]> gcc.gnu.org Git - gcc.git/blob - gcc/sched.c
# Fix misspellings in comments.
[gcc.git] / gcc / sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4 Enhanced by, and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* Instruction scheduling pass.
23
24 This pass implements list scheduling within basic blocks. It is
25 run after flow analysis, but before register allocation. The
26 scheduler works as follows:
27
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
36
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning
39 values to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
41
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
56
57 Function unit conflicts are resolved during reverse list scheduling
58 by tracking the time when each insn is committed to the schedule
59 and from that, the time the function units it uses must be free.
60 As insns on the ready list are considered for scheduling, those
61 that would result in a blockage of the already committed insns are
62 queued until no blockage will result. Among the remaining insns on
63 the ready list to be considered, the first one with the largest
64 potential for causing a subsequent blockage is chosen.
65
66 The following list shows the order in which we want to break ties
67 among insns in the ready list:
68
69 1. choose insn with lowest conflict cost, ties broken by
70 2. choose insn with the longest path to end of bb, ties broken by
71 3. choose insn that kills the most registers, ties broken by
72 4. choose insn that conflicts with the most ready insns, or finally
73 5. choose insn with lowest UID.
74
75 Memory references complicate matters. Only if we can be certain
76 that memory references are not part of the data dependency graph
77 (via true, anti, or output dependence), can we move operations past
78 memory references. To first approximation, reads can be done
79 independently, while writes introduce dependencies. Better
80 approximations will yield fewer dependencies.
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using LOG_LINKS.
84
85 Having optimized the critical path, we may have also unduly
86 extended the lifetimes of some registers. If an operation requires
87 that constants be loaded into registers, it is certainly desirable
88 to load those constants as early as necessary, but no earlier.
89 I.e., it will not do to load up a bunch of registers at the
90 beginning of a basic block only to use them at the end, if they
91 could be loaded later, since this may result in excessive register
92 utilization.
93
94 Note that since branches are never in basic blocks, but only end
95 basic blocks, this pass will not do any branch scheduling. But
96 that is ok, since we can use GNU's delayed branch scheduling
97 pass to take care of this case.
98
99 Also note that no further optimizations based on algebraic identities
100 are performed, so this pass would be a good one to perform instruction
101 splitting, such as breaking up a multiply instruction into shifts
102 and adds where that is profitable.
103
104 Given the memory aliasing analysis that this pass should perform,
105 it should be possible to remove redundant stores to memory, and to
106 load values from registers instead of hitting memory.
107
108 This pass must update information that subsequent passes expect to be
109 correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
110 reg_n_calls_crossed, and reg_live_length. Also, basic_block_head,
111 basic_block_end.
112
113 The information in the line number notes is carefully retained by this
114 pass. All other NOTE insns are grouped in their same relative order at
115 the beginning of basic blocks that have been scheduled. */
116 \f
117 #include <stdio.h>
118 #include "config.h"
119 #include "rtl.h"
120 #include "basic-block.h"
121 #include "regs.h"
122 #include "hard-reg-set.h"
123 #include "flags.h"
124 #include "insn-config.h"
125 #include "insn-attr.h"
126
127 #ifdef INSN_SCHEDULING
128 /* Arrays set up by scheduling for the same respective purposes as
129 similar-named arrays set up by flow analysis. We work with these
130 arrays during the scheduling pass so we can compare values against
131 unscheduled code.
132
133 Values of these arrays are copied at the end of this pass into the
134 arrays set up by flow analysis. */
135 static short *sched_reg_n_deaths;
136 static int *sched_reg_n_calls_crossed;
137 static int *sched_reg_live_length;
138
139 /* Element N is the next insn that sets (hard or pseudo) register
140 N within the current basic block; or zero, if there is no
141 such insn. Needed for new registers which may be introduced
142 by splitting insns. */
143 static rtx *reg_last_uses;
144 static rtx *reg_last_sets;
145
146 /* Vector indexed by INSN_UID giving the original ordering of the insns. */
147 static int *insn_luid;
148 #define INSN_LUID(INSN) (insn_luid[INSN_UID (INSN)])
149
150 /* Vector indexed by INSN_UID giving each instruction a priority. */
151 static int *insn_priority;
152 #define INSN_PRIORITY(INSN) (insn_priority[INSN_UID (INSN)])
153
154 static short *insn_costs;
155 #define INSN_COST(INSN) insn_costs[INSN_UID (INSN)]
156
157 /* Vector indexed by INSN_UID giving an encoding of the function units
158 used. */
159 static short *insn_units;
160 #define INSN_UNIT(INSN) insn_units[INSN_UID (INSN)]
161
162 /* Vector indexed by INSN_UID giving an encoding of the blockage range
163 function. The unit and the range are encoded. */
164 static unsigned int *insn_blockage;
165 #define INSN_BLOCKAGE(INSN) insn_blockage[INSN_UID (INSN)]
166 #define UNIT_BITS 5
167 #define BLOCKAGE_MASK ((1 << BLOCKAGE_BITS) - 1)
168 #define ENCODE_BLOCKAGE(U,R) \
169 ((((U) << UNIT_BITS) << BLOCKAGE_BITS \
170 | MIN_BLOCKAGE_COST (R)) << BLOCKAGE_BITS \
171 | MAX_BLOCKAGE_COST (R))
172 #define UNIT_BLOCKED(B) ((B) >> (2 * BLOCKAGE_BITS))
173 #define BLOCKAGE_RANGE(B) \
174 (((((B) >> BLOCKAGE_BITS) & BLOCKAGE_MASK) << (HOST_BITS_PER_INT / 2)) \
175 | (B) & BLOCKAGE_MASK)
176
177 /* Encodings of the `<name>_unit_blockage_range' function. */
178 #define MIN_BLOCKAGE_COST(R) ((R) >> (HOST_BITS_PER_INT / 2))
179 #define MAX_BLOCKAGE_COST(R) ((R) & ((1 << (HOST_BITS_PER_INT / 2)) - 1))
180
181 #define DONE_PRIORITY -1
182 #define MAX_PRIORITY 0x7fffffff
183 #define TAIL_PRIORITY 0x7ffffffe
184 #define LAUNCH_PRIORITY 0x7f000001
185 #define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
186 #define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
187
188 /* Vector indexed by INSN_UID giving number of insns referring to this insn. */
189 static int *insn_ref_count;
190 #define INSN_REF_COUNT(INSN) (insn_ref_count[INSN_UID (INSN)])
191
192 /* Vector indexed by INSN_UID giving line-number note in effect for each
193 insn. For line-number notes, this indicates whether the note may be
194 reused. */
195 static rtx *line_note;
196 #define LINE_NOTE(INSN) (line_note[INSN_UID (INSN)])
197
198 /* Vector indexed by basic block number giving the starting line-number
199 for each basic block. */
200 static rtx *line_note_head;
201
202 /* List of important notes we must keep around. This is a pointer to the
203 last element in the list. */
204 static rtx note_list;
205
206 /* Regsets telling whether a given register is live or dead before the last
207 scheduled insn. Must scan the instructions once before scheduling to
208 determine what registers are live or dead at the end of the block. */
209 static regset bb_dead_regs;
210 static regset bb_live_regs;
211
212 /* Regset telling whether a given register is live after the insn currently
213 being scheduled. Before processing an insn, this is equal to bb_live_regs
214 above. This is used so that we can find registers that are newly born/dead
215 after processing an insn. */
216 static regset old_live_regs;
217
218 /* The chain of REG_DEAD notes. REG_DEAD notes are removed from all insns
219 during the initial scan and reused later. If there are not exactly as
220 many REG_DEAD notes in the post scheduled code as there were in the
221 prescheduled code then we trigger an abort because this indicates a bug. */
222 static rtx dead_notes;
223
224 /* Queues, etc. */
225
226 /* An instruction is ready to be scheduled when all insns following it
227 have already been scheduled. It is important to ensure that all
228 insns which use its result will not be executed until its result
229 has been computed. An insn is maintained in one of four structures:
230
231 (P) the "Pending" set of insns which cannot be scheduled until
232 their dependencies have been satisfied.
233 (Q) the "Queued" set of insns that can be scheduled when sufficient
234 time has passed.
235 (R) the "Ready" list of unscheduled, uncommitted insns.
236 (S) the "Scheduled" list of insns.
237
238 Initially, all insns are either "Pending" or "Ready" depending on
239 whether their dependencies are satisfied.
240
241 Insns move from the "Ready" list to the "Scheduled" list as they
242 are committed to the schedule. As this occurs, the insns in the
243 "Pending" list have their dependencies satisfied and move to either
244 the "Ready" list or the "Queued" set depending on whether
245 sufficient time has passed to make them ready. As time passes,
246 insns move from the "Queued" set to the "Ready" list. Insns may
247 move from the "Ready" list to the "Queued" set if they are blocked
248 due to a function unit conflict.
249
250 The "Pending" list (P) are the insns in the LOG_LINKS of the unscheduled
251 insns, i.e., those that are ready, queued, and pending.
252 The "Queued" set (Q) is implemented by the variable `insn_queue'.
253 The "Ready" list (R) is implemented by the variables `ready' and
254 `n_ready'.
255 The "Scheduled" list (S) is the new insn chain built by this pass.
256
257 The transition (R->S) is implemented in the scheduling loop in
258 `schedule_block' when the best insn to schedule is chosen.
259 The transition (R->Q) is implemented in `schedule_select' when an
260 insn is found to to have a function unit conflict with the already
261 committed insns.
262 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
263 insns move from the ready list to the scheduled list.
264 The transition (Q->R) is implemented at the top of the scheduling
265 loop in `schedule_block' as time passes or stalls are introduced. */
266
267 /* Implement a circular buffer to delay instructions until sufficient
268 time has passed. INSN_QUEUE_SIZE is a power of two larger than
269 MAX_BLOCKAGE and MAX_READY_COST computed by genattr.c. This is the
270 longest time an isnsn may be queued. */
271 static rtx insn_queue[INSN_QUEUE_SIZE];
272 static int q_ptr = 0;
273 static int q_size = 0;
274 #define NEXT_Q(X) (((X)+1) & (INSN_QUEUE_SIZE-1))
275 #define NEXT_Q_AFTER(X,C) (((X)+C) & (INSN_QUEUE_SIZE-1))
276
277 /* Vector indexed by INSN_UID giving the minimum clock tick at which
278 the insn becomes ready. This is used to note timing constraints for
279 insns in the pending list. */
280 static int *insn_tick;
281 #define INSN_TICK(INSN) (insn_tick[INSN_UID (INSN)])
282
283 /* Forward declarations. */
284 static void sched_analyze_2 ();
285 static void schedule_block ();
286
287 /* Main entry point of this file. */
288 void schedule_insns ();
289 #endif /* INSN_SCHEDULING */
290 \f
291 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
292
293 /* Vector indexed by N giving the initial (unchanging) value known
294 for pseudo-register N. */
295 static rtx *reg_known_value;
296
297 /* Indicates number of valid entries in reg_known_value. */
298 static int reg_known_value_size;
299
300 static rtx
301 canon_rtx (x)
302 rtx x;
303 {
304 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
305 && REGNO (x) <= reg_known_value_size)
306 return reg_known_value[REGNO (x)];
307 else if (GET_CODE (x) == PLUS)
308 {
309 rtx x0 = canon_rtx (XEXP (x, 0));
310 rtx x1 = canon_rtx (XEXP (x, 1));
311
312 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
313 {
314 /* We can tolerate LO_SUMs being offset here; these
315 rtl are used for nothing other than comparisons. */
316 if (GET_CODE (x0) == CONST_INT)
317 return plus_constant_for_output (x1, INTVAL (x0));
318 else if (GET_CODE (x1) == CONST_INT)
319 return plus_constant_for_output (x0, INTVAL (x1));
320 return gen_rtx (PLUS, GET_MODE (x), x0, x1);
321 }
322 }
323 return x;
324 }
325
326 /* Set up all info needed to perform alias analysis on memory references. */
327
328 void
329 init_alias_analysis ()
330 {
331 int maxreg = max_reg_num ();
332 rtx insn;
333 rtx note;
334 rtx set;
335
336 reg_known_value_size = maxreg;
337
338 reg_known_value
339 = (rtx *) oballoc ((maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx))
340 - FIRST_PSEUDO_REGISTER;
341 bzero (reg_known_value+FIRST_PSEUDO_REGISTER,
342 (maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx));
343
344 /* Fill in the entries with known constant values. */
345 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
346 if ((set = single_set (insn)) != 0
347 && GET_CODE (SET_DEST (set)) == REG
348 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
349 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
350 && reg_n_sets[REGNO (SET_DEST (set))] == 1)
351 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
352 && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
353 reg_known_value[REGNO (SET_DEST (set))] = XEXP (note, 0);
354
355 /* Fill in the remaining entries. */
356 while (--maxreg >= FIRST_PSEUDO_REGISTER)
357 if (reg_known_value[maxreg] == 0)
358 reg_known_value[maxreg] = regno_reg_rtx[maxreg];
359 }
360
361 /* Return 1 if X and Y are identical-looking rtx's.
362
363 We use the data in reg_known_value above to see if two registers with
364 different numbers are, in fact, equivalent. */
365
366 static int
367 rtx_equal_for_memref_p (x, y)
368 rtx x, y;
369 {
370 register int i;
371 register int j;
372 register enum rtx_code code;
373 register char *fmt;
374
375 if (x == 0 && y == 0)
376 return 1;
377 if (x == 0 || y == 0)
378 return 0;
379 x = canon_rtx (x);
380 y = canon_rtx (y);
381
382 if (x == y)
383 return 1;
384
385 code = GET_CODE (x);
386 /* Rtx's of different codes cannot be equal. */
387 if (code != GET_CODE (y))
388 return 0;
389
390 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
391 (REG:SI x) and (REG:HI x) are NOT equivalent. */
392
393 if (GET_MODE (x) != GET_MODE (y))
394 return 0;
395
396 /* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively. */
397
398 if (code == REG)
399 return REGNO (x) == REGNO (y);
400 if (code == LABEL_REF)
401 return XEXP (x, 0) == XEXP (y, 0);
402 if (code == SYMBOL_REF)
403 return XSTR (x, 0) == XSTR (y, 0);
404
405 /* Compare the elements. If any pair of corresponding elements
406 fail to match, return 0 for the whole things. */
407
408 fmt = GET_RTX_FORMAT (code);
409 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
410 {
411 switch (fmt[i])
412 {
413 case 'w':
414 if (XWINT (x, i) != XWINT (y, i))
415 return 0;
416 break;
417
418 case 'n':
419 case 'i':
420 if (XINT (x, i) != XINT (y, i))
421 return 0;
422 break;
423
424 case 'V':
425 case 'E':
426 /* Two vectors must have the same length. */
427 if (XVECLEN (x, i) != XVECLEN (y, i))
428 return 0;
429
430 /* And the corresponding elements must match. */
431 for (j = 0; j < XVECLEN (x, i); j++)
432 if (rtx_equal_for_memref_p (XVECEXP (x, i, j), XVECEXP (y, i, j)) == 0)
433 return 0;
434 break;
435
436 case 'e':
437 if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
438 return 0;
439 break;
440
441 case 'S':
442 case 's':
443 if (strcmp (XSTR (x, i), XSTR (y, i)))
444 return 0;
445 break;
446
447 case 'u':
448 /* These are just backpointers, so they don't matter. */
449 break;
450
451 case '0':
452 break;
453
454 /* It is believed that rtx's at this level will never
455 contain anything but integers and other rtx's,
456 except for within LABEL_REFs and SYMBOL_REFs. */
457 default:
458 abort ();
459 }
460 }
461 return 1;
462 }
463
464 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
465 X and return it, or return 0 if none found. */
466
467 static rtx
468 find_symbolic_term (x)
469 rtx x;
470 {
471 register int i;
472 register enum rtx_code code;
473 register char *fmt;
474
475 code = GET_CODE (x);
476 if (code == SYMBOL_REF || code == LABEL_REF)
477 return x;
478 if (GET_RTX_CLASS (code) == 'o')
479 return 0;
480
481 fmt = GET_RTX_FORMAT (code);
482 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
483 {
484 rtx t;
485
486 if (fmt[i] == 'e')
487 {
488 t = find_symbolic_term (XEXP (x, i));
489 if (t != 0)
490 return t;
491 }
492 else if (fmt[i] == 'E')
493 break;
494 }
495 return 0;
496 }
497
498 /* Return nonzero if X and Y (memory addresses) could reference the
499 same location in memory. C is an offset accumulator. When
500 C is nonzero, we are testing aliases between X and Y + C.
501 XSIZE is the size in bytes of the X reference,
502 similarly YSIZE is the size in bytes for Y.
503
504 If XSIZE or YSIZE is zero, we do not know the amount of memory being
505 referenced (the reference was BLKmode), so make the most pessimistic
506 assumptions.
507
508 We recognize the following cases of non-conflicting memory:
509
510 (1) addresses involving the frame pointer cannot conflict
511 with addresses involving static variables.
512 (2) static variables with different addresses cannot conflict.
513
514 Nice to notice that varying addresses cannot conflict with fp if no
515 local variables had their addresses taken, but that's too hard now. */
516
517 static int
518 memrefs_conflict_p (xsize, x, ysize, y, c)
519 rtx x, y;
520 int xsize, ysize;
521 HOST_WIDE_INT c;
522 {
523 if (GET_CODE (x) == HIGH)
524 x = XEXP (x, 0);
525 else if (GET_CODE (x) == LO_SUM)
526 x = XEXP (x, 1);
527 else
528 x = canon_rtx (x);
529 if (GET_CODE (y) == HIGH)
530 y = XEXP (y, 0);
531 else if (GET_CODE (y) == LO_SUM)
532 y = XEXP (y, 1);
533 else
534 y = canon_rtx (y);
535
536 if (rtx_equal_for_memref_p (x, y))
537 return (xsize == 0 || ysize == 0 ||
538 (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
539
540 if (y == frame_pointer_rtx || y == stack_pointer_rtx)
541 {
542 rtx t = y;
543 int tsize = ysize;
544 y = x; ysize = xsize;
545 x = t; xsize = tsize;
546 }
547
548 if (x == frame_pointer_rtx || x == stack_pointer_rtx)
549 {
550 rtx y1;
551
552 if (CONSTANT_P (y))
553 return 0;
554
555 if (GET_CODE (y) == PLUS
556 && canon_rtx (XEXP (y, 0)) == x
557 && (y1 = canon_rtx (XEXP (y, 1)))
558 && GET_CODE (y1) == CONST_INT)
559 {
560 c += INTVAL (y1);
561 return (xsize == 0 || ysize == 0
562 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
563 }
564
565 if (GET_CODE (y) == PLUS
566 && (y1 = canon_rtx (XEXP (y, 0)))
567 && CONSTANT_P (y1))
568 return 0;
569
570 return 1;
571 }
572
573 if (GET_CODE (x) == PLUS)
574 {
575 /* The fact that X is canonicalized means that this
576 PLUS rtx is canonicalized. */
577 rtx x0 = XEXP (x, 0);
578 rtx x1 = XEXP (x, 1);
579
580 if (GET_CODE (y) == PLUS)
581 {
582 /* The fact that Y is canonicalized means that this
583 PLUS rtx is canonicalized. */
584 rtx y0 = XEXP (y, 0);
585 rtx y1 = XEXP (y, 1);
586
587 if (rtx_equal_for_memref_p (x1, y1))
588 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
589 if (rtx_equal_for_memref_p (x0, y0))
590 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
591 if (GET_CODE (x1) == CONST_INT)
592 if (GET_CODE (y1) == CONST_INT)
593 return memrefs_conflict_p (xsize, x0, ysize, y0,
594 c - INTVAL (x1) + INTVAL (y1));
595 else
596 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
597 else if (GET_CODE (y1) == CONST_INT)
598 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
599
600 /* Handle case where we cannot understand iteration operators,
601 but we notice that the base addresses are distinct objects. */
602 x = find_symbolic_term (x);
603 if (x == 0)
604 return 1;
605 y = find_symbolic_term (y);
606 if (y == 0)
607 return 1;
608 return rtx_equal_for_memref_p (x, y);
609 }
610 else if (GET_CODE (x1) == CONST_INT)
611 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
612 }
613 else if (GET_CODE (y) == PLUS)
614 {
615 /* The fact that Y is canonicalized means that this
616 PLUS rtx is canonicalized. */
617 rtx y0 = XEXP (y, 0);
618 rtx y1 = XEXP (y, 1);
619
620 if (GET_CODE (y1) == CONST_INT)
621 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
622 else
623 return 1;
624 }
625
626 if (GET_CODE (x) == GET_CODE (y))
627 switch (GET_CODE (x))
628 {
629 case MULT:
630 {
631 /* Handle cases where we expect the second operands to be the
632 same, and check only whether the first operand would conflict
633 or not. */
634 rtx x0, y0;
635 rtx x1 = canon_rtx (XEXP (x, 1));
636 rtx y1 = canon_rtx (XEXP (y, 1));
637 if (! rtx_equal_for_memref_p (x1, y1))
638 return 1;
639 x0 = canon_rtx (XEXP (x, 0));
640 y0 = canon_rtx (XEXP (y, 0));
641 if (rtx_equal_for_memref_p (x0, y0))
642 return (xsize == 0 || ysize == 0
643 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
644
645 /* Can't properly adjust our sizes. */
646 if (GET_CODE (x1) != CONST_INT)
647 return 1;
648 xsize /= INTVAL (x1);
649 ysize /= INTVAL (x1);
650 c /= INTVAL (x1);
651 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
652 }
653 }
654
655 if (CONSTANT_P (x))
656 {
657 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
658 {
659 c += (INTVAL (y) - INTVAL (x));
660 return (xsize == 0 || ysize == 0
661 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
662 }
663
664 if (GET_CODE (x) == CONST)
665 {
666 if (GET_CODE (y) == CONST)
667 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
668 ysize, canon_rtx (XEXP (y, 0)), c);
669 else
670 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
671 ysize, y, c);
672 }
673 if (GET_CODE (y) == CONST)
674 return memrefs_conflict_p (xsize, x, ysize,
675 canon_rtx (XEXP (y, 0)), c);
676
677 if (CONSTANT_P (y))
678 return (rtx_equal_for_memref_p (x, y)
679 && (xsize == 0 || ysize == 0
680 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)));
681
682 return 1;
683 }
684 return 1;
685 }
686
687 /* Functions to compute memory dependencies.
688
689 Since we process the insns in execution order, we can build tables
690 to keep track of what registers are fixed (and not aliased), what registers
691 are varying in known ways, and what registers are varying in unknown
692 ways.
693
694 If both memory references are volatile, then there must always be a
695 dependence between the two references, since their order can not be
696 changed. A volatile and non-volatile reference can be interchanged
697 though.
698
699 A MEM_IN_STRUCT reference at a varying address can never conflict with a
700 non-MEM_IN_STRUCT reference at a fixed address. */
701
702 /* Read dependence: X is read after read in MEM takes place. There can
703 only be a dependence here if both reads are volatile. */
704
705 int
706 read_dependence (mem, x)
707 rtx mem;
708 rtx x;
709 {
710 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
711 }
712
713 /* True dependence: X is read after store in MEM takes place. */
714
715 int
716 true_dependence (mem, x)
717 rtx mem;
718 rtx x;
719 {
720 /* If X is an unchanging read, then it can't possibly conflict with any
721 non-unchanging store. It may conflict with an unchanging write though,
722 because there may be a single store to this address to initialize it.
723 Just fall through to the code below to resolve the case where we have
724 both an unchanging read and an unchanging write. This won't handle all
725 cases optimally, but the possible performance loss should be
726 negligible. */
727 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
728 return 0;
729
730 return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
731 || (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
732 SIZE_FOR_MODE (x), XEXP (x, 0), 0)
733 && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
734 && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
735 && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
736 && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
737 }
738
739 /* Anti dependence: X is written after read in MEM takes place. */
740
741 int
742 anti_dependence (mem, x)
743 rtx mem;
744 rtx x;
745 {
746 /* If MEM is an unchanging read, then it can't possibly conflict with
747 the store to X, because there is at most one store to MEM, and it must
748 have occured somewhere before MEM. */
749 if (RTX_UNCHANGING_P (mem))
750 return 0;
751
752 return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
753 || (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
754 SIZE_FOR_MODE (x), XEXP (x, 0), 0)
755 && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
756 && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
757 && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
758 && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
759 }
760
761 /* Output dependence: X is written after store in MEM takes place. */
762
763 int
764 output_dependence (mem, x)
765 rtx mem;
766 rtx x;
767 {
768 return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
769 || (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
770 SIZE_FOR_MODE (x), XEXP (x, 0), 0)
771 && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
772 && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
773 && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
774 && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
775 }
776 \f
777 /* Helper functions for instruction scheduling. */
778
779 /* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
780 LOG_LINKS of INSN, if not already there. DEP_TYPE indicates the type
781 of dependence that this link represents. */
782
783 void
784 add_dependence (insn, elem, dep_type)
785 rtx insn;
786 rtx elem;
787 enum reg_note dep_type;
788 {
789 rtx link, next;
790
791 /* Don't depend an insn on itself. */
792 if (insn == elem)
793 return;
794
795 /* If elem is part of a sequence that must be scheduled together, then
796 make the dependence point to the last insn of the sequence.
797 When HAVE_cc0, it is possible for NOTEs to exist between users and
798 setters of the condition codes, so we must skip past notes here.
799 Otherwise, NOTEs are impossible here. */
800
801 next = NEXT_INSN (elem);
802
803 #ifdef HAVE_cc0
804 while (next && GET_CODE (next) == NOTE)
805 next = NEXT_INSN (next);
806 #endif
807
808 if (next && SCHED_GROUP_P (next))
809 {
810 /* Notes will never intervene here though, so don't bother checking
811 for them. */
812 while (NEXT_INSN (next) && SCHED_GROUP_P (NEXT_INSN (next)))
813 next = NEXT_INSN (next);
814
815 /* Again, don't depend an insn on itself. */
816 if (insn == next)
817 return;
818
819 /* Make the dependence to NEXT, the last insn of the group, instead
820 of the original ELEM. */
821 elem = next;
822 }
823
824 /* Check that we don't already have this dependence. */
825 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
826 if (XEXP (link, 0) == elem)
827 {
828 /* If this is a more restrictive type of dependence than the existing
829 one, then change the existing dependence to this type. */
830 if ((int) dep_type < (int) REG_NOTE_KIND (link))
831 PUT_REG_NOTE_KIND (link, dep_type);
832 return;
833 }
834 /* Might want to check one level of transitivity to save conses. */
835
836 link = rtx_alloc (INSN_LIST);
837 /* Insn dependency, not data dependency. */
838 PUT_REG_NOTE_KIND (link, dep_type);
839 XEXP (link, 0) = elem;
840 XEXP (link, 1) = LOG_LINKS (insn);
841 LOG_LINKS (insn) = link;
842 }
843
844 /* Remove ELEM wrapped in an INSN_LIST from the LOG_LINKS
845 of INSN. Abort if not found. */
846 void
847 remove_dependence (insn, elem)
848 rtx insn;
849 rtx elem;
850 {
851 rtx prev, link;
852 int found = 0;
853
854 for (prev = 0, link = LOG_LINKS (insn); link;
855 prev = link, link = XEXP (link, 1))
856 {
857 if (XEXP (link, 0) == elem)
858 {
859 if (prev)
860 XEXP (prev, 1) = XEXP (link, 1);
861 else
862 LOG_LINKS (insn) = XEXP (link, 1);
863 found = 1;
864 }
865 }
866
867 if (! found)
868 abort ();
869 return;
870 }
871 \f
872 #ifndef INSN_SCHEDULING
873 void schedule_insns () {}
874 #else
875 #ifndef __GNUC__
876 #define __inline
877 #endif
878
879 /* Computation of memory dependencies. */
880
881 /* The *_insns and *_mems are paired lists. Each pending memory operation
882 will have a pointer to the MEM rtx on one list and a pointer to the
883 containing insn on the other list in the same place in the list. */
884
885 /* We can't use add_dependence like the old code did, because a single insn
886 may have multiple memory accesses, and hence needs to be on the list
887 once for each memory access. Add_dependence won't let you add an insn
888 to a list more than once. */
889
890 /* An INSN_LIST containing all insns with pending read operations. */
891 static rtx pending_read_insns;
892
893 /* An EXPR_LIST containing all MEM rtx's which are pending reads. */
894 static rtx pending_read_mems;
895
896 /* An INSN_LIST containing all insns with pending write operations. */
897 static rtx pending_write_insns;
898
899 /* An EXPR_LIST containing all MEM rtx's which are pending writes. */
900 static rtx pending_write_mems;
901
902 /* Indicates the combined length of the two pending lists. We must prevent
903 these lists from ever growing too large since the number of dependencies
904 produced is at least O(N*N), and execution time is at least O(4*N*N), as
905 a function of the length of these pending lists. */
906
907 static int pending_lists_length;
908
909 /* An INSN_LIST containing all INSN_LISTs allocated but currently unused. */
910
911 static rtx unused_insn_list;
912
913 /* An EXPR_LIST containing all EXPR_LISTs allocated but currently unused. */
914
915 static rtx unused_expr_list;
916
917 /* The last insn upon which all memory references must depend.
918 This is an insn which flushed the pending lists, creating a dependency
919 between it and all previously pending memory references. This creates
920 a barrier (or a checkpoint) which no memory reference is allowed to cross.
921
922 This includes all non constant CALL_INSNs. When we do interprocedural
923 alias analysis, this restriction can be relaxed.
924 This may also be an INSN that writes memory if the pending lists grow
925 too large. */
926
927 static rtx last_pending_memory_flush;
928
929 /* The last function call we have seen. All hard regs, and, of course,
930 the last function call, must depend on this. */
931
932 static rtx last_function_call;
933
934 /* The LOG_LINKS field of this is a list of insns which use a pseudo register
935 that does not already cross a call. We create dependencies between each
936 of those insn and the next call insn, to ensure that they won't cross a call
937 after scheduling is done. */
938
939 static rtx sched_before_next_call;
940
941 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
942 so that insns independent of the last scheduled insn will be preferred
943 over dependent instructions. */
944
945 static rtx last_scheduled_insn;
946
947 /* Process an insn's memory dependencies. There are four kinds of
948 dependencies:
949
950 (0) read dependence: read follows read
951 (1) true dependence: read follows write
952 (2) anti dependence: write follows read
953 (3) output dependence: write follows write
954
955 We are careful to build only dependencies which actually exist, and
956 use transitivity to avoid building too many links. */
957 \f
958 /* Return the INSN_LIST containing INSN in LIST, or NULL
959 if LIST does not contain INSN. */
960
961 __inline static rtx
962 find_insn_list (insn, list)
963 rtx insn;
964 rtx list;
965 {
966 while (list)
967 {
968 if (XEXP (list, 0) == insn)
969 return list;
970 list = XEXP (list, 1);
971 }
972 return 0;
973 }
974
975 /* Compute the function units used by INSN. This caches the value
976 returned by function_units_used. A function unit is encoded as the
977 unit number if the value is non-negative and the compliment of a
978 mask if the value is negative. A function unit index is the
979 non-negative encoding. */
980
981 __inline static int
982 insn_unit (insn)
983 rtx insn;
984 {
985 register int unit = INSN_UNIT (insn);
986
987 if (unit == 0)
988 {
989 recog_memoized (insn);
990
991 /* A USE insn, or something else we don't need to understand.
992 We can't pass these directly to function_units_used because it will
993 trigger a fatal error for unrecognizable insns. */
994 if (INSN_CODE (insn) < 0)
995 unit = -1;
996 else
997 {
998 unit = function_units_used (insn);
999 /* Increment non-negative values so we can cache zero. */
1000 if (unit >= 0) unit++;
1001 }
1002 /* We only cache 16 bits of the result, so if the value is out of
1003 range, don't cache it. */
1004 if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
1005 || unit >= 0
1006 || (~unit & ((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
1007 INSN_UNIT (insn) = unit;
1008 }
1009 return (unit > 0 ? unit - 1 : unit);
1010 }
1011
1012 /* Compute the blockage range for executing INSN on UNIT. This caches
1013 the value returned by the blockage_range_function for the unit.
1014 These values are encoded in an int where the upper half gives the
1015 minimum value and the lower half gives the maximum value. */
1016
1017 __inline static unsigned int
1018 blockage_range (unit, insn)
1019 int unit;
1020 rtx insn;
1021 {
1022 unsigned int blockage = INSN_BLOCKAGE (insn);
1023 unsigned int range;
1024
1025 if (UNIT_BLOCKED (blockage) != unit + 1)
1026 {
1027 range = function_units[unit].blockage_range_function (insn);
1028 /* We only cache the blockage range for one unit and then only if
1029 the values fit. */
1030 if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
1031 INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
1032 }
1033 else
1034 range = BLOCKAGE_RANGE (blockage);
1035
1036 return range;
1037 }
1038
1039 /* A vector indexed by function unit instance giving the last insn to use
1040 the unit. The value of the function unit instance index for unit U
1041 instance I is (U + I * FUNCTION_UNITS_SIZE). */
1042 static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
1043
1044 /* A vector indexed by function unit instance giving the minimum time when
1045 the unit will unblock based on the maximum blockage cost. */
1046 static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
1047
1048 /* A vector indexed by function unit number giving the number of insns
1049 that remain to use the unit. */
1050 static int unit_n_insns[FUNCTION_UNITS_SIZE];
1051
1052 /* Reset the function unit state to the null state. */
1053
1054 static void
1055 clear_units ()
1056 {
1057 int unit;
1058
1059 bzero (unit_last_insn, sizeof (unit_last_insn));
1060 bzero (unit_tick, sizeof (unit_tick));
1061 bzero (unit_n_insns, sizeof (unit_n_insns));
1062 }
1063
1064 /* Record an insn as one that will use the units encoded by UNIT. */
1065
1066 __inline static void
1067 prepare_unit (unit)
1068 int unit;
1069 {
1070 int i;
1071
1072 if (unit >= 0)
1073 unit_n_insns[unit]++;
1074 else
1075 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
1076 if ((unit & 1) != 0)
1077 prepare_unit (i);
1078 }
1079
1080 /* Return the actual hazard cost of executing INSN on the unit UNIT,
1081 instance INSTANCE at time CLOCK if the previous actual hazard cost
1082 was COST. */
1083
1084 __inline static int
1085 actual_hazard_this_instance (unit, instance, insn, clock, cost)
1086 int unit, instance, clock, cost;
1087 rtx insn;
1088 {
1089 int i;
1090 int tick = unit_tick[instance];
1091
1092 if (tick - clock > cost)
1093 {
1094 /* The scheduler is operating in reverse, so INSN is the executing
1095 insn and the unit's last insn is the candidate insn. We want a
1096 more exact measure of the blockage if we execute INSN at CLOCK
1097 given when we committed the execution of the unit's last insn.
1098
1099 The blockage value is given by either the unit's max blockage
1100 constant, blockage range function, or blockage function. Use
1101 the most exact form for the given unit. */
1102
1103 if (function_units[unit].blockage_range_function)
1104 {
1105 if (function_units[unit].blockage_function)
1106 tick += (function_units[unit].blockage_function
1107 (insn, unit_last_insn[instance])
1108 - function_units[unit].max_blockage);
1109 else
1110 tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
1111 - function_units[unit].max_blockage);
1112 }
1113 if (tick - clock > cost)
1114 cost = tick - clock;
1115 }
1116 return cost;
1117 }
1118
1119 /* Record INSN as having begun execution on the units encoded by UNIT at
1120 time CLOCK. */
1121
1122 __inline static void
1123 schedule_unit (unit, insn, clock)
1124 int unit, clock;
1125 rtx insn;
1126 {
1127 int i;
1128
1129 if (unit >= 0)
1130 {
1131 int instance = unit;
1132 #if MAX_MULTIPLICITY > 1
1133 /* Find the first free instance of the function unit and use that
1134 one. We assume that one is free. */
1135 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
1136 {
1137 if (! actual_hazard_this_instance (unit, instance, insn, clock, 0))
1138 break;
1139 instance += FUNCTION_UNITS_SIZE;
1140 }
1141 #endif
1142 unit_last_insn[instance] = insn;
1143 unit_tick[instance] = (clock + function_units[unit].max_blockage);
1144 }
1145 else
1146 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
1147 if ((unit & 1) != 0)
1148 schedule_unit (i, insn, clock);
1149 }
1150
1151 /* Return the actual hazard cost of executing INSN on the units encoded by
1152 UNIT at time CLOCK if the previous actual hazard cost was COST. */
1153
1154 __inline static int
1155 actual_hazard (unit, insn, clock, cost)
1156 int unit, clock, cost;
1157 rtx insn;
1158 {
1159 int i;
1160
1161 if (unit >= 0)
1162 {
1163 /* Find the instance of the function unit with the minimum hazard. */
1164 int instance = unit;
1165 int best = instance;
1166 int best_cost = actual_hazard_this_instance (unit, instance, insn,
1167 clock, cost);
1168 int this_cost;
1169
1170 #if MAX_MULTIPLICITY > 1
1171 if (best_cost > cost)
1172 {
1173 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
1174 {
1175 instance += FUNCTION_UNITS_SIZE;
1176 this_cost = actual_hazard_this_instance (unit, instance, insn,
1177 clock, cost);
1178 if (this_cost < best_cost)
1179 {
1180 best = instance;
1181 best_cost = this_cost;
1182 if (this_cost <= cost)
1183 break;
1184 }
1185 }
1186 }
1187 #endif
1188 cost = MAX (cost, best_cost);
1189 }
1190 else
1191 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
1192 if ((unit & 1) != 0)
1193 cost = actual_hazard (i, insn, clock, cost);
1194
1195 return cost;
1196 }
1197
1198 /* Return the potential hazard cost of executing an instruction on the
1199 units encoded by UNIT if the previous potential hazard cost was COST.
1200 An insn with a large blockage time is chosen in preference to one
1201 with a smaller time; an insn that uses a unit that is more likely
1202 to be used is chosen in preference to one with a unit that is less
1203 used. We are trying to minimize a subsequent actual hazard. */
1204
1205 __inline static int
1206 potential_hazard (unit, insn, cost)
1207 int unit, cost;
1208 rtx insn;
1209 {
1210 int i, ncost;
1211 unsigned int minb, maxb;
1212
1213 if (unit >= 0)
1214 {
1215 minb = maxb = function_units[unit].max_blockage;
1216 if (maxb > 1)
1217 {
1218 if (function_units[unit].blockage_range_function)
1219 {
1220 maxb = minb = blockage_range (unit, insn);
1221 maxb = MAX_BLOCKAGE_COST (maxb);
1222 minb = MIN_BLOCKAGE_COST (minb);
1223 }
1224
1225 if (maxb > 1)
1226 {
1227 /* Make the number of instructions left dominate. Make the
1228 minimum delay dominate the maximum delay. If all these
1229 are the same, use the unit number to add an arbitrary
1230 ordering. Other terms can be added. */
1231 ncost = minb * 0x40 + maxb;
1232 ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
1233 if (ncost > cost)
1234 cost = ncost;
1235 }
1236 }
1237 }
1238 else
1239 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
1240 if ((unit & 1) != 0)
1241 cost = potential_hazard (i, insn, cost);
1242
1243 return cost;
1244 }
1245
1246 /* Compute cost of executing INSN given the dependence LINK on the insn USED.
1247 This is the number of virtual cycles taken between instruction issue and
1248 instruction results. */
1249
1250 __inline static int
1251 insn_cost (insn, link, used)
1252 rtx insn, link, used;
1253 {
1254 register int cost = INSN_COST (insn);
1255
1256 if (cost == 0)
1257 {
1258 recog_memoized (insn);
1259
1260 /* A USE insn, or something else we don't need to understand.
1261 We can't pass these directly to result_ready_cost because it will
1262 trigger a fatal error for unrecognizable insns. */
1263 if (INSN_CODE (insn) < 0)
1264 {
1265 INSN_COST (insn) = 1;
1266 return 1;
1267 }
1268 else
1269 {
1270 cost = result_ready_cost (insn);
1271
1272 if (cost < 1)
1273 cost = 1;
1274
1275 INSN_COST (insn) = cost;
1276 }
1277 }
1278
1279 /* A USE insn should never require the value used to be computed. This
1280 allows the computation of a function's result and parameter values to
1281 overlap the return and call. */
1282 recog_memoized (used);
1283 if (INSN_CODE (used) < 0)
1284 LINK_COST_FREE (link) = 1;
1285
1286 /* If some dependencies vary the cost, compute the adjustment. Most
1287 commonly, the adjustment is complete: either the cost is ignored
1288 (in the case of an output- or anti-dependence), or the cost is
1289 unchanged. These values are cached in the link as LINK_COST_FREE
1290 and LINK_COST_ZERO. */
1291
1292 if (LINK_COST_FREE (link))
1293 cost = 1;
1294 #ifdef ADJUST_COST
1295 else if (! LINK_COST_ZERO (link))
1296 {
1297 int ncost = cost;
1298
1299 ADJUST_COST (used, link, insn, ncost);
1300 if (ncost <= 1)
1301 LINK_COST_FREE (link) = ncost = 1;
1302 if (cost == ncost)
1303 LINK_COST_ZERO (link) = 1;
1304 cost = ncost;
1305 }
1306 #endif
1307 return cost;
1308 }
1309
1310 /* Compute the priority number for INSN. */
1311
1312 static int
1313 priority (insn)
1314 rtx insn;
1315 {
1316 if (insn && GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1317 {
1318 int prev_priority;
1319 int max_priority;
1320 int this_priority = INSN_PRIORITY (insn);
1321 rtx prev;
1322
1323 if (this_priority > 0)
1324 return this_priority;
1325
1326 max_priority = 1;
1327
1328 /* Nonzero if these insns must be scheduled together. */
1329 if (SCHED_GROUP_P (insn))
1330 {
1331 prev = insn;
1332 while (SCHED_GROUP_P (prev))
1333 {
1334 prev = PREV_INSN (prev);
1335 INSN_REF_COUNT (prev) += 1;
1336 }
1337 }
1338
1339 for (prev = LOG_LINKS (insn); prev; prev = XEXP (prev, 1))
1340 {
1341 rtx x = XEXP (prev, 0);
1342
1343 /* A dependence pointing to a note is always obsolete, because
1344 sched_analyze_insn will have created any necessary new dependences
1345 which replace it. Notes can be created when instructions are
1346 deleted by insn splitting, or by register allocation. */
1347 if (GET_CODE (x) == NOTE)
1348 {
1349 remove_dependence (insn, x);
1350 continue;
1351 }
1352
1353 /* Clear the link cost adjustment bits. */
1354 LINK_COST_FREE (prev) = 0;
1355 #ifdef ADJUST_COST
1356 LINK_COST_ZERO (prev) = 0;
1357 #endif
1358
1359 /* This priority calculation was chosen because it results in the
1360 least instruction movement, and does not hurt the performance
1361 of the resulting code compared to the old algorithm.
1362 This makes the sched algorithm more stable, which results
1363 in better code, because there is less register pressure,
1364 cross jumping is more likely to work, and debugging is easier.
1365
1366 When all instructions have a latency of 1, there is no need to
1367 move any instructions. Subtracting one here ensures that in such
1368 cases all instructions will end up with a priority of one, and
1369 hence no scheduling will be done.
1370
1371 The original code did not subtract the one, and added the
1372 insn_cost of the current instruction to its priority (e.g.
1373 move the insn_cost call down to the end). */
1374
1375 if (REG_NOTE_KIND (prev) == 0)
1376 /* Data dependence. */
1377 prev_priority = priority (x) + insn_cost (x, prev, insn) - 1;
1378 else
1379 /* Anti or output dependence. Don't add the latency of this
1380 insn's result, because it isn't being used. */
1381 prev_priority = priority (x);
1382
1383 if (prev_priority > max_priority)
1384 max_priority = prev_priority;
1385 INSN_REF_COUNT (x) += 1;
1386 }
1387
1388 prepare_unit (insn_unit (insn));
1389 INSN_PRIORITY (insn) = max_priority;
1390 return INSN_PRIORITY (insn);
1391 }
1392 return 0;
1393 }
1394 \f
1395 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
1396 them to the unused_*_list variables, so that they can be reused. */
1397
1398 static void
1399 free_pending_lists ()
1400 {
1401 register rtx link, prev_link;
1402
1403 if (pending_read_insns)
1404 {
1405 prev_link = pending_read_insns;
1406 link = XEXP (prev_link, 1);
1407
1408 while (link)
1409 {
1410 prev_link = link;
1411 link = XEXP (link, 1);
1412 }
1413
1414 XEXP (prev_link, 1) = unused_insn_list;
1415 unused_insn_list = pending_read_insns;
1416 pending_read_insns = 0;
1417 }
1418
1419 if (pending_write_insns)
1420 {
1421 prev_link = pending_write_insns;
1422 link = XEXP (prev_link, 1);
1423
1424 while (link)
1425 {
1426 prev_link = link;
1427 link = XEXP (link, 1);
1428 }
1429
1430 XEXP (prev_link, 1) = unused_insn_list;
1431 unused_insn_list = pending_write_insns;
1432 pending_write_insns = 0;
1433 }
1434
1435 if (pending_read_mems)
1436 {
1437 prev_link = pending_read_mems;
1438 link = XEXP (prev_link, 1);
1439
1440 while (link)
1441 {
1442 prev_link = link;
1443 link = XEXP (link, 1);
1444 }
1445
1446 XEXP (prev_link, 1) = unused_expr_list;
1447 unused_expr_list = pending_read_mems;
1448 pending_read_mems = 0;
1449 }
1450
1451 if (pending_write_mems)
1452 {
1453 prev_link = pending_write_mems;
1454 link = XEXP (prev_link, 1);
1455
1456 while (link)
1457 {
1458 prev_link = link;
1459 link = XEXP (link, 1);
1460 }
1461
1462 XEXP (prev_link, 1) = unused_expr_list;
1463 unused_expr_list = pending_write_mems;
1464 pending_write_mems = 0;
1465 }
1466 }
1467
1468 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1469 The MEM is a memory reference contained within INSN, which we are saving
1470 so that we can do memory aliasing on it. */
1471
1472 static void
1473 add_insn_mem_dependence (insn_list, mem_list, insn, mem)
1474 rtx *insn_list, *mem_list, insn, mem;
1475 {
1476 register rtx link;
1477
1478 if (unused_insn_list)
1479 {
1480 link = unused_insn_list;
1481 unused_insn_list = XEXP (link, 1);
1482 }
1483 else
1484 link = rtx_alloc (INSN_LIST);
1485 XEXP (link, 0) = insn;
1486 XEXP (link, 1) = *insn_list;
1487 *insn_list = link;
1488
1489 if (unused_expr_list)
1490 {
1491 link = unused_expr_list;
1492 unused_expr_list = XEXP (link, 1);
1493 }
1494 else
1495 link = rtx_alloc (EXPR_LIST);
1496 XEXP (link, 0) = mem;
1497 XEXP (link, 1) = *mem_list;
1498 *mem_list = link;
1499
1500 pending_lists_length++;
1501 }
1502 \f
1503 /* Make a dependency between every memory reference on the pending lists
1504 and INSN, thus flushing the pending lists. */
1505
1506 static void
1507 flush_pending_lists (insn)
1508 rtx insn;
1509 {
1510 rtx link;
1511
1512 while (pending_read_insns)
1513 {
1514 add_dependence (insn, XEXP (pending_read_insns, 0), REG_DEP_ANTI);
1515
1516 link = pending_read_insns;
1517 pending_read_insns = XEXP (pending_read_insns, 1);
1518 XEXP (link, 1) = unused_insn_list;
1519 unused_insn_list = link;
1520
1521 link = pending_read_mems;
1522 pending_read_mems = XEXP (pending_read_mems, 1);
1523 XEXP (link, 1) = unused_expr_list;
1524 unused_expr_list = link;
1525 }
1526 while (pending_write_insns)
1527 {
1528 add_dependence (insn, XEXP (pending_write_insns, 0), REG_DEP_ANTI);
1529
1530 link = pending_write_insns;
1531 pending_write_insns = XEXP (pending_write_insns, 1);
1532 XEXP (link, 1) = unused_insn_list;
1533 unused_insn_list = link;
1534
1535 link = pending_write_mems;
1536 pending_write_mems = XEXP (pending_write_mems, 1);
1537 XEXP (link, 1) = unused_expr_list;
1538 unused_expr_list = link;
1539 }
1540 pending_lists_length = 0;
1541
1542 if (last_pending_memory_flush)
1543 add_dependence (insn, last_pending_memory_flush, REG_DEP_ANTI);
1544
1545 last_pending_memory_flush = insn;
1546 }
1547
1548 /* Analyze a single SET or CLOBBER rtx, X, creating all dependencies generated
1549 by the write to the destination of X, and reads of everything mentioned. */
1550
1551 static void
1552 sched_analyze_1 (x, insn)
1553 rtx x;
1554 rtx insn;
1555 {
1556 register int regno;
1557 register rtx dest = SET_DEST (x);
1558
1559 if (dest == 0)
1560 return;
1561
1562 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
1563 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
1564 {
1565 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
1566 {
1567 /* The second and third arguments are values read by this insn. */
1568 sched_analyze_2 (XEXP (dest, 1), insn);
1569 sched_analyze_2 (XEXP (dest, 2), insn);
1570 }
1571 dest = SUBREG_REG (dest);
1572 }
1573
1574 if (GET_CODE (dest) == REG)
1575 {
1576 register int offset, bit, i;
1577
1578 regno = REGNO (dest);
1579
1580 /* A hard reg in a wide mode may really be multiple registers.
1581 If so, mark all of them just like the first. */
1582 if (regno < FIRST_PSEUDO_REGISTER)
1583 {
1584 i = HARD_REGNO_NREGS (regno, GET_MODE (dest));
1585 while (--i >= 0)
1586 {
1587 rtx u;
1588
1589 for (u = reg_last_uses[regno+i]; u; u = XEXP (u, 1))
1590 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
1591 reg_last_uses[regno + i] = 0;
1592 if (reg_last_sets[regno + i])
1593 add_dependence (insn, reg_last_sets[regno + i],
1594 REG_DEP_OUTPUT);
1595 reg_last_sets[regno + i] = insn;
1596 if ((call_used_regs[i] || global_regs[i])
1597 && last_function_call)
1598 /* Function calls clobber all call_used regs. */
1599 add_dependence (insn, last_function_call, REG_DEP_ANTI);
1600 }
1601 }
1602 else
1603 {
1604 rtx u;
1605
1606 for (u = reg_last_uses[regno]; u; u = XEXP (u, 1))
1607 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
1608 reg_last_uses[regno] = 0;
1609 if (reg_last_sets[regno])
1610 add_dependence (insn, reg_last_sets[regno], REG_DEP_OUTPUT);
1611 reg_last_sets[regno] = insn;
1612
1613 /* Pseudos that are REG_EQUIV to something may be replaced
1614 by that during reloading, so we can potentially read
1615 quantities mentioned in those addresses. */
1616 if (! reload_completed)
1617 if (reg_known_value[regno] != regno_reg_rtx[regno])
1618 if (GET_CODE (reg_known_value[regno]) == MEM)
1619 sched_analyze_2 (XEXP (reg_known_value[regno], 0), insn);
1620
1621 /* Don't let it cross a call after scheduling if it doesn't
1622 already cross one. */
1623 if (reg_n_calls_crossed[regno] == 0 && last_function_call)
1624 add_dependence (insn, last_function_call, REG_DEP_ANTI);
1625 }
1626 }
1627 else if (GET_CODE (dest) == MEM)
1628 {
1629 /* Writing memory. */
1630
1631 if (pending_lists_length > 32)
1632 {
1633 /* Flush all pending reads and writes to prevent the pending lists
1634 from getting any larger. Insn scheduling runs too slowly when
1635 these lists get long. The number 32 was chosen because it
1636 seems like a reasonable number. When compiling GCC with itself,
1637 this flush occurs 8 times for sparc, and 10 times for m88k using
1638 the number 32. */
1639 flush_pending_lists (insn);
1640 }
1641 else
1642 {
1643 rtx pending, pending_mem;
1644
1645 pending = pending_read_insns;
1646 pending_mem = pending_read_mems;
1647 while (pending)
1648 {
1649 /* If a dependency already exists, don't create a new one. */
1650 if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
1651 if (anti_dependence (XEXP (pending_mem, 0), dest, insn))
1652 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
1653
1654 pending = XEXP (pending, 1);
1655 pending_mem = XEXP (pending_mem, 1);
1656 }
1657
1658 pending = pending_write_insns;
1659 pending_mem = pending_write_mems;
1660 while (pending)
1661 {
1662 /* If a dependency already exists, don't create a new one. */
1663 if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
1664 if (output_dependence (XEXP (pending_mem, 0), dest))
1665 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
1666
1667 pending = XEXP (pending, 1);
1668 pending_mem = XEXP (pending_mem, 1);
1669 }
1670
1671 if (last_pending_memory_flush)
1672 add_dependence (insn, last_pending_memory_flush, REG_DEP_ANTI);
1673
1674 add_insn_mem_dependence (&pending_write_insns, &pending_write_mems,
1675 insn, dest);
1676 }
1677 sched_analyze_2 (XEXP (dest, 0), insn);
1678 }
1679
1680 /* Analyze reads. */
1681 if (GET_CODE (x) == SET)
1682 sched_analyze_2 (SET_SRC (x), insn);
1683 }
1684
1685 /* Analyze the uses of memory and registers in rtx X in INSN. */
1686
1687 static void
1688 sched_analyze_2 (x, insn)
1689 rtx x;
1690 rtx insn;
1691 {
1692 register int i;
1693 register int j;
1694 register enum rtx_code code;
1695 register char *fmt;
1696
1697 if (x == 0)
1698 return;
1699
1700 code = GET_CODE (x);
1701
1702 switch (code)
1703 {
1704 case CONST_INT:
1705 case CONST_DOUBLE:
1706 case SYMBOL_REF:
1707 case CONST:
1708 case LABEL_REF:
1709 /* Ignore constants. Note that we must handle CONST_DOUBLE here
1710 because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
1711 this does not mean that this insn is using cc0. */
1712 return;
1713
1714 #ifdef HAVE_cc0
1715 case CC0:
1716 {
1717 rtx link, prev;
1718
1719 /* There may be a note before this insn now, but all notes will
1720 be removed before we actually try to schedule the insns, so
1721 it won't cause a problem later. We must avoid it here though. */
1722
1723 /* User of CC0 depends on immediately preceding insn. */
1724 SCHED_GROUP_P (insn) = 1;
1725
1726 /* Make a copy of all dependencies on the immediately previous insn,
1727 and add to this insn. This is so that all the dependencies will
1728 apply to the group. Remove an explicit dependence on this insn
1729 as SCHED_GROUP_P now represents it. */
1730
1731 prev = PREV_INSN (insn);
1732 while (GET_CODE (prev) == NOTE)
1733 prev = PREV_INSN (prev);
1734
1735 if (find_insn_list (prev, LOG_LINKS (insn)))
1736 remove_dependence (insn, prev);
1737
1738 for (link = LOG_LINKS (prev); link; link = XEXP (link, 1))
1739 add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
1740
1741 return;
1742 }
1743 #endif
1744
1745 case REG:
1746 {
1747 int regno = REGNO (x);
1748 if (regno < FIRST_PSEUDO_REGISTER)
1749 {
1750 int i;
1751
1752 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
1753 while (--i >= 0)
1754 {
1755 reg_last_uses[regno + i]
1756 = gen_rtx (INSN_LIST, VOIDmode,
1757 insn, reg_last_uses[regno + i]);
1758 if (reg_last_sets[regno + i])
1759 add_dependence (insn, reg_last_sets[regno + i], 0);
1760 if ((call_used_regs[regno + i] || global_regs[regno + i])
1761 && last_function_call)
1762 /* Function calls clobber all call_used regs. */
1763 add_dependence (insn, last_function_call, REG_DEP_ANTI);
1764 }
1765 }
1766 else
1767 {
1768 reg_last_uses[regno]
1769 = gen_rtx (INSN_LIST, VOIDmode, insn, reg_last_uses[regno]);
1770 if (reg_last_sets[regno])
1771 add_dependence (insn, reg_last_sets[regno], 0);
1772
1773 /* Pseudos that are REG_EQUIV to something may be replaced
1774 by that, so we depend on anything mentioned there too. */
1775 if (! reload_completed)
1776 if (reg_known_value[regno] != regno_reg_rtx[regno])
1777 sched_analyze_2 (reg_known_value[regno], insn);
1778
1779 /* If the register does not already cross any calls, then add this
1780 insn to the sched_before_next_call list so that it will still
1781 not cross calls after scheduling. */
1782 if (reg_n_calls_crossed[regno] == 0)
1783 add_dependence (sched_before_next_call, insn, REG_DEP_ANTI);
1784 }
1785 return;
1786 }
1787
1788 case MEM:
1789 {
1790 /* Reading memory. */
1791
1792 rtx pending, pending_mem;
1793
1794 pending = pending_read_insns;
1795 pending_mem = pending_read_mems;
1796 while (pending)
1797 {
1798 /* If a dependency already exists, don't create a new one. */
1799 if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
1800 if (read_dependence (XEXP (pending_mem, 0), x))
1801 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
1802
1803 pending = XEXP (pending, 1);
1804 pending_mem = XEXP (pending_mem, 1);
1805 }
1806
1807 pending = pending_write_insns;
1808 pending_mem = pending_write_mems;
1809 while (pending)
1810 {
1811 /* If a dependency already exists, don't create a new one. */
1812 if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
1813 if (true_dependence (XEXP (pending_mem, 0), x))
1814 add_dependence (insn, XEXP (pending, 0), 0);
1815
1816 pending = XEXP (pending, 1);
1817 pending_mem = XEXP (pending_mem, 1);
1818 }
1819 if (last_pending_memory_flush)
1820 add_dependence (insn, last_pending_memory_flush, REG_DEP_ANTI);
1821
1822 /* Always add these dependencies to pending_reads, since
1823 this insn may be followed by a write. */
1824 add_insn_mem_dependence (&pending_read_insns, &pending_read_mems,
1825 insn, x);
1826
1827 /* Take advantage of tail recursion here. */
1828 sched_analyze_2 (XEXP (x, 0), insn);
1829 return;
1830 }
1831
1832 case ASM_OPERANDS:
1833 case ASM_INPUT:
1834 case UNSPEC_VOLATILE:
1835 case TRAP_IF:
1836 {
1837 rtx u;
1838
1839 /* Traditional and volatile asm instructions must be considered to use
1840 and clobber all hard registers and all of memory. So must
1841 TRAP_IF and UNSPEC_VOLATILE operations. */
1842 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
1843 {
1844 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1845 {
1846 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
1847 if (GET_CODE (PATTERN (XEXP (u, 0))) != USE)
1848 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
1849 reg_last_uses[i] = 0;
1850 if (reg_last_sets[i]
1851 && GET_CODE (PATTERN (reg_last_sets[i])) != USE)
1852 add_dependence (insn, reg_last_sets[i], 0);
1853 reg_last_sets[i] = insn;
1854 }
1855
1856 flush_pending_lists (insn);
1857 }
1858
1859 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1860 We can not just fall through here since then we would be confused
1861 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1862 traditional asms unlike their normal usage. */
1863
1864 if (code == ASM_OPERANDS)
1865 {
1866 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1867 sched_analyze_2 (ASM_OPERANDS_INPUT (x, j), insn);
1868 return;
1869 }
1870 break;
1871 }
1872
1873 case PRE_DEC:
1874 case POST_DEC:
1875 case PRE_INC:
1876 case POST_INC:
1877 /* These both read and modify the result. We must handle them as writes
1878 to get proper dependencies for following instructions. We must handle
1879 them as reads to get proper dependencies from this to previous
1880 instructions. Thus we need to pass them to both sched_analyze_1
1881 and sched_analyze_2. We must call sched_analyze_2 first in order
1882 to get the proper antecedent for the read. */
1883 sched_analyze_2 (XEXP (x, 0), insn);
1884 sched_analyze_1 (x, insn);
1885 return;
1886 }
1887
1888 /* Other cases: walk the insn. */
1889 fmt = GET_RTX_FORMAT (code);
1890 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1891 {
1892 if (fmt[i] == 'e')
1893 sched_analyze_2 (XEXP (x, i), insn);
1894 else if (fmt[i] == 'E')
1895 for (j = 0; j < XVECLEN (x, i); j++)
1896 sched_analyze_2 (XVECEXP (x, i, j), insn);
1897 }
1898 }
1899
1900 /* Analyze an INSN with pattern X to find all dependencies. */
1901
1902 static void
1903 sched_analyze_insn (x, insn)
1904 rtx x, insn;
1905 {
1906 register RTX_CODE code = GET_CODE (x);
1907 rtx link;
1908
1909 if (code == SET || code == CLOBBER)
1910 sched_analyze_1 (x, insn);
1911 else if (code == PARALLEL)
1912 {
1913 register int i;
1914 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1915 {
1916 code = GET_CODE (XVECEXP (x, 0, i));
1917 if (code == SET || code == CLOBBER)
1918 sched_analyze_1 (XVECEXP (x, 0, i), insn);
1919 else
1920 sched_analyze_2 (XVECEXP (x, 0, i), insn);
1921 }
1922 }
1923 else
1924 sched_analyze_2 (x, insn);
1925
1926 /* Handle function calls. */
1927 if (GET_CODE (insn) == CALL_INSN)
1928 {
1929 rtx dep_insn;
1930 rtx prev_dep_insn;
1931
1932 /* When scheduling instructions, we make sure calls don't lose their
1933 accompanying USE insns by depending them one on another in order. */
1934
1935 prev_dep_insn = insn;
1936 dep_insn = PREV_INSN (insn);
1937 while (GET_CODE (dep_insn) == INSN
1938 && GET_CODE (PATTERN (dep_insn)) == USE)
1939 {
1940 SCHED_GROUP_P (prev_dep_insn) = 1;
1941
1942 /* Make a copy of all dependencies on dep_insn, and add to insn.
1943 This is so that all of the dependencies will apply to the
1944 group. */
1945
1946 for (link = LOG_LINKS (dep_insn); link; link = XEXP (link, 1))
1947 add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
1948
1949 prev_dep_insn = dep_insn;
1950 dep_insn = PREV_INSN (dep_insn);
1951 }
1952 }
1953 }
1954
1955 /* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
1956 for every dependency. */
1957
1958 static int
1959 sched_analyze (head, tail)
1960 rtx head, tail;
1961 {
1962 register rtx insn;
1963 register int n_insns = 0;
1964 register rtx u;
1965 register int luid = 0;
1966
1967 for (insn = head; ; insn = NEXT_INSN (insn))
1968 {
1969 INSN_LUID (insn) = luid++;
1970
1971 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1972 {
1973 sched_analyze_insn (PATTERN (insn), insn);
1974 n_insns += 1;
1975 }
1976 else if (GET_CODE (insn) == CALL_INSN)
1977 {
1978 rtx dest = 0;
1979 rtx x;
1980 register int i;
1981
1982 /* Any instruction using a hard register which may get clobbered
1983 by a call needs to be marked as dependent on this call.
1984 This prevents a use of a hard return reg from being moved
1985 past a void call (i.e. it does not explicitly set the hard
1986 return reg). */
1987
1988 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1989 if (call_used_regs[i] || global_regs[i])
1990 {
1991 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
1992 if (GET_CODE (PATTERN (XEXP (u, 0))) != USE)
1993 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
1994 reg_last_uses[i] = 0;
1995 if (reg_last_sets[i]
1996 && GET_CODE (PATTERN (reg_last_sets[i])) != USE)
1997 add_dependence (insn, reg_last_sets[i], REG_DEP_ANTI);
1998 reg_last_sets[i] = insn;
1999 /* Insn, being a CALL_INSN, magically depends on
2000 `last_function_call' already. */
2001 }
2002
2003 /* For each insn which shouldn't cross a call, add a dependence
2004 between that insn and this call insn. */
2005 x = LOG_LINKS (sched_before_next_call);
2006 while (x)
2007 {
2008 add_dependence (insn, XEXP (x, 0), REG_DEP_ANTI);
2009 x = XEXP (x, 1);
2010 }
2011 LOG_LINKS (sched_before_next_call) = 0;
2012
2013 sched_analyze_insn (PATTERN (insn), insn);
2014
2015 /* We don't need to flush memory for a function call which does
2016 not involve memory. */
2017 if (! CONST_CALL_P (insn))
2018 {
2019 /* In the absence of interprocedural alias analysis,
2020 we must flush all pending reads and writes, and
2021 start new dependencies starting from here. */
2022 flush_pending_lists (insn);
2023 }
2024
2025 /* Depend this function call (actually, the user of this
2026 function call) on all hard register clobberage. */
2027 last_function_call = insn;
2028 n_insns += 1;
2029 }
2030
2031 if (insn == tail)
2032 return n_insns;
2033 }
2034 }
2035 \f
2036 /* Called when we see a set of a register. If death is true, then we are
2037 scanning backwards. Mark that register as unborn. If nobody says
2038 otherwise, that is how things will remain. If death is false, then we
2039 are scanning forwards. Mark that register as being born. */
2040
2041 static void
2042 sched_note_set (b, x, death)
2043 int b;
2044 rtx x;
2045 int death;
2046 {
2047 register int regno, j;
2048 register rtx reg = SET_DEST (x);
2049 int subreg_p = 0;
2050
2051 if (reg == 0)
2052 return;
2053
2054 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == STRICT_LOW_PART
2055 || GET_CODE (reg) == SIGN_EXTRACT || GET_CODE (reg) == ZERO_EXTRACT)
2056 {
2057 /* Must treat modification of just one hardware register of a multi-reg
2058 value or just a byte field of a register exactly the same way that
2059 mark_set_1 in flow.c does, i.e. anything except a paradoxical subreg
2060 does not kill the entire register. */
2061 if (GET_CODE (reg) != SUBREG
2062 || REG_SIZE (SUBREG_REG (reg)) > REG_SIZE (reg))
2063 subreg_p = 1;
2064
2065 reg = SUBREG_REG (reg);
2066 }
2067
2068 if (GET_CODE (reg) != REG)
2069 return;
2070
2071 /* Global registers are always live, so the code below does not apply
2072 to them. */
2073
2074 regno = REGNO (reg);
2075 if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
2076 {
2077 register int offset = regno / REGSET_ELT_BITS;
2078 register REGSET_ELT_TYPE bit
2079 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2080
2081 if (death)
2082 {
2083 /* If we only set part of the register, then this set does not
2084 kill it. */
2085 if (subreg_p)
2086 return;
2087
2088 /* Try killing this register. */
2089 if (regno < FIRST_PSEUDO_REGISTER)
2090 {
2091 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2092 while (--j >= 0)
2093 {
2094 offset = (regno + j) / REGSET_ELT_BITS;
2095 bit = (REGSET_ELT_TYPE) 1 << ((regno + j) % REGSET_ELT_BITS);
2096
2097 bb_live_regs[offset] &= ~bit;
2098 bb_dead_regs[offset] |= bit;
2099 }
2100 }
2101 else
2102 {
2103 bb_live_regs[offset] &= ~bit;
2104 bb_dead_regs[offset] |= bit;
2105 }
2106 }
2107 else
2108 {
2109 /* Make the register live again. */
2110 if (regno < FIRST_PSEUDO_REGISTER)
2111 {
2112 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2113 while (--j >= 0)
2114 {
2115 offset = (regno + j) / REGSET_ELT_BITS;
2116 bit = (REGSET_ELT_TYPE) 1 << ((regno + j) % REGSET_ELT_BITS);
2117
2118 bb_live_regs[offset] |= bit;
2119 bb_dead_regs[offset] &= ~bit;
2120 }
2121 }
2122 else
2123 {
2124 bb_live_regs[offset] |= bit;
2125 bb_dead_regs[offset] &= ~bit;
2126 }
2127 }
2128 }
2129 }
2130 \f
2131 /* Macros and functions for keeping the priority queue sorted, and
2132 dealing with queueing and unqueueing of instructions. */
2133
2134 #define SCHED_SORT(READY, NEW_READY, OLD_READY) \
2135 do { if ((NEW_READY) - (OLD_READY) == 1) \
2136 swap_sort (READY, NEW_READY); \
2137 else if ((NEW_READY) - (OLD_READY) > 1) \
2138 qsort (READY, NEW_READY, sizeof (rtx), rank_for_schedule); } \
2139 while (0)
2140
2141 /* Returns a positive value if y is preferred; returns a negative value if
2142 x is preferred. Should never return 0, since that will make the sort
2143 unstable. */
2144
2145 static int
2146 rank_for_schedule (x, y)
2147 rtx *x, *y;
2148 {
2149 rtx tmp = *y;
2150 rtx tmp2 = *x;
2151 rtx link;
2152 int tmp_class, tmp2_class;
2153 int value;
2154
2155 /* Choose the instruction with the highest priority, if different. */
2156 if (value = INSN_PRIORITY (tmp) - INSN_PRIORITY (tmp2))
2157 return value;
2158
2159 if (last_scheduled_insn)
2160 {
2161 /* Classify the instructions into three classes:
2162 1) Data dependent on last schedule insn.
2163 2) Anti/Output dependent on last scheduled insn.
2164 3) Independent of last scheduled insn, or has latency of one.
2165 Choose the insn from the highest numbered class if different. */
2166 link = find_insn_list (tmp, LOG_LINKS (last_scheduled_insn));
2167 if (link == 0 || insn_cost (tmp, link, last_scheduled_insn) == 1)
2168 tmp_class = 3;
2169 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
2170 tmp_class = 1;
2171 else
2172 tmp_class = 2;
2173
2174 link = find_insn_list (tmp2, LOG_LINKS (last_scheduled_insn));
2175 if (link == 0 || insn_cost (tmp2, link, last_scheduled_insn) == 1)
2176 tmp2_class = 3;
2177 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
2178 tmp2_class = 1;
2179 else
2180 tmp2_class = 2;
2181
2182 if (value = tmp_class - tmp2_class)
2183 return value;
2184 }
2185
2186 /* If insns are equally good, sort by INSN_LUID (original insn order),
2187 so that we make the sort stable. This minimizes instruction movement,
2188 thus minimizing sched's effect on debugging and cross-jumping. */
2189 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2190 }
2191
2192 /* Resort the array A in which only element at index N may be out of order. */
2193
2194 __inline static void
2195 swap_sort (a, n)
2196 rtx *a;
2197 int n;
2198 {
2199 rtx insn = a[n-1];
2200 int i = n-2;
2201
2202 while (i >= 0 && rank_for_schedule (a+i, &insn) >= 0)
2203 {
2204 a[i+1] = a[i];
2205 i -= 1;
2206 }
2207 a[i+1] = insn;
2208 }
2209
2210 static int max_priority;
2211
2212 /* Add INSN to the insn queue so that it fires at least N_CYCLES
2213 before the currently executing insn. */
2214
2215 __inline static void
2216 queue_insn (insn, n_cycles)
2217 rtx insn;
2218 int n_cycles;
2219 {
2220 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2221 NEXT_INSN (insn) = insn_queue[next_q];
2222 insn_queue[next_q] = insn;
2223 q_size += 1;
2224 }
2225
2226 /* Return nonzero if PAT is the pattern of an insn which makes a
2227 register live. */
2228
2229 __inline static int
2230 birthing_insn_p (pat)
2231 rtx pat;
2232 {
2233 int j;
2234
2235 if (reload_completed == 1)
2236 return 0;
2237
2238 if (GET_CODE (pat) == SET
2239 && GET_CODE (SET_DEST (pat)) == REG)
2240 {
2241 rtx dest = SET_DEST (pat);
2242 int i = REGNO (dest);
2243 int offset = i / REGSET_ELT_BITS;
2244 REGSET_ELT_TYPE bit = (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
2245
2246 /* It would be more accurate to use refers_to_regno_p or
2247 reg_mentioned_p to determine when the dest is not live before this
2248 insn. */
2249
2250 if (bb_live_regs[offset] & bit)
2251 return (reg_n_sets[i] == 1);
2252
2253 return 0;
2254 }
2255 if (GET_CODE (pat) == PARALLEL)
2256 {
2257 for (j = 0; j < XVECLEN (pat, 0); j++)
2258 if (birthing_insn_p (XVECEXP (pat, 0, j)))
2259 return 1;
2260 }
2261 return 0;
2262 }
2263
2264 /* PREV is an insn that is ready to execute. Adjust its priority if that
2265 will help shorten register lifetimes. */
2266
2267 __inline static void
2268 adjust_priority (prev)
2269 rtx prev;
2270 {
2271 /* Trying to shorten register lives after reload has completed
2272 is useless and wrong. It gives inaccurate schedules. */
2273 if (reload_completed == 0)
2274 {
2275 rtx note;
2276 int n_deaths = 0;
2277
2278 for (note = REG_NOTES (prev); note; note = XEXP (note, 1))
2279 if (REG_NOTE_KIND (note) == REG_DEAD)
2280 n_deaths += 1;
2281
2282 /* Defer scheduling insns which kill registers, since that
2283 shortens register lives. Prefer scheduling insns which
2284 make registers live for the same reason. */
2285 switch (n_deaths)
2286 {
2287 default:
2288 INSN_PRIORITY (prev) >>= 3;
2289 break;
2290 case 3:
2291 INSN_PRIORITY (prev) >>= 2;
2292 break;
2293 case 2:
2294 case 1:
2295 INSN_PRIORITY (prev) >>= 1;
2296 break;
2297 case 0:
2298 if (birthing_insn_p (PATTERN (prev)))
2299 {
2300 int max = max_priority;
2301
2302 if (max > INSN_PRIORITY (prev))
2303 INSN_PRIORITY (prev) = max;
2304 }
2305 break;
2306 }
2307 }
2308 }
2309
2310 /* INSN is the "currently executing insn". Launch each insn which was
2311 waiting on INSN (in the backwards dataflow sense). READY is a
2312 vector of insns which are ready to fire. N_READY is the number of
2313 elements in READY. CLOCK is the current virtual cycle. */
2314
2315 static int
2316 schedule_insn (insn, ready, n_ready, clock)
2317 rtx insn;
2318 rtx *ready;
2319 int n_ready;
2320 int clock;
2321 {
2322 rtx link;
2323 int new_ready = n_ready;
2324
2325 if (MAX_BLOCKAGE > 1)
2326 schedule_unit (insn_unit (insn), insn, clock);
2327
2328 if (LOG_LINKS (insn) == 0)
2329 return n_ready;
2330
2331 /* This is used by the function adjust_priority above. */
2332 if (n_ready > 0)
2333 max_priority = MAX (INSN_PRIORITY (ready[0]), INSN_PRIORITY (insn));
2334 else
2335 max_priority = INSN_PRIORITY (insn);
2336
2337 for (link = LOG_LINKS (insn); link != 0; link = XEXP (link, 1))
2338 {
2339 rtx prev = XEXP (link, 0);
2340 int cost = insn_cost (prev, link, insn);
2341
2342 if ((INSN_REF_COUNT (prev) -= 1) != 0)
2343 {
2344 /* We satisfied one requirement to fire PREV. Record the earliest
2345 time when PREV can fire. No need to do this if the cost is 1,
2346 because PREV can fire no sooner than the next cycle. */
2347 if (cost > 1)
2348 INSN_TICK (prev) = MAX (INSN_TICK (prev), clock + cost);
2349 }
2350 else
2351 {
2352 /* We satisfied the last requirement to fire PREV. Ensure that all
2353 timing requirements are satisfied. */
2354 if (INSN_TICK (prev) - clock > cost)
2355 cost = INSN_TICK (prev) - clock;
2356
2357 /* Adjust the priority of PREV and either put it on the ready
2358 list or queue it. */
2359 adjust_priority (prev);
2360 if (cost <= 1)
2361 ready[new_ready++] = prev;
2362 else
2363 queue_insn (prev, cost);
2364 }
2365 }
2366
2367 return new_ready;
2368 }
2369
2370 /* Given N_READY insns in the ready list READY at time CLOCK, queue
2371 those that are blocked due to function unit hazards and rearrange
2372 the remaining ones to minimize subsequent function unit hazards. */
2373
2374 static int
2375 schedule_select (ready, n_ready, clock, file)
2376 rtx *ready;
2377 int n_ready, clock;
2378 FILE *file;
2379 {
2380 int pri = INSN_PRIORITY (ready[0]);
2381 int i, j, k, q, cost, best_cost, best_insn = 0, new_ready = n_ready;
2382 rtx insn;
2383
2384 /* Work down the ready list in groups of instructions with the same
2385 priority value. Queue insns in the group that are blocked and
2386 select among those that remain for the one with the largest
2387 potential hazard. */
2388 for (i = 0; i < n_ready; i = j)
2389 {
2390 int opri = pri;
2391 for (j = i + 1; j < n_ready; j++)
2392 if ((pri = INSN_PRIORITY (ready[j])) != opri)
2393 break;
2394
2395 /* Queue insns in the group that are blocked. */
2396 for (k = i, q = 0; k < j; k++)
2397 {
2398 insn = ready[k];
2399 if ((cost = actual_hazard (insn_unit (insn), insn, clock, 0)) != 0)
2400 {
2401 q++;
2402 ready[k] = 0;
2403 queue_insn (insn, cost);
2404 if (file)
2405 fprintf (file, "\n;; blocking insn %d for %d cycles",
2406 INSN_UID (insn), cost);
2407 }
2408 }
2409 new_ready -= q;
2410
2411 /* Check the next group if all insns were queued. */
2412 if (j - i - q == 0)
2413 continue;
2414
2415 /* If more than one remains, select the first one with the largest
2416 potential hazard. */
2417 else if (j - i - q > 1)
2418 {
2419 best_cost = -1;
2420 for (k = i; k < j; k++)
2421 {
2422 if ((insn = ready[k]) == 0)
2423 continue;
2424 if ((cost = potential_hazard (insn_unit (insn), insn, 0))
2425 > best_cost)
2426 {
2427 best_cost = cost;
2428 best_insn = k;
2429 }
2430 }
2431 }
2432 /* We have found a suitable insn to schedule. */
2433 break;
2434 }
2435
2436 /* Move the best insn to be front of the ready list. */
2437 if (best_insn != 0)
2438 {
2439 if (file)
2440 {
2441 fprintf (file, ", now");
2442 for (i = 0; i < n_ready; i++)
2443 if (ready[i])
2444 fprintf (file, " %d", INSN_UID (ready[i]));
2445 fprintf (file, "\n;; insn %d has a greater potential hazard",
2446 INSN_UID (ready[best_insn]));
2447 }
2448 for (i = best_insn; i > 0; i--)
2449 {
2450 insn = ready[i-1];
2451 ready[i-1] = ready[i];
2452 ready[i] = insn;
2453 }
2454 }
2455
2456 /* Compact the ready list. */
2457 if (new_ready < n_ready)
2458 for (i = j = 0; i < n_ready; i++)
2459 if (ready[i])
2460 ready[j++] = ready[i];
2461
2462 return new_ready;
2463 }
2464
2465 /* Add a REG_DEAD note for REG to INSN, reusing a REG_DEAD note from the
2466 dead_notes list. */
2467
2468 static void
2469 create_reg_dead_note (reg, insn)
2470 rtx reg, insn;
2471 {
2472 rtx link = dead_notes;
2473
2474 if (link == 0)
2475 /* In theory, we should not end up with more REG_DEAD reg notes than we
2476 started with. In practice, this can occur as the result of bugs in
2477 flow, combine and/or sched. */
2478 {
2479 #if 1
2480 abort ();
2481 #else
2482 link = rtx_alloc (EXPR_LIST);
2483 PUT_REG_NOTE_KIND (link, REG_DEAD);
2484 #endif
2485 }
2486 else
2487 dead_notes = XEXP (dead_notes, 1);
2488
2489 XEXP (link, 0) = reg;
2490 XEXP (link, 1) = REG_NOTES (insn);
2491 REG_NOTES (insn) = link;
2492 }
2493
2494 /* Subroutine on attach_deaths_insn--handles the recursive search
2495 through INSN. If SET_P is true, then x is being modified by the insn. */
2496
2497 static void
2498 attach_deaths (x, insn, set_p)
2499 rtx x;
2500 rtx insn;
2501 int set_p;
2502 {
2503 register int i;
2504 register int j;
2505 register enum rtx_code code;
2506 register char *fmt;
2507
2508 if (x == 0)
2509 return;
2510
2511 code = GET_CODE (x);
2512
2513 switch (code)
2514 {
2515 case CONST_INT:
2516 case CONST_DOUBLE:
2517 case LABEL_REF:
2518 case SYMBOL_REF:
2519 case CONST:
2520 case CODE_LABEL:
2521 case PC:
2522 case CC0:
2523 /* Get rid of the easy cases first. */
2524 return;
2525
2526 case REG:
2527 {
2528 /* If the register dies in this insn, queue that note, and mark
2529 this register as needing to die. */
2530 /* This code is very similar to mark_used_1 (if set_p is false)
2531 and mark_set_1 (if set_p is true) in flow.c. */
2532
2533 register int regno = REGNO (x);
2534 register int offset = regno / REGSET_ELT_BITS;
2535 register REGSET_ELT_TYPE bit
2536 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2537 REGSET_ELT_TYPE all_needed = (old_live_regs[offset] & bit);
2538 REGSET_ELT_TYPE some_needed = (old_live_regs[offset] & bit);
2539
2540 if (set_p)
2541 return;
2542
2543 if (regno < FIRST_PSEUDO_REGISTER)
2544 {
2545 int n;
2546
2547 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2548 while (--n > 0)
2549 {
2550 some_needed |= (old_live_regs[(regno + n) / REGSET_ELT_BITS]
2551 & ((REGSET_ELT_TYPE) 1
2552 << ((regno + n) % REGSET_ELT_BITS)));
2553 all_needed &= (old_live_regs[(regno + n) / REGSET_ELT_BITS]
2554 & ((REGSET_ELT_TYPE) 1
2555 << ((regno + n) % REGSET_ELT_BITS)));
2556 }
2557 }
2558
2559 /* If it wasn't live before we started, then add a REG_DEAD note.
2560 We must check the previous lifetime info not the current info,
2561 because we may have to execute this code several times, e.g.
2562 once for a clobber (which doesn't add a note) and later
2563 for a use (which does add a note).
2564
2565 Always make the register live. We must do this even if it was
2566 live before, because this may be an insn which sets and uses
2567 the same register, in which case the register has already been
2568 killed, so we must make it live again.
2569
2570 Global registers are always live, and should never have a REG_DEAD
2571 note added for them, so none of the code below applies to them. */
2572
2573 if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
2574 {
2575 /* Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2576 STACK_POINTER_REGNUM, since these are always considered to be
2577 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2578 if (regno != FRAME_POINTER_REGNUM
2579 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2580 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2581 #endif
2582 && regno != STACK_POINTER_REGNUM)
2583 {
2584 if (! all_needed && ! dead_or_set_p (insn, x))
2585 {
2586 /* If none of the words in X is needed, make a REG_DEAD
2587 note. Otherwise, we must make partial REG_DEAD
2588 notes. */
2589 if (! some_needed)
2590 create_reg_dead_note (x, insn);
2591 else
2592 {
2593 int i;
2594
2595 /* Don't make a REG_DEAD note for a part of a
2596 register that is set in the insn. */
2597 for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
2598 i >= 0; i--)
2599 if ((old_live_regs[(regno + i) / REGSET_ELT_BITS]
2600 & ((REGSET_ELT_TYPE) 1
2601 << ((regno +i) % REGSET_ELT_BITS))) == 0
2602 && ! dead_or_set_regno_p (insn, regno + i))
2603 create_reg_dead_note (gen_rtx (REG, word_mode,
2604 regno + i),
2605 insn);
2606 }
2607 }
2608 }
2609
2610 if (regno < FIRST_PSEUDO_REGISTER)
2611 {
2612 int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
2613 while (--j >= 0)
2614 {
2615 offset = (regno + j) / REGSET_ELT_BITS;
2616 bit
2617 = (REGSET_ELT_TYPE) 1 << ((regno + j) % REGSET_ELT_BITS);
2618
2619 bb_dead_regs[offset] &= ~bit;
2620 bb_live_regs[offset] |= bit;
2621 }
2622 }
2623 else
2624 {
2625 bb_dead_regs[offset] &= ~bit;
2626 bb_live_regs[offset] |= bit;
2627 }
2628 }
2629 return;
2630 }
2631
2632 case MEM:
2633 /* Handle tail-recursive case. */
2634 attach_deaths (XEXP (x, 0), insn, 0);
2635 return;
2636
2637 case SUBREG:
2638 case STRICT_LOW_PART:
2639 /* These two cases preserve the value of SET_P, so handle them
2640 separately. */
2641 attach_deaths (XEXP (x, 0), insn, set_p);
2642 return;
2643
2644 case ZERO_EXTRACT:
2645 case SIGN_EXTRACT:
2646 /* This case preserves the value of SET_P for the first operand, but
2647 clears it for the other two. */
2648 attach_deaths (XEXP (x, 0), insn, set_p);
2649 attach_deaths (XEXP (x, 1), insn, 0);
2650 attach_deaths (XEXP (x, 2), insn, 0);
2651 return;
2652
2653 default:
2654 /* Other cases: walk the insn. */
2655 fmt = GET_RTX_FORMAT (code);
2656 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2657 {
2658 if (fmt[i] == 'e')
2659 attach_deaths (XEXP (x, i), insn, 0);
2660 else if (fmt[i] == 'E')
2661 for (j = 0; j < XVECLEN (x, i); j++)
2662 attach_deaths (XVECEXP (x, i, j), insn, 0);
2663 }
2664 }
2665 }
2666
2667 /* After INSN has executed, add register death notes for each register
2668 that is dead after INSN. */
2669
2670 static void
2671 attach_deaths_insn (insn)
2672 rtx insn;
2673 {
2674 rtx x = PATTERN (insn);
2675 register RTX_CODE code = GET_CODE (x);
2676
2677 if (code == SET)
2678 {
2679 attach_deaths (SET_SRC (x), insn, 0);
2680
2681 /* A register might die here even if it is the destination, e.g.
2682 it is the target of a volatile read and is otherwise unused.
2683 Hence we must always call attach_deaths for the SET_DEST. */
2684 attach_deaths (SET_DEST (x), insn, 1);
2685 }
2686 else if (code == PARALLEL)
2687 {
2688 register int i;
2689 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2690 {
2691 code = GET_CODE (XVECEXP (x, 0, i));
2692 if (code == SET)
2693 {
2694 attach_deaths (SET_SRC (XVECEXP (x, 0, i)), insn, 0);
2695
2696 attach_deaths (SET_DEST (XVECEXP (x, 0, i)), insn, 1);
2697 }
2698 /* Flow does not add REG_DEAD notes to registers that die in
2699 clobbers, so we can't either. */
2700 else if (code != CLOBBER)
2701 attach_deaths (XVECEXP (x, 0, i), insn, 0);
2702 }
2703 }
2704 /* Flow does not add REG_DEAD notes to registers that die in
2705 clobbers, so we can't either. */
2706 else if (code != CLOBBER)
2707 attach_deaths (x, insn, 0);
2708 }
2709
2710 /* Delete notes beginning with INSN and maybe put them in the chain
2711 of notes ended by NOTE_LIST.
2712 Returns the insn following the notes. */
2713
2714 static rtx
2715 unlink_notes (insn, tail)
2716 rtx insn, tail;
2717 {
2718 rtx prev = PREV_INSN (insn);
2719
2720 while (insn != tail && GET_CODE (insn) == NOTE)
2721 {
2722 rtx next = NEXT_INSN (insn);
2723 /* Delete the note from its current position. */
2724 if (prev)
2725 NEXT_INSN (prev) = next;
2726 if (next)
2727 PREV_INSN (next) = prev;
2728
2729 if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
2730 /* Record line-number notes so they can be reused. */
2731 LINE_NOTE (insn) = insn;
2732 else
2733 {
2734 /* Insert the note at the end of the notes list. */
2735 PREV_INSN (insn) = note_list;
2736 if (note_list)
2737 NEXT_INSN (note_list) = insn;
2738 note_list = insn;
2739 }
2740
2741 insn = next;
2742 }
2743 return insn;
2744 }
2745
2746 /* Data structure for keeping track of register information
2747 during that register's life. */
2748
2749 struct sometimes
2750 {
2751 short offset; short bit;
2752 short live_length; short calls_crossed;
2753 };
2754
2755 /* Constructor for `sometimes' data structure. */
2756
2757 static int
2758 new_sometimes_live (regs_sometimes_live, offset, bit, sometimes_max)
2759 struct sometimes *regs_sometimes_live;
2760 int offset, bit;
2761 int sometimes_max;
2762 {
2763 register struct sometimes *p;
2764 register int regno = offset * REGSET_ELT_BITS + bit;
2765 int i;
2766
2767 /* There should never be a register greater than max_regno here. If there
2768 is, it means that a define_split has created a new pseudo reg. This
2769 is not allowed, since there will not be flow info available for any
2770 new register, so catch the error here. */
2771 if (regno >= max_regno)
2772 abort ();
2773
2774 p = &regs_sometimes_live[sometimes_max];
2775 p->offset = offset;
2776 p->bit = bit;
2777 p->live_length = 0;
2778 p->calls_crossed = 0;
2779 sometimes_max++;
2780 return sometimes_max;
2781 }
2782
2783 /* Count lengths of all regs we are currently tracking,
2784 and find new registers no longer live. */
2785
2786 static void
2787 finish_sometimes_live (regs_sometimes_live, sometimes_max)
2788 struct sometimes *regs_sometimes_live;
2789 int sometimes_max;
2790 {
2791 int i;
2792
2793 for (i = 0; i < sometimes_max; i++)
2794 {
2795 register struct sometimes *p = &regs_sometimes_live[i];
2796 int regno;
2797
2798 regno = p->offset * REGSET_ELT_BITS + p->bit;
2799
2800 sched_reg_live_length[regno] += p->live_length;
2801 sched_reg_n_calls_crossed[regno] += p->calls_crossed;
2802 }
2803 }
2804
2805 /* Use modified list scheduling to rearrange insns in basic block
2806 B. FILE, if nonzero, is where we dump interesting output about
2807 this pass. */
2808
2809 static void
2810 schedule_block (b, file)
2811 int b;
2812 FILE *file;
2813 {
2814 rtx insn, last;
2815 rtx last_note = 0;
2816 rtx *ready, link;
2817 int i, j, n_ready = 0, new_ready, n_insns = 0;
2818 int sched_n_insns = 0;
2819 int clock;
2820 #define NEED_NOTHING 0
2821 #define NEED_HEAD 1
2822 #define NEED_TAIL 2
2823 int new_needs;
2824
2825 /* HEAD and TAIL delimit the region being scheduled. */
2826 rtx head = basic_block_head[b];
2827 rtx tail = basic_block_end[b];
2828 /* PREV_HEAD and NEXT_TAIL are the boundaries of the insns
2829 being scheduled. When the insns have been ordered,
2830 these insns delimit where the new insns are to be
2831 spliced back into the insn chain. */
2832 rtx next_tail;
2833 rtx prev_head;
2834
2835 /* Keep life information accurate. */
2836 register struct sometimes *regs_sometimes_live;
2837 int sometimes_max;
2838
2839 if (file)
2840 fprintf (file, ";;\t -- basic block number %d from %d to %d --\n",
2841 b, INSN_UID (basic_block_head[b]), INSN_UID (basic_block_end[b]));
2842
2843 i = max_reg_num ();
2844 reg_last_uses = (rtx *) alloca (i * sizeof (rtx));
2845 bzero (reg_last_uses, i * sizeof (rtx));
2846 reg_last_sets = (rtx *) alloca (i * sizeof (rtx));
2847 bzero (reg_last_sets, i * sizeof (rtx));
2848 clear_units ();
2849
2850 /* Remove certain insns at the beginning from scheduling,
2851 by advancing HEAD. */
2852
2853 /* At the start of a function, before reload has run, don't delay getting
2854 parameters from hard registers into pseudo registers. */
2855 if (reload_completed == 0 && b == 0)
2856 {
2857 while (head != tail
2858 && GET_CODE (head) == NOTE
2859 && NOTE_LINE_NUMBER (head) != NOTE_INSN_FUNCTION_BEG)
2860 head = NEXT_INSN (head);
2861 while (head != tail
2862 && GET_CODE (head) == INSN
2863 && GET_CODE (PATTERN (head)) == SET)
2864 {
2865 rtx src = SET_SRC (PATTERN (head));
2866 while (GET_CODE (src) == SUBREG
2867 || GET_CODE (src) == SIGN_EXTEND
2868 || GET_CODE (src) == ZERO_EXTEND
2869 || GET_CODE (src) == SIGN_EXTRACT
2870 || GET_CODE (src) == ZERO_EXTRACT)
2871 src = XEXP (src, 0);
2872 if (GET_CODE (src) != REG
2873 || REGNO (src) >= FIRST_PSEUDO_REGISTER)
2874 break;
2875 /* Keep this insn from ever being scheduled. */
2876 INSN_REF_COUNT (head) = 1;
2877 head = NEXT_INSN (head);
2878 }
2879 }
2880
2881 /* Don't include any notes or labels at the beginning of the
2882 basic block, or notes at the ends of basic blocks. */
2883 while (head != tail)
2884 {
2885 if (GET_CODE (head) == NOTE)
2886 head = NEXT_INSN (head);
2887 else if (GET_CODE (tail) == NOTE)
2888 tail = PREV_INSN (tail);
2889 else if (GET_CODE (head) == CODE_LABEL)
2890 head = NEXT_INSN (head);
2891 else break;
2892 }
2893 /* If the only insn left is a NOTE or a CODE_LABEL, then there is no need
2894 to schedule this block. */
2895 if (head == tail
2896 && (GET_CODE (head) == NOTE || GET_CODE (head) == CODE_LABEL))
2897 return;
2898
2899 #if 0
2900 /* This short-cut doesn't work. It does not count call insns crossed by
2901 registers in reg_sometimes_live. It does not mark these registers as
2902 dead if they die in this block. It does not mark these registers live
2903 (or create new reg_sometimes_live entries if necessary) if they are born
2904 in this block.
2905
2906 The easy solution is to just always schedule a block. This block only
2907 has one insn, so this won't slow down this pass by much. */
2908
2909 if (head == tail)
2910 return;
2911 #endif
2912
2913 /* Now HEAD through TAIL are the insns actually to be rearranged;
2914 Let PREV_HEAD and NEXT_TAIL enclose them. */
2915 prev_head = PREV_INSN (head);
2916 next_tail = NEXT_INSN (tail);
2917
2918 /* Initialize basic block data structures. */
2919 dead_notes = 0;
2920 pending_read_insns = 0;
2921 pending_read_mems = 0;
2922 pending_write_insns = 0;
2923 pending_write_mems = 0;
2924 pending_lists_length = 0;
2925 last_pending_memory_flush = 0;
2926 last_function_call = 0;
2927 last_scheduled_insn = 0;
2928
2929 LOG_LINKS (sched_before_next_call) = 0;
2930
2931 n_insns += sched_analyze (head, tail);
2932 if (n_insns == 0)
2933 {
2934 free_pending_lists ();
2935 return;
2936 }
2937
2938 /* Allocate vector to hold insns to be rearranged (except those
2939 insns which are controlled by an insn with SCHED_GROUP_P set).
2940 All these insns are included between ORIG_HEAD and ORIG_TAIL,
2941 as those variables ultimately are set up. */
2942 ready = (rtx *) alloca ((n_insns+1) * sizeof (rtx));
2943
2944 /* TAIL is now the last of the insns to be rearranged.
2945 Put those insns into the READY vector. */
2946 insn = tail;
2947
2948 /* For all branches, calls, uses, and cc0 setters, force them to remain
2949 in order at the end of the block by adding dependencies and giving
2950 the last a high priority. There may be notes present, and prev_head
2951 may also be a note.
2952
2953 Branches must obviously remain at the end. Calls should remain at the
2954 end since moving them results in worse register allocation. Uses remain
2955 at the end to ensure proper register allocation. cc0 setters remaim
2956 at the end because they can't be moved away from their cc0 user. */
2957 last = 0;
2958 while (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2959 || (GET_CODE (insn) == INSN
2960 && (GET_CODE (PATTERN (insn)) == USE
2961 #ifdef HAVE_cc0
2962 || sets_cc0_p (PATTERN (insn))
2963 #endif
2964 ))
2965 || GET_CODE (insn) == NOTE)
2966 {
2967 if (GET_CODE (insn) != NOTE)
2968 {
2969 priority (insn);
2970 if (last == 0)
2971 {
2972 ready[n_ready++] = insn;
2973 INSN_PRIORITY (insn) = TAIL_PRIORITY - i;
2974 INSN_REF_COUNT (insn) = 0;
2975 }
2976 else if (! find_insn_list (insn, LOG_LINKS (last)))
2977 {
2978 add_dependence (last, insn, REG_DEP_ANTI);
2979 INSN_REF_COUNT (insn)++;
2980 }
2981 last = insn;
2982
2983 /* Skip over insns that are part of a group. */
2984 while (SCHED_GROUP_P (insn))
2985 {
2986 insn = prev_nonnote_insn (insn);
2987 priority (insn);
2988 }
2989 }
2990
2991 insn = PREV_INSN (insn);
2992 /* Don't overrun the bounds of the basic block. */
2993 if (insn == prev_head)
2994 break;
2995 }
2996
2997 /* Assign priorities to instructions. Also check whether they
2998 are in priority order already. If so then I will be nonnegative.
2999 We use this shortcut only before reloading. */
3000 #if 0
3001 i = reload_completed ? DONE_PRIORITY : MAX_PRIORITY;
3002 #endif
3003
3004 for (; insn != prev_head; insn = PREV_INSN (insn))
3005 {
3006 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3007 {
3008 priority (insn);
3009 if (INSN_REF_COUNT (insn) == 0)
3010 {
3011 if (last == 0)
3012 ready[n_ready++] = insn;
3013 else
3014 {
3015 /* Make this dependent on the last of the instructions
3016 that must remain in order at the end of the block. */
3017 add_dependence (last, insn, REG_DEP_ANTI);
3018 INSN_REF_COUNT (insn) = 1;
3019 }
3020 }
3021 if (SCHED_GROUP_P (insn))
3022 {
3023 while (SCHED_GROUP_P (insn))
3024 {
3025 insn = PREV_INSN (insn);
3026 while (GET_CODE (insn) == NOTE)
3027 insn = PREV_INSN (insn);
3028 priority (insn);
3029 }
3030 continue;
3031 }
3032 #if 0
3033 if (i < 0)
3034 continue;
3035 if (INSN_PRIORITY (insn) < i)
3036 i = INSN_PRIORITY (insn);
3037 else if (INSN_PRIORITY (insn) > i)
3038 i = DONE_PRIORITY;
3039 #endif
3040 }
3041 }
3042
3043 #if 0
3044 /* This short-cut doesn't work. It does not count call insns crossed by
3045 registers in reg_sometimes_live. It does not mark these registers as
3046 dead if they die in this block. It does not mark these registers live
3047 (or create new reg_sometimes_live entries if necessary) if they are born
3048 in this block.
3049
3050 The easy solution is to just always schedule a block. These blocks tend
3051 to be very short, so this doesn't slow down this pass by much. */
3052
3053 /* If existing order is good, don't bother to reorder. */
3054 if (i != DONE_PRIORITY)
3055 {
3056 if (file)
3057 fprintf (file, ";; already scheduled\n");
3058
3059 if (reload_completed == 0)
3060 {
3061 for (i = 0; i < sometimes_max; i++)
3062 regs_sometimes_live[i].live_length += n_insns;
3063
3064 finish_sometimes_live (regs_sometimes_live, sometimes_max);
3065 }
3066 free_pending_lists ();
3067 return;
3068 }
3069 #endif
3070
3071 /* Scan all the insns to be scheduled, removing NOTE insns
3072 and register death notes.
3073 Line number NOTE insns end up in NOTE_LIST.
3074 Register death notes end up in DEAD_NOTES.
3075
3076 Recreate the register life information for the end of this basic
3077 block. */
3078
3079 if (reload_completed == 0)
3080 {
3081 bcopy (basic_block_live_at_start[b], bb_live_regs, regset_bytes);
3082 bzero (bb_dead_regs, regset_bytes);
3083
3084 if (b == 0)
3085 {
3086 /* This is the first block in the function. There may be insns
3087 before head that we can't schedule. We still need to examine
3088 them though for accurate register lifetime analysis. */
3089
3090 /* We don't want to remove any REG_DEAD notes as the code below
3091 does. */
3092
3093 for (insn = basic_block_head[b]; insn != head;
3094 insn = NEXT_INSN (insn))
3095 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3096 {
3097 /* See if the register gets born here. */
3098 /* We must check for registers being born before we check for
3099 registers dying. It is possible for a register to be born
3100 and die in the same insn, e.g. reading from a volatile
3101 memory location into an otherwise unused register. Such
3102 a register must be marked as dead after this insn. */
3103 if (GET_CODE (PATTERN (insn)) == SET
3104 || GET_CODE (PATTERN (insn)) == CLOBBER)
3105 sched_note_set (b, PATTERN (insn), 0);
3106 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3107 {
3108 int j;
3109 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
3110 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
3111 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
3112 sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
3113
3114 /* ??? This code is obsolete and should be deleted. It
3115 is harmless though, so we will leave it in for now. */
3116 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
3117 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == USE)
3118 sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
3119 }
3120
3121 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3122 {
3123 if ((REG_NOTE_KIND (link) == REG_DEAD
3124 || REG_NOTE_KIND (link) == REG_UNUSED)
3125 /* Verify that the REG_NOTE has a legal value. */
3126 && GET_CODE (XEXP (link, 0)) == REG)
3127 {
3128 register int regno = REGNO (XEXP (link, 0));
3129 register int offset = regno / REGSET_ELT_BITS;
3130 register REGSET_ELT_TYPE bit
3131 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
3132
3133 if (regno < FIRST_PSEUDO_REGISTER)
3134 {
3135 int j = HARD_REGNO_NREGS (regno,
3136 GET_MODE (XEXP (link, 0)));
3137 while (--j >= 0)
3138 {
3139 offset = (regno + j) / REGSET_ELT_BITS;
3140 bit = ((REGSET_ELT_TYPE) 1
3141 << ((regno + j) % REGSET_ELT_BITS));
3142
3143 bb_live_regs[offset] &= ~bit;
3144 bb_dead_regs[offset] |= bit;
3145 }
3146 }
3147 else
3148 {
3149 bb_live_regs[offset] &= ~bit;
3150 bb_dead_regs[offset] |= bit;
3151 }
3152 }
3153 }
3154 }
3155 }
3156 }
3157
3158 /* If debugging information is being produced, keep track of the line
3159 number notes for each insn. */
3160 if (write_symbols != NO_DEBUG)
3161 {
3162 /* We must use the true line number for the first insn in the block
3163 that was computed and saved at the start of this pass. We can't
3164 use the current line number, because scheduling of the previous
3165 block may have changed the current line number. */
3166 rtx line = line_note_head[b];
3167
3168 for (insn = basic_block_head[b];
3169 insn != next_tail;
3170 insn = NEXT_INSN (insn))
3171 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
3172 line = insn;
3173 else
3174 LINE_NOTE (insn) = line;
3175 }
3176
3177 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3178 {
3179 rtx prev, next, link;
3180
3181 /* Farm out notes. This is needed to keep the debugger from
3182 getting completely deranged. */
3183 if (GET_CODE (insn) == NOTE)
3184 {
3185 prev = insn;
3186 insn = unlink_notes (insn, next_tail);
3187 if (prev == tail)
3188 abort ();
3189 if (prev == head)
3190 abort ();
3191 if (insn == next_tail)
3192 abort ();
3193 }
3194
3195 if (reload_completed == 0
3196 && GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3197 {
3198 /* See if the register gets born here. */
3199 /* We must check for registers being born before we check for
3200 registers dying. It is possible for a register to be born and
3201 die in the same insn, e.g. reading from a volatile memory
3202 location into an otherwise unused register. Such a register
3203 must be marked as dead after this insn. */
3204 if (GET_CODE (PATTERN (insn)) == SET
3205 || GET_CODE (PATTERN (insn)) == CLOBBER)
3206 sched_note_set (b, PATTERN (insn), 0);
3207 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3208 {
3209 int j;
3210 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
3211 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
3212 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
3213 sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
3214
3215 /* ??? This code is obsolete and should be deleted. It
3216 is harmless though, so we will leave it in for now. */
3217 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
3218 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == USE)
3219 sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
3220 }
3221
3222 /* Need to know what registers this insn kills. */
3223 for (prev = 0, link = REG_NOTES (insn); link; link = next)
3224 {
3225 int regno;
3226
3227 next = XEXP (link, 1);
3228 if ((REG_NOTE_KIND (link) == REG_DEAD
3229 || REG_NOTE_KIND (link) == REG_UNUSED)
3230 /* Verify that the REG_NOTE has a legal value. */
3231 && GET_CODE (XEXP (link, 0)) == REG)
3232 {
3233 register int regno = REGNO (XEXP (link, 0));
3234 register int offset = regno / REGSET_ELT_BITS;
3235 register REGSET_ELT_TYPE bit
3236 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
3237
3238 /* Only unlink REG_DEAD notes; leave REG_UNUSED notes
3239 alone. */
3240 if (REG_NOTE_KIND (link) == REG_DEAD)
3241 {
3242 if (prev)
3243 XEXP (prev, 1) = next;
3244 else
3245 REG_NOTES (insn) = next;
3246 XEXP (link, 1) = dead_notes;
3247 dead_notes = link;
3248 }
3249 else
3250 prev = link;
3251
3252 if (regno < FIRST_PSEUDO_REGISTER)
3253 {
3254 int j = HARD_REGNO_NREGS (regno,
3255 GET_MODE (XEXP (link, 0)));
3256 while (--j >= 0)
3257 {
3258 offset = (regno + j) / REGSET_ELT_BITS;
3259 bit = ((REGSET_ELT_TYPE) 1
3260 << ((regno + j) % REGSET_ELT_BITS));
3261
3262 bb_live_regs[offset] &= ~bit;
3263 bb_dead_regs[offset] |= bit;
3264 }
3265 }
3266 else
3267 {
3268 bb_live_regs[offset] &= ~bit;
3269 bb_dead_regs[offset] |= bit;
3270 }
3271 }
3272 else
3273 prev = link;
3274 }
3275 }
3276 }
3277
3278 if (reload_completed == 0)
3279 {
3280 /* Keep track of register lives. */
3281 old_live_regs = (regset) alloca (regset_bytes);
3282 regs_sometimes_live
3283 = (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
3284 sometimes_max = 0;
3285
3286 /* Start with registers live at end. */
3287 for (j = 0; j < regset_size; j++)
3288 {
3289 REGSET_ELT_TYPE live = bb_live_regs[j];
3290 old_live_regs[j] = live;
3291 if (live)
3292 {
3293 register REGSET_ELT_TYPE bit;
3294 for (bit = 0; bit < REGSET_ELT_BITS; bit++)
3295 if (live & ((REGSET_ELT_TYPE) 1 << bit))
3296 sometimes_max = new_sometimes_live (regs_sometimes_live, j,
3297 bit, sometimes_max);
3298 }
3299 }
3300 }
3301
3302 SCHED_SORT (ready, n_ready, 1);
3303
3304 if (file)
3305 {
3306 fprintf (file, ";; ready list initially:\n;; ");
3307 for (i = 0; i < n_ready; i++)
3308 fprintf (file, "%d ", INSN_UID (ready[i]));
3309 fprintf (file, "\n\n");
3310
3311 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3312 if (INSN_PRIORITY (insn) > 0)
3313 fprintf (file, ";; insn[%4d]: priority = %4d, ref_count = %4d\n",
3314 INSN_UID (insn), INSN_PRIORITY (insn),
3315 INSN_REF_COUNT (insn));
3316 }
3317
3318 /* Now HEAD and TAIL are going to become disconnected
3319 entirely from the insn chain. */
3320 tail = 0;
3321
3322 /* Q_SIZE will always be zero here. */
3323 q_ptr = 0; clock = 0;
3324 bzero (insn_queue, sizeof (insn_queue));
3325
3326 /* Now, perform list scheduling. */
3327
3328 /* Where we start inserting insns is after TAIL. */
3329 last = next_tail;
3330
3331 new_needs = (NEXT_INSN (prev_head) == basic_block_head[b]
3332 ? NEED_HEAD : NEED_NOTHING);
3333 if (PREV_INSN (next_tail) == basic_block_end[b])
3334 new_needs |= NEED_TAIL;
3335
3336 new_ready = n_ready;
3337 while (sched_n_insns < n_insns)
3338 {
3339 q_ptr = NEXT_Q (q_ptr); clock++;
3340
3341 /* Add all pending insns that can be scheduled without stalls to the
3342 ready list. */
3343 for (insn = insn_queue[q_ptr]; insn; insn = NEXT_INSN (insn))
3344 {
3345 if (file)
3346 fprintf (file, ";; launching %d before %d with no stalls at T-%d\n",
3347 INSN_UID (insn), INSN_UID (last), clock);
3348 ready[new_ready++] = insn;
3349 q_size -= 1;
3350 }
3351 insn_queue[q_ptr] = 0;
3352
3353 /* If there are no ready insns, stall until one is ready and add all
3354 of the pending insns at that point to the ready list. */
3355 if (new_ready == 0)
3356 {
3357 register int stalls;
3358
3359 for (stalls = 1; stalls < INSN_QUEUE_SIZE; stalls++)
3360 if (insn = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)])
3361 {
3362 for (; insn; insn = NEXT_INSN (insn))
3363 {
3364 if (file)
3365 fprintf (file, ";; launching %d before %d with %d stalls at T-%d\n",
3366 INSN_UID (insn), INSN_UID (last), stalls, clock);
3367 ready[new_ready++] = insn;
3368 q_size -= 1;
3369 }
3370 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
3371 break;
3372 }
3373
3374 q_ptr = NEXT_Q_AFTER (q_ptr, stalls); clock += stalls;
3375 }
3376
3377 /* There should be some instructions waiting to fire. */
3378 if (new_ready == 0)
3379 abort ();
3380
3381 if (file)
3382 {
3383 fprintf (file, ";; ready list at T-%d:", clock);
3384 for (i = 0; i < new_ready; i++)
3385 fprintf (file, " %d (%x)",
3386 INSN_UID (ready[i]), INSN_PRIORITY (ready[i]));
3387 }
3388
3389 /* Sort the ready list and choose the best insn to schedule. Select
3390 which insn should issue in this cycle and queue those that are
3391 blocked by function unit hazards.
3392
3393 N_READY holds the number of items that were scheduled the last time,
3394 minus the one instruction scheduled on the last loop iteration; it
3395 is not modified for any other reason in this loop. */
3396
3397 SCHED_SORT (ready, new_ready, n_ready);
3398 if (MAX_BLOCKAGE > 1)
3399 {
3400 new_ready = schedule_select (ready, new_ready, clock, file);
3401 if (new_ready == 0)
3402 {
3403 if (file)
3404 fprintf (file, "\n");
3405 continue;
3406 }
3407 }
3408 n_ready = new_ready;
3409 last_scheduled_insn = insn = ready[0];
3410
3411 /* The first insn scheduled becomes the new tail. */
3412 if (tail == 0)
3413 tail = insn;
3414
3415 if (file)
3416 {
3417 fprintf (file, ", now");
3418 for (i = 0; i < n_ready; i++)
3419 fprintf (file, " %d", INSN_UID (ready[i]));
3420 fprintf (file, "\n");
3421 }
3422
3423 if (DONE_PRIORITY_P (insn))
3424 abort ();
3425
3426 if (reload_completed == 0)
3427 {
3428 /* Process this insn, and each insn linked to this one which must
3429 be immediately output after this insn. */
3430 do
3431 {
3432 /* First we kill registers set by this insn, and then we
3433 make registers used by this insn live. This is the opposite
3434 order used above because we are traversing the instructions
3435 backwards. */
3436
3437 /* Strictly speaking, we should scan REG_UNUSED notes and make
3438 every register mentioned there live, however, we will just
3439 kill them again immediately below, so there doesn't seem to
3440 be any reason why we bother to do this. */
3441
3442 /* See if this is the last notice we must take of a register. */
3443 if (GET_CODE (PATTERN (insn)) == SET
3444 || GET_CODE (PATTERN (insn)) == CLOBBER)
3445 sched_note_set (b, PATTERN (insn), 1);
3446 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3447 {
3448 int j;
3449 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
3450 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
3451 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
3452 sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 1);
3453 }
3454
3455 /* This code keeps life analysis information up to date. */
3456 if (GET_CODE (insn) == CALL_INSN)
3457 {
3458 register struct sometimes *p;
3459
3460 /* A call kills all call used and global registers, except
3461 for those mentioned in the call pattern which will be
3462 made live again later. */
3463 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3464 if (call_used_regs[i] || global_regs[i])
3465 {
3466 register int offset = i / REGSET_ELT_BITS;
3467 register REGSET_ELT_TYPE bit
3468 = (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
3469
3470 bb_live_regs[offset] &= ~bit;
3471 bb_dead_regs[offset] |= bit;
3472 }
3473
3474 /* Regs live at the time of a call instruction must not
3475 go in a register clobbered by calls. Record this for
3476 all regs now live. Note that insns which are born or
3477 die in a call do not cross a call, so this must be done
3478 after the killings (above) and before the births
3479 (below). */
3480 p = regs_sometimes_live;
3481 for (i = 0; i < sometimes_max; i++, p++)
3482 if (bb_live_regs[p->offset]
3483 & ((REGSET_ELT_TYPE) 1 << p->bit))
3484 p->calls_crossed += 1;
3485 }
3486
3487 /* Make every register used live, and add REG_DEAD notes for
3488 registers which were not live before we started. */
3489 attach_deaths_insn (insn);
3490
3491 /* Find registers now made live by that instruction. */
3492 for (i = 0; i < regset_size; i++)
3493 {
3494 REGSET_ELT_TYPE diff = bb_live_regs[i] & ~old_live_regs[i];
3495 if (diff)
3496 {
3497 register int bit;
3498 old_live_regs[i] |= diff;
3499 for (bit = 0; bit < REGSET_ELT_BITS; bit++)
3500 if (diff & ((REGSET_ELT_TYPE) 1 << bit))
3501 sometimes_max
3502 = new_sometimes_live (regs_sometimes_live, i, bit,
3503 sometimes_max);
3504 }
3505 }
3506
3507 /* Count lengths of all regs we are worrying about now,
3508 and handle registers no longer live. */
3509
3510 for (i = 0; i < sometimes_max; i++)
3511 {
3512 register struct sometimes *p = &regs_sometimes_live[i];
3513 int regno = p->offset*REGSET_ELT_BITS + p->bit;
3514
3515 p->live_length += 1;
3516
3517 if ((bb_live_regs[p->offset]
3518 & ((REGSET_ELT_TYPE) 1 << p->bit)) == 0)
3519 {
3520 /* This is the end of one of this register's lifetime
3521 segments. Save the lifetime info collected so far,
3522 and clear its bit in the old_live_regs entry. */
3523 sched_reg_live_length[regno] += p->live_length;
3524 sched_reg_n_calls_crossed[regno] += p->calls_crossed;
3525 old_live_regs[p->offset]
3526 &= ~((REGSET_ELT_TYPE) 1 << p->bit);
3527
3528 /* Delete the reg_sometimes_live entry for this reg by
3529 copying the last entry over top of it. */
3530 *p = regs_sometimes_live[--sometimes_max];
3531 /* ...and decrement i so that this newly copied entry
3532 will be processed. */
3533 i--;
3534 }
3535 }
3536
3537 link = insn;
3538 insn = PREV_INSN (insn);
3539 }
3540 while (SCHED_GROUP_P (link));
3541
3542 /* Set INSN back to the insn we are scheduling now. */
3543 insn = ready[0];
3544 }
3545
3546 /* Schedule INSN. Remove it from the ready list. */
3547 ready += 1;
3548 n_ready -= 1;
3549
3550 sched_n_insns += 1;
3551 NEXT_INSN (insn) = last;
3552 PREV_INSN (last) = insn;
3553 last = insn;
3554
3555 /* Everything that precedes INSN now either becomes "ready", if
3556 it can execute immediately before INSN, or "pending", if
3557 there must be a delay. Give INSN high enough priority that
3558 at least one (maybe more) reg-killing insns can be launched
3559 ahead of all others. Mark INSN as scheduled by changing its
3560 priority to -1. */
3561 INSN_PRIORITY (insn) = LAUNCH_PRIORITY;
3562 new_ready = schedule_insn (insn, ready, n_ready, clock);
3563 INSN_PRIORITY (insn) = DONE_PRIORITY;
3564
3565 /* Schedule all prior insns that must not be moved. */
3566 if (SCHED_GROUP_P (insn))
3567 {
3568 /* Disable these insns from being launched. */
3569 link = insn;
3570 while (SCHED_GROUP_P (link))
3571 {
3572 /* Disable these insns from being launched by anybody. */
3573 link = PREV_INSN (link);
3574 INSN_REF_COUNT (link) = 0;
3575 }
3576
3577 /* None of these insns can move forward into delay slots. */
3578 while (SCHED_GROUP_P (insn))
3579 {
3580 insn = PREV_INSN (insn);
3581 new_ready = schedule_insn (insn, ready, new_ready, clock);
3582 INSN_PRIORITY (insn) = DONE_PRIORITY;
3583
3584 sched_n_insns += 1;
3585 NEXT_INSN (insn) = last;
3586 PREV_INSN (last) = insn;
3587 last = insn;
3588 }
3589 }
3590 }
3591 if (q_size != 0)
3592 abort ();
3593
3594 if (reload_completed == 0)
3595 finish_sometimes_live (regs_sometimes_live, sometimes_max);
3596
3597 /* HEAD is now the first insn in the chain of insns that
3598 been scheduled by the loop above.
3599 TAIL is the last of those insns. */
3600 head = insn;
3601
3602 /* NOTE_LIST is the end of a chain of notes previously found
3603 among the insns. Insert them at the beginning of the insns. */
3604 if (note_list != 0)
3605 {
3606 rtx note_head = note_list;
3607 while (PREV_INSN (note_head))
3608 note_head = PREV_INSN (note_head);
3609
3610 PREV_INSN (head) = note_list;
3611 NEXT_INSN (note_list) = head;
3612 head = note_head;
3613 }
3614
3615 /* In theory, there should be no REG_DEAD notes leftover at the end.
3616 In practice, this can occur as the result of bugs in flow, combine.c,
3617 and/or sched.c. The values of the REG_DEAD notes remaining are
3618 meaningless, because dead_notes is just used as a free list. */
3619 #if 1
3620 if (dead_notes != 0)
3621 abort ();
3622 #endif
3623
3624 if (new_needs & NEED_HEAD)
3625 basic_block_head[b] = head;
3626 PREV_INSN (head) = prev_head;
3627 NEXT_INSN (prev_head) = head;
3628
3629 if (new_needs & NEED_TAIL)
3630 basic_block_end[b] = tail;
3631 NEXT_INSN (tail) = next_tail;
3632 PREV_INSN (next_tail) = tail;
3633
3634 /* Restore the line-number notes of each insn. */
3635 if (write_symbols != NO_DEBUG)
3636 {
3637 rtx line, note, prev, new;
3638 int notes = 0;
3639
3640 head = basic_block_head[b];
3641 next_tail = NEXT_INSN (basic_block_end[b]);
3642
3643 /* Determine the current line-number. We want to know the current
3644 line number of the first insn of the block here, in case it is
3645 different from the true line number that was saved earlier. If
3646 different, then we need a line number note before the first insn
3647 of this block. If it happens to be the same, then we don't want to
3648 emit another line number note here. */
3649 for (line = head; line; line = PREV_INSN (line))
3650 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
3651 break;
3652
3653 /* Walk the insns keeping track of the current line-number and inserting
3654 the line-number notes as needed. */
3655 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3656 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
3657 line = insn;
3658 else if (! (GET_CODE (insn) == NOTE
3659 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
3660 && (note = LINE_NOTE (insn)) != 0
3661 && note != line
3662 && (line == 0
3663 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
3664 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
3665 {
3666 line = note;
3667 prev = PREV_INSN (insn);
3668 if (LINE_NOTE (note))
3669 {
3670 /* Re-use the original line-number note. */
3671 LINE_NOTE (note) = 0;
3672 PREV_INSN (note) = prev;
3673 NEXT_INSN (prev) = note;
3674 PREV_INSN (insn) = note;
3675 NEXT_INSN (note) = insn;
3676 }
3677 else
3678 {
3679 notes++;
3680 new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
3681 NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
3682 }
3683 }
3684 if (file && notes)
3685 fprintf (file, ";; added %d line-number notes\n", notes);
3686 }
3687
3688 if (file)
3689 {
3690 fprintf (file, ";; total time = %d\n;; new basic block head = %d\n;; new basic block end = %d\n\n",
3691 clock, INSN_UID (basic_block_head[b]), INSN_UID (basic_block_end[b]));
3692 }
3693
3694 /* Yow! We're done! */
3695 free_pending_lists ();
3696
3697 return;
3698 }
3699 \f
3700 /* Subroutine of split_hard_reg_notes. Searches X for any reference to
3701 REGNO, returning the rtx of the reference found if any. Otherwise,
3702 returns 0. */
3703
3704 rtx
3705 regno_use_in (regno, x)
3706 int regno;
3707 rtx x;
3708 {
3709 register char *fmt;
3710 int i, j;
3711 rtx tem;
3712
3713 if (GET_CODE (x) == REG && REGNO (x) == regno)
3714 return x;
3715
3716 fmt = GET_RTX_FORMAT (GET_CODE (x));
3717 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3718 {
3719 if (fmt[i] == 'e')
3720 {
3721 if (tem = regno_use_in (regno, XEXP (x, i)))
3722 return tem;
3723 }
3724 else if (fmt[i] == 'E')
3725 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3726 if (tem = regno_use_in (regno , XVECEXP (x, i, j)))
3727 return tem;
3728 }
3729
3730 return 0;
3731 }
3732
3733 /* Subroutine of update_flow_info. Determines whether any new REG_NOTEs are
3734 needed for the hard register mentioned in the note. This can happen
3735 if the reference to the hard register in the original insn was split into
3736 several smaller hard register references in the split insns. */
3737
3738 static void
3739 split_hard_reg_notes (note, first, last, orig_insn)
3740 rtx note, first, last, orig_insn;
3741 {
3742 rtx reg, temp, link;
3743 int n_regs, i, new_reg;
3744 rtx insn;
3745
3746 /* Assume that this is a REG_DEAD note. */
3747 if (REG_NOTE_KIND (note) != REG_DEAD)
3748 abort ();
3749
3750 reg = XEXP (note, 0);
3751
3752 n_regs = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
3753
3754 /* ??? Could add check here to see whether, the hard register is referenced
3755 in the same mode as in the original insn. If so, then it has not been
3756 split, and the rest of the code below is unnecessary. */
3757
3758 for (i = 1; i < n_regs; i++)
3759 {
3760 new_reg = REGNO (reg) + i;
3761
3762 /* Check for references to new_reg in the split insns. */
3763 for (insn = last; ; insn = PREV_INSN (insn))
3764 {
3765 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3766 && (temp = regno_use_in (new_reg, PATTERN (insn))))
3767 {
3768 /* Create a new reg dead note here. */
3769 link = rtx_alloc (EXPR_LIST);
3770 PUT_REG_NOTE_KIND (link, REG_DEAD);
3771 XEXP (link, 0) = temp;
3772 XEXP (link, 1) = REG_NOTES (insn);
3773 REG_NOTES (insn) = link;
3774 break;
3775 }
3776 /* It isn't mentioned anywhere, so no new reg note is needed for
3777 this register. */
3778 if (insn == first)
3779 break;
3780 }
3781 }
3782 }
3783
3784 /* Subroutine of update_flow_info. Determines whether a SET or CLOBBER in an
3785 insn created by splitting needs a REG_DEAD or REG_UNUSED note added. */
3786
3787 static void
3788 new_insn_dead_notes (pat, insn, last, orig_insn)
3789 rtx pat, insn, last, orig_insn;
3790 {
3791 rtx dest, tem, set;
3792
3793 /* PAT is either a CLOBBER or a SET here. */
3794 dest = XEXP (pat, 0);
3795
3796 while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
3797 || GET_CODE (dest) == STRICT_LOW_PART
3798 || GET_CODE (dest) == SIGN_EXTRACT)
3799 dest = XEXP (dest, 0);
3800
3801 if (GET_CODE (dest) == REG)
3802 {
3803 for (tem = last; tem != insn; tem = PREV_INSN (tem))
3804 {
3805 if (GET_RTX_CLASS (GET_CODE (tem)) == 'i'
3806 && reg_overlap_mentioned_p (dest, PATTERN (tem))
3807 && (set = single_set (tem)))
3808 {
3809 rtx tem_dest = SET_DEST (set);
3810
3811 while (GET_CODE (tem_dest) == ZERO_EXTRACT
3812 || GET_CODE (tem_dest) == SUBREG
3813 || GET_CODE (tem_dest) == STRICT_LOW_PART
3814 || GET_CODE (tem_dest) == SIGN_EXTRACT)
3815 tem_dest = XEXP (tem_dest, 0);
3816
3817 if (tem_dest != dest)
3818 {
3819 /* Use the same scheme as combine.c, don't put both REG_DEAD
3820 and REG_UNUSED notes on the same insn. */
3821 if (! find_regno_note (tem, REG_UNUSED, REGNO (dest))
3822 && ! find_regno_note (tem, REG_DEAD, REGNO (dest)))
3823 {
3824 rtx note = rtx_alloc (EXPR_LIST);
3825 PUT_REG_NOTE_KIND (note, REG_DEAD);
3826 XEXP (note, 0) = dest;
3827 XEXP (note, 1) = REG_NOTES (tem);
3828 REG_NOTES (tem) = note;
3829 }
3830 /* The reg only dies in one insn, the last one that uses
3831 it. */
3832 break;
3833 }
3834 else if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
3835 /* We found an instruction that both uses the register,
3836 and sets it, so no new REG_NOTE is needed for this set. */
3837 break;
3838 }
3839 }
3840 /* If this is a set, it must die somewhere, unless it is the dest of
3841 the original insn, and hence is live after the original insn. Abort
3842 if it isn't supposed to be live after the original insn.
3843
3844 If this is a clobber, then just add a REG_UNUSED note. */
3845 if (tem == insn)
3846 {
3847 int live_after_orig_insn = 0;
3848 rtx pattern = PATTERN (orig_insn);
3849 int i;
3850
3851 if (GET_CODE (pat) == CLOBBER)
3852 {
3853 rtx note = rtx_alloc (EXPR_LIST);
3854 PUT_REG_NOTE_KIND (note, REG_UNUSED);
3855 XEXP (note, 0) = dest;
3856 XEXP (note, 1) = REG_NOTES (insn);
3857 REG_NOTES (insn) = note;
3858 return;
3859 }
3860
3861 /* The original insn could have multiple sets, so search the
3862 insn for all sets. */
3863 if (GET_CODE (pattern) == SET)
3864 {
3865 if (reg_overlap_mentioned_p (dest, SET_DEST (pattern)))
3866 live_after_orig_insn = 1;
3867 }
3868 else if (GET_CODE (pattern) == PARALLEL)
3869 {
3870 for (i = 0; i < XVECLEN (pattern, 0); i++)
3871 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET
3872 && reg_overlap_mentioned_p (dest,
3873 SET_DEST (XVECEXP (pattern,
3874 0, i))))
3875 live_after_orig_insn = 1;
3876 }
3877
3878 if (! live_after_orig_insn)
3879 abort ();
3880 }
3881 }
3882 }
3883
3884 /* Subroutine of update_flow_info. Update the value of reg_n_sets for all
3885 registers modified by X. INC is -1 if the containing insn is being deleted,
3886 and is 1 if the containing insn is a newly generated insn. */
3887
3888 static void
3889 update_n_sets (x, inc)
3890 rtx x;
3891 int inc;
3892 {
3893 rtx dest = SET_DEST (x);
3894
3895 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
3896 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
3897 dest = SUBREG_REG (dest);
3898
3899 if (GET_CODE (dest) == REG)
3900 {
3901 int regno = REGNO (dest);
3902
3903 if (regno < FIRST_PSEUDO_REGISTER)
3904 {
3905 register int i;
3906 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (dest));
3907
3908 for (i = regno; i < endregno; i++)
3909 reg_n_sets[i] += inc;
3910 }
3911 else
3912 reg_n_sets[regno] += inc;
3913 }
3914 }
3915
3916 /* Updates all flow-analysis related quantities (including REG_NOTES) for
3917 the insns from FIRST to LAST inclusive that were created by splitting
3918 ORIG_INSN. NOTES are the original REG_NOTES. */
3919
3920 static void
3921 update_flow_info (notes, first, last, orig_insn)
3922 rtx notes;
3923 rtx first, last;
3924 rtx orig_insn;
3925 {
3926 rtx insn, note;
3927 rtx next;
3928 rtx orig_dest, temp;
3929 rtx set;
3930
3931 /* Get and save the destination set by the original insn. */
3932
3933 orig_dest = single_set (orig_insn);
3934 if (orig_dest)
3935 orig_dest = SET_DEST (orig_dest);
3936
3937 /* Move REG_NOTES from the original insn to where they now belong. */
3938
3939 for (note = notes; note; note = next)
3940 {
3941 next = XEXP (note, 1);
3942 switch (REG_NOTE_KIND (note))
3943 {
3944 case REG_DEAD:
3945 case REG_UNUSED:
3946 /* Move these notes from the original insn to the last new insn where
3947 the register is now set. */
3948
3949 for (insn = last; ; insn = PREV_INSN (insn))
3950 {
3951 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3952 && reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
3953 {
3954 XEXP (note, 1) = REG_NOTES (insn);
3955 REG_NOTES (insn) = note;
3956
3957 /* Sometimes need to convert REG_UNUSED notes to REG_DEAD
3958 notes. */
3959 /* ??? This won't handle multiple word registers correctly,
3960 but should be good enough for now. */
3961 if (REG_NOTE_KIND (note) == REG_UNUSED
3962 && ! dead_or_set_p (insn, XEXP (note, 0)))
3963 PUT_REG_NOTE_KIND (note, REG_DEAD);
3964
3965 /* The reg only dies in one insn, the last one that uses
3966 it. */
3967 break;
3968 }
3969 /* It must die somewhere, fail it we couldn't find where it died.
3970
3971 If this is a REG_UNUSED note, then it must be a temporary
3972 register that was not needed by this instantiation of the
3973 pattern, so we can safely ignore it. */
3974 if (insn == first)
3975 {
3976 if (REG_NOTE_KIND (note) != REG_UNUSED)
3977 abort ();
3978
3979 break;
3980 }
3981 }
3982
3983 /* If this note refers to a multiple word hard register, it may
3984 have been split into several smaller hard register references.
3985 Check to see if there are any new register references that
3986 need REG_NOTES added for them. */
3987 temp = XEXP (note, 0);
3988 if (REG_NOTE_KIND (note) == REG_DEAD
3989 && GET_CODE (temp) == REG
3990 && REGNO (temp) < FIRST_PSEUDO_REGISTER
3991 && HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)))
3992 split_hard_reg_notes (note, first, last, orig_insn);
3993 break;
3994
3995 case REG_WAS_0:
3996 /* This note applies to the dest of the original insn. Find the
3997 first new insn that now has the same dest, and move the note
3998 there. */
3999
4000 if (! orig_dest)
4001 abort ();
4002
4003 for (insn = first; ; insn = NEXT_INSN (insn))
4004 {
4005 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
4006 && (temp = single_set (insn))
4007 && rtx_equal_p (SET_DEST (temp), orig_dest))
4008 {
4009 XEXP (note, 1) = REG_NOTES (insn);
4010 REG_NOTES (insn) = note;
4011 /* The reg is only zero before one insn, the first that
4012 uses it. */
4013 break;
4014 }
4015 /* It must be set somewhere, fail if we couldn't find where it
4016 was set. */
4017 if (insn == last)
4018 abort ();
4019 }
4020 break;
4021
4022 case REG_EQUAL:
4023 case REG_EQUIV:
4024 /* A REG_EQUIV or REG_EQUAL note on an insn with more than one
4025 set is meaningless. Just drop the note. */
4026 if (! orig_dest)
4027 break;
4028
4029 case REG_NO_CONFLICT:
4030 /* These notes apply to the dest of the original insn. Find the last
4031 new insn that now has the same dest, and move the note there. */
4032
4033 if (! orig_dest)
4034 abort ();
4035
4036 for (insn = last; ; insn = PREV_INSN (insn))
4037 {
4038 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
4039 && (temp = single_set (insn))
4040 && rtx_equal_p (SET_DEST (temp), orig_dest))
4041 {
4042 XEXP (note, 1) = REG_NOTES (insn);
4043 REG_NOTES (insn) = note;
4044 /* Only put this note on one of the new insns. */
4045 break;
4046 }
4047
4048 /* The original dest must still be set someplace. Abort if we
4049 couldn't find it. */
4050 if (insn == first)
4051 abort ();
4052 }
4053 break;
4054
4055 case REG_LIBCALL:
4056 /* Move a REG_LIBCALL note to the first insn created, and update
4057 the corresponding REG_RETVAL note. */
4058 XEXP (note, 1) = REG_NOTES (first);
4059 REG_NOTES (first) = note;
4060
4061 insn = XEXP (note, 0);
4062 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
4063 if (note)
4064 XEXP (note, 0) = first;
4065 break;
4066
4067 case REG_RETVAL:
4068 /* Move a REG_RETVAL note to the last insn created, and update
4069 the corresponding REG_LIBCALL note. */
4070 XEXP (note, 1) = REG_NOTES (last);
4071 REG_NOTES (last) = note;
4072
4073 insn = XEXP (note, 0);
4074 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
4075 if (note)
4076 XEXP (note, 0) = last;
4077 break;
4078
4079 case REG_NONNEG:
4080 /* This should be moved to whichever instruction is a JUMP_INSN. */
4081
4082 for (insn = last; ; insn = PREV_INSN (insn))
4083 {
4084 if (GET_CODE (insn) == JUMP_INSN)
4085 {
4086 XEXP (note, 1) = REG_NOTES (insn);
4087 REG_NOTES (insn) = note;
4088 /* Only put this note on one of the new insns. */
4089 break;
4090 }
4091 /* Fail if we couldn't find a JUMP_INSN. */
4092 if (insn == first)
4093 abort ();
4094 }
4095 break;
4096
4097 case REG_INC:
4098 /* This should be moved to whichever instruction now has the
4099 increment operation. */
4100 abort ();
4101
4102 case REG_LABEL:
4103 /* Should be moved to the new insn(s) which use the label. */
4104 for (insn = first; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
4105 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
4106 && reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
4107 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL,
4108 XEXP (note, 0), REG_NOTES (insn));
4109 break;
4110
4111 case REG_CC_SETTER:
4112 case REG_CC_USER:
4113 /* These two notes will never appear until after reorg, so we don't
4114 have to handle them here. */
4115 default:
4116 abort ();
4117 }
4118 }
4119
4120 /* Each new insn created, except the last, has a new set. If the destination
4121 is a register, then this reg is now live across several insns, whereas
4122 previously the dest reg was born and died within the same insn. To
4123 reflect this, we now need a REG_DEAD note on the insn where this
4124 dest reg dies.
4125
4126 Similarly, the new insns may have clobbers that need REG_UNUSED notes. */
4127
4128 for (insn = first; insn != last; insn = NEXT_INSN (insn))
4129 {
4130 rtx pat;
4131 int i;
4132
4133 pat = PATTERN (insn);
4134 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
4135 new_insn_dead_notes (pat, insn, last, orig_insn);
4136 else if (GET_CODE (pat) == PARALLEL)
4137 {
4138 for (i = 0; i < XVECLEN (pat, 0); i++)
4139 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
4140 || GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER)
4141 new_insn_dead_notes (XVECEXP (pat, 0, i), insn, last, orig_insn);
4142 }
4143 }
4144
4145 /* If any insn, except the last, uses the register set by the last insn,
4146 then we need a new REG_DEAD note on that insn. In this case, there
4147 would not have been a REG_DEAD note for this register in the original
4148 insn because it was used and set within one insn.
4149
4150 There is no new REG_DEAD note needed if the last insn uses the register
4151 that it is setting. */
4152
4153 set = single_set (last);
4154 if (set)
4155 {
4156 rtx dest = SET_DEST (set);
4157
4158 while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
4159 || GET_CODE (dest) == STRICT_LOW_PART
4160 || GET_CODE (dest) == SIGN_EXTRACT)
4161 dest = XEXP (dest, 0);
4162
4163 if (GET_CODE (dest) == REG
4164 && ! reg_overlap_mentioned_p (dest, SET_SRC (set)))
4165 {
4166 for (insn = PREV_INSN (last); ; insn = PREV_INSN (insn))
4167 {
4168 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
4169 && reg_mentioned_p (dest, PATTERN (insn))
4170 && (set = single_set (insn)))
4171 {
4172 rtx insn_dest = SET_DEST (set);
4173
4174 while (GET_CODE (insn_dest) == ZERO_EXTRACT
4175 || GET_CODE (insn_dest) == SUBREG
4176 || GET_CODE (insn_dest) == STRICT_LOW_PART
4177 || GET_CODE (insn_dest) == SIGN_EXTRACT)
4178 insn_dest = XEXP (insn_dest, 0);
4179
4180 if (insn_dest != dest)
4181 {
4182 note = rtx_alloc (EXPR_LIST);
4183 PUT_REG_NOTE_KIND (note, REG_DEAD);
4184 XEXP (note, 0) = dest;
4185 XEXP (note, 1) = REG_NOTES (insn);
4186 REG_NOTES (insn) = note;
4187 /* The reg only dies in one insn, the last one
4188 that uses it. */
4189 break;
4190 }
4191 }
4192 if (insn == first)
4193 break;
4194 }
4195 }
4196 }
4197
4198 /* If the original dest is modifying a multiple register target, and the
4199 original instruction was split such that the original dest is now set
4200 by two or more SUBREG sets, then the split insns no longer kill the
4201 destination of the original insn.
4202
4203 In this case, if there exists an instruction in the same basic block,
4204 before the split insn, which uses the original dest, and this use is
4205 killed by the original insn, then we must remove the REG_DEAD note on
4206 this insn, because it is now superfluous.
4207
4208 This does not apply when a hard register gets split, because the code
4209 knows how to handle overlapping hard registers properly. */
4210 if (orig_dest && GET_CODE (orig_dest) == REG)
4211 {
4212 int found_orig_dest = 0;
4213 int found_split_dest = 0;
4214
4215 for (insn = first; ; insn = NEXT_INSN (insn))
4216 {
4217 set = single_set (insn);
4218 if (set)
4219 {
4220 if (GET_CODE (SET_DEST (set)) == REG
4221 && REGNO (SET_DEST (set)) == REGNO (orig_dest))
4222 {
4223 found_orig_dest = 1;
4224 break;
4225 }
4226 else if (GET_CODE (SET_DEST (set)) == SUBREG
4227 && SUBREG_REG (SET_DEST (set)) == orig_dest)
4228 {
4229 found_split_dest = 1;
4230 break;
4231 }
4232 }
4233
4234 if (insn == last)
4235 break;
4236 }
4237
4238 if (found_split_dest)
4239 {
4240 /* Search backwards from FIRST, looking for the first insn that uses
4241 the original dest. Stop if we pass a CODE_LABEL or a JUMP_INSN.
4242 If we find an insn, and it has a REG_DEAD note, then delete the
4243 note. */
4244
4245 for (insn = first; insn; insn = PREV_INSN (insn))
4246 {
4247 if (GET_CODE (insn) == CODE_LABEL
4248 || GET_CODE (insn) == JUMP_INSN)
4249 break;
4250 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
4251 && reg_mentioned_p (orig_dest, insn))
4252 {
4253 note = find_regno_note (insn, REG_DEAD, REGNO (orig_dest));
4254 if (note)
4255 remove_note (insn, note);
4256 }
4257 }
4258 }
4259 else if (! found_orig_dest)
4260 {
4261 /* This should never happen. */
4262 abort ();
4263 }
4264 }
4265
4266 /* Update reg_n_sets. This is necessary to prevent local alloc from
4267 converting REG_EQUAL notes to REG_EQUIV when splitting has modified
4268 a reg from set once to set multiple times. */
4269
4270 {
4271 rtx x = PATTERN (orig_insn);
4272 RTX_CODE code = GET_CODE (x);
4273
4274 if (code == SET || code == CLOBBER)
4275 update_n_sets (x, -1);
4276 else if (code == PARALLEL)
4277 {
4278 int i;
4279 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4280 {
4281 code = GET_CODE (XVECEXP (x, 0, i));
4282 if (code == SET || code == CLOBBER)
4283 update_n_sets (XVECEXP (x, 0, i), -1);
4284 }
4285 }
4286
4287 for (insn = first; ; insn = NEXT_INSN (insn))
4288 {
4289 x = PATTERN (insn);
4290 code = GET_CODE (x);
4291
4292 if (code == SET || code == CLOBBER)
4293 update_n_sets (x, 1);
4294 else if (code == PARALLEL)
4295 {
4296 int i;
4297 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4298 {
4299 code = GET_CODE (XVECEXP (x, 0, i));
4300 if (code == SET || code == CLOBBER)
4301 update_n_sets (XVECEXP (x, 0, i), 1);
4302 }
4303 }
4304
4305 if (insn == last)
4306 break;
4307 }
4308 }
4309 }
4310
4311 /* The one entry point in this file. DUMP_FILE is the dump file for
4312 this pass. */
4313
4314 void
4315 schedule_insns (dump_file)
4316 FILE *dump_file;
4317 {
4318 int max_uid = MAX_INSNS_PER_SPLIT * (get_max_uid () + 1);
4319 int i, b;
4320 rtx insn;
4321
4322 /* Taking care of this degenerate case makes the rest of
4323 this code simpler. */
4324 if (n_basic_blocks == 0)
4325 return;
4326
4327 /* Create an insn here so that we can hang dependencies off of it later. */
4328 sched_before_next_call
4329 = gen_rtx (INSN, VOIDmode, 0, NULL_RTX, NULL_RTX,
4330 NULL_RTX, 0, NULL_RTX, 0);
4331
4332 /* Initialize the unused_*_lists. We can't use the ones left over from
4333 the previous function, because gcc has freed that memory. We can use
4334 the ones left over from the first sched pass in the second pass however,
4335 so only clear them on the first sched pass. The first pass is before
4336 reload if flag_schedule_insns is set, otherwise it is afterwards. */
4337
4338 if (reload_completed == 0 || ! flag_schedule_insns)
4339 {
4340 unused_insn_list = 0;
4341 unused_expr_list = 0;
4342 }
4343
4344 /* We create no insns here, only reorder them, so we
4345 remember how far we can cut back the stack on exit. */
4346
4347 /* Allocate data for this pass. See comments, above,
4348 for what these vectors do. */
4349 insn_luid = (int *) alloca (max_uid * sizeof (int));
4350 insn_priority = (int *) alloca (max_uid * sizeof (int));
4351 insn_tick = (int *) alloca (max_uid * sizeof (int));
4352 insn_costs = (short *) alloca (max_uid * sizeof (short));
4353 insn_units = (short *) alloca (max_uid * sizeof (short));
4354 insn_blockage = (unsigned int *) alloca (max_uid * sizeof (unsigned int));
4355 insn_ref_count = (int *) alloca (max_uid * sizeof (int));
4356
4357 if (reload_completed == 0)
4358 {
4359 sched_reg_n_deaths = (short *) alloca (max_regno * sizeof (short));
4360 sched_reg_n_calls_crossed = (int *) alloca (max_regno * sizeof (int));
4361 sched_reg_live_length = (int *) alloca (max_regno * sizeof (int));
4362 bb_dead_regs = (regset) alloca (regset_bytes);
4363 bb_live_regs = (regset) alloca (regset_bytes);
4364 bzero (sched_reg_n_calls_crossed, max_regno * sizeof (int));
4365 bzero (sched_reg_live_length, max_regno * sizeof (int));
4366 bcopy (reg_n_deaths, sched_reg_n_deaths, max_regno * sizeof (short));
4367 init_alias_analysis ();
4368 }
4369 else
4370 {
4371 sched_reg_n_deaths = 0;
4372 sched_reg_n_calls_crossed = 0;
4373 sched_reg_live_length = 0;
4374 bb_dead_regs = 0;
4375 bb_live_regs = 0;
4376 if (! flag_schedule_insns)
4377 init_alias_analysis ();
4378 }
4379
4380 if (write_symbols != NO_DEBUG)
4381 {
4382 rtx line;
4383
4384 line_note = (rtx *) alloca (max_uid * sizeof (rtx));
4385 bzero (line_note, max_uid * sizeof (rtx));
4386 line_note_head = (rtx *) alloca (n_basic_blocks * sizeof (rtx));
4387 bzero (line_note_head, n_basic_blocks * sizeof (rtx));
4388
4389 /* Determine the line-number at the start of each basic block.
4390 This must be computed and saved now, because after a basic block's
4391 predecessor has been scheduled, it is impossible to accurately
4392 determine the correct line number for the first insn of the block. */
4393
4394 for (b = 0; b < n_basic_blocks; b++)
4395 for (line = basic_block_head[b]; line; line = PREV_INSN (line))
4396 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
4397 {
4398 line_note_head[b] = line;
4399 break;
4400 }
4401 }
4402
4403 bzero (insn_luid, max_uid * sizeof (int));
4404 bzero (insn_priority, max_uid * sizeof (int));
4405 bzero (insn_tick, max_uid * sizeof (int));
4406 bzero (insn_costs, max_uid * sizeof (short));
4407 bzero (insn_units, max_uid * sizeof (short));
4408 bzero (insn_blockage, max_uid * sizeof (unsigned int));
4409 bzero (insn_ref_count, max_uid * sizeof (int));
4410
4411 /* Schedule each basic block, block by block. */
4412
4413 if (NEXT_INSN (basic_block_end[n_basic_blocks-1]) == 0
4414 || (GET_CODE (basic_block_end[n_basic_blocks-1]) != NOTE
4415 && GET_CODE (basic_block_end[n_basic_blocks-1]) != CODE_LABEL))
4416 emit_note_after (NOTE_INSN_DELETED, basic_block_end[n_basic_blocks-1]);
4417
4418 for (b = 0; b < n_basic_blocks; b++)
4419 {
4420 rtx insn, next;
4421 rtx insns;
4422
4423 note_list = 0;
4424
4425 for (insn = basic_block_head[b]; ; insn = next)
4426 {
4427 rtx prev;
4428 rtx set;
4429
4430 /* Can't use `next_real_insn' because that
4431 might go across CODE_LABELS and short-out basic blocks. */
4432 next = NEXT_INSN (insn);
4433 if (GET_CODE (insn) != INSN)
4434 {
4435 if (insn == basic_block_end[b])
4436 break;
4437
4438 continue;
4439 }
4440
4441 /* Don't split no-op move insns. These should silently disappear
4442 later in final. Splitting such insns would break the code
4443 that handles REG_NO_CONFLICT blocks. */
4444 set = single_set (insn);
4445 if (set && rtx_equal_p (SET_SRC (set), SET_DEST (set)))
4446 {
4447 if (insn == basic_block_end[b])
4448 break;
4449
4450 /* Nops get in the way while scheduling, so delete them now if
4451 register allocation has already been done. It is too risky
4452 to try to do this before register allocation, and there are
4453 unlikely to be very many nops then anyways. */
4454 if (reload_completed)
4455 {
4456 PUT_CODE (insn, NOTE);
4457 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
4458 NOTE_SOURCE_FILE (insn) = 0;
4459 }
4460
4461 continue;
4462 }
4463
4464 /* Split insns here to get max fine-grain parallelism. */
4465 prev = PREV_INSN (insn);
4466 if (reload_completed == 0)
4467 {
4468 rtx last, first = PREV_INSN (insn);
4469 rtx notes = REG_NOTES (insn);
4470
4471 last = try_split (PATTERN (insn), insn, 1);
4472 if (last != insn)
4473 {
4474 /* try_split returns the NOTE that INSN became. */
4475 first = NEXT_INSN (first);
4476 update_flow_info (notes, first, last, insn);
4477
4478 PUT_CODE (insn, NOTE);
4479 NOTE_SOURCE_FILE (insn) = 0;
4480 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
4481 if (insn == basic_block_head[b])
4482 basic_block_head[b] = first;
4483 if (insn == basic_block_end[b])
4484 {
4485 basic_block_end[b] = last;
4486 break;
4487 }
4488 }
4489 }
4490
4491 if (insn == basic_block_end[b])
4492 break;
4493 }
4494
4495 schedule_block (b, dump_file);
4496
4497 #ifdef USE_C_ALLOCA
4498 alloca (0);
4499 #endif
4500 }
4501
4502 /* Reposition the prologue and epilogue notes in case we moved the
4503 prologue/epilogue insns. */
4504 if (reload_completed)
4505 reposition_prologue_and_epilogue_notes (get_insns ());
4506
4507 if (write_symbols != NO_DEBUG)
4508 {
4509 rtx line = 0;
4510 rtx insn = get_insns ();
4511 int active_insn = 0;
4512 int notes = 0;
4513
4514 /* Walk the insns deleting redundant line-number notes. Many of these
4515 are already present. The remainder tend to occur at basic
4516 block boundaries. */
4517 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
4518 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
4519 {
4520 /* If there are no active insns following, INSN is redundant. */
4521 if (active_insn == 0)
4522 {
4523 notes++;
4524 NOTE_SOURCE_FILE (insn) = 0;
4525 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
4526 }
4527 /* If the line number is unchanged, LINE is redundant. */
4528 else if (line
4529 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
4530 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
4531 {
4532 notes++;
4533 NOTE_SOURCE_FILE (line) = 0;
4534 NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
4535 line = insn;
4536 }
4537 else
4538 line = insn;
4539 active_insn = 0;
4540 }
4541 else if (! ((GET_CODE (insn) == NOTE
4542 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
4543 || (GET_CODE (insn) == INSN
4544 && (GET_CODE (PATTERN (insn)) == USE
4545 || GET_CODE (PATTERN (insn)) == CLOBBER))))
4546 active_insn++;
4547
4548 if (dump_file && notes)
4549 fprintf (dump_file, ";; deleted %d line-number notes\n", notes);
4550 }
4551
4552 if (reload_completed == 0)
4553 {
4554 int regno;
4555 for (regno = 0; regno < max_regno; regno++)
4556 if (sched_reg_live_length[regno])
4557 {
4558 if (dump_file)
4559 {
4560 if (reg_live_length[regno] > sched_reg_live_length[regno])
4561 fprintf (dump_file,
4562 ";; register %d life shortened from %d to %d\n",
4563 regno, reg_live_length[regno],
4564 sched_reg_live_length[regno]);
4565 /* Negative values are special; don't overwrite the current
4566 reg_live_length value if it is negative. */
4567 else if (reg_live_length[regno] < sched_reg_live_length[regno]
4568 && reg_live_length[regno] >= 0)
4569 fprintf (dump_file,
4570 ";; register %d life extended from %d to %d\n",
4571 regno, reg_live_length[regno],
4572 sched_reg_live_length[regno]);
4573
4574 if (reg_n_calls_crossed[regno]
4575 && ! sched_reg_n_calls_crossed[regno])
4576 fprintf (dump_file,
4577 ";; register %d no longer crosses calls\n", regno);
4578 else if (! reg_n_calls_crossed[regno]
4579 && sched_reg_n_calls_crossed[regno])
4580 fprintf (dump_file,
4581 ";; register %d now crosses calls\n", regno);
4582 }
4583 /* Negative values are special; don't overwrite the current
4584 reg_live_length value if it is negative. */
4585 if (reg_live_length[regno] >= 0)
4586 reg_live_length[regno] = sched_reg_live_length[regno];
4587 reg_n_calls_crossed[regno] = sched_reg_n_calls_crossed[regno];
4588 }
4589 }
4590 }
4591 #endif /* INSN_SCHEDULING */
This page took 0.243227 seconds and 5 git commands to generate.