
66 return gen_int_mode (- INTVAL (i), mode);
67 }
68
69 \f
70 /* Make a binary operation by properly ordering the operands and
71 seeing if the expression folds. */
72
73 rtx
74 simplify_gen_binary (code, mode, op0, op1)
75 enum rtx_code code;
76 enum machine_mode mode;
77 rtx op0, op1;
78 {
79 rtx tem;
80
81 /* Put complex operands first and constants second if commutative. */
82 if (GET_RTX_CLASS (code) == 'c'
83 && swap_commutative_operands_p (op0, op1))
84 tem = op0, op0 = op1, op1 = tem;
85
86 /* If this simplifies, do it. */
87 tem = simplify_binary_operation (code, mode, op0, op1);
88 if (tem)
89 return tem;
90
91 /* Handle addition and subtraction specially. Otherwise, just form
92 the operation. */
93
94 if (code == PLUS || code == MINUS)
95 {
96 tem = simplify_plus_minus (code, mode, op0, op1, 1);
97 if (tem)
98 return tem;
99 }
100
101 return gen_rtx_fmt_ee (code, mode, op0, op1);
102 }
103 \f
104 /* If X is a MEM referencing the constant pool, return the real value.
105 Otherwise return X. */
106 rtx
107 avoid_constant_pool_reference (x)
108 rtx x;
109 {
110 rtx c, tmp, addr;
111 enum machine_mode cmode;
112
113 switch (GET_CODE (x))
114 {
115 case MEM:
116 break;
117
118 case FLOAT_EXTEND:
119 /* Handle float extensions of constant pool references. */
120 tmp = XEXP (x, 0);
121 c = avoid_constant_pool_reference (tmp);
122 if (c != tmp && GET_CODE (c) == CONST_DOUBLE)
123 {
124 REAL_VALUE_TYPE d;
125
126 REAL_VALUE_FROM_CONST_DOUBLE (d, c);
127 return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x));
128 }
129 return x;
130
131 default:
132 return x;
133 }
134
135 addr = XEXP (x, 0);
136
137 /* Call target hook to avoid the effects of -fpic etc... */
138 addr = (*targetm.delegitimize_address) (addr);
139
140 if (GET_CODE (addr) == LO_SUM)
141 addr = XEXP (addr, 1);
142
143 if (GET_CODE (addr) != SYMBOL_REF
144 || ! CONSTANT_POOL_ADDRESS_P (addr))
145 return x;
146
147 c = get_pool_constant (addr);
148 cmode = get_pool_mode (addr);
149
150 /* If we're accessing the constant in a different mode than it was
151 originally stored, attempt to fix that up via subreg simplifications.
152 If that fails we have no choice but to return the original memory. */
153 if (cmode != GET_MODE (x))
154 {
155 c = simplify_subreg (GET_MODE (x), c, cmode, 0);
156 return c ? c : x;
157 }
158
159 return c;
160 }
161 \f
162 /* Make a unary operation by first seeing if it folds and otherwise making
163 the specified operation. */
164
165 rtx
166 simplify_gen_unary (code, mode, op, op_mode)
167 enum rtx_code code;
168 enum machine_mode mode;
169 rtx op;
170 enum machine_mode op_mode;
171 {
172 rtx tem;
173
174 /* If this simplifies, use it. */
175 if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
176 return tem;
177
178 return gen_rtx_fmt_e (code, mode, op);
179 }
180
181 /* Likewise for ternary operations. */
182
183 rtx
184 simplify_gen_ternary (code, mode, op0_mode, op0, op1, op2)
185 enum rtx_code code;
186 enum machine_mode mode, op0_mode;
187 rtx op0, op1, op2;
188 {
189 rtx tem;
190
191 /* If this simplifies, use it. */
192 if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
193 op0, op1, op2)))
194 return tem;
195
196 return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
197 }
198 \f
199 /* Likewise, for relational operations.
200 CMP_MODE specifies mode comparison is done in.
201 */
202
203 rtx
204 simplify_gen_relational (code, mode, cmp_mode, op0, op1)
205 enum rtx_code code;
206 enum machine_mode mode;
207 enum machine_mode cmp_mode;
208 rtx op0, op1;
209 {
210 rtx tem;
211
212 if ((tem = simplify_relational_operation (code, cmp_mode, op0, op1)) != 0)
213 return tem;
214
215 /* For the following tests, ensure const0_rtx is op1. */
216 if (op0 == const0_rtx && swap_commutative_operands_p (op0, op1))
217 tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
218
219 /* If op0 is a compare, extract the comparison arguments from it. */
220 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
221 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
222
223 /* If op0 is a comparison, extract the comparison arguments form it. */
224 if (code == NE && op1 == const0_rtx
225 && GET_RTX_CLASS (GET_CODE (op0)) == '<')
226 return op0;
227 else if (code == EQ && op1 == const0_rtx)
228 {
229 /* The following tests GET_RTX_CLASS (GET_CODE (op0)) == '<'. */
230 enum rtx_code new = reversed_comparison_code (op0, NULL_RTX);
231 if (new != UNKNOWN)
232 {
233 code = new;
234 mode = cmp_mode;
235 op1 = XEXP (op0, 1);
236 op0 = XEXP (op0, 0);
237 }
238 }
239
240 /* Put complex operands first and constants second. */
241 if (swap_commutative_operands_p (op0, op1))
242 tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
243
244 return gen_rtx_fmt_ee (code, mode, op0, op1);
245 }
246 \f
247 /* Replace all occurrences of OLD in X with NEW and try to simplify the
248 resulting RTX. Return a new RTX which is as simplified as possible. */
249
250 rtx
251 simplify_replace_rtx (x, old, new)
252 rtx x;
253 rtx old;
254 rtx new;
255 {
256 enum rtx_code code = GET_CODE (x);
257 enum machine_mode mode = GET_MODE (x);
258
259 /* If X is OLD, return NEW. Otherwise, if this is an expression, try
260 to build a new expression substituting recursively. If we can't do
261 anything, return our input. */
262
263 if (x == old)
264 return new;
265
266 switch (GET_RTX_CLASS (code))
267 {
268 case '1':
269 {
270 enum machine_mode op_mode = GET_MODE (XEXP (x, 0));
271 rtx op = (XEXP (x, 0) == old
272 ? new : simplify_replace_rtx (XEXP (x, 0), old, new));
273
274 return simplify_gen_unary (code, mode, op, op_mode);
275 }
276
277 case '2':
278 case 'c':
279 return
280 simplify_gen_binary (code, mode,
281 simplify_replace_rtx (XEXP (x, 0), old, new),
282 simplify_replace_rtx (XEXP (x, 1), old, new));
283 case '<':
284 {
285 enum machine_mode op_mode = (GET_MODE (XEXP (x, 0)) != VOIDmode
286 ? GET_MODE (XEXP (x, 0))
287 : GET_MODE (XEXP (x, 1)));
288 rtx op0 = simplify_replace_rtx (XEXP (x, 0), old, new);
289 rtx op1 = simplify_replace_rtx (XEXP (x, 1), old, new);
290
291 return
292 simplify_gen_relational (code, mode,
293 (op_mode != VOIDmode
294 ? op_mode
295 : GET_MODE (op0) != VOIDmode
296 ? GET_MODE (op0)
297 : GET_MODE (op1)),
298 op0, op1);
299 }
300
301 case '3':
302 case 'b':
303 {
304 enum machine_mode op_mode = GET_MODE (XEXP (x, 0));
305 rtx op0 = simplify_replace_rtx (XEXP (x, 0), old, new);
306
307 return
308 simplify_gen_ternary (code, mode,
309 (op_mode != VOIDmode
310 ? op_mode
311 : GET_MODE (op0)),
312 op0,
313 simplify_replace_rtx (XEXP (x, 1), old, new),
314 simplify_replace_rtx (XEXP (x, 2), old, new));
315 }
316
317 case 'x':
318 /* The only case we try to handle is a SUBREG. */
319 if (code == SUBREG)
320 {
321 rtx exp;
322 exp = simplify_gen_subreg (GET_MODE (x),
323 simplify_replace_rtx (SUBREG_REG (x),
324 old, new),
325 GET_MODE (SUBREG_REG (x)),
326 SUBREG_BYTE (x));
327 if (exp)
328 x = exp;
329 }
330 return x;
331
332 case 'o':
333 if (code == MEM)
334 return replace_equiv_address_nv (x,
335 simplify_replace_rtx (XEXP (x, 0),
336 old, new));
337 else if (code == LO_SUM)
338 {
339 rtx op0 = simplify_replace_rtx (XEXP (x, 0), old, new);
340 rtx op1 = simplify_replace_rtx (XEXP (x, 1), old, new);
341
342 /* (lo_sum (high x) x) -> x */
343 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
344 return op1;
345
346 return gen_rtx_LO_SUM (mode, op0, op1);
347 }
348 else if (code == REG)
349 {
350 if (REG_P (old) && REGNO (x) == REGNO (old))
351 return new;
352 }
353
354 return x;
355
356 default:
357 return x;
358 }
359 return x;
360 }
361 \f
362 /* Try to simplify a unary operation CODE whose output mode is to be
363 MODE with input operand OP whose mode was originally OP_MODE.
364 Return zero if no simplification can be made. */
365 rtx
366 simplify_unary_operation (code, mode, op, op_mode)
367 enum rtx_code code;
368 enum machine_mode mode;
369 rtx op;
370 enum machine_mode op_mode;
371 {
372 unsigned int width = GET_MODE_BITSIZE (mode);
373 rtx trueop = avoid_constant_pool_reference (op);
374
375 if (code == VEC_DUPLICATE)
376 {
377 if (!VECTOR_MODE_P (mode))
378 abort ();
379 if (GET_MODE (trueop) != VOIDmode
380 && !VECTOR_MODE_P (GET_MODE (trueop))
381 && GET_MODE_INNER (mode) != GET_MODE (trueop))
382 abort ();
383 if (GET_MODE (trueop) != VOIDmode
384 && VECTOR_MODE_P (GET_MODE (trueop))
385 && GET_MODE_INNER (mode) != GET_MODE_INNER (GET_MODE (trueop)))
386 abort ();
387 if (GET_CODE (trueop) == CONST_INT || GET_CODE (trueop) == CONST_DOUBLE
388 || GET_CODE (trueop) == CONST_VECTOR)
389 {
390 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
391 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
392 rtvec v = rtvec_alloc (n_elts);
393 unsigned int i;
394
395 if (GET_CODE (trueop) != CONST_VECTOR)
396 for (i = 0; i < n_elts; i++)
397 RTVEC_ELT (v, i) = trueop;
398 else
399 {
400 enum machine_mode inmode = GET_MODE (trueop);
401 int in_elt_size = GET_MODE_SIZE (GET_MODE_INNER (inmode));
402 unsigned in_n_elts = (GET_MODE_SIZE (inmode) / in_elt_size);
403
404 if (in_n_elts >= n_elts || n_elts % in_n_elts)
405 abort ();
406 for (i = 0; i < n_elts; i++)
407 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop, i % in_n_elts);
408 }
409 return gen_rtx_CONST_VECTOR (mode, v);
410 }
411 }
412
413 if (VECTOR_MODE_P (mode) && GET_CODE (trueop) == CONST_VECTOR)
414 {
415 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
416 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
417 enum machine_mode opmode = GET_MODE (trueop);
418 int op_elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
419 unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
420 rtvec v = rtvec_alloc (n_elts);
421 unsigned int i;
422
423 if (op_n_elts != n_elts)
424 abort ();
425
426 for (i = 0; i < n_elts; i++)
427 {
428 rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
429 CONST_VECTOR_ELT (trueop, i),
430 GET_MODE_INNER (opmode));
431 if (!x)
432 return 0;
433 RTVEC_ELT (v, i) = x;
434 }
435 return gen_rtx_CONST_VECTOR (mode, v);
436 }
437
438 /* The order of these tests is critical so that, for example, we don't
439 check the wrong mode (input vs. output) for a conversion operation,
440 such as FIX. At some point, this should be simplified. */
441
442 if (code == FLOAT && GET_MODE (trueop) == VOIDmode
443 && (GET_CODE (trueop) == CONST_DOUBLE || GET_CODE (trueop) == CONST_INT))
444 {
445 HOST_WIDE_INT hv, lv;
446 REAL_VALUE_TYPE d;
447
448 if (GET_CODE (trueop) == CONST_INT)
449 lv = INTVAL (trueop), hv = HWI_SIGN_EXTEND (lv);
450 else
451 lv = CONST_DOUBLE_LOW (trueop), hv = CONST_DOUBLE_HIGH (trueop);
452
453 REAL_VALUE_FROM_INT (d, lv, hv, mode);
454 d = real_value_truncate (mode, d);
455 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
456 }
457 else if (code == UNSIGNED_FLOAT && GET_MODE (trueop) == VOIDmode
458 && (GET_CODE (trueop) == CONST_DOUBLE
459 || GET_CODE (trueop) == CONST_INT))
460 {
461 HOST_WIDE_INT hv, lv;
462 REAL_VALUE_TYPE d;
463
464 if (GET_CODE (trueop) == CONST_INT)
465 lv = INTVAL (trueop), hv = HWI_SIGN_EXTEND (lv);
466 else
467 lv = CONST_DOUBLE_LOW (trueop), hv = CONST_DOUBLE_HIGH (trueop);
468
469 if (op_mode == VOIDmode)
470 {
471 /* We don't know how to interpret negative-looking numbers in
472 this case, so don't try to fold those. */
473 if (hv < 0)
474 return 0;
475 }
476 else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
477 ;
478 else
479 hv = 0, lv &= GET_MODE_MASK (op_mode);
480
481 REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
482 d = real_value_truncate (mode, d);
483 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
484 }
485
486 if (GET_CODE (trueop) == CONST_INT
487 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
488 {
489 HOST_WIDE_INT arg0 = INTVAL (trueop);
490 HOST_WIDE_INT val;
491
492 switch (code)
493 {
494 case NOT:
495 val = ~ arg0;
496 break;
497
498 case NEG:
499 val = - arg0;
500 break;
501
502 case ABS:
503 val = (arg0 >= 0 ? arg0 : - arg0);
504 break;
505
506 case FFS:
507 /* Don't use ffs here. Instead, get low order bit and then its
508 number. If arg0 is zero, this will return 0, as desired. */
509 arg0 &= GET_MODE_MASK (mode);
510 val = exact_log2 (arg0 & (- arg0)) + 1;
511 break;
512
513 case CLZ:
514 arg0 &= GET_MODE_MASK (mode);
515 if (arg0 == 0 && CLZ_DEFINED_VALUE_AT_ZERO (mode, val))
516 ;
517 else
518 val = GET_MODE_BITSIZE (mode) - floor_log2 (arg0) - 1;
519 break;
520
521 case CTZ:
522 arg0 &= GET_MODE_MASK (mode);
523 if (arg0 == 0)
524 {
525 /* Even if the value at zero is undefined, we have to come
526 up with some replacement. Seems good enough. */
527 if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, val))
528 val = GET_MODE_BITSIZE (mode);
529 }
530 else
531 val = exact_log2 (arg0 & -arg0);
532 break;
533
534 case POPCOUNT:
535 arg0 &= GET_MODE_MASK (mode);
536 val = 0;
537 while (arg0)
538 val++, arg0 &= arg0 - 1;
539 break;
540
541 case PARITY:
542 arg0 &= GET_MODE_MASK (mode);
543 val = 0;
544 while (arg0)
545 val++, arg0 &= arg0 - 1;
546 val &= 1;
547 break;
548
549 case TRUNCATE:
550 val = arg0;
551 break;
552
553 case ZERO_EXTEND:
554 /* When zero-extending a CONST_INT, we need to know its
555 original mode. */
556 if (op_mode == VOIDmode)
557 abort ();
558 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
559 {
560 /* If we were really extending the mode,
561 we would have to distinguish between zero-extension
562 and sign-extension. */
563 if (width != GET_MODE_BITSIZE (op_mode))
564 abort ();
565 val = arg0;
566 }
567 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
568 val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
569 else
570 return 0;
571 break;
572
573 case SIGN_EXTEND:
574 if (op_mode == VOIDmode)
575 op_mode = mode;
576 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
577 {
578 /* If we were really extending the mode,
579 we would have to distinguish between zero-extension
580 and sign-extension. */
581 if (width != GET_MODE_BITSIZE (op_mode))
582 abort ();
583 val = arg0;
584 }
585 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
586 {
587 val
588 = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
589 if (val
590 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
591 val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
592 }
593 else
594 return 0;
595 break;
596
597 case SQRT:
598 case FLOAT_EXTEND:
599 case FLOAT_TRUNCATE:
600 case SS_TRUNCATE:
601 case US_TRUNCATE:
602 return 0;
603
604 default:
605 abort ();
606 }
607
608 val = trunc_int_for_mode (val, mode);
609
610 return GEN_INT (val);
611 }
612
613 /* We can do some operations on integer CONST_DOUBLEs. Also allow
614 for a DImode operation on a CONST_INT. */
615 else if (GET_MODE (trueop) == VOIDmode
616 && width <= HOST_BITS_PER_WIDE_INT * 2
617 && (GET_CODE (trueop) == CONST_DOUBLE
618 || GET_CODE (trueop) == CONST_INT))
619 {
620 unsigned HOST_WIDE_INT l1, lv;
621 HOST_WIDE_INT h1, hv;
622
623 if (GET_CODE (trueop) == CONST_DOUBLE)
624 l1 = CONST_DOUBLE_LOW (trueop), h1 = CONST_DOUBLE_HIGH (trueop);
625 else
626 l1 = INTVAL (trueop), h1 = HWI_SIGN_EXTEND (l1);
627
628 switch (code)
629 {
630 case NOT:
631 lv = ~ l1;
632 hv = ~ h1;
633 break;
634
635 case NEG:
636 neg_double (l1, h1, &lv, &hv);
637 break;
638
639 case ABS:
640 if (h1 < 0)
641 neg_double (l1, h1, &lv, &hv);
642 else
643 lv = l1, hv = h1;
644 break;
645
646 case FFS:
647 hv = 0;
648 if (l1 == 0)
649 {
650 if (h1 == 0)
651 lv = 0;
652 else
653 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1) + 1;
654 }
655 else
656 lv = exact_log2 (l1 & -l1) + 1;
657 break;
658
659 case CLZ:
660 hv = 0;
661 if (h1 == 0)
662 lv = GET_MODE_BITSIZE (mode) - floor_log2 (l1) - 1;
663 else
664 lv = GET_MODE_BITSIZE (mode) - floor_log2 (h1) - 1
665 - HOST_BITS_PER_WIDE_INT;
666 break;
667
668 case CTZ:
669 hv = 0;
670 if (l1 == 0)
671 {
672 if (h1 == 0)
673 lv = GET_MODE_BITSIZE (mode);
674 else
675 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1);
676 }
677 else
678 lv = exact_log2 (l1 & -l1);
679 break;
680
681 case POPCOUNT:
682 hv = 0;
683 lv = 0;
684 while (l1)
685 lv++, l1 &= l1 - 1;
686 while (h1)
687 lv++, h1 &= h1 - 1;
688 break;
689
690 case PARITY:
691 hv = 0;
692 lv = 0;
693 while (l1)
694 lv++, l1 &= l1 - 1;
695 while (h1)
696 lv++, h1 &= h1 - 1;
697 lv &= 1;
698 break;
699
700 case TRUNCATE:
701 /* This is just a change-of-mode, so do nothing. */
702 lv = l1, hv = h1;
703 break;
704
705 case ZERO_EXTEND:
706 if (op_mode == VOIDmode)
707 abort ();
708
709 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
710 return 0;
711
712 hv = 0;
713 lv = l1 & GET_MODE_MASK (op_mode);
714 break;
715
716 case SIGN_EXTEND:
717 if (op_mode == VOIDmode
718 || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
719 return 0;
720 else
721 {
722 lv = l1 & GET_MODE_MASK (op_mode);
723 if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
724 && (lv & ((HOST_WIDE_INT) 1
725 << (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
726 lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
727
728 hv = HWI_SIGN_EXTEND (lv);
729 }
730 break;
731
732 case SQRT:
733 return 0;
734
735 default:
736 return 0;
737 }
738
739 return immed_double_const (lv, hv, mode);
740 }
741
742 else if (GET_CODE (trueop) == CONST_DOUBLE
743 && GET_MODE_CLASS (mode) == MODE_FLOAT)
744 {
745 REAL_VALUE_TYPE d, t;
746 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop);
747
748 switch (code)
749 {
750 case SQRT:
751 if (HONOR_SNANS (mode) && real_isnan (&d))
752 return 0;
753 real_sqrt (&t, mode, &d);
754 d = t;
755 break;
756 case ABS:
757 d = REAL_VALUE_ABS (d);
758 break;
759 case NEG:
760 d = REAL_VALUE_NEGATE (d);
761 break;
762 case FLOAT_TRUNCATE:
763 d = real_value_truncate (mode, d);
764 break;
765 case FLOAT_EXTEND:
766 /* All this does is change the mode. */
767 break;
768 case FIX:
769 real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
770 break;
771
772 default:
773 abort ();
774 }
775 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
776 }
777
778 else if (GET_CODE (trueop) == CONST_DOUBLE
779 && GET_MODE_CLASS (GET_MODE (trueop)) == MODE_FLOAT
780 && GET_MODE_CLASS (mode) == MODE_INT
781 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
782 {
783 HOST_WIDE_INT i;
784 REAL_VALUE_TYPE d;
785 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop);
786 switch (code)
787 {
788 case FIX: i = REAL_VALUE_FIX (d); break;
789 case UNSIGNED_FIX: i = REAL_VALUE_UNSIGNED_FIX (d); break;
790 default:
791 abort ();
792 }
793 return gen_int_mode (i, mode);
794 }
795
796 /* This was formerly used only for non-IEEE float.
797 eggert@twinsun.com says it is safe for IEEE also. */
798 else
799 {
800 enum rtx_code reversed;
801 /* There are some simplifications we can do even if the operands
802 aren't constant. */
803 switch (code)
804 {
805 case NOT:
806 /* (not (not X)) == X. */
807 if (GET_CODE (op) == NOT)
808 return XEXP (op, 0);
809
810 /* (not (eq X Y)) == (ne X Y), etc. */
811 if (mode == BImode && GET_RTX_CLASS (GET_CODE (op)) == '<'
812 && ((reversed = reversed_comparison_code (op, NULL_RTX))
813 != UNKNOWN))
814 return gen_rtx_fmt_ee (reversed,
815 op_mode, XEXP (op, 0), XEXP (op, 1));
816 break;
817
818 case NEG:
819 /* (neg (neg X)) == X. */
820 if (GET_CODE (op) == NEG)
821 return XEXP (op, 0);
822 break;
823
824 case SIGN_EXTEND:
825 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
826 becomes just the MINUS if its mode is MODE. This allows
827 folding switch statements on machines using casesi (such as
828 the VAX). */
829 if (GET_CODE (op) == TRUNCATE
830 && GET_MODE (XEXP (op, 0)) == mode
831 && GET_CODE (XEXP (op, 0)) == MINUS
832 && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
833 && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
834 return XEXP (op, 0);
835
836 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
837 if (! POINTERS_EXTEND_UNSIGNED
838 && mode == Pmode && GET_MODE (op) == ptr_mode
839 && (CONSTANT_P (op)
840 || (GET_CODE (op) == SUBREG
841 && GET_CODE (SUBREG_REG (op)) == REG
842 && REG_POINTER (SUBREG_REG (op))
843 && GET_MODE (SUBREG_REG (op)) == Pmode)))
844 return convert_memory_address (Pmode, op);
845 #endif
846 break;
847
848 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
849 case ZERO_EXTEND:
850 if (POINTERS_EXTEND_UNSIGNED > 0
851 && mode == Pmode && GET_MODE (op) == ptr_mode
852 && (CONSTANT_P (op)
853 || (GET_CODE (op) == SUBREG
854 && GET_CODE (SUBREG_REG (op)) == REG
855 && REG_POINTER (SUBREG_REG (op))
856 && GET_MODE (SUBREG_REG (op)) == Pmode)))
857 return convert_memory_address (Pmode, op);
858 break;
859 #endif
860
861 default:
862 break;
863 }
864
865 return 0;
866 }
867 }
868 \f
869 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
870 and OP1. Return 0 if no simplification is possible.
871
872 Don't use this for relational operations such as EQ or LT.
873 Use simplify_relational_operation instead. */
874 rtx
875 simplify_binary_operation (code, mode, op0, op1)
876 enum rtx_code code;
877 enum machine_mode mode;
878 rtx op0, op1;
879 {
880 HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
881 HOST_WIDE_INT val;
882 unsigned int width = GET_MODE_BITSIZE (mode);
883 rtx tem;
884 rtx trueop0 = avoid_constant_pool_reference (op0);
885 rtx trueop1 = avoid_constant_pool_reference (op1);
886
887 /* Relational operations don't work here. We must know the mode
888 of the operands in order to do the comparison correctly.
889 Assuming a full word can give incorrect results.
890 Consider comparing 128 with -128 in QImode. */
891
892 if (GET_RTX_CLASS (code) == '<')
893 abort ();
894
895 /* Make sure the constant is second. */
896 if (GET_RTX_CLASS (code) == 'c'
897 && swap_commutative_operands_p (trueop0, trueop1))
898 {
899 tem = op0, op0 = op1, op1 = tem;
900 tem = trueop0, trueop0 = trueop1, trueop1 = tem;
901 }
902
903 if (VECTOR_MODE_P (mode)
904 && GET_CODE (trueop0) == CONST_VECTOR
905 && GET_CODE (trueop1) == CONST_VECTOR)
906 {
907 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
908 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
909 enum machine_mode op0mode = GET_MODE (trueop0);
910 int op0_elt_size = GET_MODE_SIZE (GET_MODE_INNER (op0mode));
911 unsigned op0_n_elts = (GET_MODE_SIZE (op0mode) / op0_elt_size);
912 enum machine_mode op1mode = GET_MODE (trueop1);
913 int op1_elt_size = GET_MODE_SIZE (GET_MODE_INNER (op1mode));
914 unsigned op1_n_elts = (GET_MODE_SIZE (op1mode) / op1_elt_size);
915 rtvec v = rtvec_alloc (n_elts);
916 unsigned int i;
917
918 if (op0_n_elts != n_elts || op1_n_elts != n_elts)
919 abort ();
920
921 for (i = 0; i < n_elts; i++)
922 {
923 rtx x = simplify_binary_operation (code, GET_MODE_INNER (mode),
924 CONST_VECTOR_ELT (trueop0, i),
925 CONST_VECTOR_ELT (trueop1, i));
926 if (!x)
927 return 0;
928 RTVEC_ELT (v, i) = x;
929 }
930
931 return gen_rtx_CONST_VECTOR (mode, v);
932 }
933
934 if (GET_MODE_CLASS (mode) == MODE_FLOAT
935 && GET_CODE (trueop0) == CONST_DOUBLE
936 && GET_CODE (trueop1) == CONST_DOUBLE
937 && mode == GET_MODE (op0) && mode == GET_MODE (op1))
938 {
939 REAL_VALUE_TYPE f0, f1, value;
940
941 REAL_VALUE_FROM_CONST_DOUBLE (f0, trueop0);
942 REAL_VALUE_FROM_CONST_DOUBLE (f1, trueop1);
943 f0 = real_value_truncate (mode, f0);
944 f1 = real_value_truncate (mode, f1);
945
946 if (code == DIV
947 && !MODE_HAS_INFINITIES (mode)
948 && REAL_VALUES_EQUAL (f1, dconst0))
949 return 0;
950
951 REAL_ARITHMETIC (value, rtx_to_tree_code (code), f0, f1);
952
953 value = real_value_truncate (mode, value);
954 return CONST_DOUBLE_FROM_REAL_VALUE (value, mode);
955 }
956
957 /* We can fold some multi-word operations. */
958 if (GET_MODE_CLASS (mode) == MODE_INT
959 && width == HOST_BITS_PER_WIDE_INT * 2
960 && (GET_CODE (trueop0) == CONST_DOUBLE
961 || GET_CODE (trueop0) == CONST_INT)
962 && (GET_CODE (trueop1) == CONST_DOUBLE
963 || GET_CODE (trueop1) == CONST_INT))
964 {
965 unsigned HOST_WIDE_INT l1, l2, lv;
966 HOST_WIDE_INT h1, h2, hv;
967
968 if (GET_CODE (trueop0) == CONST_DOUBLE)
969 l1 = CONST_DOUBLE_LOW (trueop0), h1 = CONST_DOUBLE_HIGH (trueop0);
970 else
971 l1 = INTVAL (trueop0), h1 = HWI_SIGN_EXTEND (l1);
972
973 if (GET_CODE (trueop1) == CONST_DOUBLE)
974 l2 = CONST_DOUBLE_LOW (trueop1), h2 = CONST_DOUBLE_HIGH (trueop1);
975 else
976 l2 = INTVAL (trueop1), h2 = HWI_SIGN_EXTEND (l2);
977
978 switch (code)
979 {
980 case MINUS:
981 /* A - B == A + (-B). */
982 neg_double (l2, h2, &lv, &hv);
983 l2 = lv, h2 = hv;
984
985 /* .. fall through ... */
986
987 case PLUS:
988 add_double (l1, h1, l2, h2, &lv, &hv);
989 break;
990
991 case MULT:
992 mul_double (l1, h1, l2, h2, &lv, &hv);
993 break;
994
995 case DIV: case MOD: case UDIV: case UMOD:
996 /* We'd need to include tree.h to do this and it doesn't seem worth
997 it. */
998 return 0;
999
1000 case AND:
1001 lv = l1 & l2, hv = h1 & h2;
1002 break;
1003
1004 case IOR:
1005 lv = l1 | l2, hv = h1 | h2;
1006 break;
1007
1008 case XOR:
1009 lv = l1 ^ l2, hv = h1 ^ h2;
1010 break;
1011
1012 case SMIN:
1013 if (h1 < h2
1014 || (h1 == h2
1015 && ((unsigned HOST_WIDE_INT) l1
1016 < (unsigned HOST_WIDE_INT) l2)))
1017 lv = l1, hv = h1;
1018 else
1019 lv = l2, hv = h2;
1020 break;
1021
1022 case SMAX:
1023 if (h1 > h2
1024 || (h1 == h2
1025 && ((unsigned HOST_WIDE_INT) l1
1026 > (unsigned HOST_WIDE_INT) l2)))
1027 lv = l1, hv = h1;
1028 else
1029 lv = l2, hv = h2;
1030 break;
1031
1032 case UMIN:
1033 if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
1034 || (h1 == h2
1035 && ((unsigned HOST_WIDE_INT) l1
1036 < (unsigned HOST_WIDE_INT) l2)))
1037 lv = l1, hv = h1;
1038 else
1039 lv = l2, hv = h2;
1040 break;
1041
1042 case UMAX:
1043 if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
1044 || (h1 == h2
1045 && ((unsigned HOST_WIDE_INT) l1
1046 > (unsigned HOST_WIDE_INT) l2)))
1047 lv = l1, hv = h1;
1048 else
1049 lv = l2, hv = h2;
1050 break;
1051
1052 case LSHIFTRT: case ASHIFTRT:
1053 case ASHIFT:
1054 case ROTATE: case ROTATERT:
1055 #ifdef SHIFT_COUNT_TRUNCATED
1056 if (SHIFT_COUNT_TRUNCATED)
1057 l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
1058 #endif
1059
1060 if (h2 != 0 || l2 >= GET_MODE_BITSIZE (mode))
1061 return 0;
1062
1063 if (code == LSHIFTRT || code == ASHIFTRT)
1064 rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
1065 code == ASHIFTRT);
1066 else if (code == ASHIFT)
1067 lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
1068 else if (code == ROTATE)
1069 lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
1070 else /* code == ROTATERT */
1071 rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
1072 break;
1073
1074 default:
1075 return 0;
1076 }
1077
1078 return immed_double_const (lv, hv, mode);
1079 }
1080
1081 if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT
1082 || width > HOST_BITS_PER_WIDE_INT || width == 0)
1083 {
1084 /* Even if we can't compute a constant result,
1085 there are some cases worth simplifying. */
1086
1087 switch (code)
1088 {
1089 case PLUS:
1090 /* Maybe simplify x + 0 to x. The two expressions are equivalent
1091 when x is NaN, infinite, or finite and nonzero. They aren't
1092 when x is -0 and the rounding mode is not towards -infinity,
1093 since (-0) + 0 is then 0. */
1094 if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
1095 return op0;
1096
1097 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
1098 transformations are safe even for IEEE. */
1099 if (GET_CODE (op0) == NEG)
1100 return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
1101 else if (GET_CODE (op1) == NEG)
1102 return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
1103
1104 /* (~a) + 1 -> -a */
1105 if (INTEGRAL_MODE_P (mode)
1106 && GET_CODE (op0) == NOT
1107 && trueop1 == const1_rtx)
1108 return gen_rtx_NEG (mode, XEXP (op0, 0));
1109
1110 /* Handle both-operands-constant cases. We can only add
1111 CONST_INTs to constants since the sum of relocatable symbols
1112 can't be handled by most assemblers. Don't add CONST_INT
1113 to CONST_INT since overflow won't be computed properly if wider
1114 than HOST_BITS_PER_WIDE_INT. */
1115
1116 if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
1117 && GET_CODE (op1) == CONST_INT)
1118 return plus_constant (op0, INTVAL (op1));
1119 else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
1120 && GET_CODE (op0) == CONST_INT)
1121 return plus_constant (op1, INTVAL (op0));
1122
1123 /* See if this is something like X * C - X or vice versa or
1124 if the multiplication is written as a shift. If so, we can
1125 distribute and make a new multiply, shift, or maybe just
1126 have X (if C is 2 in the example above). But don't make
1127 real multiply if we didn't have one before. */
1128
1129 if (! FLOAT_MODE_P (mode))
1130 {
1131 HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
1132 rtx lhs = op0, rhs = op1;
1133 int had_mult = 0;
1134
1135 if (GET_CODE (lhs) == NEG)
1136 coeff0 = -1, lhs = XEXP (lhs, 0);
1137 else if (GET_CODE (lhs) == MULT
1138 && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
1139 {
1140 coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
1141 had_mult = 1;
1142 }
1143 else if (GET_CODE (lhs) == ASHIFT
1144 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
1145 && INTVAL (XEXP (lhs, 1)) >= 0
1146 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
1147 {
1148 coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
1149 lhs = XEXP (lhs, 0);
1150 }
1151
1152 if (GET_CODE (rhs) == NEG)
1153 coeff1 = -1, rhs = XEXP (rhs, 0);
1154 else if (GET_CODE (rhs) == MULT
1155 && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
1156 {
1157 coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
1158 had_mult = 1;
1159 }
1160 else if (GET_CODE (rhs) == ASHIFT
1161 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
1162 && INTVAL (XEXP (rhs, 1)) >= 0
1163 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
1164 {
1165 coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
1166 rhs = XEXP (rhs, 0);
1167 }
1168
1169 if (rtx_equal_p (lhs, rhs))
1170 {
1171 tem = simplify_gen_binary (MULT, mode, lhs,
1172 GEN_INT (coeff0 + coeff1));
1173 return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
1174 }
1175 }
1176
1177 /* If one of the operands is a PLUS or a MINUS, see if we can
1178 simplify this by the associative law.
1179 Don't use the associative law for floating point.
1180 The inaccuracy makes it nonassociative,
1181 and subtle programs can break if operations are associated. */
1182
1183 if (INTEGRAL_MODE_P (mode)
1184 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
1185 || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS
1186 || (GET_CODE (op0) == CONST
1187 && GET_CODE (XEXP (op0, 0)) == PLUS)
1188 || (GET_CODE (op1) == CONST
1189 && GET_CODE (XEXP (op1, 0)) == PLUS))
1190 && (tem = simplify_plus_minus (code, mode, op0, op1, 0)) != 0)
1191 return tem;
1192 break;
1193
1194 case COMPARE:
1195 #ifdef HAVE_cc0
1196 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
1197 using cc0, in which case we want to leave it as a COMPARE
1198 so we can distinguish it from a register-register-copy.
1199
1200 In IEEE floating point, x-0 is not the same as x. */
1201
1202 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1203 || ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
1204 && trueop1 == CONST0_RTX (mode))
1205 return op0;
1206 #endif
1207
1208 /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
1209 if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
1210 || (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
1211 && XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
1212 {
1213 rtx xop00 = XEXP (op0, 0);
1214 rtx xop10 = XEXP (op1, 0);
1215
1216 #ifdef HAVE_cc0
1217 if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
1218 #else
1219 if (GET_CODE (xop00) == REG && GET_CODE (xop10) == REG
1220 && GET_MODE (xop00) == GET_MODE (xop10)
1221 && REGNO (xop00) == REGNO (xop10)
1222 && GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
1223 && GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
1224 #endif
1225 return xop00;
1226 }
1227 break;
1228
1229 case MINUS:
1230 /* We can't assume x-x is 0 even with non-IEEE floating point,
1231 but since it is zero except in very strange circumstances, we
1232 will treat it as zero with -funsafe-math-optimizations. */
1233 if (rtx_equal_p (trueop0, trueop1)
1234 && ! side_effects_p (op0)
1235 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations))
1236 return CONST0_RTX (mode);
1237
1238 /* Change subtraction from zero into negation. (0 - x) is the
1239 same as -x when x is NaN, infinite, or finite and nonzero.
1240 But if the mode has signed zeros, and does not round towards
1241 -infinity, then 0 - 0 is 0, not -0. */
1242 if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
1243 return gen_rtx_NEG (mode, op1);
1244
1245 /* (-1 - a) is ~a. */
1246 if (trueop0 == constm1_rtx)
1247 return gen_rtx_NOT (mode, op1);
1248
1249 /* Subtracting 0 has no effect unless the mode has signed zeros
1250 and supports rounding towards -infinity. In such a case,
1251 0 - 0 is -0. */
1252 if (!(HONOR_SIGNED_ZEROS (mode)
1253 && HONOR_SIGN_DEPENDENT_ROUNDING (mode))
1254 && trueop1 == CONST0_RTX (mode))
1255 return op0;
1256
1257 /* See if this is something like X * C - X or vice versa or
1258 if the multiplication is written as a shift. If so, we can
1259 distribute and make a new multiply, shift, or maybe just
1260 have X (if C is 2 in the example above). But don't make
1261 real multiply if we didn't have one before. */
1262
1263 if (! FLOAT_MODE_P (mode))
1264 {
1265 HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
1266 rtx lhs = op0, rhs = op1;
1267 int had_mult = 0;
1268
1269 if (GET_CODE (lhs) == NEG)
1270 coeff0 = -1, lhs = XEXP (lhs, 0);
1271 else if (GET_CODE (lhs) == MULT
1272 && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
1273 {
1274 coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
1275 had_mult = 1;
1276 }
1277 else if (GET_CODE (lhs) == ASHIFT
1278 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
1279 && INTVAL (XEXP (lhs, 1)) >= 0
1280 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
1281 {
1282 coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
1283 lhs = XEXP (lhs, 0);
1284 }
1285
1286 if (GET_CODE (rhs) == NEG)
1287 coeff1 = - 1, rhs = XEXP (rhs, 0);
1288 else if (GET_CODE (rhs) == MULT
1289 && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
1290 {
1291 coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
1292 had_mult = 1;
1293 }
1294 else if (GET_CODE (rhs) == ASHIFT
1295 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
1296 && INTVAL (XEXP (rhs, 1)) >= 0
1297 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
1298 {
1299 coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
1300 rhs = XEXP (rhs, 0);
1301 }
1302
1303 if (rtx_equal_p (lhs, rhs))
1304 {
1305 tem = simplify_gen_binary (MULT, mode, lhs,
1306 GEN_INT (coeff0 - coeff1));
1307 return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
1308 }
1309 }
1310
1311 /* (a - (-b)) -> (a + b). True even for IEEE. */
1312 if (GET_CODE (op1) == NEG)
1313 return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
1314
1315 /* If one of the operands is a PLUS or a MINUS, see if we can
1316 simplify this by the associative law.
1317 Don't use the associative law for floating point.
1318 The inaccuracy makes it nonassociative,
1319 and subtle programs can break if operations are associated. */
1320
1321 if (INTEGRAL_MODE_P (mode)
1322 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
1323 || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS
1324 || (GET_CODE (op0) == CONST
1325 && GET_CODE (XEXP (op0, 0)) == PLUS)
1326 || (GET_CODE (op1) == CONST
1327 && GET_CODE (XEXP (op1, 0)) == PLUS))
1328 && (tem = simplify_plus_minus (code, mode, op0, op1, 0)) != 0)
1329 return tem;
1330
1331 /* Don't let a relocatable value get a negative coeff. */
1332 if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
1333 return simplify_gen_binary (PLUS, mode,
1334 op0,
1335 neg_const_int (mode, op1));
1336
1337 /* (x - (x & y)) -> (x & ~y) */
1338 if (GET_CODE (op1) == AND)
1339 {
1340 if (rtx_equal_p (op0, XEXP (op1, 0)))
1341 {
1342 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
1343 GET_MODE (XEXP (op1, 1)));
1344 return simplify_gen_binary (AND, mode, op0, tem);
1345 }
1346 if (rtx_equal_p (op0, XEXP (op1, 1)))
1347 {
1348 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
1349 GET_MODE (XEXP (op1, 0)));
1350 return simplify_gen_binary (AND, mode, op0, tem);
1351 }
1352 }
1353 break;
1354
1355 case MULT:
1356 if (trueop1 == constm1_rtx)
1357 {
1358 tem = simplify_unary_operation (NEG, mode, op0, mode);
1359
1360 return tem ? tem : gen_rtx_NEG (mode, op0);
1361 }
1362
1363 /* Maybe simplify x * 0 to 0. The reduction is not valid if
1364 x is NaN, since x * 0 is then also NaN. Nor is it valid
1365 when the mode has signed zeros, since multiplying a negative
1366 number by 0 will give -0, not 0. */
1367 if (!HONOR_NANS (mode)
1368 && !HONOR_SIGNED_ZEROS (mode)
1369 && trueop1 == CONST0_RTX (mode)
1370 && ! side_effects_p (op0))
1371 return op1;
1372
1373 /* In IEEE floating point, x*1 is not equivalent to x for
1374 signalling NaNs. */
1375 if (!HONOR_SNANS (mode)
1376 && trueop1 == CONST1_RTX (mode))
1377 return op0;
1378
1379 /* Convert multiply by constant power of two into shift unless
1380 we are still generating RTL. This test is a kludge. */
1381 if (GET_CODE (trueop1) == CONST_INT
1382 && (val = exact_log2 (INTVAL (trueop1))) >= 0
1383 /* If the mode is larger than the host word size, and the
1384 uppermost bit is set, then this isn't a power of two due
1385 to implicit sign extension. */
1386 && (width <= HOST_BITS_PER_WIDE_INT
1387 || val != HOST_BITS_PER_WIDE_INT - 1)
1388 && ! rtx_equal_function_value_matters)
1389 return gen_rtx_ASHIFT (mode, op0, GEN_INT (val));
1390
1391 /* x*2 is x+x and x*(-1) is -x */
1392 if (GET_CODE (trueop1) == CONST_DOUBLE
1393 && GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_FLOAT
1394 && GET_MODE (op0) == mode)
1395 {
1396 REAL_VALUE_TYPE d;
1397 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
1398
1399 if (REAL_VALUES_EQUAL (d, dconst2))
1400 return gen_rtx_PLUS (mode, op0, copy_rtx (op0));
1401
1402 if (REAL_VALUES_EQUAL (d, dconstm1))
1403 return gen_rtx_NEG (mode, op0);
1404 }
1405 break;
1406
1407 case IOR:
1408 if (trueop1 == const0_rtx)
1409 return op0;
1410 if (GET_CODE (trueop1) == CONST_INT
1411 && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
1412 == GET_MODE_MASK (mode)))
1413 return op1;
1414 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
1415 return op0;
1416 /* A | (~A) -> -1 */
1417 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
1418 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
1419 && ! side_effects_p (op0)
1420 && GET_MODE_CLASS (mode) != MODE_CC)
1421 return constm1_rtx;
1422 break;
1423
1424 case XOR:
1425 if (trueop1 == const0_rtx)
1426 return op0;
1427 if (GET_CODE (trueop1) == CONST_INT
1428 && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
1429 == GET_MODE_MASK (mode)))
1430 return gen_rtx_NOT (mode, op0);
1431 if (trueop0 == trueop1 && ! side_effects_p (op0)
1432 && GET_MODE_CLASS (mode) != MODE_CC)
1433 return const0_rtx;
1434 break;
1435
1436 case AND:
1437 if (trueop1 == const0_rtx && ! side_effects_p (op0))
1438 return const0_rtx;
1439 if (GET_CODE (trueop1) == CONST_INT
1440 && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
1441 == GET_MODE_MASK (mode)))
1442 return op0;
1443 if (trueop0 == trueop1 && ! side_effects_p (op0)
1444 && GET_MODE_CLASS (mode) != MODE_CC)
1445 return op0;
1446 /* A & (~A) -> 0 */
1447 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
1448 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
1449 && ! side_effects_p (op0)
1450 && GET_MODE_CLASS (mode) != MODE_CC)
1451 return const0_rtx;
1452 break;
1453
1454 case UDIV:
1455 /* Convert divide by power of two into shift (divide by 1 handled
1456 below). */
1457 if (GET_CODE (trueop1) == CONST_INT
1458 && (arg1 = exact_log2 (INTVAL (trueop1))) > 0)
1459 return gen_rtx_LSHIFTRT (mode, op0, GEN_INT (arg1));
1460
1461 /* ... fall through ... */
1462
1463 case DIV:
1464 if (trueop1 == CONST1_RTX (mode))
1465 {
1466 /* On some platforms DIV uses narrower mode than its
1467 operands. */
1468 rtx x = gen_lowpart_common (mode, op0);
1469 if (x)
1470 return x;
1471 else if (mode != GET_MODE (op0) && GET_MODE (op0) != VOIDmode)
1472 return gen_lowpart_SUBREG (mode, op0);
1473 else
1474 return op0;
1475 }
1476
1477 /* Maybe change 0 / x to 0. This transformation isn't safe for
1478 modes with NaNs, since 0 / 0 will then be NaN rather than 0.
1479 Nor is it safe for modes with signed zeros, since dividing
1480 0 by a negative number gives -0, not 0. */
1481 if (!HONOR_NANS (mode)
1482 && !HONOR_SIGNED_ZEROS (mode)
1483 && trueop0 == CONST0_RTX (mode)
1484 && ! side_effects_p (op1))
1485 return op0;
1486
1487 /* Change division by a constant into multiplication. Only do
1488 this with -funsafe-math-optimizations. */
1489 else if (GET_CODE (trueop1) == CONST_DOUBLE
1490 && GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_FLOAT
1491 && trueop1 != CONST0_RTX (mode)
1492 && flag_unsafe_math_optimizations)
1493 {
1494 REAL_VALUE_TYPE d;
1495 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
1496
1497 if (! REAL_VALUES_EQUAL (d, dconst0))
1498 {
1499 REAL_ARITHMETIC (d, rtx_to_tree_code (DIV), dconst1, d);
1500 return gen_rtx_MULT (mode, op0,
1501 CONST_DOUBLE_FROM_REAL_VALUE (d, mode));
1502 }
1503 }
1504 break;
1505
1506 case UMOD:
1507 /* Handle modulus by power of two (mod with 1 handled below). */
1508 if (GET_CODE (trueop1) == CONST_INT
1509 && exact_log2 (INTVAL (trueop1)) > 0)
1510 return gen_rtx_AND (mode, op0, GEN_INT (INTVAL (op1) - 1));
1511
1512 /* ... fall through ... */
1513
1514 case MOD:
1515 if ((trueop0 == const0_rtx || trueop1 == const1_rtx)
1516 && ! side_effects_p (op0) && ! side_effects_p (op1))
1517 return const0_rtx;
1518 break;
1519
1520 case ROTATERT:
1521 case ROTATE:
1522 case ASHIFTRT:
1523 /* Rotating ~0 always results in ~0. */
1524 if (GET_CODE (trueop0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
1525 && (unsigned HOST_WIDE_INT) INTVAL (trueop0) == GET_MODE_MASK (mode)
1526 && ! side_effects_p (op1))
1527 return op0;
1528
1529 /* ... fall through ... */
1530
1531 case ASHIFT:
1532 case LSHIFTRT:
1533 if (trueop1 == const0_rtx)
1534 return op0;
1535 if (trueop0 == const0_rtx && ! side_effects_p (op1))
1536 return op0;
1537 break;
1538
1539 case SMIN:
1540 if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (trueop1) == CONST_INT
1541 && INTVAL (trueop1) == (HOST_WIDE_INT) 1 << (width -1)
1542 && ! side_effects_p (op0))
1543 return op1;
1544 else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
1545 return op0;
1546 break;
1547
1548 case SMAX:
1549 if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (trueop1) == CONST_INT
1550 && ((unsigned HOST_WIDE_INT) INTVAL (trueop1)
1551 == (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
1552 && ! side_effects_p (op0))
1553 return op1;
1554 else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
1555 return op0;
1556 break;
1557
1558 case UMIN:
1559 if (trueop1 == const0_rtx && ! side_effects_p (op0))
1560 return op1;
1561 else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
1562 return op0;
1563 break;
1564
1565 case UMAX:
1566 if (trueop1 == constm1_rtx && ! side_effects_p (op0))
1567 return op1;
1568 else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
1569 return op0;
1570 break;
1571
1572 case SS_PLUS:
1573 case US_PLUS:
1574 case SS_MINUS:
1575 case US_MINUS:
1576 /* ??? There are simplifications that can be done. */
1577 return 0;
1578
1579 case VEC_SELECT:
1580 if (!VECTOR_MODE_P (mode))
1581 {
1582 if (!VECTOR_MODE_P (GET_MODE (trueop0))
1583 || (mode
1584 != GET_MODE_INNER (GET_MODE (trueop0)))
1585 || GET_CODE (trueop1) != PARALLEL
1586 || XVECLEN (trueop1, 0) != 1
1587 || GET_CODE (XVECEXP (trueop1, 0, 0)) != CONST_INT)
1588 abort ();
1589
1590 if (GET_CODE (trueop0) == CONST_VECTOR)
1591 return CONST_VECTOR_ELT (trueop0, INTVAL (XVECEXP (trueop1, 0, 0)));
1592 }
1593 else
1594 {
1595 if (!VECTOR_MODE_P (GET_MODE (trueop0))
1596 || (GET_MODE_INNER (mode)
1597 != GET_MODE_INNER (GET_MODE (trueop0)))
1598 || GET_CODE (trueop1) != PARALLEL)
1599 abort ();
1600
1601 if (GET_CODE (trueop0) == CONST_VECTOR)
1602 {
1603 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
1604 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
1605 rtvec v = rtvec_alloc (n_elts);
1606 unsigned int i;
1607
1608 if (XVECLEN (trueop1, 0) != (int)n_elts)
1609 abort ();
1610 for (i = 0; i < n_elts; i++)
1611 {
1612 rtx x = XVECEXP (trueop1, 0, i);
1613
1614 if (GET_CODE (x) != CONST_INT)
1615 abort ();
1616 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, INTVAL (x));
1617 }
1618
1619 return gen_rtx_CONST_VECTOR (mode, v);
1620 }
1621 }
1622 return 0;
1623 case VEC_CONCAT:
1624 {
1625 enum machine_mode op0_mode = (GET_MODE (trueop0) != VOIDmode
1626 ? GET_MODE (trueop0)
1627 : GET_MODE_INNER (mode));
1628 enum machine_mode op1_mode = (GET_MODE (trueop1) != VOIDmode
1629 ? GET_MODE (trueop1)
1630 : GET_MODE_INNER (mode));
1631
1632 if (!VECTOR_MODE_P (mode)
1633 || (GET_MODE_SIZE (op0_mode) + GET_MODE_SIZE (op1_mode)
1634 != GET_MODE_SIZE (mode)))
1635 abort ();
1636
1637 if ((VECTOR_MODE_P (op0_mode)
1638 && (GET_MODE_INNER (mode)
1639 != GET_MODE_INNER (op0_mode)))
1640 || (!VECTOR_MODE_P (op0_mode)
1641 && GET_MODE_INNER (mode) != op0_mode))
1642 abort ();
1643
1644 if ((VECTOR_MODE_P (op1_mode)
1645 && (GET_MODE_INNER (mode)
1646 != GET_MODE_INNER (op1_mode)))
1647 || (!VECTOR_MODE_P (op1_mode)
1648 && GET_MODE_INNER (mode) != op1_mode))
1649 abort ();
1650
1651 if ((GET_CODE (trueop0) == CONST_VECTOR
1652 || GET_CODE (trueop0) == CONST_INT
1653 || GET_CODE (trueop0) == CONST_DOUBLE)
1654 && (GET_CODE (trueop1) == CONST_VECTOR
1655 || GET_CODE (trueop1) == CONST_INT
1656 || GET_CODE (trueop1) == CONST_DOUBLE))
1657 {
1658 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
1659 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
1660 rtvec v = rtvec_alloc (n_elts);
1661 unsigned int i;
1662 unsigned in_n_elts = 1;
1663
1664 if (VECTOR_MODE_P (op0_mode))
1665 in_n_elts = (GET_MODE_SIZE (op0_mode) / elt_size);
1666 for (i = 0; i < n_elts; i++)
1667 {
1668 if (i < in_n_elts)
1669 {
1670 if (!VECTOR_MODE_P (op0_mode))
1671 RTVEC_ELT (v, i) = trueop0;
1672 else
1673 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, i);
1674 }
1675 else
1676 {
1677 if (!VECTOR_MODE_P (op1_mode))
1678 RTVEC_ELT (v, i) = trueop1;
1679 else
1680 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop1,
1681 i - in_n_elts);
1682 }
1683 }
1684
1685 return gen_rtx_CONST_VECTOR (mode, v);
1686 }
1687 }
1688 return 0;
1689
1690 default:
1691 abort ();
1692 }
1693
1694 return 0;
1695 }
1696
1697 /* Get the integer argument values in two forms:
1698 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
1699
1700 arg0 = INTVAL (trueop0);
1701 arg1 = INTVAL (trueop1);
1702
1703 if (width < HOST_BITS_PER_WIDE_INT)
1704 {
1705 arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
1706 arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
1707
1708 arg0s = arg0;
1709 if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
1710 arg0s |= ((HOST_WIDE_INT) (-1) << width);
1711
1712 arg1s = arg1;
1713 if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
1714 arg1s |= ((HOST_WIDE_INT) (-1) << width);
1715 }
1716 else
1717 {
1718 arg0s = arg0;
1719 arg1s = arg1;
1720 }
1721
1722 /* Compute the value of the arithmetic. */
1723
1724 switch (code)
1725 {
1726 case PLUS:
1727 val = arg0s + arg1s;
1728 break;
1729
1730 case MINUS:
1731 val = arg0s - arg1s;
1732 break;
1733
1734 case MULT:
1735 val = arg0s * arg1s;
1736 break;
1737
1738 case DIV:
1739 if (arg1s == 0
1740 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
1741 && arg1s == -1))
1742 return 0;
1743 val = arg0s / arg1s;
1744 break;
1745
1746 case MOD:
1747 if (arg1s == 0
1748 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
1749 && arg1s == -1))
1750 return 0;
1751 val = arg0s % arg1s;
1752 break;
1753
1754 case UDIV:
1755 if (arg1 == 0
1756 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
1757 && arg1s == -1))
1758 return 0;
1759 val = (unsigned HOST_WIDE_INT) arg0 / arg1;
1760 break;
1761
1762 case UMOD:
1763 if (arg1 == 0
1764 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
1765 && arg1s == -1))
1766 return 0;
1767 val = (unsigned HOST_WIDE_INT) arg0 % arg1;
1768 break;
1769
1770 case AND:
1771 val = arg0 & arg1;
1772 break;
1773
1774 case IOR:
1775 val = arg0 | arg1;
1776 break;
1777
1778 case XOR:
1779 val = arg0 ^ arg1;
1780 break;
1781
1782 case LSHIFTRT:
1783 /* If shift count is undefined, don't fold it; let the machine do
1784 what it wants. But truncate it if the machine will do that. */
1785 if (arg1 < 0)
1786 return 0;
1787
1788 #ifdef SHIFT_COUNT_TRUNCATED
1789 if (SHIFT_COUNT_TRUNCATED)
1790 arg1 %= width;
1791 #endif
1792
1793 val = ((unsigned HOST_WIDE_INT) arg0) >> arg1;
1794 break;
1795
1796 case ASHIFT:
1797 if (arg1 < 0)
1798 return 0;
1799
1800 #ifdef SHIFT_COUNT_TRUNCATED
1801 if (SHIFT_COUNT_TRUNCATED)
1802 arg1 %= width;
1803 #endif
1804
1805 val = ((unsigned HOST_WIDE_INT) arg0) << arg1;
1806 break;
1807
1808 case ASHIFTRT:
1809 if (arg1 < 0)
1810 return 0;
1811
1812 #ifdef SHIFT_COUNT_TRUNCATED
1813 if (SHIFT_COUNT_TRUNCATED)
1814 arg1 %= width;
1815 #endif
1816
1817 val = arg0s >> arg1;
1818
1819 /* Bootstrap compiler may not have sign extended the right shift.
1820 Manually extend the sign to insure bootstrap cc matches gcc. */
1821 if (arg0s < 0 && arg1 > 0)
1822 val |= ((HOST_WIDE_INT) -1) << (HOST_BITS_PER_WIDE_INT - arg1);
1823
1824 break;
1825
1826 case ROTATERT:
1827 if (arg1 < 0)
1828 return 0;
1829
1830 arg1 %= width;
1831 val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
1832 | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
1833 break;
1834
1835 case ROTATE:
1836 if (arg1 < 0)
1837 return 0;
1838
1839 arg1 %= width;
1840 val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
1841 | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
1842 break;
1843
1844 case COMPARE:
1845 /* Do nothing here. */
1846 return 0;
1847
1848 case SMIN:
1849 val = arg0s <= arg1s ? arg0s : arg1s;
1850 break;
1851
1852 case UMIN:
1853 val = ((unsigned HOST_WIDE_INT) arg0
1854 <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
1855 break;
1856
1857 case SMAX:
1858 val = arg0s > arg1s ? arg0s : arg1s;
1859 break;
1860
1861 case UMAX:
1862 val = ((unsigned HOST_WIDE_INT) arg0
1863 > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
1864 break;
1865
1866 default:
1867 abort ();
1868 }
1869
1870 val = trunc_int_for_mode (val, mode);
1871
1872 return GEN_INT (val);
1873 }
1874 \f
1875 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
1876 PLUS or MINUS.
1877
1878 Rather than test for specific case, we do this by a brute-force method
1879 and do all possible simplifications until no more changes occur. Then
1880 we rebuild the operation.
1881
1882 If FORCE is true, then always generate the rtx. This is used to
1883 canonicalize stuff emitted from simplify_gen_binary. Note that this
1884 can still fail if the rtx is too complex. It won't fail just because
1885 the result is not 'simpler' than the input, however. */
1886
1887 struct simplify_plus_minus_op_data
1888 {
1889 rtx op;
1890 int neg;
1891 };
1892
1893 static int
1894 simplify_plus_minus_op_data_cmp (p1, p2)
1895 const void *p1;
1896 const void *p2;
1897 {
1898 const struct simplify_plus_minus_op_data *d1 = p1;
1899 const struct simplify_plus_minus_op_data *d2 = p2;
1900
1901 return (commutative_operand_precedence (d2->op)
1902 - commutative_operand_precedence (d1->op));
1903 }
1904
1905 static rtx
1906 simplify_plus_minus (code, mode, op0, op1, force)
1907 enum rtx_code code;
1908 enum machine_mode mode;
1909 rtx op0, op1;
1910 int force;
1911 {
1912 struct simplify_plus_minus_op_data ops[8];
1913 rtx result, tem;
1914 int n_ops = 2, input_ops = 2, input_consts = 0, n_consts;
1915 int first, negate, changed;
1916 int i, j;
1917
1918 memset ((char *) ops, 0, sizeof ops);
1919
1920 /* Set up the two operands and then expand them until nothing has been
1921 changed. If we run out of room in our array, give up; this should
1922 almost never happen. */
1923
1924 ops[0].op = op0;
1925 ops[0].neg = 0;
1926 ops[1].op = op1;
1927 ops[1].neg = (code == MINUS);
1928
1929 do
1930 {
1931 changed = 0;
1932
1933 for (i = 0; i < n_ops; i++)
1934 {
1935 rtx this_op = ops[i].op;
1936 int this_neg = ops[i].neg;
1937 enum rtx_code this_code = GET_CODE (this_op);
1938
1939 switch (this_code)
1940 {
1941 case PLUS:
1942 case MINUS:
1943 if (n_ops == 7)
1944 return NULL_RTX;
1945
1946 ops[n_ops].op = XEXP (this_op, 1);
1947 ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
1948 n_ops++;
1949
1950 ops[i].op = XEXP (this_op, 0);
1951 input_ops++;
1952 changed = 1;
1953 break;
1954
1955 case NEG:
1956 ops[i].op = XEXP (this_op, 0);
1957 ops[i].neg = ! this_neg;
1958 changed = 1;
1959 break;
1960
1961 case CONST:
1962 if (n_ops < 7
1963 && GET_CODE (XEXP (this_op, 0)) == PLUS
1964 && CONSTANT_P (XEXP (XEXP (this_op, 0), 0))
1965 && CONSTANT_P (XEXP (XEXP (this_op, 0), 1)))
1966 {
1967 ops[i].op = XEXP (XEXP (this_op, 0), 0);
1968 ops[n_ops].op = XEXP (XEXP (this_op, 0), 1);
1969 ops[n_ops].neg = this_neg;
1970 n_ops++;
1971 input_consts++;
1972 changed = 1;
1973 }
1974 break;
1975
1976 case NOT:
1977 /* ~a -> (-a - 1) */
1978 if (n_ops != 7)
1979 {
1980 ops[n_ops].op = constm1_rtx;
1981 ops[n_ops++].neg = this_neg;
1982 ops[i].op = XEXP (this_op, 0);
1983 ops[i].neg = !this_neg;
1984 changed = 1;
1985 }
1986 break;
1987
1988 case CONST_INT:
1989 if (this_neg)
1990 {
1991 ops[i].op = neg_const_int (mode, this_op);
1992 ops[i].neg = 0;
1993 changed = 1;
1994 }
1995 break;
1996
1997 default:
1998 break;
1999 }
2000 }
2001 }
2002 while (changed);
2003
2004 /* If we only have two operands, we can't do anything. */
2005 if (n_ops <= 2 && !force)
2006 return NULL_RTX;
2007
2008 /* Count the number of CONSTs we didn't split above. */
2009 for (i = 0; i < n_ops; i++)
2010 if (GET_CODE (ops[i].op) == CONST)
2011 input_consts++;
2012
2013 /* Now simplify each pair of operands until nothing changes. The first
2014 time through just simplify constants against each other. */
2015
2016 first = 1;
2017 do
2018 {
2019 changed = first;
2020
2021 for (i = 0; i < n_ops - 1; i++)
2022 for (j = i + 1; j < n_ops; j++)
2023 {
2024 rtx lhs = ops[i].op, rhs = ops[j].op;
2025 int lneg = ops[i].neg, rneg = ops[j].neg;
2026
2027 if (lhs != 0 && rhs != 0
2028 && (! first || (CONSTANT_P (lhs) && CONSTANT_P (rhs))))
2029 {
2030 enum rtx_code ncode = PLUS;
2031
2032 if (lneg != rneg)
2033 {
2034 ncode = MINUS;
2035 if (lneg)
2036 tem = lhs, lhs = rhs, rhs = tem;
2037 }
2038 else if (swap_commutative_operands_p (lhs, rhs))
2039 tem = lhs, lhs = rhs, rhs = tem;
2040
2041 tem = simplify_binary_operation (ncode, mode, lhs, rhs);
2042
2043 /* Reject "simplifications" that just wrap the two
2044 arguments in a CONST. Failure to do so can result
2045 in infinite recursion with simplify_binary_operation
2046 when it calls us to simplify CONST operations. */
2047 if (tem
2048 && ! (GET_CODE (tem) == CONST
2049 && GET_CODE (XEXP (tem, 0)) == ncode
2050 && XEXP (XEXP (tem, 0), 0) == lhs
2051 && XEXP (XEXP (tem, 0), 1) == rhs)
2052 /* Don't allow -x + -1 -> ~x simplifications in the
2053 first pass. This allows us the chance to combine
2054 the -1 with other constants. */
2055 && ! (first
2056 && GET_CODE (tem) == NOT
2057 && XEXP (tem, 0) == rhs))
2058 {
2059 lneg &= rneg;
2060 if (GET_CODE (tem) == NEG)
2061 tem = XEXP (tem, 0), lneg = !lneg;
2062 if (GET_CODE (tem) == CONST_INT && lneg)
2063 tem = neg_const_int (mode, tem), lneg = 0;
2064
2065 ops[i].op = tem;
2066 ops[i].neg = lneg;
2067 ops[j].op = NULL_RTX;
2068 changed = 1;
2069 }
2070 }
2071 }
2072
2073 first = 0;
2074 }
2075 while (changed);
2076
2077 /* Pack all the operands to the lower-numbered entries. */
2078 for (i = 0, j = 0; j < n_ops; j++)
2079 if (ops[j].op)
2080 ops[i++] = ops[j];
2081 n_ops = i;
2082
2083 /* Sort the operations based on swap_commutative_operands_p. */
2084 qsort (ops, n_ops, sizeof (*ops), simplify_plus_minus_op_data_cmp);
2085
2086 /* We suppressed creation of trivial CONST expressions in the
2087 combination loop to avoid recursion. Create one manually now.
2088 The combination loop should have ensured that there is exactly
2089 one CONST_INT, and the sort will have ensured that it is last
2090 in the array and that any other constant will be next-to-last. */
2091
2092 if (n_ops > 1
2093 && GET_CODE (ops[n_ops - 1].op) == CONST_INT
2094 && CONSTANT_P (ops[n_ops - 2].op))
2095 {
2096 rtx value = ops[n_ops - 1].op;
2097 if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
2098 value = neg_const_int (mode, value);
2099 ops[n_ops - 2].op = plus_constant (ops[n_ops - 2].op, INTVAL (value));
2100 n_ops--;
2101 }
2102
2103 /* Count the number of CONSTs that we generated. */
2104 n_consts = 0;
2105 for (i = 0; i < n_ops; i++)
2106 if (GET_CODE (ops[i].op) == CONST)
2107 n_consts++;
2108
2109 /* Give up if we didn't reduce the number of operands we had. Make
2110 sure we count a CONST as two operands. If we have the same
2111 number of operands, but have made more CONSTs than before, this
2112 is also an improvement, so accept it. */
2113 if (!force
2114 && (n_ops + n_consts > input_ops
2115 || (n_ops + n_consts == input_ops && n_consts <= input_consts)))
2116 return NULL_RTX;
2117
2118 /* Put a non-negated operand first. If there aren't any, make all
2119 operands positive and negate the whole thing later. */
2120
2121 negate = 0;
2122 for (i = 0; i < n_ops && ops[i].neg; i++)
2123 continue;
2124 if (i == n_ops)
2125 {
2126 for (i = 0; i < n_ops; i++)
2127 ops[i].neg = 0;
2128 negate = 1;
2129 }
2130 else if (i != 0)
2131 {
2132 tem = ops[0].op;
2133 ops[0] = ops[i];
2134 ops[i].op = tem;
2135 ops[i].neg = 1;
2136 }
2137
2138 /* Now make the result by performing the requested operations. */
2139 result = ops[0].op;
2140 for (i = 1; i < n_ops; i++)
2141 result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
2142 mode, result, ops[i].op);
2143
2144 return negate ? gen_rtx_NEG (mode, result) : result;
2145 }
2146
2147 /* Like simplify_binary_operation except used for relational operators.
2148 MODE is the mode of the operands, not that of the result. If MODE
2149 is VOIDmode, both operands must also be VOIDmode and we compare the
2150 operands in "infinite precision".
2151
2152 If no simplification is possible, this function returns zero. Otherwise,
2153 it returns either const_true_rtx or const0_rtx. */
2154
2155 rtx
2156 simplify_relational_operation (code, mode, op0, op1)
2157 enum rtx_code code;
2158 enum machine_mode mode;
2159 rtx op0, op1;
2160 {
2161 int equal, op0lt, op0ltu, op1lt, op1ltu;
2162 rtx tem;
2163 rtx trueop0;
2164 rtx trueop1;
2165
2166 if (mode == VOIDmode
2167 && (GET_MODE (op0) != VOIDmode
2168 || GET_MODE (op1) != VOIDmode))
2169 abort ();
2170
2171 /* If op0 is a compare, extract the comparison arguments from it. */
2172 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
2173 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
2174
2175 trueop0 = avoid_constant_pool_reference (op0);
2176 trueop1 = avoid_constant_pool_reference (op1);
2177
2178 /* We can't simplify MODE_CC values since we don't know what the
2179 actual comparison is. */
2180 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC || CC0_P (op0))
2181 return 0;
2182
2183 /* Make sure the constant is second. */
2184 if (swap_commutative_operands_p (trueop0, trueop1))
2185 {
2186 tem = op0, op0 = op1, op1 = tem;
2187 tem = trueop0, trueop0 = trueop1, trueop1 = tem;
2188 code = swap_condition (code);
2189 }
2190
2191 /* For integer comparisons of A and B maybe we can simplify A - B and can
2192 then simplify a comparison of that with zero. If A and B are both either
2193 a register or a CONST_INT, this can't help; testing for these cases will
2194 prevent infinite recursion here and speed things up.
2195
2196 If CODE is an unsigned comparison, then we can never do this optimization,
2197 because it gives an incorrect result if the subtraction wraps around zero.
2198 ANSI C defines unsigned operations such that they never overflow, and
2199 thus such cases can not be ignored. */
2200
2201 if (INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
2202 && ! ((GET_CODE (op0) == REG || GET_CODE (trueop0) == CONST_INT)
2203 && (GET_CODE (op1) == REG || GET_CODE (trueop1) == CONST_INT))
2204 && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
2205 && code != GTU && code != GEU && code != LTU && code != LEU)
2206 return simplify_relational_operation (signed_condition (code),
2207 mode, tem, const0_rtx);
2208
2209 if (flag_unsafe_math_optimizations && code == ORDERED)
2210 return const_true_rtx;
2211
2212 if (flag_unsafe_math_optimizations && code == UNORDERED)
2213 return const0_rtx;
2214
2215 /* For modes without NaNs, if the two operands are equal, we know the
2216 result. */
2217 if (!HONOR_NANS (GET_MODE (trueop0)) && rtx_equal_p (trueop0, trueop1))
2218 equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;
2219
2220 /* If the operands are floating-point constants, see if we can fold
2221 the result. */
2222 else if (GET_CODE (trueop0) == CONST_DOUBLE
2223 && GET_CODE (trueop1) == CONST_DOUBLE
2224 && GET_MODE_CLASS (GET_MODE (trueop0)) == MODE_FLOAT)
2225 {
2226 REAL_VALUE_TYPE d0, d1;
2227
2228 REAL_VALUE_FROM_CONST_DOUBLE (d0, trueop0);
2229 REAL_VALUE_FROM_CONST_DOUBLE (d1, trueop1);
2230
2231 /* Comparisons are unordered iff at least one of the values is NaN. */
2232 if (REAL_VALUE_ISNAN (d0) || REAL_VALUE_ISNAN (d1))
2233 switch (code)
2234 {
2235 case UNEQ:
2236 case UNLT:
2237 case UNGT:
2238 case UNLE:
2239 case UNGE:
2240 case NE:
2241 case UNORDERED:
2242 return const_true_rtx;
2243 case EQ:
2244 case LT:
2245 case GT:
2246 case LE:
2247 case GE:
2248 case LTGT:
2249 case ORDERED:
2250 return const0_rtx;
2251 default:
2252 return 0;
2253 }
2254
2255 equal = REAL_VALUES_EQUAL (d0, d1);
2256 op0lt = op0ltu = REAL_VALUES_LESS (d0, d1);
2257 op1lt = op1ltu = REAL_VALUES_LESS (d1, d0);
2258 }
2259
2260 /* Otherwise, see if the operands are both integers. */
2261 else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
2262 && (GET_CODE (trueop0) == CONST_DOUBLE
2263 || GET_CODE (trueop0) == CONST_INT)
2264 && (GET_CODE (trueop1) == CONST_DOUBLE
2265 || GET_CODE (trueop1) == CONST_INT))
2266 {
2267 int width = GET_MODE_BITSIZE (mode);
2268 HOST_WIDE_INT l0s, h0s, l1s, h1s;
2269 unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
2270
2271 /* Get the two words comprising each integer constant. */
2272 if (GET_CODE (trueop0) == CONST_DOUBLE)
2273 {
2274 l0u = l0s = CONST_DOUBLE_LOW (trueop0);
2275 h0u = h0s = CONST_DOUBLE_HIGH (trueop0);
2276 }
2277 else
2278 {
2279 l0u = l0s = INTVAL (trueop0);
2280 h0u = h0s = HWI_SIGN_EXTEND (l0s);
2281 }
2282
2283 if (GET_CODE (trueop1) == CONST_DOUBLE)
2284 {
2285 l1u = l1s = CONST_DOUBLE_LOW (trueop1);
2286 h1u = h1s = CONST_DOUBLE_HIGH (trueop1);
2287 }
2288 else
2289 {
2290 l1u = l1s = INTVAL (trueop1);
2291 h1u = h1s = HWI_SIGN_EXTEND (l1s);
2292 }
2293
2294 /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
2295 we have to sign or zero-extend the values. */
2296 if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
2297 {
2298 l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
2299 l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
2300
2301 if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
2302 l0s |= ((HOST_WIDE_INT) (-1) << width);
2303
2304 if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
2305 l1s |= ((HOST_WIDE_INT) (-1) << width);
2306 }
2307 if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
2308 h0u = h1u = 0, h0s = HWI_SIGN_EXTEND (l0s), h1s = HWI_SIGN_EXTEND (l1s);
2309
2310 equal = (h0u == h1u && l0u == l1u);
2311 op0lt = (h0s < h1s || (h0s == h1s && l0u < l1u));
2312 op1lt = (h1s < h0s || (h1s == h0s && l1u < l0u));
2313 op0ltu = (h0u < h1u || (h0u == h1u && l0u < l1u));
2314 op1ltu = (h1u < h0u || (h1u == h0u && l1u < l0u));
2315 }
2316
2317 /* Otherwise, there are some code-specific tests we can make. */
2318 else
2319 {
2320 switch (code)
2321 {
2322 case EQ:
2323 if (trueop1 == const0_rtx && nonzero_address_p (op0))
2324 return const0_rtx;
2325 break;
2326
2327 case NE:
2328 if (trueop1 == const0_rtx && nonzero_address_p (op0))
2329 return const_true_rtx;
2330 break;
2331
2332 case GEU:
2333 /* Unsigned values are never negative. */
2334 if (trueop1 == const0_rtx)
2335 return const_true_rtx;
2336 break;
2337
2338 case LTU:
2339 if (trueop1 == const0_rtx)
2340 return const0_rtx;
2341 break;
2342
2343 case LEU:
2344 /* Unsigned values are never greater than the largest
2345 unsigned value. */
2346 if (GET_CODE (trueop1) == CONST_INT
2347 && (unsigned HOST_WIDE_INT) INTVAL (trueop1) == GET_MODE_MASK (mode)
2348 && INTEGRAL_MODE_P (mode))
2349 return const_true_rtx;
2350 break;
2351
2352 case GTU:
2353 if (GET_CODE (trueop1) == CONST_INT
2354 && (unsigned HOST_WIDE_INT) INTVAL (trueop1) == GET_MODE_MASK (mode)
2355 && INTEGRAL_MODE_P (mode))
2356 return const0_rtx;
2357 break;
2358
2359 case LT:
2360 /* Optimize abs(x) < 0.0. */
2361 if (trueop1 == CONST0_RTX (mode) && !HONOR_SNANS (mode))
2362 {
2363 tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
2364 : trueop0;
2365 if (GET_CODE (tem) == ABS)
2366 return const0_rtx;
2367 }
2368 break;
2369
2370 case GE:
2371 /* Optimize abs(x) >= 0.0. */
2372 if (trueop1 == CONST0_RTX (mode) && !HONOR_NANS (mode))
2373 {
2374 tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
2375 : trueop0;
2376 if (GET_CODE (tem) == ABS)
2377 return const1_rtx;
2378 }
2379 break;
2380
2381 default:
2382 break;
2383 }
2384
2385 return 0;
2386 }
2387
2388 /* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
2389 as appropriate. */
2390 switch (code)
2391 {
2392 case EQ:
2393 case UNEQ:
2394 return equal ? const_true_rtx : const0_rtx;
2395 case NE:
2396 case LTGT:
2397 return ! equal ? const_true_rtx : const0_rtx;
2398 case LT:
2399 case UNLT:
2400 return op0lt ? const_true_rtx : const0_rtx;
2401 case GT:
2402 case UNGT:
2403 return op1lt ? const_true_rtx : const0_rtx;
2404 case LTU:
2405 return op0ltu ? const_true_rtx : const0_rtx;
2406 case GTU:
2407 return op1ltu ? const_true_rtx : const0_rtx;
2408 case LE:
2409 case UNLE:
2410 return equal || op0lt ? const_true_rtx : const0_rtx;
2411 case GE:
2412 case UNGE:
2413 return equal || op1lt ? const_true_rtx : const0_rtx;
2414 case LEU:
2415 return equal || op0ltu ? const_true_rtx : const0_rtx;
2416 case GEU:
2417 return equal || op1ltu ? const_true_rtx : const0_rtx;
2418 case ORDERED:
2419 return const_true_rtx;
2420 case UNORDERED:
2421 return const0_rtx;
2422 default:
2423 abort ();
2424 }
2425 }
2426 \f
2427 /* Simplify CODE, an operation with result mode MODE and three operands,
2428 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
2429 a constant. Return 0 if no simplifications is possible. */
2430
2431 rtx
2432 simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
2433 enum rtx_code code;
2434 enum machine_mode mode, op0_mode;
2435 rtx op0, op1, op2;
2436 {
2437 unsigned int width = GET_MODE_BITSIZE (mode);
2438
2439 /* VOIDmode means "infinite" precision. */
2440 if (width == 0)
2441 width = HOST_BITS_PER_WIDE_INT;
2442
2443 switch (code)
2444 {
2445 case SIGN_EXTRACT:
2446 case ZERO_EXTRACT:
2447 if (GET_CODE (op0) == CONST_INT
2448 && GET_CODE (op1) == CONST_INT
2449 && GET_CODE (op2) == CONST_INT
2450 && ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
2451 && width <= (unsigned) HOST_BITS_PER_WIDE_INT)
2452 {
2453 /* Extracting a bit-field from a constant */
2454 HOST_WIDE_INT val = INTVAL (op0);
2455
2456 if (BITS_BIG_ENDIAN)
2457 val >>= (GET_MODE_BITSIZE (op0_mode)
2458 - INTVAL (op2) - INTVAL (op1));
2459 else
2460 val >>= INTVAL (op2);
2461
2462 if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
2463 {
2464 /* First zero-extend. */
2465 val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
2466 /* If desired, propagate sign bit. */
2467 if (code == SIGN_EXTRACT
2468 && (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
2469 val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
2470 }
2471
2472 /* Clear the bits that don't belong in our mode,
2473 unless they and our sign bit are all one.
2474 So we get either a reasonable negative value or a reasonable
2475 unsigned value for this mode. */
2476 if (width < HOST_BITS_PER_WIDE_INT
2477 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
2478 != ((HOST_WIDE_INT) (-1) << (width - 1))))
2479 val &= ((HOST_WIDE_INT) 1 << width) - 1;
2480
2481 return GEN_INT (val);
2482 }
2483 break;
2484
2485 case IF_THEN_ELSE:
2486 if (GET_CODE (op0) == CONST_INT)
2487 return op0 != const0_rtx ? op1 : op2;
2488
2489 /* Convert a == b ? b : a to "a". */
2490 if (GET_CODE (op0) == NE && ! side_effects_p (op0)
2491 && !HONOR_NANS (mode)
2492 && rtx_equal_p (XEXP (op0, 0), op1)
2493 && rtx_equal_p (XEXP (op0, 1), op2))
2494 return op1;
2495 else if (GET_CODE (op0) == EQ && ! side_effects_p (op0)
2496 && !HONOR_NANS (mode)
2497 && rtx_equal_p (XEXP (op0, 1), op1)
2498 && rtx_equal_p (XEXP (op0, 0), op2))
2499 return op2;
2500 else if (GET_RTX_CLASS (GET_CODE (op0)) == '<' && ! side_effects_p (op0))
2501 {
2502 enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
2503 ? GET_MODE (XEXP (op0, 1))
2504 : GET_MODE (XEXP (op0, 0)));
2505 rtx temp;
2506 if (cmp_mode == VOIDmode)
2507 cmp_mode = op0_mode;
2508 temp = simplify_relational_operation (GET_CODE (op0), cmp_mode,
2509 XEXP (op0, 0), XEXP (op0, 1));
2510
2511 /* See if any simplifications were possible. */
2512 if (temp == const0_rtx)
2513 return op2;
2514 else if (temp == const1_rtx)
2515 return op1;
2516 else if (temp)
2517 op0 = temp;
2518
2519 /* Look for happy constants in op1 and op2. */
2520 if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
2521 {
2522 HOST_WIDE_INT t = INTVAL (op1);
2523 HOST_WIDE_INT f = INTVAL (op2);
2524
2525 if (t == STORE_FLAG_VALUE && f == 0)
2526 code = GET_CODE (op0);
2527 else if (t == 0 && f == STORE_FLAG_VALUE)
2528 {
2529 enum rtx_code tmp;
2530 tmp = reversed_comparison_code (op0, NULL_RTX);
2531 if (tmp == UNKNOWN)
2532 break;
2533 code = tmp;
2534 }
2535 else
2536 break;
2537
2538 return gen_rtx_fmt_ee (code, mode, XEXP (op0, 0), XEXP (op0, 1));
2539 }
2540 }
2541 break;
2542 case VEC_MERGE:
2543 if (GET_MODE (op0) != mode
2544 || GET_MODE (op1) != mode
2545 || !VECTOR_MODE_P (mode))
2546 abort ();
2547 op2 = avoid_constant_pool_reference (op2);
2548 if (GET_CODE (op2) == CONST_INT)
2549 {
2550 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
2551 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
2552 int mask = (1<<n_elts) - 1;
2553
2554 if (!(INTVAL (op2) & mask))
2555 return op1;
2556 if ((INTVAL (op2) & mask) == mask)
2557 return op0;
2558
2559 op0 = avoid_constant_pool_reference (op0);
2560 op1 = avoid_constant_pool_reference (op1);
2561 if (GET_CODE (op0) == CONST_VECTOR
2562 && GET_CODE (op1) == CONST_VECTOR)
2563 {
2564 rtvec v = rtvec_alloc (n_elts);
2565 unsigned int i;
2566
2567 for (i = 0; i < n_elts; i++)
2568 RTVEC_ELT (v, i) = (INTVAL (op2) & (1 << i)
2569 ? CONST_VECTOR_ELT (op0, i)
2570 : CONST_VECTOR_ELT (op1, i));
2571 return gen_rtx_CONST_VECTOR (mode, v);
2572 }
2573 }
2574 break;
2575
2576 default:
2577 abort ();
2578 }
2579
2580 return 0;
2581 }
2582
2583 /* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
2584 Return 0 if no simplifications is possible. */
2585 rtx
2586 simplify_subreg (outermode, op, innermode, byte)
2587 rtx op;
2588 unsigned int byte;
2589 enum machine_mode outermode, innermode;
2590 {
2591 /* Little bit of sanity checking. */
2592 if (innermode == VOIDmode || outermode == VOIDmode
2593 || innermode == BLKmode || outermode == BLKmode)
2594 abort ();
2595
2596 if (GET_MODE (op) != innermode
2597 && GET_MODE (op) != VOIDmode)
2598 abort ();
2599
2600 if (byte % GET_MODE_SIZE (outermode)
2601 || byte >= GET_MODE_SIZE (innermode))
2602 abort ();
2603
2604 if (outermode == innermode && !byte)
2605 return op;
2606
2607 /* Simplify subregs of vector constants. */
2608 if (GET_CODE (op) == CONST_VECTOR)
2609 {
2610 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (innermode));
2611 const unsigned int offset = byte / elt_size;
2612 rtx elt;
2613
2614 if (GET_MODE_INNER (innermode) == outermode)
2615 {
2616 elt = CONST_VECTOR_ELT (op, offset);
2617
2618 /* ?? We probably don't need this copy_rtx because constants
2619 can be shared. ?? */
2620
2621 return copy_rtx (elt);
2622 }
2623 else if (GET_MODE_INNER (innermode) == GET_MODE_INNER (outermode)
2624 && GET_MODE_SIZE (innermode) > GET_MODE_SIZE (outermode))
2625 {
2626 return (gen_rtx_CONST_VECTOR
2627 (outermode,
2628 gen_rtvec_v (GET_MODE_NUNITS (outermode),
2629 &CONST_VECTOR_ELT (op, offset))));
2630 }
2631 else if (GET_MODE_CLASS (outermode) == MODE_INT
2632 && (GET_MODE_SIZE (outermode) % elt_size == 0))
2633 {
2634 /* This happens when the target register size is smaller then
2635 the vector mode, and we synthesize operations with vectors
2636 of elements that are smaller than the register size. */
2637 HOST_WIDE_INT sum = 0, high = 0;
2638 unsigned n_elts = (GET_MODE_SIZE (outermode) / elt_size);
2639 unsigned i = BYTES_BIG_ENDIAN ? offset : offset + n_elts - 1;
2640 unsigned step = BYTES_BIG_ENDIAN ? 1 : -1;
2641 int shift = BITS_PER_UNIT * elt_size;
2642
2643 for (; n_elts--; i += step)
2644 {
2645 elt = CONST_VECTOR_ELT (op, i);
2646 if (GET_CODE (elt) == CONST_DOUBLE
2647 && GET_MODE_CLASS (GET_MODE (elt)) == MODE_FLOAT)
2648 {
2649 elt = gen_lowpart_common (int_mode_for_mode (GET_MODE (elt)),
2650 elt);
2651 if (! elt)
2652 return NULL_RTX;
2653 }
2654 if (GET_CODE (elt) != CONST_INT)
2655 return NULL_RTX;
2656 /* Avoid overflow. */
2657 if (high >> (HOST_BITS_PER_WIDE_INT - shift))
2658 return NULL_RTX;
2659 high = high << shift | sum >> (HOST_BITS_PER_WIDE_INT - shift);
2660 sum = (sum << shift) + INTVAL (elt);
2661 }
2662 if (GET_MODE_BITSIZE (outermode) <= HOST_BITS_PER_WIDE_INT)
2663 return GEN_INT (trunc_int_for_mode (sum, outermode));
2664 else if (GET_MODE_BITSIZE (outermode) == 2* HOST_BITS_PER_WIDE_INT)
2665 return immed_double_const (sum, high, outermode);
2666 else
2667 return NULL_RTX;
2668 }
2669 else if (GET_MODE_CLASS (outermode) == MODE_INT
2670 && (elt_size % GET_MODE_SIZE (outermode) == 0))
2671 {
2672 enum machine_mode new_mode
2673 = int_mode_for_mode (GET_MODE_INNER (innermode));
2674 int subbyte = byte % elt_size;
2675
2676 op = simplify_subreg (new_mode, op, innermode, byte - subbyte);
2677 if (! op)
2678 return NULL_RTX;
2679 return simplify_subreg (outermode, op, new_mode, subbyte);
2680 }
2681 else if (GET_MODE_CLASS (outermode) == MODE_INT)
2682 /* This shouldn't happen, but let's not do anything stupid. */
2683 return NULL_RTX;
2684 }
2685
2686 /* Attempt to simplify constant to non-SUBREG expression. */
2687 if (CONSTANT_P (op))
2688 {
2689 int offset, part;
2690 unsigned HOST_WIDE_INT val = 0;
2691
2692 if (GET_MODE_CLASS (outermode) == MODE_VECTOR_INT
2693 || GET_MODE_CLASS (outermode) == MODE_VECTOR_FLOAT)
2694 {
2695 /* Construct a CONST_VECTOR from individual subregs. */
2696 enum machine_mode submode = GET_MODE_INNER (outermode);
2697 int subsize = GET_MODE_UNIT_SIZE (outermode);
2698 int i, elts = GET_MODE_NUNITS (outermode);
2699 rtvec v = rtvec_alloc (elts);
2700 rtx elt;
2701
2702 for (i = 0; i < elts; i++, byte += subsize)
2703 {
2704 /* This might fail, e.g. if taking a subreg from a SYMBOL_REF. */
2705 /* ??? It would be nice if we could actually make such subregs
2706 on targets that allow such relocations. */
2707 if (byte >= GET_MODE_UNIT_SIZE (innermode))
2708 elt = CONST0_RTX (submode);
2709 else
2710 elt = simplify_subreg (submode, op, innermode, byte);
2711 if (! elt)
2712 return NULL_RTX;
2713 RTVEC_ELT (v, i) = elt;
2714 }
2715 return gen_rtx_CONST_VECTOR (outermode, v);
2716 }
2717
2718 /* ??? This code is partly redundant with code below, but can handle
2719 the subregs of floats and similar corner cases.
2720 Later it we should move all simplification code here and rewrite
2721 GEN_LOWPART_IF_POSSIBLE, GEN_HIGHPART, OPERAND_SUBWORD and friends
2722 using SIMPLIFY_SUBREG. */
2723 if (subreg_lowpart_offset (outermode, innermode) == byte
2724 && GET_CODE (op) != CONST_VECTOR)
2725 {
2726 rtx new = gen_lowpart_if_possible (outermode, op);
2727 if (new)
2728 return new;
2729 }
2730
2731 /* Similar comment as above apply here. */
2732 if (GET_MODE_SIZE (outermode) == UNITS_PER_WORD
2733 && GET_MODE_SIZE (innermode) > UNITS_PER_WORD
2734 && GET_MODE_CLASS (outermode) == MODE_INT)
2735 {
2736 rtx new = constant_subword (op,
2737 (byte / UNITS_PER_WORD),
2738 innermode);
2739 if (new)
2740 return new;
2741 }
2742
2743 if (GET_MODE_CLASS (outermode) != MODE_INT
2744 && GET_MODE_CLASS (outermode) != MODE_CC)
2745 {
2746 enum machine_mode new_mode = int_mode_for_mode (outermode);
2747
2748 if (new_mode != innermode || byte != 0)
2749 {
2750 op = simplify_subreg (new_mode, op, innermode, byte);
2751 if (! op)
2752 return NULL_RTX;
2753 return simplify_subreg (outermode, op, new_mode, 0);
2754 }
2755 }
2756
2757 offset = byte * BITS_PER_UNIT;
2758 switch (GET_CODE (op))
2759 {
2760 case CONST_DOUBLE:
2761 if (GET_MODE (op) != VOIDmode)
2762 break;
2763
2764 /* We can't handle this case yet. */
2765 if (GET_MODE_BITSIZE (outermode) >= HOST_BITS_PER_WIDE_INT)
2766 return NULL_RTX;
2767
2768 part = offset >= HOST_BITS_PER_WIDE_INT;
2769 if ((BITS_PER_WORD > HOST_BITS_PER_WIDE_INT
2770 && BYTES_BIG_ENDIAN)
2771 || (BITS_PER_WORD <= HOST_BITS_PER_WIDE_INT
2772 && WORDS_BIG_ENDIAN))
2773 part = !part;
2774 val = part ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op);
2775 offset %= HOST_BITS_PER_WIDE_INT;
2776
2777 /* We've already picked the word we want from a double, so
2778 pretend this is actually an integer. */
2779 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
2780
2781 /* FALLTHROUGH */
2782 case CONST_INT:
2783 if (GET_CODE (op) == CONST_INT)
2784 val = INTVAL (op);
2785
2786 /* We don't handle synthesizing of non-integral constants yet. */
2787 if (GET_MODE_CLASS (outermode) != MODE_INT)
2788 return NULL_RTX;
2789
2790 if (BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
2791 {
2792 if (WORDS_BIG_ENDIAN)
2793 offset = (GET_MODE_BITSIZE (innermode)
2794 - GET_MODE_BITSIZE (outermode) - offset);
2795 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
2796 && GET_MODE_SIZE (outermode) < UNITS_PER_WORD)
2797 offset = (offset + BITS_PER_WORD - GET_MODE_BITSIZE (outermode)
2798 - 2 * (offset % BITS_PER_WORD));
2799 }
2800
2801 if (offset >= HOST_BITS_PER_WIDE_INT)
2802 return ((HOST_WIDE_INT) val < 0) ? constm1_rtx : const0_rtx;
2803 else
2804 {
2805 val >>= offset;
2806 if (GET_MODE_BITSIZE (outermode) < HOST_BITS_PER_WIDE_INT)
2807 val = trunc_int_for_mode (val, outermode);
2808 return GEN_INT (val);
2809 }
2810 default:
2811 break;
2812 }
2813 }
2814
2815 /* Changing mode twice with SUBREG => just change it once,
2816 or not at all if changing back op starting mode. */
2817 if (GET_CODE (op) == SUBREG)
2818 {
2819 enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
2820 int final_offset = byte + SUBREG_BYTE (op);
2821 rtx new;
2822
2823 if (outermode == innermostmode
2824 && byte == 0 && SUBREG_BYTE (op) == 0)
2825 return SUBREG_REG (op);
2826
2827 /* The SUBREG_BYTE represents offset, as if the value were stored
2828 in memory. Irritating exception is paradoxical subreg, where
2829 we define SUBREG_BYTE to be 0. On big endian machines, this
2830 value should be negative. For a moment, undo this exception. */
2831 if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
2832 {
2833 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
2834 if (WORDS_BIG_ENDIAN)
2835 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2836 if (BYTES_BIG_ENDIAN)
2837 final_offset += difference % UNITS_PER_WORD;
2838 }
2839 if (SUBREG_BYTE (op) == 0
2840 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
2841 {
2842 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
2843 if (WORDS_BIG_ENDIAN)
2844 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2845 if (BYTES_BIG_ENDIAN)
2846 final_offset += difference % UNITS_PER_WORD;
2847 }
2848
2849 /* See whether resulting subreg will be paradoxical. */
2850 if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
2851 {
2852 /* In nonparadoxical subregs we can't handle negative offsets. */
2853 if (final_offset < 0)
2854 return NULL_RTX;
2855 /* Bail out in case resulting subreg would be incorrect. */
2856 if (final_offset % GET_MODE_SIZE (outermode)
2857 || (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
2858 return NULL_RTX;
2859 }
2860 else
2861 {
2862 int offset = 0;
2863 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
2864
2865 /* In paradoxical subreg, see if we are still looking on lower part.
2866 If so, our SUBREG_BYTE will be 0. */
2867 if (WORDS_BIG_ENDIAN)
2868 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2869 if (BYTES_BIG_ENDIAN)
2870 offset += difference % UNITS_PER_WORD;
2871 if (offset == final_offset)
2872 final_offset = 0;
2873 else
2874 return NULL_RTX;
2875 }
2876
2877 /* Recurse for futher possible simplifications. */
2878 new = simplify_subreg (outermode, SUBREG_REG (op),
2879 GET_MODE (SUBREG_REG (op)),
2880 final_offset);
2881 if (new)
2882 return new;
2883 return gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
2884 }
2885
2886 /* SUBREG of a hard register => just change the register number
2887 and/or mode. If the hard register is not valid in that mode,
2888 suppress this simplification. If the hard register is the stack,
2889 frame, or argument pointer, leave this as a SUBREG. */
2890
2891 if (REG_P (op)
2892 && (! REG_FUNCTION_VALUE_P (op)
2893 || ! rtx_equal_function_value_matters)
2894 && REGNO (op) < FIRST_PSEUDO_REGISTER
2895 #ifdef CANNOT_CHANGE_MODE_CLASS
2896 && ! (REG_CANNOT_CHANGE_MODE_P (REGNO (op), innermode, outermode)
2897 && GET_MODE_CLASS (innermode) != MODE_COMPLEX_INT
2898 && GET_MODE_CLASS (innermode) != MODE_COMPLEX_FLOAT)
2899 #endif
2900 && ((reload_completed && !frame_pointer_needed)
2901 || (REGNO (op) != FRAME_POINTER_REGNUM
2902 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2903 && REGNO (op) != HARD_FRAME_POINTER_REGNUM
2904 #endif
2905 ))
2906 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2907 && REGNO (op) != ARG_POINTER_REGNUM
2908 #endif
2909 && REGNO (op) != STACK_POINTER_REGNUM)
2910 {
2911 int final_regno = subreg_hard_regno (gen_rtx_SUBREG (outermode, op, byte),
2912 0);
2913
2914 /* ??? We do allow it if the current REG is not valid for
2915 its mode. This is a kludge to work around how float/complex
2916 arguments are passed on 32-bit SPARC and should be fixed. */
2917 if (HARD_REGNO_MODE_OK (final_regno, outermode)
2918 || ! HARD_REGNO_MODE_OK (REGNO (op), innermode))
2919 {
2920 rtx x = gen_rtx_REG_offset (op, outermode, final_regno, byte);
2921
2922 /* Propagate original regno. We don't have any way to specify
2923 the offset inside original regno, so do so only for lowpart.
2924 The information is used only by alias analysis that can not
2925 grog partial register anyway. */
2926
2927 if (subreg_lowpart_offset (outermode, innermode) == byte)
2928 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
2929 return x;
2930 }
2931 }
2932
2933 /* If we have a SUBREG of a register that we are replacing and we are
2934 replacing it with a MEM, make a new MEM and try replacing the
2935 SUBREG with it. Don't do this if the MEM has a mode-dependent address
2936 or if we would be widening it. */
2937
2938 if (GET_CODE (op) == MEM
2939 && ! mode_dependent_address_p (XEXP (op, 0))
2940 /* Allow splitting of volatile memory references in case we don't
2941 have instruction to move the whole thing. */
2942 && (! MEM_VOLATILE_P (op)
2943 || ! have_insn_for (SET, innermode))
2944 && GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
2945 return adjust_address_nv (op, outermode, byte);
2946
2947 /* Handle complex values represented as CONCAT
2948 of real and imaginary part. */
2949 if (GET_CODE (op) == CONCAT)
2950 {
2951 int is_realpart = byte < GET_MODE_UNIT_SIZE (innermode);
2952 rtx part = is_realpart ? XEXP (op, 0) : XEXP (op, 1);
2953 unsigned int final_offset;
2954 rtx res;
2955
2956 final_offset = byte % (GET_MODE_UNIT_SIZE (innermode));
2957 res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
2958 if (res)
2959 return res;
2960 /* We can at least simplify it by referring directly to the relevant part. */
2961 return gen_rtx_SUBREG (outermode, part, final_offset);
2962 }
2963
2964 return NULL_RTX;
2965 }
2966 /* Make a SUBREG operation or equivalent if it folds. */
2967
2968 rtx
2969 simplify_gen_subreg (outermode, op, innermode, byte)
2970 rtx op;
2971 unsigned int byte;
2972 enum machine_mode outermode, innermode;
2973 {
2974 rtx new;
2975 /* Little bit of sanity checking. */
2976 if (innermode == VOIDmode || outermode == VOIDmode
2977 || innermode == BLKmode || outermode == BLKmode)
2978 abort ();
2979
2980 if (GET_MODE (op) != innermode
2981 && GET_MODE (op) != VOIDmode)
2982 abort ();
2983
2984 if (byte % GET_MODE_SIZE (outermode)
2985 || byte >= GET_MODE_SIZE (innermode))
2986 abort ();
2987
2988 if (GET_CODE (op) == QUEUED)
2989 return NULL_RTX;
2990
2991 new = simplify_subreg (outermode, op, innermode, byte);
2992 if (new)
2993 return new;
2994
2995 if (GET_CODE (op) == SUBREG || GET_MODE (op) == VOIDmode)
2996 return NULL_RTX;
2997
2998 return gen_rtx_SUBREG (outermode, op, byte);
2999 }
3000 /* Simplify X, an rtx expression.
3001
3002 Return the simplified expression or NULL if no simplifications
3003 were possible.
3004
3005 This is the preferred entry point into the simplification routines;
3006 however, we still allow passes to call the more specific routines.
3007
3008 Right now GCC has three (yes, three) major bodies of RTL simplification
3009 code that need to be unified.
3010
3011 1. fold_rtx in cse.c. This code uses various CSE specific
3012 information to aid in RTL simplification.
3013
3014 2. simplify_rtx in combine.c. Similar to fold_rtx, except that
3015 it uses combine specific information to aid in RTL
3016 simplification.
3017
3018 3. The routines in this file.
3019
3020
3021 Long term we want to only have one body of simplification code; to
3022 get to that state I recommend the following steps:
3023
3024 1. Pour over fold_rtx & simplify_rtx and move any simplifications
3025 which are not pass dependent state into these routines.
3026
3027 2. As code is moved by #1, change fold_rtx & simplify_rtx to
3028 use this routine whenever possible.
3029
3030 3. Allow for pass dependent state to be provided to these
3031 routines and add simplifications based on the pass dependent
3032 state. Remove code from cse.c & combine.c that becomes
3033 redundant/dead.
3034
3035 It will take time, but ultimately the compiler will be easier to
3036 maintain and improve. It's totally silly that when we add a
3037 simplification that it needs to be added to 4 places (3 for RTL
3038 simplification and 1 for tree simplification. */
3039
3040 rtx
3041 simplify_rtx (x)
3042 rtx x;
3043 {
3044 enum rtx_code code = GET_CODE (x);
3045 enum machine_mode mode = GET_MODE (x);
3046
3047 switch (GET_RTX_CLASS (code))
3048 {
3049 case '1':
3050 return simplify_unary_operation (code, mode,
3051 XEXP (x, 0), GET_MODE (XEXP (x, 0)));
3052 case 'c':
3053 if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3054 {
3055 rtx tem;
3056
3057 tem = XEXP (x, 0);
3058 XEXP (x, 0) = XEXP (x, 1);
3059 XEXP (x, 1) = tem;
3060 return simplify_binary_operation (code, mode,
3061 XEXP (x, 0), XEXP (x, 1));
3062 }
3063
3064 case '2':
3065 return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3066
3067 case '3':
3068 case 'b':
3069 return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
3070 XEXP (x, 0), XEXP (x, 1),
3071 XEXP (x, 2));
3072
3073 case '<':
3074 return simplify_relational_operation (code,
3075 ((GET_MODE (XEXP (x, 0))
3076 != VOIDmode)
3077 ? GET_MODE (XEXP (x, 0))
3078 : GET_MODE (XEXP (x, 1))),
3079 XEXP (x, 0), XEXP (x, 1));
3080 case 'x':
3081 if (code == SUBREG)
3082 return simplify_gen_subreg (mode, SUBREG_REG (x),
3083 GET_MODE (SUBREG_REG (x)),
3084 SUBREG_BYTE (x));
3085 if (code == CONSTANT_P_RTX)
3086 {
3087 if (CONSTANT_P (XEXP (x,0)))
3088 return const1_rtx;
3089 }
3090 return NULL;
3091 default:
3092 return NULL;
3093 }
3094 }
This page took 0.235772 seconds and 6 git commands to generate.