]> gcc.gnu.org Git - gcc.git/blob - gcc/rtlanal.c
aeaefce80af866466fe2f8faad811a207522d4a1
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for C-Compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "basic-block.h"
37 #include "real.h"
38 #include "regs.h"
39 #include "function.h"
40
41 /* Forward declarations */
42 static int global_reg_mentioned_p_1 (rtx *, void *);
43 static void set_of_1 (rtx, rtx, void *);
44 static void insn_dependent_p_1 (rtx, rtx, void *);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (rtx);
47 static void parms_set (rtx, rtx, void *);
48 static bool hoist_test_store (rtx, rtx, regset);
49 static void hoist_update_store (rtx, rtx *, rtx, rtx);
50
51 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
52 rtx, enum machine_mode,
53 unsigned HOST_WIDE_INT);
54 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
55 enum machine_mode,
56 unsigned HOST_WIDE_INT);
57 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
58 enum machine_mode,
59 unsigned int);
60 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
61 enum machine_mode, unsigned int);
62
63 /* Bit flags that specify the machine subtype we are compiling for.
64 Bits are tested using macros TARGET_... defined in the tm.h file
65 and set by `-m...' switches. Must be defined in rtlanal.c. */
66
67 int target_flags;
68 \f
69 /* Return 1 if the value of X is unstable
70 (would be different at a different point in the program).
71 The frame pointer, arg pointer, etc. are considered stable
72 (within one function) and so is anything marked `unchanging'. */
73
74 int
75 rtx_unstable_p (rtx x)
76 {
77 RTX_CODE code = GET_CODE (x);
78 int i;
79 const char *fmt;
80
81 switch (code)
82 {
83 case MEM:
84 return ! RTX_UNCHANGING_P (x) || rtx_unstable_p (XEXP (x, 0));
85
86 case QUEUED:
87 return 1;
88
89 case ADDRESSOF:
90 case CONST:
91 case CONST_INT:
92 case CONST_DOUBLE:
93 case CONST_VECTOR:
94 case SYMBOL_REF:
95 case LABEL_REF:
96 return 0;
97
98 case REG:
99 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
100 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
101 /* The arg pointer varies if it is not a fixed register. */
102 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
103 || RTX_UNCHANGING_P (x))
104 return 0;
105 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
106 /* ??? When call-clobbered, the value is stable modulo the restore
107 that must happen after a call. This currently screws up local-alloc
108 into believing that the restore is not needed. */
109 if (x == pic_offset_table_rtx)
110 return 0;
111 #endif
112 return 1;
113
114 case ASM_OPERANDS:
115 if (MEM_VOLATILE_P (x))
116 return 1;
117
118 /* Fall through. */
119
120 default:
121 break;
122 }
123
124 fmt = GET_RTX_FORMAT (code);
125 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
126 if (fmt[i] == 'e')
127 {
128 if (rtx_unstable_p (XEXP (x, i)))
129 return 1;
130 }
131 else if (fmt[i] == 'E')
132 {
133 int j;
134 for (j = 0; j < XVECLEN (x, i); j++)
135 if (rtx_unstable_p (XVECEXP (x, i, j)))
136 return 1;
137 }
138
139 return 0;
140 }
141
142 /* Return 1 if X has a value that can vary even between two
143 executions of the program. 0 means X can be compared reliably
144 against certain constants or near-constants.
145 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
146 zero, we are slightly more conservative.
147 The frame pointer and the arg pointer are considered constant. */
148
149 int
150 rtx_varies_p (rtx x, int for_alias)
151 {
152 RTX_CODE code;
153 int i;
154 const char *fmt;
155
156 if (!x)
157 return 0;
158
159 code = GET_CODE (x);
160 switch (code)
161 {
162 case MEM:
163 return ! RTX_UNCHANGING_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
164
165 case QUEUED:
166 return 1;
167
168 case CONST:
169 case CONST_INT:
170 case CONST_DOUBLE:
171 case CONST_VECTOR:
172 case SYMBOL_REF:
173 case LABEL_REF:
174 return 0;
175
176 case ADDRESSOF:
177 /* This will resolve to some offset from the frame pointer. */
178 return 0;
179
180 case REG:
181 /* Note that we have to test for the actual rtx used for the frame
182 and arg pointers and not just the register number in case we have
183 eliminated the frame and/or arg pointer and are using it
184 for pseudos. */
185 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
186 /* The arg pointer varies if it is not a fixed register. */
187 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
188 return 0;
189 if (x == pic_offset_table_rtx
190 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
191 /* ??? When call-clobbered, the value is stable modulo the restore
192 that must happen after a call. This currently screws up
193 local-alloc into believing that the restore is not needed, so we
194 must return 0 only if we are called from alias analysis. */
195 && for_alias
196 #endif
197 )
198 return 0;
199 return 1;
200
201 case LO_SUM:
202 /* The operand 0 of a LO_SUM is considered constant
203 (in fact it is related specifically to operand 1)
204 during alias analysis. */
205 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
206 || rtx_varies_p (XEXP (x, 1), for_alias);
207
208 case ASM_OPERANDS:
209 if (MEM_VOLATILE_P (x))
210 return 1;
211
212 /* Fall through. */
213
214 default:
215 break;
216 }
217
218 fmt = GET_RTX_FORMAT (code);
219 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
220 if (fmt[i] == 'e')
221 {
222 if (rtx_varies_p (XEXP (x, i), for_alias))
223 return 1;
224 }
225 else if (fmt[i] == 'E')
226 {
227 int j;
228 for (j = 0; j < XVECLEN (x, i); j++)
229 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
230 return 1;
231 }
232
233 return 0;
234 }
235
236 /* Return 0 if the use of X as an address in a MEM can cause a trap. */
237
238 int
239 rtx_addr_can_trap_p (rtx x)
240 {
241 enum rtx_code code = GET_CODE (x);
242
243 switch (code)
244 {
245 case SYMBOL_REF:
246 return SYMBOL_REF_WEAK (x);
247
248 case LABEL_REF:
249 return 0;
250
251 case ADDRESSOF:
252 /* This will resolve to some offset from the frame pointer. */
253 return 0;
254
255 case REG:
256 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
257 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
258 || x == stack_pointer_rtx
259 /* The arg pointer varies if it is not a fixed register. */
260 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
261 return 0;
262 /* All of the virtual frame registers are stack references. */
263 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
264 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
265 return 0;
266 return 1;
267
268 case CONST:
269 return rtx_addr_can_trap_p (XEXP (x, 0));
270
271 case PLUS:
272 /* An address is assumed not to trap if it is an address that can't
273 trap plus a constant integer or it is the pic register plus a
274 constant. */
275 return ! ((! rtx_addr_can_trap_p (XEXP (x, 0))
276 && GET_CODE (XEXP (x, 1)) == CONST_INT)
277 || (XEXP (x, 0) == pic_offset_table_rtx
278 && CONSTANT_P (XEXP (x, 1))));
279
280 case LO_SUM:
281 case PRE_MODIFY:
282 return rtx_addr_can_trap_p (XEXP (x, 1));
283
284 case PRE_DEC:
285 case PRE_INC:
286 case POST_DEC:
287 case POST_INC:
288 case POST_MODIFY:
289 return rtx_addr_can_trap_p (XEXP (x, 0));
290
291 default:
292 break;
293 }
294
295 /* If it isn't one of the case above, it can cause a trap. */
296 return 1;
297 }
298
299 /* Return true if X is an address that is known to not be zero. */
300
301 bool
302 nonzero_address_p (rtx x)
303 {
304 enum rtx_code code = GET_CODE (x);
305
306 switch (code)
307 {
308 case SYMBOL_REF:
309 return !SYMBOL_REF_WEAK (x);
310
311 case LABEL_REF:
312 return true;
313
314 case ADDRESSOF:
315 /* This will resolve to some offset from the frame pointer. */
316 return true;
317
318 case REG:
319 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
320 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
321 || x == stack_pointer_rtx
322 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
323 return true;
324 /* All of the virtual frame registers are stack references. */
325 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
326 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
327 return true;
328 return false;
329
330 case CONST:
331 return nonzero_address_p (XEXP (x, 0));
332
333 case PLUS:
334 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
335 {
336 /* Pointers aren't allowed to wrap. If we've got a register
337 that is known to be a pointer, and a positive offset, then
338 the composite can't be zero. */
339 if (INTVAL (XEXP (x, 1)) > 0
340 && REG_P (XEXP (x, 0))
341 && REG_POINTER (XEXP (x, 0)))
342 return true;
343
344 return nonzero_address_p (XEXP (x, 0));
345 }
346 /* Handle PIC references. */
347 else if (XEXP (x, 0) == pic_offset_table_rtx
348 && CONSTANT_P (XEXP (x, 1)))
349 return true;
350 return false;
351
352 case PRE_MODIFY:
353 /* Similar to the above; allow positive offsets. Further, since
354 auto-inc is only allowed in memories, the register must be a
355 pointer. */
356 if (GET_CODE (XEXP (x, 1)) == CONST_INT
357 && INTVAL (XEXP (x, 1)) > 0)
358 return true;
359 return nonzero_address_p (XEXP (x, 0));
360
361 case PRE_INC:
362 /* Similarly. Further, the offset is always positive. */
363 return true;
364
365 case PRE_DEC:
366 case POST_DEC:
367 case POST_INC:
368 case POST_MODIFY:
369 return nonzero_address_p (XEXP (x, 0));
370
371 case LO_SUM:
372 return nonzero_address_p (XEXP (x, 1));
373
374 default:
375 break;
376 }
377
378 /* If it isn't one of the case above, might be zero. */
379 return false;
380 }
381
382 /* Return 1 if X refers to a memory location whose address
383 cannot be compared reliably with constant addresses,
384 or if X refers to a BLKmode memory object.
385 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
386 zero, we are slightly more conservative. */
387
388 int
389 rtx_addr_varies_p (rtx x, int for_alias)
390 {
391 enum rtx_code code;
392 int i;
393 const char *fmt;
394
395 if (x == 0)
396 return 0;
397
398 code = GET_CODE (x);
399 if (code == MEM)
400 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
401
402 fmt = GET_RTX_FORMAT (code);
403 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
404 if (fmt[i] == 'e')
405 {
406 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
407 return 1;
408 }
409 else if (fmt[i] == 'E')
410 {
411 int j;
412 for (j = 0; j < XVECLEN (x, i); j++)
413 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
414 return 1;
415 }
416 return 0;
417 }
418 \f
419 /* Return the value of the integer term in X, if one is apparent;
420 otherwise return 0.
421 Only obvious integer terms are detected.
422 This is used in cse.c with the `related_value' field. */
423
424 HOST_WIDE_INT
425 get_integer_term (rtx x)
426 {
427 if (GET_CODE (x) == CONST)
428 x = XEXP (x, 0);
429
430 if (GET_CODE (x) == MINUS
431 && GET_CODE (XEXP (x, 1)) == CONST_INT)
432 return - INTVAL (XEXP (x, 1));
433 if (GET_CODE (x) == PLUS
434 && GET_CODE (XEXP (x, 1)) == CONST_INT)
435 return INTVAL (XEXP (x, 1));
436 return 0;
437 }
438
439 /* If X is a constant, return the value sans apparent integer term;
440 otherwise return 0.
441 Only obvious integer terms are detected. */
442
443 rtx
444 get_related_value (rtx x)
445 {
446 if (GET_CODE (x) != CONST)
447 return 0;
448 x = XEXP (x, 0);
449 if (GET_CODE (x) == PLUS
450 && GET_CODE (XEXP (x, 1)) == CONST_INT)
451 return XEXP (x, 0);
452 else if (GET_CODE (x) == MINUS
453 && GET_CODE (XEXP (x, 1)) == CONST_INT)
454 return XEXP (x, 0);
455 return 0;
456 }
457 \f
458 /* Given a tablejump insn INSN, return the RTL expression for the offset
459 into the jump table. If the offset cannot be determined, then return
460 NULL_RTX.
461
462 If EARLIEST is nonzero, it is a pointer to a place where the earliest
463 insn used in locating the offset was found. */
464
465 rtx
466 get_jump_table_offset (rtx insn, rtx *earliest)
467 {
468 rtx label = NULL;
469 rtx table = NULL;
470 rtx set;
471 rtx old_insn;
472 rtx x;
473 rtx old_x;
474 rtx y;
475 rtx old_y;
476 int i;
477
478 if (!tablejump_p (insn, &label, &table) || !(set = single_set (insn)))
479 return NULL_RTX;
480
481 x = SET_SRC (set);
482
483 /* Some targets (eg, ARM) emit a tablejump that also
484 contains the out-of-range target. */
485 if (GET_CODE (x) == IF_THEN_ELSE
486 && GET_CODE (XEXP (x, 2)) == LABEL_REF)
487 x = XEXP (x, 1);
488
489 /* Search backwards and locate the expression stored in X. */
490 for (old_x = NULL_RTX; REG_P (x) && x != old_x;
491 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
492 ;
493
494 /* If X is an expression using a relative address then strip
495 off the addition / subtraction of PC, PIC_OFFSET_TABLE_REGNUM,
496 or the jump table label. */
497 if (GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC
498 && (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS))
499 {
500 for (i = 0; i < 2; i++)
501 {
502 old_insn = insn;
503 y = XEXP (x, i);
504
505 if (y == pc_rtx || y == pic_offset_table_rtx)
506 break;
507
508 for (old_y = NULL_RTX; REG_P (y) && y != old_y;
509 old_y = y, y = find_last_value (y, &old_insn, NULL_RTX, 0))
510 ;
511
512 if ((GET_CODE (y) == LABEL_REF && XEXP (y, 0) == label))
513 break;
514 }
515
516 if (i >= 2)
517 return NULL_RTX;
518
519 x = XEXP (x, 1 - i);
520
521 for (old_x = NULL_RTX; REG_P (x) && x != old_x;
522 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
523 ;
524 }
525
526 /* Strip off any sign or zero extension. */
527 if (GET_CODE (x) == SIGN_EXTEND || GET_CODE (x) == ZERO_EXTEND)
528 {
529 x = XEXP (x, 0);
530
531 for (old_x = NULL_RTX; REG_P (x) && x != old_x;
532 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
533 ;
534 }
535
536 /* If X isn't a MEM then this isn't a tablejump we understand. */
537 if (GET_CODE (x) != MEM)
538 return NULL_RTX;
539
540 /* Strip off the MEM. */
541 x = XEXP (x, 0);
542
543 for (old_x = NULL_RTX; REG_P (x) && x != old_x;
544 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
545 ;
546
547 /* If X isn't a PLUS than this isn't a tablejump we understand. */
548 if (GET_CODE (x) != PLUS)
549 return NULL_RTX;
550
551 /* At this point we should have an expression representing the jump table
552 plus an offset. Examine each operand in order to determine which one
553 represents the jump table. Knowing that tells us that the other operand
554 must represent the offset. */
555 for (i = 0; i < 2; i++)
556 {
557 old_insn = insn;
558 y = XEXP (x, i);
559
560 for (old_y = NULL_RTX; REG_P (y) && y != old_y;
561 old_y = y, y = find_last_value (y, &old_insn, NULL_RTX, 0))
562 ;
563
564 if ((GET_CODE (y) == CONST || GET_CODE (y) == LABEL_REF)
565 && reg_mentioned_p (label, y))
566 break;
567 }
568
569 if (i >= 2)
570 return NULL_RTX;
571
572 x = XEXP (x, 1 - i);
573
574 /* Strip off the addition / subtraction of PIC_OFFSET_TABLE_REGNUM. */
575 if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
576 for (i = 0; i < 2; i++)
577 if (XEXP (x, i) == pic_offset_table_rtx)
578 {
579 x = XEXP (x, 1 - i);
580 break;
581 }
582
583 if (earliest)
584 *earliest = insn;
585
586 /* Return the RTL expression representing the offset. */
587 return x;
588 }
589 \f
590 /* A subroutine of global_reg_mentioned_p, returns 1 if *LOC mentions
591 a global register. */
592
593 static int
594 global_reg_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
595 {
596 int regno;
597 rtx x = *loc;
598
599 if (! x)
600 return 0;
601
602 switch (GET_CODE (x))
603 {
604 case SUBREG:
605 if (REG_P (SUBREG_REG (x)))
606 {
607 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
608 && global_regs[subreg_regno (x)])
609 return 1;
610 return 0;
611 }
612 break;
613
614 case REG:
615 regno = REGNO (x);
616 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
617 return 1;
618 return 0;
619
620 case SCRATCH:
621 case PC:
622 case CC0:
623 case CONST_INT:
624 case CONST_DOUBLE:
625 case CONST:
626 case LABEL_REF:
627 return 0;
628
629 case CALL:
630 /* A non-constant call might use a global register. */
631 return 1;
632
633 default:
634 break;
635 }
636
637 return 0;
638 }
639
640 /* Returns nonzero if X mentions a global register. */
641
642 int
643 global_reg_mentioned_p (rtx x)
644 {
645 if (INSN_P (x))
646 {
647 if (GET_CODE (x) == CALL_INSN)
648 {
649 if (! CONST_OR_PURE_CALL_P (x))
650 return 1;
651 x = CALL_INSN_FUNCTION_USAGE (x);
652 if (x == 0)
653 return 0;
654 }
655 else
656 x = PATTERN (x);
657 }
658
659 return for_each_rtx (&x, global_reg_mentioned_p_1, NULL);
660 }
661 \f
662 /* Return the number of places FIND appears within X. If COUNT_DEST is
663 zero, we do not count occurrences inside the destination of a SET. */
664
665 int
666 count_occurrences (rtx x, rtx find, int count_dest)
667 {
668 int i, j;
669 enum rtx_code code;
670 const char *format_ptr;
671 int count;
672
673 if (x == find)
674 return 1;
675
676 code = GET_CODE (x);
677
678 switch (code)
679 {
680 case REG:
681 case CONST_INT:
682 case CONST_DOUBLE:
683 case CONST_VECTOR:
684 case SYMBOL_REF:
685 case CODE_LABEL:
686 case PC:
687 case CC0:
688 return 0;
689
690 case MEM:
691 if (GET_CODE (find) == MEM && rtx_equal_p (x, find))
692 return 1;
693 break;
694
695 case SET:
696 if (SET_DEST (x) == find && ! count_dest)
697 return count_occurrences (SET_SRC (x), find, count_dest);
698 break;
699
700 default:
701 break;
702 }
703
704 format_ptr = GET_RTX_FORMAT (code);
705 count = 0;
706
707 for (i = 0; i < GET_RTX_LENGTH (code); i++)
708 {
709 switch (*format_ptr++)
710 {
711 case 'e':
712 count += count_occurrences (XEXP (x, i), find, count_dest);
713 break;
714
715 case 'E':
716 for (j = 0; j < XVECLEN (x, i); j++)
717 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
718 break;
719 }
720 }
721 return count;
722 }
723 \f
724 /* Nonzero if register REG appears somewhere within IN.
725 Also works if REG is not a register; in this case it checks
726 for a subexpression of IN that is Lisp "equal" to REG. */
727
728 int
729 reg_mentioned_p (rtx reg, rtx in)
730 {
731 const char *fmt;
732 int i;
733 enum rtx_code code;
734
735 if (in == 0)
736 return 0;
737
738 if (reg == in)
739 return 1;
740
741 if (GET_CODE (in) == LABEL_REF)
742 return reg == XEXP (in, 0);
743
744 code = GET_CODE (in);
745
746 switch (code)
747 {
748 /* Compare registers by number. */
749 case REG:
750 return REG_P (reg) && REGNO (in) == REGNO (reg);
751
752 /* These codes have no constituent expressions
753 and are unique. */
754 case SCRATCH:
755 case CC0:
756 case PC:
757 return 0;
758
759 case CONST_INT:
760 case CONST_VECTOR:
761 case CONST_DOUBLE:
762 /* These are kept unique for a given value. */
763 return 0;
764
765 default:
766 break;
767 }
768
769 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
770 return 1;
771
772 fmt = GET_RTX_FORMAT (code);
773
774 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
775 {
776 if (fmt[i] == 'E')
777 {
778 int j;
779 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
780 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
781 return 1;
782 }
783 else if (fmt[i] == 'e'
784 && reg_mentioned_p (reg, XEXP (in, i)))
785 return 1;
786 }
787 return 0;
788 }
789 \f
790 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
791 no CODE_LABEL insn. */
792
793 int
794 no_labels_between_p (rtx beg, rtx end)
795 {
796 rtx p;
797 if (beg == end)
798 return 0;
799 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
800 if (GET_CODE (p) == CODE_LABEL)
801 return 0;
802 return 1;
803 }
804
805 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
806 no JUMP_INSN insn. */
807
808 int
809 no_jumps_between_p (rtx beg, rtx end)
810 {
811 rtx p;
812 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
813 if (GET_CODE (p) == JUMP_INSN)
814 return 0;
815 return 1;
816 }
817
818 /* Nonzero if register REG is used in an insn between
819 FROM_INSN and TO_INSN (exclusive of those two). */
820
821 int
822 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
823 {
824 rtx insn;
825
826 if (from_insn == to_insn)
827 return 0;
828
829 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
830 if (INSN_P (insn)
831 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
832 || (GET_CODE (insn) == CALL_INSN
833 && (find_reg_fusage (insn, USE, reg)
834 || find_reg_fusage (insn, CLOBBER, reg)))))
835 return 1;
836 return 0;
837 }
838 \f
839 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
840 is entirely replaced by a new value and the only use is as a SET_DEST,
841 we do not consider it a reference. */
842
843 int
844 reg_referenced_p (rtx x, rtx body)
845 {
846 int i;
847
848 switch (GET_CODE (body))
849 {
850 case SET:
851 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
852 return 1;
853
854 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
855 of a REG that occupies all of the REG, the insn references X if
856 it is mentioned in the destination. */
857 if (GET_CODE (SET_DEST (body)) != CC0
858 && GET_CODE (SET_DEST (body)) != PC
859 && !REG_P (SET_DEST (body))
860 && ! (GET_CODE (SET_DEST (body)) == SUBREG
861 && REG_P (SUBREG_REG (SET_DEST (body)))
862 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
863 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
864 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
865 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
866 && reg_overlap_mentioned_p (x, SET_DEST (body)))
867 return 1;
868 return 0;
869
870 case ASM_OPERANDS:
871 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
872 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
873 return 1;
874 return 0;
875
876 case CALL:
877 case USE:
878 case IF_THEN_ELSE:
879 return reg_overlap_mentioned_p (x, body);
880
881 case TRAP_IF:
882 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
883
884 case PREFETCH:
885 return reg_overlap_mentioned_p (x, XEXP (body, 0));
886
887 case UNSPEC:
888 case UNSPEC_VOLATILE:
889 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
890 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
891 return 1;
892 return 0;
893
894 case PARALLEL:
895 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
896 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
897 return 1;
898 return 0;
899
900 case CLOBBER:
901 if (GET_CODE (XEXP (body, 0)) == MEM)
902 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
903 return 1;
904 return 0;
905
906 case COND_EXEC:
907 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
908 return 1;
909 return reg_referenced_p (x, COND_EXEC_CODE (body));
910
911 default:
912 return 0;
913 }
914 }
915
916 /* Nonzero if register REG is referenced in an insn between
917 FROM_INSN and TO_INSN (exclusive of those two). Sets of REG do
918 not count. */
919
920 int
921 reg_referenced_between_p (rtx reg, rtx from_insn, rtx to_insn)
922 {
923 rtx insn;
924
925 if (from_insn == to_insn)
926 return 0;
927
928 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
929 if (INSN_P (insn)
930 && (reg_referenced_p (reg, PATTERN (insn))
931 || (GET_CODE (insn) == CALL_INSN
932 && find_reg_fusage (insn, USE, reg))))
933 return 1;
934 return 0;
935 }
936 \f
937 /* Nonzero if register REG is set or clobbered in an insn between
938 FROM_INSN and TO_INSN (exclusive of those two). */
939
940 int
941 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
942 {
943 rtx insn;
944
945 if (from_insn == to_insn)
946 return 0;
947
948 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
949 if (INSN_P (insn) && reg_set_p (reg, insn))
950 return 1;
951 return 0;
952 }
953
954 /* Internals of reg_set_between_p. */
955 int
956 reg_set_p (rtx reg, rtx insn)
957 {
958 /* We can be passed an insn or part of one. If we are passed an insn,
959 check if a side-effect of the insn clobbers REG. */
960 if (INSN_P (insn)
961 && (FIND_REG_INC_NOTE (insn, reg)
962 || (GET_CODE (insn) == CALL_INSN
963 /* We'd like to test call_used_regs here, but rtlanal.c can't
964 reference that variable due to its use in genattrtab. So
965 we'll just be more conservative.
966
967 ??? Unless we could ensure that the CALL_INSN_FUNCTION_USAGE
968 information holds all clobbered registers. */
969 && ((REG_P (reg)
970 && REGNO (reg) < FIRST_PSEUDO_REGISTER)
971 || GET_CODE (reg) == MEM
972 || find_reg_fusage (insn, CLOBBER, reg)))))
973 return 1;
974
975 return set_of (reg, insn) != NULL_RTX;
976 }
977
978 /* Similar to reg_set_between_p, but check all registers in X. Return 0
979 only if none of them are modified between START and END. Do not
980 consider non-registers one way or the other. */
981
982 int
983 regs_set_between_p (rtx x, rtx start, rtx end)
984 {
985 enum rtx_code code = GET_CODE (x);
986 const char *fmt;
987 int i, j;
988
989 switch (code)
990 {
991 case CONST_INT:
992 case CONST_DOUBLE:
993 case CONST_VECTOR:
994 case CONST:
995 case SYMBOL_REF:
996 case LABEL_REF:
997 case PC:
998 case CC0:
999 return 0;
1000
1001 case REG:
1002 return reg_set_between_p (x, start, end);
1003
1004 default:
1005 break;
1006 }
1007
1008 fmt = GET_RTX_FORMAT (code);
1009 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1010 {
1011 if (fmt[i] == 'e' && regs_set_between_p (XEXP (x, i), start, end))
1012 return 1;
1013
1014 else if (fmt[i] == 'E')
1015 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1016 if (regs_set_between_p (XVECEXP (x, i, j), start, end))
1017 return 1;
1018 }
1019
1020 return 0;
1021 }
1022
1023 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1024 only if none of them are modified between START and END. Return 1 if
1025 X contains a MEM; this routine does usememory aliasing. */
1026
1027 int
1028 modified_between_p (rtx x, rtx start, rtx end)
1029 {
1030 enum rtx_code code = GET_CODE (x);
1031 const char *fmt;
1032 int i, j;
1033 rtx insn;
1034
1035 if (start == end)
1036 return 0;
1037
1038 switch (code)
1039 {
1040 case CONST_INT:
1041 case CONST_DOUBLE:
1042 case CONST_VECTOR:
1043 case CONST:
1044 case SYMBOL_REF:
1045 case LABEL_REF:
1046 return 0;
1047
1048 case PC:
1049 case CC0:
1050 return 1;
1051
1052 case MEM:
1053 if (RTX_UNCHANGING_P (x))
1054 return 0;
1055 if (modified_between_p (XEXP (x, 0), start, end))
1056 return 1;
1057 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1058 if (memory_modified_in_insn_p (x, insn))
1059 return 1;
1060 return 0;
1061 break;
1062
1063 case REG:
1064 return reg_set_between_p (x, start, end);
1065
1066 default:
1067 break;
1068 }
1069
1070 fmt = GET_RTX_FORMAT (code);
1071 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1072 {
1073 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1074 return 1;
1075
1076 else if (fmt[i] == 'E')
1077 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1078 if (modified_between_p (XVECEXP (x, i, j), start, end))
1079 return 1;
1080 }
1081
1082 return 0;
1083 }
1084
1085 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1086 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1087 does use memory aliasing. */
1088
1089 int
1090 modified_in_p (rtx x, rtx insn)
1091 {
1092 enum rtx_code code = GET_CODE (x);
1093 const char *fmt;
1094 int i, j;
1095
1096 switch (code)
1097 {
1098 case CONST_INT:
1099 case CONST_DOUBLE:
1100 case CONST_VECTOR:
1101 case CONST:
1102 case SYMBOL_REF:
1103 case LABEL_REF:
1104 return 0;
1105
1106 case PC:
1107 case CC0:
1108 return 1;
1109
1110 case MEM:
1111 if (RTX_UNCHANGING_P (x))
1112 return 0;
1113 if (modified_in_p (XEXP (x, 0), insn))
1114 return 1;
1115 if (memory_modified_in_insn_p (x, insn))
1116 return 1;
1117 return 0;
1118 break;
1119
1120 case REG:
1121 return reg_set_p (x, insn);
1122
1123 default:
1124 break;
1125 }
1126
1127 fmt = GET_RTX_FORMAT (code);
1128 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1129 {
1130 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1131 return 1;
1132
1133 else if (fmt[i] == 'E')
1134 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1135 if (modified_in_p (XVECEXP (x, i, j), insn))
1136 return 1;
1137 }
1138
1139 return 0;
1140 }
1141
1142 /* Return true if anything in insn X is (anti,output,true) dependent on
1143 anything in insn Y. */
1144
1145 int
1146 insn_dependent_p (rtx x, rtx y)
1147 {
1148 rtx tmp;
1149
1150 if (! INSN_P (x) || ! INSN_P (y))
1151 abort ();
1152
1153 tmp = PATTERN (y);
1154 note_stores (PATTERN (x), insn_dependent_p_1, &tmp);
1155 if (tmp == NULL_RTX)
1156 return 1;
1157
1158 tmp = PATTERN (x);
1159 note_stores (PATTERN (y), insn_dependent_p_1, &tmp);
1160 if (tmp == NULL_RTX)
1161 return 1;
1162
1163 return 0;
1164 }
1165
1166 /* A helper routine for insn_dependent_p called through note_stores. */
1167
1168 static void
1169 insn_dependent_p_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
1170 {
1171 rtx * pinsn = (rtx *) data;
1172
1173 if (*pinsn && reg_mentioned_p (x, *pinsn))
1174 *pinsn = NULL_RTX;
1175 }
1176 \f
1177 /* Helper function for set_of. */
1178 struct set_of_data
1179 {
1180 rtx found;
1181 rtx pat;
1182 };
1183
1184 static void
1185 set_of_1 (rtx x, rtx pat, void *data1)
1186 {
1187 struct set_of_data *data = (struct set_of_data *) (data1);
1188 if (rtx_equal_p (x, data->pat)
1189 || (GET_CODE (x) != MEM && reg_overlap_mentioned_p (data->pat, x)))
1190 data->found = pat;
1191 }
1192
1193 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1194 (either directly or via STRICT_LOW_PART and similar modifiers). */
1195 rtx
1196 set_of (rtx pat, rtx insn)
1197 {
1198 struct set_of_data data;
1199 data.found = NULL_RTX;
1200 data.pat = pat;
1201 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1202 return data.found;
1203 }
1204 \f
1205 /* Given an INSN, return a SET expression if this insn has only a single SET.
1206 It may also have CLOBBERs, USEs, or SET whose output
1207 will not be used, which we ignore. */
1208
1209 rtx
1210 single_set_2 (rtx insn, rtx pat)
1211 {
1212 rtx set = NULL;
1213 int set_verified = 1;
1214 int i;
1215
1216 if (GET_CODE (pat) == PARALLEL)
1217 {
1218 for (i = 0; i < XVECLEN (pat, 0); i++)
1219 {
1220 rtx sub = XVECEXP (pat, 0, i);
1221 switch (GET_CODE (sub))
1222 {
1223 case USE:
1224 case CLOBBER:
1225 break;
1226
1227 case SET:
1228 /* We can consider insns having multiple sets, where all
1229 but one are dead as single set insns. In common case
1230 only single set is present in the pattern so we want
1231 to avoid checking for REG_UNUSED notes unless necessary.
1232
1233 When we reach set first time, we just expect this is
1234 the single set we are looking for and only when more
1235 sets are found in the insn, we check them. */
1236 if (!set_verified)
1237 {
1238 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1239 && !side_effects_p (set))
1240 set = NULL;
1241 else
1242 set_verified = 1;
1243 }
1244 if (!set)
1245 set = sub, set_verified = 0;
1246 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1247 || side_effects_p (sub))
1248 return NULL_RTX;
1249 break;
1250
1251 default:
1252 return NULL_RTX;
1253 }
1254 }
1255 }
1256 return set;
1257 }
1258
1259 /* Given an INSN, return nonzero if it has more than one SET, else return
1260 zero. */
1261
1262 int
1263 multiple_sets (rtx insn)
1264 {
1265 int found;
1266 int i;
1267
1268 /* INSN must be an insn. */
1269 if (! INSN_P (insn))
1270 return 0;
1271
1272 /* Only a PARALLEL can have multiple SETs. */
1273 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1274 {
1275 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1276 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1277 {
1278 /* If we have already found a SET, then return now. */
1279 if (found)
1280 return 1;
1281 else
1282 found = 1;
1283 }
1284 }
1285
1286 /* Either zero or one SET. */
1287 return 0;
1288 }
1289 \f
1290 /* Return nonzero if the destination of SET equals the source
1291 and there are no side effects. */
1292
1293 int
1294 set_noop_p (rtx set)
1295 {
1296 rtx src = SET_SRC (set);
1297 rtx dst = SET_DEST (set);
1298
1299 if (dst == pc_rtx && src == pc_rtx)
1300 return 1;
1301
1302 if (GET_CODE (dst) == MEM && GET_CODE (src) == MEM)
1303 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1304
1305 if (GET_CODE (dst) == SIGN_EXTRACT
1306 || GET_CODE (dst) == ZERO_EXTRACT)
1307 return rtx_equal_p (XEXP (dst, 0), src)
1308 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1309 && !side_effects_p (src);
1310
1311 if (GET_CODE (dst) == STRICT_LOW_PART)
1312 dst = XEXP (dst, 0);
1313
1314 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1315 {
1316 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1317 return 0;
1318 src = SUBREG_REG (src);
1319 dst = SUBREG_REG (dst);
1320 }
1321
1322 return (REG_P (src) && REG_P (dst)
1323 && REGNO (src) == REGNO (dst));
1324 }
1325 \f
1326 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1327 value to itself. */
1328
1329 int
1330 noop_move_p (rtx insn)
1331 {
1332 rtx pat = PATTERN (insn);
1333
1334 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1335 return 1;
1336
1337 /* Insns carrying these notes are useful later on. */
1338 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1339 return 0;
1340
1341 /* For now treat an insn with a REG_RETVAL note as a
1342 a special insn which should not be considered a no-op. */
1343 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1344 return 0;
1345
1346 if (GET_CODE (pat) == SET && set_noop_p (pat))
1347 return 1;
1348
1349 if (GET_CODE (pat) == PARALLEL)
1350 {
1351 int i;
1352 /* If nothing but SETs of registers to themselves,
1353 this insn can also be deleted. */
1354 for (i = 0; i < XVECLEN (pat, 0); i++)
1355 {
1356 rtx tem = XVECEXP (pat, 0, i);
1357
1358 if (GET_CODE (tem) == USE
1359 || GET_CODE (tem) == CLOBBER)
1360 continue;
1361
1362 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1363 return 0;
1364 }
1365
1366 return 1;
1367 }
1368 return 0;
1369 }
1370 \f
1371
1372 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1373 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1374 If the object was modified, if we hit a partial assignment to X, or hit a
1375 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1376 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1377 be the src. */
1378
1379 rtx
1380 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1381 {
1382 rtx p;
1383
1384 for (p = PREV_INSN (*pinsn); p && GET_CODE (p) != CODE_LABEL;
1385 p = PREV_INSN (p))
1386 if (INSN_P (p))
1387 {
1388 rtx set = single_set (p);
1389 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1390
1391 if (set && rtx_equal_p (x, SET_DEST (set)))
1392 {
1393 rtx src = SET_SRC (set);
1394
1395 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1396 src = XEXP (note, 0);
1397
1398 if ((valid_to == NULL_RTX
1399 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1400 /* Reject hard registers because we don't usually want
1401 to use them; we'd rather use a pseudo. */
1402 && (! (REG_P (src)
1403 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1404 {
1405 *pinsn = p;
1406 return src;
1407 }
1408 }
1409
1410 /* If set in non-simple way, we don't have a value. */
1411 if (reg_set_p (x, p))
1412 break;
1413 }
1414
1415 return x;
1416 }
1417 \f
1418 /* Return nonzero if register in range [REGNO, ENDREGNO)
1419 appears either explicitly or implicitly in X
1420 other than being stored into.
1421
1422 References contained within the substructure at LOC do not count.
1423 LOC may be zero, meaning don't ignore anything. */
1424
1425 int
1426 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1427 rtx *loc)
1428 {
1429 int i;
1430 unsigned int x_regno;
1431 RTX_CODE code;
1432 const char *fmt;
1433
1434 repeat:
1435 /* The contents of a REG_NONNEG note is always zero, so we must come here
1436 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1437 if (x == 0)
1438 return 0;
1439
1440 code = GET_CODE (x);
1441
1442 switch (code)
1443 {
1444 case REG:
1445 x_regno = REGNO (x);
1446
1447 /* If we modifying the stack, frame, or argument pointer, it will
1448 clobber a virtual register. In fact, we could be more precise,
1449 but it isn't worth it. */
1450 if ((x_regno == STACK_POINTER_REGNUM
1451 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1452 || x_regno == ARG_POINTER_REGNUM
1453 #endif
1454 || x_regno == FRAME_POINTER_REGNUM)
1455 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1456 return 1;
1457
1458 return (endregno > x_regno
1459 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1460 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1461 : 1));
1462
1463 case SUBREG:
1464 /* If this is a SUBREG of a hard reg, we can see exactly which
1465 registers are being modified. Otherwise, handle normally. */
1466 if (REG_P (SUBREG_REG (x))
1467 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1468 {
1469 unsigned int inner_regno = subreg_regno (x);
1470 unsigned int inner_endregno
1471 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1472 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1473
1474 return endregno > inner_regno && regno < inner_endregno;
1475 }
1476 break;
1477
1478 case CLOBBER:
1479 case SET:
1480 if (&SET_DEST (x) != loc
1481 /* Note setting a SUBREG counts as referring to the REG it is in for
1482 a pseudo but not for hard registers since we can
1483 treat each word individually. */
1484 && ((GET_CODE (SET_DEST (x)) == SUBREG
1485 && loc != &SUBREG_REG (SET_DEST (x))
1486 && REG_P (SUBREG_REG (SET_DEST (x)))
1487 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1488 && refers_to_regno_p (regno, endregno,
1489 SUBREG_REG (SET_DEST (x)), loc))
1490 || (!REG_P (SET_DEST (x))
1491 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1492 return 1;
1493
1494 if (code == CLOBBER || loc == &SET_SRC (x))
1495 return 0;
1496 x = SET_SRC (x);
1497 goto repeat;
1498
1499 default:
1500 break;
1501 }
1502
1503 /* X does not match, so try its subexpressions. */
1504
1505 fmt = GET_RTX_FORMAT (code);
1506 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1507 {
1508 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1509 {
1510 if (i == 0)
1511 {
1512 x = XEXP (x, 0);
1513 goto repeat;
1514 }
1515 else
1516 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1517 return 1;
1518 }
1519 else if (fmt[i] == 'E')
1520 {
1521 int j;
1522 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1523 if (loc != &XVECEXP (x, i, j)
1524 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1525 return 1;
1526 }
1527 }
1528 return 0;
1529 }
1530
1531 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1532 we check if any register number in X conflicts with the relevant register
1533 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1534 contains a MEM (we don't bother checking for memory addresses that can't
1535 conflict because we expect this to be a rare case. */
1536
1537 int
1538 reg_overlap_mentioned_p (rtx x, rtx in)
1539 {
1540 unsigned int regno, endregno;
1541
1542 /* If either argument is a constant, then modifying X can not
1543 affect IN. Here we look at IN, we can profitably combine
1544 CONSTANT_P (x) with the switch statement below. */
1545 if (CONSTANT_P (in))
1546 return 0;
1547
1548 recurse:
1549 switch (GET_CODE (x))
1550 {
1551 case STRICT_LOW_PART:
1552 case ZERO_EXTRACT:
1553 case SIGN_EXTRACT:
1554 /* Overly conservative. */
1555 x = XEXP (x, 0);
1556 goto recurse;
1557
1558 case SUBREG:
1559 regno = REGNO (SUBREG_REG (x));
1560 if (regno < FIRST_PSEUDO_REGISTER)
1561 regno = subreg_regno (x);
1562 goto do_reg;
1563
1564 case REG:
1565 regno = REGNO (x);
1566 do_reg:
1567 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1568 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1569 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1570
1571 case MEM:
1572 {
1573 const char *fmt;
1574 int i;
1575
1576 if (GET_CODE (in) == MEM)
1577 return 1;
1578
1579 fmt = GET_RTX_FORMAT (GET_CODE (in));
1580 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1581 if (fmt[i] == 'e' && reg_overlap_mentioned_p (x, XEXP (in, i)))
1582 return 1;
1583
1584 return 0;
1585 }
1586
1587 case SCRATCH:
1588 case PC:
1589 case CC0:
1590 return reg_mentioned_p (x, in);
1591
1592 case PARALLEL:
1593 {
1594 int i;
1595
1596 /* If any register in here refers to it we return true. */
1597 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1598 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1599 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1600 return 1;
1601 return 0;
1602 }
1603
1604 default:
1605 #ifdef ENABLE_CHECKING
1606 if (!CONSTANT_P (x))
1607 abort ();
1608 #endif
1609
1610 return 0;
1611 }
1612 }
1613 \f
1614 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1615 (X would be the pattern of an insn).
1616 FUN receives two arguments:
1617 the REG, MEM, CC0 or PC being stored in or clobbered,
1618 the SET or CLOBBER rtx that does the store.
1619
1620 If the item being stored in or clobbered is a SUBREG of a hard register,
1621 the SUBREG will be passed. */
1622
1623 void
1624 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1625 {
1626 int i;
1627
1628 if (GET_CODE (x) == COND_EXEC)
1629 x = COND_EXEC_CODE (x);
1630
1631 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1632 {
1633 rtx dest = SET_DEST (x);
1634
1635 while ((GET_CODE (dest) == SUBREG
1636 && (!REG_P (SUBREG_REG (dest))
1637 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1638 || GET_CODE (dest) == ZERO_EXTRACT
1639 || GET_CODE (dest) == SIGN_EXTRACT
1640 || GET_CODE (dest) == STRICT_LOW_PART)
1641 dest = XEXP (dest, 0);
1642
1643 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1644 each of whose first operand is a register. */
1645 if (GET_CODE (dest) == PARALLEL)
1646 {
1647 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1648 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1649 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1650 }
1651 else
1652 (*fun) (dest, x, data);
1653 }
1654
1655 else if (GET_CODE (x) == PARALLEL)
1656 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1657 note_stores (XVECEXP (x, 0, i), fun, data);
1658 }
1659 \f
1660 /* Like notes_stores, but call FUN for each expression that is being
1661 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1662 FUN for each expression, not any interior subexpressions. FUN receives a
1663 pointer to the expression and the DATA passed to this function.
1664
1665 Note that this is not quite the same test as that done in reg_referenced_p
1666 since that considers something as being referenced if it is being
1667 partially set, while we do not. */
1668
1669 void
1670 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1671 {
1672 rtx body = *pbody;
1673 int i;
1674
1675 switch (GET_CODE (body))
1676 {
1677 case COND_EXEC:
1678 (*fun) (&COND_EXEC_TEST (body), data);
1679 note_uses (&COND_EXEC_CODE (body), fun, data);
1680 return;
1681
1682 case PARALLEL:
1683 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1684 note_uses (&XVECEXP (body, 0, i), fun, data);
1685 return;
1686
1687 case USE:
1688 (*fun) (&XEXP (body, 0), data);
1689 return;
1690
1691 case ASM_OPERANDS:
1692 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1693 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1694 return;
1695
1696 case TRAP_IF:
1697 (*fun) (&TRAP_CONDITION (body), data);
1698 return;
1699
1700 case PREFETCH:
1701 (*fun) (&XEXP (body, 0), data);
1702 return;
1703
1704 case UNSPEC:
1705 case UNSPEC_VOLATILE:
1706 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1707 (*fun) (&XVECEXP (body, 0, i), data);
1708 return;
1709
1710 case CLOBBER:
1711 if (GET_CODE (XEXP (body, 0)) == MEM)
1712 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1713 return;
1714
1715 case SET:
1716 {
1717 rtx dest = SET_DEST (body);
1718
1719 /* For sets we replace everything in source plus registers in memory
1720 expression in store and operands of a ZERO_EXTRACT. */
1721 (*fun) (&SET_SRC (body), data);
1722
1723 if (GET_CODE (dest) == ZERO_EXTRACT)
1724 {
1725 (*fun) (&XEXP (dest, 1), data);
1726 (*fun) (&XEXP (dest, 2), data);
1727 }
1728
1729 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1730 dest = XEXP (dest, 0);
1731
1732 if (GET_CODE (dest) == MEM)
1733 (*fun) (&XEXP (dest, 0), data);
1734 }
1735 return;
1736
1737 default:
1738 /* All the other possibilities never store. */
1739 (*fun) (pbody, data);
1740 return;
1741 }
1742 }
1743 \f
1744 /* Return nonzero if X's old contents don't survive after INSN.
1745 This will be true if X is (cc0) or if X is a register and
1746 X dies in INSN or because INSN entirely sets X.
1747
1748 "Entirely set" means set directly and not through a SUBREG,
1749 ZERO_EXTRACT or SIGN_EXTRACT, so no trace of the old contents remains.
1750 Likewise, REG_INC does not count.
1751
1752 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1753 but for this use that makes no difference, since regs don't overlap
1754 during their lifetimes. Therefore, this function may be used
1755 at any time after deaths have been computed (in flow.c).
1756
1757 If REG is a hard reg that occupies multiple machine registers, this
1758 function will only return 1 if each of those registers will be replaced
1759 by INSN. */
1760
1761 int
1762 dead_or_set_p (rtx insn, rtx x)
1763 {
1764 unsigned int regno, last_regno;
1765 unsigned int i;
1766
1767 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1768 if (GET_CODE (x) == CC0)
1769 return 1;
1770
1771 if (!REG_P (x))
1772 abort ();
1773
1774 regno = REGNO (x);
1775 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1776 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1777
1778 for (i = regno; i <= last_regno; i++)
1779 if (! dead_or_set_regno_p (insn, i))
1780 return 0;
1781
1782 return 1;
1783 }
1784
1785 /* Utility function for dead_or_set_p to check an individual register. Also
1786 called from flow.c. */
1787
1788 int
1789 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1790 {
1791 unsigned int regno, endregno;
1792 rtx pattern;
1793
1794 /* See if there is a death note for something that includes TEST_REGNO. */
1795 if (find_regno_note (insn, REG_DEAD, test_regno))
1796 return 1;
1797
1798 if (GET_CODE (insn) == CALL_INSN
1799 && find_regno_fusage (insn, CLOBBER, test_regno))
1800 return 1;
1801
1802 pattern = PATTERN (insn);
1803
1804 if (GET_CODE (pattern) == COND_EXEC)
1805 pattern = COND_EXEC_CODE (pattern);
1806
1807 if (GET_CODE (pattern) == SET)
1808 {
1809 rtx dest = SET_DEST (pattern);
1810
1811 /* A value is totally replaced if it is the destination or the
1812 destination is a SUBREG of REGNO that does not change the number of
1813 words in it. */
1814 if (GET_CODE (dest) == SUBREG
1815 && (((GET_MODE_SIZE (GET_MODE (dest))
1816 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1817 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1818 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1819 dest = SUBREG_REG (dest);
1820
1821 if (!REG_P (dest))
1822 return 0;
1823
1824 regno = REGNO (dest);
1825 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1826 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1827
1828 return (test_regno >= regno && test_regno < endregno);
1829 }
1830 else if (GET_CODE (pattern) == PARALLEL)
1831 {
1832 int i;
1833
1834 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1835 {
1836 rtx body = XVECEXP (pattern, 0, i);
1837
1838 if (GET_CODE (body) == COND_EXEC)
1839 body = COND_EXEC_CODE (body);
1840
1841 if (GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1842 {
1843 rtx dest = SET_DEST (body);
1844
1845 if (GET_CODE (dest) == SUBREG
1846 && (((GET_MODE_SIZE (GET_MODE (dest))
1847 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1848 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1849 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1850 dest = SUBREG_REG (dest);
1851
1852 if (!REG_P (dest))
1853 continue;
1854
1855 regno = REGNO (dest);
1856 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1857 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1858
1859 if (test_regno >= regno && test_regno < endregno)
1860 return 1;
1861 }
1862 }
1863 }
1864
1865 return 0;
1866 }
1867
1868 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1869 If DATUM is nonzero, look for one whose datum is DATUM. */
1870
1871 rtx
1872 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1873 {
1874 rtx link;
1875
1876 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1877 if (! INSN_P (insn))
1878 return 0;
1879 if (datum == 0)
1880 {
1881 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1882 if (REG_NOTE_KIND (link) == kind)
1883 return link;
1884 return 0;
1885 }
1886
1887 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1888 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1889 return link;
1890 return 0;
1891 }
1892
1893 /* Return the reg-note of kind KIND in insn INSN which applies to register
1894 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1895 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1896 it might be the case that the note overlaps REGNO. */
1897
1898 rtx
1899 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1900 {
1901 rtx link;
1902
1903 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1904 if (! INSN_P (insn))
1905 return 0;
1906
1907 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1908 if (REG_NOTE_KIND (link) == kind
1909 /* Verify that it is a register, so that scratch and MEM won't cause a
1910 problem here. */
1911 && REG_P (XEXP (link, 0))
1912 && REGNO (XEXP (link, 0)) <= regno
1913 && ((REGNO (XEXP (link, 0))
1914 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1915 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1916 [GET_MODE (XEXP (link, 0))]))
1917 > regno))
1918 return link;
1919 return 0;
1920 }
1921
1922 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1923 has such a note. */
1924
1925 rtx
1926 find_reg_equal_equiv_note (rtx insn)
1927 {
1928 rtx link;
1929
1930 if (!INSN_P (insn))
1931 return 0;
1932 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1933 if (REG_NOTE_KIND (link) == REG_EQUAL
1934 || REG_NOTE_KIND (link) == REG_EQUIV)
1935 {
1936 if (single_set (insn) == 0)
1937 return 0;
1938 return link;
1939 }
1940 return NULL;
1941 }
1942
1943 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1944 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1945
1946 int
1947 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1948 {
1949 /* If it's not a CALL_INSN, it can't possibly have a
1950 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1951 if (GET_CODE (insn) != CALL_INSN)
1952 return 0;
1953
1954 if (! datum)
1955 abort ();
1956
1957 if (!REG_P (datum))
1958 {
1959 rtx link;
1960
1961 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1962 link;
1963 link = XEXP (link, 1))
1964 if (GET_CODE (XEXP (link, 0)) == code
1965 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1966 return 1;
1967 }
1968 else
1969 {
1970 unsigned int regno = REGNO (datum);
1971
1972 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1973 to pseudo registers, so don't bother checking. */
1974
1975 if (regno < FIRST_PSEUDO_REGISTER)
1976 {
1977 unsigned int end_regno
1978 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1979 unsigned int i;
1980
1981 for (i = regno; i < end_regno; i++)
1982 if (find_regno_fusage (insn, code, i))
1983 return 1;
1984 }
1985 }
1986
1987 return 0;
1988 }
1989
1990 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1991 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1992
1993 int
1994 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1995 {
1996 rtx link;
1997
1998 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1999 to pseudo registers, so don't bother checking. */
2000
2001 if (regno >= FIRST_PSEUDO_REGISTER
2002 || GET_CODE (insn) != CALL_INSN )
2003 return 0;
2004
2005 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2006 {
2007 unsigned int regnote;
2008 rtx op, reg;
2009
2010 if (GET_CODE (op = XEXP (link, 0)) == code
2011 && REG_P (reg = XEXP (op, 0))
2012 && (regnote = REGNO (reg)) <= regno
2013 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
2014 return 1;
2015 }
2016
2017 return 0;
2018 }
2019
2020 /* Return true if INSN is a call to a pure function. */
2021
2022 int
2023 pure_call_p (rtx insn)
2024 {
2025 rtx link;
2026
2027 if (GET_CODE (insn) != CALL_INSN || ! CONST_OR_PURE_CALL_P (insn))
2028 return 0;
2029
2030 /* Look for the note that differentiates const and pure functions. */
2031 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2032 {
2033 rtx u, m;
2034
2035 if (GET_CODE (u = XEXP (link, 0)) == USE
2036 && GET_CODE (m = XEXP (u, 0)) == MEM && GET_MODE (m) == BLKmode
2037 && GET_CODE (XEXP (m, 0)) == SCRATCH)
2038 return 1;
2039 }
2040
2041 return 0;
2042 }
2043 \f
2044 /* Remove register note NOTE from the REG_NOTES of INSN. */
2045
2046 void
2047 remove_note (rtx insn, rtx note)
2048 {
2049 rtx link;
2050
2051 if (note == NULL_RTX)
2052 return;
2053
2054 if (REG_NOTES (insn) == note)
2055 {
2056 REG_NOTES (insn) = XEXP (note, 1);
2057 return;
2058 }
2059
2060 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2061 if (XEXP (link, 1) == note)
2062 {
2063 XEXP (link, 1) = XEXP (note, 1);
2064 return;
2065 }
2066
2067 abort ();
2068 }
2069
2070 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2071 return 1 if it is found. A simple equality test is used to determine if
2072 NODE matches. */
2073
2074 int
2075 in_expr_list_p (rtx listp, rtx node)
2076 {
2077 rtx x;
2078
2079 for (x = listp; x; x = XEXP (x, 1))
2080 if (node == XEXP (x, 0))
2081 return 1;
2082
2083 return 0;
2084 }
2085
2086 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2087 remove that entry from the list if it is found.
2088
2089 A simple equality test is used to determine if NODE matches. */
2090
2091 void
2092 remove_node_from_expr_list (rtx node, rtx *listp)
2093 {
2094 rtx temp = *listp;
2095 rtx prev = NULL_RTX;
2096
2097 while (temp)
2098 {
2099 if (node == XEXP (temp, 0))
2100 {
2101 /* Splice the node out of the list. */
2102 if (prev)
2103 XEXP (prev, 1) = XEXP (temp, 1);
2104 else
2105 *listp = XEXP (temp, 1);
2106
2107 return;
2108 }
2109
2110 prev = temp;
2111 temp = XEXP (temp, 1);
2112 }
2113 }
2114 \f
2115 /* Nonzero if X contains any volatile instructions. These are instructions
2116 which may cause unpredictable machine state instructions, and thus no
2117 instructions should be moved or combined across them. This includes
2118 only volatile asms and UNSPEC_VOLATILE instructions. */
2119
2120 int
2121 volatile_insn_p (rtx x)
2122 {
2123 RTX_CODE code;
2124
2125 code = GET_CODE (x);
2126 switch (code)
2127 {
2128 case LABEL_REF:
2129 case SYMBOL_REF:
2130 case CONST_INT:
2131 case CONST:
2132 case CONST_DOUBLE:
2133 case CONST_VECTOR:
2134 case CC0:
2135 case PC:
2136 case REG:
2137 case SCRATCH:
2138 case CLOBBER:
2139 case ADDR_VEC:
2140 case ADDR_DIFF_VEC:
2141 case CALL:
2142 case MEM:
2143 return 0;
2144
2145 case UNSPEC_VOLATILE:
2146 /* case TRAP_IF: This isn't clear yet. */
2147 return 1;
2148
2149 case ASM_INPUT:
2150 case ASM_OPERANDS:
2151 if (MEM_VOLATILE_P (x))
2152 return 1;
2153
2154 default:
2155 break;
2156 }
2157
2158 /* Recursively scan the operands of this expression. */
2159
2160 {
2161 const char *fmt = GET_RTX_FORMAT (code);
2162 int i;
2163
2164 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2165 {
2166 if (fmt[i] == 'e')
2167 {
2168 if (volatile_insn_p (XEXP (x, i)))
2169 return 1;
2170 }
2171 else if (fmt[i] == 'E')
2172 {
2173 int j;
2174 for (j = 0; j < XVECLEN (x, i); j++)
2175 if (volatile_insn_p (XVECEXP (x, i, j)))
2176 return 1;
2177 }
2178 }
2179 }
2180 return 0;
2181 }
2182
2183 /* Nonzero if X contains any volatile memory references
2184 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2185
2186 int
2187 volatile_refs_p (rtx x)
2188 {
2189 RTX_CODE code;
2190
2191 code = GET_CODE (x);
2192 switch (code)
2193 {
2194 case LABEL_REF:
2195 case SYMBOL_REF:
2196 case CONST_INT:
2197 case CONST:
2198 case CONST_DOUBLE:
2199 case CONST_VECTOR:
2200 case CC0:
2201 case PC:
2202 case REG:
2203 case SCRATCH:
2204 case CLOBBER:
2205 case ADDR_VEC:
2206 case ADDR_DIFF_VEC:
2207 return 0;
2208
2209 case UNSPEC_VOLATILE:
2210 return 1;
2211
2212 case MEM:
2213 case ASM_INPUT:
2214 case ASM_OPERANDS:
2215 if (MEM_VOLATILE_P (x))
2216 return 1;
2217
2218 default:
2219 break;
2220 }
2221
2222 /* Recursively scan the operands of this expression. */
2223
2224 {
2225 const char *fmt = GET_RTX_FORMAT (code);
2226 int i;
2227
2228 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2229 {
2230 if (fmt[i] == 'e')
2231 {
2232 if (volatile_refs_p (XEXP (x, i)))
2233 return 1;
2234 }
2235 else if (fmt[i] == 'E')
2236 {
2237 int j;
2238 for (j = 0; j < XVECLEN (x, i); j++)
2239 if (volatile_refs_p (XVECEXP (x, i, j)))
2240 return 1;
2241 }
2242 }
2243 }
2244 return 0;
2245 }
2246
2247 /* Similar to above, except that it also rejects register pre- and post-
2248 incrementing. */
2249
2250 int
2251 side_effects_p (rtx x)
2252 {
2253 RTX_CODE code;
2254
2255 code = GET_CODE (x);
2256 switch (code)
2257 {
2258 case LABEL_REF:
2259 case SYMBOL_REF:
2260 case CONST_INT:
2261 case CONST:
2262 case CONST_DOUBLE:
2263 case CONST_VECTOR:
2264 case CC0:
2265 case PC:
2266 case REG:
2267 case SCRATCH:
2268 case ADDR_VEC:
2269 case ADDR_DIFF_VEC:
2270 return 0;
2271
2272 case CLOBBER:
2273 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2274 when some combination can't be done. If we see one, don't think
2275 that we can simplify the expression. */
2276 return (GET_MODE (x) != VOIDmode);
2277
2278 case PRE_INC:
2279 case PRE_DEC:
2280 case POST_INC:
2281 case POST_DEC:
2282 case PRE_MODIFY:
2283 case POST_MODIFY:
2284 case CALL:
2285 case UNSPEC_VOLATILE:
2286 /* case TRAP_IF: This isn't clear yet. */
2287 return 1;
2288
2289 case MEM:
2290 case ASM_INPUT:
2291 case ASM_OPERANDS:
2292 if (MEM_VOLATILE_P (x))
2293 return 1;
2294
2295 default:
2296 break;
2297 }
2298
2299 /* Recursively scan the operands of this expression. */
2300
2301 {
2302 const char *fmt = GET_RTX_FORMAT (code);
2303 int i;
2304
2305 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2306 {
2307 if (fmt[i] == 'e')
2308 {
2309 if (side_effects_p (XEXP (x, i)))
2310 return 1;
2311 }
2312 else if (fmt[i] == 'E')
2313 {
2314 int j;
2315 for (j = 0; j < XVECLEN (x, i); j++)
2316 if (side_effects_p (XVECEXP (x, i, j)))
2317 return 1;
2318 }
2319 }
2320 }
2321 return 0;
2322 }
2323 \f
2324 /* Return nonzero if evaluating rtx X might cause a trap. */
2325
2326 int
2327 may_trap_p (rtx x)
2328 {
2329 int i;
2330 enum rtx_code code;
2331 const char *fmt;
2332
2333 if (x == 0)
2334 return 0;
2335 code = GET_CODE (x);
2336 switch (code)
2337 {
2338 /* Handle these cases quickly. */
2339 case CONST_INT:
2340 case CONST_DOUBLE:
2341 case CONST_VECTOR:
2342 case SYMBOL_REF:
2343 case LABEL_REF:
2344 case CONST:
2345 case PC:
2346 case CC0:
2347 case REG:
2348 case SCRATCH:
2349 return 0;
2350
2351 case ASM_INPUT:
2352 case UNSPEC_VOLATILE:
2353 case TRAP_IF:
2354 return 1;
2355
2356 case ASM_OPERANDS:
2357 return MEM_VOLATILE_P (x);
2358
2359 /* Memory ref can trap unless it's a static var or a stack slot. */
2360 case MEM:
2361 if (MEM_NOTRAP_P (x))
2362 return 0;
2363 return rtx_addr_can_trap_p (XEXP (x, 0));
2364
2365 /* Division by a non-constant might trap. */
2366 case DIV:
2367 case MOD:
2368 case UDIV:
2369 case UMOD:
2370 if (HONOR_SNANS (GET_MODE (x)))
2371 return 1;
2372 if (! CONSTANT_P (XEXP (x, 1))
2373 || (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
2374 && flag_trapping_math))
2375 return 1;
2376 if (XEXP (x, 1) == const0_rtx)
2377 return 1;
2378 break;
2379
2380 case EXPR_LIST:
2381 /* An EXPR_LIST is used to represent a function call. This
2382 certainly may trap. */
2383 return 1;
2384
2385 case GE:
2386 case GT:
2387 case LE:
2388 case LT:
2389 case LTGT:
2390 case COMPARE:
2391 /* Some floating point comparisons may trap. */
2392 if (!flag_trapping_math)
2393 break;
2394 /* ??? There is no machine independent way to check for tests that trap
2395 when COMPARE is used, though many targets do make this distinction.
2396 For instance, sparc uses CCFPE for compares which generate exceptions
2397 and CCFP for compares which do not generate exceptions. */
2398 if (HONOR_NANS (GET_MODE (x)))
2399 return 1;
2400 /* But often the compare has some CC mode, so check operand
2401 modes as well. */
2402 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2403 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2404 return 1;
2405 break;
2406
2407 case EQ:
2408 case NE:
2409 if (HONOR_SNANS (GET_MODE (x)))
2410 return 1;
2411 /* Often comparison is CC mode, so check operand modes. */
2412 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2413 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2414 return 1;
2415 break;
2416
2417 case FIX:
2418 /* Conversion of floating point might trap. */
2419 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2420 return 1;
2421 break;
2422
2423 case NEG:
2424 case ABS:
2425 /* These operations don't trap even with floating point. */
2426 break;
2427
2428 default:
2429 /* Any floating arithmetic may trap. */
2430 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
2431 && flag_trapping_math)
2432 return 1;
2433 }
2434
2435 fmt = GET_RTX_FORMAT (code);
2436 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2437 {
2438 if (fmt[i] == 'e')
2439 {
2440 if (may_trap_p (XEXP (x, i)))
2441 return 1;
2442 }
2443 else if (fmt[i] == 'E')
2444 {
2445 int j;
2446 for (j = 0; j < XVECLEN (x, i); j++)
2447 if (may_trap_p (XVECEXP (x, i, j)))
2448 return 1;
2449 }
2450 }
2451 return 0;
2452 }
2453 \f
2454 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2455 i.e., an inequality. */
2456
2457 int
2458 inequality_comparisons_p (rtx x)
2459 {
2460 const char *fmt;
2461 int len, i;
2462 enum rtx_code code = GET_CODE (x);
2463
2464 switch (code)
2465 {
2466 case REG:
2467 case SCRATCH:
2468 case PC:
2469 case CC0:
2470 case CONST_INT:
2471 case CONST_DOUBLE:
2472 case CONST_VECTOR:
2473 case CONST:
2474 case LABEL_REF:
2475 case SYMBOL_REF:
2476 return 0;
2477
2478 case LT:
2479 case LTU:
2480 case GT:
2481 case GTU:
2482 case LE:
2483 case LEU:
2484 case GE:
2485 case GEU:
2486 return 1;
2487
2488 default:
2489 break;
2490 }
2491
2492 len = GET_RTX_LENGTH (code);
2493 fmt = GET_RTX_FORMAT (code);
2494
2495 for (i = 0; i < len; i++)
2496 {
2497 if (fmt[i] == 'e')
2498 {
2499 if (inequality_comparisons_p (XEXP (x, i)))
2500 return 1;
2501 }
2502 else if (fmt[i] == 'E')
2503 {
2504 int j;
2505 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2506 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2507 return 1;
2508 }
2509 }
2510
2511 return 0;
2512 }
2513 \f
2514 /* Replace any occurrence of FROM in X with TO. The function does
2515 not enter into CONST_DOUBLE for the replace.
2516
2517 Note that copying is not done so X must not be shared unless all copies
2518 are to be modified. */
2519
2520 rtx
2521 replace_rtx (rtx x, rtx from, rtx to)
2522 {
2523 int i, j;
2524 const char *fmt;
2525
2526 /* The following prevents loops occurrence when we change MEM in
2527 CONST_DOUBLE onto the same CONST_DOUBLE. */
2528 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2529 return x;
2530
2531 if (x == from)
2532 return to;
2533
2534 /* Allow this function to make replacements in EXPR_LISTs. */
2535 if (x == 0)
2536 return 0;
2537
2538 if (GET_CODE (x) == SUBREG)
2539 {
2540 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2541
2542 if (GET_CODE (new) == CONST_INT)
2543 {
2544 x = simplify_subreg (GET_MODE (x), new,
2545 GET_MODE (SUBREG_REG (x)),
2546 SUBREG_BYTE (x));
2547 if (! x)
2548 abort ();
2549 }
2550 else
2551 SUBREG_REG (x) = new;
2552
2553 return x;
2554 }
2555 else if (GET_CODE (x) == ZERO_EXTEND)
2556 {
2557 rtx new = replace_rtx (XEXP (x, 0), from, to);
2558
2559 if (GET_CODE (new) == CONST_INT)
2560 {
2561 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2562 new, GET_MODE (XEXP (x, 0)));
2563 if (! x)
2564 abort ();
2565 }
2566 else
2567 XEXP (x, 0) = new;
2568
2569 return x;
2570 }
2571
2572 fmt = GET_RTX_FORMAT (GET_CODE (x));
2573 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2574 {
2575 if (fmt[i] == 'e')
2576 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2577 else if (fmt[i] == 'E')
2578 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2579 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2580 }
2581
2582 return x;
2583 }
2584 \f
2585 /* Throughout the rtx X, replace many registers according to REG_MAP.
2586 Return the replacement for X (which may be X with altered contents).
2587 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2588 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2589
2590 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2591 should not be mapped to pseudos or vice versa since validate_change
2592 is not called.
2593
2594 If REPLACE_DEST is 1, replacements are also done in destinations;
2595 otherwise, only sources are replaced. */
2596
2597 rtx
2598 replace_regs (rtx x, rtx *reg_map, unsigned int nregs, int replace_dest)
2599 {
2600 enum rtx_code code;
2601 int i;
2602 const char *fmt;
2603
2604 if (x == 0)
2605 return x;
2606
2607 code = GET_CODE (x);
2608 switch (code)
2609 {
2610 case SCRATCH:
2611 case PC:
2612 case CC0:
2613 case CONST_INT:
2614 case CONST_DOUBLE:
2615 case CONST_VECTOR:
2616 case CONST:
2617 case SYMBOL_REF:
2618 case LABEL_REF:
2619 return x;
2620
2621 case REG:
2622 /* Verify that the register has an entry before trying to access it. */
2623 if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
2624 {
2625 /* SUBREGs can't be shared. Always return a copy to ensure that if
2626 this replacement occurs more than once then each instance will
2627 get distinct rtx. */
2628 if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
2629 return copy_rtx (reg_map[REGNO (x)]);
2630 return reg_map[REGNO (x)];
2631 }
2632 return x;
2633
2634 case SUBREG:
2635 /* Prevent making nested SUBREGs. */
2636 if (REG_P (SUBREG_REG (x)) && REGNO (SUBREG_REG (x)) < nregs
2637 && reg_map[REGNO (SUBREG_REG (x))] != 0
2638 && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
2639 {
2640 rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
2641 return simplify_gen_subreg (GET_MODE (x), map_val,
2642 GET_MODE (SUBREG_REG (x)),
2643 SUBREG_BYTE (x));
2644 }
2645 break;
2646
2647 case SET:
2648 if (replace_dest)
2649 SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);
2650
2651 else if (GET_CODE (SET_DEST (x)) == MEM
2652 || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2653 /* Even if we are not to replace destinations, replace register if it
2654 is CONTAINED in destination (destination is memory or
2655 STRICT_LOW_PART). */
2656 XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
2657 reg_map, nregs, 0);
2658 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2659 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2660 break;
2661
2662 SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
2663 return x;
2664
2665 default:
2666 break;
2667 }
2668
2669 fmt = GET_RTX_FORMAT (code);
2670 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2671 {
2672 if (fmt[i] == 'e')
2673 XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
2674 else if (fmt[i] == 'E')
2675 {
2676 int j;
2677 for (j = 0; j < XVECLEN (x, i); j++)
2678 XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
2679 nregs, replace_dest);
2680 }
2681 }
2682 return x;
2683 }
2684
2685 /* Replace occurrences of the old label in *X with the new one.
2686 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2687
2688 int
2689 replace_label (rtx *x, void *data)
2690 {
2691 rtx l = *x;
2692 rtx old_label = ((replace_label_data *) data)->r1;
2693 rtx new_label = ((replace_label_data *) data)->r2;
2694 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2695
2696 if (l == NULL_RTX)
2697 return 0;
2698
2699 if (GET_CODE (l) == SYMBOL_REF
2700 && CONSTANT_POOL_ADDRESS_P (l))
2701 {
2702 rtx c = get_pool_constant (l);
2703 if (rtx_referenced_p (old_label, c))
2704 {
2705 rtx new_c, new_l;
2706 replace_label_data *d = (replace_label_data *) data;
2707
2708 /* Create a copy of constant C; replace the label inside
2709 but do not update LABEL_NUSES because uses in constant pool
2710 are not counted. */
2711 new_c = copy_rtx (c);
2712 d->update_label_nuses = false;
2713 for_each_rtx (&new_c, replace_label, data);
2714 d->update_label_nuses = update_label_nuses;
2715
2716 /* Add the new constant NEW_C to constant pool and replace
2717 the old reference to constant by new reference. */
2718 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2719 *x = replace_rtx (l, l, new_l);
2720 }
2721 return 0;
2722 }
2723
2724 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2725 field. This is not handled by for_each_rtx because it doesn't
2726 handle unprinted ('0') fields. */
2727 if (GET_CODE (l) == JUMP_INSN && JUMP_LABEL (l) == old_label)
2728 JUMP_LABEL (l) = new_label;
2729
2730 if ((GET_CODE (l) == LABEL_REF
2731 || GET_CODE (l) == INSN_LIST)
2732 && XEXP (l, 0) == old_label)
2733 {
2734 XEXP (l, 0) = new_label;
2735 if (update_label_nuses)
2736 {
2737 ++LABEL_NUSES (new_label);
2738 --LABEL_NUSES (old_label);
2739 }
2740 return 0;
2741 }
2742
2743 return 0;
2744 }
2745
2746 /* When *BODY is equal to X or X is directly referenced by *BODY
2747 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2748 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2749
2750 static int
2751 rtx_referenced_p_1 (rtx *body, void *x)
2752 {
2753 rtx y = (rtx) x;
2754
2755 if (*body == NULL_RTX)
2756 return y == NULL_RTX;
2757
2758 /* Return true if a label_ref *BODY refers to label Y. */
2759 if (GET_CODE (*body) == LABEL_REF && GET_CODE (y) == CODE_LABEL)
2760 return XEXP (*body, 0) == y;
2761
2762 /* If *BODY is a reference to pool constant traverse the constant. */
2763 if (GET_CODE (*body) == SYMBOL_REF
2764 && CONSTANT_POOL_ADDRESS_P (*body))
2765 return rtx_referenced_p (y, get_pool_constant (*body));
2766
2767 /* By default, compare the RTL expressions. */
2768 return rtx_equal_p (*body, y);
2769 }
2770
2771 /* Return true if X is referenced in BODY. */
2772
2773 int
2774 rtx_referenced_p (rtx x, rtx body)
2775 {
2776 return for_each_rtx (&body, rtx_referenced_p_1, x);
2777 }
2778
2779 /* If INSN is a tablejump return true and store the label (before jump table) to
2780 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2781
2782 bool
2783 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2784 {
2785 rtx label, table;
2786
2787 if (GET_CODE (insn) == JUMP_INSN
2788 && (label = JUMP_LABEL (insn)) != NULL_RTX
2789 && (table = next_active_insn (label)) != NULL_RTX
2790 && GET_CODE (table) == JUMP_INSN
2791 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2792 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2793 {
2794 if (labelp)
2795 *labelp = label;
2796 if (tablep)
2797 *tablep = table;
2798 return true;
2799 }
2800 return false;
2801 }
2802
2803 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2804 constant that is not in the constant pool and not in the condition
2805 of an IF_THEN_ELSE. */
2806
2807 static int
2808 computed_jump_p_1 (rtx x)
2809 {
2810 enum rtx_code code = GET_CODE (x);
2811 int i, j;
2812 const char *fmt;
2813
2814 switch (code)
2815 {
2816 case LABEL_REF:
2817 case PC:
2818 return 0;
2819
2820 case CONST:
2821 case CONST_INT:
2822 case CONST_DOUBLE:
2823 case CONST_VECTOR:
2824 case SYMBOL_REF:
2825 case REG:
2826 return 1;
2827
2828 case MEM:
2829 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2830 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2831
2832 case IF_THEN_ELSE:
2833 return (computed_jump_p_1 (XEXP (x, 1))
2834 || computed_jump_p_1 (XEXP (x, 2)));
2835
2836 default:
2837 break;
2838 }
2839
2840 fmt = GET_RTX_FORMAT (code);
2841 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2842 {
2843 if (fmt[i] == 'e'
2844 && computed_jump_p_1 (XEXP (x, i)))
2845 return 1;
2846
2847 else if (fmt[i] == 'E')
2848 for (j = 0; j < XVECLEN (x, i); j++)
2849 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2850 return 1;
2851 }
2852
2853 return 0;
2854 }
2855
2856 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2857
2858 Tablejumps and casesi insns are not considered indirect jumps;
2859 we can recognize them by a (use (label_ref)). */
2860
2861 int
2862 computed_jump_p (rtx insn)
2863 {
2864 int i;
2865 if (GET_CODE (insn) == JUMP_INSN)
2866 {
2867 rtx pat = PATTERN (insn);
2868
2869 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2870 return 0;
2871 else if (GET_CODE (pat) == PARALLEL)
2872 {
2873 int len = XVECLEN (pat, 0);
2874 int has_use_labelref = 0;
2875
2876 for (i = len - 1; i >= 0; i--)
2877 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2878 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2879 == LABEL_REF))
2880 has_use_labelref = 1;
2881
2882 if (! has_use_labelref)
2883 for (i = len - 1; i >= 0; i--)
2884 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2885 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2886 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2887 return 1;
2888 }
2889 else if (GET_CODE (pat) == SET
2890 && SET_DEST (pat) == pc_rtx
2891 && computed_jump_p_1 (SET_SRC (pat)))
2892 return 1;
2893 }
2894 return 0;
2895 }
2896
2897 /* Traverse X via depth-first search, calling F for each
2898 sub-expression (including X itself). F is also passed the DATA.
2899 If F returns -1, do not traverse sub-expressions, but continue
2900 traversing the rest of the tree. If F ever returns any other
2901 nonzero value, stop the traversal, and return the value returned
2902 by F. Otherwise, return 0. This function does not traverse inside
2903 tree structure that contains RTX_EXPRs, or into sub-expressions
2904 whose format code is `0' since it is not known whether or not those
2905 codes are actually RTL.
2906
2907 This routine is very general, and could (should?) be used to
2908 implement many of the other routines in this file. */
2909
2910 int
2911 for_each_rtx (rtx *x, rtx_function f, void *data)
2912 {
2913 int result;
2914 int length;
2915 const char *format;
2916 int i;
2917
2918 /* Call F on X. */
2919 result = (*f) (x, data);
2920 if (result == -1)
2921 /* Do not traverse sub-expressions. */
2922 return 0;
2923 else if (result != 0)
2924 /* Stop the traversal. */
2925 return result;
2926
2927 if (*x == NULL_RTX)
2928 /* There are no sub-expressions. */
2929 return 0;
2930
2931 length = GET_RTX_LENGTH (GET_CODE (*x));
2932 format = GET_RTX_FORMAT (GET_CODE (*x));
2933
2934 for (i = 0; i < length; ++i)
2935 {
2936 switch (format[i])
2937 {
2938 case 'e':
2939 result = for_each_rtx (&XEXP (*x, i), f, data);
2940 if (result != 0)
2941 return result;
2942 break;
2943
2944 case 'V':
2945 case 'E':
2946 if (XVEC (*x, i) != 0)
2947 {
2948 int j;
2949 for (j = 0; j < XVECLEN (*x, i); ++j)
2950 {
2951 result = for_each_rtx (&XVECEXP (*x, i, j), f, data);
2952 if (result != 0)
2953 return result;
2954 }
2955 }
2956 break;
2957
2958 default:
2959 /* Nothing to do. */
2960 break;
2961 }
2962
2963 }
2964
2965 return 0;
2966 }
2967
2968 /* Searches X for any reference to REGNO, returning the rtx of the
2969 reference found if any. Otherwise, returns NULL_RTX. */
2970
2971 rtx
2972 regno_use_in (unsigned int regno, rtx x)
2973 {
2974 const char *fmt;
2975 int i, j;
2976 rtx tem;
2977
2978 if (REG_P (x) && REGNO (x) == regno)
2979 return x;
2980
2981 fmt = GET_RTX_FORMAT (GET_CODE (x));
2982 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2983 {
2984 if (fmt[i] == 'e')
2985 {
2986 if ((tem = regno_use_in (regno, XEXP (x, i))))
2987 return tem;
2988 }
2989 else if (fmt[i] == 'E')
2990 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2991 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2992 return tem;
2993 }
2994
2995 return NULL_RTX;
2996 }
2997
2998 /* Return a value indicating whether OP, an operand of a commutative
2999 operation, is preferred as the first or second operand. The higher
3000 the value, the stronger the preference for being the first operand.
3001 We use negative values to indicate a preference for the first operand
3002 and positive values for the second operand. */
3003
3004 int
3005 commutative_operand_precedence (rtx op)
3006 {
3007 enum rtx_code code = GET_CODE (op);
3008
3009 /* Constants always come the second operand. Prefer "nice" constants. */
3010 if (code == CONST_INT)
3011 return -7;
3012 if (code == CONST_DOUBLE)
3013 return -6;
3014 op = avoid_constant_pool_reference (op);
3015
3016 switch (GET_RTX_CLASS (code))
3017 {
3018 case RTX_CONST_OBJ:
3019 if (code == CONST_INT)
3020 return -5;
3021 if (code == CONST_DOUBLE)
3022 return -4;
3023 return -3;
3024
3025 case RTX_EXTRA:
3026 /* SUBREGs of objects should come second. */
3027 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3028 return -2;
3029
3030 if (!CONSTANT_P (op))
3031 return 0;
3032 else
3033 /* As for RTX_CONST_OBJ. */
3034 return -3;
3035
3036 case RTX_OBJ:
3037 /* Complex expressions should be the first, so decrease priority
3038 of objects. */
3039 return -1;
3040
3041 case RTX_COMM_ARITH:
3042 /* Prefer operands that are themselves commutative to be first.
3043 This helps to make things linear. In particular,
3044 (and (and (reg) (reg)) (not (reg))) is canonical. */
3045 return 4;
3046
3047 case RTX_BIN_ARITH:
3048 /* If only one operand is a binary expression, it will be the first
3049 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3050 is canonical, although it will usually be further simplified. */
3051 return 2;
3052
3053 case RTX_UNARY:
3054 /* Then prefer NEG and NOT. */
3055 if (code == NEG || code == NOT)
3056 return 1;
3057
3058 default:
3059 return 0;
3060 }
3061 }
3062
3063 /* Return 1 iff it is necessary to swap operands of commutative operation
3064 in order to canonicalize expression. */
3065
3066 int
3067 swap_commutative_operands_p (rtx x, rtx y)
3068 {
3069 return (commutative_operand_precedence (x)
3070 < commutative_operand_precedence (y));
3071 }
3072
3073 /* Return 1 if X is an autoincrement side effect and the register is
3074 not the stack pointer. */
3075 int
3076 auto_inc_p (rtx x)
3077 {
3078 switch (GET_CODE (x))
3079 {
3080 case PRE_INC:
3081 case POST_INC:
3082 case PRE_DEC:
3083 case POST_DEC:
3084 case PRE_MODIFY:
3085 case POST_MODIFY:
3086 /* There are no REG_INC notes for SP. */
3087 if (XEXP (x, 0) != stack_pointer_rtx)
3088 return 1;
3089 default:
3090 break;
3091 }
3092 return 0;
3093 }
3094
3095 /* Return 1 if the sequence of instructions beginning with FROM and up
3096 to and including TO is safe to move. If NEW_TO is non-NULL, and
3097 the sequence is not already safe to move, but can be easily
3098 extended to a sequence which is safe, then NEW_TO will point to the
3099 end of the extended sequence.
3100
3101 For now, this function only checks that the region contains whole
3102 exception regions, but it could be extended to check additional
3103 conditions as well. */
3104
3105 int
3106 insns_safe_to_move_p (rtx from, rtx to, rtx *new_to)
3107 {
3108 int eh_region_count = 0;
3109 int past_to_p = 0;
3110 rtx r = from;
3111
3112 /* By default, assume the end of the region will be what was
3113 suggested. */
3114 if (new_to)
3115 *new_to = to;
3116
3117 while (r)
3118 {
3119 if (GET_CODE (r) == NOTE)
3120 {
3121 switch (NOTE_LINE_NUMBER (r))
3122 {
3123 case NOTE_INSN_EH_REGION_BEG:
3124 ++eh_region_count;
3125 break;
3126
3127 case NOTE_INSN_EH_REGION_END:
3128 if (eh_region_count == 0)
3129 /* This sequence of instructions contains the end of
3130 an exception region, but not he beginning. Moving
3131 it will cause chaos. */
3132 return 0;
3133
3134 --eh_region_count;
3135 break;
3136
3137 default:
3138 break;
3139 }
3140 }
3141 else if (past_to_p)
3142 /* If we've passed TO, and we see a non-note instruction, we
3143 can't extend the sequence to a movable sequence. */
3144 return 0;
3145
3146 if (r == to)
3147 {
3148 if (!new_to)
3149 /* It's OK to move the sequence if there were matched sets of
3150 exception region notes. */
3151 return eh_region_count == 0;
3152
3153 past_to_p = 1;
3154 }
3155
3156 /* It's OK to move the sequence if there were matched sets of
3157 exception region notes. */
3158 if (past_to_p && eh_region_count == 0)
3159 {
3160 *new_to = r;
3161 return 1;
3162 }
3163
3164 /* Go to the next instruction. */
3165 r = NEXT_INSN (r);
3166 }
3167
3168 return 0;
3169 }
3170
3171 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3172 int
3173 loc_mentioned_in_p (rtx *loc, rtx in)
3174 {
3175 enum rtx_code code = GET_CODE (in);
3176 const char *fmt = GET_RTX_FORMAT (code);
3177 int i, j;
3178
3179 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3180 {
3181 if (loc == &in->u.fld[i].rtx)
3182 return 1;
3183 if (fmt[i] == 'e')
3184 {
3185 if (loc_mentioned_in_p (loc, XEXP (in, i)))
3186 return 1;
3187 }
3188 else if (fmt[i] == 'E')
3189 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3190 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3191 return 1;
3192 }
3193 return 0;
3194 }
3195
3196 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3197 and SUBREG_BYTE, return the bit offset where the subreg begins
3198 (counting from the least significant bit of the operand). */
3199
3200 unsigned int
3201 subreg_lsb_1 (enum machine_mode outer_mode,
3202 enum machine_mode inner_mode,
3203 unsigned int subreg_byte)
3204 {
3205 unsigned int bitpos;
3206 unsigned int byte;
3207 unsigned int word;
3208
3209 /* A paradoxical subreg begins at bit position 0. */
3210 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3211 return 0;
3212
3213 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3214 /* If the subreg crosses a word boundary ensure that
3215 it also begins and ends on a word boundary. */
3216 if ((subreg_byte % UNITS_PER_WORD
3217 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3218 && (subreg_byte % UNITS_PER_WORD
3219 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD))
3220 abort ();
3221
3222 if (WORDS_BIG_ENDIAN)
3223 word = (GET_MODE_SIZE (inner_mode)
3224 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3225 else
3226 word = subreg_byte / UNITS_PER_WORD;
3227 bitpos = word * BITS_PER_WORD;
3228
3229 if (BYTES_BIG_ENDIAN)
3230 byte = (GET_MODE_SIZE (inner_mode)
3231 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3232 else
3233 byte = subreg_byte % UNITS_PER_WORD;
3234 bitpos += byte * BITS_PER_UNIT;
3235
3236 return bitpos;
3237 }
3238
3239 /* Given a subreg X, return the bit offset where the subreg begins
3240 (counting from the least significant bit of the reg). */
3241
3242 unsigned int
3243 subreg_lsb (rtx x)
3244 {
3245 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3246 SUBREG_BYTE (x));
3247 }
3248
3249 /* This function returns the regno offset of a subreg expression.
3250 xregno - A regno of an inner hard subreg_reg (or what will become one).
3251 xmode - The mode of xregno.
3252 offset - The byte offset.
3253 ymode - The mode of a top level SUBREG (or what may become one).
3254 RETURN - The regno offset which would be used. */
3255 unsigned int
3256 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3257 unsigned int offset, enum machine_mode ymode)
3258 {
3259 int nregs_xmode, nregs_ymode;
3260 int mode_multiple, nregs_multiple;
3261 int y_offset;
3262
3263 if (xregno >= FIRST_PSEUDO_REGISTER)
3264 abort ();
3265
3266 nregs_xmode = hard_regno_nregs[xregno][xmode];
3267 nregs_ymode = hard_regno_nregs[xregno][ymode];
3268
3269 /* If this is a big endian paradoxical subreg, which uses more actual
3270 hard registers than the original register, we must return a negative
3271 offset so that we find the proper highpart of the register. */
3272 if (offset == 0
3273 && nregs_ymode > nregs_xmode
3274 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3275 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3276 return nregs_xmode - nregs_ymode;
3277
3278 if (offset == 0 || nregs_xmode == nregs_ymode)
3279 return 0;
3280
3281 /* size of ymode must not be greater than the size of xmode. */
3282 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3283 if (mode_multiple == 0)
3284 abort ();
3285
3286 y_offset = offset / GET_MODE_SIZE (ymode);
3287 nregs_multiple = nregs_xmode / nregs_ymode;
3288 return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3289 }
3290
3291 /* This function returns true when the offset is representable via
3292 subreg_offset in the given regno.
3293 xregno - A regno of an inner hard subreg_reg (or what will become one).
3294 xmode - The mode of xregno.
3295 offset - The byte offset.
3296 ymode - The mode of a top level SUBREG (or what may become one).
3297 RETURN - The regno offset which would be used. */
3298 bool
3299 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3300 unsigned int offset, enum machine_mode ymode)
3301 {
3302 int nregs_xmode, nregs_ymode;
3303 int mode_multiple, nregs_multiple;
3304 int y_offset;
3305
3306 if (xregno >= FIRST_PSEUDO_REGISTER)
3307 abort ();
3308
3309 nregs_xmode = hard_regno_nregs[xregno][xmode];
3310 nregs_ymode = hard_regno_nregs[xregno][ymode];
3311
3312 /* Paradoxical subregs are always valid. */
3313 if (offset == 0
3314 && nregs_ymode > nregs_xmode
3315 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3316 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3317 return true;
3318
3319 /* Lowpart subregs are always valid. */
3320 if (offset == subreg_lowpart_offset (ymode, xmode))
3321 return true;
3322
3323 #ifdef ENABLE_CHECKING
3324 /* This should always pass, otherwise we don't know how to verify the
3325 constraint. These conditions may be relaxed but subreg_offset would
3326 need to be redesigned. */
3327 if (GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)
3328 || GET_MODE_SIZE (ymode) % nregs_ymode
3329 || nregs_xmode % nregs_ymode)
3330 abort ();
3331 #endif
3332
3333 /* The XMODE value can be seen as a vector of NREGS_XMODE
3334 values. The subreg must represent a lowpart of given field.
3335 Compute what field it is. */
3336 offset -= subreg_lowpart_offset (ymode,
3337 mode_for_size (GET_MODE_BITSIZE (xmode)
3338 / nregs_xmode,
3339 MODE_INT, 0));
3340
3341 /* size of ymode must not be greater than the size of xmode. */
3342 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3343 if (mode_multiple == 0)
3344 abort ();
3345
3346 y_offset = offset / GET_MODE_SIZE (ymode);
3347 nregs_multiple = nregs_xmode / nregs_ymode;
3348 #ifdef ENABLE_CHECKING
3349 if (offset % GET_MODE_SIZE (ymode)
3350 || mode_multiple % nregs_multiple)
3351 abort ();
3352 #endif
3353 return (!(y_offset % (mode_multiple / nregs_multiple)));
3354 }
3355
3356 /* Return the final regno that a subreg expression refers to. */
3357 unsigned int
3358 subreg_regno (rtx x)
3359 {
3360 unsigned int ret;
3361 rtx subreg = SUBREG_REG (x);
3362 int regno = REGNO (subreg);
3363
3364 ret = regno + subreg_regno_offset (regno,
3365 GET_MODE (subreg),
3366 SUBREG_BYTE (x),
3367 GET_MODE (x));
3368 return ret;
3369
3370 }
3371 struct parms_set_data
3372 {
3373 int nregs;
3374 HARD_REG_SET regs;
3375 };
3376
3377 /* Helper function for noticing stores to parameter registers. */
3378 static void
3379 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3380 {
3381 struct parms_set_data *d = data;
3382 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3383 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3384 {
3385 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3386 d->nregs--;
3387 }
3388 }
3389
3390 /* Look backward for first parameter to be loaded.
3391 Do not skip BOUNDARY. */
3392 rtx
3393 find_first_parameter_load (rtx call_insn, rtx boundary)
3394 {
3395 struct parms_set_data parm;
3396 rtx p, before;
3397
3398 /* Since different machines initialize their parameter registers
3399 in different orders, assume nothing. Collect the set of all
3400 parameter registers. */
3401 CLEAR_HARD_REG_SET (parm.regs);
3402 parm.nregs = 0;
3403 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3404 if (GET_CODE (XEXP (p, 0)) == USE
3405 && REG_P (XEXP (XEXP (p, 0), 0)))
3406 {
3407 if (REGNO (XEXP (XEXP (p, 0), 0)) >= FIRST_PSEUDO_REGISTER)
3408 abort ();
3409
3410 /* We only care about registers which can hold function
3411 arguments. */
3412 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3413 continue;
3414
3415 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3416 parm.nregs++;
3417 }
3418 before = call_insn;
3419
3420 /* Search backward for the first set of a register in this set. */
3421 while (parm.nregs && before != boundary)
3422 {
3423 before = PREV_INSN (before);
3424
3425 /* It is possible that some loads got CSEed from one call to
3426 another. Stop in that case. */
3427 if (GET_CODE (before) == CALL_INSN)
3428 break;
3429
3430 /* Our caller needs either ensure that we will find all sets
3431 (in case code has not been optimized yet), or take care
3432 for possible labels in a way by setting boundary to preceding
3433 CODE_LABEL. */
3434 if (GET_CODE (before) == CODE_LABEL)
3435 {
3436 if (before != boundary)
3437 abort ();
3438 break;
3439 }
3440
3441 if (INSN_P (before))
3442 note_stores (PATTERN (before), parms_set, &parm);
3443 }
3444 return before;
3445 }
3446
3447 /* Return true if we should avoid inserting code between INSN and preceding
3448 call instruction. */
3449
3450 bool
3451 keep_with_call_p (rtx insn)
3452 {
3453 rtx set;
3454
3455 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3456 {
3457 if (REG_P (SET_DEST (set))
3458 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3459 && fixed_regs[REGNO (SET_DEST (set))]
3460 && general_operand (SET_SRC (set), VOIDmode))
3461 return true;
3462 if (REG_P (SET_SRC (set))
3463 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3464 && REG_P (SET_DEST (set))
3465 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3466 return true;
3467 /* There may be a stack pop just after the call and before the store
3468 of the return register. Search for the actual store when deciding
3469 if we can break or not. */
3470 if (SET_DEST (set) == stack_pointer_rtx)
3471 {
3472 rtx i2 = next_nonnote_insn (insn);
3473 if (i2 && keep_with_call_p (i2))
3474 return true;
3475 }
3476 }
3477 return false;
3478 }
3479
3480 /* Return true when store to register X can be hoisted to the place
3481 with LIVE registers (can be NULL). Value VAL contains destination
3482 whose value will be used. */
3483
3484 static bool
3485 hoist_test_store (rtx x, rtx val, regset live)
3486 {
3487 if (GET_CODE (x) == SCRATCH)
3488 return true;
3489
3490 if (rtx_equal_p (x, val))
3491 return true;
3492
3493 /* Allow subreg of X in case it is not writing just part of multireg pseudo.
3494 Then we would need to update all users to care hoisting the store too.
3495 Caller may represent that by specifying whole subreg as val. */
3496
3497 if (GET_CODE (x) == SUBREG && rtx_equal_p (SUBREG_REG (x), val))
3498 {
3499 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD
3500 && GET_MODE_BITSIZE (GET_MODE (x)) <
3501 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
3502 return false;
3503 return true;
3504 }
3505 if (GET_CODE (x) == SUBREG)
3506 x = SUBREG_REG (x);
3507
3508 /* Anything except register store is not hoistable. This includes the
3509 partial stores to registers. */
3510
3511 if (!REG_P (x))
3512 return false;
3513
3514 /* Pseudo registers can be always replaced by another pseudo to avoid
3515 the side effect, for hard register we must ensure that they are dead.
3516 Eventually we may want to add code to try turn pseudos to hards, but it
3517 is unlikely useful. */
3518
3519 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3520 {
3521 int regno = REGNO (x);
3522 int n = hard_regno_nregs[regno][GET_MODE (x)];
3523
3524 if (!live)
3525 return false;
3526 if (REGNO_REG_SET_P (live, regno))
3527 return false;
3528 while (--n > 0)
3529 if (REGNO_REG_SET_P (live, regno + n))
3530 return false;
3531 }
3532 return true;
3533 }
3534
3535
3536 /* Return true if INSN can be hoisted to place with LIVE hard registers
3537 (LIVE can be NULL when unknown). VAL is expected to be stored by the insn
3538 and used by the hoisting pass. */
3539
3540 bool
3541 can_hoist_insn_p (rtx insn, rtx val, regset live)
3542 {
3543 rtx pat = PATTERN (insn);
3544 int i;
3545
3546 /* It probably does not worth the complexity to handle multiple
3547 set stores. */
3548 if (!single_set (insn))
3549 return false;
3550 /* We can move CALL_INSN, but we need to check that all caller clobbered
3551 regs are dead. */
3552 if (GET_CODE (insn) == CALL_INSN)
3553 return false;
3554 /* In future we will handle hoisting of libcall sequences, but
3555 give up for now. */
3556 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
3557 return false;
3558 switch (GET_CODE (pat))
3559 {
3560 case SET:
3561 if (!hoist_test_store (SET_DEST (pat), val, live))
3562 return false;
3563 break;
3564 case USE:
3565 /* USES do have sick semantics, so do not move them. */
3566 return false;
3567 break;
3568 case CLOBBER:
3569 if (!hoist_test_store (XEXP (pat, 0), val, live))
3570 return false;
3571 break;
3572 case PARALLEL:
3573 for (i = 0; i < XVECLEN (pat, 0); i++)
3574 {
3575 rtx x = XVECEXP (pat, 0, i);
3576 switch (GET_CODE (x))
3577 {
3578 case SET:
3579 if (!hoist_test_store (SET_DEST (x), val, live))
3580 return false;
3581 break;
3582 case USE:
3583 /* We need to fix callers to really ensure availability
3584 of all values insn uses, but for now it is safe to prohibit
3585 hoisting of any insn having such a hidden uses. */
3586 return false;
3587 break;
3588 case CLOBBER:
3589 if (!hoist_test_store (SET_DEST (x), val, live))
3590 return false;
3591 break;
3592 default:
3593 break;
3594 }
3595 }
3596 break;
3597 default:
3598 abort ();
3599 }
3600 return true;
3601 }
3602
3603 /* Update store after hoisting - replace all stores to pseudo registers
3604 by new ones to avoid clobbering of values except for store to VAL that will
3605 be updated to NEW. */
3606
3607 static void
3608 hoist_update_store (rtx insn, rtx *xp, rtx val, rtx new)
3609 {
3610 rtx x = *xp;
3611
3612 if (GET_CODE (x) == SCRATCH)
3613 return;
3614
3615 if (GET_CODE (x) == SUBREG && SUBREG_REG (x) == val)
3616 validate_change (insn, xp,
3617 simplify_gen_subreg (GET_MODE (x), new, GET_MODE (new),
3618 SUBREG_BYTE (x)), 1);
3619 if (rtx_equal_p (x, val))
3620 {
3621 validate_change (insn, xp, new, 1);
3622 return;
3623 }
3624 if (GET_CODE (x) == SUBREG)
3625 {
3626 xp = &SUBREG_REG (x);
3627 x = *xp;
3628 }
3629
3630 if (!REG_P (x))
3631 abort ();
3632
3633 /* We've verified that hard registers are dead, so we may keep the side
3634 effect. Otherwise replace it by new pseudo. */
3635 if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
3636 validate_change (insn, xp, gen_reg_rtx (GET_MODE (x)), 1);
3637 REG_NOTES (insn)
3638 = alloc_EXPR_LIST (REG_UNUSED, *xp, REG_NOTES (insn));
3639 }
3640
3641 /* Create a copy of INSN after AFTER replacing store of VAL to NEW
3642 and each other side effect to pseudo register by new pseudo register. */
3643
3644 rtx
3645 hoist_insn_after (rtx insn, rtx after, rtx val, rtx new)
3646 {
3647 rtx pat;
3648 int i;
3649 rtx note;
3650
3651 insn = emit_copy_of_insn_after (insn, after);
3652 pat = PATTERN (insn);
3653
3654 /* Remove REG_UNUSED notes as we will re-emit them. */
3655 while ((note = find_reg_note (insn, REG_UNUSED, NULL_RTX)))
3656 remove_note (insn, note);
3657
3658 /* To get this working callers must ensure to move everything referenced
3659 by REG_EQUAL/REG_EQUIV notes too. Lets remove them, it is probably
3660 easier. */
3661 while ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX)))
3662 remove_note (insn, note);
3663 while ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)))
3664 remove_note (insn, note);
3665
3666 /* Remove REG_DEAD notes as they might not be valid anymore in case
3667 we create redundancy. */
3668 while ((note = find_reg_note (insn, REG_DEAD, NULL_RTX)))
3669 remove_note (insn, note);
3670 switch (GET_CODE (pat))
3671 {
3672 case SET:
3673 hoist_update_store (insn, &SET_DEST (pat), val, new);
3674 break;
3675 case USE:
3676 break;
3677 case CLOBBER:
3678 hoist_update_store (insn, &XEXP (pat, 0), val, new);
3679 break;
3680 case PARALLEL:
3681 for (i = 0; i < XVECLEN (pat, 0); i++)
3682 {
3683 rtx x = XVECEXP (pat, 0, i);
3684 switch (GET_CODE (x))
3685 {
3686 case SET:
3687 hoist_update_store (insn, &SET_DEST (x), val, new);
3688 break;
3689 case USE:
3690 break;
3691 case CLOBBER:
3692 hoist_update_store (insn, &SET_DEST (x), val, new);
3693 break;
3694 default:
3695 break;
3696 }
3697 }
3698 break;
3699 default:
3700 abort ();
3701 }
3702 if (!apply_change_group ())
3703 abort ();
3704
3705 return insn;
3706 }
3707
3708 rtx
3709 hoist_insn_to_edge (rtx insn, edge e, rtx val, rtx new)
3710 {
3711 rtx new_insn;
3712
3713 /* We cannot insert instructions on an abnormal critical edge.
3714 It will be easier to find the culprit if we die now. */
3715 if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
3716 abort ();
3717
3718 /* Do not use emit_insn_on_edge as we want to preserve notes and similar
3719 stuff. We also emit CALL_INSNS and firends. */
3720 if (e->insns.r == NULL_RTX)
3721 {
3722 start_sequence ();
3723 emit_note (NOTE_INSN_DELETED);
3724 }
3725 else
3726 push_to_sequence (e->insns.r);
3727
3728 new_insn = hoist_insn_after (insn, get_last_insn (), val, new);
3729
3730 e->insns.r = get_insns ();
3731 end_sequence ();
3732 return new_insn;
3733 }
3734
3735 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3736 to non-complex jumps. That is, direct unconditional, conditional,
3737 and tablejumps, but not computed jumps or returns. It also does
3738 not apply to the fallthru case of a conditional jump. */
3739
3740 bool
3741 label_is_jump_target_p (rtx label, rtx jump_insn)
3742 {
3743 rtx tmp = JUMP_LABEL (jump_insn);
3744
3745 if (label == tmp)
3746 return true;
3747
3748 if (tablejump_p (jump_insn, NULL, &tmp))
3749 {
3750 rtvec vec = XVEC (PATTERN (tmp),
3751 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3752 int i, veclen = GET_NUM_ELEM (vec);
3753
3754 for (i = 0; i < veclen; ++i)
3755 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3756 return true;
3757 }
3758
3759 return false;
3760 }
3761
3762 \f
3763 /* Return an estimate of the cost of computing rtx X.
3764 One use is in cse, to decide which expression to keep in the hash table.
3765 Another is in rtl generation, to pick the cheapest way to multiply.
3766 Other uses like the latter are expected in the future. */
3767
3768 int
3769 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3770 {
3771 int i, j;
3772 enum rtx_code code;
3773 const char *fmt;
3774 int total;
3775
3776 if (x == 0)
3777 return 0;
3778
3779 /* Compute the default costs of certain things.
3780 Note that targetm.rtx_costs can override the defaults. */
3781
3782 code = GET_CODE (x);
3783 switch (code)
3784 {
3785 case MULT:
3786 total = COSTS_N_INSNS (5);
3787 break;
3788 case DIV:
3789 case UDIV:
3790 case MOD:
3791 case UMOD:
3792 total = COSTS_N_INSNS (7);
3793 break;
3794 case USE:
3795 /* Used in loop.c and combine.c as a marker. */
3796 total = 0;
3797 break;
3798 default:
3799 total = COSTS_N_INSNS (1);
3800 }
3801
3802 switch (code)
3803 {
3804 case REG:
3805 return 0;
3806
3807 case SUBREG:
3808 /* If we can't tie these modes, make this expensive. The larger
3809 the mode, the more expensive it is. */
3810 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3811 return COSTS_N_INSNS (2
3812 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3813 break;
3814
3815 default:
3816 if (targetm.rtx_costs (x, code, outer_code, &total))
3817 return total;
3818 break;
3819 }
3820
3821 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3822 which is already in total. */
3823
3824 fmt = GET_RTX_FORMAT (code);
3825 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3826 if (fmt[i] == 'e')
3827 total += rtx_cost (XEXP (x, i), code);
3828 else if (fmt[i] == 'E')
3829 for (j = 0; j < XVECLEN (x, i); j++)
3830 total += rtx_cost (XVECEXP (x, i, j), code);
3831
3832 return total;
3833 }
3834 \f
3835 /* Return cost of address expression X.
3836 Expect that X is properly formed address reference. */
3837
3838 int
3839 address_cost (rtx x, enum machine_mode mode)
3840 {
3841 /* The address_cost target hook does not deal with ADDRESSOF nodes. But,
3842 during CSE, such nodes are present. Using an ADDRESSOF node which
3843 refers to the address of a REG is a good thing because we can then
3844 turn (MEM (ADDRESSOF (REG))) into just plain REG. */
3845
3846 if (GET_CODE (x) == ADDRESSOF && REG_P (XEXP ((x), 0)))
3847 return -1;
3848
3849 /* We may be asked for cost of various unusual addresses, such as operands
3850 of push instruction. It is not worthwhile to complicate writing
3851 of the target hook by such cases. */
3852
3853 if (!memory_address_p (mode, x))
3854 return 1000;
3855
3856 return targetm.address_cost (x);
3857 }
3858
3859 /* If the target doesn't override, compute the cost as with arithmetic. */
3860
3861 int
3862 default_address_cost (rtx x)
3863 {
3864 return rtx_cost (x, MEM);
3865 }
3866 \f
3867
3868 unsigned HOST_WIDE_INT
3869 nonzero_bits (rtx x, enum machine_mode mode)
3870 {
3871 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3872 }
3873
3874 unsigned int
3875 num_sign_bit_copies (rtx x, enum machine_mode mode)
3876 {
3877 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3878 }
3879
3880 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3881 It avoids exponential behavior in nonzero_bits1 when X has
3882 identical subexpressions on the first or the second level. */
3883
3884 static unsigned HOST_WIDE_INT
3885 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3886 enum machine_mode known_mode,
3887 unsigned HOST_WIDE_INT known_ret)
3888 {
3889 if (x == known_x && mode == known_mode)
3890 return known_ret;
3891
3892 /* Try to find identical subexpressions. If found call
3893 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3894 precomputed value for the subexpression as KNOWN_RET. */
3895
3896 if (ARITHMETIC_P (x))
3897 {
3898 rtx x0 = XEXP (x, 0);
3899 rtx x1 = XEXP (x, 1);
3900
3901 /* Check the first level. */
3902 if (x0 == x1)
3903 return nonzero_bits1 (x, mode, x0, mode,
3904 cached_nonzero_bits (x0, mode, known_x,
3905 known_mode, known_ret));
3906
3907 /* Check the second level. */
3908 if (ARITHMETIC_P (x0)
3909 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3910 return nonzero_bits1 (x, mode, x1, mode,
3911 cached_nonzero_bits (x1, mode, known_x,
3912 known_mode, known_ret));
3913
3914 if (ARITHMETIC_P (x1)
3915 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3916 return nonzero_bits1 (x, mode, x0, mode,
3917 cached_nonzero_bits (x0, mode, known_x,
3918 known_mode, known_ret));
3919 }
3920
3921 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3922 }
3923
3924 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3925 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3926 is less useful. We can't allow both, because that results in exponential
3927 run time recursion. There is a nullstone testcase that triggered
3928 this. This macro avoids accidental uses of num_sign_bit_copies. */
3929 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3930
3931 /* Given an expression, X, compute which bits in X can be nonzero.
3932 We don't care about bits outside of those defined in MODE.
3933
3934 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3935 an arithmetic operation, we can do better. */
3936
3937 static unsigned HOST_WIDE_INT
3938 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3939 enum machine_mode known_mode,
3940 unsigned HOST_WIDE_INT known_ret)
3941 {
3942 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3943 unsigned HOST_WIDE_INT inner_nz;
3944 enum rtx_code code;
3945 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3946
3947 /* For floating-point values, assume all bits are needed. */
3948 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3949 return nonzero;
3950
3951 /* If X is wider than MODE, use its mode instead. */
3952 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3953 {
3954 mode = GET_MODE (x);
3955 nonzero = GET_MODE_MASK (mode);
3956 mode_width = GET_MODE_BITSIZE (mode);
3957 }
3958
3959 if (mode_width > HOST_BITS_PER_WIDE_INT)
3960 /* Our only callers in this case look for single bit values. So
3961 just return the mode mask. Those tests will then be false. */
3962 return nonzero;
3963
3964 #ifndef WORD_REGISTER_OPERATIONS
3965 /* If MODE is wider than X, but both are a single word for both the host
3966 and target machines, we can compute this from which bits of the
3967 object might be nonzero in its own mode, taking into account the fact
3968 that on many CISC machines, accessing an object in a wider mode
3969 causes the high-order bits to become undefined. So they are
3970 not known to be zero. */
3971
3972 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3973 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3974 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3975 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3976 {
3977 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3978 known_x, known_mode, known_ret);
3979 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3980 return nonzero;
3981 }
3982 #endif
3983
3984 code = GET_CODE (x);
3985 switch (code)
3986 {
3987 case REG:
3988 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3989 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3990 all the bits above ptr_mode are known to be zero. */
3991 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3992 && REG_POINTER (x))
3993 nonzero &= GET_MODE_MASK (ptr_mode);
3994 #endif
3995
3996 /* Include declared information about alignment of pointers. */
3997 /* ??? We don't properly preserve REG_POINTER changes across
3998 pointer-to-integer casts, so we can't trust it except for
3999 things that we know must be pointers. See execute/960116-1.c. */
4000 if ((x == stack_pointer_rtx
4001 || x == frame_pointer_rtx
4002 || x == arg_pointer_rtx)
4003 && REGNO_POINTER_ALIGN (REGNO (x)))
4004 {
4005 unsigned HOST_WIDE_INT alignment
4006 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4007
4008 #ifdef PUSH_ROUNDING
4009 /* If PUSH_ROUNDING is defined, it is possible for the
4010 stack to be momentarily aligned only to that amount,
4011 so we pick the least alignment. */
4012 if (x == stack_pointer_rtx && PUSH_ARGS)
4013 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4014 alignment);
4015 #endif
4016
4017 nonzero &= ~(alignment - 1);
4018 }
4019
4020 {
4021 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4022 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4023 known_mode, known_ret,
4024 &nonzero_for_hook);
4025
4026 if (new)
4027 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
4028 known_mode, known_ret);
4029
4030 return nonzero_for_hook;
4031 }
4032
4033 case CONST_INT:
4034 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4035 /* If X is negative in MODE, sign-extend the value. */
4036 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
4037 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
4038 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
4039 #endif
4040
4041 return INTVAL (x);
4042
4043 case MEM:
4044 #ifdef LOAD_EXTEND_OP
4045 /* In many, if not most, RISC machines, reading a byte from memory
4046 zeros the rest of the register. Noticing that fact saves a lot
4047 of extra zero-extends. */
4048 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4049 nonzero &= GET_MODE_MASK (GET_MODE (x));
4050 #endif
4051 break;
4052
4053 case EQ: case NE:
4054 case UNEQ: case LTGT:
4055 case GT: case GTU: case UNGT:
4056 case LT: case LTU: case UNLT:
4057 case GE: case GEU: case UNGE:
4058 case LE: case LEU: case UNLE:
4059 case UNORDERED: case ORDERED:
4060
4061 /* If this produces an integer result, we know which bits are set.
4062 Code here used to clear bits outside the mode of X, but that is
4063 now done above. */
4064
4065 if (GET_MODE_CLASS (mode) == MODE_INT
4066 && mode_width <= HOST_BITS_PER_WIDE_INT)
4067 nonzero = STORE_FLAG_VALUE;
4068 break;
4069
4070 case NEG:
4071 #if 0
4072 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4073 and num_sign_bit_copies. */
4074 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4075 == GET_MODE_BITSIZE (GET_MODE (x)))
4076 nonzero = 1;
4077 #endif
4078
4079 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
4080 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4081 break;
4082
4083 case ABS:
4084 #if 0
4085 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4086 and num_sign_bit_copies. */
4087 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4088 == GET_MODE_BITSIZE (GET_MODE (x)))
4089 nonzero = 1;
4090 #endif
4091 break;
4092
4093 case TRUNCATE:
4094 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4095 known_x, known_mode, known_ret)
4096 & GET_MODE_MASK (mode));
4097 break;
4098
4099 case ZERO_EXTEND:
4100 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4101 known_x, known_mode, known_ret);
4102 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4103 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4104 break;
4105
4106 case SIGN_EXTEND:
4107 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4108 Otherwise, show all the bits in the outer mode but not the inner
4109 may be nonzero. */
4110 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4111 known_x, known_mode, known_ret);
4112 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4113 {
4114 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4115 if (inner_nz
4116 & (((HOST_WIDE_INT) 1
4117 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
4118 inner_nz |= (GET_MODE_MASK (mode)
4119 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4120 }
4121
4122 nonzero &= inner_nz;
4123 break;
4124
4125 case AND:
4126 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4127 known_x, known_mode, known_ret)
4128 & cached_nonzero_bits (XEXP (x, 1), mode,
4129 known_x, known_mode, known_ret);
4130 break;
4131
4132 case XOR: case IOR:
4133 case UMIN: case UMAX: case SMIN: case SMAX:
4134 {
4135 unsigned HOST_WIDE_INT nonzero0 =
4136 cached_nonzero_bits (XEXP (x, 0), mode,
4137 known_x, known_mode, known_ret);
4138
4139 /* Don't call nonzero_bits for the second time if it cannot change
4140 anything. */
4141 if ((nonzero & nonzero0) != nonzero)
4142 nonzero &= nonzero0
4143 | cached_nonzero_bits (XEXP (x, 1), mode,
4144 known_x, known_mode, known_ret);
4145 }
4146 break;
4147
4148 case PLUS: case MINUS:
4149 case MULT:
4150 case DIV: case UDIV:
4151 case MOD: case UMOD:
4152 /* We can apply the rules of arithmetic to compute the number of
4153 high- and low-order zero bits of these operations. We start by
4154 computing the width (position of the highest-order nonzero bit)
4155 and the number of low-order zero bits for each value. */
4156 {
4157 unsigned HOST_WIDE_INT nz0 =
4158 cached_nonzero_bits (XEXP (x, 0), mode,
4159 known_x, known_mode, known_ret);
4160 unsigned HOST_WIDE_INT nz1 =
4161 cached_nonzero_bits (XEXP (x, 1), mode,
4162 known_x, known_mode, known_ret);
4163 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
4164 int width0 = floor_log2 (nz0) + 1;
4165 int width1 = floor_log2 (nz1) + 1;
4166 int low0 = floor_log2 (nz0 & -nz0);
4167 int low1 = floor_log2 (nz1 & -nz1);
4168 HOST_WIDE_INT op0_maybe_minusp
4169 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
4170 HOST_WIDE_INT op1_maybe_minusp
4171 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
4172 unsigned int result_width = mode_width;
4173 int result_low = 0;
4174
4175 switch (code)
4176 {
4177 case PLUS:
4178 result_width = MAX (width0, width1) + 1;
4179 result_low = MIN (low0, low1);
4180 break;
4181 case MINUS:
4182 result_low = MIN (low0, low1);
4183 break;
4184 case MULT:
4185 result_width = width0 + width1;
4186 result_low = low0 + low1;
4187 break;
4188 case DIV:
4189 if (width1 == 0)
4190 break;
4191 if (! op0_maybe_minusp && ! op1_maybe_minusp)
4192 result_width = width0;
4193 break;
4194 case UDIV:
4195 if (width1 == 0)
4196 break;
4197 result_width = width0;
4198 break;
4199 case MOD:
4200 if (width1 == 0)
4201 break;
4202 if (! op0_maybe_minusp && ! op1_maybe_minusp)
4203 result_width = MIN (width0, width1);
4204 result_low = MIN (low0, low1);
4205 break;
4206 case UMOD:
4207 if (width1 == 0)
4208 break;
4209 result_width = MIN (width0, width1);
4210 result_low = MIN (low0, low1);
4211 break;
4212 default:
4213 abort ();
4214 }
4215
4216 if (result_width < mode_width)
4217 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
4218
4219 if (result_low > 0)
4220 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
4221
4222 #ifdef POINTERS_EXTEND_UNSIGNED
4223 /* If pointers extend unsigned and this is an addition or subtraction
4224 to a pointer in Pmode, all the bits above ptr_mode are known to be
4225 zero. */
4226 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
4227 && (code == PLUS || code == MINUS)
4228 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4229 nonzero &= GET_MODE_MASK (ptr_mode);
4230 #endif
4231 }
4232 break;
4233
4234 case ZERO_EXTRACT:
4235 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4236 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4237 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4238 break;
4239
4240 case SUBREG:
4241 /* If this is a SUBREG formed for a promoted variable that has
4242 been zero-extended, we know that at least the high-order bits
4243 are zero, though others might be too. */
4244
4245 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4246 nonzero = GET_MODE_MASK (GET_MODE (x))
4247 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4248 known_x, known_mode, known_ret);
4249
4250 /* If the inner mode is a single word for both the host and target
4251 machines, we can compute this from which bits of the inner
4252 object might be nonzero. */
4253 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4254 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4255 <= HOST_BITS_PER_WIDE_INT))
4256 {
4257 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4258 known_x, known_mode, known_ret);
4259
4260 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4261 /* If this is a typical RISC machine, we only have to worry
4262 about the way loads are extended. */
4263 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4264 ? (((nonzero
4265 & (((unsigned HOST_WIDE_INT) 1
4266 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4267 != 0))
4268 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4269 || GET_CODE (SUBREG_REG (x)) != MEM)
4270 #endif
4271 {
4272 /* On many CISC machines, accessing an object in a wider mode
4273 causes the high-order bits to become undefined. So they are
4274 not known to be zero. */
4275 if (GET_MODE_SIZE (GET_MODE (x))
4276 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4277 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4278 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4279 }
4280 }
4281 break;
4282
4283 case ASHIFTRT:
4284 case LSHIFTRT:
4285 case ASHIFT:
4286 case ROTATE:
4287 /* The nonzero bits are in two classes: any bits within MODE
4288 that aren't in GET_MODE (x) are always significant. The rest of the
4289 nonzero bits are those that are significant in the operand of
4290 the shift when shifted the appropriate number of bits. This
4291 shows that high-order bits are cleared by the right shift and
4292 low-order bits by left shifts. */
4293 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4294 && INTVAL (XEXP (x, 1)) >= 0
4295 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4296 {
4297 enum machine_mode inner_mode = GET_MODE (x);
4298 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4299 int count = INTVAL (XEXP (x, 1));
4300 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4301 unsigned HOST_WIDE_INT op_nonzero =
4302 cached_nonzero_bits (XEXP (x, 0), mode,
4303 known_x, known_mode, known_ret);
4304 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4305 unsigned HOST_WIDE_INT outer = 0;
4306
4307 if (mode_width > width)
4308 outer = (op_nonzero & nonzero & ~mode_mask);
4309
4310 if (code == LSHIFTRT)
4311 inner >>= count;
4312 else if (code == ASHIFTRT)
4313 {
4314 inner >>= count;
4315
4316 /* If the sign bit may have been nonzero before the shift, we
4317 need to mark all the places it could have been copied to
4318 by the shift as possibly nonzero. */
4319 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
4320 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
4321 }
4322 else if (code == ASHIFT)
4323 inner <<= count;
4324 else
4325 inner = ((inner << (count % width)
4326 | (inner >> (width - (count % width)))) & mode_mask);
4327
4328 nonzero &= (outer | inner);
4329 }
4330 break;
4331
4332 case FFS:
4333 case POPCOUNT:
4334 /* This is at most the number of bits in the mode. */
4335 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4336 break;
4337
4338 case CLZ:
4339 /* If CLZ has a known value at zero, then the nonzero bits are
4340 that value, plus the number of bits in the mode minus one. */
4341 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4342 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4343 else
4344 nonzero = -1;
4345 break;
4346
4347 case CTZ:
4348 /* If CTZ has a known value at zero, then the nonzero bits are
4349 that value, plus the number of bits in the mode minus one. */
4350 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4351 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4352 else
4353 nonzero = -1;
4354 break;
4355
4356 case PARITY:
4357 nonzero = 1;
4358 break;
4359
4360 case IF_THEN_ELSE:
4361 {
4362 unsigned HOST_WIDE_INT nonzero_true =
4363 cached_nonzero_bits (XEXP (x, 1), mode,
4364 known_x, known_mode, known_ret);
4365
4366 /* Don't call nonzero_bits for the second time if it cannot change
4367 anything. */
4368 if ((nonzero & nonzero_true) != nonzero)
4369 nonzero &= nonzero_true
4370 | cached_nonzero_bits (XEXP (x, 2), mode,
4371 known_x, known_mode, known_ret);
4372 }
4373 break;
4374
4375 default:
4376 break;
4377 }
4378
4379 return nonzero;
4380 }
4381
4382 /* See the macro definition above. */
4383 #undef cached_num_sign_bit_copies
4384
4385 \f
4386 /* The function cached_num_sign_bit_copies is a wrapper around
4387 num_sign_bit_copies1. It avoids exponential behavior in
4388 num_sign_bit_copies1 when X has identical subexpressions on the
4389 first or the second level. */
4390
4391 static unsigned int
4392 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
4393 enum machine_mode known_mode,
4394 unsigned int known_ret)
4395 {
4396 if (x == known_x && mode == known_mode)
4397 return known_ret;
4398
4399 /* Try to find identical subexpressions. If found call
4400 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4401 the precomputed value for the subexpression as KNOWN_RET. */
4402
4403 if (ARITHMETIC_P (x))
4404 {
4405 rtx x0 = XEXP (x, 0);
4406 rtx x1 = XEXP (x, 1);
4407
4408 /* Check the first level. */
4409 if (x0 == x1)
4410 return
4411 num_sign_bit_copies1 (x, mode, x0, mode,
4412 cached_num_sign_bit_copies (x0, mode, known_x,
4413 known_mode,
4414 known_ret));
4415
4416 /* Check the second level. */
4417 if (ARITHMETIC_P (x0)
4418 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4419 return
4420 num_sign_bit_copies1 (x, mode, x1, mode,
4421 cached_num_sign_bit_copies (x1, mode, known_x,
4422 known_mode,
4423 known_ret));
4424
4425 if (ARITHMETIC_P (x1)
4426 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4427 return
4428 num_sign_bit_copies1 (x, mode, x0, mode,
4429 cached_num_sign_bit_copies (x0, mode, known_x,
4430 known_mode,
4431 known_ret));
4432 }
4433
4434 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4435 }
4436
4437 /* Return the number of bits at the high-order end of X that are known to
4438 be equal to the sign bit. X will be used in mode MODE; if MODE is
4439 VOIDmode, X will be used in its own mode. The returned value will always
4440 be between 1 and the number of bits in MODE. */
4441
4442 static unsigned int
4443 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
4444 enum machine_mode known_mode,
4445 unsigned int known_ret)
4446 {
4447 enum rtx_code code = GET_CODE (x);
4448 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4449 int num0, num1, result;
4450 unsigned HOST_WIDE_INT nonzero;
4451
4452 /* If we weren't given a mode, use the mode of X. If the mode is still
4453 VOIDmode, we don't know anything. Likewise if one of the modes is
4454 floating-point. */
4455
4456 if (mode == VOIDmode)
4457 mode = GET_MODE (x);
4458
4459 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4460 return 1;
4461
4462 /* For a smaller object, just ignore the high bits. */
4463 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4464 {
4465 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4466 known_x, known_mode, known_ret);
4467 return MAX (1,
4468 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4469 }
4470
4471 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4472 {
4473 #ifndef WORD_REGISTER_OPERATIONS
4474 /* If this machine does not do all register operations on the entire
4475 register and MODE is wider than the mode of X, we can say nothing
4476 at all about the high-order bits. */
4477 return 1;
4478 #else
4479 /* Likewise on machines that do, if the mode of the object is smaller
4480 than a word and loads of that size don't sign extend, we can say
4481 nothing about the high order bits. */
4482 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4483 #ifdef LOAD_EXTEND_OP
4484 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4485 #endif
4486 )
4487 return 1;
4488 #endif
4489 }
4490
4491 switch (code)
4492 {
4493 case REG:
4494
4495 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4496 /* If pointers extend signed and this is a pointer in Pmode, say that
4497 all the bits above ptr_mode are known to be sign bit copies. */
4498 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4499 && REG_POINTER (x))
4500 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4501 #endif
4502
4503 {
4504 unsigned int copies_for_hook = 1, copies = 1;
4505 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4506 known_mode, known_ret,
4507 &copies_for_hook);
4508
4509 if (new)
4510 copies = cached_num_sign_bit_copies (new, mode, known_x,
4511 known_mode, known_ret);
4512
4513 if (copies > 1 || copies_for_hook > 1)
4514 return MAX (copies, copies_for_hook);
4515
4516 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4517 }
4518 break;
4519
4520 case MEM:
4521 #ifdef LOAD_EXTEND_OP
4522 /* Some RISC machines sign-extend all loads of smaller than a word. */
4523 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4524 return MAX (1, ((int) bitwidth
4525 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4526 #endif
4527 break;
4528
4529 case CONST_INT:
4530 /* If the constant is negative, take its 1's complement and remask.
4531 Then see how many zero bits we have. */
4532 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4533 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4534 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4535 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4536
4537 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4538
4539 case SUBREG:
4540 /* If this is a SUBREG for a promoted object that is sign-extended
4541 and we are looking at it in a wider mode, we know that at least the
4542 high-order bits are known to be sign bit copies. */
4543
4544 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4545 {
4546 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4547 known_x, known_mode, known_ret);
4548 return MAX ((int) bitwidth
4549 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4550 num0);
4551 }
4552
4553 /* For a smaller object, just ignore the high bits. */
4554 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4555 {
4556 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4557 known_x, known_mode, known_ret);
4558 return MAX (1, (num0
4559 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4560 - bitwidth)));
4561 }
4562
4563 #ifdef WORD_REGISTER_OPERATIONS
4564 #ifdef LOAD_EXTEND_OP
4565 /* For paradoxical SUBREGs on machines where all register operations
4566 affect the entire register, just look inside. Note that we are
4567 passing MODE to the recursive call, so the number of sign bit copies
4568 will remain relative to that mode, not the inner mode. */
4569
4570 /* This works only if loads sign extend. Otherwise, if we get a
4571 reload for the inner part, it may be loaded from the stack, and
4572 then we lose all sign bit copies that existed before the store
4573 to the stack. */
4574
4575 if ((GET_MODE_SIZE (GET_MODE (x))
4576 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4577 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4578 && GET_CODE (SUBREG_REG (x)) == MEM)
4579 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4580 known_x, known_mode, known_ret);
4581 #endif
4582 #endif
4583 break;
4584
4585 case SIGN_EXTRACT:
4586 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4587 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4588 break;
4589
4590 case SIGN_EXTEND:
4591 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4592 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4593 known_x, known_mode, known_ret));
4594
4595 case TRUNCATE:
4596 /* For a smaller object, just ignore the high bits. */
4597 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4598 known_x, known_mode, known_ret);
4599 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4600 - bitwidth)));
4601
4602 case NOT:
4603 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4604 known_x, known_mode, known_ret);
4605
4606 case ROTATE: case ROTATERT:
4607 /* If we are rotating left by a number of bits less than the number
4608 of sign bit copies, we can just subtract that amount from the
4609 number. */
4610 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4611 && INTVAL (XEXP (x, 1)) >= 0
4612 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4613 {
4614 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4615 known_x, known_mode, known_ret);
4616 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4617 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4618 }
4619 break;
4620
4621 case NEG:
4622 /* In general, this subtracts one sign bit copy. But if the value
4623 is known to be positive, the number of sign bit copies is the
4624 same as that of the input. Finally, if the input has just one bit
4625 that might be nonzero, all the bits are copies of the sign bit. */
4626 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4627 known_x, known_mode, known_ret);
4628 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4629 return num0 > 1 ? num0 - 1 : 1;
4630
4631 nonzero = nonzero_bits (XEXP (x, 0), mode);
4632 if (nonzero == 1)
4633 return bitwidth;
4634
4635 if (num0 > 1
4636 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4637 num0--;
4638
4639 return num0;
4640
4641 case IOR: case AND: case XOR:
4642 case SMIN: case SMAX: case UMIN: case UMAX:
4643 /* Logical operations will preserve the number of sign-bit copies.
4644 MIN and MAX operations always return one of the operands. */
4645 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4646 known_x, known_mode, known_ret);
4647 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4648 known_x, known_mode, known_ret);
4649 return MIN (num0, num1);
4650
4651 case PLUS: case MINUS:
4652 /* For addition and subtraction, we can have a 1-bit carry. However,
4653 if we are subtracting 1 from a positive number, there will not
4654 be such a carry. Furthermore, if the positive number is known to
4655 be 0 or 1, we know the result is either -1 or 0. */
4656
4657 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4658 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4659 {
4660 nonzero = nonzero_bits (XEXP (x, 0), mode);
4661 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4662 return (nonzero == 1 || nonzero == 0 ? bitwidth
4663 : bitwidth - floor_log2 (nonzero) - 1);
4664 }
4665
4666 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4667 known_x, known_mode, known_ret);
4668 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4669 known_x, known_mode, known_ret);
4670 result = MAX (1, MIN (num0, num1) - 1);
4671
4672 #ifdef POINTERS_EXTEND_UNSIGNED
4673 /* If pointers extend signed and this is an addition or subtraction
4674 to a pointer in Pmode, all the bits above ptr_mode are known to be
4675 sign bit copies. */
4676 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4677 && (code == PLUS || code == MINUS)
4678 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4679 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4680 - GET_MODE_BITSIZE (ptr_mode) + 1),
4681 result);
4682 #endif
4683 return result;
4684
4685 case MULT:
4686 /* The number of bits of the product is the sum of the number of
4687 bits of both terms. However, unless one of the terms if known
4688 to be positive, we must allow for an additional bit since negating
4689 a negative number can remove one sign bit copy. */
4690
4691 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4692 known_x, known_mode, known_ret);
4693 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4694 known_x, known_mode, known_ret);
4695
4696 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4697 if (result > 0
4698 && (bitwidth > HOST_BITS_PER_WIDE_INT
4699 || (((nonzero_bits (XEXP (x, 0), mode)
4700 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4701 && ((nonzero_bits (XEXP (x, 1), mode)
4702 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4703 result--;
4704
4705 return MAX (1, result);
4706
4707 case UDIV:
4708 /* The result must be <= the first operand. If the first operand
4709 has the high bit set, we know nothing about the number of sign
4710 bit copies. */
4711 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4712 return 1;
4713 else if ((nonzero_bits (XEXP (x, 0), mode)
4714 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4715 return 1;
4716 else
4717 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4718 known_x, known_mode, known_ret);
4719
4720 case UMOD:
4721 /* The result must be <= the second operand. */
4722 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4723 known_x, known_mode, known_ret);
4724
4725 case DIV:
4726 /* Similar to unsigned division, except that we have to worry about
4727 the case where the divisor is negative, in which case we have
4728 to add 1. */
4729 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4730 known_x, known_mode, known_ret);
4731 if (result > 1
4732 && (bitwidth > HOST_BITS_PER_WIDE_INT
4733 || (nonzero_bits (XEXP (x, 1), mode)
4734 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4735 result--;
4736
4737 return result;
4738
4739 case MOD:
4740 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4741 known_x, known_mode, known_ret);
4742 if (result > 1
4743 && (bitwidth > HOST_BITS_PER_WIDE_INT
4744 || (nonzero_bits (XEXP (x, 1), mode)
4745 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4746 result--;
4747
4748 return result;
4749
4750 case ASHIFTRT:
4751 /* Shifts by a constant add to the number of bits equal to the
4752 sign bit. */
4753 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4754 known_x, known_mode, known_ret);
4755 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4756 && INTVAL (XEXP (x, 1)) > 0)
4757 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4758
4759 return num0;
4760
4761 case ASHIFT:
4762 /* Left shifts destroy copies. */
4763 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4764 || INTVAL (XEXP (x, 1)) < 0
4765 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4766 return 1;
4767
4768 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4769 known_x, known_mode, known_ret);
4770 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4771
4772 case IF_THEN_ELSE:
4773 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4774 known_x, known_mode, known_ret);
4775 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4776 known_x, known_mode, known_ret);
4777 return MIN (num0, num1);
4778
4779 case EQ: case NE: case GE: case GT: case LE: case LT:
4780 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4781 case GEU: case GTU: case LEU: case LTU:
4782 case UNORDERED: case ORDERED:
4783 /* If the constant is negative, take its 1's complement and remask.
4784 Then see how many zero bits we have. */
4785 nonzero = STORE_FLAG_VALUE;
4786 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4787 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4788 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4789
4790 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4791
4792 default:
4793 break;
4794 }
4795
4796 /* If we haven't been able to figure it out by one of the above rules,
4797 see if some of the high-order bits are known to be zero. If so,
4798 count those bits and return one less than that amount. If we can't
4799 safely compute the mask for this mode, always return BITWIDTH. */
4800
4801 bitwidth = GET_MODE_BITSIZE (mode);
4802 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4803 return 1;
4804
4805 nonzero = nonzero_bits (x, mode);
4806 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4807 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4808 }
This page took 0.281378 seconds and 4 git commands to generate.