]> gcc.gnu.org Git - gcc.git/blob - gcc/sel-sched.c
re PR rtl-optimization/44919 (ICE on ia64 with -O3 at sel-sched.c:4672)
[gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "timevar.h"
38 #include "tree-pass.h"
39 #include "sched-int.h"
40 #include "ggc.h"
41 #include "tree.h"
42 #include "vec.h"
43 #include "langhooks.h"
44 #include "rtlhooks-def.h"
45 #include "output.h"
46 #include "emit-rtl.h"
47
48 #ifdef INSN_SCHEDULING
49 #include "sel-sched-ir.h"
50 #include "sel-sched-dump.h"
51 #include "sel-sched.h"
52 #include "dbgcnt.h"
53
54 /* Implementation of selective scheduling approach.
55 The below implementation follows the original approach with the following
56 changes:
57
58 o the scheduler works after register allocation (but can be also tuned
59 to work before RA);
60 o some instructions are not copied or register renamed;
61 o conditional jumps are not moved with code duplication;
62 o several jumps in one parallel group are not supported;
63 o when pipelining outer loops, code motion through inner loops
64 is not supported;
65 o control and data speculation are supported;
66 o some improvements for better compile time/performance were made.
67
68 Terminology
69 ===========
70
71 A vinsn, or virtual insn, is an insn with additional data characterizing
72 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
73 Vinsns also act as smart pointers to save memory by reusing them in
74 different expressions. A vinsn is described by vinsn_t type.
75
76 An expression is a vinsn with additional data characterizing its properties
77 at some point in the control flow graph. The data may be its usefulness,
78 priority, speculative status, whether it was renamed/subsituted, etc.
79 An expression is described by expr_t type.
80
81 Availability set (av_set) is a set of expressions at a given control flow
82 point. It is represented as av_set_t. The expressions in av sets are kept
83 sorted in the terms of expr_greater_p function. It allows to truncate
84 the set while leaving the best expressions.
85
86 A fence is a point through which code motion is prohibited. On each step,
87 we gather a parallel group of insns at a fence. It is possible to have
88 multiple fences. A fence is represented via fence_t.
89
90 A boundary is the border between the fence group and the rest of the code.
91 Currently, we never have more than one boundary per fence, as we finalize
92 the fence group when a jump is scheduled. A boundary is represented
93 via bnd_t.
94
95 High-level overview
96 ===================
97
98 The scheduler finds regions to schedule, schedules each one, and finalizes.
99 The regions are formed starting from innermost loops, so that when the inner
100 loop is pipelined, its prologue can be scheduled together with yet unprocessed
101 outer loop. The rest of acyclic regions are found using extend_rgns:
102 the blocks that are not yet allocated to any regions are traversed in top-down
103 order, and a block is added to a region to which all its predecessors belong;
104 otherwise, the block starts its own region.
105
106 The main scheduling loop (sel_sched_region_2) consists of just
107 scheduling on each fence and updating fences. For each fence,
108 we fill a parallel group of insns (fill_insns) until some insns can be added.
109 First, we compute available exprs (av-set) at the boundary of the current
110 group. Second, we choose the best expression from it. If the stall is
111 required to schedule any of the expressions, we advance the current cycle
112 appropriately. So, the final group does not exactly correspond to a VLIW
113 word. Third, we move the chosen expression to the boundary (move_op)
114 and update the intermediate av sets and liveness sets. We quit fill_insns
115 when either no insns left for scheduling or we have scheduled enough insns
116 so we feel like advancing a scheduling point.
117
118 Computing available expressions
119 ===============================
120
121 The computation (compute_av_set) is a bottom-up traversal. At each insn,
122 we're moving the union of its successors' sets through it via
123 moveup_expr_set. The dependent expressions are removed. Local
124 transformations (substitution, speculation) are applied to move more
125 exprs. Then the expr corresponding to the current insn is added.
126 The result is saved on each basic block header.
127
128 When traversing the CFG, we're moving down for no more than max_ws insns.
129 Also, we do not move down to ineligible successors (is_ineligible_successor),
130 which include moving along a back-edge, moving to already scheduled code,
131 and moving to another fence. The first two restrictions are lifted during
132 pipelining, which allows us to move insns along a back-edge. We always have
133 an acyclic region for scheduling because we forbid motion through fences.
134
135 Choosing the best expression
136 ============================
137
138 We sort the final availability set via sel_rank_for_schedule, then we remove
139 expressions which are not yet ready (tick_check_p) or which dest registers
140 cannot be used. For some of them, we choose another register via
141 find_best_reg. To do this, we run find_used_regs to calculate the set of
142 registers which cannot be used. The find_used_regs function performs
143 a traversal of code motion paths for an expr. We consider for renaming
144 only registers which are from the same regclass as the original one and
145 using which does not interfere with any live ranges. Finally, we convert
146 the resulting set to the ready list format and use max_issue and reorder*
147 hooks similarly to the Haifa scheduler.
148
149 Scheduling the best expression
150 ==============================
151
152 We run the move_op routine to perform the same type of code motion paths
153 traversal as in find_used_regs. (These are working via the same driver,
154 code_motion_path_driver.) When moving down the CFG, we look for original
155 instruction that gave birth to a chosen expression. We undo
156 the transformations performed on an expression via the history saved in it.
157 When found, we remove the instruction or leave a reg-reg copy/speculation
158 check if needed. On a way up, we insert bookkeeping copies at each join
159 point. If a copy is not needed, it will be removed later during this
160 traversal. We update the saved av sets and liveness sets on the way up, too.
161
162 Finalizing the schedule
163 =======================
164
165 When pipelining, we reschedule the blocks from which insns were pipelined
166 to get a tighter schedule. On Itanium, we also perform bundling via
167 the same routine from ia64.c.
168
169 Dependence analysis changes
170 ===========================
171
172 We augmented the sched-deps.c with hooks that get called when a particular
173 dependence is found in a particular part of an insn. Using these hooks, we
174 can do several actions such as: determine whether an insn can be moved through
175 another (has_dependence_p, moveup_expr); find out whether an insn can be
176 scheduled on the current cycle (tick_check_p); find out registers that
177 are set/used/clobbered by an insn and find out all the strange stuff that
178 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
179 init_global_and_expr_for_insn).
180
181 Initialization changes
182 ======================
183
184 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
185 reused in all of the schedulers. We have split up the initialization of data
186 of such parts into different functions prefixed with scheduler type and
187 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
188 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
189 The same splitting is done with current_sched_info structure:
190 dependence-related parts are in sched_deps_info, common part is in
191 common_sched_info, and haifa/sel/etc part is in current_sched_info.
192
193 Target contexts
194 ===============
195
196 As we now have multiple-point scheduling, this would not work with backends
197 which save some of the scheduler state to use it in the target hooks.
198 For this purpose, we introduce a concept of target contexts, which
199 encapsulate such information. The backend should implement simple routines
200 of allocating/freeing/setting such a context. The scheduler calls these
201 as target hooks and handles the target context as an opaque pointer (similar
202 to the DFA state type, state_t).
203
204 Various speedups
205 ================
206
207 As the correct data dependence graph is not supported during scheduling (which
208 is to be changed in mid-term), we cache as much of the dependence analysis
209 results as possible to avoid reanalyzing. This includes: bitmap caches on
210 each insn in stream of the region saying yes/no for a query with a pair of
211 UIDs; hashtables with the previously done transformations on each insn in
212 stream; a vector keeping a history of transformations on each expr.
213
214 Also, we try to minimize the dependence context used on each fence to check
215 whether the given expression is ready for scheduling by removing from it
216 insns that are definitely completed the execution. The results of
217 tick_check_p checks are also cached in a vector on each fence.
218
219 We keep a valid liveness set on each insn in a region to avoid the high
220 cost of recomputation on large basic blocks.
221
222 Finally, we try to minimize the number of needed updates to the availability
223 sets. The updates happen in two cases: when fill_insns terminates,
224 we advance all fences and increase the stage number to show that the region
225 has changed and the sets are to be recomputed; and when the next iteration
226 of a loop in fill_insns happens (but this one reuses the saved av sets
227 on bb headers.) Thus, we try to break the fill_insns loop only when
228 "significant" number of insns from the current scheduling window was
229 scheduled. This should be made a target param.
230
231
232 TODO: correctly support the data dependence graph at all stages and get rid
233 of all caches. This should speed up the scheduler.
234 TODO: implement moving cond jumps with bookkeeping copies on both targets.
235 TODO: tune the scheduler before RA so it does not create too much pseudos.
236
237
238 References:
239 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
240 selective scheduling and software pipelining.
241 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
242
243 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
244 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
245 for GCC. In Proceedings of GCC Developers' Summit 2006.
246
247 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
248 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
249 http://rogue.colorado.edu/EPIC7/.
250
251 */
252
253 /* True when pipelining is enabled. */
254 bool pipelining_p;
255
256 /* True if bookkeeping is enabled. */
257 bool bookkeeping_p;
258
259 /* Maximum number of insns that are eligible for renaming. */
260 int max_insns_to_rename;
261 \f
262
263 /* Definitions of local types and macros. */
264
265 /* Represents possible outcomes of moving an expression through an insn. */
266 enum MOVEUP_EXPR_CODE
267 {
268 /* The expression is not changed. */
269 MOVEUP_EXPR_SAME,
270
271 /* Not changed, but requires a new destination register. */
272 MOVEUP_EXPR_AS_RHS,
273
274 /* Cannot be moved. */
275 MOVEUP_EXPR_NULL,
276
277 /* Changed (substituted or speculated). */
278 MOVEUP_EXPR_CHANGED
279 };
280
281 /* The container to be passed into rtx search & replace functions. */
282 struct rtx_search_arg
283 {
284 /* What we are searching for. */
285 rtx x;
286
287 /* The occurence counter. */
288 int n;
289 };
290
291 typedef struct rtx_search_arg *rtx_search_arg_p;
292
293 /* This struct contains precomputed hard reg sets that are needed when
294 computing registers available for renaming. */
295 struct hard_regs_data
296 {
297 /* For every mode, this stores registers available for use with
298 that mode. */
299 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
300
301 /* True when regs_for_mode[mode] is initialized. */
302 bool regs_for_mode_ok[NUM_MACHINE_MODES];
303
304 /* For every register, it has regs that are ok to rename into it.
305 The register in question is always set. If not, this means
306 that the whole set is not computed yet. */
307 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
308
309 /* For every mode, this stores registers not available due to
310 call clobbering. */
311 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
312
313 /* All registers that are used or call used. */
314 HARD_REG_SET regs_ever_used;
315
316 #ifdef STACK_REGS
317 /* Stack registers. */
318 HARD_REG_SET stack_regs;
319 #endif
320 };
321
322 /* Holds the results of computation of available for renaming and
323 unavailable hard registers. */
324 struct reg_rename
325 {
326 /* These are unavailable due to calls crossing, globalness, etc. */
327 HARD_REG_SET unavailable_hard_regs;
328
329 /* These are *available* for renaming. */
330 HARD_REG_SET available_for_renaming;
331
332 /* Whether this code motion path crosses a call. */
333 bool crosses_call;
334 };
335
336 /* A global structure that contains the needed information about harg
337 regs. */
338 static struct hard_regs_data sel_hrd;
339 \f
340
341 /* This structure holds local data used in code_motion_path_driver hooks on
342 the same or adjacent levels of recursion. Here we keep those parameters
343 that are not used in code_motion_path_driver routine itself, but only in
344 its hooks. Moreover, all parameters that can be modified in hooks are
345 in this structure, so all other parameters passed explicitly to hooks are
346 read-only. */
347 struct cmpd_local_params
348 {
349 /* Local params used in move_op_* functions. */
350
351 /* Edges for bookkeeping generation. */
352 edge e1, e2;
353
354 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
355 expr_t c_expr_merged, c_expr_local;
356
357 /* Local params used in fur_* functions. */
358 /* Copy of the ORIGINAL_INSN list, stores the original insns already
359 found before entering the current level of code_motion_path_driver. */
360 def_list_t old_original_insns;
361
362 /* Local params used in move_op_* functions. */
363 /* True when we have removed last insn in the block which was
364 also a boundary. Do not update anything or create bookkeeping copies. */
365 BOOL_BITFIELD removed_last_insn : 1;
366 };
367
368 /* Stores the static parameters for move_op_* calls. */
369 struct moveop_static_params
370 {
371 /* Destination register. */
372 rtx dest;
373
374 /* Current C_EXPR. */
375 expr_t c_expr;
376
377 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
378 they are to be removed. */
379 int uid;
380
381 #ifdef ENABLE_CHECKING
382 /* This is initialized to the insn on which the driver stopped its traversal. */
383 insn_t failed_insn;
384 #endif
385
386 /* True if we scheduled an insn with different register. */
387 bool was_renamed;
388 };
389
390 /* Stores the static parameters for fur_* calls. */
391 struct fur_static_params
392 {
393 /* Set of registers unavailable on the code motion path. */
394 regset used_regs;
395
396 /* Pointer to the list of original insns definitions. */
397 def_list_t *original_insns;
398
399 /* True if a code motion path contains a CALL insn. */
400 bool crosses_call;
401 };
402
403 typedef struct fur_static_params *fur_static_params_p;
404 typedef struct cmpd_local_params *cmpd_local_params_p;
405 typedef struct moveop_static_params *moveop_static_params_p;
406
407 /* Set of hooks and parameters that determine behaviour specific to
408 move_op or find_used_regs functions. */
409 struct code_motion_path_driver_info_def
410 {
411 /* Called on enter to the basic block. */
412 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
413
414 /* Called when original expr is found. */
415 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
416
417 /* Called while descending current basic block if current insn is not
418 the original EXPR we're searching for. */
419 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
420
421 /* Function to merge C_EXPRes from different successors. */
422 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
423
424 /* Function to finalize merge from different successors and possibly
425 deallocate temporary data structures used for merging. */
426 void (*after_merge_succs) (cmpd_local_params_p, void *);
427
428 /* Called on the backward stage of recursion to do moveup_expr.
429 Used only with move_op_*. */
430 void (*ascend) (insn_t, void *);
431
432 /* Called on the ascending pass, before returning from the current basic
433 block or from the whole traversal. */
434 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
435
436 /* When processing successors in move_op we need only descend into
437 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
438 int succ_flags;
439
440 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
441 const char *routine_name;
442 };
443
444 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
445 FUR_HOOKS. */
446 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
447
448 /* Set of hooks for performing move_op and find_used_regs routines with
449 code_motion_path_driver. */
450 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
451
452 /* True if/when we want to emulate Haifa scheduler in the common code.
453 This is used in sched_rgn_local_init and in various places in
454 sched-deps.c. */
455 int sched_emulate_haifa_p;
456
457 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
458 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
459 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
460 scheduling window. */
461 int global_level;
462
463 /* Current fences. */
464 flist_t fences;
465
466 /* True when separable insns should be scheduled as RHSes. */
467 static bool enable_schedule_as_rhs_p;
468
469 /* Used in verify_target_availability to assert that target reg is reported
470 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
471 we haven't scheduled anything on the previous fence.
472 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
473 have more conservative value than the one returned by the
474 find_used_regs, thus we shouldn't assert that these values are equal. */
475 static bool scheduled_something_on_previous_fence;
476
477 /* All newly emitted insns will have their uids greater than this value. */
478 static int first_emitted_uid;
479
480 /* Set of basic blocks that are forced to start new ebbs. This is a subset
481 of all the ebb heads. */
482 static bitmap_head _forced_ebb_heads;
483 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
484
485 /* Blocks that need to be rescheduled after pipelining. */
486 bitmap blocks_to_reschedule = NULL;
487
488 /* True when the first lv set should be ignored when updating liveness. */
489 static bool ignore_first = false;
490
491 /* Number of insns max_issue has initialized data structures for. */
492 static int max_issue_size = 0;
493
494 /* Whether we can issue more instructions. */
495 static int can_issue_more;
496
497 /* Maximum software lookahead window size, reduced when rescheduling after
498 pipelining. */
499 static int max_ws;
500
501 /* Number of insns scheduled in current region. */
502 static int num_insns_scheduled;
503
504 /* A vector of expressions is used to be able to sort them. */
505 DEF_VEC_P(expr_t);
506 DEF_VEC_ALLOC_P(expr_t,heap);
507 static VEC(expr_t, heap) *vec_av_set = NULL;
508
509 /* A vector of vinsns is used to hold temporary lists of vinsns. */
510 DEF_VEC_P(vinsn_t);
511 DEF_VEC_ALLOC_P(vinsn_t,heap);
512 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
513
514 /* This vector has the exprs which may still present in av_sets, but actually
515 can't be moved up due to bookkeeping created during code motion to another
516 fence. See comment near the call to update_and_record_unavailable_insns
517 for the detailed explanations. */
518 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
519
520 /* This vector has vinsns which are scheduled with renaming on the first fence
521 and then seen on the second. For expressions with such vinsns, target
522 availability information may be wrong. */
523 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
524
525 /* Vector to store temporary nops inserted in move_op to prevent removal
526 of empty bbs. */
527 DEF_VEC_P(insn_t);
528 DEF_VEC_ALLOC_P(insn_t,heap);
529 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
530
531 /* These bitmaps record original instructions scheduled on the current
532 iteration and bookkeeping copies created by them. */
533 static bitmap current_originators = NULL;
534 static bitmap current_copies = NULL;
535
536 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
537 visit them afterwards. */
538 static bitmap code_motion_visited_blocks = NULL;
539
540 /* Variables to accumulate different statistics. */
541
542 /* The number of bookkeeping copies created. */
543 static int stat_bookkeeping_copies;
544
545 /* The number of insns that required bookkeeiping for their scheduling. */
546 static int stat_insns_needed_bookkeeping;
547
548 /* The number of insns that got renamed. */
549 static int stat_renamed_scheduled;
550
551 /* The number of substitutions made during scheduling. */
552 static int stat_substitutions_total;
553 \f
554
555 /* Forward declarations of static functions. */
556 static bool rtx_ok_for_substitution_p (rtx, rtx);
557 static int sel_rank_for_schedule (const void *, const void *);
558 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
559 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
560
561 static rtx get_dest_from_orig_ops (av_set_t);
562 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
563 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
564 def_list_t *);
565 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
566 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
567 cmpd_local_params_p, void *);
568 static void sel_sched_region_1 (void);
569 static void sel_sched_region_2 (int);
570 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
571
572 static void debug_state (state_t);
573 \f
574
575 /* Functions that work with fences. */
576
577 /* Advance one cycle on FENCE. */
578 static void
579 advance_one_cycle (fence_t fence)
580 {
581 unsigned i;
582 int cycle;
583 rtx insn;
584
585 advance_state (FENCE_STATE (fence));
586 cycle = ++FENCE_CYCLE (fence);
587 FENCE_ISSUED_INSNS (fence) = 0;
588 FENCE_STARTS_CYCLE_P (fence) = 1;
589 can_issue_more = issue_rate;
590 FENCE_ISSUE_MORE (fence) = can_issue_more;
591
592 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
593 {
594 if (INSN_READY_CYCLE (insn) < cycle)
595 {
596 remove_from_deps (FENCE_DC (fence), insn);
597 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
598 continue;
599 }
600 i++;
601 }
602 if (sched_verbose >= 2)
603 {
604 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
605 debug_state (FENCE_STATE (fence));
606 }
607 }
608
609 /* Returns true when SUCC in a fallthru bb of INSN, possibly
610 skipping empty basic blocks. */
611 static bool
612 in_fallthru_bb_p (rtx insn, rtx succ)
613 {
614 basic_block bb = BLOCK_FOR_INSN (insn);
615
616 if (bb == BLOCK_FOR_INSN (succ))
617 return true;
618
619 if (find_fallthru_edge (bb))
620 bb = find_fallthru_edge (bb)->dest;
621 else
622 return false;
623
624 while (sel_bb_empty_p (bb))
625 bb = bb->next_bb;
626
627 return bb == BLOCK_FOR_INSN (succ);
628 }
629
630 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
631 When a successor will continue a ebb, transfer all parameters of a fence
632 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
633 of scheduling helping to distinguish between the old and the new code. */
634 static void
635 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
636 int orig_max_seqno)
637 {
638 bool was_here_p = false;
639 insn_t insn = NULL_RTX;
640 insn_t succ;
641 succ_iterator si;
642 ilist_iterator ii;
643 fence_t fence = FLIST_FENCE (old_fences);
644 basic_block bb;
645
646 /* Get the only element of FENCE_BNDS (fence). */
647 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
648 {
649 gcc_assert (!was_here_p);
650 was_here_p = true;
651 }
652 gcc_assert (was_here_p && insn != NULL_RTX);
653
654 /* When in the "middle" of the block, just move this fence
655 to the new list. */
656 bb = BLOCK_FOR_INSN (insn);
657 if (! sel_bb_end_p (insn)
658 || (single_succ_p (bb)
659 && single_pred_p (single_succ (bb))))
660 {
661 insn_t succ;
662
663 succ = (sel_bb_end_p (insn)
664 ? sel_bb_head (single_succ (bb))
665 : NEXT_INSN (insn));
666
667 if (INSN_SEQNO (succ) > 0
668 && INSN_SEQNO (succ) <= orig_max_seqno
669 && INSN_SCHED_TIMES (succ) <= 0)
670 {
671 FENCE_INSN (fence) = succ;
672 move_fence_to_fences (old_fences, new_fences);
673
674 if (sched_verbose >= 1)
675 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
676 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
677 }
678 return;
679 }
680
681 /* Otherwise copy fence's structures to (possibly) multiple successors. */
682 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
683 {
684 int seqno = INSN_SEQNO (succ);
685
686 if (0 < seqno && seqno <= orig_max_seqno
687 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
688 {
689 bool b = (in_same_ebb_p (insn, succ)
690 || in_fallthru_bb_p (insn, succ));
691
692 if (sched_verbose >= 1)
693 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
694 INSN_UID (insn), INSN_UID (succ),
695 BLOCK_NUM (succ), b ? "continue" : "reset");
696
697 if (b)
698 add_dirty_fence_to_fences (new_fences, succ, fence);
699 else
700 {
701 /* Mark block of the SUCC as head of the new ebb. */
702 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
703 add_clean_fence_to_fences (new_fences, succ, fence);
704 }
705 }
706 }
707 }
708 \f
709
710 /* Functions to support substitution. */
711
712 /* Returns whether INSN with dependence status DS is eligible for
713 substitution, i.e. it's a copy operation x := y, and RHS that is
714 moved up through this insn should be substituted. */
715 static bool
716 can_substitute_through_p (insn_t insn, ds_t ds)
717 {
718 /* We can substitute only true dependencies. */
719 if ((ds & DEP_OUTPUT)
720 || (ds & DEP_ANTI)
721 || ! INSN_RHS (insn)
722 || ! INSN_LHS (insn))
723 return false;
724
725 /* Now we just need to make sure the INSN_RHS consists of only one
726 simple REG rtx. */
727 if (REG_P (INSN_LHS (insn))
728 && REG_P (INSN_RHS (insn)))
729 return true;
730 return false;
731 }
732
733 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
734 source (if INSN is eligible for substitution). Returns TRUE if
735 substitution was actually performed, FALSE otherwise. Substitution might
736 be not performed because it's either EXPR' vinsn doesn't contain INSN's
737 destination or the resulting insn is invalid for the target machine.
738 When UNDO is true, perform unsubstitution instead (the difference is in
739 the part of rtx on which validate_replace_rtx is called). */
740 static bool
741 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
742 {
743 rtx *where;
744 bool new_insn_valid;
745 vinsn_t *vi = &EXPR_VINSN (expr);
746 bool has_rhs = VINSN_RHS (*vi) != NULL;
747 rtx old, new_rtx;
748
749 /* Do not try to replace in SET_DEST. Although we'll choose new
750 register for the RHS, we don't want to change RHS' original reg.
751 If the insn is not SET, we may still be able to substitute something
752 in it, and if we're here (don't have deps), it doesn't write INSN's
753 dest. */
754 where = (has_rhs
755 ? &VINSN_RHS (*vi)
756 : &PATTERN (VINSN_INSN_RTX (*vi)));
757 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
758
759 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
760 if (rtx_ok_for_substitution_p (old, *where))
761 {
762 rtx new_insn;
763 rtx *where_replace;
764
765 /* We should copy these rtxes before substitution. */
766 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
767 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
768
769 /* Where we'll replace.
770 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
771 used instead of SET_SRC. */
772 where_replace = (has_rhs
773 ? &SET_SRC (PATTERN (new_insn))
774 : &PATTERN (new_insn));
775
776 new_insn_valid
777 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
778 new_insn);
779
780 /* ??? Actually, constrain_operands result depends upon choice of
781 destination register. E.g. if we allow single register to be an rhs,
782 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
783 in invalid insn dx=dx, so we'll loose this rhs here.
784 Just can't come up with significant testcase for this, so just
785 leaving it for now. */
786 if (new_insn_valid)
787 {
788 change_vinsn_in_expr (expr,
789 create_vinsn_from_insn_rtx (new_insn, false));
790
791 /* Do not allow clobbering the address register of speculative
792 insns. */
793 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
794 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
795 expr_dest_regno (expr)))
796 EXPR_TARGET_AVAILABLE (expr) = false;
797
798 return true;
799 }
800 else
801 return false;
802 }
803 else
804 return false;
805 }
806
807 /* Helper function for count_occurences_equiv. */
808 static int
809 count_occurrences_1 (rtx *cur_rtx, void *arg)
810 {
811 rtx_search_arg_p p = (rtx_search_arg_p) arg;
812
813 /* The last param FOR_GCSE is true, because otherwise it performs excessive
814 substitutions like
815 r8 = r33
816 r16 = r33
817 for the last insn it presumes r33 equivalent to r8, so it changes it to
818 r33. Actually, there's no change, but it spoils debugging. */
819 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
820 {
821 /* Bail out if we occupy more than one register. */
822 if (REG_P (*cur_rtx)
823 && HARD_REGISTER_P (*cur_rtx)
824 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
825 {
826 p->n = 0;
827 return 1;
828 }
829
830 p->n++;
831
832 /* Do not traverse subexprs. */
833 return -1;
834 }
835
836 if (GET_CODE (*cur_rtx) == SUBREG
837 && REG_P (p->x)
838 && (!REG_P (SUBREG_REG (*cur_rtx))
839 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
840 {
841 /* ??? Do not support substituting regs inside subregs. In that case,
842 simplify_subreg will be called by validate_replace_rtx, and
843 unsubstitution will fail later. */
844 p->n = 0;
845 return 1;
846 }
847
848 /* Continue search. */
849 return 0;
850 }
851
852 /* Return the number of places WHAT appears within WHERE.
853 Bail out when we found a reference occupying several hard registers. */
854 static int
855 count_occurrences_equiv (rtx what, rtx where)
856 {
857 struct rtx_search_arg arg;
858
859 arg.x = what;
860 arg.n = 0;
861
862 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
863
864 return arg.n;
865 }
866
867 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
868 static bool
869 rtx_ok_for_substitution_p (rtx what, rtx where)
870 {
871 return (count_occurrences_equiv (what, where) > 0);
872 }
873 \f
874
875 /* Functions to support register renaming. */
876
877 /* Substitute VI's set source with REGNO. Returns newly created pattern
878 that has REGNO as its source. */
879 static rtx
880 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
881 {
882 rtx lhs_rtx;
883 rtx pattern;
884 rtx insn_rtx;
885
886 lhs_rtx = copy_rtx (VINSN_LHS (vi));
887
888 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
889 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
890
891 return insn_rtx;
892 }
893
894 /* Returns whether INSN's src can be replaced with register number
895 NEW_SRC_REG. E.g. the following insn is valid for i386:
896
897 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
898 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
899 (reg:SI 0 ax [orig:770 c1 ] [770]))
900 (const_int 288 [0x120])) [0 str S1 A8])
901 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
902 (nil))
903
904 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
905 because of operand constraints:
906
907 (define_insn "*movqi_1"
908 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
909 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
910 )]
911
912 So do constrain_operands here, before choosing NEW_SRC_REG as best
913 reg for rhs. */
914
915 static bool
916 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
917 {
918 vinsn_t vi = INSN_VINSN (insn);
919 enum machine_mode mode;
920 rtx dst_loc;
921 bool res;
922
923 gcc_assert (VINSN_SEPARABLE_P (vi));
924
925 get_dest_and_mode (insn, &dst_loc, &mode);
926 gcc_assert (mode == GET_MODE (new_src_reg));
927
928 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
929 return true;
930
931 /* See whether SET_SRC can be replaced with this register. */
932 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
933 res = verify_changes (0);
934 cancel_changes (0);
935
936 return res;
937 }
938
939 /* Returns whether INSN still be valid after replacing it's DEST with
940 register NEW_REG. */
941 static bool
942 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
943 {
944 vinsn_t vi = INSN_VINSN (insn);
945 bool res;
946
947 /* We should deal here only with separable insns. */
948 gcc_assert (VINSN_SEPARABLE_P (vi));
949 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
950
951 /* See whether SET_DEST can be replaced with this register. */
952 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
953 res = verify_changes (0);
954 cancel_changes (0);
955
956 return res;
957 }
958
959 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
960 static rtx
961 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
962 {
963 rtx rhs_rtx;
964 rtx pattern;
965 rtx insn_rtx;
966
967 rhs_rtx = copy_rtx (VINSN_RHS (vi));
968
969 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
970 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
971
972 return insn_rtx;
973 }
974
975 /* Substitute lhs in the given expression EXPR for the register with number
976 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
977 static void
978 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
979 {
980 rtx insn_rtx;
981 vinsn_t vinsn;
982
983 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
984 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
985
986 change_vinsn_in_expr (expr, vinsn);
987 EXPR_WAS_RENAMED (expr) = 1;
988 EXPR_TARGET_AVAILABLE (expr) = 1;
989 }
990
991 /* Returns whether VI writes either one of the USED_REGS registers or,
992 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
993 static bool
994 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
995 HARD_REG_SET unavailable_hard_regs)
996 {
997 unsigned regno;
998 reg_set_iterator rsi;
999
1000 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1001 {
1002 if (REGNO_REG_SET_P (used_regs, regno))
1003 return true;
1004 if (HARD_REGISTER_NUM_P (regno)
1005 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1006 return true;
1007 }
1008
1009 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1010 {
1011 if (REGNO_REG_SET_P (used_regs, regno))
1012 return true;
1013 if (HARD_REGISTER_NUM_P (regno)
1014 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1015 return true;
1016 }
1017
1018 return false;
1019 }
1020
1021 /* Returns register class of the output register in INSN.
1022 Returns NO_REGS for call insns because some targets have constraints on
1023 destination register of a call insn.
1024
1025 Code adopted from regrename.c::build_def_use. */
1026 static enum reg_class
1027 get_reg_class (rtx insn)
1028 {
1029 int alt, i, n_ops;
1030
1031 extract_insn (insn);
1032 if (! constrain_operands (1))
1033 fatal_insn_not_found (insn);
1034 preprocess_constraints ();
1035 alt = which_alternative;
1036 n_ops = recog_data.n_operands;
1037
1038 for (i = 0; i < n_ops; ++i)
1039 {
1040 int matches = recog_op_alt[i][alt].matches;
1041 if (matches >= 0)
1042 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1043 }
1044
1045 if (asm_noperands (PATTERN (insn)) > 0)
1046 {
1047 for (i = 0; i < n_ops; i++)
1048 if (recog_data.operand_type[i] == OP_OUT)
1049 {
1050 rtx *loc = recog_data.operand_loc[i];
1051 rtx op = *loc;
1052 enum reg_class cl = recog_op_alt[i][alt].cl;
1053
1054 if (REG_P (op)
1055 && REGNO (op) == ORIGINAL_REGNO (op))
1056 continue;
1057
1058 return cl;
1059 }
1060 }
1061 else if (!CALL_P (insn))
1062 {
1063 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1064 {
1065 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1066 enum reg_class cl = recog_op_alt[opn][alt].cl;
1067
1068 if (recog_data.operand_type[opn] == OP_OUT ||
1069 recog_data.operand_type[opn] == OP_INOUT)
1070 return cl;
1071 }
1072 }
1073
1074 /* Insns like
1075 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1076 may result in returning NO_REGS, cause flags is written implicitly through
1077 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1078 return NO_REGS;
1079 }
1080
1081 #ifdef HARD_REGNO_RENAME_OK
1082 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1083 static void
1084 init_hard_regno_rename (int regno)
1085 {
1086 int cur_reg;
1087
1088 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1089
1090 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1091 {
1092 /* We are not interested in renaming in other regs. */
1093 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1094 continue;
1095
1096 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1097 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1098 }
1099 }
1100 #endif
1101
1102 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1103 data first. */
1104 static inline bool
1105 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1106 {
1107 #ifdef HARD_REGNO_RENAME_OK
1108 /* Check whether this is all calculated. */
1109 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1110 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1111
1112 init_hard_regno_rename (from);
1113
1114 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1115 #else
1116 return true;
1117 #endif
1118 }
1119
1120 /* Calculate set of registers that are capable of holding MODE. */
1121 static void
1122 init_regs_for_mode (enum machine_mode mode)
1123 {
1124 int cur_reg;
1125
1126 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1127 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1128
1129 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1130 {
1131 int nregs = hard_regno_nregs[cur_reg][mode];
1132 int i;
1133
1134 for (i = nregs - 1; i >= 0; --i)
1135 if (fixed_regs[cur_reg + i]
1136 || global_regs[cur_reg + i]
1137 /* Can't use regs which aren't saved by
1138 the prologue. */
1139 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1140 #ifdef LEAF_REGISTERS
1141 /* We can't use a non-leaf register if we're in a
1142 leaf function. */
1143 || (current_function_is_leaf
1144 && !LEAF_REGISTERS[cur_reg + i])
1145 #endif
1146 )
1147 break;
1148
1149 if (i >= 0)
1150 continue;
1151
1152 /* See whether it accepts all modes that occur in
1153 original insns. */
1154 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1155 continue;
1156
1157 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1158 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1159 cur_reg);
1160
1161 /* If the CUR_REG passed all the checks above,
1162 then it's ok. */
1163 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1164 }
1165
1166 sel_hrd.regs_for_mode_ok[mode] = true;
1167 }
1168
1169 /* Init all register sets gathered in HRD. */
1170 static void
1171 init_hard_regs_data (void)
1172 {
1173 int cur_reg = 0;
1174 int cur_mode = 0;
1175
1176 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1177 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1178 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1179 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1180
1181 /* Initialize registers that are valid based on mode when this is
1182 really needed. */
1183 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1184 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1185
1186 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1187 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1188 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1189
1190 #ifdef STACK_REGS
1191 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1192
1193 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1194 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1195 #endif
1196 }
1197
1198 /* Mark hardware regs in REG_RENAME_P that are not suitable
1199 for renaming rhs in INSN due to hardware restrictions (register class,
1200 modes compatibility etc). This doesn't affect original insn's dest reg,
1201 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1202 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1203 Registers that are in used_regs are always marked in
1204 unavailable_hard_regs as well. */
1205
1206 static void
1207 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1208 regset used_regs ATTRIBUTE_UNUSED)
1209 {
1210 enum machine_mode mode;
1211 enum reg_class cl = NO_REGS;
1212 rtx orig_dest;
1213 unsigned cur_reg, regno;
1214 hard_reg_set_iterator hrsi;
1215
1216 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1217 gcc_assert (reg_rename_p);
1218
1219 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1220
1221 /* We have decided not to rename 'mem = something;' insns, as 'something'
1222 is usually a register. */
1223 if (!REG_P (orig_dest))
1224 return;
1225
1226 regno = REGNO (orig_dest);
1227
1228 /* If before reload, don't try to work with pseudos. */
1229 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1230 return;
1231
1232 if (reload_completed)
1233 cl = get_reg_class (def->orig_insn);
1234
1235 /* Stop if the original register is one of the fixed_regs, global_regs or
1236 frame pointer, or we could not discover its class. */
1237 if (fixed_regs[regno]
1238 || global_regs[regno]
1239 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1240 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1241 #else
1242 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1243 #endif
1244 || (reload_completed && cl == NO_REGS))
1245 {
1246 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1247
1248 /* Give a chance for original register, if it isn't in used_regs. */
1249 if (!def->crosses_call)
1250 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1251
1252 return;
1253 }
1254
1255 /* If something allocated on stack in this function, mark frame pointer
1256 register unavailable, considering also modes.
1257 FIXME: it is enough to do this once per all original defs. */
1258 if (frame_pointer_needed)
1259 {
1260 int i;
1261
1262 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
1263 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1264 FRAME_POINTER_REGNUM + i);
1265
1266 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1267 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
1268 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1269 HARD_FRAME_POINTER_REGNUM + i);
1270 #endif
1271 }
1272
1273 #ifdef STACK_REGS
1274 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1275 is equivalent to as if all stack regs were in this set.
1276 I.e. no stack register can be renamed, and even if it's an original
1277 register here we make sure it won't be lifted over it's previous def
1278 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1279 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1280 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1281 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1282 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1283 sel_hrd.stack_regs);
1284 #endif
1285
1286 /* If there's a call on this path, make regs from call_used_reg_set
1287 unavailable. */
1288 if (def->crosses_call)
1289 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1290 call_used_reg_set);
1291
1292 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1293 but not register classes. */
1294 if (!reload_completed)
1295 return;
1296
1297 /* Leave regs as 'available' only from the current
1298 register class. */
1299 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1300 reg_class_contents[cl]);
1301
1302 mode = GET_MODE (orig_dest);
1303
1304 /* Leave only registers available for this mode. */
1305 if (!sel_hrd.regs_for_mode_ok[mode])
1306 init_regs_for_mode (mode);
1307 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1308 sel_hrd.regs_for_mode[mode]);
1309
1310 /* Exclude registers that are partially call clobbered. */
1311 if (def->crosses_call
1312 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1313 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1314 sel_hrd.regs_for_call_clobbered[mode]);
1315
1316 /* Leave only those that are ok to rename. */
1317 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1318 0, cur_reg, hrsi)
1319 {
1320 int nregs;
1321 int i;
1322
1323 nregs = hard_regno_nregs[cur_reg][mode];
1324 gcc_assert (nregs > 0);
1325
1326 for (i = nregs - 1; i >= 0; --i)
1327 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1328 break;
1329
1330 if (i >= 0)
1331 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1332 cur_reg);
1333 }
1334
1335 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1336 reg_rename_p->unavailable_hard_regs);
1337
1338 /* Regno is always ok from the renaming part of view, but it really
1339 could be in *unavailable_hard_regs already, so set it here instead
1340 of there. */
1341 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1342 }
1343
1344 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1345 best register more recently than REG2. */
1346 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1347
1348 /* Indicates the number of times renaming happened before the current one. */
1349 static int reg_rename_this_tick;
1350
1351 /* Choose the register among free, that is suitable for storing
1352 the rhs value.
1353
1354 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1355 originally appears. There could be multiple original operations
1356 for single rhs since we moving it up and merging along different
1357 paths.
1358
1359 Some code is adapted from regrename.c (regrename_optimize).
1360 If original register is available, function returns it.
1361 Otherwise it performs the checks, so the new register should
1362 comply with the following:
1363 - it should not violate any live ranges (such registers are in
1364 REG_RENAME_P->available_for_renaming set);
1365 - it should not be in the HARD_REGS_USED regset;
1366 - it should be in the class compatible with original uses;
1367 - it should not be clobbered through reference with different mode;
1368 - if we're in the leaf function, then the new register should
1369 not be in the LEAF_REGISTERS;
1370 - etc.
1371
1372 If several registers meet the conditions, the register with smallest
1373 tick is returned to achieve more even register allocation.
1374
1375 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1376
1377 If no register satisfies the above conditions, NULL_RTX is returned. */
1378 static rtx
1379 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1380 struct reg_rename *reg_rename_p,
1381 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1382 {
1383 int best_new_reg;
1384 unsigned cur_reg;
1385 enum machine_mode mode = VOIDmode;
1386 unsigned regno, i, n;
1387 hard_reg_set_iterator hrsi;
1388 def_list_iterator di;
1389 def_t def;
1390
1391 /* If original register is available, return it. */
1392 *is_orig_reg_p_ptr = true;
1393
1394 FOR_EACH_DEF (def, di, original_insns)
1395 {
1396 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1397
1398 gcc_assert (REG_P (orig_dest));
1399
1400 /* Check that all original operations have the same mode.
1401 This is done for the next loop; if we'd return from this
1402 loop, we'd check only part of them, but in this case
1403 it doesn't matter. */
1404 if (mode == VOIDmode)
1405 mode = GET_MODE (orig_dest);
1406 gcc_assert (mode == GET_MODE (orig_dest));
1407
1408 regno = REGNO (orig_dest);
1409 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1410 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1411 break;
1412
1413 /* All hard registers are available. */
1414 if (i == n)
1415 {
1416 gcc_assert (mode != VOIDmode);
1417
1418 /* Hard registers should not be shared. */
1419 return gen_rtx_REG (mode, regno);
1420 }
1421 }
1422
1423 *is_orig_reg_p_ptr = false;
1424 best_new_reg = -1;
1425
1426 /* Among all available regs choose the register that was
1427 allocated earliest. */
1428 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1429 0, cur_reg, hrsi)
1430 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1431 {
1432 /* Check that all hard regs for mode are available. */
1433 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1434 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1435 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1436 cur_reg + i))
1437 break;
1438
1439 if (i < n)
1440 continue;
1441
1442 /* All hard registers are available. */
1443 if (best_new_reg < 0
1444 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1445 {
1446 best_new_reg = cur_reg;
1447
1448 /* Return immediately when we know there's no better reg. */
1449 if (! reg_rename_tick[best_new_reg])
1450 break;
1451 }
1452 }
1453
1454 if (best_new_reg >= 0)
1455 {
1456 /* Use the check from the above loop. */
1457 gcc_assert (mode != VOIDmode);
1458 return gen_rtx_REG (mode, best_new_reg);
1459 }
1460
1461 return NULL_RTX;
1462 }
1463
1464 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1465 assumptions about available registers in the function. */
1466 static rtx
1467 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1468 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1469 {
1470 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1471 original_insns, is_orig_reg_p_ptr);
1472
1473 /* FIXME loop over hard_regno_nregs here. */
1474 gcc_assert (best_reg == NULL_RTX
1475 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1476
1477 return best_reg;
1478 }
1479
1480 /* Choose the pseudo register for storing rhs value. As this is supposed
1481 to work before reload, we return either the original register or make
1482 the new one. The parameters are the same that in choose_nest_reg_1
1483 functions, except that USED_REGS may contain pseudos.
1484 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1485
1486 TODO: take into account register pressure while doing this. Up to this
1487 moment, this function would never return NULL for pseudos, but we should
1488 not rely on this. */
1489 static rtx
1490 choose_best_pseudo_reg (regset used_regs,
1491 struct reg_rename *reg_rename_p,
1492 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1493 {
1494 def_list_iterator i;
1495 def_t def;
1496 enum machine_mode mode = VOIDmode;
1497 bool bad_hard_regs = false;
1498
1499 /* We should not use this after reload. */
1500 gcc_assert (!reload_completed);
1501
1502 /* If original register is available, return it. */
1503 *is_orig_reg_p_ptr = true;
1504
1505 FOR_EACH_DEF (def, i, original_insns)
1506 {
1507 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1508 int orig_regno;
1509
1510 gcc_assert (REG_P (dest));
1511
1512 /* Check that all original operations have the same mode. */
1513 if (mode == VOIDmode)
1514 mode = GET_MODE (dest);
1515 else
1516 gcc_assert (mode == GET_MODE (dest));
1517 orig_regno = REGNO (dest);
1518
1519 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1520 {
1521 if (orig_regno < FIRST_PSEUDO_REGISTER)
1522 {
1523 gcc_assert (df_regs_ever_live_p (orig_regno));
1524
1525 /* For hard registers, we have to check hardware imposed
1526 limitations (frame/stack registers, calls crossed). */
1527 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1528 orig_regno))
1529 {
1530 /* Don't let register cross a call if it doesn't already
1531 cross one. This condition is written in accordance with
1532 that in sched-deps.c sched_analyze_reg(). */
1533 if (!reg_rename_p->crosses_call
1534 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1535 return gen_rtx_REG (mode, orig_regno);
1536 }
1537
1538 bad_hard_regs = true;
1539 }
1540 else
1541 return dest;
1542 }
1543 }
1544
1545 *is_orig_reg_p_ptr = false;
1546
1547 /* We had some original hard registers that couldn't be used.
1548 Those were likely special. Don't try to create a pseudo. */
1549 if (bad_hard_regs)
1550 return NULL_RTX;
1551
1552 /* We haven't found a register from original operations. Get a new one.
1553 FIXME: control register pressure somehow. */
1554 {
1555 rtx new_reg = gen_reg_rtx (mode);
1556
1557 gcc_assert (mode != VOIDmode);
1558
1559 max_regno = max_reg_num ();
1560 maybe_extend_reg_info_p ();
1561 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1562
1563 return new_reg;
1564 }
1565 }
1566
1567 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1568 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1569 static void
1570 verify_target_availability (expr_t expr, regset used_regs,
1571 struct reg_rename *reg_rename_p)
1572 {
1573 unsigned n, i, regno;
1574 enum machine_mode mode;
1575 bool target_available, live_available, hard_available;
1576
1577 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1578 return;
1579
1580 regno = expr_dest_regno (expr);
1581 mode = GET_MODE (EXPR_LHS (expr));
1582 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1583 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1584
1585 live_available = hard_available = true;
1586 for (i = 0; i < n; i++)
1587 {
1588 if (bitmap_bit_p (used_regs, regno + i))
1589 live_available = false;
1590 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1591 hard_available = false;
1592 }
1593
1594 /* When target is not available, it may be due to hard register
1595 restrictions, e.g. crosses calls, so we check hard_available too. */
1596 if (target_available)
1597 gcc_assert (live_available);
1598 else
1599 /* Check only if we haven't scheduled something on the previous fence,
1600 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1601 and having more than one fence, we may end having targ_un in a block
1602 in which successors target register is actually available.
1603
1604 The last condition handles the case when a dependence from a call insn
1605 was created in sched-deps.c for insns with destination registers that
1606 never crossed a call before, but do cross one after our code motion.
1607
1608 FIXME: in the latter case, we just uselessly called find_used_regs,
1609 because we can't move this expression with any other register
1610 as well. */
1611 gcc_assert (scheduled_something_on_previous_fence || !live_available
1612 || !hard_available
1613 || (!reload_completed && reg_rename_p->crosses_call
1614 && REG_N_CALLS_CROSSED (regno) == 0));
1615 }
1616
1617 /* Collect unavailable registers due to liveness for EXPR from BNDS
1618 into USED_REGS. Save additional information about available
1619 registers and unavailable due to hardware restriction registers
1620 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1621 list. */
1622 static void
1623 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1624 struct reg_rename *reg_rename_p,
1625 def_list_t *original_insns)
1626 {
1627 for (; bnds; bnds = BLIST_NEXT (bnds))
1628 {
1629 bool res;
1630 av_set_t orig_ops = NULL;
1631 bnd_t bnd = BLIST_BND (bnds);
1632
1633 /* If the chosen best expr doesn't belong to current boundary,
1634 skip it. */
1635 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1636 continue;
1637
1638 /* Put in ORIG_OPS all exprs from this boundary that became
1639 RES on top. */
1640 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1641
1642 /* Compute used regs and OR it into the USED_REGS. */
1643 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1644 reg_rename_p, original_insns);
1645
1646 /* FIXME: the assert is true until we'd have several boundaries. */
1647 gcc_assert (res);
1648 av_set_clear (&orig_ops);
1649 }
1650 }
1651
1652 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1653 If BEST_REG is valid, replace LHS of EXPR with it. */
1654 static bool
1655 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1656 {
1657 /* Try whether we'll be able to generate the insn
1658 'dest := best_reg' at the place of the original operation. */
1659 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1660 {
1661 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1662
1663 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1664
1665 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1666 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1667 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1668 return false;
1669 }
1670
1671 /* Make sure that EXPR has the right destination
1672 register. */
1673 if (expr_dest_regno (expr) != REGNO (best_reg))
1674 replace_dest_with_reg_in_expr (expr, best_reg);
1675 else
1676 EXPR_TARGET_AVAILABLE (expr) = 1;
1677
1678 return true;
1679 }
1680
1681 /* Select and assign best register to EXPR searching from BNDS.
1682 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1683 Return FALSE if no register can be chosen, which could happen when:
1684 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1685 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1686 that are used on the moving path. */
1687 static bool
1688 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1689 {
1690 static struct reg_rename reg_rename_data;
1691
1692 regset used_regs;
1693 def_list_t original_insns = NULL;
1694 bool reg_ok;
1695
1696 *is_orig_reg_p = false;
1697
1698 /* Don't bother to do anything if this insn doesn't set any registers. */
1699 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1700 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1701 return true;
1702
1703 used_regs = get_clear_regset_from_pool ();
1704 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1705
1706 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1707 &original_insns);
1708
1709 #ifdef ENABLE_CHECKING
1710 /* If after reload, make sure we're working with hard regs here. */
1711 if (reload_completed)
1712 {
1713 reg_set_iterator rsi;
1714 unsigned i;
1715
1716 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1717 gcc_unreachable ();
1718 }
1719 #endif
1720
1721 if (EXPR_SEPARABLE_P (expr))
1722 {
1723 rtx best_reg = NULL_RTX;
1724 /* Check that we have computed availability of a target register
1725 correctly. */
1726 verify_target_availability (expr, used_regs, &reg_rename_data);
1727
1728 /* Turn everything in hard regs after reload. */
1729 if (reload_completed)
1730 {
1731 HARD_REG_SET hard_regs_used;
1732 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1733
1734 /* Join hard registers unavailable due to register class
1735 restrictions and live range intersection. */
1736 IOR_HARD_REG_SET (hard_regs_used,
1737 reg_rename_data.unavailable_hard_regs);
1738
1739 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1740 original_insns, is_orig_reg_p);
1741 }
1742 else
1743 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1744 original_insns, is_orig_reg_p);
1745
1746 if (!best_reg)
1747 reg_ok = false;
1748 else if (*is_orig_reg_p)
1749 {
1750 /* In case of unification BEST_REG may be different from EXPR's LHS
1751 when EXPR's LHS is unavailable, and there is another LHS among
1752 ORIGINAL_INSNS. */
1753 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1754 }
1755 else
1756 {
1757 /* Forbid renaming of low-cost insns. */
1758 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1759 reg_ok = false;
1760 else
1761 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1762 }
1763 }
1764 else
1765 {
1766 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1767 any of the HARD_REGS_USED set. */
1768 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1769 reg_rename_data.unavailable_hard_regs))
1770 {
1771 reg_ok = false;
1772 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1773 }
1774 else
1775 {
1776 reg_ok = true;
1777 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1778 }
1779 }
1780
1781 ilist_clear (&original_insns);
1782 return_regset_to_pool (used_regs);
1783
1784 return reg_ok;
1785 }
1786 \f
1787
1788 /* Return true if dependence described by DS can be overcomed. */
1789 static bool
1790 can_speculate_dep_p (ds_t ds)
1791 {
1792 if (spec_info == NULL)
1793 return false;
1794
1795 /* Leave only speculative data. */
1796 ds &= SPECULATIVE;
1797
1798 if (ds == 0)
1799 return false;
1800
1801 {
1802 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1803 that we can overcome. */
1804 ds_t spec_mask = spec_info->mask;
1805
1806 if ((ds & spec_mask) != ds)
1807 return false;
1808 }
1809
1810 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1811 return false;
1812
1813 return true;
1814 }
1815
1816 /* Get a speculation check instruction.
1817 C_EXPR is a speculative expression,
1818 CHECK_DS describes speculations that should be checked,
1819 ORIG_INSN is the original non-speculative insn in the stream. */
1820 static insn_t
1821 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1822 {
1823 rtx check_pattern;
1824 rtx insn_rtx;
1825 insn_t insn;
1826 basic_block recovery_block;
1827 rtx label;
1828
1829 /* Create a recovery block if target is going to emit branchy check, or if
1830 ORIG_INSN was speculative already. */
1831 if (targetm.sched.needs_block_p (check_ds)
1832 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1833 {
1834 recovery_block = sel_create_recovery_block (orig_insn);
1835 label = BB_HEAD (recovery_block);
1836 }
1837 else
1838 {
1839 recovery_block = NULL;
1840 label = NULL_RTX;
1841 }
1842
1843 /* Get pattern of the check. */
1844 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1845 check_ds);
1846
1847 gcc_assert (check_pattern != NULL);
1848
1849 /* Emit check. */
1850 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1851
1852 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1853 INSN_SEQNO (orig_insn), orig_insn);
1854
1855 /* Make check to be non-speculative. */
1856 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1857 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1858
1859 /* Decrease priority of check by difference of load/check instruction
1860 latencies. */
1861 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1862 - sel_vinsn_cost (INSN_VINSN (insn)));
1863
1864 /* Emit copy of original insn (though with replaced target register,
1865 if needed) to the recovery block. */
1866 if (recovery_block != NULL)
1867 {
1868 rtx twin_rtx;
1869
1870 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1871 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1872 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1873 INSN_EXPR (orig_insn),
1874 INSN_SEQNO (insn),
1875 bb_note (recovery_block));
1876 }
1877
1878 /* If we've generated a data speculation check, make sure
1879 that all the bookkeeping instruction we'll create during
1880 this move_op () will allocate an ALAT entry so that the
1881 check won't fail.
1882 In case of control speculation we must convert C_EXPR to control
1883 speculative mode, because failing to do so will bring us an exception
1884 thrown by the non-control-speculative load. */
1885 check_ds = ds_get_max_dep_weak (check_ds);
1886 speculate_expr (c_expr, check_ds);
1887
1888 return insn;
1889 }
1890
1891 /* True when INSN is a "regN = regN" copy. */
1892 static bool
1893 identical_copy_p (rtx insn)
1894 {
1895 rtx lhs, rhs, pat;
1896
1897 pat = PATTERN (insn);
1898
1899 if (GET_CODE (pat) != SET)
1900 return false;
1901
1902 lhs = SET_DEST (pat);
1903 if (!REG_P (lhs))
1904 return false;
1905
1906 rhs = SET_SRC (pat);
1907 if (!REG_P (rhs))
1908 return false;
1909
1910 return REGNO (lhs) == REGNO (rhs);
1911 }
1912
1913 /* Undo all transformations on *AV_PTR that were done when
1914 moving through INSN. */
1915 static void
1916 undo_transformations (av_set_t *av_ptr, rtx insn)
1917 {
1918 av_set_iterator av_iter;
1919 expr_t expr;
1920 av_set_t new_set = NULL;
1921
1922 /* First, kill any EXPR that uses registers set by an insn. This is
1923 required for correctness. */
1924 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1925 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1926 && bitmap_intersect_p (INSN_REG_SETS (insn),
1927 VINSN_REG_USES (EXPR_VINSN (expr)))
1928 /* When an insn looks like 'r1 = r1', we could substitute through
1929 it, but the above condition will still hold. This happened with
1930 gcc.c-torture/execute/961125-1.c. */
1931 && !identical_copy_p (insn))
1932 {
1933 if (sched_verbose >= 6)
1934 sel_print ("Expr %d removed due to use/set conflict\n",
1935 INSN_UID (EXPR_INSN_RTX (expr)));
1936 av_set_iter_remove (&av_iter);
1937 }
1938
1939 /* Undo transformations looking at the history vector. */
1940 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1941 {
1942 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1943 insn, EXPR_VINSN (expr), true);
1944
1945 if (index >= 0)
1946 {
1947 expr_history_def *phist;
1948
1949 phist = VEC_index (expr_history_def,
1950 EXPR_HISTORY_OF_CHANGES (expr),
1951 index);
1952
1953 switch (phist->type)
1954 {
1955 case TRANS_SPECULATION:
1956 {
1957 ds_t old_ds, new_ds;
1958
1959 /* Compute the difference between old and new speculative
1960 statuses: that's what we need to check.
1961 Earlier we used to assert that the status will really
1962 change. This no longer works because only the probability
1963 bits in the status may have changed during compute_av_set,
1964 and in the case of merging different probabilities of the
1965 same speculative status along different paths we do not
1966 record this in the history vector. */
1967 old_ds = phist->spec_ds;
1968 new_ds = EXPR_SPEC_DONE_DS (expr);
1969
1970 old_ds &= SPECULATIVE;
1971 new_ds &= SPECULATIVE;
1972 new_ds &= ~old_ds;
1973
1974 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1975 break;
1976 }
1977 case TRANS_SUBSTITUTION:
1978 {
1979 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1980 vinsn_t new_vi;
1981 bool add = true;
1982
1983 new_vi = phist->old_expr_vinsn;
1984
1985 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1986 == EXPR_SEPARABLE_P (expr));
1987 copy_expr (tmp_expr, expr);
1988
1989 if (vinsn_equal_p (phist->new_expr_vinsn,
1990 EXPR_VINSN (tmp_expr)))
1991 change_vinsn_in_expr (tmp_expr, new_vi);
1992 else
1993 /* This happens when we're unsubstituting on a bookkeeping
1994 copy, which was in turn substituted. The history is wrong
1995 in this case. Do it the hard way. */
1996 add = substitute_reg_in_expr (tmp_expr, insn, true);
1997 if (add)
1998 av_set_add (&new_set, tmp_expr);
1999 clear_expr (tmp_expr);
2000 break;
2001 }
2002 default:
2003 gcc_unreachable ();
2004 }
2005 }
2006
2007 }
2008
2009 av_set_union_and_clear (av_ptr, &new_set, NULL);
2010 }
2011 \f
2012
2013 /* Moveup_* helpers for code motion and computing av sets. */
2014
2015 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2016 The difference from the below function is that only substitution is
2017 performed. */
2018 static enum MOVEUP_EXPR_CODE
2019 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2020 {
2021 vinsn_t vi = EXPR_VINSN (expr);
2022 ds_t *has_dep_p;
2023 ds_t full_ds;
2024
2025 /* Do this only inside insn group. */
2026 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2027
2028 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2029 if (full_ds == 0)
2030 return MOVEUP_EXPR_SAME;
2031
2032 /* Substitution is the possible choice in this case. */
2033 if (has_dep_p[DEPS_IN_RHS])
2034 {
2035 /* Can't substitute UNIQUE VINSNs. */
2036 gcc_assert (!VINSN_UNIQUE_P (vi));
2037
2038 if (can_substitute_through_p (through_insn,
2039 has_dep_p[DEPS_IN_RHS])
2040 && substitute_reg_in_expr (expr, through_insn, false))
2041 {
2042 EXPR_WAS_SUBSTITUTED (expr) = true;
2043 return MOVEUP_EXPR_CHANGED;
2044 }
2045
2046 /* Don't care about this, as even true dependencies may be allowed
2047 in an insn group. */
2048 return MOVEUP_EXPR_SAME;
2049 }
2050
2051 /* This can catch output dependencies in COND_EXECs. */
2052 if (has_dep_p[DEPS_IN_INSN])
2053 return MOVEUP_EXPR_NULL;
2054
2055 /* This is either an output or an anti dependence, which usually have
2056 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2057 will fix this. */
2058 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2059 return MOVEUP_EXPR_AS_RHS;
2060 }
2061
2062 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2063 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2064 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2065 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2066 && !sel_insn_is_speculation_check (through_insn))
2067
2068 /* True when a conflict on a target register was found during moveup_expr. */
2069 static bool was_target_conflict = false;
2070
2071 /* Return true when moving a debug INSN across THROUGH_INSN will
2072 create a bookkeeping block. We don't want to create such blocks,
2073 for they would cause codegen differences between compilations with
2074 and without debug info. */
2075
2076 static bool
2077 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2078 insn_t through_insn)
2079 {
2080 basic_block bbi, bbt;
2081 edge e1, e2;
2082 edge_iterator ei1, ei2;
2083
2084 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2085 {
2086 if (sched_verbose >= 9)
2087 sel_print ("no bookkeeping required: ");
2088 return FALSE;
2089 }
2090
2091 bbi = BLOCK_FOR_INSN (insn);
2092
2093 if (EDGE_COUNT (bbi->preds) == 1)
2094 {
2095 if (sched_verbose >= 9)
2096 sel_print ("only one pred edge: ");
2097 return TRUE;
2098 }
2099
2100 bbt = BLOCK_FOR_INSN (through_insn);
2101
2102 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2103 {
2104 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2105 {
2106 if (find_block_for_bookkeeping (e1, e2, TRUE))
2107 {
2108 if (sched_verbose >= 9)
2109 sel_print ("found existing block: ");
2110 return FALSE;
2111 }
2112 }
2113 }
2114
2115 if (sched_verbose >= 9)
2116 sel_print ("would create bookkeeping block: ");
2117
2118 return TRUE;
2119 }
2120
2121 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2122 performing necessary transformations. Record the type of transformation
2123 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2124 permit all dependencies except true ones, and try to remove those
2125 too via forward substitution. All cases when a non-eliminable
2126 non-zero cost dependency exists inside an insn group will be fixed
2127 in tick_check_p instead. */
2128 static enum MOVEUP_EXPR_CODE
2129 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2130 enum local_trans_type *ptrans_type)
2131 {
2132 vinsn_t vi = EXPR_VINSN (expr);
2133 insn_t insn = VINSN_INSN_RTX (vi);
2134 bool was_changed = false;
2135 bool as_rhs = false;
2136 ds_t *has_dep_p;
2137 ds_t full_ds;
2138
2139 /* When inside_insn_group, delegate to the helper. */
2140 if (inside_insn_group)
2141 return moveup_expr_inside_insn_group (expr, through_insn);
2142
2143 /* Deal with unique insns and control dependencies. */
2144 if (VINSN_UNIQUE_P (vi))
2145 {
2146 /* We can move jumps without side-effects or jumps that are
2147 mutually exclusive with instruction THROUGH_INSN (all in cases
2148 dependencies allow to do so and jump is not speculative). */
2149 if (control_flow_insn_p (insn))
2150 {
2151 basic_block fallthru_bb;
2152
2153 /* Do not move checks and do not move jumps through other
2154 jumps. */
2155 if (control_flow_insn_p (through_insn)
2156 || sel_insn_is_speculation_check (insn))
2157 return MOVEUP_EXPR_NULL;
2158
2159 /* Don't move jumps through CFG joins. */
2160 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2161 return MOVEUP_EXPR_NULL;
2162
2163 /* The jump should have a clear fallthru block, and
2164 this block should be in the current region. */
2165 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2166 || ! in_current_region_p (fallthru_bb))
2167 return MOVEUP_EXPR_NULL;
2168
2169 /* And it should be mutually exclusive with through_insn, or
2170 be an unconditional jump. */
2171 if (! any_uncondjump_p (insn)
2172 && ! sched_insns_conditions_mutex_p (insn, through_insn)
2173 && ! DEBUG_INSN_P (through_insn))
2174 return MOVEUP_EXPR_NULL;
2175 }
2176
2177 /* Don't move what we can't move. */
2178 if (EXPR_CANT_MOVE (expr)
2179 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2180 return MOVEUP_EXPR_NULL;
2181
2182 /* Don't move SCHED_GROUP instruction through anything.
2183 If we don't force this, then it will be possible to start
2184 scheduling a sched_group before all its dependencies are
2185 resolved.
2186 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2187 as late as possible through rank_for_schedule. */
2188 if (SCHED_GROUP_P (insn))
2189 return MOVEUP_EXPR_NULL;
2190 }
2191 else
2192 gcc_assert (!control_flow_insn_p (insn));
2193
2194 /* Don't move debug insns if this would require bookkeeping. */
2195 if (DEBUG_INSN_P (insn)
2196 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2197 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2198 return MOVEUP_EXPR_NULL;
2199
2200 /* Deal with data dependencies. */
2201 was_target_conflict = false;
2202 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2203 if (full_ds == 0)
2204 {
2205 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2206 return MOVEUP_EXPR_SAME;
2207 }
2208 else
2209 {
2210 /* We can move UNIQUE insn up only as a whole and unchanged,
2211 so it shouldn't have any dependencies. */
2212 if (VINSN_UNIQUE_P (vi))
2213 return MOVEUP_EXPR_NULL;
2214 }
2215
2216 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2217 {
2218 int res;
2219
2220 res = speculate_expr (expr, full_ds);
2221 if (res >= 0)
2222 {
2223 /* Speculation was successful. */
2224 full_ds = 0;
2225 was_changed = (res > 0);
2226 if (res == 2)
2227 was_target_conflict = true;
2228 if (ptrans_type)
2229 *ptrans_type = TRANS_SPECULATION;
2230 sel_clear_has_dependence ();
2231 }
2232 }
2233
2234 if (has_dep_p[DEPS_IN_INSN])
2235 /* We have some dependency that cannot be discarded. */
2236 return MOVEUP_EXPR_NULL;
2237
2238 if (has_dep_p[DEPS_IN_LHS])
2239 {
2240 /* Only separable insns can be moved up with the new register.
2241 Anyways, we should mark that the original register is
2242 unavailable. */
2243 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2244 return MOVEUP_EXPR_NULL;
2245
2246 EXPR_TARGET_AVAILABLE (expr) = false;
2247 was_target_conflict = true;
2248 as_rhs = true;
2249 }
2250
2251 /* At this point we have either separable insns, that will be lifted
2252 up only as RHSes, or non-separable insns with no dependency in lhs.
2253 If dependency is in RHS, then try to perform substitution and move up
2254 substituted RHS:
2255
2256 Ex. 1: Ex.2
2257 y = x; y = x;
2258 z = y*2; y = y*2;
2259
2260 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2261 moved above y=x assignment as z=x*2.
2262
2263 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2264 side can be moved because of the output dependency. The operation was
2265 cropped to its rhs above. */
2266 if (has_dep_p[DEPS_IN_RHS])
2267 {
2268 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2269
2270 /* Can't substitute UNIQUE VINSNs. */
2271 gcc_assert (!VINSN_UNIQUE_P (vi));
2272
2273 if (can_speculate_dep_p (*rhs_dsp))
2274 {
2275 int res;
2276
2277 res = speculate_expr (expr, *rhs_dsp);
2278 if (res >= 0)
2279 {
2280 /* Speculation was successful. */
2281 *rhs_dsp = 0;
2282 was_changed = (res > 0);
2283 if (res == 2)
2284 was_target_conflict = true;
2285 if (ptrans_type)
2286 *ptrans_type = TRANS_SPECULATION;
2287 }
2288 else
2289 return MOVEUP_EXPR_NULL;
2290 }
2291 else if (can_substitute_through_p (through_insn,
2292 *rhs_dsp)
2293 && substitute_reg_in_expr (expr, through_insn, false))
2294 {
2295 /* ??? We cannot perform substitution AND speculation on the same
2296 insn. */
2297 gcc_assert (!was_changed);
2298 was_changed = true;
2299 if (ptrans_type)
2300 *ptrans_type = TRANS_SUBSTITUTION;
2301 EXPR_WAS_SUBSTITUTED (expr) = true;
2302 }
2303 else
2304 return MOVEUP_EXPR_NULL;
2305 }
2306
2307 /* Don't move trapping insns through jumps.
2308 This check should be at the end to give a chance to control speculation
2309 to perform its duties. */
2310 if (CANT_MOVE_TRAPPING (expr, through_insn))
2311 return MOVEUP_EXPR_NULL;
2312
2313 return (was_changed
2314 ? MOVEUP_EXPR_CHANGED
2315 : (as_rhs
2316 ? MOVEUP_EXPR_AS_RHS
2317 : MOVEUP_EXPR_SAME));
2318 }
2319
2320 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2321 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2322 that can exist within a parallel group. Write to RES the resulting
2323 code for moveup_expr. */
2324 static bool
2325 try_bitmap_cache (expr_t expr, insn_t insn,
2326 bool inside_insn_group,
2327 enum MOVEUP_EXPR_CODE *res)
2328 {
2329 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2330
2331 /* First check whether we've analyzed this situation already. */
2332 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2333 {
2334 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2335 {
2336 if (sched_verbose >= 6)
2337 sel_print ("removed (cached)\n");
2338 *res = MOVEUP_EXPR_NULL;
2339 return true;
2340 }
2341 else
2342 {
2343 if (sched_verbose >= 6)
2344 sel_print ("unchanged (cached)\n");
2345 *res = MOVEUP_EXPR_SAME;
2346 return true;
2347 }
2348 }
2349 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2350 {
2351 if (inside_insn_group)
2352 {
2353 if (sched_verbose >= 6)
2354 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2355 *res = MOVEUP_EXPR_SAME;
2356 return true;
2357
2358 }
2359 else
2360 EXPR_TARGET_AVAILABLE (expr) = false;
2361
2362 /* This is the only case when propagation result can change over time,
2363 as we can dynamically switch off scheduling as RHS. In this case,
2364 just check the flag to reach the correct decision. */
2365 if (enable_schedule_as_rhs_p)
2366 {
2367 if (sched_verbose >= 6)
2368 sel_print ("unchanged (as RHS, cached)\n");
2369 *res = MOVEUP_EXPR_AS_RHS;
2370 return true;
2371 }
2372 else
2373 {
2374 if (sched_verbose >= 6)
2375 sel_print ("removed (cached as RHS, but renaming"
2376 " is now disabled)\n");
2377 *res = MOVEUP_EXPR_NULL;
2378 return true;
2379 }
2380 }
2381
2382 return false;
2383 }
2384
2385 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2386 if successful. Write to RES the resulting code for moveup_expr. */
2387 static bool
2388 try_transformation_cache (expr_t expr, insn_t insn,
2389 enum MOVEUP_EXPR_CODE *res)
2390 {
2391 struct transformed_insns *pti
2392 = (struct transformed_insns *)
2393 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2394 &EXPR_VINSN (expr),
2395 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2396 if (pti)
2397 {
2398 /* This EXPR was already moved through this insn and was
2399 changed as a result. Fetch the proper data from
2400 the hashtable. */
2401 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2402 INSN_UID (insn), pti->type,
2403 pti->vinsn_old, pti->vinsn_new,
2404 EXPR_SPEC_DONE_DS (expr));
2405
2406 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2407 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2408 change_vinsn_in_expr (expr, pti->vinsn_new);
2409 if (pti->was_target_conflict)
2410 EXPR_TARGET_AVAILABLE (expr) = false;
2411 if (pti->type == TRANS_SPECULATION)
2412 {
2413 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2414 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2415 }
2416
2417 if (sched_verbose >= 6)
2418 {
2419 sel_print ("changed (cached): ");
2420 dump_expr (expr);
2421 sel_print ("\n");
2422 }
2423
2424 *res = MOVEUP_EXPR_CHANGED;
2425 return true;
2426 }
2427
2428 return false;
2429 }
2430
2431 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2432 static void
2433 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2434 enum MOVEUP_EXPR_CODE res)
2435 {
2436 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2437
2438 /* Do not cache result of propagating jumps through an insn group,
2439 as it is always true, which is not useful outside the group. */
2440 if (inside_insn_group)
2441 return;
2442
2443 if (res == MOVEUP_EXPR_NULL)
2444 {
2445 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2446 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2447 }
2448 else if (res == MOVEUP_EXPR_SAME)
2449 {
2450 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2451 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2452 }
2453 else if (res == MOVEUP_EXPR_AS_RHS)
2454 {
2455 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2456 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2457 }
2458 else
2459 gcc_unreachable ();
2460 }
2461
2462 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2463 and transformation type TRANS_TYPE. */
2464 static void
2465 update_transformation_cache (expr_t expr, insn_t insn,
2466 bool inside_insn_group,
2467 enum local_trans_type trans_type,
2468 vinsn_t expr_old_vinsn)
2469 {
2470 struct transformed_insns *pti;
2471
2472 if (inside_insn_group)
2473 return;
2474
2475 pti = XNEW (struct transformed_insns);
2476 pti->vinsn_old = expr_old_vinsn;
2477 pti->vinsn_new = EXPR_VINSN (expr);
2478 pti->type = trans_type;
2479 pti->was_target_conflict = was_target_conflict;
2480 pti->ds = EXPR_SPEC_DONE_DS (expr);
2481 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2482 vinsn_attach (pti->vinsn_old);
2483 vinsn_attach (pti->vinsn_new);
2484 *((struct transformed_insns **)
2485 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2486 pti, VINSN_HASH_RTX (expr_old_vinsn),
2487 INSERT)) = pti;
2488 }
2489
2490 /* Same as moveup_expr, but first looks up the result of
2491 transformation in caches. */
2492 static enum MOVEUP_EXPR_CODE
2493 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2494 {
2495 enum MOVEUP_EXPR_CODE res;
2496 bool got_answer = false;
2497
2498 if (sched_verbose >= 6)
2499 {
2500 sel_print ("Moving ");
2501 dump_expr (expr);
2502 sel_print (" through %d: ", INSN_UID (insn));
2503 }
2504
2505 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2506 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2507 == EXPR_INSN_RTX (expr)))
2508 /* Don't use cached information for debug insns that are heads of
2509 basic blocks. */;
2510 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2511 /* When inside insn group, we do not want remove stores conflicting
2512 with previosly issued loads. */
2513 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2514 else if (try_transformation_cache (expr, insn, &res))
2515 got_answer = true;
2516
2517 if (! got_answer)
2518 {
2519 /* Invoke moveup_expr and record the results. */
2520 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2521 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2522 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2523 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2524 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2525
2526 /* ??? Invent something better than this. We can't allow old_vinsn
2527 to go, we need it for the history vector. */
2528 vinsn_attach (expr_old_vinsn);
2529
2530 res = moveup_expr (expr, insn, inside_insn_group,
2531 &trans_type);
2532 switch (res)
2533 {
2534 case MOVEUP_EXPR_NULL:
2535 update_bitmap_cache (expr, insn, inside_insn_group, res);
2536 if (sched_verbose >= 6)
2537 sel_print ("removed\n");
2538 break;
2539
2540 case MOVEUP_EXPR_SAME:
2541 update_bitmap_cache (expr, insn, inside_insn_group, res);
2542 if (sched_verbose >= 6)
2543 sel_print ("unchanged\n");
2544 break;
2545
2546 case MOVEUP_EXPR_AS_RHS:
2547 gcc_assert (!unique_p || inside_insn_group);
2548 update_bitmap_cache (expr, insn, inside_insn_group, res);
2549 if (sched_verbose >= 6)
2550 sel_print ("unchanged (as RHS)\n");
2551 break;
2552
2553 case MOVEUP_EXPR_CHANGED:
2554 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2555 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2556 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2557 INSN_UID (insn), trans_type,
2558 expr_old_vinsn, EXPR_VINSN (expr),
2559 expr_old_spec_ds);
2560 update_transformation_cache (expr, insn, inside_insn_group,
2561 trans_type, expr_old_vinsn);
2562 if (sched_verbose >= 6)
2563 {
2564 sel_print ("changed: ");
2565 dump_expr (expr);
2566 sel_print ("\n");
2567 }
2568 break;
2569 default:
2570 gcc_unreachable ();
2571 }
2572
2573 vinsn_detach (expr_old_vinsn);
2574 }
2575
2576 return res;
2577 }
2578
2579 /* Moves an av set AVP up through INSN, performing necessary
2580 transformations. */
2581 static void
2582 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2583 {
2584 av_set_iterator i;
2585 expr_t expr;
2586
2587 FOR_EACH_EXPR_1 (expr, i, avp)
2588 {
2589
2590 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2591 {
2592 case MOVEUP_EXPR_SAME:
2593 case MOVEUP_EXPR_AS_RHS:
2594 break;
2595
2596 case MOVEUP_EXPR_NULL:
2597 av_set_iter_remove (&i);
2598 break;
2599
2600 case MOVEUP_EXPR_CHANGED:
2601 expr = merge_with_other_exprs (avp, &i, expr);
2602 break;
2603
2604 default:
2605 gcc_unreachable ();
2606 }
2607 }
2608 }
2609
2610 /* Moves AVP set along PATH. */
2611 static void
2612 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2613 {
2614 int last_cycle;
2615
2616 if (sched_verbose >= 6)
2617 sel_print ("Moving expressions up in the insn group...\n");
2618 if (! path)
2619 return;
2620 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2621 while (path
2622 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2623 {
2624 moveup_set_expr (avp, ILIST_INSN (path), true);
2625 path = ILIST_NEXT (path);
2626 }
2627 }
2628
2629 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2630 static bool
2631 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2632 {
2633 expr_def _tmp, *tmp = &_tmp;
2634 int last_cycle;
2635 bool res = true;
2636
2637 copy_expr_onside (tmp, expr);
2638 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2639 while (path
2640 && res
2641 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2642 {
2643 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2644 != MOVEUP_EXPR_NULL);
2645 path = ILIST_NEXT (path);
2646 }
2647
2648 if (res)
2649 {
2650 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2651 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2652
2653 if (tmp_vinsn != expr_vliw_vinsn)
2654 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2655 }
2656
2657 clear_expr (tmp);
2658 return res;
2659 }
2660 \f
2661
2662 /* Functions that compute av and lv sets. */
2663
2664 /* Returns true if INSN is not a downward continuation of the given path P in
2665 the current stage. */
2666 static bool
2667 is_ineligible_successor (insn_t insn, ilist_t p)
2668 {
2669 insn_t prev_insn;
2670
2671 /* Check if insn is not deleted. */
2672 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2673 gcc_unreachable ();
2674 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2675 gcc_unreachable ();
2676
2677 /* If it's the first insn visited, then the successor is ok. */
2678 if (!p)
2679 return false;
2680
2681 prev_insn = ILIST_INSN (p);
2682
2683 if (/* a backward edge. */
2684 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2685 /* is already visited. */
2686 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2687 && (ilist_is_in_p (p, insn)
2688 /* We can reach another fence here and still seqno of insn
2689 would be equal to seqno of prev_insn. This is possible
2690 when prev_insn is a previously created bookkeeping copy.
2691 In that case it'd get a seqno of insn. Thus, check here
2692 whether insn is in current fence too. */
2693 || IN_CURRENT_FENCE_P (insn)))
2694 /* Was already scheduled on this round. */
2695 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2696 && IN_CURRENT_FENCE_P (insn))
2697 /* An insn from another fence could also be
2698 scheduled earlier even if this insn is not in
2699 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2700 || (!pipelining_p
2701 && INSN_SCHED_TIMES (insn) > 0))
2702 return true;
2703 else
2704 return false;
2705 }
2706
2707 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2708 of handling multiple successors and properly merging its av_sets. P is
2709 the current path traversed. WS is the size of lookahead window.
2710 Return the av set computed. */
2711 static av_set_t
2712 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2713 {
2714 struct succs_info *sinfo;
2715 av_set_t expr_in_all_succ_branches = NULL;
2716 int is;
2717 insn_t succ, zero_succ = NULL;
2718 av_set_t av1 = NULL;
2719
2720 gcc_assert (sel_bb_end_p (insn));
2721
2722 /* Find different kind of successors needed for correct computing of
2723 SPEC and TARGET_AVAILABLE attributes. */
2724 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2725
2726 /* Debug output. */
2727 if (sched_verbose >= 6)
2728 {
2729 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2730 dump_insn_vector (sinfo->succs_ok);
2731 sel_print ("\n");
2732 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2733 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2734 }
2735
2736 /* Add insn to to the tail of current path. */
2737 ilist_add (&p, insn);
2738
2739 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2740 {
2741 av_set_t succ_set;
2742
2743 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2744 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2745
2746 av_set_split_usefulness (succ_set,
2747 VEC_index (int, sinfo->probs_ok, is),
2748 sinfo->all_prob);
2749
2750 if (sinfo->all_succs_n > 1)
2751 {
2752 /* Find EXPR'es that came from *all* successors and save them
2753 into expr_in_all_succ_branches. This set will be used later
2754 for calculating speculation attributes of EXPR'es. */
2755 if (is == 0)
2756 {
2757 expr_in_all_succ_branches = av_set_copy (succ_set);
2758
2759 /* Remember the first successor for later. */
2760 zero_succ = succ;
2761 }
2762 else
2763 {
2764 av_set_iterator i;
2765 expr_t expr;
2766
2767 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2768 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2769 av_set_iter_remove (&i);
2770 }
2771 }
2772
2773 /* Union the av_sets. Check liveness restrictions on target registers
2774 in special case of two successors. */
2775 if (sinfo->succs_ok_n == 2 && is == 1)
2776 {
2777 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2778 basic_block bb1 = BLOCK_FOR_INSN (succ);
2779
2780 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2781 av_set_union_and_live (&av1, &succ_set,
2782 BB_LV_SET (bb0),
2783 BB_LV_SET (bb1),
2784 insn);
2785 }
2786 else
2787 av_set_union_and_clear (&av1, &succ_set, insn);
2788 }
2789
2790 /* Check liveness restrictions via hard way when there are more than
2791 two successors. */
2792 if (sinfo->succs_ok_n > 2)
2793 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2794 {
2795 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2796
2797 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2798 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2799 BB_LV_SET (succ_bb));
2800 }
2801
2802 /* Finally, check liveness restrictions on paths leaving the region. */
2803 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2804 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2805 mark_unavailable_targets
2806 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2807
2808 if (sinfo->all_succs_n > 1)
2809 {
2810 av_set_iterator i;
2811 expr_t expr;
2812
2813 /* Increase the spec attribute of all EXPR'es that didn't come
2814 from all successors. */
2815 FOR_EACH_EXPR (expr, i, av1)
2816 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2817 EXPR_SPEC (expr)++;
2818
2819 av_set_clear (&expr_in_all_succ_branches);
2820
2821 /* Do not move conditional branches through other
2822 conditional branches. So, remove all conditional
2823 branches from av_set if current operator is a conditional
2824 branch. */
2825 av_set_substract_cond_branches (&av1);
2826 }
2827
2828 ilist_remove (&p);
2829 free_succs_info (sinfo);
2830
2831 if (sched_verbose >= 6)
2832 {
2833 sel_print ("av_succs (%d): ", INSN_UID (insn));
2834 dump_av_set (av1);
2835 sel_print ("\n");
2836 }
2837
2838 return av1;
2839 }
2840
2841 /* This function computes av_set for the FIRST_INSN by dragging valid
2842 av_set through all basic block insns either from the end of basic block
2843 (computed using compute_av_set_at_bb_end) or from the insn on which
2844 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2845 below the basic block and handling conditional branches.
2846 FIRST_INSN - the basic block head, P - path consisting of the insns
2847 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2848 and bb ends are added to the path), WS - current window size,
2849 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2850 static av_set_t
2851 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2852 bool need_copy_p)
2853 {
2854 insn_t cur_insn;
2855 int end_ws = ws;
2856 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2857 insn_t after_bb_end = NEXT_INSN (bb_end);
2858 insn_t last_insn;
2859 av_set_t av = NULL;
2860 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2861
2862 /* Return NULL if insn is not on the legitimate downward path. */
2863 if (is_ineligible_successor (first_insn, p))
2864 {
2865 if (sched_verbose >= 6)
2866 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2867
2868 return NULL;
2869 }
2870
2871 /* If insn already has valid av(insn) computed, just return it. */
2872 if (AV_SET_VALID_P (first_insn))
2873 {
2874 av_set_t av_set;
2875
2876 if (sel_bb_head_p (first_insn))
2877 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2878 else
2879 av_set = NULL;
2880
2881 if (sched_verbose >= 6)
2882 {
2883 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2884 dump_av_set (av_set);
2885 sel_print ("\n");
2886 }
2887
2888 return need_copy_p ? av_set_copy (av_set) : av_set;
2889 }
2890
2891 ilist_add (&p, first_insn);
2892
2893 /* As the result after this loop have completed, in LAST_INSN we'll
2894 have the insn which has valid av_set to start backward computation
2895 from: it either will be NULL because on it the window size was exceeded
2896 or other valid av_set as returned by compute_av_set for the last insn
2897 of the basic block. */
2898 for (last_insn = first_insn; last_insn != after_bb_end;
2899 last_insn = NEXT_INSN (last_insn))
2900 {
2901 /* We may encounter valid av_set not only on bb_head, but also on
2902 those insns on which previously MAX_WS was exceeded. */
2903 if (AV_SET_VALID_P (last_insn))
2904 {
2905 if (sched_verbose >= 6)
2906 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2907 break;
2908 }
2909
2910 /* The special case: the last insn of the BB may be an
2911 ineligible_successor due to its SEQ_NO that was set on
2912 it as a bookkeeping. */
2913 if (last_insn != first_insn
2914 && is_ineligible_successor (last_insn, p))
2915 {
2916 if (sched_verbose >= 6)
2917 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2918 break;
2919 }
2920
2921 if (DEBUG_INSN_P (last_insn))
2922 continue;
2923
2924 if (end_ws > max_ws)
2925 {
2926 /* We can reach max lookahead size at bb_header, so clean av_set
2927 first. */
2928 INSN_WS_LEVEL (last_insn) = global_level;
2929
2930 if (sched_verbose >= 6)
2931 sel_print ("Insn %d is beyond the software lookahead window size\n",
2932 INSN_UID (last_insn));
2933 break;
2934 }
2935
2936 end_ws++;
2937 }
2938
2939 /* Get the valid av_set into AV above the LAST_INSN to start backward
2940 computation from. It either will be empty av_set or av_set computed from
2941 the successors on the last insn of the current bb. */
2942 if (last_insn != after_bb_end)
2943 {
2944 av = NULL;
2945
2946 /* This is needed only to obtain av_sets that are identical to
2947 those computed by the old compute_av_set version. */
2948 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2949 av_set_add (&av, INSN_EXPR (last_insn));
2950 }
2951 else
2952 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2953 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2954
2955 /* Compute av_set in AV starting from below the LAST_INSN up to
2956 location above the FIRST_INSN. */
2957 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2958 cur_insn = PREV_INSN (cur_insn))
2959 if (!INSN_NOP_P (cur_insn))
2960 {
2961 expr_t expr;
2962
2963 moveup_set_expr (&av, cur_insn, false);
2964
2965 /* If the expression for CUR_INSN is already in the set,
2966 replace it by the new one. */
2967 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2968 if (expr != NULL)
2969 {
2970 clear_expr (expr);
2971 copy_expr (expr, INSN_EXPR (cur_insn));
2972 }
2973 else
2974 av_set_add (&av, INSN_EXPR (cur_insn));
2975 }
2976
2977 /* Clear stale bb_av_set. */
2978 if (sel_bb_head_p (first_insn))
2979 {
2980 av_set_clear (&BB_AV_SET (cur_bb));
2981 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2982 BB_AV_LEVEL (cur_bb) = global_level;
2983 }
2984
2985 if (sched_verbose >= 6)
2986 {
2987 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2988 dump_av_set (av);
2989 sel_print ("\n");
2990 }
2991
2992 ilist_remove (&p);
2993 return av;
2994 }
2995
2996 /* Compute av set before INSN.
2997 INSN - the current operation (actual rtx INSN)
2998 P - the current path, which is list of insns visited so far
2999 WS - software lookahead window size.
3000 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3001 if we want to save computed av_set in s_i_d, we should make a copy of it.
3002
3003 In the resulting set we will have only expressions that don't have delay
3004 stalls and nonsubstitutable dependences. */
3005 static av_set_t
3006 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3007 {
3008 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3009 }
3010
3011 /* Propagate a liveness set LV through INSN. */
3012 static void
3013 propagate_lv_set (regset lv, insn_t insn)
3014 {
3015 gcc_assert (INSN_P (insn));
3016
3017 if (INSN_NOP_P (insn))
3018 return;
3019
3020 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3021 }
3022
3023 /* Return livness set at the end of BB. */
3024 static regset
3025 compute_live_after_bb (basic_block bb)
3026 {
3027 edge e;
3028 edge_iterator ei;
3029 regset lv = get_clear_regset_from_pool ();
3030
3031 gcc_assert (!ignore_first);
3032
3033 FOR_EACH_EDGE (e, ei, bb->succs)
3034 if (sel_bb_empty_p (e->dest))
3035 {
3036 if (! BB_LV_SET_VALID_P (e->dest))
3037 {
3038 gcc_unreachable ();
3039 gcc_assert (BB_LV_SET (e->dest) == NULL);
3040 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3041 BB_LV_SET_VALID_P (e->dest) = true;
3042 }
3043 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3044 }
3045 else
3046 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3047
3048 return lv;
3049 }
3050
3051 /* Compute the set of all live registers at the point before INSN and save
3052 it at INSN if INSN is bb header. */
3053 regset
3054 compute_live (insn_t insn)
3055 {
3056 basic_block bb = BLOCK_FOR_INSN (insn);
3057 insn_t final, temp;
3058 regset lv;
3059
3060 /* Return the valid set if we're already on it. */
3061 if (!ignore_first)
3062 {
3063 regset src = NULL;
3064
3065 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3066 src = BB_LV_SET (bb);
3067 else
3068 {
3069 gcc_assert (in_current_region_p (bb));
3070 if (INSN_LIVE_VALID_P (insn))
3071 src = INSN_LIVE (insn);
3072 }
3073
3074 if (src)
3075 {
3076 lv = get_regset_from_pool ();
3077 COPY_REG_SET (lv, src);
3078
3079 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3080 {
3081 COPY_REG_SET (BB_LV_SET (bb), lv);
3082 BB_LV_SET_VALID_P (bb) = true;
3083 }
3084
3085 return_regset_to_pool (lv);
3086 return lv;
3087 }
3088 }
3089
3090 /* We've skipped the wrong lv_set. Don't skip the right one. */
3091 ignore_first = false;
3092 gcc_assert (in_current_region_p (bb));
3093
3094 /* Find a valid LV set in this block or below, if needed.
3095 Start searching from the next insn: either ignore_first is true, or
3096 INSN doesn't have a correct live set. */
3097 temp = NEXT_INSN (insn);
3098 final = NEXT_INSN (BB_END (bb));
3099 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3100 temp = NEXT_INSN (temp);
3101 if (temp == final)
3102 {
3103 lv = compute_live_after_bb (bb);
3104 temp = PREV_INSN (temp);
3105 }
3106 else
3107 {
3108 lv = get_regset_from_pool ();
3109 COPY_REG_SET (lv, INSN_LIVE (temp));
3110 }
3111
3112 /* Put correct lv sets on the insns which have bad sets. */
3113 final = PREV_INSN (insn);
3114 while (temp != final)
3115 {
3116 propagate_lv_set (lv, temp);
3117 COPY_REG_SET (INSN_LIVE (temp), lv);
3118 INSN_LIVE_VALID_P (temp) = true;
3119 temp = PREV_INSN (temp);
3120 }
3121
3122 /* Also put it in a BB. */
3123 if (sel_bb_head_p (insn))
3124 {
3125 basic_block bb = BLOCK_FOR_INSN (insn);
3126
3127 COPY_REG_SET (BB_LV_SET (bb), lv);
3128 BB_LV_SET_VALID_P (bb) = true;
3129 }
3130
3131 /* We return LV to the pool, but will not clear it there. Thus we can
3132 legimatelly use LV till the next use of regset_pool_get (). */
3133 return_regset_to_pool (lv);
3134 return lv;
3135 }
3136
3137 /* Update liveness sets for INSN. */
3138 static inline void
3139 update_liveness_on_insn (rtx insn)
3140 {
3141 ignore_first = true;
3142 compute_live (insn);
3143 }
3144
3145 /* Compute liveness below INSN and write it into REGS. */
3146 static inline void
3147 compute_live_below_insn (rtx insn, regset regs)
3148 {
3149 rtx succ;
3150 succ_iterator si;
3151
3152 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3153 IOR_REG_SET (regs, compute_live (succ));
3154 }
3155
3156 /* Update the data gathered in av and lv sets starting from INSN. */
3157 static void
3158 update_data_sets (rtx insn)
3159 {
3160 update_liveness_on_insn (insn);
3161 if (sel_bb_head_p (insn))
3162 {
3163 gcc_assert (AV_LEVEL (insn) != 0);
3164 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3165 compute_av_set (insn, NULL, 0, 0);
3166 }
3167 }
3168 \f
3169
3170 /* Helper for move_op () and find_used_regs ().
3171 Return speculation type for which a check should be created on the place
3172 of INSN. EXPR is one of the original ops we are searching for. */
3173 static ds_t
3174 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3175 {
3176 ds_t to_check_ds;
3177 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3178
3179 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3180
3181 if (targetm.sched.get_insn_checked_ds)
3182 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3183
3184 if (spec_info != NULL
3185 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3186 already_checked_ds |= BEGIN_CONTROL;
3187
3188 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3189
3190 to_check_ds &= ~already_checked_ds;
3191
3192 return to_check_ds;
3193 }
3194
3195 /* Find the set of registers that are unavailable for storing expres
3196 while moving ORIG_OPS up on the path starting from INSN due to
3197 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3198
3199 All the original operations found during the traversal are saved in the
3200 ORIGINAL_INSNS list.
3201
3202 REG_RENAME_P denotes the set of hardware registers that
3203 can not be used with renaming due to the register class restrictions,
3204 mode restrictions and other (the register we'll choose should be
3205 compatible class with the original uses, shouldn't be in call_used_regs,
3206 should be HARD_REGNO_RENAME_OK etc).
3207
3208 Returns TRUE if we've found all original insns, FALSE otherwise.
3209
3210 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3211 to traverse the code motion paths. This helper function finds registers
3212 that are not available for storing expres while moving ORIG_OPS up on the
3213 path starting from INSN. A register considered as used on the moving path,
3214 if one of the following conditions is not satisfied:
3215
3216 (1) a register not set or read on any path from xi to an instance of
3217 the original operation,
3218 (2) not among the live registers of the point immediately following the
3219 first original operation on a given downward path, except for the
3220 original target register of the operation,
3221 (3) not live on the other path of any conditional branch that is passed
3222 by the operation, in case original operations are not present on
3223 both paths of the conditional branch.
3224
3225 All the original operations found during the traversal are saved in the
3226 ORIGINAL_INSNS list.
3227
3228 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3229 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3230 to unavailable hard regs at the point original operation is found. */
3231
3232 static bool
3233 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3234 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3235 {
3236 def_list_iterator i;
3237 def_t def;
3238 int res;
3239 bool needs_spec_check_p = false;
3240 expr_t expr;
3241 av_set_iterator expr_iter;
3242 struct fur_static_params sparams;
3243 struct cmpd_local_params lparams;
3244
3245 /* We haven't visited any blocks yet. */
3246 bitmap_clear (code_motion_visited_blocks);
3247
3248 /* Init parameters for code_motion_path_driver. */
3249 sparams.crosses_call = false;
3250 sparams.original_insns = original_insns;
3251 sparams.used_regs = used_regs;
3252
3253 /* Set the appropriate hooks and data. */
3254 code_motion_path_driver_info = &fur_hooks;
3255
3256 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3257
3258 reg_rename_p->crosses_call |= sparams.crosses_call;
3259
3260 gcc_assert (res == 1);
3261 gcc_assert (original_insns && *original_insns);
3262
3263 /* ??? We calculate whether an expression needs a check when computing
3264 av sets. This information is not as precise as it could be due to
3265 merging this bit in merge_expr. We can do better in find_used_regs,
3266 but we want to avoid multiple traversals of the same code motion
3267 paths. */
3268 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3269 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3270
3271 /* Mark hardware regs in REG_RENAME_P that are not suitable
3272 for renaming expr in INSN due to hardware restrictions (register class,
3273 modes compatibility etc). */
3274 FOR_EACH_DEF (def, i, *original_insns)
3275 {
3276 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3277
3278 if (VINSN_SEPARABLE_P (vinsn))
3279 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3280
3281 /* Do not allow clobbering of ld.[sa] address in case some of the
3282 original operations need a check. */
3283 if (needs_spec_check_p)
3284 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3285 }
3286
3287 return true;
3288 }
3289 \f
3290
3291 /* Functions to choose the best insn from available ones. */
3292
3293 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3294 static int
3295 sel_target_adjust_priority (expr_t expr)
3296 {
3297 int priority = EXPR_PRIORITY (expr);
3298 int new_priority;
3299
3300 if (targetm.sched.adjust_priority)
3301 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3302 else
3303 new_priority = priority;
3304
3305 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3306 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3307
3308 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3309
3310 if (sched_verbose >= 4)
3311 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3312 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3313 EXPR_PRIORITY_ADJ (expr), new_priority);
3314
3315 return new_priority;
3316 }
3317
3318 /* Rank two available exprs for schedule. Never return 0 here. */
3319 static int
3320 sel_rank_for_schedule (const void *x, const void *y)
3321 {
3322 expr_t tmp = *(const expr_t *) y;
3323 expr_t tmp2 = *(const expr_t *) x;
3324 insn_t tmp_insn, tmp2_insn;
3325 vinsn_t tmp_vinsn, tmp2_vinsn;
3326 int val;
3327
3328 tmp_vinsn = EXPR_VINSN (tmp);
3329 tmp2_vinsn = EXPR_VINSN (tmp2);
3330 tmp_insn = EXPR_INSN_RTX (tmp);
3331 tmp2_insn = EXPR_INSN_RTX (tmp2);
3332
3333 /* Schedule debug insns as early as possible. */
3334 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3335 return -1;
3336 else if (DEBUG_INSN_P (tmp2_insn))
3337 return 1;
3338
3339 /* Prefer SCHED_GROUP_P insns to any others. */
3340 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3341 {
3342 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3343 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3344
3345 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3346 cannot be cloned. */
3347 if (VINSN_UNIQUE_P (tmp2_vinsn))
3348 return 1;
3349 return -1;
3350 }
3351
3352 /* Discourage scheduling of speculative checks. */
3353 val = (sel_insn_is_speculation_check (tmp_insn)
3354 - sel_insn_is_speculation_check (tmp2_insn));
3355 if (val)
3356 return val;
3357
3358 /* Prefer not scheduled insn over scheduled one. */
3359 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3360 {
3361 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3362 if (val)
3363 return val;
3364 }
3365
3366 /* Prefer jump over non-jump instruction. */
3367 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3368 return -1;
3369 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3370 return 1;
3371
3372 /* Prefer an expr with greater priority. */
3373 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3374 {
3375 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3376 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3377
3378 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3379 }
3380 else
3381 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3382 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3383 if (val)
3384 return val;
3385
3386 if (spec_info != NULL && spec_info->mask != 0)
3387 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3388 {
3389 ds_t ds1, ds2;
3390 dw_t dw1, dw2;
3391 int dw;
3392
3393 ds1 = EXPR_SPEC_DONE_DS (tmp);
3394 if (ds1)
3395 dw1 = ds_weak (ds1);
3396 else
3397 dw1 = NO_DEP_WEAK;
3398
3399 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3400 if (ds2)
3401 dw2 = ds_weak (ds2);
3402 else
3403 dw2 = NO_DEP_WEAK;
3404
3405 dw = dw2 - dw1;
3406 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3407 return dw;
3408 }
3409
3410 /* Prefer an old insn to a bookkeeping insn. */
3411 if (INSN_UID (tmp_insn) < first_emitted_uid
3412 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3413 return -1;
3414 if (INSN_UID (tmp_insn) >= first_emitted_uid
3415 && INSN_UID (tmp2_insn) < first_emitted_uid)
3416 return 1;
3417
3418 /* Prefer an insn with smaller UID, as a last resort.
3419 We can't safely use INSN_LUID as it is defined only for those insns
3420 that are in the stream. */
3421 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3422 }
3423
3424 /* Filter out expressions from av set pointed to by AV_PTR
3425 that are pipelined too many times. */
3426 static void
3427 process_pipelined_exprs (av_set_t *av_ptr)
3428 {
3429 expr_t expr;
3430 av_set_iterator si;
3431
3432 /* Don't pipeline already pipelined code as that would increase
3433 number of unnecessary register moves. */
3434 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3435 {
3436 if (EXPR_SCHED_TIMES (expr)
3437 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3438 av_set_iter_remove (&si);
3439 }
3440 }
3441
3442 /* Filter speculative insns from AV_PTR if we don't want them. */
3443 static void
3444 process_spec_exprs (av_set_t *av_ptr)
3445 {
3446 bool try_data_p = true;
3447 bool try_control_p = true;
3448 expr_t expr;
3449 av_set_iterator si;
3450
3451 if (spec_info == NULL)
3452 return;
3453
3454 /* Scan *AV_PTR to find out if we want to consider speculative
3455 instructions for scheduling. */
3456 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3457 {
3458 ds_t ds;
3459
3460 ds = EXPR_SPEC_DONE_DS (expr);
3461
3462 /* The probability of a success is too low - don't speculate. */
3463 if ((ds & SPECULATIVE)
3464 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3465 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3466 || (pipelining_p && false
3467 && (ds & DATA_SPEC)
3468 && (ds & CONTROL_SPEC))))
3469 {
3470 av_set_iter_remove (&si);
3471 continue;
3472 }
3473
3474 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3475 && !(ds & BEGIN_DATA))
3476 try_data_p = false;
3477
3478 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3479 && !(ds & BEGIN_CONTROL))
3480 try_control_p = false;
3481 }
3482
3483 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3484 {
3485 ds_t ds;
3486
3487 ds = EXPR_SPEC_DONE_DS (expr);
3488
3489 if (ds & SPECULATIVE)
3490 {
3491 if ((ds & BEGIN_DATA) && !try_data_p)
3492 /* We don't want any data speculative instructions right
3493 now. */
3494 av_set_iter_remove (&si);
3495
3496 if ((ds & BEGIN_CONTROL) && !try_control_p)
3497 /* We don't want any control speculative instructions right
3498 now. */
3499 av_set_iter_remove (&si);
3500 }
3501 }
3502 }
3503
3504 /* Search for any use-like insns in AV_PTR and decide on scheduling
3505 them. Return one when found, and NULL otherwise.
3506 Note that we check here whether a USE could be scheduled to avoid
3507 an infinite loop later. */
3508 static expr_t
3509 process_use_exprs (av_set_t *av_ptr)
3510 {
3511 expr_t expr;
3512 av_set_iterator si;
3513 bool uses_present_p = false;
3514 bool try_uses_p = true;
3515
3516 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3517 {
3518 /* This will also initialize INSN_CODE for later use. */
3519 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3520 {
3521 /* If we have a USE in *AV_PTR that was not scheduled yet,
3522 do so because it will do good only. */
3523 if (EXPR_SCHED_TIMES (expr) <= 0)
3524 {
3525 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3526 return expr;
3527
3528 av_set_iter_remove (&si);
3529 }
3530 else
3531 {
3532 gcc_assert (pipelining_p);
3533
3534 uses_present_p = true;
3535 }
3536 }
3537 else
3538 try_uses_p = false;
3539 }
3540
3541 if (uses_present_p)
3542 {
3543 /* If we don't want to schedule any USEs right now and we have some
3544 in *AV_PTR, remove them, else just return the first one found. */
3545 if (!try_uses_p)
3546 {
3547 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3548 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3549 av_set_iter_remove (&si);
3550 }
3551 else
3552 {
3553 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3554 {
3555 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3556
3557 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3558 return expr;
3559
3560 av_set_iter_remove (&si);
3561 }
3562 }
3563 }
3564
3565 return NULL;
3566 }
3567
3568 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3569 static bool
3570 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3571 {
3572 vinsn_t vinsn;
3573 int n;
3574
3575 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3576 if (VINSN_SEPARABLE_P (vinsn))
3577 {
3578 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3579 return true;
3580 }
3581 else
3582 {
3583 /* For non-separable instructions, the blocking insn can have
3584 another pattern due to substitution, and we can't choose
3585 different register as in the above case. Check all registers
3586 being written instead. */
3587 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3588 VINSN_REG_SETS (EXPR_VINSN (expr))))
3589 return true;
3590 }
3591
3592 return false;
3593 }
3594
3595 #ifdef ENABLE_CHECKING
3596 /* Return true if either of expressions from ORIG_OPS can be blocked
3597 by previously created bookkeeping code. STATIC_PARAMS points to static
3598 parameters of move_op. */
3599 static bool
3600 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3601 {
3602 expr_t expr;
3603 av_set_iterator iter;
3604 moveop_static_params_p sparams;
3605
3606 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3607 created while scheduling on another fence. */
3608 FOR_EACH_EXPR (expr, iter, orig_ops)
3609 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3610 return true;
3611
3612 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3613 sparams = (moveop_static_params_p) static_params;
3614
3615 /* Expressions can be also blocked by bookkeeping created during current
3616 move_op. */
3617 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3618 FOR_EACH_EXPR (expr, iter, orig_ops)
3619 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3620 return true;
3621
3622 /* Expressions in ORIG_OPS may have wrong destination register due to
3623 renaming. Check with the right register instead. */
3624 if (sparams->dest && REG_P (sparams->dest))
3625 {
3626 unsigned regno = REGNO (sparams->dest);
3627 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3628
3629 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3630 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3631 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3632 return true;
3633 }
3634
3635 return false;
3636 }
3637 #endif
3638
3639 /* Clear VINSN_VEC and detach vinsns. */
3640 static void
3641 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3642 {
3643 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3644 if (len > 0)
3645 {
3646 vinsn_t vinsn;
3647 int n;
3648
3649 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3650 vinsn_detach (vinsn);
3651 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3652 }
3653 }
3654
3655 /* Add the vinsn of EXPR to the VINSN_VEC. */
3656 static void
3657 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3658 {
3659 vinsn_attach (EXPR_VINSN (expr));
3660 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3661 }
3662
3663 /* Free the vector representing blocked expressions. */
3664 static void
3665 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3666 {
3667 if (*vinsn_vec)
3668 VEC_free (vinsn_t, heap, *vinsn_vec);
3669 }
3670
3671 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3672
3673 void sel_add_to_insn_priority (rtx insn, int amount)
3674 {
3675 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3676
3677 if (sched_verbose >= 2)
3678 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3679 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3680 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3681 }
3682
3683 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3684 true if there is something to schedule. BNDS and FENCE are current
3685 boundaries and fence, respectively. If we need to stall for some cycles
3686 before an expr from AV would become available, write this number to
3687 *PNEED_STALL. */
3688 static bool
3689 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3690 int *pneed_stall)
3691 {
3692 av_set_iterator si;
3693 expr_t expr;
3694 int sched_next_worked = 0, stalled, n;
3695 static int av_max_prio, est_ticks_till_branch;
3696 int min_need_stall = -1;
3697 deps_t dc = BND_DC (BLIST_BND (bnds));
3698
3699 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3700 already scheduled. */
3701 if (av == NULL)
3702 return false;
3703
3704 /* Empty vector from the previous stuff. */
3705 if (VEC_length (expr_t, vec_av_set) > 0)
3706 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3707
3708 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3709 for each insn. */
3710 gcc_assert (VEC_empty (expr_t, vec_av_set));
3711 FOR_EACH_EXPR (expr, si, av)
3712 {
3713 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3714
3715 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3716
3717 /* Adjust priority using target backend hook. */
3718 sel_target_adjust_priority (expr);
3719 }
3720
3721 /* Sort the vector. */
3722 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3723 sizeof (expr_t), sel_rank_for_schedule);
3724
3725 /* We record maximal priority of insns in av set for current instruction
3726 group. */
3727 if (FENCE_STARTS_CYCLE_P (fence))
3728 av_max_prio = est_ticks_till_branch = INT_MIN;
3729
3730 /* Filter out inappropriate expressions. Loop's direction is reversed to
3731 visit "best" instructions first. We assume that VEC_unordered_remove
3732 moves last element in place of one being deleted. */
3733 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3734 {
3735 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3736 insn_t insn = EXPR_INSN_RTX (expr);
3737 char target_available;
3738 bool is_orig_reg_p = true;
3739 int need_cycles, new_prio;
3740
3741 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3742 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3743 {
3744 VEC_unordered_remove (expr_t, vec_av_set, n);
3745 continue;
3746 }
3747
3748 /* Set number of sched_next insns (just in case there
3749 could be several). */
3750 if (FENCE_SCHED_NEXT (fence))
3751 sched_next_worked++;
3752
3753 /* Check all liveness requirements and try renaming.
3754 FIXME: try to minimize calls to this. */
3755 target_available = EXPR_TARGET_AVAILABLE (expr);
3756
3757 /* If insn was already scheduled on the current fence,
3758 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3759 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3760 target_available = -1;
3761
3762 /* If the availability of the EXPR is invalidated by the insertion of
3763 bookkeeping earlier, make sure that we won't choose this expr for
3764 scheduling if it's not separable, and if it is separable, then
3765 we have to recompute the set of available registers for it. */
3766 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3767 {
3768 VEC_unordered_remove (expr_t, vec_av_set, n);
3769 if (sched_verbose >= 4)
3770 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3771 INSN_UID (insn));
3772 continue;
3773 }
3774
3775 if (target_available == true)
3776 {
3777 /* Do nothing -- we can use an existing register. */
3778 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3779 }
3780 else if (/* Non-separable instruction will never
3781 get another register. */
3782 (target_available == false
3783 && !EXPR_SEPARABLE_P (expr))
3784 /* Don't try to find a register for low-priority expression. */
3785 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3786 /* ??? FIXME: Don't try to rename data speculation. */
3787 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3788 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3789 {
3790 VEC_unordered_remove (expr_t, vec_av_set, n);
3791 if (sched_verbose >= 4)
3792 sel_print ("Expr %d has no suitable target register\n",
3793 INSN_UID (insn));
3794 continue;
3795 }
3796
3797 /* Filter expressions that need to be renamed or speculated when
3798 pipelining, because compensating register copies or speculation
3799 checks are likely to be placed near the beginning of the loop,
3800 causing a stall. */
3801 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3802 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3803 {
3804 /* Estimation of number of cycles until loop branch for
3805 renaming/speculation to be successful. */
3806 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3807
3808 if ((int) current_loop_nest->ninsns < 9)
3809 {
3810 VEC_unordered_remove (expr_t, vec_av_set, n);
3811 if (sched_verbose >= 4)
3812 sel_print ("Pipelining expr %d will likely cause stall\n",
3813 INSN_UID (insn));
3814 continue;
3815 }
3816
3817 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3818 < need_n_ticks_till_branch * issue_rate / 2
3819 && est_ticks_till_branch < need_n_ticks_till_branch)
3820 {
3821 VEC_unordered_remove (expr_t, vec_av_set, n);
3822 if (sched_verbose >= 4)
3823 sel_print ("Pipelining expr %d will likely cause stall\n",
3824 INSN_UID (insn));
3825 continue;
3826 }
3827 }
3828
3829 /* We want to schedule speculation checks as late as possible. Discard
3830 them from av set if there are instructions with higher priority. */
3831 if (sel_insn_is_speculation_check (insn)
3832 && EXPR_PRIORITY (expr) < av_max_prio)
3833 {
3834 stalled++;
3835 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3836 VEC_unordered_remove (expr_t, vec_av_set, n);
3837 if (sched_verbose >= 4)
3838 sel_print ("Delaying speculation check %d until its first use\n",
3839 INSN_UID (insn));
3840 continue;
3841 }
3842
3843 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3844 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3845 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3846
3847 /* Don't allow any insns whose data is not yet ready.
3848 Check first whether we've already tried them and failed. */
3849 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3850 {
3851 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3852 - FENCE_CYCLE (fence));
3853 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3854 est_ticks_till_branch = MAX (est_ticks_till_branch,
3855 EXPR_PRIORITY (expr) + need_cycles);
3856
3857 if (need_cycles > 0)
3858 {
3859 stalled++;
3860 min_need_stall = (min_need_stall < 0
3861 ? need_cycles
3862 : MIN (min_need_stall, need_cycles));
3863 VEC_unordered_remove (expr_t, vec_av_set, n);
3864
3865 if (sched_verbose >= 4)
3866 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3867 INSN_UID (insn),
3868 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3869 continue;
3870 }
3871 }
3872
3873 /* Now resort to dependence analysis to find whether EXPR might be
3874 stalled due to dependencies from FENCE's context. */
3875 need_cycles = tick_check_p (expr, dc, fence);
3876 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3877
3878 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3879 est_ticks_till_branch = MAX (est_ticks_till_branch,
3880 new_prio);
3881
3882 if (need_cycles > 0)
3883 {
3884 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3885 {
3886 int new_size = INSN_UID (insn) * 3 / 2;
3887
3888 FENCE_READY_TICKS (fence)
3889 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3890 new_size, FENCE_READY_TICKS_SIZE (fence),
3891 sizeof (int));
3892 }
3893 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3894 = FENCE_CYCLE (fence) + need_cycles;
3895
3896 stalled++;
3897 min_need_stall = (min_need_stall < 0
3898 ? need_cycles
3899 : MIN (min_need_stall, need_cycles));
3900
3901 VEC_unordered_remove (expr_t, vec_av_set, n);
3902
3903 if (sched_verbose >= 4)
3904 sel_print ("Expr %d is not ready yet until cycle %d\n",
3905 INSN_UID (insn),
3906 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3907 continue;
3908 }
3909
3910 if (sched_verbose >= 4)
3911 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3912 min_need_stall = 0;
3913 }
3914
3915 /* Clear SCHED_NEXT. */
3916 if (FENCE_SCHED_NEXT (fence))
3917 {
3918 gcc_assert (sched_next_worked == 1);
3919 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3920 }
3921
3922 /* No need to stall if this variable was not initialized. */
3923 if (min_need_stall < 0)
3924 min_need_stall = 0;
3925
3926 if (VEC_empty (expr_t, vec_av_set))
3927 {
3928 /* We need to set *pneed_stall here, because later we skip this code
3929 when ready list is empty. */
3930 *pneed_stall = min_need_stall;
3931 return false;
3932 }
3933 else
3934 gcc_assert (min_need_stall == 0);
3935
3936 /* Sort the vector. */
3937 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3938 sizeof (expr_t), sel_rank_for_schedule);
3939
3940 if (sched_verbose >= 4)
3941 {
3942 sel_print ("Total ready exprs: %d, stalled: %d\n",
3943 VEC_length (expr_t, vec_av_set), stalled);
3944 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3945 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3946 dump_expr (expr);
3947 sel_print ("\n");
3948 }
3949
3950 *pneed_stall = 0;
3951 return true;
3952 }
3953
3954 /* Convert a vectored and sorted av set to the ready list that
3955 the rest of the backend wants to see. */
3956 static void
3957 convert_vec_av_set_to_ready (void)
3958 {
3959 int n;
3960 expr_t expr;
3961
3962 /* Allocate and fill the ready list from the sorted vector. */
3963 ready.n_ready = VEC_length (expr_t, vec_av_set);
3964 ready.first = ready.n_ready - 1;
3965
3966 gcc_assert (ready.n_ready > 0);
3967
3968 if (ready.n_ready > max_issue_size)
3969 {
3970 max_issue_size = ready.n_ready;
3971 sched_extend_ready_list (ready.n_ready);
3972 }
3973
3974 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3975 {
3976 vinsn_t vi = EXPR_VINSN (expr);
3977 insn_t insn = VINSN_INSN_RTX (vi);
3978
3979 ready_try[n] = 0;
3980 ready.vec[n] = insn;
3981 }
3982 }
3983
3984 /* Initialize ready list from *AV_PTR for the max_issue () call.
3985 If any unrecognizable insn found in *AV_PTR, return it (and skip
3986 max_issue). BND and FENCE are current boundary and fence,
3987 respectively. If we need to stall for some cycles before an expr
3988 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3989 static expr_t
3990 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3991 int *pneed_stall)
3992 {
3993 expr_t expr;
3994
3995 /* We do not support multiple boundaries per fence. */
3996 gcc_assert (BLIST_NEXT (bnds) == NULL);
3997
3998 /* Process expressions required special handling, i.e. pipelined,
3999 speculative and recog() < 0 expressions first. */
4000 process_pipelined_exprs (av_ptr);
4001 process_spec_exprs (av_ptr);
4002
4003 /* A USE could be scheduled immediately. */
4004 expr = process_use_exprs (av_ptr);
4005 if (expr)
4006 {
4007 *pneed_stall = 0;
4008 return expr;
4009 }
4010
4011 /* Turn the av set to a vector for sorting. */
4012 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4013 {
4014 ready.n_ready = 0;
4015 return NULL;
4016 }
4017
4018 /* Build the final ready list. */
4019 convert_vec_av_set_to_ready ();
4020 return NULL;
4021 }
4022
4023 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4024 static bool
4025 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4026 {
4027 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4028 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4029 : FENCE_CYCLE (fence) - 1;
4030 bool res = false;
4031 int sort_p = 0;
4032
4033 if (!targetm.sched.dfa_new_cycle)
4034 return false;
4035
4036 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4037
4038 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4039 insn, last_scheduled_cycle,
4040 FENCE_CYCLE (fence), &sort_p))
4041 {
4042 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4043 advance_one_cycle (fence);
4044 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4045 res = true;
4046 }
4047
4048 return res;
4049 }
4050
4051 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4052 we can issue. FENCE is the current fence. */
4053 static int
4054 invoke_reorder_hooks (fence_t fence)
4055 {
4056 int issue_more;
4057 bool ran_hook = false;
4058
4059 /* Call the reorder hook at the beginning of the cycle, and call
4060 the reorder2 hook in the middle of the cycle. */
4061 if (FENCE_ISSUED_INSNS (fence) == 0)
4062 {
4063 if (targetm.sched.reorder
4064 && !SCHED_GROUP_P (ready_element (&ready, 0))
4065 && ready.n_ready > 1)
4066 {
4067 /* Don't give reorder the most prioritized insn as it can break
4068 pipelining. */
4069 if (pipelining_p)
4070 --ready.n_ready;
4071
4072 issue_more
4073 = targetm.sched.reorder (sched_dump, sched_verbose,
4074 ready_lastpos (&ready),
4075 &ready.n_ready, FENCE_CYCLE (fence));
4076
4077 if (pipelining_p)
4078 ++ready.n_ready;
4079
4080 ran_hook = true;
4081 }
4082 else
4083 /* Initialize can_issue_more for variable_issue. */
4084 issue_more = issue_rate;
4085 }
4086 else if (targetm.sched.reorder2
4087 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4088 {
4089 if (ready.n_ready == 1)
4090 issue_more =
4091 targetm.sched.reorder2 (sched_dump, sched_verbose,
4092 ready_lastpos (&ready),
4093 &ready.n_ready, FENCE_CYCLE (fence));
4094 else
4095 {
4096 if (pipelining_p)
4097 --ready.n_ready;
4098
4099 issue_more =
4100 targetm.sched.reorder2 (sched_dump, sched_verbose,
4101 ready.n_ready
4102 ? ready_lastpos (&ready) : NULL,
4103 &ready.n_ready, FENCE_CYCLE (fence));
4104
4105 if (pipelining_p)
4106 ++ready.n_ready;
4107 }
4108
4109 ran_hook = true;
4110 }
4111 else
4112 issue_more = FENCE_ISSUE_MORE (fence);
4113
4114 /* Ensure that ready list and vec_av_set are in line with each other,
4115 i.e. vec_av_set[i] == ready_element (&ready, i). */
4116 if (issue_more && ran_hook)
4117 {
4118 int i, j, n;
4119 rtx *arr = ready.vec;
4120 expr_t *vec = VEC_address (expr_t, vec_av_set);
4121
4122 for (i = 0, n = ready.n_ready; i < n; i++)
4123 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4124 {
4125 expr_t tmp;
4126
4127 for (j = i; j < n; j++)
4128 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4129 break;
4130 gcc_assert (j < n);
4131
4132 tmp = vec[i];
4133 vec[i] = vec[j];
4134 vec[j] = tmp;
4135 }
4136 }
4137
4138 return issue_more;
4139 }
4140
4141 /* Return an EXPR correponding to INDEX element of ready list, if
4142 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4143 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4144 ready.vec otherwise. */
4145 static inline expr_t
4146 find_expr_for_ready (int index, bool follow_ready_element)
4147 {
4148 expr_t expr;
4149 int real_index;
4150
4151 real_index = follow_ready_element ? ready.first - index : index;
4152
4153 expr = VEC_index (expr_t, vec_av_set, real_index);
4154 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4155
4156 return expr;
4157 }
4158
4159 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4160 of such insns found. */
4161 static int
4162 invoke_dfa_lookahead_guard (void)
4163 {
4164 int i, n;
4165 bool have_hook
4166 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4167
4168 if (sched_verbose >= 2)
4169 sel_print ("ready after reorder: ");
4170
4171 for (i = 0, n = 0; i < ready.n_ready; i++)
4172 {
4173 expr_t expr;
4174 insn_t insn;
4175 int r;
4176
4177 /* In this loop insn is Ith element of the ready list given by
4178 ready_element, not Ith element of ready.vec. */
4179 insn = ready_element (&ready, i);
4180
4181 if (! have_hook || i == 0)
4182 r = 0;
4183 else
4184 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4185
4186 gcc_assert (INSN_CODE (insn) >= 0);
4187
4188 /* Only insns with ready_try = 0 can get here
4189 from fill_ready_list. */
4190 gcc_assert (ready_try [i] == 0);
4191 ready_try[i] = r;
4192 if (!r)
4193 n++;
4194
4195 expr = find_expr_for_ready (i, true);
4196
4197 if (sched_verbose >= 2)
4198 {
4199 dump_vinsn (EXPR_VINSN (expr));
4200 sel_print (":%d; ", ready_try[i]);
4201 }
4202 }
4203
4204 if (sched_verbose >= 2)
4205 sel_print ("\n");
4206 return n;
4207 }
4208
4209 /* Calculate the number of privileged insns and return it. */
4210 static int
4211 calculate_privileged_insns (void)
4212 {
4213 expr_t cur_expr, min_spec_expr = NULL;
4214 int privileged_n = 0, i;
4215
4216 for (i = 0; i < ready.n_ready; i++)
4217 {
4218 if (ready_try[i])
4219 continue;
4220
4221 if (! min_spec_expr)
4222 min_spec_expr = find_expr_for_ready (i, true);
4223
4224 cur_expr = find_expr_for_ready (i, true);
4225
4226 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4227 break;
4228
4229 ++privileged_n;
4230 }
4231
4232 if (i == ready.n_ready)
4233 privileged_n = 0;
4234
4235 if (sched_verbose >= 2)
4236 sel_print ("privileged_n: %d insns with SPEC %d\n",
4237 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4238 return privileged_n;
4239 }
4240
4241 /* Call the rest of the hooks after the choice was made. Return
4242 the number of insns that still can be issued given that the current
4243 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4244 and the insn chosen for scheduling, respectively. */
4245 static int
4246 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4247 {
4248 gcc_assert (INSN_P (best_insn));
4249
4250 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4251 sel_dfa_new_cycle (best_insn, fence);
4252
4253 if (targetm.sched.variable_issue)
4254 {
4255 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4256 issue_more =
4257 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4258 issue_more);
4259 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4260 }
4261 else if (GET_CODE (PATTERN (best_insn)) != USE
4262 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4263 issue_more--;
4264
4265 return issue_more;
4266 }
4267
4268 /* Estimate the cost of issuing INSN on DFA state STATE. */
4269 static int
4270 estimate_insn_cost (rtx insn, state_t state)
4271 {
4272 static state_t temp = NULL;
4273 int cost;
4274
4275 if (!temp)
4276 temp = xmalloc (dfa_state_size);
4277
4278 memcpy (temp, state, dfa_state_size);
4279 cost = state_transition (temp, insn);
4280
4281 if (cost < 0)
4282 return 0;
4283 else if (cost == 0)
4284 return 1;
4285 return cost;
4286 }
4287
4288 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4289 This function properly handles ASMs, USEs etc. */
4290 static int
4291 get_expr_cost (expr_t expr, fence_t fence)
4292 {
4293 rtx insn = EXPR_INSN_RTX (expr);
4294
4295 if (recog_memoized (insn) < 0)
4296 {
4297 if (!FENCE_STARTS_CYCLE_P (fence)
4298 && INSN_ASM_P (insn))
4299 /* This is asm insn which is tryed to be issued on the
4300 cycle not first. Issue it on the next cycle. */
4301 return 1;
4302 else
4303 /* A USE insn, or something else we don't need to
4304 understand. We can't pass these directly to
4305 state_transition because it will trigger a
4306 fatal error for unrecognizable insns. */
4307 return 0;
4308 }
4309 else
4310 return estimate_insn_cost (insn, FENCE_STATE (fence));
4311 }
4312
4313 /* Find the best insn for scheduling, either via max_issue or just take
4314 the most prioritized available. */
4315 static int
4316 choose_best_insn (fence_t fence, int privileged_n, int *index)
4317 {
4318 int can_issue = 0;
4319
4320 if (dfa_lookahead > 0)
4321 {
4322 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4323 can_issue = max_issue (&ready, privileged_n,
4324 FENCE_STATE (fence), index);
4325 if (sched_verbose >= 2)
4326 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4327 can_issue, FENCE_ISSUED_INSNS (fence));
4328 }
4329 else
4330 {
4331 /* We can't use max_issue; just return the first available element. */
4332 int i;
4333
4334 for (i = 0; i < ready.n_ready; i++)
4335 {
4336 expr_t expr = find_expr_for_ready (i, true);
4337
4338 if (get_expr_cost (expr, fence) < 1)
4339 {
4340 can_issue = can_issue_more;
4341 *index = i;
4342
4343 if (sched_verbose >= 2)
4344 sel_print ("using %dth insn from the ready list\n", i + 1);
4345
4346 break;
4347 }
4348 }
4349
4350 if (i == ready.n_ready)
4351 {
4352 can_issue = 0;
4353 *index = -1;
4354 }
4355 }
4356
4357 return can_issue;
4358 }
4359
4360 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4361 BNDS and FENCE are current boundaries and scheduling fence respectively.
4362 Return the expr found and NULL if nothing can be issued atm.
4363 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4364 static expr_t
4365 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4366 int *pneed_stall)
4367 {
4368 expr_t best;
4369
4370 /* Choose the best insn for scheduling via:
4371 1) sorting the ready list based on priority;
4372 2) calling the reorder hook;
4373 3) calling max_issue. */
4374 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4375 if (best == NULL && ready.n_ready > 0)
4376 {
4377 int privileged_n, index;
4378
4379 can_issue_more = invoke_reorder_hooks (fence);
4380 if (can_issue_more > 0)
4381 {
4382 /* Try choosing the best insn until we find one that is could be
4383 scheduled due to liveness restrictions on its destination register.
4384 In the future, we'd like to choose once and then just probe insns
4385 in the order of their priority. */
4386 invoke_dfa_lookahead_guard ();
4387 privileged_n = calculate_privileged_insns ();
4388 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4389 if (can_issue_more)
4390 best = find_expr_for_ready (index, true);
4391 }
4392 /* We had some available insns, so if we can't issue them,
4393 we have a stall. */
4394 if (can_issue_more == 0)
4395 {
4396 best = NULL;
4397 *pneed_stall = 1;
4398 }
4399 }
4400
4401 if (best != NULL)
4402 {
4403 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4404 can_issue_more);
4405 if (can_issue_more == 0)
4406 *pneed_stall = 1;
4407 }
4408
4409 if (sched_verbose >= 2)
4410 {
4411 if (best != NULL)
4412 {
4413 sel_print ("Best expression (vliw form): ");
4414 dump_expr (best);
4415 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4416 }
4417 else
4418 sel_print ("No best expr found!\n");
4419 }
4420
4421 return best;
4422 }
4423 \f
4424
4425 /* Functions that implement the core of the scheduler. */
4426
4427
4428 /* Emit an instruction from EXPR with SEQNO and VINSN after
4429 PLACE_TO_INSERT. */
4430 static insn_t
4431 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4432 insn_t place_to_insert)
4433 {
4434 /* This assert fails when we have identical instructions
4435 one of which dominates the other. In this case move_op ()
4436 finds the first instruction and doesn't search for second one.
4437 The solution would be to compute av_set after the first found
4438 insn and, if insn present in that set, continue searching.
4439 For now we workaround this issue in move_op. */
4440 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4441
4442 if (EXPR_WAS_RENAMED (expr))
4443 {
4444 unsigned regno = expr_dest_regno (expr);
4445
4446 if (HARD_REGISTER_NUM_P (regno))
4447 {
4448 df_set_regs_ever_live (regno, true);
4449 reg_rename_tick[regno] = ++reg_rename_this_tick;
4450 }
4451 }
4452
4453 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4454 place_to_insert);
4455 }
4456
4457 /* Return TRUE if BB can hold bookkeeping code. */
4458 static bool
4459 block_valid_for_bookkeeping_p (basic_block bb)
4460 {
4461 insn_t bb_end = BB_END (bb);
4462
4463 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4464 return false;
4465
4466 if (INSN_P (bb_end))
4467 {
4468 if (INSN_SCHED_TIMES (bb_end) > 0)
4469 return false;
4470 }
4471 else
4472 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4473
4474 return true;
4475 }
4476
4477 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4478 into E2->dest, except from E1->src (there may be a sequence of empty basic
4479 blocks between E1->src and E2->dest). Return found block, or NULL if new
4480 one must be created. If LAX holds, don't assume there is a simple path
4481 from E1->src to E2->dest. */
4482 static basic_block
4483 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4484 {
4485 basic_block candidate_block = NULL;
4486 edge e;
4487
4488 /* Loop over edges from E1 to E2, inclusive. */
4489 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4490 {
4491 if (EDGE_COUNT (e->dest->preds) == 2)
4492 {
4493 if (candidate_block == NULL)
4494 candidate_block = (EDGE_PRED (e->dest, 0) == e
4495 ? EDGE_PRED (e->dest, 1)->src
4496 : EDGE_PRED (e->dest, 0)->src);
4497 else
4498 /* Found additional edge leading to path from e1 to e2
4499 from aside. */
4500 return NULL;
4501 }
4502 else if (EDGE_COUNT (e->dest->preds) > 2)
4503 /* Several edges leading to path from e1 to e2 from aside. */
4504 return NULL;
4505
4506 if (e == e2)
4507 return ((!lax || candidate_block)
4508 && block_valid_for_bookkeeping_p (candidate_block)
4509 ? candidate_block
4510 : NULL);
4511
4512 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4513 return NULL;
4514 }
4515
4516 if (lax)
4517 return NULL;
4518
4519 gcc_unreachable ();
4520 }
4521
4522 /* Create new basic block for bookkeeping code for path(s) incoming into
4523 E2->dest, except from E1->src. Return created block. */
4524 static basic_block
4525 create_block_for_bookkeeping (edge e1, edge e2)
4526 {
4527 basic_block new_bb, bb = e2->dest;
4528
4529 /* Check that we don't spoil the loop structure. */
4530 if (current_loop_nest)
4531 {
4532 basic_block latch = current_loop_nest->latch;
4533
4534 /* We do not split header. */
4535 gcc_assert (e2->dest != current_loop_nest->header);
4536
4537 /* We do not redirect the only edge to the latch block. */
4538 gcc_assert (e1->dest != latch
4539 || !single_pred_p (latch)
4540 || e1 != single_pred_edge (latch));
4541 }
4542
4543 /* Split BB to insert BOOK_INSN there. */
4544 new_bb = sched_split_block (bb, NULL);
4545
4546 /* Move note_list from the upper bb. */
4547 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4548 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4549 BB_NOTE_LIST (bb) = NULL_RTX;
4550
4551 gcc_assert (e2->dest == bb);
4552
4553 /* Skip block for bookkeeping copy when leaving E1->src. */
4554 if (e1->flags & EDGE_FALLTHRU)
4555 sel_redirect_edge_and_branch_force (e1, new_bb);
4556 else
4557 sel_redirect_edge_and_branch (e1, new_bb);
4558
4559 gcc_assert (e1->dest == new_bb);
4560 gcc_assert (sel_bb_empty_p (bb));
4561
4562 /* To keep basic block numbers in sync between debug and non-debug
4563 compilations, we have to rotate blocks here. Consider that we
4564 started from (a,b)->d, (c,d)->e, and d contained only debug
4565 insns. It would have been removed before if the debug insns
4566 weren't there, so we'd have split e rather than d. So what we do
4567 now is to swap the block numbers of new_bb and
4568 single_succ(new_bb) == e, so that the insns that were in e before
4569 get the new block number. */
4570
4571 if (MAY_HAVE_DEBUG_INSNS)
4572 {
4573 basic_block succ;
4574 insn_t insn = sel_bb_head (new_bb);
4575 insn_t last;
4576
4577 if (DEBUG_INSN_P (insn)
4578 && single_succ_p (new_bb)
4579 && (succ = single_succ (new_bb))
4580 && succ != EXIT_BLOCK_PTR
4581 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4582 {
4583 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4584 insn = NEXT_INSN (insn);
4585
4586 if (insn == last)
4587 {
4588 sel_global_bb_info_def gbi;
4589 sel_region_bb_info_def rbi;
4590 int i;
4591
4592 if (sched_verbose >= 2)
4593 sel_print ("Swapping block ids %i and %i\n",
4594 new_bb->index, succ->index);
4595
4596 i = new_bb->index;
4597 new_bb->index = succ->index;
4598 succ->index = i;
4599
4600 SET_BASIC_BLOCK (new_bb->index, new_bb);
4601 SET_BASIC_BLOCK (succ->index, succ);
4602
4603 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4604 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4605 sizeof (gbi));
4606 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4607
4608 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4609 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4610 sizeof (rbi));
4611 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4612
4613 i = BLOCK_TO_BB (new_bb->index);
4614 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4615 BLOCK_TO_BB (succ->index) = i;
4616
4617 i = CONTAINING_RGN (new_bb->index);
4618 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4619 CONTAINING_RGN (succ->index) = i;
4620
4621 for (i = 0; i < current_nr_blocks; i++)
4622 if (BB_TO_BLOCK (i) == succ->index)
4623 BB_TO_BLOCK (i) = new_bb->index;
4624 else if (BB_TO_BLOCK (i) == new_bb->index)
4625 BB_TO_BLOCK (i) = succ->index;
4626
4627 FOR_BB_INSNS (new_bb, insn)
4628 if (INSN_P (insn))
4629 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4630
4631 FOR_BB_INSNS (succ, insn)
4632 if (INSN_P (insn))
4633 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4634
4635 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4636 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4637
4638 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4639 && LABEL_P (BB_HEAD (succ)));
4640
4641 if (sched_verbose >= 4)
4642 sel_print ("Swapping code labels %i and %i\n",
4643 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4644 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4645
4646 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4647 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4648 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4649 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4650 }
4651 }
4652 }
4653
4654 return bb;
4655 }
4656
4657 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4658 into E2->dest, except from E1->src. */
4659 static insn_t
4660 find_place_for_bookkeeping (edge e1, edge e2)
4661 {
4662 insn_t place_to_insert;
4663 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4664 create new basic block, but insert bookkeeping there. */
4665 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4666
4667 if (book_block)
4668 {
4669 place_to_insert = BB_END (book_block);
4670
4671 /* Don't use a block containing only debug insns for
4672 bookkeeping, this causes scheduling differences between debug
4673 and non-debug compilations, for the block would have been
4674 removed already. */
4675 if (DEBUG_INSN_P (place_to_insert))
4676 {
4677 rtx insn = sel_bb_head (book_block);
4678
4679 while (insn != place_to_insert &&
4680 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4681 insn = NEXT_INSN (insn);
4682
4683 if (insn == place_to_insert)
4684 book_block = NULL;
4685 }
4686 }
4687
4688 if (!book_block)
4689 {
4690 book_block = create_block_for_bookkeeping (e1, e2);
4691 place_to_insert = BB_END (book_block);
4692 if (sched_verbose >= 9)
4693 sel_print ("New block is %i, split from bookkeeping block %i\n",
4694 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4695 }
4696 else
4697 {
4698 if (sched_verbose >= 9)
4699 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4700 }
4701
4702 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4703 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4704 place_to_insert = PREV_INSN (place_to_insert);
4705
4706 return place_to_insert;
4707 }
4708
4709 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4710 for JOIN_POINT. */
4711 static int
4712 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4713 {
4714 int seqno;
4715 rtx next;
4716
4717 /* Check if we are about to insert bookkeeping copy before a jump, and use
4718 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4719 next = NEXT_INSN (place_to_insert);
4720 if (INSN_P (next)
4721 && JUMP_P (next)
4722 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4723 {
4724 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4725 seqno = INSN_SEQNO (next);
4726 }
4727 else if (INSN_SEQNO (join_point) > 0)
4728 seqno = INSN_SEQNO (join_point);
4729 else
4730 {
4731 seqno = get_seqno_by_preds (place_to_insert);
4732
4733 /* Sometimes the fences can move in such a way that there will be
4734 no instructions with positive seqno around this bookkeeping.
4735 This means that there will be no way to get to it by a regular
4736 fence movement. Never mind because we pick up such pieces for
4737 rescheduling anyways, so any positive value will do for now. */
4738 if (seqno < 0)
4739 {
4740 gcc_assert (pipelining_p);
4741 seqno = 1;
4742 }
4743 }
4744
4745 gcc_assert (seqno > 0);
4746 return seqno;
4747 }
4748
4749 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4750 NEW_SEQNO to it. Return created insn. */
4751 static insn_t
4752 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4753 {
4754 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4755
4756 vinsn_t new_vinsn
4757 = create_vinsn_from_insn_rtx (new_insn_rtx,
4758 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4759
4760 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4761 place_to_insert);
4762
4763 INSN_SCHED_TIMES (new_insn) = 0;
4764 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4765
4766 return new_insn;
4767 }
4768
4769 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4770 E2->dest, except from E1->src (there may be a sequence of empty blocks
4771 between E1->src and E2->dest). Return block containing the copy.
4772 All scheduler data is initialized for the newly created insn. */
4773 static basic_block
4774 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4775 {
4776 insn_t join_point, place_to_insert, new_insn;
4777 int new_seqno;
4778 bool need_to_exchange_data_sets;
4779
4780 if (sched_verbose >= 4)
4781 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4782 e2->dest->index);
4783
4784 join_point = sel_bb_head (e2->dest);
4785 place_to_insert = find_place_for_bookkeeping (e1, e2);
4786 if (!place_to_insert)
4787 return NULL;
4788 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4789 need_to_exchange_data_sets
4790 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4791
4792 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4793
4794 /* When inserting bookkeeping insn in new block, av sets should be
4795 following: old basic block (that now holds bookkeeping) data sets are
4796 the same as was before generation of bookkeeping, and new basic block
4797 (that now hold all other insns of old basic block) data sets are
4798 invalid. So exchange data sets for these basic blocks as sel_split_block
4799 mistakenly exchanges them in this case. Cannot do it earlier because
4800 when single instruction is added to new basic block it should hold NULL
4801 lv_set. */
4802 if (need_to_exchange_data_sets)
4803 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4804 BLOCK_FOR_INSN (join_point));
4805
4806 stat_bookkeeping_copies++;
4807 return BLOCK_FOR_INSN (new_insn);
4808 }
4809
4810 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4811 on FENCE, but we are unable to copy them. */
4812 static void
4813 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4814 {
4815 expr_t expr;
4816 av_set_iterator i;
4817
4818 /* An expression does not need bookkeeping if it is available on all paths
4819 from current block to original block and current block dominates
4820 original block. We check availability on all paths by examining
4821 EXPR_SPEC; this is not equivalent, because it may be positive even
4822 if expr is available on all paths (but if expr is not available on
4823 any path, EXPR_SPEC will be positive). */
4824
4825 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4826 {
4827 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4828 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4829 && (EXPR_SPEC (expr)
4830 || !EXPR_ORIG_BB_INDEX (expr)
4831 || !dominated_by_p (CDI_DOMINATORS,
4832 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4833 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4834 {
4835 if (sched_verbose >= 4)
4836 sel_print ("Expr %d removed because it would need bookkeeping, which "
4837 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4838 av_set_iter_remove (&i);
4839 }
4840 }
4841 }
4842
4843 /* Moving conditional jump through some instructions.
4844
4845 Consider example:
4846
4847 ... <- current scheduling point
4848 NOTE BASIC BLOCK: <- bb header
4849 (p8) add r14=r14+0x9;;
4850 (p8) mov [r14]=r23
4851 (!p8) jump L1;;
4852 NOTE BASIC BLOCK:
4853 ...
4854
4855 We can schedule jump one cycle earlier, than mov, because they cannot be
4856 executed together as their predicates are mutually exclusive.
4857
4858 This is done in this way: first, new fallthrough basic block is created
4859 after jump (it is always can be done, because there already should be a
4860 fallthrough block, where control flow goes in case of predicate being true -
4861 in our example; otherwise there should be a dependence between those
4862 instructions and jump and we cannot schedule jump right now);
4863 next, all instructions between jump and current scheduling point are moved
4864 to this new block. And the result is this:
4865
4866 NOTE BASIC BLOCK:
4867 (!p8) jump L1 <- current scheduling point
4868 NOTE BASIC BLOCK: <- bb header
4869 (p8) add r14=r14+0x9;;
4870 (p8) mov [r14]=r23
4871 NOTE BASIC BLOCK:
4872 ...
4873 */
4874 static void
4875 move_cond_jump (rtx insn, bnd_t bnd)
4876 {
4877 edge ft_edge;
4878 basic_block block_from, block_next, block_new, block_bnd, bb;
4879 rtx next, prev, link, head;
4880
4881 block_from = BLOCK_FOR_INSN (insn);
4882 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4883 prev = BND_TO (bnd);
4884
4885 #ifdef ENABLE_CHECKING
4886 /* Moving of jump should not cross any other jumps or beginnings of new
4887 basic blocks. The only exception is when we move a jump through
4888 mutually exclusive insns along fallthru edges. */
4889 if (block_from != block_bnd)
4890 {
4891 bb = block_from;
4892 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4893 link = PREV_INSN (link))
4894 {
4895 if (INSN_P (link))
4896 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4897 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4898 {
4899 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4900 bb = BLOCK_FOR_INSN (link);
4901 }
4902 }
4903 }
4904 #endif
4905
4906 /* Jump is moved to the boundary. */
4907 next = PREV_INSN (insn);
4908 BND_TO (bnd) = insn;
4909
4910 ft_edge = find_fallthru_edge (block_from);
4911 block_next = ft_edge->dest;
4912 /* There must be a fallthrough block (or where should go
4913 control flow in case of false jump predicate otherwise?). */
4914 gcc_assert (block_next);
4915
4916 /* Create new empty basic block after source block. */
4917 block_new = sel_split_edge (ft_edge);
4918 gcc_assert (block_new->next_bb == block_next
4919 && block_from->next_bb == block_new);
4920
4921 /* Move all instructions except INSN to BLOCK_NEW. */
4922 bb = block_bnd;
4923 head = BB_HEAD (block_new);
4924 while (bb != block_from->next_bb)
4925 {
4926 rtx from, to;
4927 from = bb == block_bnd ? prev : sel_bb_head (bb);
4928 to = bb == block_from ? next : sel_bb_end (bb);
4929
4930 /* The jump being moved can be the first insn in the block.
4931 In this case we don't have to move anything in this block. */
4932 if (NEXT_INSN (to) != from)
4933 {
4934 reorder_insns (from, to, head);
4935
4936 for (link = to; link != head; link = PREV_INSN (link))
4937 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4938 head = to;
4939 }
4940
4941 /* Cleanup possibly empty blocks left. */
4942 block_next = bb->next_bb;
4943 if (bb != block_from)
4944 maybe_tidy_empty_bb (bb);
4945 bb = block_next;
4946 }
4947
4948 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4949 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4950
4951 gcc_assert (!sel_bb_empty_p (block_from)
4952 && !sel_bb_empty_p (block_new));
4953
4954 /* Update data sets for BLOCK_NEW to represent that INSN and
4955 instructions from the other branch of INSN is no longer
4956 available at BLOCK_NEW. */
4957 BB_AV_LEVEL (block_new) = global_level;
4958 gcc_assert (BB_LV_SET (block_new) == NULL);
4959 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4960 update_data_sets (sel_bb_head (block_new));
4961
4962 /* INSN is a new basic block header - so prepare its data
4963 structures and update availability and liveness sets. */
4964 update_data_sets (insn);
4965
4966 if (sched_verbose >= 4)
4967 sel_print ("Moving jump %d\n", INSN_UID (insn));
4968 }
4969
4970 /* Remove nops generated during move_op for preventing removal of empty
4971 basic blocks. */
4972 static void
4973 remove_temp_moveop_nops (bool full_tidying)
4974 {
4975 int i;
4976 insn_t insn;
4977
4978 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4979 {
4980 gcc_assert (INSN_NOP_P (insn));
4981 return_nop_to_pool (insn, full_tidying);
4982 }
4983
4984 /* Empty the vector. */
4985 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4986 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4987 VEC_length (insn_t, vec_temp_moveop_nops));
4988 }
4989
4990 /* Records the maximal UID before moving up an instruction. Used for
4991 distinguishing between bookkeeping copies and original insns. */
4992 static int max_uid_before_move_op = 0;
4993
4994 /* Remove from AV_VLIW_P all instructions but next when debug counter
4995 tells us so. Next instruction is fetched from BNDS. */
4996 static void
4997 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
4998 {
4999 if (! dbg_cnt (sel_sched_insn_cnt))
5000 /* Leave only the next insn in av_vliw. */
5001 {
5002 av_set_iterator av_it;
5003 expr_t expr;
5004 bnd_t bnd = BLIST_BND (bnds);
5005 insn_t next = BND_TO (bnd);
5006
5007 gcc_assert (BLIST_NEXT (bnds) == NULL);
5008
5009 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5010 if (EXPR_INSN_RTX (expr) != next)
5011 av_set_iter_remove (&av_it);
5012 }
5013 }
5014
5015 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5016 the computed set to *AV_VLIW_P. */
5017 static void
5018 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5019 {
5020 if (sched_verbose >= 2)
5021 {
5022 sel_print ("Boundaries: ");
5023 dump_blist (bnds);
5024 sel_print ("\n");
5025 }
5026
5027 for (; bnds; bnds = BLIST_NEXT (bnds))
5028 {
5029 bnd_t bnd = BLIST_BND (bnds);
5030 av_set_t av1_copy;
5031 insn_t bnd_to = BND_TO (bnd);
5032
5033 /* Rewind BND->TO to the basic block header in case some bookkeeping
5034 instructions were inserted before BND->TO and it needs to be
5035 adjusted. */
5036 if (sel_bb_head_p (bnd_to))
5037 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5038 else
5039 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5040 {
5041 bnd_to = PREV_INSN (bnd_to);
5042 if (sel_bb_head_p (bnd_to))
5043 break;
5044 }
5045
5046 if (BND_TO (bnd) != bnd_to)
5047 {
5048 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5049 FENCE_INSN (fence) = bnd_to;
5050 BND_TO (bnd) = bnd_to;
5051 }
5052
5053 av_set_clear (&BND_AV (bnd));
5054 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5055
5056 av_set_clear (&BND_AV1 (bnd));
5057 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5058
5059 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5060
5061 av1_copy = av_set_copy (BND_AV1 (bnd));
5062 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5063 }
5064
5065 if (sched_verbose >= 2)
5066 {
5067 sel_print ("Available exprs (vliw form): ");
5068 dump_av_set (*av_vliw_p);
5069 sel_print ("\n");
5070 }
5071 }
5072
5073 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5074 expression. When FOR_MOVEOP is true, also replace the register of
5075 expressions found with the register from EXPR_VLIW. */
5076 static av_set_t
5077 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5078 {
5079 av_set_t expr_seq = NULL;
5080 expr_t expr;
5081 av_set_iterator i;
5082
5083 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5084 {
5085 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5086 {
5087 if (for_moveop)
5088 {
5089 /* The sequential expression has the right form to pass
5090 to move_op except when renaming happened. Put the
5091 correct register in EXPR then. */
5092 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5093 {
5094 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5095 {
5096 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5097 stat_renamed_scheduled++;
5098 }
5099 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5100 This is needed when renaming came up with original
5101 register. */
5102 else if (EXPR_TARGET_AVAILABLE (expr)
5103 != EXPR_TARGET_AVAILABLE (expr_vliw))
5104 {
5105 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5106 EXPR_TARGET_AVAILABLE (expr) = 1;
5107 }
5108 }
5109 if (EXPR_WAS_SUBSTITUTED (expr))
5110 stat_substitutions_total++;
5111 }
5112
5113 av_set_add (&expr_seq, expr);
5114
5115 /* With substitution inside insn group, it is possible
5116 that more than one expression in expr_seq will correspond
5117 to expr_vliw. In this case, choose one as the attempt to
5118 move both leads to miscompiles. */
5119 break;
5120 }
5121 }
5122
5123 if (for_moveop && sched_verbose >= 2)
5124 {
5125 sel_print ("Best expression(s) (sequential form): ");
5126 dump_av_set (expr_seq);
5127 sel_print ("\n");
5128 }
5129
5130 return expr_seq;
5131 }
5132
5133
5134 /* Move nop to previous block. */
5135 static void ATTRIBUTE_UNUSED
5136 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5137 {
5138 insn_t prev_insn, next_insn, note;
5139
5140 gcc_assert (sel_bb_head_p (nop)
5141 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5142 note = bb_note (BLOCK_FOR_INSN (nop));
5143 prev_insn = sel_bb_end (prev_bb);
5144 next_insn = NEXT_INSN (nop);
5145 gcc_assert (prev_insn != NULL_RTX
5146 && PREV_INSN (note) == prev_insn);
5147
5148 NEXT_INSN (prev_insn) = nop;
5149 PREV_INSN (nop) = prev_insn;
5150
5151 PREV_INSN (note) = nop;
5152 NEXT_INSN (note) = next_insn;
5153
5154 NEXT_INSN (nop) = note;
5155 PREV_INSN (next_insn) = note;
5156
5157 BB_END (prev_bb) = nop;
5158 BLOCK_FOR_INSN (nop) = prev_bb;
5159 }
5160
5161 /* Prepare a place to insert the chosen expression on BND. */
5162 static insn_t
5163 prepare_place_to_insert (bnd_t bnd)
5164 {
5165 insn_t place_to_insert;
5166
5167 /* Init place_to_insert before calling move_op, as the later
5168 can possibly remove BND_TO (bnd). */
5169 if (/* If this is not the first insn scheduled. */
5170 BND_PTR (bnd))
5171 {
5172 /* Add it after last scheduled. */
5173 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5174 if (DEBUG_INSN_P (place_to_insert))
5175 {
5176 ilist_t l = BND_PTR (bnd);
5177 while ((l = ILIST_NEXT (l)) &&
5178 DEBUG_INSN_P (ILIST_INSN (l)))
5179 ;
5180 if (!l)
5181 place_to_insert = NULL;
5182 }
5183 }
5184 else
5185 place_to_insert = NULL;
5186
5187 if (!place_to_insert)
5188 {
5189 /* Add it before BND_TO. The difference is in the
5190 basic block, where INSN will be added. */
5191 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5192 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5193 == BLOCK_FOR_INSN (BND_TO (bnd)));
5194 }
5195
5196 return place_to_insert;
5197 }
5198
5199 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5200 Return the expression to emit in C_EXPR. */
5201 static bool
5202 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5203 av_set_t expr_seq, expr_t c_expr)
5204 {
5205 bool b, should_move;
5206 unsigned book_uid;
5207 bitmap_iterator bi;
5208 int n_bookkeeping_copies_before_moveop;
5209
5210 /* Make a move. This call will remove the original operation,
5211 insert all necessary bookkeeping instructions and update the
5212 data sets. After that all we have to do is add the operation
5213 at before BND_TO (BND). */
5214 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5215 max_uid_before_move_op = get_max_uid ();
5216 bitmap_clear (current_copies);
5217 bitmap_clear (current_originators);
5218
5219 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5220 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5221
5222 /* We should be able to find the expression we've chosen for
5223 scheduling. */
5224 gcc_assert (b);
5225
5226 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5227 stat_insns_needed_bookkeeping++;
5228
5229 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5230 {
5231 unsigned uid;
5232 bitmap_iterator bi;
5233
5234 /* We allocate these bitmaps lazily. */
5235 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5236 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5237
5238 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5239 current_originators);
5240
5241 /* Transitively add all originators' originators. */
5242 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5243 if (INSN_ORIGINATORS_BY_UID (uid))
5244 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5245 INSN_ORIGINATORS_BY_UID (uid));
5246 }
5247
5248 return should_move;
5249 }
5250
5251
5252 /* Debug a DFA state as an array of bytes. */
5253 static void
5254 debug_state (state_t state)
5255 {
5256 unsigned char *p;
5257 unsigned int i, size = dfa_state_size;
5258
5259 sel_print ("state (%u):", size);
5260 for (i = 0, p = (unsigned char *) state; i < size; i++)
5261 sel_print (" %d", p[i]);
5262 sel_print ("\n");
5263 }
5264
5265 /* Advance state on FENCE with INSN. Return true if INSN is
5266 an ASM, and we should advance state once more. */
5267 static bool
5268 advance_state_on_fence (fence_t fence, insn_t insn)
5269 {
5270 bool asm_p;
5271
5272 if (recog_memoized (insn) >= 0)
5273 {
5274 int res;
5275 state_t temp_state = alloca (dfa_state_size);
5276
5277 gcc_assert (!INSN_ASM_P (insn));
5278 asm_p = false;
5279
5280 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5281 res = state_transition (FENCE_STATE (fence), insn);
5282 gcc_assert (res < 0);
5283
5284 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5285 {
5286 FENCE_ISSUED_INSNS (fence)++;
5287
5288 /* We should never issue more than issue_rate insns. */
5289 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5290 gcc_unreachable ();
5291 }
5292 }
5293 else
5294 {
5295 /* This could be an ASM insn which we'd like to schedule
5296 on the next cycle. */
5297 asm_p = INSN_ASM_P (insn);
5298 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5299 advance_one_cycle (fence);
5300 }
5301
5302 if (sched_verbose >= 2)
5303 debug_state (FENCE_STATE (fence));
5304 if (!DEBUG_INSN_P (insn))
5305 FENCE_STARTS_CYCLE_P (fence) = 0;
5306 FENCE_ISSUE_MORE (fence) = can_issue_more;
5307 return asm_p;
5308 }
5309
5310 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5311 is nonzero if we need to stall after issuing INSN. */
5312 static void
5313 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5314 {
5315 bool asm_p;
5316
5317 /* First, reflect that something is scheduled on this fence. */
5318 asm_p = advance_state_on_fence (fence, insn);
5319 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5320 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5321 if (SCHED_GROUP_P (insn))
5322 {
5323 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5324 SCHED_GROUP_P (insn) = 0;
5325 }
5326 else
5327 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5328 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5329 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5330
5331 /* Set instruction scheduling info. This will be used in bundling,
5332 pipelining, tick computations etc. */
5333 ++INSN_SCHED_TIMES (insn);
5334 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5335 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5336 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5337 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5338
5339 /* This does not account for adjust_cost hooks, just add the biggest
5340 constant the hook may add to the latency. TODO: make this
5341 a target dependent constant. */
5342 INSN_READY_CYCLE (insn)
5343 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5344 ? 1
5345 : maximal_insn_latency (insn) + 1);
5346
5347 /* Change these fields last, as they're used above. */
5348 FENCE_AFTER_STALL_P (fence) = 0;
5349 if (asm_p || need_stall)
5350 advance_one_cycle (fence);
5351
5352 /* Indicate that we've scheduled something on this fence. */
5353 FENCE_SCHEDULED_P (fence) = true;
5354 scheduled_something_on_previous_fence = true;
5355
5356 /* Print debug information when insn's fields are updated. */
5357 if (sched_verbose >= 2)
5358 {
5359 sel_print ("Scheduling insn: ");
5360 dump_insn_1 (insn, 1);
5361 sel_print ("\n");
5362 }
5363 }
5364
5365 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5366 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5367 return it. */
5368 static blist_t *
5369 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5370 blist_t *bnds_tailp)
5371 {
5372 succ_iterator si;
5373 insn_t succ;
5374
5375 advance_deps_context (BND_DC (bnd), insn);
5376 FOR_EACH_SUCC_1 (succ, si, insn,
5377 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5378 {
5379 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5380
5381 ilist_add (&ptr, insn);
5382
5383 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5384 && is_ineligible_successor (succ, ptr))
5385 {
5386 ilist_clear (&ptr);
5387 continue;
5388 }
5389
5390 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5391 {
5392 if (sched_verbose >= 9)
5393 sel_print ("Updating fence insn from %i to %i\n",
5394 INSN_UID (insn), INSN_UID (succ));
5395 FENCE_INSN (fence) = succ;
5396 }
5397 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5398 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5399 }
5400
5401 blist_remove (bndsp);
5402 return bnds_tailp;
5403 }
5404
5405 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5406 static insn_t
5407 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5408 {
5409 av_set_t expr_seq;
5410 expr_t c_expr = XALLOCA (expr_def);
5411 insn_t place_to_insert;
5412 insn_t insn;
5413 bool should_move;
5414
5415 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5416
5417 /* In case of scheduling a jump skipping some other instructions,
5418 prepare CFG. After this, jump is at the boundary and can be
5419 scheduled as usual insn by MOVE_OP. */
5420 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5421 {
5422 insn = EXPR_INSN_RTX (expr_vliw);
5423
5424 /* Speculative jumps are not handled. */
5425 if (insn != BND_TO (bnd)
5426 && !sel_insn_is_speculation_check (insn))
5427 move_cond_jump (insn, bnd);
5428 }
5429
5430 /* Find a place for C_EXPR to schedule. */
5431 place_to_insert = prepare_place_to_insert (bnd);
5432 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5433 clear_expr (c_expr);
5434
5435 /* Add the instruction. The corner case to care about is when
5436 the expr_seq set has more than one expr, and we chose the one that
5437 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5438 we can't use it. Generate the new vinsn. */
5439 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5440 {
5441 vinsn_t vinsn_new;
5442
5443 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5444 change_vinsn_in_expr (expr_vliw, vinsn_new);
5445 should_move = false;
5446 }
5447 if (should_move)
5448 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5449 else
5450 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5451 place_to_insert);
5452
5453 /* Return the nops generated for preserving of data sets back
5454 into pool. */
5455 if (INSN_NOP_P (place_to_insert))
5456 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5457 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5458
5459 av_set_clear (&expr_seq);
5460
5461 /* Save the expression scheduled so to reset target availability if we'll
5462 meet it later on the same fence. */
5463 if (EXPR_WAS_RENAMED (expr_vliw))
5464 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5465
5466 /* Check that the recent movement didn't destroyed loop
5467 structure. */
5468 gcc_assert (!pipelining_p
5469 || current_loop_nest == NULL
5470 || loop_latch_edge (current_loop_nest));
5471 return insn;
5472 }
5473
5474 /* Stall for N cycles on FENCE. */
5475 static void
5476 stall_for_cycles (fence_t fence, int n)
5477 {
5478 int could_more;
5479
5480 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5481 while (n--)
5482 advance_one_cycle (fence);
5483 if (could_more)
5484 FENCE_AFTER_STALL_P (fence) = 1;
5485 }
5486
5487 /* Gather a parallel group of insns at FENCE and assign their seqno
5488 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5489 list for later recalculation of seqnos. */
5490 static void
5491 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5492 {
5493 blist_t bnds = NULL, *bnds_tailp;
5494 av_set_t av_vliw = NULL;
5495 insn_t insn = FENCE_INSN (fence);
5496
5497 if (sched_verbose >= 2)
5498 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5499 INSN_UID (insn), FENCE_CYCLE (fence));
5500
5501 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5502 bnds_tailp = &BLIST_NEXT (bnds);
5503 set_target_context (FENCE_TC (fence));
5504 can_issue_more = FENCE_ISSUE_MORE (fence);
5505 target_bb = INSN_BB (insn);
5506
5507 /* Do while we can add any operation to the current group. */
5508 do
5509 {
5510 blist_t *bnds_tailp1, *bndsp;
5511 expr_t expr_vliw;
5512 int need_stall;
5513 int was_stall = 0, scheduled_insns = 0, stall_iterations = 0;
5514 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5515 int max_stall = pipelining_p ? 1 : 3;
5516 bool last_insn_was_debug = false;
5517 bool was_debug_bb_end_p = false;
5518
5519 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5520 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5521 remove_insns_for_debug (bnds, &av_vliw);
5522
5523 /* Return early if we have nothing to schedule. */
5524 if (av_vliw == NULL)
5525 break;
5526
5527 /* Choose the best expression and, if needed, destination register
5528 for it. */
5529 do
5530 {
5531 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5532 if (!expr_vliw && need_stall)
5533 {
5534 /* All expressions required a stall. Do not recompute av sets
5535 as we'll get the same answer (modulo the insns between
5536 the fence and its boundary, which will not be available for
5537 pipelining). */
5538 gcc_assert (! expr_vliw && stall_iterations < 2);
5539 was_stall++;
5540 /* If we are going to stall for too long, break to recompute av
5541 sets and bring more insns for pipelining. */
5542 if (need_stall <= 3)
5543 stall_for_cycles (fence, need_stall);
5544 else
5545 {
5546 stall_for_cycles (fence, 1);
5547 break;
5548 }
5549 }
5550 }
5551 while (! expr_vliw && need_stall);
5552
5553 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5554 if (!expr_vliw)
5555 {
5556 av_set_clear (&av_vliw);
5557 break;
5558 }
5559
5560 bndsp = &bnds;
5561 bnds_tailp1 = bnds_tailp;
5562
5563 do
5564 /* This code will be executed only once until we'd have several
5565 boundaries per fence. */
5566 {
5567 bnd_t bnd = BLIST_BND (*bndsp);
5568
5569 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5570 {
5571 bndsp = &BLIST_NEXT (*bndsp);
5572 continue;
5573 }
5574
5575 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5576 last_insn_was_debug = DEBUG_INSN_P (insn);
5577 if (last_insn_was_debug)
5578 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5579 update_fence_and_insn (fence, insn, need_stall);
5580 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5581
5582 /* Add insn to the list of scheduled on this cycle instructions. */
5583 ilist_add (*scheduled_insns_tailpp, insn);
5584 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5585 }
5586 while (*bndsp != *bnds_tailp1);
5587
5588 av_set_clear (&av_vliw);
5589 if (!last_insn_was_debug)
5590 scheduled_insns++;
5591
5592 /* We currently support information about candidate blocks only for
5593 one 'target_bb' block. Hence we can't schedule after jump insn,
5594 as this will bring two boundaries and, hence, necessity to handle
5595 information for two or more blocks concurrently. */
5596 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5597 || (was_stall
5598 && (was_stall >= max_stall
5599 || scheduled_insns >= max_insns)))
5600 break;
5601 }
5602 while (bnds);
5603
5604 gcc_assert (!FENCE_BNDS (fence));
5605
5606 /* Update boundaries of the FENCE. */
5607 while (bnds)
5608 {
5609 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5610
5611 if (ptr)
5612 {
5613 insn = ILIST_INSN (ptr);
5614
5615 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5616 ilist_add (&FENCE_BNDS (fence), insn);
5617 }
5618
5619 blist_remove (&bnds);
5620 }
5621
5622 /* Update target context on the fence. */
5623 reset_target_context (FENCE_TC (fence), false);
5624 }
5625
5626 /* All exprs in ORIG_OPS must have the same destination register or memory.
5627 Return that destination. */
5628 static rtx
5629 get_dest_from_orig_ops (av_set_t orig_ops)
5630 {
5631 rtx dest = NULL_RTX;
5632 av_set_iterator av_it;
5633 expr_t expr;
5634 bool first_p = true;
5635
5636 FOR_EACH_EXPR (expr, av_it, orig_ops)
5637 {
5638 rtx x = EXPR_LHS (expr);
5639
5640 if (first_p)
5641 {
5642 first_p = false;
5643 dest = x;
5644 }
5645 else
5646 gcc_assert (dest == x
5647 || (dest != NULL_RTX && x != NULL_RTX
5648 && rtx_equal_p (dest, x)));
5649 }
5650
5651 return dest;
5652 }
5653
5654 /* Update data sets for the bookkeeping block and record those expressions
5655 which become no longer available after inserting this bookkeeping. */
5656 static void
5657 update_and_record_unavailable_insns (basic_block book_block)
5658 {
5659 av_set_iterator i;
5660 av_set_t old_av_set = NULL;
5661 expr_t cur_expr;
5662 rtx bb_end = sel_bb_end (book_block);
5663
5664 /* First, get correct liveness in the bookkeeping block. The problem is
5665 the range between the bookeeping insn and the end of block. */
5666 update_liveness_on_insn (bb_end);
5667 if (control_flow_insn_p (bb_end))
5668 update_liveness_on_insn (PREV_INSN (bb_end));
5669
5670 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5671 fence above, where we may choose to schedule an insn which is
5672 actually blocked from moving up with the bookkeeping we create here. */
5673 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5674 {
5675 old_av_set = av_set_copy (BB_AV_SET (book_block));
5676 update_data_sets (sel_bb_head (book_block));
5677
5678 /* Traverse all the expressions in the old av_set and check whether
5679 CUR_EXPR is in new AV_SET. */
5680 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5681 {
5682 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5683 EXPR_VINSN (cur_expr));
5684
5685 if (! new_expr
5686 /* In this case, we can just turn off the E_T_A bit, but we can't
5687 represent this information with the current vector. */
5688 || EXPR_TARGET_AVAILABLE (new_expr)
5689 != EXPR_TARGET_AVAILABLE (cur_expr))
5690 /* Unfortunately, the below code could be also fired up on
5691 separable insns.
5692 FIXME: add an example of how this could happen. */
5693 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5694 }
5695
5696 av_set_clear (&old_av_set);
5697 }
5698 }
5699
5700 /* The main effect of this function is that sparams->c_expr is merged
5701 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5702 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5703 lparams->c_expr_merged is copied back to sparams->c_expr after all
5704 successors has been traversed. lparams->c_expr_local is an expr allocated
5705 on stack in the caller function, and is used if there is more than one
5706 successor.
5707
5708 SUCC is one of the SUCCS_NORMAL successors of INSN,
5709 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5710 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5711 static void
5712 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5713 insn_t succ ATTRIBUTE_UNUSED,
5714 int moveop_drv_call_res,
5715 cmpd_local_params_p lparams, void *static_params)
5716 {
5717 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5718
5719 /* Nothing to do, if original expr wasn't found below. */
5720 if (moveop_drv_call_res != 1)
5721 return;
5722
5723 /* If this is a first successor. */
5724 if (!lparams->c_expr_merged)
5725 {
5726 lparams->c_expr_merged = sparams->c_expr;
5727 sparams->c_expr = lparams->c_expr_local;
5728 }
5729 else
5730 {
5731 /* We must merge all found expressions to get reasonable
5732 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5733 do so then we can first find the expr with epsilon
5734 speculation success probability and only then with the
5735 good probability. As a result the insn will get epsilon
5736 probability and will never be scheduled because of
5737 weakness_cutoff in find_best_expr.
5738
5739 We call merge_expr_data here instead of merge_expr
5740 because due to speculation C_EXPR and X may have the
5741 same insns with different speculation types. And as of
5742 now such insns are considered non-equal.
5743
5744 However, EXPR_SCHED_TIMES is different -- we must get
5745 SCHED_TIMES from a real insn, not a bookkeeping copy.
5746 We force this here. Instead, we may consider merging
5747 SCHED_TIMES to the maximum instead of minimum in the
5748 below function. */
5749 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5750
5751 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5752 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5753 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5754
5755 clear_expr (sparams->c_expr);
5756 }
5757 }
5758
5759 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5760
5761 SUCC is one of the SUCCS_NORMAL successors of INSN,
5762 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5763 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5764 STATIC_PARAMS contain USED_REGS set. */
5765 static void
5766 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5767 int moveop_drv_call_res,
5768 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5769 void *static_params)
5770 {
5771 regset succ_live;
5772 fur_static_params_p sparams = (fur_static_params_p) static_params;
5773
5774 /* Here we compute live regsets only for branches that do not lie
5775 on the code motion paths. These branches correspond to value
5776 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5777 for such branches code_motion_path_driver is not called. */
5778 if (moveop_drv_call_res != 0)
5779 return;
5780
5781 /* Mark all registers that do not meet the following condition:
5782 (3) not live on the other path of any conditional branch
5783 that is passed by the operation, in case original
5784 operations are not present on both paths of the
5785 conditional branch. */
5786 succ_live = compute_live (succ);
5787 IOR_REG_SET (sparams->used_regs, succ_live);
5788 }
5789
5790 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5791 into SP->CEXPR. */
5792 static void
5793 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5794 {
5795 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5796
5797 sp->c_expr = lp->c_expr_merged;
5798 }
5799
5800 /* Track bookkeeping copies created, insns scheduled, and blocks for
5801 rescheduling when INSN is found by move_op. */
5802 static void
5803 track_scheduled_insns_and_blocks (rtx insn)
5804 {
5805 /* Even if this insn can be a copy that will be removed during current move_op,
5806 we still need to count it as an originator. */
5807 bitmap_set_bit (current_originators, INSN_UID (insn));
5808
5809 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5810 {
5811 /* Note that original block needs to be rescheduled, as we pulled an
5812 instruction out of it. */
5813 if (INSN_SCHED_TIMES (insn) > 0)
5814 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5815 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5816 num_insns_scheduled++;
5817 }
5818
5819 /* For instructions we must immediately remove insn from the
5820 stream, so subsequent update_data_sets () won't include this
5821 insn into av_set.
5822 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5823 if (INSN_UID (insn) > max_uid_before_move_op)
5824 stat_bookkeeping_copies--;
5825 }
5826
5827 /* Emit a register-register copy for INSN if needed. Return true if
5828 emitted one. PARAMS is the move_op static parameters. */
5829 static bool
5830 maybe_emit_renaming_copy (rtx insn,
5831 moveop_static_params_p params)
5832 {
5833 bool insn_emitted = false;
5834 rtx cur_reg;
5835
5836 /* Bail out early when expression can not be renamed at all. */
5837 if (!EXPR_SEPARABLE_P (params->c_expr))
5838 return false;
5839
5840 cur_reg = expr_dest_reg (params->c_expr);
5841 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5842
5843 /* If original operation has expr and the register chosen for
5844 that expr is not original operation's dest reg, substitute
5845 operation's right hand side with the register chosen. */
5846 if (REGNO (params->dest) != REGNO (cur_reg))
5847 {
5848 insn_t reg_move_insn, reg_move_insn_rtx;
5849
5850 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5851 params->dest);
5852 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5853 INSN_EXPR (insn),
5854 INSN_SEQNO (insn),
5855 insn);
5856 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5857 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5858
5859 insn_emitted = true;
5860 params->was_renamed = true;
5861 }
5862
5863 return insn_emitted;
5864 }
5865
5866 /* Emit a speculative check for INSN speculated as EXPR if needed.
5867 Return true if we've emitted one. PARAMS is the move_op static
5868 parameters. */
5869 static bool
5870 maybe_emit_speculative_check (rtx insn, expr_t expr,
5871 moveop_static_params_p params)
5872 {
5873 bool insn_emitted = false;
5874 insn_t x;
5875 ds_t check_ds;
5876
5877 check_ds = get_spec_check_type_for_insn (insn, expr);
5878 if (check_ds != 0)
5879 {
5880 /* A speculation check should be inserted. */
5881 x = create_speculation_check (params->c_expr, check_ds, insn);
5882 insn_emitted = true;
5883 }
5884 else
5885 {
5886 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5887 x = insn;
5888 }
5889
5890 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5891 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5892 return insn_emitted;
5893 }
5894
5895 /* Handle transformations that leave an insn in place of original
5896 insn such as renaming/speculation. Return true if one of such
5897 transformations actually happened, and we have emitted this insn. */
5898 static bool
5899 handle_emitting_transformations (rtx insn, expr_t expr,
5900 moveop_static_params_p params)
5901 {
5902 bool insn_emitted = false;
5903
5904 insn_emitted = maybe_emit_renaming_copy (insn, params);
5905 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5906
5907 return insn_emitted;
5908 }
5909
5910 /* If INSN is the only insn in the basic block (not counting JUMP,
5911 which may be a jump to next insn, and DEBUG_INSNs), we want to
5912 leave a NOP there till the return to fill_insns. */
5913
5914 static bool
5915 need_nop_to_preserve_insn_bb (rtx insn)
5916 {
5917 insn_t bb_head, bb_end, bb_next, in_next;
5918 basic_block bb = BLOCK_FOR_INSN (insn);
5919
5920 bb_head = sel_bb_head (bb);
5921 bb_end = sel_bb_end (bb);
5922
5923 if (bb_head == bb_end)
5924 return true;
5925
5926 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5927 bb_head = NEXT_INSN (bb_head);
5928
5929 if (bb_head == bb_end)
5930 return true;
5931
5932 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5933 bb_end = PREV_INSN (bb_end);
5934
5935 if (bb_head == bb_end)
5936 return true;
5937
5938 bb_next = NEXT_INSN (bb_head);
5939 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5940 bb_next = NEXT_INSN (bb_next);
5941
5942 if (bb_next == bb_end && JUMP_P (bb_end))
5943 return true;
5944
5945 in_next = NEXT_INSN (insn);
5946 while (DEBUG_INSN_P (in_next))
5947 in_next = NEXT_INSN (in_next);
5948
5949 if (IN_CURRENT_FENCE_P (in_next))
5950 return true;
5951
5952 return false;
5953 }
5954
5955 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5956 is not removed but reused when INSN is re-emitted. */
5957 static void
5958 remove_insn_from_stream (rtx insn, bool only_disconnect)
5959 {
5960 /* If there's only one insn in the BB, make sure that a nop is
5961 inserted into it, so the basic block won't disappear when we'll
5962 delete INSN below with sel_remove_insn. It should also survive
5963 till the return to fill_insns. */
5964 if (need_nop_to_preserve_insn_bb (insn))
5965 {
5966 insn_t nop = get_nop_from_pool (insn);
5967 gcc_assert (INSN_NOP_P (nop));
5968 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5969 }
5970
5971 sel_remove_insn (insn, only_disconnect, false);
5972 }
5973
5974 /* This function is called when original expr is found.
5975 INSN - current insn traversed, EXPR - the corresponding expr found.
5976 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5977 is static parameters of move_op. */
5978 static void
5979 move_op_orig_expr_found (insn_t insn, expr_t expr,
5980 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5981 void *static_params)
5982 {
5983 bool only_disconnect, insn_emitted;
5984 moveop_static_params_p params = (moveop_static_params_p) static_params;
5985
5986 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5987 track_scheduled_insns_and_blocks (insn);
5988 insn_emitted = handle_emitting_transformations (insn, expr, params);
5989 only_disconnect = (params->uid == INSN_UID (insn)
5990 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5991
5992 /* Mark that we've disconnected an insn. */
5993 if (only_disconnect)
5994 params->uid = -1;
5995 remove_insn_from_stream (insn, only_disconnect);
5996 }
5997
5998 /* The function is called when original expr is found.
5999 INSN - current insn traversed, EXPR - the corresponding expr found,
6000 crosses_call and original_insns in STATIC_PARAMS are updated. */
6001 static void
6002 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6003 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6004 void *static_params)
6005 {
6006 fur_static_params_p params = (fur_static_params_p) static_params;
6007 regset tmp;
6008
6009 if (CALL_P (insn))
6010 params->crosses_call = true;
6011
6012 def_list_add (params->original_insns, insn, params->crosses_call);
6013
6014 /* Mark the registers that do not meet the following condition:
6015 (2) not among the live registers of the point
6016 immediately following the first original operation on
6017 a given downward path, except for the original target
6018 register of the operation. */
6019 tmp = get_clear_regset_from_pool ();
6020 compute_live_below_insn (insn, tmp);
6021 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6022 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6023 IOR_REG_SET (params->used_regs, tmp);
6024 return_regset_to_pool (tmp);
6025
6026 /* (*1) We need to add to USED_REGS registers that are read by
6027 INSN's lhs. This may lead to choosing wrong src register.
6028 E.g. (scheduling const expr enabled):
6029
6030 429: ax=0x0 <- Can't use AX for this expr (0x0)
6031 433: dx=[bp-0x18]
6032 427: [ax+dx+0x1]=ax
6033 REG_DEAD: ax
6034 168: di=dx
6035 REG_DEAD: dx
6036 */
6037 /* FIXME: see comment above and enable MEM_P
6038 in vinsn_separable_p. */
6039 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6040 || !MEM_P (INSN_LHS (insn)));
6041 }
6042
6043 /* This function is called on the ascending pass, before returning from
6044 current basic block. */
6045 static void
6046 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6047 void *static_params)
6048 {
6049 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6050 basic_block book_block = NULL;
6051
6052 /* When we have removed the boundary insn for scheduling, which also
6053 happened to be the end insn in its bb, we don't need to update sets. */
6054 if (!lparams->removed_last_insn
6055 && lparams->e1
6056 && sel_bb_head_p (insn))
6057 {
6058 /* We should generate bookkeeping code only if we are not at the
6059 top level of the move_op. */
6060 if (sel_num_cfg_preds_gt_1 (insn))
6061 book_block = generate_bookkeeping_insn (sparams->c_expr,
6062 lparams->e1, lparams->e2);
6063 /* Update data sets for the current insn. */
6064 update_data_sets (insn);
6065 }
6066
6067 /* If bookkeeping code was inserted, we need to update av sets of basic
6068 block that received bookkeeping. After generation of bookkeeping insn,
6069 bookkeeping block does not contain valid av set because we are not following
6070 the original algorithm in every detail with regards to e.g. renaming
6071 simple reg-reg copies. Consider example:
6072
6073 bookkeeping block scheduling fence
6074 \ /
6075 \ join /
6076 ----------
6077 | |
6078 ----------
6079 / \
6080 / \
6081 r1 := r2 r1 := r3
6082
6083 We try to schedule insn "r1 := r3" on the current
6084 scheduling fence. Also, note that av set of bookkeeping block
6085 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6086 been scheduled, the CFG is as follows:
6087
6088 r1 := r3 r1 := r3
6089 bookkeeping block scheduling fence
6090 \ /
6091 \ join /
6092 ----------
6093 | |
6094 ----------
6095 / \
6096 / \
6097 r1 := r2
6098
6099 Here, insn "r1 := r3" was scheduled at the current scheduling point
6100 and bookkeeping code was generated at the bookeeping block. This
6101 way insn "r1 := r2" is no longer available as a whole instruction
6102 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6103 This situation is handled by calling update_data_sets.
6104
6105 Since update_data_sets is called only on the bookkeeping block, and
6106 it also may have predecessors with av_sets, containing instructions that
6107 are no longer available, we save all such expressions that become
6108 unavailable during data sets update on the bookkeeping block in
6109 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6110 expressions for scheduling. This allows us to avoid recomputation of
6111 av_sets outside the code motion path. */
6112
6113 if (book_block)
6114 update_and_record_unavailable_insns (book_block);
6115
6116 /* If INSN was previously marked for deletion, it's time to do it. */
6117 if (lparams->removed_last_insn)
6118 insn = PREV_INSN (insn);
6119
6120 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6121 kill a block with a single nop in which the insn should be emitted. */
6122 if (lparams->e1)
6123 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6124 }
6125
6126 /* This function is called on the ascending pass, before returning from the
6127 current basic block. */
6128 static void
6129 fur_at_first_insn (insn_t insn,
6130 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6131 void *static_params ATTRIBUTE_UNUSED)
6132 {
6133 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6134 || AV_LEVEL (insn) == -1);
6135 }
6136
6137 /* Called on the backward stage of recursion to call moveup_expr for insn
6138 and sparams->c_expr. */
6139 static void
6140 move_op_ascend (insn_t insn, void *static_params)
6141 {
6142 enum MOVEUP_EXPR_CODE res;
6143 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6144
6145 if (! INSN_NOP_P (insn))
6146 {
6147 res = moveup_expr_cached (sparams->c_expr, insn, false);
6148 gcc_assert (res != MOVEUP_EXPR_NULL);
6149 }
6150
6151 /* Update liveness for this insn as it was invalidated. */
6152 update_liveness_on_insn (insn);
6153 }
6154
6155 /* This function is called on enter to the basic block.
6156 Returns TRUE if this block already have been visited and
6157 code_motion_path_driver should return 1, FALSE otherwise. */
6158 static int
6159 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6160 void *static_params, bool visited_p)
6161 {
6162 fur_static_params_p sparams = (fur_static_params_p) static_params;
6163
6164 if (visited_p)
6165 {
6166 /* If we have found something below this block, there should be at
6167 least one insn in ORIGINAL_INSNS. */
6168 gcc_assert (*sparams->original_insns);
6169
6170 /* Adjust CROSSES_CALL, since we may have come to this block along
6171 different path. */
6172 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6173 |= sparams->crosses_call;
6174 }
6175 else
6176 local_params->old_original_insns = *sparams->original_insns;
6177
6178 return 1;
6179 }
6180
6181 /* Same as above but for move_op. */
6182 static int
6183 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6184 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6185 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6186 {
6187 if (visited_p)
6188 return -1;
6189 return 1;
6190 }
6191
6192 /* This function is called while descending current basic block if current
6193 insn is not the original EXPR we're searching for.
6194
6195 Return value: FALSE, if code_motion_path_driver should perform a local
6196 cleanup and return 0 itself;
6197 TRUE, if code_motion_path_driver should continue. */
6198 static bool
6199 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6200 void *static_params)
6201 {
6202 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6203
6204 #ifdef ENABLE_CHECKING
6205 sparams->failed_insn = insn;
6206 #endif
6207
6208 /* If we're scheduling separate expr, in order to generate correct code
6209 we need to stop the search at bookkeeping code generated with the
6210 same destination register or memory. */
6211 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6212 return false;
6213 return true;
6214 }
6215
6216 /* This function is called while descending current basic block if current
6217 insn is not the original EXPR we're searching for.
6218
6219 Return value: TRUE (code_motion_path_driver should continue). */
6220 static bool
6221 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6222 {
6223 bool mutexed;
6224 expr_t r;
6225 av_set_iterator avi;
6226 fur_static_params_p sparams = (fur_static_params_p) static_params;
6227
6228 if (CALL_P (insn))
6229 sparams->crosses_call = true;
6230 else if (DEBUG_INSN_P (insn))
6231 return true;
6232
6233 /* If current insn we are looking at cannot be executed together
6234 with original insn, then we can skip it safely.
6235
6236 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6237 INSN = (!p6) r14 = r14 + 1;
6238
6239 Here we can schedule ORIG_OP with lhs = r14, though only
6240 looking at the set of used and set registers of INSN we must
6241 forbid it. So, add set/used in INSN registers to the
6242 untouchable set only if there is an insn in ORIG_OPS that can
6243 affect INSN. */
6244 mutexed = true;
6245 FOR_EACH_EXPR (r, avi, orig_ops)
6246 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6247 {
6248 mutexed = false;
6249 break;
6250 }
6251
6252 /* Mark all registers that do not meet the following condition:
6253 (1) Not set or read on any path from xi to an instance of the
6254 original operation. */
6255 if (!mutexed)
6256 {
6257 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6258 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6259 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6260 }
6261
6262 return true;
6263 }
6264
6265 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6266 struct code_motion_path_driver_info_def move_op_hooks = {
6267 move_op_on_enter,
6268 move_op_orig_expr_found,
6269 move_op_orig_expr_not_found,
6270 move_op_merge_succs,
6271 move_op_after_merge_succs,
6272 move_op_ascend,
6273 move_op_at_first_insn,
6274 SUCCS_NORMAL,
6275 "move_op"
6276 };
6277
6278 /* Hooks and data to perform find_used_regs operations
6279 with code_motion_path_driver. */
6280 struct code_motion_path_driver_info_def fur_hooks = {
6281 fur_on_enter,
6282 fur_orig_expr_found,
6283 fur_orig_expr_not_found,
6284 fur_merge_succs,
6285 NULL, /* fur_after_merge_succs */
6286 NULL, /* fur_ascend */
6287 fur_at_first_insn,
6288 SUCCS_ALL,
6289 "find_used_regs"
6290 };
6291
6292 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6293 code_motion_path_driver is called recursively. Original operation
6294 was found at least on one path that is starting with one of INSN's
6295 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6296 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6297 of either move_op or find_used_regs depending on the caller.
6298
6299 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6300 know for sure at this point. */
6301 static int
6302 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6303 ilist_t path, void *static_params)
6304 {
6305 int res = 0;
6306 succ_iterator succ_i;
6307 rtx succ;
6308 basic_block bb;
6309 int old_index;
6310 unsigned old_succs;
6311
6312 struct cmpd_local_params lparams;
6313 expr_def _x;
6314
6315 lparams.c_expr_local = &_x;
6316 lparams.c_expr_merged = NULL;
6317
6318 /* We need to process only NORMAL succs for move_op, and collect live
6319 registers from ALL branches (including those leading out of the
6320 region) for find_used_regs.
6321
6322 In move_op, there can be a case when insn's bb number has changed
6323 due to created bookkeeping. This happens very rare, as we need to
6324 move expression from the beginning to the end of the same block.
6325 Rescan successors in this case. */
6326
6327 rescan:
6328 bb = BLOCK_FOR_INSN (insn);
6329 old_index = bb->index;
6330 old_succs = EDGE_COUNT (bb->succs);
6331
6332 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6333 {
6334 int b;
6335
6336 lparams.e1 = succ_i.e1;
6337 lparams.e2 = succ_i.e2;
6338
6339 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6340 current region). */
6341 if (succ_i.current_flags == SUCCS_NORMAL)
6342 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6343 static_params);
6344 else
6345 b = 0;
6346
6347 /* Merge c_expres found or unify live register sets from different
6348 successors. */
6349 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6350 static_params);
6351 if (b == 1)
6352 res = b;
6353 else if (b == -1 && res != 1)
6354 res = b;
6355
6356 /* We have simplified the control flow below this point. In this case,
6357 the iterator becomes invalid. We need to try again. */
6358 if (BLOCK_FOR_INSN (insn)->index != old_index
6359 || EDGE_COUNT (bb->succs) != old_succs)
6360 goto rescan;
6361 }
6362
6363 #ifdef ENABLE_CHECKING
6364 /* Here, RES==1 if original expr was found at least for one of the
6365 successors. After the loop, RES may happen to have zero value
6366 only if at some point the expr searched is present in av_set, but is
6367 not found below. In most cases, this situation is an error.
6368 The exception is when the original operation is blocked by
6369 bookkeeping generated for another fence or for another path in current
6370 move_op. */
6371 gcc_assert (res == 1
6372 || (res == 0
6373 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6374 static_params))
6375 || res == -1);
6376 #endif
6377
6378 /* Merge data, clean up, etc. */
6379 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6380 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6381
6382 return res;
6383 }
6384
6385
6386 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6387 is the pointer to the av set with expressions we were looking for,
6388 PATH_P is the pointer to the traversed path. */
6389 static inline void
6390 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6391 {
6392 ilist_remove (path_p);
6393 av_set_clear (orig_ops_p);
6394 }
6395
6396 /* The driver function that implements move_op or find_used_regs
6397 functionality dependent whether code_motion_path_driver_INFO is set to
6398 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6399 of code (CFG traversal etc) that are shared among both functions. INSN
6400 is the insn we're starting the search from, ORIG_OPS are the expressions
6401 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6402 parameters of the driver, and STATIC_PARAMS are static parameters of
6403 the caller.
6404
6405 Returns whether original instructions were found. Note that top-level
6406 code_motion_path_driver always returns true. */
6407 static int
6408 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6409 cmpd_local_params_p local_params_in,
6410 void *static_params)
6411 {
6412 expr_t expr = NULL;
6413 basic_block bb = BLOCK_FOR_INSN (insn);
6414 insn_t first_insn, bb_tail, before_first;
6415 bool removed_last_insn = false;
6416
6417 if (sched_verbose >= 6)
6418 {
6419 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6420 dump_insn (insn);
6421 sel_print (",");
6422 dump_av_set (orig_ops);
6423 sel_print (")\n");
6424 }
6425
6426 gcc_assert (orig_ops);
6427
6428 /* If no original operations exist below this insn, return immediately. */
6429 if (is_ineligible_successor (insn, path))
6430 {
6431 if (sched_verbose >= 6)
6432 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6433 return false;
6434 }
6435
6436 /* The block can have invalid av set, in which case it was created earlier
6437 during move_op. Return immediately. */
6438 if (sel_bb_head_p (insn))
6439 {
6440 if (! AV_SET_VALID_P (insn))
6441 {
6442 if (sched_verbose >= 6)
6443 sel_print ("Returned from block %d as it had invalid av set\n",
6444 bb->index);
6445 return false;
6446 }
6447
6448 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6449 {
6450 /* We have already found an original operation on this branch, do not
6451 go any further and just return TRUE here. If we don't stop here,
6452 function can have exponential behaviour even on the small code
6453 with many different paths (e.g. with data speculation and
6454 recovery blocks). */
6455 if (sched_verbose >= 6)
6456 sel_print ("Block %d already visited in this traversal\n", bb->index);
6457 if (code_motion_path_driver_info->on_enter)
6458 return code_motion_path_driver_info->on_enter (insn,
6459 local_params_in,
6460 static_params,
6461 true);
6462 }
6463 }
6464
6465 if (code_motion_path_driver_info->on_enter)
6466 code_motion_path_driver_info->on_enter (insn, local_params_in,
6467 static_params, false);
6468 orig_ops = av_set_copy (orig_ops);
6469
6470 /* Filter the orig_ops set. */
6471 if (AV_SET_VALID_P (insn))
6472 av_set_intersect (&orig_ops, AV_SET (insn));
6473
6474 /* If no more original ops, return immediately. */
6475 if (!orig_ops)
6476 {
6477 if (sched_verbose >= 6)
6478 sel_print ("No intersection with av set of block %d\n", bb->index);
6479 return false;
6480 }
6481
6482 /* For non-speculative insns we have to leave only one form of the
6483 original operation, because if we don't, we may end up with
6484 different C_EXPRes and, consequently, with bookkeepings for different
6485 expression forms along the same code motion path. That may lead to
6486 generation of incorrect code. So for each code motion we stick to
6487 the single form of the instruction, except for speculative insns
6488 which we need to keep in different forms with all speculation
6489 types. */
6490 av_set_leave_one_nonspec (&orig_ops);
6491
6492 /* It is not possible that all ORIG_OPS are filtered out. */
6493 gcc_assert (orig_ops);
6494
6495 /* It is enough to place only heads and tails of visited basic blocks into
6496 the PATH. */
6497 ilist_add (&path, insn);
6498 first_insn = insn;
6499 bb_tail = sel_bb_end (bb);
6500
6501 /* Descend the basic block in search of the original expr; this part
6502 corresponds to the part of the original move_op procedure executed
6503 before the recursive call. */
6504 for (;;)
6505 {
6506 /* Look at the insn and decide if it could be an ancestor of currently
6507 scheduling operation. If it is so, then the insn "dest = op" could
6508 either be replaced with "dest = reg", because REG now holds the result
6509 of OP, or just removed, if we've scheduled the insn as a whole.
6510
6511 If this insn doesn't contain currently scheduling OP, then proceed
6512 with searching and look at its successors. Operations we're searching
6513 for could have changed when moving up through this insn via
6514 substituting. In this case, perform unsubstitution on them first.
6515
6516 When traversing the DAG below this insn is finished, insert
6517 bookkeeping code, if the insn is a joint point, and remove
6518 leftovers. */
6519
6520 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6521 if (expr)
6522 {
6523 insn_t last_insn = PREV_INSN (insn);
6524
6525 /* We have found the original operation. */
6526 if (sched_verbose >= 6)
6527 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6528
6529 code_motion_path_driver_info->orig_expr_found
6530 (insn, expr, local_params_in, static_params);
6531
6532 /* Step back, so on the way back we'll start traversing from the
6533 previous insn (or we'll see that it's bb_note and skip that
6534 loop). */
6535 if (insn == first_insn)
6536 {
6537 first_insn = NEXT_INSN (last_insn);
6538 removed_last_insn = sel_bb_end_p (last_insn);
6539 }
6540 insn = last_insn;
6541 break;
6542 }
6543 else
6544 {
6545 /* We haven't found the original expr, continue descending the basic
6546 block. */
6547 if (code_motion_path_driver_info->orig_expr_not_found
6548 (insn, orig_ops, static_params))
6549 {
6550 /* Av set ops could have been changed when moving through this
6551 insn. To find them below it, we have to un-substitute them. */
6552 undo_transformations (&orig_ops, insn);
6553 }
6554 else
6555 {
6556 /* Clean up and return, if the hook tells us to do so. It may
6557 happen if we've encountered the previously created
6558 bookkeeping. */
6559 code_motion_path_driver_cleanup (&orig_ops, &path);
6560 return -1;
6561 }
6562
6563 gcc_assert (orig_ops);
6564 }
6565
6566 /* Stop at insn if we got to the end of BB. */
6567 if (insn == bb_tail)
6568 break;
6569
6570 insn = NEXT_INSN (insn);
6571 }
6572
6573 /* Here INSN either points to the insn before the original insn (may be
6574 bb_note, if original insn was a bb_head) or to the bb_end. */
6575 if (!expr)
6576 {
6577 int res;
6578
6579 gcc_assert (insn == sel_bb_end (bb));
6580
6581 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6582 it's already in PATH then). */
6583 if (insn != first_insn)
6584 ilist_add (&path, insn);
6585
6586 /* Process_successors should be able to find at least one
6587 successor for which code_motion_path_driver returns TRUE. */
6588 res = code_motion_process_successors (insn, orig_ops,
6589 path, static_params);
6590
6591 /* Remove bb tail from path. */
6592 if (insn != first_insn)
6593 ilist_remove (&path);
6594
6595 if (res != 1)
6596 {
6597 /* This is the case when one of the original expr is no longer available
6598 due to bookkeeping created on this branch with the same register.
6599 In the original algorithm, which doesn't have update_data_sets call
6600 on a bookkeeping block, it would simply result in returning
6601 FALSE when we've encountered a previously generated bookkeeping
6602 insn in moveop_orig_expr_not_found. */
6603 code_motion_path_driver_cleanup (&orig_ops, &path);
6604 return res;
6605 }
6606 }
6607
6608 /* Don't need it any more. */
6609 av_set_clear (&orig_ops);
6610
6611 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6612 the beginning of the basic block. */
6613 before_first = PREV_INSN (first_insn);
6614 while (insn != before_first)
6615 {
6616 if (code_motion_path_driver_info->ascend)
6617 code_motion_path_driver_info->ascend (insn, static_params);
6618
6619 insn = PREV_INSN (insn);
6620 }
6621
6622 /* Now we're at the bb head. */
6623 insn = first_insn;
6624 ilist_remove (&path);
6625 local_params_in->removed_last_insn = removed_last_insn;
6626 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6627
6628 /* This should be the very last operation as at bb head we could change
6629 the numbering by creating bookkeeping blocks. */
6630 if (removed_last_insn)
6631 insn = PREV_INSN (insn);
6632 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6633 return true;
6634 }
6635
6636 /* Move up the operations from ORIG_OPS set traversing the dag starting
6637 from INSN. PATH represents the edges traversed so far.
6638 DEST is the register chosen for scheduling the current expr. Insert
6639 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6640 C_EXPR is how it looks like at the given cfg point.
6641 Set *SHOULD_MOVE to indicate whether we have only disconnected
6642 one of the insns found.
6643
6644 Returns whether original instructions were found, which is asserted
6645 to be true in the caller. */
6646 static bool
6647 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6648 rtx dest, expr_t c_expr, bool *should_move)
6649 {
6650 struct moveop_static_params sparams;
6651 struct cmpd_local_params lparams;
6652 bool res;
6653
6654 /* Init params for code_motion_path_driver. */
6655 sparams.dest = dest;
6656 sparams.c_expr = c_expr;
6657 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6658 #ifdef ENABLE_CHECKING
6659 sparams.failed_insn = NULL;
6660 #endif
6661 sparams.was_renamed = false;
6662 lparams.e1 = NULL;
6663
6664 /* We haven't visited any blocks yet. */
6665 bitmap_clear (code_motion_visited_blocks);
6666
6667 /* Set appropriate hooks and data. */
6668 code_motion_path_driver_info = &move_op_hooks;
6669 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6670
6671 if (sparams.was_renamed)
6672 EXPR_WAS_RENAMED (expr_vliw) = true;
6673
6674 *should_move = (sparams.uid == -1);
6675
6676 return res;
6677 }
6678 \f
6679
6680 /* Functions that work with regions. */
6681
6682 /* Current number of seqno used in init_seqno and init_seqno_1. */
6683 static int cur_seqno;
6684
6685 /* A helper for init_seqno. Traverse the region starting from BB and
6686 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6687 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6688 static void
6689 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6690 {
6691 int bbi = BLOCK_TO_BB (bb->index);
6692 insn_t insn, note = bb_note (bb);
6693 insn_t succ_insn;
6694 succ_iterator si;
6695
6696 SET_BIT (visited_bbs, bbi);
6697 if (blocks_to_reschedule)
6698 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6699
6700 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6701 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6702 {
6703 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6704 int succ_bbi = BLOCK_TO_BB (succ->index);
6705
6706 gcc_assert (in_current_region_p (succ));
6707
6708 if (!TEST_BIT (visited_bbs, succ_bbi))
6709 {
6710 gcc_assert (succ_bbi > bbi);
6711
6712 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6713 }
6714 }
6715
6716 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6717 INSN_SEQNO (insn) = cur_seqno--;
6718 }
6719
6720 /* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
6721 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
6722 which we're rescheduling when pipelining, FROM is the block where
6723 traversing region begins (it may not be the head of the region when
6724 pipelining, but the head of the loop instead).
6725
6726 Returns the maximal seqno found. */
6727 static int
6728 init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6729 {
6730 sbitmap visited_bbs;
6731 bitmap_iterator bi;
6732 unsigned bbi;
6733
6734 visited_bbs = sbitmap_alloc (current_nr_blocks);
6735
6736 if (blocks_to_reschedule)
6737 {
6738 sbitmap_ones (visited_bbs);
6739 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6740 {
6741 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6742 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6743 }
6744 }
6745 else
6746 {
6747 sbitmap_zero (visited_bbs);
6748 from = EBB_FIRST_BB (0);
6749 }
6750
6751 cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
6752 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6753 gcc_assert (cur_seqno == 0 || number_of_insns == 0);
6754
6755 sbitmap_free (visited_bbs);
6756 return sched_max_luid - 1;
6757 }
6758
6759 /* Initialize scheduling parameters for current region. */
6760 static void
6761 sel_setup_region_sched_flags (void)
6762 {
6763 enable_schedule_as_rhs_p = 1;
6764 bookkeeping_p = 1;
6765 pipelining_p = (bookkeeping_p
6766 && (flag_sel_sched_pipelining != 0)
6767 && current_loop_nest != NULL);
6768 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6769 max_ws = MAX_WS;
6770 }
6771
6772 /* Return true if all basic blocks of current region are empty. */
6773 static bool
6774 current_region_empty_p (void)
6775 {
6776 int i;
6777 for (i = 0; i < current_nr_blocks; i++)
6778 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6779 return false;
6780
6781 return true;
6782 }
6783
6784 /* Prepare and verify loop nest for pipelining. */
6785 static void
6786 setup_current_loop_nest (int rgn)
6787 {
6788 current_loop_nest = get_loop_nest_for_rgn (rgn);
6789
6790 if (!current_loop_nest)
6791 return;
6792
6793 /* If this loop has any saved loop preheaders from nested loops,
6794 add these basic blocks to the current region. */
6795 sel_add_loop_preheaders ();
6796
6797 /* Check that we're starting with a valid information. */
6798 gcc_assert (loop_latch_edge (current_loop_nest));
6799 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6800 }
6801
6802 /* Compute instruction priorities for current region. */
6803 static void
6804 sel_compute_priorities (int rgn)
6805 {
6806 sched_rgn_compute_dependencies (rgn);
6807
6808 /* Compute insn priorities in haifa style. Then free haifa style
6809 dependencies that we've calculated for this. */
6810 compute_priorities ();
6811
6812 if (sched_verbose >= 5)
6813 debug_rgn_dependencies (0);
6814
6815 free_rgn_deps ();
6816 }
6817
6818 /* Init scheduling data for RGN. Returns true when this region should not
6819 be scheduled. */
6820 static bool
6821 sel_region_init (int rgn)
6822 {
6823 int i;
6824 bb_vec_t bbs;
6825
6826 rgn_setup_region (rgn);
6827
6828 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6829 do region initialization here so the region can be bundled correctly,
6830 but we'll skip the scheduling in sel_sched_region (). */
6831 if (current_region_empty_p ())
6832 return true;
6833
6834 if (flag_sel_sched_pipelining)
6835 setup_current_loop_nest (rgn);
6836
6837 sel_setup_region_sched_flags ();
6838
6839 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6840
6841 for (i = 0; i < current_nr_blocks; i++)
6842 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6843
6844 sel_init_bbs (bbs, NULL);
6845
6846 /* Initialize luids and dependence analysis which both sel-sched and haifa
6847 need. */
6848 sched_init_luids (bbs, NULL, NULL, NULL);
6849 sched_deps_init (false);
6850
6851 /* Initialize haifa data. */
6852 rgn_setup_sched_infos ();
6853 sel_set_sched_flags ();
6854 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6855
6856 sel_compute_priorities (rgn);
6857 init_deps_global ();
6858
6859 /* Main initialization. */
6860 sel_setup_sched_infos ();
6861 sel_init_global_and_expr (bbs);
6862
6863 VEC_free (basic_block, heap, bbs);
6864
6865 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6866
6867 /* Init correct liveness sets on each instruction of a single-block loop.
6868 This is the only situation when we can't update liveness when calling
6869 compute_live for the first insn of the loop. */
6870 if (current_loop_nest)
6871 {
6872 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6873 ? 1
6874 : 0);
6875
6876 if (current_nr_blocks == header + 1)
6877 update_liveness_on_insn
6878 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6879 }
6880
6881 /* Set hooks so that no newly generated insn will go out unnoticed. */
6882 sel_register_cfg_hooks ();
6883
6884 /* !!! We call target.sched.init () for the whole region, but we invoke
6885 targetm.sched.finish () for every ebb. */
6886 if (targetm.sched.init)
6887 /* None of the arguments are actually used in any target. */
6888 targetm.sched.init (sched_dump, sched_verbose, -1);
6889
6890 first_emitted_uid = get_max_uid () + 1;
6891 preheader_removed = false;
6892
6893 /* Reset register allocation ticks array. */
6894 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6895 reg_rename_this_tick = 0;
6896
6897 bitmap_initialize (forced_ebb_heads, 0);
6898 bitmap_clear (forced_ebb_heads);
6899
6900 setup_nop_vinsn ();
6901 current_copies = BITMAP_ALLOC (NULL);
6902 current_originators = BITMAP_ALLOC (NULL);
6903 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6904
6905 return false;
6906 }
6907
6908 /* Simplify insns after the scheduling. */
6909 static void
6910 simplify_changed_insns (void)
6911 {
6912 int i;
6913
6914 for (i = 0; i < current_nr_blocks; i++)
6915 {
6916 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6917 rtx insn;
6918
6919 FOR_BB_INSNS (bb, insn)
6920 if (INSN_P (insn))
6921 {
6922 expr_t expr = INSN_EXPR (insn);
6923
6924 if (EXPR_WAS_SUBSTITUTED (expr))
6925 validate_simplify_insn (insn);
6926 }
6927 }
6928 }
6929
6930 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6931 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6932 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6933 static void
6934 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6935 {
6936 insn_t head, tail;
6937 basic_block bb1 = bb;
6938 if (sched_verbose >= 2)
6939 sel_print ("Finishing schedule in bbs: ");
6940
6941 do
6942 {
6943 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6944
6945 if (sched_verbose >= 2)
6946 sel_print ("%d; ", bb1->index);
6947 }
6948 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6949
6950 if (sched_verbose >= 2)
6951 sel_print ("\n");
6952
6953 get_ebb_head_tail (bb, bb1, &head, &tail);
6954
6955 current_sched_info->head = head;
6956 current_sched_info->tail = tail;
6957 current_sched_info->prev_head = PREV_INSN (head);
6958 current_sched_info->next_tail = NEXT_INSN (tail);
6959 }
6960
6961 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6962 static void
6963 reset_sched_cycles_in_current_ebb (void)
6964 {
6965 int last_clock = 0;
6966 int haifa_last_clock = -1;
6967 int haifa_clock = 0;
6968 insn_t insn;
6969
6970 if (targetm.sched.init)
6971 {
6972 /* None of the arguments are actually used in any target.
6973 NB: We should have md_reset () hook for cases like this. */
6974 targetm.sched.init (sched_dump, sched_verbose, -1);
6975 }
6976
6977 state_reset (curr_state);
6978 advance_state (curr_state);
6979
6980 for (insn = current_sched_info->head;
6981 insn != current_sched_info->next_tail;
6982 insn = NEXT_INSN (insn))
6983 {
6984 int cost, haifa_cost;
6985 int sort_p;
6986 bool asm_p, real_insn, after_stall;
6987 int clock;
6988
6989 if (!INSN_P (insn))
6990 continue;
6991
6992 asm_p = false;
6993 real_insn = recog_memoized (insn) >= 0;
6994 clock = INSN_SCHED_CYCLE (insn);
6995
6996 cost = clock - last_clock;
6997
6998 /* Initialize HAIFA_COST. */
6999 if (! real_insn)
7000 {
7001 asm_p = INSN_ASM_P (insn);
7002
7003 if (asm_p)
7004 /* This is asm insn which *had* to be scheduled first
7005 on the cycle. */
7006 haifa_cost = 1;
7007 else
7008 /* This is a use/clobber insn. It should not change
7009 cost. */
7010 haifa_cost = 0;
7011 }
7012 else
7013 haifa_cost = estimate_insn_cost (insn, curr_state);
7014
7015 /* Stall for whatever cycles we've stalled before. */
7016 after_stall = 0;
7017 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7018 {
7019 haifa_cost = cost;
7020 after_stall = 1;
7021 }
7022
7023 if (haifa_cost > 0)
7024 {
7025 int i = 0;
7026
7027 while (haifa_cost--)
7028 {
7029 advance_state (curr_state);
7030 i++;
7031
7032 if (sched_verbose >= 2)
7033 {
7034 sel_print ("advance_state (state_transition)\n");
7035 debug_state (curr_state);
7036 }
7037
7038 /* The DFA may report that e.g. insn requires 2 cycles to be
7039 issued, but on the next cycle it says that insn is ready
7040 to go. Check this here. */
7041 if (!after_stall
7042 && real_insn
7043 && haifa_cost > 0
7044 && estimate_insn_cost (insn, curr_state) == 0)
7045 break;
7046 }
7047
7048 haifa_clock += i;
7049 }
7050 else
7051 gcc_assert (haifa_cost == 0);
7052
7053 if (sched_verbose >= 2)
7054 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7055
7056 if (targetm.sched.dfa_new_cycle)
7057 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7058 haifa_last_clock, haifa_clock,
7059 &sort_p))
7060 {
7061 advance_state (curr_state);
7062 haifa_clock++;
7063 if (sched_verbose >= 2)
7064 {
7065 sel_print ("advance_state (dfa_new_cycle)\n");
7066 debug_state (curr_state);
7067 }
7068 }
7069
7070 if (real_insn)
7071 {
7072 cost = state_transition (curr_state, insn);
7073
7074 if (sched_verbose >= 2)
7075 debug_state (curr_state);
7076
7077 gcc_assert (cost < 0);
7078 }
7079
7080 if (targetm.sched.variable_issue)
7081 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7082
7083 INSN_SCHED_CYCLE (insn) = haifa_clock;
7084
7085 last_clock = clock;
7086 haifa_last_clock = haifa_clock;
7087 }
7088 }
7089
7090 /* Put TImode markers on insns starting a new issue group. */
7091 static void
7092 put_TImodes (void)
7093 {
7094 int last_clock = -1;
7095 insn_t insn;
7096
7097 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7098 insn = NEXT_INSN (insn))
7099 {
7100 int cost, clock;
7101
7102 if (!INSN_P (insn))
7103 continue;
7104
7105 clock = INSN_SCHED_CYCLE (insn);
7106 cost = (last_clock == -1) ? 1 : clock - last_clock;
7107
7108 gcc_assert (cost >= 0);
7109
7110 if (issue_rate > 1
7111 && GET_CODE (PATTERN (insn)) != USE
7112 && GET_CODE (PATTERN (insn)) != CLOBBER)
7113 {
7114 if (reload_completed && cost > 0)
7115 PUT_MODE (insn, TImode);
7116
7117 last_clock = clock;
7118 }
7119
7120 if (sched_verbose >= 2)
7121 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7122 }
7123 }
7124
7125 /* Perform MD_FINISH on EBBs comprising current region. When
7126 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7127 to produce correct sched cycles on insns. */
7128 static void
7129 sel_region_target_finish (bool reset_sched_cycles_p)
7130 {
7131 int i;
7132 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7133
7134 for (i = 0; i < current_nr_blocks; i++)
7135 {
7136 if (bitmap_bit_p (scheduled_blocks, i))
7137 continue;
7138
7139 /* While pipelining outer loops, skip bundling for loop
7140 preheaders. Those will be rescheduled in the outer loop. */
7141 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7142 continue;
7143
7144 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7145
7146 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7147 continue;
7148
7149 if (reset_sched_cycles_p)
7150 reset_sched_cycles_in_current_ebb ();
7151
7152 if (targetm.sched.init)
7153 targetm.sched.init (sched_dump, sched_verbose, -1);
7154
7155 put_TImodes ();
7156
7157 if (targetm.sched.finish)
7158 {
7159 targetm.sched.finish (sched_dump, sched_verbose);
7160
7161 /* Extend luids so that insns generated by the target will
7162 get zero luid. */
7163 sched_init_luids (NULL, NULL, NULL, NULL);
7164 }
7165 }
7166
7167 BITMAP_FREE (scheduled_blocks);
7168 }
7169
7170 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7171 is true, make an additional pass emulating scheduler to get correct insn
7172 cycles for md_finish calls. */
7173 static void
7174 sel_region_finish (bool reset_sched_cycles_p)
7175 {
7176 simplify_changed_insns ();
7177 sched_finish_ready_list ();
7178 free_nop_pool ();
7179
7180 /* Free the vectors. */
7181 if (vec_av_set)
7182 VEC_free (expr_t, heap, vec_av_set);
7183 BITMAP_FREE (current_copies);
7184 BITMAP_FREE (current_originators);
7185 BITMAP_FREE (code_motion_visited_blocks);
7186 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7187 vinsn_vec_free (&vec_target_unavailable_vinsns);
7188
7189 /* If LV_SET of the region head should be updated, do it now because
7190 there will be no other chance. */
7191 {
7192 succ_iterator si;
7193 insn_t insn;
7194
7195 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7196 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7197 {
7198 basic_block bb = BLOCK_FOR_INSN (insn);
7199
7200 if (!BB_LV_SET_VALID_P (bb))
7201 compute_live (insn);
7202 }
7203 }
7204
7205 /* Emulate the Haifa scheduler for bundling. */
7206 if (reload_completed)
7207 sel_region_target_finish (reset_sched_cycles_p);
7208
7209 sel_finish_global_and_expr ();
7210
7211 bitmap_clear (forced_ebb_heads);
7212
7213 free_nop_vinsn ();
7214
7215 finish_deps_global ();
7216 sched_finish_luids ();
7217
7218 sel_finish_bbs ();
7219 BITMAP_FREE (blocks_to_reschedule);
7220
7221 sel_unregister_cfg_hooks ();
7222
7223 max_issue_size = 0;
7224 }
7225 \f
7226
7227 /* Functions that implement the scheduler driver. */
7228
7229 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7230 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7231 of insns scheduled -- these would be postprocessed later. */
7232 static void
7233 schedule_on_fences (flist_t fences, int max_seqno,
7234 ilist_t **scheduled_insns_tailpp)
7235 {
7236 flist_t old_fences = fences;
7237
7238 if (sched_verbose >= 1)
7239 {
7240 sel_print ("\nScheduling on fences: ");
7241 dump_flist (fences);
7242 sel_print ("\n");
7243 }
7244
7245 scheduled_something_on_previous_fence = false;
7246 for (; fences; fences = FLIST_NEXT (fences))
7247 {
7248 fence_t fence = NULL;
7249 int seqno = 0;
7250 flist_t fences2;
7251 bool first_p = true;
7252
7253 /* Choose the next fence group to schedule.
7254 The fact that insn can be scheduled only once
7255 on the cycle is guaranteed by two properties:
7256 1. seqnos of parallel groups decrease with each iteration.
7257 2. If is_ineligible_successor () sees the larger seqno, it
7258 checks if candidate insn is_in_current_fence_p (). */
7259 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7260 {
7261 fence_t f = FLIST_FENCE (fences2);
7262
7263 if (!FENCE_PROCESSED_P (f))
7264 {
7265 int i = INSN_SEQNO (FENCE_INSN (f));
7266
7267 if (first_p || i > seqno)
7268 {
7269 seqno = i;
7270 fence = f;
7271 first_p = false;
7272 }
7273 else
7274 /* ??? Seqnos of different groups should be different. */
7275 gcc_assert (1 || i != seqno);
7276 }
7277 }
7278
7279 gcc_assert (fence);
7280
7281 /* As FENCE is nonnull, SEQNO is initialized. */
7282 seqno -= max_seqno + 1;
7283 fill_insns (fence, seqno, scheduled_insns_tailpp);
7284 FENCE_PROCESSED_P (fence) = true;
7285 }
7286
7287 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7288 don't need to keep bookkeeping-invalidated and target-unavailable
7289 vinsns any more. */
7290 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7291 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7292 }
7293
7294 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7295 static void
7296 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7297 {
7298 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7299
7300 /* The first element is already processed. */
7301 while ((fences = FLIST_NEXT (fences)))
7302 {
7303 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7304
7305 if (*min_seqno > seqno)
7306 *min_seqno = seqno;
7307 else if (*max_seqno < seqno)
7308 *max_seqno = seqno;
7309 }
7310 }
7311
7312 /* Calculate new fences from FENCES. */
7313 static flist_t
7314 calculate_new_fences (flist_t fences, int orig_max_seqno)
7315 {
7316 flist_t old_fences = fences;
7317 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7318
7319 flist_tail_init (new_fences);
7320 for (; fences; fences = FLIST_NEXT (fences))
7321 {
7322 fence_t fence = FLIST_FENCE (fences);
7323 insn_t insn;
7324
7325 if (!FENCE_BNDS (fence))
7326 {
7327 /* This fence doesn't have any successors. */
7328 if (!FENCE_SCHEDULED_P (fence))
7329 {
7330 /* Nothing was scheduled on this fence. */
7331 int seqno;
7332
7333 insn = FENCE_INSN (fence);
7334 seqno = INSN_SEQNO (insn);
7335 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7336
7337 if (sched_verbose >= 1)
7338 sel_print ("Fence %d[%d] has not changed\n",
7339 INSN_UID (insn),
7340 BLOCK_NUM (insn));
7341 move_fence_to_fences (fences, new_fences);
7342 }
7343 }
7344 else
7345 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7346 }
7347
7348 flist_clear (&old_fences);
7349 return FLIST_TAIL_HEAD (new_fences);
7350 }
7351
7352 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7353 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7354 the highest seqno used in a region. Return the updated highest seqno. */
7355 static int
7356 update_seqnos_and_stage (int min_seqno, int max_seqno,
7357 int highest_seqno_in_use,
7358 ilist_t *pscheduled_insns)
7359 {
7360 int new_hs;
7361 ilist_iterator ii;
7362 insn_t insn;
7363
7364 /* Actually, new_hs is the seqno of the instruction, that was
7365 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7366 if (*pscheduled_insns)
7367 {
7368 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7369 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7370 gcc_assert (new_hs > highest_seqno_in_use);
7371 }
7372 else
7373 new_hs = highest_seqno_in_use;
7374
7375 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7376 {
7377 gcc_assert (INSN_SEQNO (insn) < 0);
7378 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7379 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7380
7381 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7382 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7383 require > 1GB of memory e.g. on limit-fnargs.c. */
7384 if (! pipelining_p)
7385 free_data_for_scheduled_insn (insn);
7386 }
7387
7388 ilist_clear (pscheduled_insns);
7389 global_level++;
7390
7391 return new_hs;
7392 }
7393
7394 /* The main driver for scheduling a region. This function is responsible
7395 for correct propagation of fences (i.e. scheduling points) and creating
7396 a group of parallel insns at each of them. It also supports
7397 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7398 of scheduling. */
7399 static void
7400 sel_sched_region_2 (int orig_max_seqno)
7401 {
7402 int highest_seqno_in_use = orig_max_seqno;
7403
7404 stat_bookkeeping_copies = 0;
7405 stat_insns_needed_bookkeeping = 0;
7406 stat_renamed_scheduled = 0;
7407 stat_substitutions_total = 0;
7408 num_insns_scheduled = 0;
7409
7410 while (fences)
7411 {
7412 int min_seqno, max_seqno;
7413 ilist_t scheduled_insns = NULL;
7414 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7415
7416 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7417 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7418 fences = calculate_new_fences (fences, orig_max_seqno);
7419 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7420 highest_seqno_in_use,
7421 &scheduled_insns);
7422 }
7423
7424 if (sched_verbose >= 1)
7425 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7426 "bookkeeping, %d insns renamed, %d insns substituted\n",
7427 stat_bookkeeping_copies,
7428 stat_insns_needed_bookkeeping,
7429 stat_renamed_scheduled,
7430 stat_substitutions_total);
7431 }
7432
7433 /* Schedule a region. When pipelining, search for possibly never scheduled
7434 bookkeeping code and schedule it. Reschedule pipelined code without
7435 pipelining after. */
7436 static void
7437 sel_sched_region_1 (void)
7438 {
7439 int number_of_insns;
7440 int orig_max_seqno;
7441
7442 /* Remove empty blocks that might be in the region from the beginning.
7443 We need to do save sched_max_luid before that, as it actually shows
7444 the number of insns in the region, and purge_empty_blocks can
7445 alter it. */
7446 number_of_insns = sched_max_luid - 1;
7447 purge_empty_blocks ();
7448
7449 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7450 gcc_assert (orig_max_seqno >= 1);
7451
7452 /* When pipelining outer loops, create fences on the loop header,
7453 not preheader. */
7454 fences = NULL;
7455 if (current_loop_nest)
7456 init_fences (BB_END (EBB_FIRST_BB (0)));
7457 else
7458 init_fences (bb_note (EBB_FIRST_BB (0)));
7459 global_level = 1;
7460
7461 sel_sched_region_2 (orig_max_seqno);
7462
7463 gcc_assert (fences == NULL);
7464
7465 if (pipelining_p)
7466 {
7467 int i;
7468 basic_block bb;
7469 struct flist_tail_def _new_fences;
7470 flist_tail_t new_fences = &_new_fences;
7471 bool do_p = true;
7472
7473 pipelining_p = false;
7474 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7475 bookkeeping_p = false;
7476 enable_schedule_as_rhs_p = false;
7477
7478 /* Schedule newly created code, that has not been scheduled yet. */
7479 do_p = true;
7480
7481 while (do_p)
7482 {
7483 do_p = false;
7484
7485 for (i = 0; i < current_nr_blocks; i++)
7486 {
7487 basic_block bb = EBB_FIRST_BB (i);
7488
7489 if (sel_bb_empty_p (bb))
7490 {
7491 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7492 continue;
7493 }
7494
7495 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7496 {
7497 clear_outdated_rtx_info (bb);
7498 if (sel_insn_is_speculation_check (BB_END (bb))
7499 && JUMP_P (BB_END (bb)))
7500 bitmap_set_bit (blocks_to_reschedule,
7501 BRANCH_EDGE (bb)->dest->index);
7502 }
7503 else if (INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7504 bitmap_set_bit (blocks_to_reschedule, bb->index);
7505 }
7506
7507 for (i = 0; i < current_nr_blocks; i++)
7508 {
7509 bb = EBB_FIRST_BB (i);
7510
7511 /* While pipelining outer loops, skip bundling for loop
7512 preheaders. Those will be rescheduled in the outer
7513 loop. */
7514 if (sel_is_loop_preheader_p (bb))
7515 {
7516 clear_outdated_rtx_info (bb);
7517 continue;
7518 }
7519
7520 if (bitmap_clear_bit (blocks_to_reschedule, bb->index))
7521 {
7522 flist_tail_init (new_fences);
7523
7524 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7525
7526 /* Mark BB as head of the new ebb. */
7527 bitmap_set_bit (forced_ebb_heads, bb->index);
7528
7529 gcc_assert (fences == NULL);
7530
7531 init_fences (bb_note (bb));
7532
7533 sel_sched_region_2 (orig_max_seqno);
7534
7535 do_p = true;
7536 break;
7537 }
7538 }
7539 }
7540 }
7541 }
7542
7543 /* Schedule the RGN region. */
7544 void
7545 sel_sched_region (int rgn)
7546 {
7547 bool schedule_p;
7548 bool reset_sched_cycles_p;
7549
7550 if (sel_region_init (rgn))
7551 return;
7552
7553 if (sched_verbose >= 1)
7554 sel_print ("Scheduling region %d\n", rgn);
7555
7556 schedule_p = (!sched_is_disabled_for_current_region_p ()
7557 && dbg_cnt (sel_sched_region_cnt));
7558 reset_sched_cycles_p = pipelining_p;
7559 if (schedule_p)
7560 sel_sched_region_1 ();
7561 else
7562 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7563 reset_sched_cycles_p = true;
7564
7565 sel_region_finish (reset_sched_cycles_p);
7566 }
7567
7568 /* Perform global init for the scheduler. */
7569 static void
7570 sel_global_init (void)
7571 {
7572 calculate_dominance_info (CDI_DOMINATORS);
7573 alloc_sched_pools ();
7574
7575 /* Setup the infos for sched_init. */
7576 sel_setup_sched_infos ();
7577 setup_sched_dump ();
7578
7579 sched_rgn_init (false);
7580 sched_init ();
7581
7582 sched_init_bbs ();
7583 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7584 after_recovery = 0;
7585 can_issue_more = issue_rate;
7586
7587 sched_extend_target ();
7588 sched_deps_init (true);
7589 setup_nop_and_exit_insns ();
7590 sel_extend_global_bb_info ();
7591 init_lv_sets ();
7592 init_hard_regs_data ();
7593 }
7594
7595 /* Free the global data of the scheduler. */
7596 static void
7597 sel_global_finish (void)
7598 {
7599 free_bb_note_pool ();
7600 free_lv_sets ();
7601 sel_finish_global_bb_info ();
7602
7603 free_regset_pool ();
7604 free_nop_and_exit_insns ();
7605
7606 sched_rgn_finish ();
7607 sched_deps_finish ();
7608 sched_finish ();
7609
7610 if (current_loops)
7611 sel_finish_pipelining ();
7612
7613 free_sched_pools ();
7614 free_dominance_info (CDI_DOMINATORS);
7615 }
7616
7617 /* Return true when we need to skip selective scheduling. Used for debugging. */
7618 bool
7619 maybe_skip_selective_scheduling (void)
7620 {
7621 return ! dbg_cnt (sel_sched_cnt);
7622 }
7623
7624 /* The entry point. */
7625 void
7626 run_selective_scheduling (void)
7627 {
7628 int rgn;
7629
7630 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7631 return;
7632
7633 sel_global_init ();
7634
7635 for (rgn = 0; rgn < nr_regions; rgn++)
7636 sel_sched_region (rgn);
7637
7638 sel_global_finish ();
7639 }
7640
7641 #endif
This page took 0.367899 seconds and 6 git commands to generate.