]> gcc.gnu.org Git - gcc.git/blob - gcc/rtl.h
OpenACC: Fix reduction tree-sharing issue [PR106982]
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2022 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
36
37 #include "hard-reg-set.h"
38
39 class predefined_function_abi;
40
41 /* Value used by some passes to "recognize" noop moves as valid
42 instructions. */
43 #define NOOP_MOVE_INSN_CODE INT_MAX
44
45 /* Register Transfer Language EXPRESSIONS CODES */
46
47 #define RTX_CODE enum rtx_code
48 enum rtx_code {
49
50 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
51 #include "rtl.def" /* rtl expressions are documented here */
52 #undef DEF_RTL_EXPR
53
54 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
55 NUM_RTX_CODE.
56 Assumes default enum value assignment. */
57
58 /* The cast here, saves many elsewhere. */
59 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
60
61 /* Similar, but since generator files get more entries... */
62 #ifdef GENERATOR_FILE
63 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
64 #endif
65
66 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
67
68 enum rtx_class {
69 /* We check bit 0-1 of some rtx class codes in the predicates below. */
70
71 /* Bit 0 = comparison if 0, arithmetic is 1
72 Bit 1 = 1 if commutative. */
73 RTX_COMPARE, /* 0 */
74 RTX_COMM_COMPARE,
75 RTX_BIN_ARITH,
76 RTX_COMM_ARITH,
77
78 /* Must follow the four preceding values. */
79 RTX_UNARY, /* 4 */
80
81 RTX_EXTRA,
82 RTX_MATCH,
83 RTX_INSN,
84
85 /* Bit 0 = 1 if constant. */
86 RTX_OBJ, /* 8 */
87 RTX_CONST_OBJ,
88
89 RTX_TERNARY,
90 RTX_BITFIELD_OPS,
91 RTX_AUTOINC
92 };
93
94 #define RTX_OBJ_MASK (~1)
95 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
96 #define RTX_COMPARE_MASK (~1)
97 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
98 #define RTX_ARITHMETIC_MASK (~1)
99 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
100 #define RTX_BINARY_MASK (~3)
101 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
102 #define RTX_COMMUTATIVE_MASK (~2)
103 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
104 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
105
106 extern const unsigned char rtx_length[NUM_RTX_CODE];
107 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
108
109 extern const char * const rtx_name[NUM_RTX_CODE];
110 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
111
112 extern const char * const rtx_format[NUM_RTX_CODE];
113 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
114
115 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
116 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
117
118 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
119 and NEXT_INSN fields). */
120 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
121
122 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
123 extern const unsigned char rtx_next[NUM_RTX_CODE];
124 \f
125 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
126 relative to which the offsets are calculated, as explained in rtl.def. */
127 struct addr_diff_vec_flags
128 {
129 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
130 unsigned min_align: 8;
131 /* Flags: */
132 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
133 unsigned min_after_vec: 1; /* minimum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned max_after_vec: 1; /* maximum address target label is
136 after the ADDR_DIFF_VEC. */
137 unsigned min_after_base: 1; /* minimum address target label is
138 after BASE. */
139 unsigned max_after_base: 1; /* maximum address target label is
140 after BASE. */
141 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
142 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
143 unsigned : 2;
144 unsigned scale : 8;
145 };
146
147 /* Structure used to describe the attributes of a MEM. These are hashed
148 so MEMs that the same attributes share a data structure. This means
149 they cannot be modified in place. */
150 class GTY(()) mem_attrs
151 {
152 public:
153 mem_attrs ();
154
155 /* The expression that the MEM accesses, or null if not known.
156 This expression might be larger than the memory reference itself.
157 (In other words, the MEM might access only part of the object.) */
158 tree expr;
159
160 /* The offset of the memory reference from the start of EXPR.
161 Only valid if OFFSET_KNOWN_P. */
162 poly_int64 offset;
163
164 /* The size of the memory reference in bytes. Only valid if
165 SIZE_KNOWN_P. */
166 poly_int64 size;
167
168 /* The alias set of the memory reference. */
169 alias_set_type alias;
170
171 /* The alignment of the reference in bits. Always a multiple of
172 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
173 than the memory reference itself. */
174 unsigned int align;
175
176 /* The address space that the memory reference uses. */
177 unsigned char addrspace;
178
179 /* True if OFFSET is known. */
180 bool offset_known_p;
181
182 /* True if SIZE is known. */
183 bool size_known_p;
184 };
185
186 /* Structure used to describe the attributes of a REG in similar way as
187 mem_attrs does for MEM above. Note that the OFFSET field is calculated
188 in the same way as for mem_attrs, rather than in the same way as a
189 SUBREG_BYTE. For example, if a big-endian target stores a byte
190 object in the low part of a 4-byte register, the OFFSET field
191 will be -3 rather than 0. */
192
193 class GTY((for_user)) reg_attrs {
194 public:
195 tree decl; /* decl corresponding to REG. */
196 poly_int64 offset; /* Offset from start of DECL. */
197 };
198
199 /* Common union for an element of an rtx. */
200
201 union rtunion
202 {
203 int rt_int;
204 unsigned int rt_uint;
205 poly_uint16_pod rt_subreg;
206 const char *rt_str;
207 rtx rt_rtx;
208 rtvec rt_rtvec;
209 machine_mode rt_type;
210 addr_diff_vec_flags rt_addr_diff_vec_flags;
211 struct cselib_val *rt_cselib;
212 tree rt_tree;
213 basic_block rt_bb;
214 mem_attrs *rt_mem;
215 class constant_descriptor_rtx *rt_constant;
216 struct dw_cfi_node *rt_cfi;
217 };
218
219 /* Describes the properties of a REG. */
220 struct GTY(()) reg_info {
221 /* The value of REGNO. */
222 unsigned int regno;
223
224 /* The value of REG_NREGS. */
225 unsigned int nregs : 8;
226 unsigned int unused : 24;
227
228 /* The value of REG_ATTRS. */
229 reg_attrs *attrs;
230 };
231
232 /* This structure remembers the position of a SYMBOL_REF within an
233 object_block structure. A SYMBOL_REF only provides this information
234 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
235 struct GTY(()) block_symbol {
236 /* The usual SYMBOL_REF fields. */
237 rtunion GTY ((skip)) fld[2];
238
239 /* The block that contains this object. */
240 struct object_block *block;
241
242 /* The offset of this object from the start of its block. It is negative
243 if the symbol has not yet been assigned an offset. */
244 HOST_WIDE_INT offset;
245 };
246
247 /* Describes a group of objects that are to be placed together in such
248 a way that their relative positions are known. */
249 struct GTY((for_user)) object_block {
250 /* The section in which these objects should be placed. */
251 section *sect;
252
253 /* The alignment of the first object, measured in bits. */
254 unsigned int alignment;
255
256 /* The total size of the objects, measured in bytes. */
257 HOST_WIDE_INT size;
258
259 /* The SYMBOL_REFs for each object. The vector is sorted in
260 order of increasing offset and the following conditions will
261 hold for each element X:
262
263 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
264 !SYMBOL_REF_ANCHOR_P (X)
265 SYMBOL_REF_BLOCK (X) == [address of this structure]
266 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
267 vec<rtx, va_gc> *objects;
268
269 /* All the anchor SYMBOL_REFs used to address these objects, sorted
270 in order of increasing offset, and then increasing TLS model.
271 The following conditions will hold for each element X in this vector:
272
273 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
274 SYMBOL_REF_ANCHOR_P (X)
275 SYMBOL_REF_BLOCK (X) == [address of this structure]
276 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
277 vec<rtx, va_gc> *anchors;
278 };
279
280 struct GTY((variable_size)) hwivec_def {
281 HOST_WIDE_INT elem[1];
282 };
283
284 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
285 #define CWI_GET_NUM_ELEM(RTX) \
286 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
287 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
288 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
289
290 struct GTY((variable_size)) const_poly_int_def {
291 trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
292 };
293
294 /* RTL expression ("rtx"). */
295
296 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
297 field for gengtype to recognize that inheritance is occurring,
298 so that all subclasses are redirected to the traversal hook for the
299 base class.
300 However, all of the fields are in the base class, and special-casing
301 is at work. Hence we use desc and tag of 0, generating a switch
302 statement of the form:
303 switch (0)
304 {
305 case 0: // all the work happens here
306 }
307 in order to work with the existing special-casing in gengtype. */
308
309 struct GTY((desc("0"), tag("0"),
310 chain_next ("RTX_NEXT (&%h)"),
311 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
312 /* The kind of expression this is. */
313 ENUM_BITFIELD(rtx_code) code: 16;
314
315 /* The kind of value the expression has. */
316 ENUM_BITFIELD(machine_mode) mode : 8;
317
318 /* 1 in a MEM if we should keep the alias set for this mem unchanged
319 when we access a component.
320 1 in a JUMP_INSN if it is a crossing jump.
321 1 in a CALL_INSN if it is a sibling call.
322 1 in a SET that is for a return.
323 In a CODE_LABEL, part of the two-bit alternate entry field.
324 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.cc.
325 1 in a VALUE is SP_BASED_VALUE_P in cselib.cc.
326 1 in a SUBREG generated by LRA for reload insns.
327 1 in a REG if this is a static chain register.
328 Dumped as "/j" in RTL dumps. */
329 unsigned int jump : 1;
330 /* In a CODE_LABEL, part of the two-bit alternate entry field.
331 1 in a MEM if it cannot trap.
332 1 in a CALL_INSN logically equivalent to
333 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
334 1 in a VALUE is SP_DERIVED_VALUE_P in cselib.cc.
335 Dumped as "/c" in RTL dumps. */
336 unsigned int call : 1;
337 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
338 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
339 1 in a SYMBOL_REF if it addresses something in the per-function
340 constants pool.
341 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
342 1 in a NOTE, or EXPR_LIST for a const call.
343 1 in a JUMP_INSN of an annulling branch.
344 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.cc.
345 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.cc.
346 1 in a clobber temporarily created for LRA.
347 Dumped as "/u" in RTL dumps. */
348 unsigned int unchanging : 1;
349 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
350 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
351 if it has been deleted.
352 1 in a REG expression if corresponds to a variable declared by the user,
353 0 for an internally generated temporary.
354 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
355 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
356 non-local label.
357 In a SYMBOL_REF, this flag is used for machine-specific purposes.
358 In a PREFETCH, this flag indicates that it should be considered a
359 scheduling barrier.
360 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.cc.
361 Dumped as "/v" in RTL dumps. */
362 unsigned int volatil : 1;
363 /* 1 in a REG if the register is used only in exit code a loop.
364 1 in a SUBREG expression if was generated from a variable with a
365 promoted mode.
366 1 in a CODE_LABEL if the label is used for nonlocal gotos
367 and must not be deleted even if its count is zero.
368 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
369 together with the preceding insn. Valid only within sched.
370 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
371 from the target of a branch. Valid from reorg until end of compilation;
372 cleared before used.
373
374 The name of the field is historical. It used to be used in MEMs
375 to record whether the MEM accessed part of a structure.
376 Dumped as "/s" in RTL dumps. */
377 unsigned int in_struct : 1;
378 /* At the end of RTL generation, 1 if this rtx is used. This is used for
379 copying shared structure. See `unshare_all_rtl'.
380 In a REG, this is not needed for that purpose, and used instead
381 in `leaf_renumber_regs_insn'.
382 1 in a SYMBOL_REF, means that emit_library_call
383 has used it as the function.
384 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.cc.
385 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.cc. */
386 unsigned int used : 1;
387 /* 1 in an INSN or a SET if this rtx is related to the call frame,
388 either changing how we compute the frame address or saving and
389 restoring registers in the prologue and epilogue.
390 1 in a REG or MEM if it is a pointer.
391 1 in a SYMBOL_REF if it addresses something in the per-function
392 constant string pool.
393 1 in a VALUE is VALUE_CHANGED in var-tracking.cc.
394 Dumped as "/f" in RTL dumps. */
395 unsigned frame_related : 1;
396 /* 1 in a REG or PARALLEL that is the current function's return value.
397 1 in a SYMBOL_REF for a weak symbol.
398 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
399 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.cc.
400 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.cc.
401 Dumped as "/i" in RTL dumps. */
402 unsigned return_val : 1;
403
404 union {
405 /* The final union field is aligned to 64 bits on LP64 hosts,
406 giving a 32-bit gap after the fields above. We optimize the
407 layout for that case and use the gap for extra code-specific
408 information. */
409
410 /* The ORIGINAL_REGNO of a REG. */
411 unsigned int original_regno;
412
413 /* The INSN_UID of an RTX_INSN-class code. */
414 int insn_uid;
415
416 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
417 unsigned int symbol_ref_flags;
418
419 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
420 enum var_init_status var_location_status;
421
422 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
423 HOST_WIDE_INTs in the hwivec_def. */
424 unsigned int num_elem;
425
426 /* Information about a CONST_VECTOR. */
427 struct
428 {
429 /* The value of CONST_VECTOR_NPATTERNS. */
430 unsigned int npatterns : 16;
431
432 /* The value of CONST_VECTOR_NELTS_PER_PATTERN. */
433 unsigned int nelts_per_pattern : 8;
434
435 /* For future expansion. */
436 unsigned int unused : 8;
437 } const_vector;
438 } GTY ((skip)) u2;
439
440 /* The first element of the operands of this rtx.
441 The number of operands and their types are controlled
442 by the `code' field, according to rtl.def. */
443 union u {
444 rtunion fld[1];
445 HOST_WIDE_INT hwint[1];
446 struct reg_info reg;
447 struct block_symbol block_sym;
448 struct real_value rv;
449 struct fixed_value fv;
450 struct hwivec_def hwiv;
451 struct const_poly_int_def cpi;
452 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
453 };
454
455 /* A node for constructing singly-linked lists of rtx. */
456
457 struct GTY(()) rtx_expr_list : public rtx_def
458 {
459 private:
460 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
461
462 public:
463 /* Get next in list. */
464 rtx_expr_list *next () const;
465
466 /* Get at the underlying rtx. */
467 rtx element () const;
468 };
469
470 template <>
471 template <>
472 inline bool
473 is_a_helper <rtx_expr_list *>::test (rtx rt)
474 {
475 return rt->code == EXPR_LIST;
476 }
477
478 struct GTY(()) rtx_insn_list : public rtx_def
479 {
480 private:
481 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
482
483 This is an instance of:
484
485 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
486
487 i.e. a node for constructing singly-linked lists of rtx_insn *, where
488 the list is "external" to the insn (as opposed to the doubly-linked
489 list embedded within rtx_insn itself). */
490
491 public:
492 /* Get next in list. */
493 rtx_insn_list *next () const;
494
495 /* Get at the underlying instruction. */
496 rtx_insn *insn () const;
497
498 };
499
500 template <>
501 template <>
502 inline bool
503 is_a_helper <rtx_insn_list *>::test (rtx rt)
504 {
505 return rt->code == INSN_LIST;
506 }
507
508 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
509 typically (but not always) of rtx_insn *, used in the late passes. */
510
511 struct GTY(()) rtx_sequence : public rtx_def
512 {
513 private:
514 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
515
516 public:
517 /* Get number of elements in sequence. */
518 int len () const;
519
520 /* Get i-th element of the sequence. */
521 rtx element (int index) const;
522
523 /* Get i-th element of the sequence, with a checked cast to
524 rtx_insn *. */
525 rtx_insn *insn (int index) const;
526 };
527
528 template <>
529 template <>
530 inline bool
531 is_a_helper <rtx_sequence *>::test (rtx rt)
532 {
533 return rt->code == SEQUENCE;
534 }
535
536 template <>
537 template <>
538 inline bool
539 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
540 {
541 return rt->code == SEQUENCE;
542 }
543
544 struct GTY(()) rtx_insn : public rtx_def
545 {
546 public:
547 /* No extra fields, but adds the invariant:
548
549 (INSN_P (X)
550 || NOTE_P (X)
551 || JUMP_TABLE_DATA_P (X)
552 || BARRIER_P (X)
553 || LABEL_P (X))
554
555 i.e. that we must be able to use the following:
556 INSN_UID ()
557 NEXT_INSN ()
558 PREV_INSN ()
559 i.e. we have an rtx that has an INSN_UID field and can be part of
560 a linked list of insns.
561 */
562
563 /* Returns true if this insn has been deleted. */
564
565 bool deleted () const { return volatil; }
566
567 /* Mark this insn as deleted. */
568
569 void set_deleted () { volatil = true; }
570
571 /* Mark this insn as not deleted. */
572
573 void set_undeleted () { volatil = false; }
574 };
575
576 /* Subclasses of rtx_insn. */
577
578 struct GTY(()) rtx_debug_insn : public rtx_insn
579 {
580 /* No extra fields, but adds the invariant:
581 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
582 i.e. an annotation for tracking variable assignments.
583
584 This is an instance of:
585 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
586 from rtl.def. */
587 };
588
589 struct GTY(()) rtx_nonjump_insn : public rtx_insn
590 {
591 /* No extra fields, but adds the invariant:
592 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
593 i.e an instruction that cannot jump.
594
595 This is an instance of:
596 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
597 from rtl.def. */
598 };
599
600 struct GTY(()) rtx_jump_insn : public rtx_insn
601 {
602 public:
603 /* No extra fields, but adds the invariant:
604 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
605 i.e. an instruction that can possibly jump.
606
607 This is an instance of:
608 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
609 from rtl.def. */
610
611 /* Returns jump target of this instruction. The returned value is not
612 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
613 expression. Also, when the code label is marked "deleted", it is
614 replaced by a NOTE. In some cases the value is NULL_RTX. */
615
616 inline rtx jump_label () const;
617
618 /* Returns jump target cast to rtx_code_label *. */
619
620 inline rtx_code_label *jump_target () const;
621
622 /* Set jump target. */
623
624 inline void set_jump_target (rtx_code_label *);
625 };
626
627 struct GTY(()) rtx_call_insn : public rtx_insn
628 {
629 /* No extra fields, but adds the invariant:
630 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
631 i.e. an instruction that can possibly call a subroutine
632 but which will not change which instruction comes next
633 in the current function.
634
635 This is an instance of:
636 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
637 from rtl.def. */
638 };
639
640 struct GTY(()) rtx_jump_table_data : public rtx_insn
641 {
642 /* No extra fields, but adds the invariant:
643 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
644 i.e. a data for a jump table, considered an instruction for
645 historical reasons.
646
647 This is an instance of:
648 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
649 from rtl.def. */
650
651 /* This can be either:
652
653 (a) a table of absolute jumps, in which case PATTERN (this) is an
654 ADDR_VEC with arg 0 a vector of labels, or
655
656 (b) a table of relative jumps (e.g. for -fPIC), in which case
657 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
658 arg 1 the vector of labels.
659
660 This method gets the underlying vec. */
661
662 inline rtvec get_labels () const;
663 inline scalar_int_mode get_data_mode () const;
664 };
665
666 struct GTY(()) rtx_barrier : public rtx_insn
667 {
668 /* No extra fields, but adds the invariant:
669 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
670 i.e. a marker that indicates that control will not flow through.
671
672 This is an instance of:
673 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
674 from rtl.def. */
675 };
676
677 struct GTY(()) rtx_code_label : public rtx_insn
678 {
679 /* No extra fields, but adds the invariant:
680 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
681 i.e. a label in the assembler.
682
683 This is an instance of:
684 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
685 from rtl.def. */
686 };
687
688 struct GTY(()) rtx_note : public rtx_insn
689 {
690 /* No extra fields, but adds the invariant:
691 NOTE_P(X) aka (GET_CODE (X) == NOTE)
692 i.e. a note about the corresponding source code.
693
694 This is an instance of:
695 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
696 from rtl.def. */
697 };
698
699 /* The size in bytes of an rtx header (code, mode and flags). */
700 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
701
702 /* The size in bytes of an rtx with code CODE. */
703 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
704
705 #define NULL_RTX (rtx) 0
706
707 /* The "next" and "previous" RTX, relative to this one. */
708
709 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
710 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
711
712 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
713 */
714 #define RTX_PREV(X) ((INSN_P (X) \
715 || NOTE_P (X) \
716 || JUMP_TABLE_DATA_P (X) \
717 || BARRIER_P (X) \
718 || LABEL_P (X)) \
719 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
720 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
721 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
722
723 /* Define macros to access the `code' field of the rtx. */
724
725 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
726 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
727
728 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
729 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
730
731 /* RTL vector. These appear inside RTX's when there is a need
732 for a variable number of things. The principle use is inside
733 PARALLEL expressions. */
734
735 struct GTY(()) rtvec_def {
736 int num_elem; /* number of elements */
737 rtx GTY ((length ("%h.num_elem"))) elem[1];
738 };
739
740 #define NULL_RTVEC (rtvec) 0
741
742 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
743 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
744
745 /* Predicate yielding nonzero iff X is an rtx for a register. */
746 #define REG_P(X) (GET_CODE (X) == REG)
747
748 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
749 #define MEM_P(X) (GET_CODE (X) == MEM)
750
751 #if TARGET_SUPPORTS_WIDE_INT
752
753 /* Match CONST_*s that can represent compile-time constant integers. */
754 #define CASE_CONST_SCALAR_INT \
755 case CONST_INT: \
756 case CONST_WIDE_INT
757
758 /* Match CONST_*s for which pointer equality corresponds to value
759 equality. */
760 #define CASE_CONST_UNIQUE \
761 case CONST_INT: \
762 case CONST_WIDE_INT: \
763 case CONST_POLY_INT: \
764 case CONST_DOUBLE: \
765 case CONST_FIXED
766
767 /* Match all CONST_* rtxes. */
768 #define CASE_CONST_ANY \
769 case CONST_INT: \
770 case CONST_WIDE_INT: \
771 case CONST_POLY_INT: \
772 case CONST_DOUBLE: \
773 case CONST_FIXED: \
774 case CONST_VECTOR
775
776 #else
777
778 /* Match CONST_*s that can represent compile-time constant integers. */
779 #define CASE_CONST_SCALAR_INT \
780 case CONST_INT: \
781 case CONST_DOUBLE
782
783 /* Match CONST_*s for which pointer equality corresponds to value
784 equality. */
785 #define CASE_CONST_UNIQUE \
786 case CONST_INT: \
787 case CONST_DOUBLE: \
788 case CONST_FIXED
789
790 /* Match all CONST_* rtxes. */
791 #define CASE_CONST_ANY \
792 case CONST_INT: \
793 case CONST_DOUBLE: \
794 case CONST_FIXED: \
795 case CONST_VECTOR
796 #endif
797
798 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
799 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
800
801 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
802 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
803
804 /* Predicate yielding nonzero iff X is an rtx for a polynomial constant
805 integer. */
806 #define CONST_POLY_INT_P(X) \
807 (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
808
809 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
810 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
811
812 /* Predicate yielding true iff X is an rtx for a double-int
813 or floating point constant. */
814 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
815
816 /* Predicate yielding true iff X is an rtx for a double-int. */
817 #define CONST_DOUBLE_AS_INT_P(X) \
818 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
819
820 /* Predicate yielding true iff X is an rtx for a integer const. */
821 #if TARGET_SUPPORTS_WIDE_INT
822 #define CONST_SCALAR_INT_P(X) \
823 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
824 #else
825 #define CONST_SCALAR_INT_P(X) \
826 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
827 #endif
828
829 /* Predicate yielding true iff X is an rtx for a double-int. */
830 #define CONST_DOUBLE_AS_FLOAT_P(X) \
831 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
832
833 /* Predicate yielding nonzero iff X is an rtx for a constant vector. */
834 #define CONST_VECTOR_P(X) (GET_CODE (X) == CONST_VECTOR)
835
836 /* Predicate yielding nonzero iff X is a label insn. */
837 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
838
839 /* Predicate yielding nonzero iff X is a jump insn. */
840 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
841
842 /* Predicate yielding nonzero iff X is a call insn. */
843 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
844
845 /* 1 if RTX is a call_insn for a fake call.
846 CALL_INSN use "used" flag to indicate it's a fake call. */
847 #define FAKE_CALL_P(RTX) \
848 (RTL_FLAG_CHECK1 ("FAKE_CALL_P", (RTX), CALL_INSN)->used)
849
850 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
851 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
852
853 /* Predicate yielding nonzero iff X is a debug note/insn. */
854 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
855
856 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
857 #define NONDEBUG_INSN_P(X) (NONJUMP_INSN_P (X) || JUMP_P (X) || CALL_P (X))
858
859 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
860 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
861 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
862 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
863 /* Nonzero if DEBUG_INSN_P may possibly hold. */
864 #define MAY_HAVE_DEBUG_INSNS \
865 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
866
867 /* Predicate yielding nonzero iff X is a real insn. */
868 #define INSN_P(X) (NONDEBUG_INSN_P (X) || DEBUG_INSN_P (X))
869
870 /* Predicate yielding nonzero iff X is a note insn. */
871 #define NOTE_P(X) (GET_CODE (X) == NOTE)
872
873 /* Predicate yielding nonzero iff X is a barrier insn. */
874 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
875
876 /* Predicate yielding nonzero iff X is a data for a jump table. */
877 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
878
879 /* Predicate yielding nonzero iff RTX is a subreg. */
880 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
881
882 /* Predicate yielding true iff RTX is a symbol ref. */
883 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
884
885 template <>
886 template <>
887 inline bool
888 is_a_helper <rtx_insn *>::test (rtx rt)
889 {
890 return (INSN_P (rt)
891 || NOTE_P (rt)
892 || JUMP_TABLE_DATA_P (rt)
893 || BARRIER_P (rt)
894 || LABEL_P (rt));
895 }
896
897 template <>
898 template <>
899 inline bool
900 is_a_helper <const rtx_insn *>::test (const_rtx rt)
901 {
902 return (INSN_P (rt)
903 || NOTE_P (rt)
904 || JUMP_TABLE_DATA_P (rt)
905 || BARRIER_P (rt)
906 || LABEL_P (rt));
907 }
908
909 template <>
910 template <>
911 inline bool
912 is_a_helper <rtx_debug_insn *>::test (rtx rt)
913 {
914 return DEBUG_INSN_P (rt);
915 }
916
917 template <>
918 template <>
919 inline bool
920 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
921 {
922 return NONJUMP_INSN_P (rt);
923 }
924
925 template <>
926 template <>
927 inline bool
928 is_a_helper <rtx_jump_insn *>::test (rtx rt)
929 {
930 return JUMP_P (rt);
931 }
932
933 template <>
934 template <>
935 inline bool
936 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
937 {
938 return JUMP_P (insn);
939 }
940
941 template <>
942 template <>
943 inline bool
944 is_a_helper <rtx_call_insn *>::test (rtx rt)
945 {
946 return CALL_P (rt);
947 }
948
949 template <>
950 template <>
951 inline bool
952 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
953 {
954 return CALL_P (insn);
955 }
956
957 template <>
958 template <>
959 inline bool
960 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
961 {
962 return JUMP_TABLE_DATA_P (rt);
963 }
964
965 template <>
966 template <>
967 inline bool
968 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
969 {
970 return JUMP_TABLE_DATA_P (insn);
971 }
972
973 template <>
974 template <>
975 inline bool
976 is_a_helper <rtx_barrier *>::test (rtx rt)
977 {
978 return BARRIER_P (rt);
979 }
980
981 template <>
982 template <>
983 inline bool
984 is_a_helper <rtx_code_label *>::test (rtx rt)
985 {
986 return LABEL_P (rt);
987 }
988
989 template <>
990 template <>
991 inline bool
992 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
993 {
994 return LABEL_P (insn);
995 }
996
997 template <>
998 template <>
999 inline bool
1000 is_a_helper <rtx_note *>::test (rtx rt)
1001 {
1002 return NOTE_P (rt);
1003 }
1004
1005 template <>
1006 template <>
1007 inline bool
1008 is_a_helper <rtx_note *>::test (rtx_insn *insn)
1009 {
1010 return NOTE_P (insn);
1011 }
1012
1013 /* Predicate yielding nonzero iff X is a return or simple_return. */
1014 #define ANY_RETURN_P(X) \
1015 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
1016
1017 /* 1 if X is a unary operator. */
1018
1019 #define UNARY_P(X) \
1020 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
1021
1022 /* 1 if X is a binary operator. */
1023
1024 #define BINARY_P(X) \
1025 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1026
1027 /* 1 if X is an arithmetic operator. */
1028
1029 #define ARITHMETIC_P(X) \
1030 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
1031 == RTX_ARITHMETIC_RESULT)
1032
1033 /* 1 if X is an arithmetic operator. */
1034
1035 #define COMMUTATIVE_ARITH_P(X) \
1036 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1037
1038 /* 1 if X is a commutative arithmetic operator or a comparison operator.
1039 These two are sometimes selected together because it is possible to
1040 swap the two operands. */
1041
1042 #define SWAPPABLE_OPERANDS_P(X) \
1043 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1044 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1045 | (1 << RTX_COMPARE)))
1046
1047 /* 1 if X is a non-commutative operator. */
1048
1049 #define NON_COMMUTATIVE_P(X) \
1050 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1051 == RTX_NON_COMMUTATIVE_RESULT)
1052
1053 /* 1 if X is a commutative operator on integers. */
1054
1055 #define COMMUTATIVE_P(X) \
1056 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1057 == RTX_COMMUTATIVE_RESULT)
1058
1059 /* 1 if X is a relational operator. */
1060
1061 #define COMPARISON_P(X) \
1062 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1063
1064 /* 1 if X is a constant value that is an integer. */
1065
1066 #define CONSTANT_P(X) \
1067 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1068
1069 /* 1 if X is a LABEL_REF. */
1070 #define LABEL_REF_P(X) \
1071 (GET_CODE (X) == LABEL_REF)
1072
1073 /* 1 if X can be used to represent an object. */
1074 #define OBJECT_P(X) \
1075 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1076
1077 /* General accessor macros for accessing the fields of an rtx. */
1078
1079 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1080 /* The bit with a star outside the statement expr and an & inside is
1081 so that N can be evaluated only once. */
1082 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1083 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1084 const enum rtx_code _code = GET_CODE (_rtx); \
1085 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1086 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1087 __FUNCTION__); \
1088 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1089 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1090 __FUNCTION__); \
1091 &_rtx->u.fld[_n]; }))
1092
1093 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1094 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1095 const enum rtx_code _code = GET_CODE (_rtx); \
1096 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1097 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1098 __FUNCTION__); \
1099 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1100 && GET_RTX_FORMAT (_code)[_n] != C2) \
1101 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1102 __FUNCTION__); \
1103 &_rtx->u.fld[_n]; }))
1104
1105 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1106 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1107 if (GET_CODE (_rtx) != (C)) \
1108 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1109 __FUNCTION__); \
1110 &_rtx->u.fld[_n]; }))
1111
1112 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1113 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1114 const enum rtx_code _code = GET_CODE (_rtx); \
1115 if (_code != (C1) && _code != (C2)) \
1116 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1117 __FUNCTION__); \
1118 &_rtx->u.fld[_n]; }))
1119
1120 #define RTL_CHECKC3(RTX, N, C1, C2, C3) __extension__ \
1121 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1122 const enum rtx_code _code = GET_CODE (_rtx); \
1123 if (_code != (C1) && _code != (C2) && _code != (C3)) \
1124 rtl_check_failed_code3 (_rtx, (C1), (C2), (C3), __FILE__, \
1125 __LINE__, __FUNCTION__); \
1126 &_rtx->u.fld[_n]; }))
1127
1128 #define RTVEC_ELT(RTVEC, I) __extension__ \
1129 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1130 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1131 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1132 __FUNCTION__); \
1133 &_rtvec->elem[_i]; }))
1134
1135 #define XWINT(RTX, N) __extension__ \
1136 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1137 const enum rtx_code _code = GET_CODE (_rtx); \
1138 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1139 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1140 __FUNCTION__); \
1141 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1142 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1143 __FUNCTION__); \
1144 &_rtx->u.hwint[_n]; }))
1145
1146 #define CWI_ELT(RTX, I) __extension__ \
1147 (*({ __typeof (RTX) const _cwi = (RTX); \
1148 int _max = CWI_GET_NUM_ELEM (_cwi); \
1149 const int _i = (I); \
1150 if (_i < 0 || _i >= _max) \
1151 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1152 __FUNCTION__); \
1153 &_cwi->u.hwiv.elem[_i]; }))
1154
1155 #define XCWINT(RTX, N, C) __extension__ \
1156 (*({ __typeof (RTX) const _rtx = (RTX); \
1157 if (GET_CODE (_rtx) != (C)) \
1158 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1159 __FUNCTION__); \
1160 &_rtx->u.hwint[N]; }))
1161
1162 #define XCMWINT(RTX, N, C, M) __extension__ \
1163 (*({ __typeof (RTX) const _rtx = (RTX); \
1164 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1165 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1166 __LINE__, __FUNCTION__); \
1167 &_rtx->u.hwint[N]; }))
1168
1169 #define XCNMPRV(RTX, C, M) __extension__ \
1170 ({ __typeof (RTX) const _rtx = (RTX); \
1171 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1172 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1173 __LINE__, __FUNCTION__); \
1174 &_rtx->u.rv; })
1175
1176 #define XCNMPFV(RTX, C, M) __extension__ \
1177 ({ __typeof (RTX) const _rtx = (RTX); \
1178 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1179 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1180 __LINE__, __FUNCTION__); \
1181 &_rtx->u.fv; })
1182
1183 #define REG_CHECK(RTX) __extension__ \
1184 ({ __typeof (RTX) const _rtx = (RTX); \
1185 if (GET_CODE (_rtx) != REG) \
1186 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1187 __FUNCTION__); \
1188 &_rtx->u.reg; })
1189
1190 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1191 ({ __typeof (RTX) const _symbol = (RTX); \
1192 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1193 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1194 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1195 __FUNCTION__); \
1196 &_symbol->u.block_sym; })
1197
1198 #define HWIVEC_CHECK(RTX,C) __extension__ \
1199 ({ __typeof (RTX) const _symbol = (RTX); \
1200 RTL_CHECKC1 (_symbol, 0, C); \
1201 &_symbol->u.hwiv; })
1202
1203 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1204 const char *)
1205 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1206 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1207 const char *)
1208 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1209 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1210 int, const char *)
1211 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1212 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1213 int, const char *)
1214 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1215 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1216 const char *, int, const char *)
1217 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1218 extern void rtl_check_failed_code3 (const_rtx, enum rtx_code, enum rtx_code,
1219 enum rtx_code, const char *, int,
1220 const char *)
1221 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1222 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1223 bool, const char *, int, const char *)
1224 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1225 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1226 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1227 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1228 const char *)
1229 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1230 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1231 const char *)
1232 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1233
1234 #else /* not ENABLE_RTL_CHECKING */
1235
1236 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1237 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1238 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1239 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1240 #define RTL_CHECKC3(RTX, N, C1, C2, C3) ((RTX)->u.fld[N])
1241 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1242 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1243 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1244 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1245 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1246 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1247 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1248 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1249 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1250 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1251 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1252
1253 #endif
1254
1255 /* General accessor macros for accessing the flags of an rtx. */
1256
1257 /* Access an individual rtx flag, with no checking of any kind. */
1258 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1259
1260 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1261 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1262 ({ __typeof (RTX) const _rtx = (RTX); \
1263 if (GET_CODE (_rtx) != C1) \
1264 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1265 __FUNCTION__); \
1266 _rtx; })
1267
1268 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1269 ({ __typeof (RTX) const _rtx = (RTX); \
1270 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1271 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1272 __FUNCTION__); \
1273 _rtx; })
1274
1275 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1276 ({ __typeof (RTX) const _rtx = (RTX); \
1277 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1278 && GET_CODE (_rtx) != C3) \
1279 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1280 __FUNCTION__); \
1281 _rtx; })
1282
1283 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1284 ({ __typeof (RTX) const _rtx = (RTX); \
1285 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1286 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1287 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1288 __FUNCTION__); \
1289 _rtx; })
1290
1291 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1292 ({ __typeof (RTX) const _rtx = (RTX); \
1293 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1294 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1295 && GET_CODE (_rtx) != C5) \
1296 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1297 __FUNCTION__); \
1298 _rtx; })
1299
1300 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1301 __extension__ \
1302 ({ __typeof (RTX) const _rtx = (RTX); \
1303 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1304 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1305 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1306 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1307 __FUNCTION__); \
1308 _rtx; })
1309
1310 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1311 __extension__ \
1312 ({ __typeof (RTX) const _rtx = (RTX); \
1313 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1314 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1315 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1316 && GET_CODE (_rtx) != C7) \
1317 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1318 __FUNCTION__); \
1319 _rtx; })
1320
1321 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1322 __extension__ \
1323 ({ __typeof (RTX) const _rtx = (RTX); \
1324 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1325 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1326 __FUNCTION__); \
1327 _rtx; })
1328
1329 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1330 int, const char *)
1331 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1332 ;
1333
1334 #else /* not ENABLE_RTL_FLAG_CHECKING */
1335
1336 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1337 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1338 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1339 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1340 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1341 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1342 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1343 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1344 #endif
1345
1346 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1347 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1348 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1349 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1350 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1351 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1352 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1353 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1354 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1355 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1356
1357 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1358 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1359
1360 /* These are like XINT, etc. except that they expect a '0' field instead
1361 of the normal type code. */
1362
1363 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1364 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1365 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1366 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1367 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1368 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1369 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1370 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1371 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1372 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1373 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1374 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1375
1376 /* Access a '0' field with any type. */
1377 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1378
1379 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1380 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1381 #define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1382 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1383 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1384 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1385 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1386 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1387 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1388 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1389 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1390
1391 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1392 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1393
1394 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1395 #define XC3EXP(RTX, N, C1, C2, C3) (RTL_CHECKC3 (RTX, N, C1, C2, C3).rt_rtx)
1396 \f
1397
1398 /* Methods of rtx_expr_list. */
1399
1400 inline rtx_expr_list *rtx_expr_list::next () const
1401 {
1402 rtx tmp = XEXP (this, 1);
1403 return safe_as_a <rtx_expr_list *> (tmp);
1404 }
1405
1406 inline rtx rtx_expr_list::element () const
1407 {
1408 return XEXP (this, 0);
1409 }
1410
1411 /* Methods of rtx_insn_list. */
1412
1413 inline rtx_insn_list *rtx_insn_list::next () const
1414 {
1415 rtx tmp = XEXP (this, 1);
1416 return safe_as_a <rtx_insn_list *> (tmp);
1417 }
1418
1419 inline rtx_insn *rtx_insn_list::insn () const
1420 {
1421 rtx tmp = XEXP (this, 0);
1422 return safe_as_a <rtx_insn *> (tmp);
1423 }
1424
1425 /* Methods of rtx_sequence. */
1426
1427 inline int rtx_sequence::len () const
1428 {
1429 return XVECLEN (this, 0);
1430 }
1431
1432 inline rtx rtx_sequence::element (int index) const
1433 {
1434 return XVECEXP (this, 0, index);
1435 }
1436
1437 inline rtx_insn *rtx_sequence::insn (int index) const
1438 {
1439 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1440 }
1441
1442 /* ACCESS MACROS for particular fields of insns. */
1443
1444 /* Holds a unique number for each insn.
1445 These are not necessarily sequentially increasing. */
1446 inline int INSN_UID (const_rtx insn)
1447 {
1448 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1449 (insn))->u2.insn_uid;
1450 }
1451 inline int& INSN_UID (rtx insn)
1452 {
1453 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1454 (insn))->u2.insn_uid;
1455 }
1456
1457 /* Chain insns together in sequence. */
1458
1459 /* For now these are split in two: an rvalue form:
1460 PREV_INSN/NEXT_INSN
1461 and an lvalue form:
1462 SET_NEXT_INSN/SET_PREV_INSN. */
1463
1464 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1465 {
1466 rtx prev = XEXP (insn, 0);
1467 return safe_as_a <rtx_insn *> (prev);
1468 }
1469
1470 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1471 {
1472 return XEXP (insn, 0);
1473 }
1474
1475 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1476 {
1477 rtx next = XEXP (insn, 1);
1478 return safe_as_a <rtx_insn *> (next);
1479 }
1480
1481 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1482 {
1483 return XEXP (insn, 1);
1484 }
1485
1486 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1487 {
1488 return XBBDEF (insn, 2);
1489 }
1490
1491 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1492 {
1493 return XBBDEF (insn, 2);
1494 }
1495
1496 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1497 {
1498 BLOCK_FOR_INSN (insn) = bb;
1499 }
1500
1501 /* The body of an insn. */
1502 inline rtx PATTERN (const_rtx insn)
1503 {
1504 return XEXP (insn, 3);
1505 }
1506
1507 inline rtx& PATTERN (rtx insn)
1508 {
1509 return XEXP (insn, 3);
1510 }
1511
1512 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1513 {
1514 return XUINT (insn, 4);
1515 }
1516
1517 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1518 {
1519 return XUINT (insn, 4);
1520 }
1521
1522 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1523 {
1524 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1525 }
1526
1527 /* LOCATION of an RTX if relevant. */
1528 #define RTL_LOCATION(X) (INSN_P (X) ? \
1529 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1530 : UNKNOWN_LOCATION)
1531
1532 /* Code number of instruction, from when it was recognized.
1533 -1 means this instruction has not been recognized yet. */
1534 #define INSN_CODE(INSN) XINT (INSN, 5)
1535
1536 inline rtvec rtx_jump_table_data::get_labels () const
1537 {
1538 rtx pat = PATTERN (this);
1539 if (GET_CODE (pat) == ADDR_VEC)
1540 return XVEC (pat, 0);
1541 else
1542 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1543 }
1544
1545 /* Return the mode of the data in the table, which is always a scalar
1546 integer. */
1547
1548 inline scalar_int_mode
1549 rtx_jump_table_data::get_data_mode () const
1550 {
1551 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1552 }
1553
1554 /* If LABEL is followed by a jump table, return the table, otherwise
1555 return null. */
1556
1557 inline rtx_jump_table_data *
1558 jump_table_for_label (const rtx_code_label *label)
1559 {
1560 return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1561 }
1562
1563 #define RTX_FRAME_RELATED_P(RTX) \
1564 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1565 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1566
1567 /* 1 if JUMP RTX is a crossing jump. */
1568 #define CROSSING_JUMP_P(RTX) \
1569 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1570
1571 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1572 TREE_READONLY. */
1573 #define RTL_CONST_CALL_P(RTX) \
1574 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1575
1576 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1577 DECL_PURE_P. */
1578 #define RTL_PURE_CALL_P(RTX) \
1579 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1580
1581 /* 1 if RTX is a call to a const or pure function. */
1582 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1583 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1584
1585 /* 1 if RTX is a call to a looping const or pure function. Built from
1586 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1587 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1588 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1589
1590 /* 1 if RTX is a call_insn for a sibling call. */
1591 #define SIBLING_CALL_P(RTX) \
1592 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1593
1594 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1595 #define INSN_ANNULLED_BRANCH_P(RTX) \
1596 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1597
1598 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1599 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1600 executed if the branch is taken. For annulled branches with this bit
1601 clear, the insn should be executed only if the branch is not taken. */
1602 #define INSN_FROM_TARGET_P(RTX) \
1603 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1604 CALL_INSN)->in_struct)
1605
1606 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1607 See the comments for ADDR_DIFF_VEC in rtl.def. */
1608 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1609
1610 /* In a VALUE, the value cselib has assigned to RTX.
1611 This is a "struct cselib_val", see cselib.h. */
1612 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1613
1614 /* Holds a list of notes on what this insn does to various REGs.
1615 It is a chain of EXPR_LIST rtx's, where the second operand is the
1616 chain pointer and the first operand is the REG being described.
1617 The mode field of the EXPR_LIST contains not a real machine mode
1618 but a value from enum reg_note. */
1619 #define REG_NOTES(INSN) XEXP(INSN, 6)
1620
1621 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1622 question. */
1623 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1624
1625 enum reg_note
1626 {
1627 #define DEF_REG_NOTE(NAME) NAME,
1628 #include "reg-notes.def"
1629 #undef DEF_REG_NOTE
1630 REG_NOTE_MAX
1631 };
1632
1633 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1634 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1635 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1636 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1637
1638 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1639
1640 extern const char * const reg_note_name[];
1641 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1642
1643 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1644 USE, CLOBBER and SET expressions.
1645 USE expressions list the registers filled with arguments that
1646 are passed to the function.
1647 CLOBBER expressions document the registers explicitly clobbered
1648 by this CALL_INSN.
1649 SET expressions say that the return value of the call (the SET_DEST)
1650 is equivalent to a value available before the call (the SET_SRC).
1651 This kind of SET is used when the return value is predictable in
1652 advance. It is purely an optimisation hint; unlike USEs and CLOBBERs,
1653 it does not affect register liveness.
1654
1655 Pseudo registers cannot be mentioned in this list. */
1656 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1657
1658 /* The label-number of a code-label. The assembler label
1659 is made from `L' and the label-number printed in decimal.
1660 Label numbers are unique in a compilation. */
1661 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1662
1663 /* In a NOTE that is a line number, this is a string for the file name that the
1664 line is in. We use the same field to record block numbers temporarily in
1665 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1666 between ints and pointers if we use a different macro for the block number.)
1667 */
1668
1669 /* Opaque data. */
1670 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1671 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1672 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1673 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1674 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1675 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1676 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1677 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1678 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1679 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1680
1681 /* In a NOTE that is a line number, this is the line number.
1682 Other kinds of NOTEs are identified by negative numbers here. */
1683 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1684
1685 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1686 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1687 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1688
1689 /* Nonzero if INSN is a debug nonbind marker note,
1690 for which NOTE_MARKER_LOCATION can be used. */
1691 #define NOTE_MARKER_P(INSN) \
1692 (NOTE_P (INSN) && \
1693 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT \
1694 || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY))
1695
1696 /* Variable declaration and the location of a variable. */
1697 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1698 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1699
1700 /* Initialization status of the variable in the location. Status
1701 can be unknown, uninitialized or initialized. See enumeration
1702 type below. */
1703 #define PAT_VAR_LOCATION_STATUS(PAT) \
1704 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1705 ->u2.var_location_status)
1706
1707 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1708 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1709 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1710 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1711 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1712 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1713 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1714
1715 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1716 location/value tracking annotation. */
1717 #define DEBUG_BIND_INSN_P(INSN) \
1718 (DEBUG_INSN_P (INSN) \
1719 && (GET_CODE (PATTERN (INSN)) \
1720 == VAR_LOCATION))
1721 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1722 source location marker. */
1723 #define DEBUG_MARKER_INSN_P(INSN) \
1724 (DEBUG_INSN_P (INSN) \
1725 && (GET_CODE (PATTERN (INSN)) \
1726 != VAR_LOCATION))
1727 /* Evaluate to the marker kind. */
1728 #define INSN_DEBUG_MARKER_KIND(INSN) \
1729 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1730 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1731 ? NOTE_INSN_BEGIN_STMT \
1732 : GET_MODE (PATTERN (INSN)) == BLKmode \
1733 ? NOTE_INSN_INLINE_ENTRY \
1734 : (enum insn_note)-1) \
1735 : (enum insn_note)-1)
1736 /* Create patterns for debug markers. These and the above abstract
1737 the representation, so that it's easier to get rid of the abuse of
1738 the mode to hold the marker kind. Other marker types are
1739 envisioned, so a single bit flag won't do; maybe separate RTL codes
1740 wouldn't be a problem. */
1741 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1742 gen_rtx_DEBUG_MARKER (VOIDmode)
1743 #define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \
1744 gen_rtx_DEBUG_MARKER (BLKmode)
1745
1746 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1747 #define INSN_VAR_LOCATION(INSN) \
1748 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1749 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1750 #define INSN_VAR_LOCATION_PTR(INSN) \
1751 (&PATTERN (INSN))
1752
1753 /* Accessors for a tree-expanded var location debug insn. */
1754 #define INSN_VAR_LOCATION_DECL(INSN) \
1755 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1756 #define INSN_VAR_LOCATION_LOC(INSN) \
1757 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1758 #define INSN_VAR_LOCATION_STATUS(INSN) \
1759 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1760
1761 /* Expand to the RTL that denotes an unknown variable location in a
1762 DEBUG_INSN. */
1763 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1764
1765 /* Determine whether X is such an unknown location. */
1766 #define VAR_LOC_UNKNOWN_P(X) \
1767 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1768
1769 /* 1 if RTX is emitted after a call, but it should take effect before
1770 the call returns. */
1771 #define NOTE_DURING_CALL_P(RTX) \
1772 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1773
1774 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1775 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1776
1777 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1778 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1779
1780 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1781 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1782
1783 /* Codes that appear in the NOTE_KIND field for kinds of notes
1784 that are not line numbers. These codes are all negative.
1785
1786 Notice that we do not try to use zero here for any of
1787 the special note codes because sometimes the source line
1788 actually can be zero! This happens (for example) when we
1789 are generating code for the per-translation-unit constructor
1790 and destructor routines for some C++ translation unit. */
1791
1792 enum insn_note
1793 {
1794 #define DEF_INSN_NOTE(NAME) NAME,
1795 #include "insn-notes.def"
1796 #undef DEF_INSN_NOTE
1797
1798 NOTE_INSN_MAX
1799 };
1800
1801 /* Names for NOTE insn's other than line numbers. */
1802
1803 extern const char * const note_insn_name[NOTE_INSN_MAX];
1804 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1805 (note_insn_name[(NOTE_CODE)])
1806
1807 /* The name of a label, in case it corresponds to an explicit label
1808 in the input source code. */
1809 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1810
1811 /* In jump.cc, each label contains a count of the number
1812 of LABEL_REFs that point at it, so unused labels can be deleted. */
1813 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1814
1815 /* Labels carry a two-bit field composed of the ->jump and ->call
1816 bits. This field indicates whether the label is an alternate
1817 entry point, and if so, what kind. */
1818 enum label_kind
1819 {
1820 LABEL_NORMAL = 0, /* ordinary label */
1821 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1822 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1823 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1824 };
1825
1826 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1827
1828 /* Retrieve the kind of LABEL. */
1829 #define LABEL_KIND(LABEL) __extension__ \
1830 ({ __typeof (LABEL) const _label = (LABEL); \
1831 if (! LABEL_P (_label)) \
1832 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1833 __FUNCTION__); \
1834 (enum label_kind) ((_label->jump << 1) | _label->call); })
1835
1836 /* Set the kind of LABEL. */
1837 #define SET_LABEL_KIND(LABEL, KIND) do { \
1838 __typeof (LABEL) const _label = (LABEL); \
1839 const unsigned int _kind = (KIND); \
1840 if (! LABEL_P (_label)) \
1841 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1842 __FUNCTION__); \
1843 _label->jump = ((_kind >> 1) & 1); \
1844 _label->call = (_kind & 1); \
1845 } while (0)
1846
1847 #else
1848
1849 /* Retrieve the kind of LABEL. */
1850 #define LABEL_KIND(LABEL) \
1851 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1852
1853 /* Set the kind of LABEL. */
1854 #define SET_LABEL_KIND(LABEL, KIND) do { \
1855 rtx const _label = (LABEL); \
1856 const unsigned int _kind = (KIND); \
1857 _label->jump = ((_kind >> 1) & 1); \
1858 _label->call = (_kind & 1); \
1859 } while (0)
1860
1861 #endif /* rtl flag checking */
1862
1863 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1864
1865 /* In jump.cc, each JUMP_INSN can point to a label that it can jump to,
1866 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1867 be decremented and possibly the label can be deleted. */
1868 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1869
1870 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1871 {
1872 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1873 }
1874
1875 /* Methods of rtx_jump_insn. */
1876
1877 inline rtx rtx_jump_insn::jump_label () const
1878 {
1879 return JUMP_LABEL (this);
1880 }
1881
1882 inline rtx_code_label *rtx_jump_insn::jump_target () const
1883 {
1884 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1885 }
1886
1887 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1888 {
1889 JUMP_LABEL (this) = target;
1890 }
1891
1892 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1893 goes through all the LABEL_REFs that jump to that label. The chain
1894 eventually winds up at the CODE_LABEL: it is circular. */
1895 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1896
1897 /* Get the label that a LABEL_REF references. */
1898 static inline rtx_insn *
1899 label_ref_label (const_rtx ref)
1900 {
1901 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1902 }
1903
1904 /* Set the label that LABEL_REF ref refers to. */
1905
1906 static inline void
1907 set_label_ref_label (rtx ref, rtx_insn *label)
1908 {
1909 XCEXP (ref, 0, LABEL_REF) = label;
1910 }
1911 \f
1912 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1913 be used on RHS. Use SET_REGNO to change the value. */
1914 #define REGNO(RTX) (rhs_regno(RTX))
1915 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1916
1917 /* Return the number of consecutive registers in a REG. This is always
1918 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1919 hard registers. */
1920 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1921
1922 /* ORIGINAL_REGNO holds the number the register originally had; for a
1923 pseudo register turned into a hard reg this will hold the old pseudo
1924 register number. */
1925 #define ORIGINAL_REGNO(RTX) \
1926 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1927
1928 /* Force the REGNO macro to only be used on the lhs. */
1929 static inline unsigned int
1930 rhs_regno (const_rtx x)
1931 {
1932 return REG_CHECK (x)->regno;
1933 }
1934
1935 /* Return the final register in REG X plus one. */
1936 static inline unsigned int
1937 END_REGNO (const_rtx x)
1938 {
1939 return REGNO (x) + REG_NREGS (x);
1940 }
1941
1942 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1943 bypassing the df machinery. */
1944 static inline void
1945 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1946 {
1947 reg_info *reg = REG_CHECK (x);
1948 reg->regno = regno;
1949 reg->nregs = nregs;
1950 }
1951
1952 /* 1 if RTX is a reg or parallel that is the current function's return
1953 value. */
1954 #define REG_FUNCTION_VALUE_P(RTX) \
1955 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1956
1957 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1958 #define REG_USERVAR_P(RTX) \
1959 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1960
1961 /* 1 if RTX is a reg that holds a pointer value. */
1962 #define REG_POINTER(RTX) \
1963 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1964
1965 /* 1 if RTX is a mem that holds a pointer value. */
1966 #define MEM_POINTER(RTX) \
1967 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1968
1969 /* 1 if the given register REG corresponds to a hard register. */
1970 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1971
1972 /* 1 if the given register number REG_NO corresponds to a hard register. */
1973 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1974
1975 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1976 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1977 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1978
1979 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1980 elements actually needed to represent the constant.
1981 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1982 significant HOST_WIDE_INT. */
1983 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1984 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1985 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1986
1987 /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
1988 individual coefficients, in the form of a trailing_wide_ints structure. */
1989 #define CONST_POLY_INT_COEFFS(RTX) \
1990 (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
1991 CONST_POLY_INT)->u.cpi.coeffs)
1992
1993 /* For a CONST_DOUBLE:
1994 #if TARGET_SUPPORTS_WIDE_INT == 0
1995 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1996 low-order word and ..._HIGH the high-order.
1997 #endif
1998 For a float, there is a REAL_VALUE_TYPE structure, and
1999 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
2000 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
2001 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
2002 #define CONST_DOUBLE_REAL_VALUE(r) \
2003 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
2004
2005 #define CONST_FIXED_VALUE(r) \
2006 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
2007 #define CONST_FIXED_VALUE_HIGH(r) \
2008 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
2009 #define CONST_FIXED_VALUE_LOW(r) \
2010 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
2011
2012 /* For a CONST_VECTOR, return element #n. */
2013 #define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)
2014
2015 /* See rtl.texi for a description of these macros. */
2016 #define CONST_VECTOR_NPATTERNS(RTX) \
2017 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
2018 ->u2.const_vector.npatterns)
2019
2020 #define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
2021 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
2022 ->u2.const_vector.nelts_per_pattern)
2023
2024 #define CONST_VECTOR_DUPLICATE_P(RTX) \
2025 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)
2026
2027 #define CONST_VECTOR_STEPPED_P(RTX) \
2028 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)
2029
2030 #define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
2031
2032 /* Return the number of elements encoded directly in a CONST_VECTOR. */
2033
2034 inline unsigned int
2035 const_vector_encoded_nelts (const_rtx x)
2036 {
2037 return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x);
2038 }
2039
2040 /* For a CONST_VECTOR, return the number of elements in a vector. */
2041 #define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))
2042
2043 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
2044 SUBREG_BYTE extracts the byte-number. */
2045
2046 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
2047 #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
2048
2049 /* in rtlanal.cc */
2050 /* Return the right cost to give to an operation
2051 to make the cost of the corresponding register-to-register instruction
2052 N times that of a fast register-to-register instruction. */
2053 #define COSTS_N_INSNS(N) ((N) * 4)
2054
2055 /* Maximum cost of an rtl expression. This value has the special meaning
2056 not to use an rtx with this cost under any circumstances. */
2057 #define MAX_COST INT_MAX
2058
2059 /* Return true if CODE always has VOIDmode. */
2060
2061 static inline bool
2062 always_void_p (enum rtx_code code)
2063 {
2064 return code == SET;
2065 }
2066
2067 /* A structure to hold all available cost information about an rtl
2068 expression. */
2069 struct full_rtx_costs
2070 {
2071 int speed;
2072 int size;
2073 };
2074
2075 /* Initialize a full_rtx_costs structure C to the maximum cost. */
2076 static inline void
2077 init_costs_to_max (struct full_rtx_costs *c)
2078 {
2079 c->speed = MAX_COST;
2080 c->size = MAX_COST;
2081 }
2082
2083 /* Initialize a full_rtx_costs structure C to zero cost. */
2084 static inline void
2085 init_costs_to_zero (struct full_rtx_costs *c)
2086 {
2087 c->speed = 0;
2088 c->size = 0;
2089 }
2090
2091 /* Compare two full_rtx_costs structures A and B, returning true
2092 if A < B when optimizing for speed. */
2093 static inline bool
2094 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
2095 bool speed)
2096 {
2097 if (speed)
2098 return (a->speed < b->speed
2099 || (a->speed == b->speed && a->size < b->size));
2100 else
2101 return (a->size < b->size
2102 || (a->size == b->size && a->speed < b->speed));
2103 }
2104
2105 /* Increase both members of the full_rtx_costs structure C by the
2106 cost of N insns. */
2107 static inline void
2108 costs_add_n_insns (struct full_rtx_costs *c, int n)
2109 {
2110 c->speed += COSTS_N_INSNS (n);
2111 c->size += COSTS_N_INSNS (n);
2112 }
2113
2114 /* Describes the shape of a subreg:
2115
2116 inner_mode == the mode of the SUBREG_REG
2117 offset == the SUBREG_BYTE
2118 outer_mode == the mode of the SUBREG itself. */
2119 class subreg_shape {
2120 public:
2121 subreg_shape (machine_mode, poly_uint16, machine_mode);
2122 bool operator == (const subreg_shape &) const;
2123 bool operator != (const subreg_shape &) const;
2124 unsigned HOST_WIDE_INT unique_id () const;
2125
2126 machine_mode inner_mode;
2127 poly_uint16 offset;
2128 machine_mode outer_mode;
2129 };
2130
2131 inline
2132 subreg_shape::subreg_shape (machine_mode inner_mode_in,
2133 poly_uint16 offset_in,
2134 machine_mode outer_mode_in)
2135 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2136 {}
2137
2138 inline bool
2139 subreg_shape::operator == (const subreg_shape &other) const
2140 {
2141 return (inner_mode == other.inner_mode
2142 && known_eq (offset, other.offset)
2143 && outer_mode == other.outer_mode);
2144 }
2145
2146 inline bool
2147 subreg_shape::operator != (const subreg_shape &other) const
2148 {
2149 return !operator == (other);
2150 }
2151
2152 /* Return an integer that uniquely identifies this shape. Structures
2153 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2154 current mode is anywhere near being 65536 bytes in size, so the
2155 id comfortably fits in an int. */
2156
2157 inline unsigned HOST_WIDE_INT
2158 subreg_shape::unique_id () const
2159 {
2160 { STATIC_ASSERT (MAX_MACHINE_MODE <= 256); }
2161 { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); }
2162 { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); }
2163 int res = (int) inner_mode + ((int) outer_mode << 8);
2164 for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2165 res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16);
2166 return res;
2167 }
2168
2169 /* Return the shape of a SUBREG rtx. */
2170
2171 static inline subreg_shape
2172 shape_of_subreg (const_rtx x)
2173 {
2174 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2175 SUBREG_BYTE (x), GET_MODE (x));
2176 }
2177
2178 /* Information about an address. This structure is supposed to be able
2179 to represent all supported target addresses. Please extend it if it
2180 is not yet general enough. */
2181 struct address_info {
2182 /* The mode of the value being addressed, or VOIDmode if this is
2183 a load-address operation with no known address mode. */
2184 machine_mode mode;
2185
2186 /* The address space. */
2187 addr_space_t as;
2188
2189 /* True if this is an RTX_AUTOINC address. */
2190 bool autoinc_p;
2191
2192 /* A pointer to the top-level address. */
2193 rtx *outer;
2194
2195 /* A pointer to the inner address, after all address mutations
2196 have been stripped from the top-level address. It can be one
2197 of the following:
2198
2199 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2200
2201 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2202 points to the step value, depending on whether the step is variable
2203 or constant respectively. SEGMENT is null.
2204
2205 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2206 with null fields evaluating to 0. */
2207 rtx *inner;
2208
2209 /* Components that make up *INNER. Each one may be null or nonnull.
2210 When nonnull, their meanings are as follows:
2211
2212 - *SEGMENT is the "segment" of memory to which the address refers.
2213 This value is entirely target-specific and is only called a "segment"
2214 because that's its most typical use. It contains exactly one UNSPEC,
2215 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2216 reloading.
2217
2218 - *BASE is a variable expression representing a base address.
2219 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2220
2221 - *INDEX is a variable expression representing an index value.
2222 It may be a scaled expression, such as a MULT. It has exactly
2223 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2224
2225 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2226 unmutated RTX_CONST_OBJ. */
2227 rtx *segment;
2228 rtx *base;
2229 rtx *index;
2230 rtx *disp;
2231
2232 rtx *segment_term;
2233 rtx *base_term;
2234 rtx *index_term;
2235 rtx *disp_term;
2236
2237 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2238 of BASE_TERM, otherwise it is null. */
2239 rtx *base_term2;
2240
2241 /* ADDRESS if this structure describes an address operand, MEM if
2242 it describes a MEM address. */
2243 enum rtx_code addr_outer_code;
2244
2245 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2246 enum rtx_code base_outer_code;
2247 };
2248
2249 /* This is used to bundle an rtx and a mode together so that the pair
2250 can be used with the wi:: routines. If we ever put modes into rtx
2251 integer constants, this should go away and then just pass an rtx in. */
2252 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2253
2254 namespace wi
2255 {
2256 template <>
2257 struct int_traits <rtx_mode_t>
2258 {
2259 static const enum precision_type precision_type = VAR_PRECISION;
2260 static const bool host_dependent_precision = false;
2261 /* This ought to be true, except for the special case that BImode
2262 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2263 static const bool is_sign_extended = false;
2264 static unsigned int get_precision (const rtx_mode_t &);
2265 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2266 const rtx_mode_t &);
2267 };
2268 }
2269
2270 inline unsigned int
2271 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2272 {
2273 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2274 }
2275
2276 inline wi::storage_ref
2277 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2278 unsigned int precision,
2279 const rtx_mode_t &x)
2280 {
2281 gcc_checking_assert (precision == get_precision (x));
2282 switch (GET_CODE (x.first))
2283 {
2284 case CONST_INT:
2285 if (precision < HOST_BITS_PER_WIDE_INT)
2286 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2287 targets is 1 rather than -1. */
2288 gcc_checking_assert (INTVAL (x.first)
2289 == sext_hwi (INTVAL (x.first), precision)
2290 || (x.second == BImode && INTVAL (x.first) == 1));
2291
2292 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2293
2294 case CONST_WIDE_INT:
2295 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2296 CONST_WIDE_INT_NUNITS (x.first), precision);
2297
2298 #if TARGET_SUPPORTS_WIDE_INT == 0
2299 case CONST_DOUBLE:
2300 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2301 #endif
2302
2303 default:
2304 gcc_unreachable ();
2305 }
2306 }
2307
2308 namespace wi
2309 {
2310 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2311 wide_int min_value (machine_mode, signop);
2312 wide_int max_value (machine_mode, signop);
2313 }
2314
2315 inline wi::hwi_with_prec
2316 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2317 {
2318 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2319 }
2320
2321 /* Produce the smallest number that is represented in MODE. The precision
2322 is taken from MODE and the sign from SGN. */
2323 inline wide_int
2324 wi::min_value (machine_mode mode, signop sgn)
2325 {
2326 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2327 }
2328
2329 /* Produce the largest number that is represented in MODE. The precision
2330 is taken from MODE and the sign from SGN. */
2331 inline wide_int
2332 wi::max_value (machine_mode mode, signop sgn)
2333 {
2334 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2335 }
2336
2337 namespace wi
2338 {
2339 typedef poly_int<NUM_POLY_INT_COEFFS,
2340 generic_wide_int <wide_int_ref_storage <false, false> > >
2341 rtx_to_poly_wide_ref;
2342 rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
2343 }
2344
2345 /* Return the value of a CONST_POLY_INT in its native precision. */
2346
2347 inline wi::rtx_to_poly_wide_ref
2348 const_poly_int_value (const_rtx x)
2349 {
2350 poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
2351 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2352 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
2353 return res;
2354 }
2355
2356 /* Return true if X is a scalar integer or a CONST_POLY_INT. The value
2357 can then be extracted using wi::to_poly_wide. */
2358
2359 inline bool
2360 poly_int_rtx_p (const_rtx x)
2361 {
2362 return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
2363 }
2364
2365 /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2366 MODE is the mode of X. */
2367
2368 inline wi::rtx_to_poly_wide_ref
2369 wi::to_poly_wide (const_rtx x, machine_mode mode)
2370 {
2371 if (CONST_POLY_INT_P (x))
2372 return const_poly_int_value (x);
2373 return rtx_mode_t (const_cast<rtx> (x), mode);
2374 }
2375
2376 /* Return the value of X as a poly_int64. */
2377
2378 inline poly_int64
2379 rtx_to_poly_int64 (const_rtx x)
2380 {
2381 if (CONST_POLY_INT_P (x))
2382 {
2383 poly_int64 res;
2384 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2385 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2386 return res;
2387 }
2388 return INTVAL (x);
2389 }
2390
2391 /* Return true if arbitrary value X is an integer constant that can
2392 be represented as a poly_int64. Store the value in *RES if so,
2393 otherwise leave it unmodified. */
2394
2395 inline bool
2396 poly_int_rtx_p (const_rtx x, poly_int64_pod *res)
2397 {
2398 if (CONST_INT_P (x))
2399 {
2400 *res = INTVAL (x);
2401 return true;
2402 }
2403 if (CONST_POLY_INT_P (x))
2404 {
2405 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2406 if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
2407 return false;
2408 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2409 res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2410 return true;
2411 }
2412 return false;
2413 }
2414
2415 extern void init_rtlanal (void);
2416 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2417 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2418 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2419 struct full_rtx_costs *);
2420 extern bool native_encode_rtx (machine_mode, rtx, vec<target_unit> &,
2421 unsigned int, unsigned int);
2422 extern rtx native_decode_rtx (machine_mode, const vec<target_unit> &,
2423 unsigned int);
2424 extern rtx native_decode_vector_rtx (machine_mode, const vec<target_unit> &,
2425 unsigned int, unsigned int, unsigned int);
2426 extern poly_uint64 subreg_lsb (const_rtx);
2427 extern poly_uint64 subreg_size_lsb (poly_uint64, poly_uint64, poly_uint64);
2428 extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64,
2429 poly_uint64);
2430 extern bool read_modify_subreg_p (const_rtx);
2431
2432 /* Given a subreg's OUTER_MODE, INNER_MODE, and SUBREG_BYTE, return the
2433 bit offset at which the subreg begins (counting from the least significant
2434 bit of the operand). */
2435
2436 inline poly_uint64
2437 subreg_lsb_1 (machine_mode outer_mode, machine_mode inner_mode,
2438 poly_uint64 subreg_byte)
2439 {
2440 return subreg_size_lsb (GET_MODE_SIZE (outer_mode),
2441 GET_MODE_SIZE (inner_mode), subreg_byte);
2442 }
2443
2444 /* Return the subreg byte offset for a subreg whose outer mode is
2445 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2446 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2447 the inner value. This is the inverse of subreg_lsb_1 (which converts
2448 byte offsets to bit shifts). */
2449
2450 inline poly_uint64
2451 subreg_offset_from_lsb (machine_mode outer_mode,
2452 machine_mode inner_mode,
2453 poly_uint64 lsb_shift)
2454 {
2455 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2456 GET_MODE_SIZE (inner_mode), lsb_shift);
2457 }
2458
2459 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2460 poly_uint64, machine_mode);
2461 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2462 poly_uint64, machine_mode);
2463 extern unsigned int subreg_regno (const_rtx);
2464 extern int simplify_subreg_regno (unsigned int, machine_mode,
2465 poly_uint64, machine_mode);
2466 extern int lowpart_subreg_regno (unsigned int, machine_mode,
2467 machine_mode);
2468 extern unsigned int subreg_nregs (const_rtx);
2469 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2470 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2471 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2472 extern bool constant_pool_constant_p (rtx);
2473 extern bool truncated_to_mode (machine_mode, const_rtx);
2474 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2475 extern void split_double (rtx, rtx *, rtx *);
2476 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2477 extern void decompose_address (struct address_info *, rtx *,
2478 machine_mode, addr_space_t, enum rtx_code);
2479 extern void decompose_lea_address (struct address_info *, rtx *);
2480 extern void decompose_mem_address (struct address_info *, rtx);
2481 extern void update_address (struct address_info *);
2482 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2483 extern enum rtx_code get_index_code (const struct address_info *);
2484
2485 /* 1 if RTX is a subreg containing a reg that is already known to be
2486 sign- or zero-extended from the mode of the subreg to the mode of
2487 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2488 extension.
2489
2490 When used as a LHS, is means that this extension must be done
2491 when assigning to SUBREG_REG. */
2492
2493 #define SUBREG_PROMOTED_VAR_P(RTX) \
2494 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2495
2496 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2497 this gives the necessary extensions:
2498 0 - signed (SPR_SIGNED)
2499 1 - normal unsigned (SPR_UNSIGNED)
2500 2 - value is both sign and unsign extended for mode
2501 (SPR_SIGNED_AND_UNSIGNED).
2502 -1 - pointer unsigned, which most often can be handled like unsigned
2503 extension, except for generating instructions where we need to
2504 emit special code (ptr_extend insns) on some architectures
2505 (SPR_POINTER). */
2506
2507 const int SRP_POINTER = -1;
2508 const int SRP_SIGNED = 0;
2509 const int SRP_UNSIGNED = 1;
2510 const int SRP_SIGNED_AND_UNSIGNED = 2;
2511
2512 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2513 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2514 do { \
2515 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2516 (RTX), SUBREG); \
2517 switch (VAL) \
2518 { \
2519 case SRP_POINTER: \
2520 _rtx->volatil = 0; \
2521 _rtx->unchanging = 0; \
2522 break; \
2523 case SRP_SIGNED: \
2524 _rtx->volatil = 0; \
2525 _rtx->unchanging = 1; \
2526 break; \
2527 case SRP_UNSIGNED: \
2528 _rtx->volatil = 1; \
2529 _rtx->unchanging = 0; \
2530 break; \
2531 case SRP_SIGNED_AND_UNSIGNED: \
2532 _rtx->volatil = 1; \
2533 _rtx->unchanging = 1; \
2534 break; \
2535 } \
2536 } while (0)
2537
2538 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2539 including SRP_SIGNED_AND_UNSIGNED if promoted for
2540 both signed and unsigned. */
2541 #define SUBREG_PROMOTED_GET(RTX) \
2542 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2543 + (RTX)->unchanging - 1)
2544
2545 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2546 #define SUBREG_PROMOTED_SIGN(RTX) \
2547 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2548 : (RTX)->unchanging - 1)
2549
2550 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2551 for SIGNED type. */
2552 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2553 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2554
2555 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2556 for UNSIGNED type. */
2557 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2558 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2559
2560 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2561 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2562 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2563 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2564 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2565
2566 /* True if the REG is the static chain register for some CALL_INSN. */
2567 #define STATIC_CHAIN_REG_P(RTX) \
2568 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2569
2570 /* True if the subreg was generated by LRA for reload insns. Such
2571 subregs are valid only during LRA. */
2572 #define LRA_SUBREG_P(RTX) \
2573 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2574
2575 /* Access various components of an ASM_OPERANDS rtx. */
2576
2577 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2578 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2579 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2580 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2581 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2582 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2583 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2584 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2585 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2586 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2587 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2588 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2589 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2590 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2591 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2592 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2593 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2594 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2595
2596 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2597 #define MEM_READONLY_P(RTX) \
2598 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2599
2600 /* 1 if RTX is a mem and we should keep the alias set for this mem
2601 unchanged when we access a component. Set to 1, or example, when we
2602 are already in a non-addressable component of an aggregate. */
2603 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2604 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2605
2606 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2607 #define MEM_VOLATILE_P(RTX) \
2608 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2609 ASM_INPUT)->volatil)
2610
2611 /* 1 if RTX is a mem that cannot trap. */
2612 #define MEM_NOTRAP_P(RTX) \
2613 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2614
2615 /* The memory attribute block. We provide access macros for each value
2616 in the block and provide defaults if none specified. */
2617 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2618
2619 /* The register attribute block. We provide access macros for each value
2620 in the block and provide defaults if none specified. */
2621 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2622
2623 #ifndef GENERATOR_FILE
2624 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2625 set, and may alias anything. Otherwise, the MEM can only alias
2626 MEMs in a conflicting alias set. This value is set in a
2627 language-dependent manner in the front-end, and should not be
2628 altered in the back-end. These set numbers are tested with
2629 alias_sets_conflict_p. */
2630 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2631
2632 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2633 refer to part of a DECL. It may also be a COMPONENT_REF. */
2634 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2635
2636 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2637 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2638
2639 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2640 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2641
2642 /* For a MEM rtx, the address space. */
2643 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2644
2645 /* For a MEM rtx, true if its MEM_SIZE is known. */
2646 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2647
2648 /* For a MEM rtx, the size in bytes of the MEM. */
2649 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2650
2651 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2652 mode as a default when STRICT_ALIGNMENT, but not if not. */
2653 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2654 #else
2655 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2656 #endif
2657
2658 /* For a REG rtx, the decl it is known to refer to, if it is known to
2659 refer to part of a DECL. */
2660 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2661
2662 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2663 HOST_WIDE_INT. */
2664 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2665
2666 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2667 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2668 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2669 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2670 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2671 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2672 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2673 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2674
2675 /* 1 if RTX is a label_ref for a nonlocal label. */
2676 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2677 REG_LABEL_TARGET note. */
2678 #define LABEL_REF_NONLOCAL_P(RTX) \
2679 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2680
2681 /* 1 if RTX is a code_label that should always be considered to be needed. */
2682 #define LABEL_PRESERVE_P(RTX) \
2683 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2684
2685 /* During sched, 1 if RTX is an insn that must be scheduled together
2686 with the preceding insn. */
2687 #define SCHED_GROUP_P(RTX) \
2688 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2689 JUMP_INSN, CALL_INSN)->in_struct)
2690
2691 /* For a SET rtx, SET_DEST is the place that is set
2692 and SET_SRC is the value it is set to. */
2693 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2694 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2695 #define SET_IS_RETURN_P(RTX) \
2696 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2697
2698 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2699 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2700 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2701
2702 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2703 conditionally executing the code on, COND_EXEC_CODE is the code
2704 to execute if the condition is true. */
2705 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2706 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2707
2708 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2709 constants pool. */
2710 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2711 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2712
2713 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2714 tree constant pool. This information is private to varasm.cc. */
2715 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2716 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2717 (RTX), SYMBOL_REF)->frame_related)
2718
2719 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2720 #define SYMBOL_REF_FLAG(RTX) \
2721 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2722
2723 /* 1 if RTX is a symbol_ref that has been the library function in
2724 emit_library_call. */
2725 #define SYMBOL_REF_USED(RTX) \
2726 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2727
2728 /* 1 if RTX is a symbol_ref for a weak symbol. */
2729 #define SYMBOL_REF_WEAK(RTX) \
2730 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2731
2732 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2733 SYMBOL_REF_CONSTANT. */
2734 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2735
2736 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2737 pool symbol. */
2738 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2739 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2740
2741 /* The tree (decl or constant) associated with the symbol, or null. */
2742 #define SYMBOL_REF_DECL(RTX) \
2743 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2744
2745 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2746 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2747 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2748
2749 /* The rtx constant pool entry for a symbol, or null. */
2750 #define SYMBOL_REF_CONSTANT(RTX) \
2751 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2752
2753 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2754 information derivable from the tree decl associated with this symbol.
2755 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2756 decl. In some cases this is a bug. But beyond that, it's nice to cache
2757 this information to avoid recomputing it. Finally, this allows space for
2758 the target to store more than one bit of information, as with
2759 SYMBOL_REF_FLAG. */
2760 #define SYMBOL_REF_FLAGS(RTX) \
2761 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2762 ->u2.symbol_ref_flags)
2763
2764 /* These flags are common enough to be defined for all targets. They
2765 are computed by the default version of targetm.encode_section_info. */
2766
2767 /* Set if this symbol is a function. */
2768 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2769 #define SYMBOL_REF_FUNCTION_P(RTX) \
2770 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2771 /* Set if targetm.binds_local_p is true. */
2772 #define SYMBOL_FLAG_LOCAL (1 << 1)
2773 #define SYMBOL_REF_LOCAL_P(RTX) \
2774 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2775 /* Set if targetm.in_small_data_p is true. */
2776 #define SYMBOL_FLAG_SMALL (1 << 2)
2777 #define SYMBOL_REF_SMALL_P(RTX) \
2778 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2779 /* The three-bit field at [5:3] is true for TLS variables; use
2780 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2781 #define SYMBOL_FLAG_TLS_SHIFT 3
2782 #define SYMBOL_REF_TLS_MODEL(RTX) \
2783 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2784 /* Set if this symbol is not defined in this translation unit. */
2785 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2786 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2787 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2788 /* Set if this symbol has a block_symbol structure associated with it. */
2789 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2790 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2791 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2792 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2793 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2794 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2795 #define SYMBOL_REF_ANCHOR_P(RTX) \
2796 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2797
2798 /* Subsequent bits are available for the target to use. */
2799 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2800 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2801
2802 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2803 structure to which the symbol belongs, or NULL if it has not been
2804 assigned a block. */
2805 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2806
2807 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2808 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2809 RTX has not yet been assigned to a block, or it has not been given an
2810 offset within that block. */
2811 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2812
2813 /* True if RTX is flagged to be a scheduling barrier. */
2814 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2815 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2816
2817 /* Indicate whether the machine has any sort of auto increment addressing.
2818 If not, we can avoid checking for REG_INC notes. */
2819
2820 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2821 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2822 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2823 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2824 #define AUTO_INC_DEC 1
2825 #else
2826 #define AUTO_INC_DEC 0
2827 #endif
2828
2829 /* Define a macro to look for REG_INC notes,
2830 but save time on machines where they never exist. */
2831
2832 #if AUTO_INC_DEC
2833 #define FIND_REG_INC_NOTE(INSN, REG) \
2834 ((REG) != NULL_RTX && REG_P ((REG)) \
2835 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2836 : find_reg_note ((INSN), REG_INC, (REG)))
2837 #else
2838 #define FIND_REG_INC_NOTE(INSN, REG) 0
2839 #endif
2840
2841 #ifndef HAVE_PRE_INCREMENT
2842 #define HAVE_PRE_INCREMENT 0
2843 #endif
2844
2845 #ifndef HAVE_PRE_DECREMENT
2846 #define HAVE_PRE_DECREMENT 0
2847 #endif
2848
2849 #ifndef HAVE_POST_INCREMENT
2850 #define HAVE_POST_INCREMENT 0
2851 #endif
2852
2853 #ifndef HAVE_POST_DECREMENT
2854 #define HAVE_POST_DECREMENT 0
2855 #endif
2856
2857 #ifndef HAVE_POST_MODIFY_DISP
2858 #define HAVE_POST_MODIFY_DISP 0
2859 #endif
2860
2861 #ifndef HAVE_POST_MODIFY_REG
2862 #define HAVE_POST_MODIFY_REG 0
2863 #endif
2864
2865 #ifndef HAVE_PRE_MODIFY_DISP
2866 #define HAVE_PRE_MODIFY_DISP 0
2867 #endif
2868
2869 #ifndef HAVE_PRE_MODIFY_REG
2870 #define HAVE_PRE_MODIFY_REG 0
2871 #endif
2872
2873
2874 /* Some architectures do not have complete pre/post increment/decrement
2875 instruction sets, or only move some modes efficiently. These macros
2876 allow us to tune autoincrement generation. */
2877
2878 #ifndef USE_LOAD_POST_INCREMENT
2879 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2880 #endif
2881
2882 #ifndef USE_LOAD_POST_DECREMENT
2883 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2884 #endif
2885
2886 #ifndef USE_LOAD_PRE_INCREMENT
2887 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2888 #endif
2889
2890 #ifndef USE_LOAD_PRE_DECREMENT
2891 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2892 #endif
2893
2894 #ifndef USE_STORE_POST_INCREMENT
2895 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2896 #endif
2897
2898 #ifndef USE_STORE_POST_DECREMENT
2899 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2900 #endif
2901
2902 #ifndef USE_STORE_PRE_INCREMENT
2903 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2904 #endif
2905
2906 #ifndef USE_STORE_PRE_DECREMENT
2907 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2908 #endif
2909 \f
2910 /* Nonzero when we are generating CONCATs. */
2911 extern int generating_concat_p;
2912
2913 /* Nonzero when we are expanding trees to RTL. */
2914 extern int currently_expanding_to_rtl;
2915
2916 /* Generally useful functions. */
2917
2918 #ifndef GENERATOR_FILE
2919 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2920 rather than size. */
2921
2922 static inline int
2923 set_rtx_cost (rtx x, bool speed_p)
2924 {
2925 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2926 }
2927
2928 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2929
2930 static inline void
2931 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2932 {
2933 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2934 }
2935
2936 /* Return the cost of moving X into a register, relative to the cost
2937 of a register move. SPEED_P is true if optimizing for speed rather
2938 than size. */
2939
2940 static inline int
2941 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2942 {
2943 return rtx_cost (x, mode, SET, 1, speed_p);
2944 }
2945
2946 /* Like set_src_cost, but return both the speed and size costs in C. */
2947
2948 static inline void
2949 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2950 {
2951 get_full_rtx_cost (x, mode, SET, 1, c);
2952 }
2953 #endif
2954
2955 /* A convenience macro to validate the arguments of a zero_extract
2956 expression. It determines whether SIZE lies inclusively within
2957 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2958 and the sum lies inclusively within [1, RANGE]. RANGE must be
2959 >= 1, but SIZE and POS may be negative. */
2960 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2961 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2962 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2963 - (unsigned HOST_WIDE_INT)(POS)))
2964
2965 /* In explow.cc */
2966 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2967 extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
2968 extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
2969 extern HOST_WIDE_INT get_stack_check_protect (void);
2970
2971 /* In rtl.cc */
2972 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2973 inline rtx
2974 rtx_init (rtx rt, RTX_CODE code)
2975 {
2976 memset (rt, 0, RTX_HDR_SIZE);
2977 PUT_CODE (rt, code);
2978 return rt;
2979 }
2980 #define rtx_alloca(code) \
2981 rtx_init ((rtx) alloca (RTX_CODE_SIZE ((code))), (code))
2982 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2983 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2984 #define const_wide_int_alloc(NWORDS) \
2985 rtx_alloc_v (CONST_WIDE_INT, \
2986 (sizeof (struct hwivec_def) \
2987 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2988
2989 extern rtvec rtvec_alloc (size_t);
2990 extern rtvec shallow_copy_rtvec (rtvec);
2991 extern bool shared_const_p (const_rtx);
2992 extern rtx copy_rtx (rtx);
2993 extern enum rtx_code classify_insn (rtx);
2994 extern void dump_rtx_statistics (void);
2995
2996 /* In emit-rtl.cc */
2997 extern rtx copy_rtx_if_shared (rtx);
2998
2999 /* In rtl.cc */
3000 extern unsigned int rtx_size (const_rtx);
3001 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
3002 extern int rtx_equal_p (const_rtx, const_rtx);
3003 extern bool rtvec_all_equal_p (const_rtvec);
3004 extern bool rtvec_series_p (rtvec, int);
3005
3006 /* Return true if X is a vector constant with a duplicated element value. */
3007
3008 inline bool
3009 const_vec_duplicate_p (const_rtx x)
3010 {
3011 return (GET_CODE (x) == CONST_VECTOR
3012 && CONST_VECTOR_NPATTERNS (x) == 1
3013 && CONST_VECTOR_DUPLICATE_P (x));
3014 }
3015
3016 /* Return true if X is a vector constant with a duplicated element value.
3017 Store the duplicated element in *ELT if so. */
3018
3019 template <typename T>
3020 inline bool
3021 const_vec_duplicate_p (T x, T *elt)
3022 {
3023 if (const_vec_duplicate_p (x))
3024 {
3025 *elt = CONST_VECTOR_ENCODED_ELT (x, 0);
3026 return true;
3027 }
3028 return false;
3029 }
3030
3031 /* Return true if X is a vector with a duplicated element value, either
3032 constant or nonconstant. Store the duplicated element in *ELT if so. */
3033
3034 template <typename T>
3035 inline bool
3036 vec_duplicate_p (T x, T *elt)
3037 {
3038 if (GET_CODE (x) == VEC_DUPLICATE
3039 && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0))))
3040 {
3041 *elt = XEXP (x, 0);
3042 return true;
3043 }
3044 return const_vec_duplicate_p (x, elt);
3045 }
3046
3047 /* If X is a vector constant with a duplicated element value, return that
3048 element value, otherwise return X. */
3049
3050 template <typename T>
3051 inline T
3052 unwrap_const_vec_duplicate (T x)
3053 {
3054 if (const_vec_duplicate_p (x))
3055 x = CONST_VECTOR_ELT (x, 0);
3056 return x;
3057 }
3058
3059 /* In emit-rtl.cc. */
3060 extern wide_int const_vector_int_elt (const_rtx, unsigned int);
3061 extern rtx const_vector_elt (const_rtx, unsigned int);
3062 extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
3063
3064 /* Return true if X is an integer constant vector that contains a linear
3065 series of the form:
3066
3067 { B, B + S, B + 2 * S, B + 3 * S, ... }
3068
3069 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
3070
3071 inline bool
3072 const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3073 {
3074 if (GET_CODE (x) == CONST_VECTOR
3075 && CONST_VECTOR_NPATTERNS (x) == 1
3076 && !CONST_VECTOR_DUPLICATE_P (x))
3077 return const_vec_series_p_1 (x, base_out, step_out);
3078 return false;
3079 }
3080
3081 /* Return true if X is a vector that contains a linear series of the
3082 form:
3083
3084 { B, B + S, B + 2 * S, B + 3 * S, ... }
3085
3086 where B and S are constant or nonconstant. Store B and S in
3087 *BASE_OUT and *STEP_OUT on sucess. */
3088
3089 inline bool
3090 vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3091 {
3092 if (GET_CODE (x) == VEC_SERIES)
3093 {
3094 *base_out = XEXP (x, 0);
3095 *step_out = XEXP (x, 1);
3096 return true;
3097 }
3098 return const_vec_series_p (x, base_out, step_out);
3099 }
3100
3101 /* Return true if CONST_VECTORs X and Y, which are known to have the same mode,
3102 also have the same encoding. This means that they are equal whenever their
3103 operands are equal. */
3104
3105 inline bool
3106 same_vector_encodings_p (const_rtx x, const_rtx y)
3107 {
3108 /* Don't be fussy about the encoding of constant-length vectors,
3109 since XVECEXP (X, 0) and XVECEXP (Y, 0) list all the elements anyway. */
3110 if (poly_uint64 (CONST_VECTOR_NUNITS (x)).is_constant ())
3111 return true;
3112
3113 return (CONST_VECTOR_NPATTERNS (x) == CONST_VECTOR_NPATTERNS (y)
3114 && (CONST_VECTOR_NELTS_PER_PATTERN (x)
3115 == CONST_VECTOR_NELTS_PER_PATTERN (y)));
3116 }
3117
3118 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3119
3120 inline scalar_int_mode
3121 subreg_unpromoted_mode (rtx x)
3122 {
3123 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3124 return as_a <scalar_int_mode> (GET_MODE (x));
3125 }
3126
3127 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3128
3129 inline scalar_int_mode
3130 subreg_promoted_mode (rtx x)
3131 {
3132 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3133 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
3134 }
3135
3136 /* In emit-rtl.cc */
3137 extern rtvec gen_rtvec_v (int, rtx *);
3138 extern rtvec gen_rtvec_v (int, rtx_insn **);
3139 extern rtx gen_reg_rtx (machine_mode);
3140 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
3141 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
3142 extern rtx gen_reg_rtx_and_attrs (rtx);
3143 extern rtx_code_label *gen_label_rtx (void);
3144 extern rtx gen_lowpart_common (machine_mode, rtx);
3145
3146 /* In cse.cc */
3147 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
3148
3149 /* In emit-rtl.cc */
3150 extern rtx gen_highpart (machine_mode, rtx);
3151 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
3152 extern rtx operand_subword (rtx, poly_uint64, int, machine_mode);
3153
3154 /* In emit-rtl.cc */
3155 extern rtx operand_subword_force (rtx, poly_uint64, machine_mode);
3156 extern int subreg_lowpart_p (const_rtx);
3157 extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64);
3158
3159 /* Return true if a subreg of mode OUTERMODE would only access part of
3160 an inner register with mode INNERMODE. The other bits of the inner
3161 register would then be "don't care" on read. The behavior for writes
3162 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3163 chunk would be clobbered but other bits would be preserved. */
3164
3165 inline bool
3166 partial_subreg_p (machine_mode outermode, machine_mode innermode)
3167 {
3168 /* Modes involved in a subreg must be ordered. In particular, we must
3169 always know at compile time whether the subreg is paradoxical. */
3170 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3171 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3172 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3173 return maybe_lt (outer_prec, inner_prec);
3174 }
3175
3176 /* Likewise return true if X is a subreg that is smaller than the inner
3177 register. Use read_modify_subreg_p to test whether writing to such
3178 a subreg preserves any part of the inner register. */
3179
3180 inline bool
3181 partial_subreg_p (const_rtx x)
3182 {
3183 if (GET_CODE (x) != SUBREG)
3184 return false;
3185 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3186 }
3187
3188 /* Return true if a subreg with the given outer and inner modes is
3189 paradoxical. */
3190
3191 inline bool
3192 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
3193 {
3194 /* Modes involved in a subreg must be ordered. In particular, we must
3195 always know at compile time whether the subreg is paradoxical. */
3196 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3197 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3198 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3199 return maybe_gt (outer_prec, inner_prec);
3200 }
3201
3202 /* Return true if X is a paradoxical subreg, false otherwise. */
3203
3204 inline bool
3205 paradoxical_subreg_p (const_rtx x)
3206 {
3207 if (GET_CODE (x) != SUBREG)
3208 return false;
3209 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3210 }
3211
3212 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
3213
3214 inline poly_uint64
3215 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
3216 {
3217 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
3218 GET_MODE_SIZE (innermode));
3219 }
3220
3221 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3222 return the smaller of the two modes if they are different sizes,
3223 otherwise return the outer mode. */
3224
3225 inline machine_mode
3226 narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3227 {
3228 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3229 }
3230
3231 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3232 return the mode that is big enough to hold both the outer and inner
3233 values. Prefer the outer mode in the event of a tie. */
3234
3235 inline machine_mode
3236 wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3237 {
3238 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3239 }
3240
3241 /* Likewise for subreg X. */
3242
3243 inline machine_mode
3244 wider_subreg_mode (const_rtx x)
3245 {
3246 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3247 }
3248
3249 extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64);
3250
3251 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3252
3253 inline poly_uint64
3254 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3255 {
3256 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3257 GET_MODE_SIZE (innermode));
3258 }
3259
3260 extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode);
3261 extern poly_int64 subreg_memory_offset (machine_mode, machine_mode,
3262 poly_uint64);
3263 extern poly_int64 subreg_memory_offset (const_rtx);
3264 extern rtx make_safe_from (rtx, rtx);
3265 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3266 addr_space_t, bool, bool);
3267 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3268 addr_space_t);
3269 #define convert_memory_address(to_mode,x) \
3270 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3271 extern const char *get_insn_name (int);
3272 extern rtx_insn *get_last_insn_anywhere (void);
3273 extern rtx_insn *get_first_nonnote_insn (void);
3274 extern rtx_insn *get_last_nonnote_insn (void);
3275 extern void start_sequence (void);
3276 extern void push_to_sequence (rtx_insn *);
3277 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3278 extern void end_sequence (void);
3279 #if TARGET_SUPPORTS_WIDE_INT == 0
3280 extern double_int rtx_to_double_int (const_rtx);
3281 #endif
3282 extern void cwi_output_hex (FILE *, const_rtx);
3283 #if TARGET_SUPPORTS_WIDE_INT == 0
3284 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3285 machine_mode);
3286 #endif
3287 extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
3288
3289 /* In varasm.cc */
3290 extern rtx force_const_mem (machine_mode, rtx);
3291
3292 /* In varasm.cc */
3293
3294 struct function;
3295 extern rtx get_pool_constant (const_rtx);
3296 extern rtx get_pool_constant_mark (rtx, bool *);
3297 extern fixed_size_mode get_pool_mode (const_rtx);
3298 extern rtx simplify_subtraction (rtx);
3299 extern void decide_function_section (tree);
3300
3301 /* In emit-rtl.cc */
3302 extern rtx_insn *emit_insn_before (rtx, rtx_insn *);
3303 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3304 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t);
3305 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx_insn *);
3306 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3307 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *,
3308 location_t);
3309 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3310 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3311 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t);
3312 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3313 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx_insn *);
3314 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t);
3315 extern rtx_barrier *emit_barrier_before (rtx_insn *);
3316 extern rtx_code_label *emit_label_before (rtx_code_label *, rtx_insn *);
3317 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3318 extern rtx_insn *emit_insn_after (rtx, rtx_insn *);
3319 extern rtx_insn *emit_insn_after_noloc (rtx, rtx_insn *, basic_block);
3320 extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t);
3321 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx_insn *);
3322 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx_insn *);
3323 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t);
3324 extern rtx_insn *emit_call_insn_after (rtx, rtx_insn *);
3325 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx_insn *);
3326 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t);
3327 extern rtx_insn *emit_debug_insn_after (rtx, rtx_insn *);
3328 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx_insn *);
3329 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t);
3330 extern rtx_barrier *emit_barrier_after (rtx_insn *);
3331 extern rtx_insn *emit_label_after (rtx_insn *, rtx_insn *);
3332 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3333 extern rtx_insn *emit_insn (rtx);
3334 extern rtx_insn *emit_debug_insn (rtx);
3335 extern rtx_insn *emit_jump_insn (rtx);
3336 extern rtx_insn *emit_call_insn (rtx);
3337 extern rtx_code_label *emit_label (rtx);
3338 extern rtx_jump_table_data *emit_jump_table_data (rtx);
3339 extern rtx_barrier *emit_barrier (void);
3340 extern rtx_note *emit_note (enum insn_note);
3341 extern rtx_note *emit_note_copy (rtx_note *);
3342 extern rtx_insn *gen_clobber (rtx);
3343 extern rtx_insn *emit_clobber (rtx);
3344 extern rtx_insn *gen_use (rtx);
3345 extern rtx_insn *emit_use (rtx);
3346 extern rtx_insn *make_insn_raw (rtx);
3347 extern void add_function_usage_to (rtx, rtx);
3348 extern rtx_call_insn *last_call_insn (void);
3349 extern rtx_insn *previous_insn (rtx_insn *);
3350 extern rtx_insn *next_insn (rtx_insn *);
3351 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3352 extern rtx_insn *next_nonnote_insn (rtx_insn *);
3353 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3354 extern rtx_insn *next_nondebug_insn (rtx_insn *);
3355 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3356 extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3357 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3358 extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3359 extern rtx_insn *prev_real_insn (rtx_insn *);
3360 extern rtx_insn *next_real_insn (rtx_insn *);
3361 extern rtx_insn *prev_real_nondebug_insn (rtx_insn *);
3362 extern rtx_insn *next_real_nondebug_insn (rtx);
3363 extern rtx_insn *prev_active_insn (rtx_insn *);
3364 extern rtx_insn *next_active_insn (rtx_insn *);
3365 extern int active_insn_p (const rtx_insn *);
3366
3367 /* In emit-rtl.cc */
3368 extern int insn_line (const rtx_insn *);
3369 extern const char * insn_file (const rtx_insn *);
3370 extern tree insn_scope (const rtx_insn *);
3371 extern expanded_location insn_location (const rtx_insn *);
3372 extern location_t prologue_location, epilogue_location;
3373
3374 /* In jump.cc */
3375 extern enum rtx_code reverse_condition (enum rtx_code);
3376 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3377 extern enum rtx_code swap_condition (enum rtx_code);
3378 extern enum rtx_code unsigned_condition (enum rtx_code);
3379 extern enum rtx_code signed_condition (enum rtx_code);
3380 extern void mark_jump_label (rtx, rtx_insn *, int);
3381
3382 /* Return true if integer comparison operator CODE interprets its operands
3383 as unsigned. */
3384
3385 inline bool
3386 unsigned_condition_p (enum rtx_code code)
3387 {
3388 return unsigned_condition (code) == code;
3389 }
3390
3391 /* In jump.cc */
3392 extern rtx_insn *delete_related_insns (rtx);
3393
3394 /* In recog.cc */
3395 extern rtx *find_constant_term_loc (rtx *);
3396
3397 /* In emit-rtl.cc */
3398 extern rtx_insn *try_split (rtx, rtx_insn *, int);
3399
3400 /* In insn-recog.cc (generated by genrecog). */
3401 extern rtx_insn *split_insns (rtx, rtx_insn *);
3402
3403 /* In simplify-rtx.cc */
3404
3405 /* A class that records the context in which a simplification
3406 is being mode. */
3407 class simplify_context
3408 {
3409 public:
3410 rtx simplify_unary_operation (rtx_code, machine_mode, rtx, machine_mode);
3411 rtx simplify_binary_operation (rtx_code, machine_mode, rtx, rtx);
3412 rtx simplify_ternary_operation (rtx_code, machine_mode, machine_mode,
3413 rtx, rtx, rtx);
3414 rtx simplify_relational_operation (rtx_code, machine_mode, machine_mode,
3415 rtx, rtx);
3416 rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3417
3418 rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3419
3420 rtx simplify_merge_mask (rtx, rtx, int);
3421
3422 rtx simplify_gen_unary (rtx_code, machine_mode, rtx, machine_mode);
3423 rtx simplify_gen_binary (rtx_code, machine_mode, rtx, rtx);
3424 rtx simplify_gen_ternary (rtx_code, machine_mode, machine_mode,
3425 rtx, rtx, rtx);
3426 rtx simplify_gen_relational (rtx_code, machine_mode, machine_mode, rtx, rtx);
3427 rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3428 rtx simplify_gen_vec_select (rtx, unsigned int);
3429
3430 /* Tracks the level of MEM nesting for the value being simplified:
3431 0 means the value is not in a MEM, >0 means it is. This is needed
3432 because the canonical representation of multiplication is different
3433 inside a MEM than outside. */
3434 unsigned int mem_depth = 0;
3435
3436 /* Tracks number of simplify_associative_operation calls performed during
3437 outermost simplify* call. */
3438 unsigned int assoc_count = 0;
3439
3440 /* Limit for the above number, return NULL from
3441 simplify_associative_operation after we reach that assoc_count. */
3442 static const unsigned int max_assoc_count = 64;
3443
3444 private:
3445 rtx simplify_truncation (machine_mode, rtx, machine_mode);
3446 rtx simplify_byte_swapping_operation (rtx_code, machine_mode, rtx, rtx);
3447 rtx simplify_associative_operation (rtx_code, machine_mode, rtx, rtx);
3448 rtx simplify_distributive_operation (rtx_code, machine_mode, rtx, rtx);
3449 rtx simplify_logical_relational_operation (rtx_code, machine_mode, rtx, rtx);
3450 rtx simplify_binary_operation_series (rtx_code, machine_mode, rtx, rtx);
3451 rtx simplify_distribute_over_subregs (rtx_code, machine_mode, rtx, rtx);
3452 rtx simplify_shift_const_int (rtx_code, machine_mode, rtx, unsigned int);
3453 rtx simplify_plus_minus (rtx_code, machine_mode, rtx, rtx);
3454 rtx simplify_cond_clz_ctz (rtx, rtx_code, rtx, rtx);
3455
3456 rtx simplify_unary_operation_1 (rtx_code, machine_mode, rtx);
3457 rtx simplify_binary_operation_1 (rtx_code, machine_mode, rtx, rtx, rtx, rtx);
3458 rtx simplify_ternary_operation_1 (rtx_code, machine_mode, machine_mode,
3459 rtx, rtx, rtx);
3460 rtx simplify_relational_operation_1 (rtx_code, machine_mode, machine_mode,
3461 rtx, rtx);
3462 };
3463
3464 inline rtx
3465 simplify_unary_operation (rtx_code code, machine_mode mode, rtx op,
3466 machine_mode op_mode)
3467 {
3468 return simplify_context ().simplify_unary_operation (code, mode, op,
3469 op_mode);
3470 }
3471
3472 inline rtx
3473 simplify_binary_operation (rtx_code code, machine_mode mode, rtx op0, rtx op1)
3474 {
3475 return simplify_context ().simplify_binary_operation (code, mode, op0, op1);
3476 }
3477
3478 inline rtx
3479 simplify_ternary_operation (rtx_code code, machine_mode mode,
3480 machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
3481 {
3482 return simplify_context ().simplify_ternary_operation (code, mode, op0_mode,
3483 op0, op1, op2);
3484 }
3485
3486 inline rtx
3487 simplify_relational_operation (rtx_code code, machine_mode mode,
3488 machine_mode op_mode, rtx op0, rtx op1)
3489 {
3490 return simplify_context ().simplify_relational_operation (code, mode,
3491 op_mode, op0, op1);
3492 }
3493
3494 inline rtx
3495 simplify_subreg (machine_mode outermode, rtx op, machine_mode innermode,
3496 poly_uint64 byte)
3497 {
3498 return simplify_context ().simplify_subreg (outermode, op, innermode, byte);
3499 }
3500
3501 inline rtx
3502 simplify_gen_unary (rtx_code code, machine_mode mode, rtx op,
3503 machine_mode op_mode)
3504 {
3505 return simplify_context ().simplify_gen_unary (code, mode, op, op_mode);
3506 }
3507
3508 inline rtx
3509 simplify_gen_binary (rtx_code code, machine_mode mode, rtx op0, rtx op1)
3510 {
3511 return simplify_context ().simplify_gen_binary (code, mode, op0, op1);
3512 }
3513
3514 inline rtx
3515 simplify_gen_ternary (rtx_code code, machine_mode mode, machine_mode op0_mode,
3516 rtx op0, rtx op1, rtx op2)
3517 {
3518 return simplify_context ().simplify_gen_ternary (code, mode, op0_mode,
3519 op0, op1, op2);
3520 }
3521
3522 inline rtx
3523 simplify_gen_relational (rtx_code code, machine_mode mode,
3524 machine_mode op_mode, rtx op0, rtx op1)
3525 {
3526 return simplify_context ().simplify_gen_relational (code, mode, op_mode,
3527 op0, op1);
3528 }
3529
3530 inline rtx
3531 simplify_gen_subreg (machine_mode outermode, rtx op, machine_mode innermode,
3532 poly_uint64 byte)
3533 {
3534 return simplify_context ().simplify_gen_subreg (outermode, op,
3535 innermode, byte);
3536 }
3537
3538 inline rtx
3539 simplify_gen_vec_select (rtx op, unsigned int index)
3540 {
3541 return simplify_context ().simplify_gen_vec_select (op, index);
3542 }
3543
3544 inline rtx
3545 lowpart_subreg (machine_mode outermode, rtx op, machine_mode innermode)
3546 {
3547 return simplify_context ().lowpart_subreg (outermode, op, innermode);
3548 }
3549
3550 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3551 rtx, machine_mode);
3552 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3553 rtx, rtx);
3554 extern rtx simplify_const_relational_operation (enum rtx_code,
3555 machine_mode, rtx, rtx);
3556 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3557 rtx (*fn) (rtx, const_rtx, void *), void *);
3558 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3559 extern rtx simplify_rtx (const_rtx);
3560 extern rtx avoid_constant_pool_reference (rtx);
3561 extern rtx delegitimize_mem_from_attrs (rtx);
3562 extern bool mode_signbit_p (machine_mode, const_rtx);
3563 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3564 extern bool val_signbit_known_set_p (machine_mode,
3565 unsigned HOST_WIDE_INT);
3566 extern bool val_signbit_known_clear_p (machine_mode,
3567 unsigned HOST_WIDE_INT);
3568
3569 /* In reginfo.cc */
3570 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3571 const predefined_function_abi *);
3572 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3573
3574 /* In emit-rtl.cc */
3575 extern rtx set_for_reg_notes (rtx);
3576 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3577 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3578 extern void set_insn_deleted (rtx_insn *);
3579
3580 /* Functions in rtlanal.cc */
3581
3582 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3583 extern rtx simple_regno_set (rtx, unsigned int);
3584 extern bool contains_symbol_ref_p (const_rtx);
3585 extern bool contains_symbolic_reference_p (const_rtx);
3586 extern bool contains_constant_pool_address_p (const_rtx);
3587 extern void add_auto_inc_notes (rtx_insn *, rtx);
3588
3589 /* Handle the cheap and common cases inline for performance. */
3590
3591 inline rtx single_set (const rtx_insn *insn)
3592 {
3593 if (!INSN_P (insn))
3594 return NULL_RTX;
3595
3596 if (GET_CODE (PATTERN (insn)) == SET)
3597 return PATTERN (insn);
3598
3599 /* Defer to the more expensive case. */
3600 return single_set_2 (insn, PATTERN (insn));
3601 }
3602
3603 extern scalar_int_mode get_address_mode (rtx mem);
3604 extern int rtx_addr_can_trap_p (const_rtx);
3605 extern bool nonzero_address_p (const_rtx);
3606 extern int rtx_unstable_p (const_rtx);
3607 extern bool rtx_varies_p (const_rtx, bool);
3608 extern bool rtx_addr_varies_p (const_rtx, bool);
3609 extern rtx get_call_rtx_from (const rtx_insn *);
3610 extern tree get_call_fndecl (const rtx_insn *);
3611 extern HOST_WIDE_INT get_integer_term (const_rtx);
3612 extern rtx get_related_value (const_rtx);
3613 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3614 extern void split_const (rtx, rtx *, rtx *);
3615 extern rtx strip_offset (rtx, poly_int64_pod *);
3616 extern poly_int64 get_args_size (const_rtx);
3617 extern bool unsigned_reg_p (rtx);
3618 extern int reg_mentioned_p (const_rtx, const_rtx);
3619 extern int count_occurrences (const_rtx, const_rtx, int);
3620 extern int reg_referenced_p (const_rtx, const_rtx);
3621 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3622 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3623 extern int commutative_operand_precedence (rtx);
3624 extern bool swap_commutative_operands_p (rtx, rtx);
3625 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3626 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3627 extern int modified_in_p (const_rtx, const_rtx);
3628 extern int reg_set_p (const_rtx, const_rtx);
3629 extern int multiple_sets (const_rtx);
3630 extern int set_noop_p (const_rtx);
3631 extern int noop_move_p (const rtx_insn *);
3632 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3633 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3634 extern const_rtx set_of (const_rtx, const_rtx);
3635 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3636 extern void record_hard_reg_uses (rtx *, void *);
3637 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3638 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3639 extern void note_pattern_stores (const_rtx,
3640 void (*) (rtx, const_rtx, void *), void *);
3641 extern void note_stores (const rtx_insn *,
3642 void (*) (rtx, const_rtx, void *), void *);
3643 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3644 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3645 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3646 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3647 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3648 extern rtx find_reg_equal_equiv_note (const_rtx);
3649 extern rtx find_constant_src (const rtx_insn *);
3650 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3651 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3652 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3653 extern void add_reg_note (rtx, enum reg_note, rtx);
3654 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3655 extern void add_args_size_note (rtx_insn *, poly_int64);
3656 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3657 extern rtx duplicate_reg_note (rtx);
3658 extern void remove_note (rtx_insn *, const_rtx);
3659 extern bool remove_reg_equal_equiv_notes (rtx_insn *, bool = false);
3660 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3661 extern int side_effects_p (const_rtx);
3662 extern int volatile_refs_p (const_rtx);
3663 extern int volatile_insn_p (const_rtx);
3664 extern int may_trap_p_1 (const_rtx, unsigned);
3665 extern int may_trap_p (const_rtx);
3666 extern int may_trap_or_fault_p (const_rtx);
3667 extern bool can_throw_internal (const_rtx);
3668 extern bool can_throw_external (const_rtx);
3669 extern bool insn_could_throw_p (const_rtx);
3670 extern bool insn_nothrow_p (const_rtx);
3671 extern bool can_nonlocal_goto (const rtx_insn *);
3672 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3673 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3674 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3675 extern void replace_label (rtx *, rtx, rtx, bool);
3676 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3677 extern bool rtx_referenced_p (const_rtx, const_rtx);
3678 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3679 extern rtx tablejump_casesi_pattern (const rtx_insn *insn);
3680 extern int computed_jump_p (const rtx_insn *);
3681 extern bool tls_referenced_p (const_rtx);
3682 extern bool contains_mem_rtx_p (rtx x);
3683 extern bool register_asm_p (const_rtx);
3684
3685 /* Overload for refers_to_regno_p for checking a single register. */
3686 inline bool
3687 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3688 {
3689 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3690 }
3691
3692 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3693 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3694 NULL. The callback is passed the same opaque ARG passed to
3695 for_each_inc_dec. Return zero to continue looking for other
3696 autoinc operations or any other value to interrupt the traversal and
3697 return that value to the caller of for_each_inc_dec. */
3698 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3699 rtx srcoff, void *arg);
3700 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3701
3702 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3703 rtx *, rtx *);
3704 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3705 rtx_equal_p_callback_function);
3706
3707 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3708 machine_mode *);
3709 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3710 bool, hash_rtx_callback_function);
3711
3712 extern rtx regno_use_in (unsigned int, rtx);
3713 extern int auto_inc_p (const_rtx);
3714 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3715 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3716 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3717 extern int loc_mentioned_in_p (rtx *, const_rtx);
3718 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3719 extern bool keep_with_call_p (const rtx_insn *);
3720 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3721 extern int pattern_cost (rtx, bool);
3722 extern int insn_cost (rtx_insn *, bool);
3723 extern unsigned seq_cost (const rtx_insn *, bool);
3724
3725 /* Given an insn and condition, return a canonical description of
3726 the test being made. */
3727 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3728 int, int);
3729
3730 /* Given a JUMP_INSN, return a canonical description of the test
3731 being made. */
3732 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3733
3734 /* Information about a subreg of a hard register. */
3735 struct subreg_info
3736 {
3737 /* Offset of first hard register involved in the subreg. */
3738 int offset;
3739 /* Number of hard registers involved in the subreg. In the case of
3740 a paradoxical subreg, this is the number of registers that would
3741 be modified by writing to the subreg; some of them may be don't-care
3742 when reading from the subreg. */
3743 int nregs;
3744 /* Whether this subreg can be represented as a hard reg with the new
3745 mode (by adding OFFSET to the original hard register). */
3746 bool representable_p;
3747 };
3748
3749 extern void subreg_get_info (unsigned int, machine_mode,
3750 poly_uint64, machine_mode,
3751 struct subreg_info *);
3752
3753 /* lists.cc */
3754
3755 extern void free_EXPR_LIST_list (rtx_expr_list **);
3756 extern void free_INSN_LIST_list (rtx_insn_list **);
3757 extern void free_EXPR_LIST_node (rtx);
3758 extern void free_INSN_LIST_node (rtx);
3759 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3760 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3761 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3762 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3763 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3764 extern rtx remove_list_elem (rtx, rtx *);
3765 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3766 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3767
3768
3769 /* reginfo.cc */
3770
3771 /* Resize reg info. */
3772 extern bool resize_reg_info (void);
3773 /* Free up register info memory. */
3774 extern void free_reg_info (void);
3775 extern void init_subregs_of_mode (void);
3776 extern void finish_subregs_of_mode (void);
3777 extern void reginfo_cc_finalize (void);
3778
3779 /* recog.cc */
3780 extern rtx extract_asm_operands (rtx);
3781 extern int asm_noperands (const_rtx);
3782 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3783 machine_mode *, location_t *);
3784 extern void get_referenced_operands (const char *, bool *, unsigned int);
3785
3786 extern enum reg_class reg_preferred_class (int);
3787 extern enum reg_class reg_alternate_class (int);
3788 extern enum reg_class reg_allocno_class (int);
3789 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3790 enum reg_class);
3791
3792 extern void split_all_insns (void);
3793 extern unsigned int split_all_insns_noflow (void);
3794
3795 #define MAX_SAVED_CONST_INT 64
3796 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3797
3798 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3799 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3800 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3801 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3802 extern GTY(()) rtx const_true_rtx;
3803
3804 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3805
3806 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3807 same as VOIDmode. */
3808
3809 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3810
3811 /* Likewise, for the constants 1 and 2 and -1. */
3812
3813 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3814 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3815 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3816
3817 extern GTY(()) rtx pc_rtx;
3818 extern GTY(()) rtx ret_rtx;
3819 extern GTY(()) rtx simple_return_rtx;
3820 extern GTY(()) rtx_insn *invalid_insn_rtx;
3821
3822 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3823 is used to represent the frame pointer. This is because the
3824 hard frame pointer and the automatic variables are separated by an amount
3825 that cannot be determined until after register allocation. We can assume
3826 that in this case ELIMINABLE_REGS will be defined, one action of which
3827 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3828 #ifndef HARD_FRAME_POINTER_REGNUM
3829 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3830 #endif
3831
3832 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3833 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3834 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3835 #endif
3836
3837 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3838 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3839 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3840 #endif
3841
3842 /* Index labels for global_rtl. */
3843 enum global_rtl_index
3844 {
3845 GR_STACK_POINTER,
3846 GR_FRAME_POINTER,
3847 /* For register elimination to work properly these hard_frame_pointer_rtx,
3848 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3849 the same register. */
3850 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3851 GR_ARG_POINTER = GR_FRAME_POINTER,
3852 #endif
3853 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3854 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3855 #else
3856 GR_HARD_FRAME_POINTER,
3857 #endif
3858 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3859 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3860 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3861 #else
3862 GR_ARG_POINTER,
3863 #endif
3864 #endif
3865 GR_VIRTUAL_INCOMING_ARGS,
3866 GR_VIRTUAL_STACK_ARGS,
3867 GR_VIRTUAL_STACK_DYNAMIC,
3868 GR_VIRTUAL_OUTGOING_ARGS,
3869 GR_VIRTUAL_CFA,
3870 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3871
3872 GR_MAX
3873 };
3874
3875 /* Target-dependent globals. */
3876 struct GTY(()) target_rtl {
3877 /* All references to the hard registers in global_rtl_index go through
3878 these unique rtl objects. On machines where the frame-pointer and
3879 arg-pointer are the same register, they use the same unique object.
3880
3881 After register allocation, other rtl objects which used to be pseudo-regs
3882 may be clobbered to refer to the frame-pointer register.
3883 But references that were originally to the frame-pointer can be
3884 distinguished from the others because they contain frame_pointer_rtx.
3885
3886 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3887 tricky: until register elimination has taken place hard_frame_pointer_rtx
3888 should be used if it is being set, and frame_pointer_rtx otherwise. After
3889 register elimination hard_frame_pointer_rtx should always be used.
3890 On machines where the two registers are same (most) then these are the
3891 same. */
3892 rtx x_global_rtl[GR_MAX];
3893
3894 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3895 rtx x_pic_offset_table_rtx;
3896
3897 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3898 This is used to implement __builtin_return_address for some machines;
3899 see for instance the MIPS port. */
3900 rtx x_return_address_pointer_rtx;
3901
3902 /* Commonly used RTL for hard registers. These objects are not
3903 necessarily unique, so we allocate them separately from global_rtl.
3904 They are initialized once per compilation unit, then copied into
3905 regno_reg_rtx at the beginning of each function. */
3906 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3907
3908 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3909 rtx x_top_of_stack[MAX_MACHINE_MODE];
3910
3911 /* Static hunks of RTL used by the aliasing code; these are treated
3912 as persistent to avoid unnecessary RTL allocations. */
3913 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3914
3915 /* The default memory attributes for each mode. */
3916 class mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3917
3918 /* Track if RTL has been initialized. */
3919 bool target_specific_initialized;
3920 };
3921
3922 extern GTY(()) struct target_rtl default_target_rtl;
3923 #if SWITCHABLE_TARGET
3924 extern struct target_rtl *this_target_rtl;
3925 #else
3926 #define this_target_rtl (&default_target_rtl)
3927 #endif
3928
3929 #define global_rtl \
3930 (this_target_rtl->x_global_rtl)
3931 #define pic_offset_table_rtx \
3932 (this_target_rtl->x_pic_offset_table_rtx)
3933 #define return_address_pointer_rtx \
3934 (this_target_rtl->x_return_address_pointer_rtx)
3935 #define top_of_stack \
3936 (this_target_rtl->x_top_of_stack)
3937 #define mode_mem_attrs \
3938 (this_target_rtl->x_mode_mem_attrs)
3939
3940 /* All references to certain hard regs, except those created
3941 by allocating pseudo regs into them (when that's possible),
3942 go through these unique rtx objects. */
3943 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3944 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3945 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3946 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3947
3948 #ifndef GENERATOR_FILE
3949 /* Return the attributes of a MEM rtx. */
3950 static inline const class mem_attrs *
3951 get_mem_attrs (const_rtx x)
3952 {
3953 class mem_attrs *attrs;
3954
3955 attrs = MEM_ATTRS (x);
3956 if (!attrs)
3957 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3958 return attrs;
3959 }
3960 #endif
3961
3962 /* Include the RTL generation functions. */
3963
3964 #ifndef GENERATOR_FILE
3965 #include "genrtl.h"
3966 #undef gen_rtx_ASM_INPUT
3967 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3968 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3969 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3970 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3971 #endif
3972
3973 /* There are some RTL codes that require special attention; the
3974 generation functions included above do the raw handling. If you
3975 add to this list, modify special_rtx in gengenrtl.cc as well. */
3976
3977 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3978 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3979 extern rtx_insn *
3980 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3981 basic_block bb, rtx pattern, int location, int code,
3982 rtx reg_notes);
3983 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3984 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3985 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3986 extern rtx init_raw_REG (rtx, machine_mode, unsigned int);
3987 extern rtx gen_raw_REG (machine_mode, unsigned int);
3988 #define alloca_raw_REG(mode, regno) \
3989 init_raw_REG (rtx_alloca (REG), (mode), (regno))
3990 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3991 extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64);
3992 extern rtx gen_rtx_MEM (machine_mode, rtx);
3993 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3994 enum var_init_status);
3995
3996 #ifdef GENERATOR_FILE
3997 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3998 #else
3999 static inline void
4000 PUT_MODE (rtx x, machine_mode mode)
4001 {
4002 if (REG_P (x))
4003 set_mode_and_regno (x, mode, REGNO (x));
4004 else
4005 PUT_MODE_RAW (x, mode);
4006 }
4007 #endif
4008
4009 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
4010
4011 /* Virtual registers are used during RTL generation to refer to locations into
4012 the stack frame when the actual location isn't known until RTL generation
4013 is complete. The routine instantiate_virtual_regs replaces these with
4014 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
4015 a constant. */
4016
4017 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
4018
4019 /* This points to the first word of the incoming arguments passed on the stack,
4020 either by the caller or by the callee when pretending it was passed by the
4021 caller. */
4022
4023 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
4024
4025 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
4026
4027 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
4028 variable on the stack. Otherwise, it points to the first variable on
4029 the stack. */
4030
4031 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
4032
4033 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
4034
4035 /* This points to the location of dynamically-allocated memory on the stack
4036 immediately after the stack pointer has been adjusted by the amount
4037 desired. */
4038
4039 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
4040
4041 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
4042
4043 /* This points to the location in the stack at which outgoing arguments should
4044 be written when the stack is pre-pushed (arguments pushed using push
4045 insns always use sp). */
4046
4047 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
4048
4049 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
4050
4051 /* This points to the Canonical Frame Address of the function. This
4052 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
4053 but is calculated relative to the arg pointer for simplicity; the
4054 frame pointer nor stack pointer are necessarily fixed relative to
4055 the CFA until after reload. */
4056
4057 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
4058
4059 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
4060
4061 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
4062
4063 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
4064 when finalized. */
4065
4066 #define virtual_preferred_stack_boundary_rtx \
4067 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
4068
4069 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
4070 ((FIRST_VIRTUAL_REGISTER) + 5)
4071
4072 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
4073
4074 /* Nonzero if REGNUM is a pointer into the stack frame. */
4075 #define REGNO_PTR_FRAME_P(REGNUM) \
4076 ((REGNUM) == STACK_POINTER_REGNUM \
4077 || (REGNUM) == FRAME_POINTER_REGNUM \
4078 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
4079 || (REGNUM) == ARG_POINTER_REGNUM \
4080 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
4081 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
4082
4083 /* REGNUM never really appearing in the INSN stream. */
4084 #define INVALID_REGNUM (~(unsigned int) 0)
4085
4086 /* REGNUM for which no debug information can be generated. */
4087 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
4088
4089 extern rtx output_constant_def (tree, int);
4090 extern rtx lookup_constant_def (tree);
4091
4092 /* Nonzero after end of reload pass.
4093 Set to 1 or 0 by reload1.cc. */
4094
4095 extern int reload_completed;
4096
4097 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
4098 extern int epilogue_completed;
4099
4100 /* Set to 1 while reload_as_needed is operating.
4101 Required by some machines to handle any generated moves differently. */
4102
4103 extern int reload_in_progress;
4104
4105 /* Set to 1 while in lra. */
4106 extern int lra_in_progress;
4107
4108 /* This macro indicates whether you may create a new
4109 pseudo-register. */
4110
4111 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
4112
4113 #ifdef STACK_REGS
4114 /* Nonzero after end of regstack pass.
4115 Set to 1 or 0 by reg-stack.cc. */
4116 extern int regstack_completed;
4117 #endif
4118
4119 /* If this is nonzero, we do not bother generating VOLATILE
4120 around volatile memory references, and we are willing to
4121 output indirect addresses. If cse is to follow, we reject
4122 indirect addresses so a useful potential cse is generated;
4123 if it is used only once, instruction combination will produce
4124 the same indirect address eventually. */
4125 extern int cse_not_expected;
4126
4127 /* Translates rtx code to tree code, for those codes needed by
4128 real_arithmetic. The function returns an int because the caller may not
4129 know what `enum tree_code' means. */
4130
4131 extern int rtx_to_tree_code (enum rtx_code);
4132
4133 /* In cse.cc */
4134 extern int delete_trivially_dead_insns (rtx_insn *, int);
4135 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
4136 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
4137
4138 /* In dse.cc */
4139 extern bool check_for_inc_dec (rtx_insn *insn);
4140
4141 /* In jump.cc */
4142 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
4143 extern bool jump_to_label_p (const rtx_insn *);
4144 extern int condjump_p (const rtx_insn *);
4145 extern int any_condjump_p (const rtx_insn *);
4146 extern int any_uncondjump_p (const rtx_insn *);
4147 extern rtx pc_set (const rtx_insn *);
4148 extern rtx condjump_label (const rtx_insn *);
4149 extern int simplejump_p (const rtx_insn *);
4150 extern int returnjump_p (const rtx_insn *);
4151 extern int eh_returnjump_p (rtx_insn *);
4152 extern int onlyjump_p (const rtx_insn *);
4153 extern int invert_jump_1 (rtx_jump_insn *, rtx);
4154 extern int invert_jump (rtx_jump_insn *, rtx, int);
4155 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
4156 extern int true_regnum (const_rtx);
4157 extern unsigned int reg_or_subregno (const_rtx);
4158 extern int redirect_jump_1 (rtx_insn *, rtx);
4159 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
4160 extern int redirect_jump (rtx_jump_insn *, rtx, int);
4161 extern void rebuild_jump_labels (rtx_insn *);
4162 extern void rebuild_jump_labels_chain (rtx_insn *);
4163 extern rtx reversed_comparison (const_rtx, machine_mode);
4164 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
4165 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
4166 const_rtx, const rtx_insn *);
4167 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
4168 extern int condjump_in_parallel_p (const rtx_insn *);
4169
4170 /* In emit-rtl.cc. */
4171 extern int max_reg_num (void);
4172 extern int max_label_num (void);
4173 extern int get_first_label_num (void);
4174 extern void maybe_set_first_label_num (rtx_code_label *);
4175 extern void delete_insns_since (rtx_insn *);
4176 extern void mark_reg_pointer (rtx, int);
4177 extern void mark_user_reg (rtx);
4178 extern void reset_used_flags (rtx);
4179 extern void set_used_flags (rtx);
4180 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
4181 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
4182 extern int get_max_insn_count (void);
4183 extern int in_sequence_p (void);
4184 extern void init_emit (void);
4185 extern void init_emit_regs (void);
4186 extern void init_derived_machine_modes (void);
4187 extern void init_emit_once (void);
4188 extern void push_topmost_sequence (void);
4189 extern void pop_topmost_sequence (void);
4190 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
4191 extern unsigned int unshare_all_rtl (void);
4192 extern void unshare_all_rtl_again (rtx_insn *);
4193 extern void unshare_all_rtl_in_chain (rtx_insn *);
4194 extern void verify_rtl_sharing (void);
4195 extern void add_insn (rtx_insn *);
4196 extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block);
4197 extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block);
4198 extern void remove_insn (rtx_insn *);
4199 extern rtx_insn *emit (rtx, bool = true);
4200 extern void emit_insn_at_entry (rtx);
4201 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
4202 extern rtx gen_const_mem (machine_mode, rtx);
4203 extern rtx gen_frame_mem (machine_mode, rtx);
4204 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
4205 extern bool validate_subreg (machine_mode, machine_mode,
4206 const_rtx, poly_uint64);
4207
4208 /* In combine.cc */
4209 extern unsigned int extended_count (const_rtx, machine_mode, int);
4210 extern rtx remove_death (unsigned int, rtx_insn *);
4211 extern void dump_combine_stats (FILE *);
4212 extern void dump_combine_total_stats (FILE *);
4213 extern rtx make_compound_operation (rtx, enum rtx_code);
4214
4215 /* In sched-rgn.cc. */
4216 extern void schedule_insns (void);
4217
4218 /* In sched-ebb.cc. */
4219 extern void schedule_ebbs (void);
4220
4221 /* In sel-sched-dump.cc. */
4222 extern void sel_sched_fix_param (const char *param, const char *val);
4223
4224 /* In print-rtl.cc */
4225 extern const char *print_rtx_head;
4226 extern void debug (const rtx_def &ref);
4227 extern void debug (const rtx_def *ptr);
4228 extern void debug_rtx (const_rtx);
4229 extern void debug_rtx_list (const rtx_insn *, int);
4230 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
4231 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
4232 extern void print_mem_expr (FILE *, const_tree);
4233 extern void print_rtl (FILE *, const_rtx);
4234 extern void print_simple_rtl (FILE *, const_rtx);
4235 extern int print_rtl_single (FILE *, const_rtx);
4236 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
4237 extern void print_inline_rtx (FILE *, const_rtx, int);
4238
4239 /* In stmt.cc */
4240 extern void expand_null_return (void);
4241 extern void expand_naked_return (void);
4242 extern void emit_jump (rtx);
4243
4244 /* Memory operation built-ins differ by return value. Mapping
4245 of the enum values is following:
4246 - RETURN_BEGIN - return destination, e.g. memcpy
4247 - RETURN_END - return destination + n, e.g. mempcpy
4248 - RETURN_END_MINUS_ONE - return a pointer to the terminating
4249 null byte of the string, e.g. strcpy
4250 */
4251
4252 enum memop_ret
4253 {
4254 RETURN_BEGIN,
4255 RETURN_END,
4256 RETURN_END_MINUS_ONE
4257 };
4258
4259 /* In expr.cc */
4260 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
4261 unsigned int, memop_ret);
4262 extern poly_int64 find_args_size_adjust (rtx_insn *);
4263 extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64);
4264
4265 /* In expmed.cc */
4266 extern void init_expmed (void);
4267 extern void expand_inc (rtx, rtx);
4268 extern void expand_dec (rtx, rtx);
4269
4270 /* In lower-subreg.cc */
4271 extern void init_lower_subreg (void);
4272
4273 /* In gcse.cc */
4274 extern bool can_copy_p (machine_mode);
4275 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
4276 extern rtx_insn *prepare_copy_insn (rtx, rtx);
4277
4278 /* In cprop.cc */
4279 extern rtx fis_get_condition (rtx_insn *);
4280
4281 /* In ira.cc */
4282 extern HARD_REG_SET eliminable_regset;
4283 extern void mark_elimination (int, int);
4284
4285 /* In reginfo.cc */
4286 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
4287 extern int reg_class_subset_p (reg_class_t, reg_class_t);
4288 extern void globalize_reg (tree, int);
4289 extern void init_reg_modes_target (void);
4290 extern void init_regs (void);
4291 extern void reinit_regs (void);
4292 extern void init_fake_stack_mems (void);
4293 extern void save_register_info (void);
4294 extern void init_reg_sets (void);
4295 extern void regclass (rtx, int);
4296 extern void reg_scan (rtx_insn *, unsigned int);
4297 extern void fix_register (const char *, int, int);
4298 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
4299
4300 /* In reload1.cc */
4301 extern int function_invariant_p (const_rtx);
4302
4303 /* In calls.cc */
4304 enum libcall_type
4305 {
4306 LCT_NORMAL = 0,
4307 LCT_CONST = 1,
4308 LCT_PURE = 2,
4309 LCT_NORETURN = 3,
4310 LCT_THROW = 4,
4311 LCT_RETURNS_TWICE = 5
4312 };
4313
4314 extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
4315 machine_mode, int, rtx_mode_t *);
4316
4317 /* Output a library call and discard the returned value. FUN is the
4318 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4319 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
4320 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4321 another LCT_ value for other types of library calls.
4322
4323 There are different overloads of this function for different numbers
4324 of arguments. In each case the argument value is followed by its mode. */
4325
4326 inline void
4327 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
4328 {
4329 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
4330 }
4331
4332 inline void
4333 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4334 rtx arg1, machine_mode arg1_mode)
4335 {
4336 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4337 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
4338 }
4339
4340 inline void
4341 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4342 rtx arg1, machine_mode arg1_mode,
4343 rtx arg2, machine_mode arg2_mode)
4344 {
4345 rtx_mode_t args[] = {
4346 rtx_mode_t (arg1, arg1_mode),
4347 rtx_mode_t (arg2, arg2_mode)
4348 };
4349 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
4350 }
4351
4352 inline void
4353 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4354 rtx arg1, machine_mode arg1_mode,
4355 rtx arg2, machine_mode arg2_mode,
4356 rtx arg3, machine_mode arg3_mode)
4357 {
4358 rtx_mode_t args[] = {
4359 rtx_mode_t (arg1, arg1_mode),
4360 rtx_mode_t (arg2, arg2_mode),
4361 rtx_mode_t (arg3, arg3_mode)
4362 };
4363 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
4364 }
4365
4366 inline void
4367 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4368 rtx arg1, machine_mode arg1_mode,
4369 rtx arg2, machine_mode arg2_mode,
4370 rtx arg3, machine_mode arg3_mode,
4371 rtx arg4, machine_mode arg4_mode)
4372 {
4373 rtx_mode_t args[] = {
4374 rtx_mode_t (arg1, arg1_mode),
4375 rtx_mode_t (arg2, arg2_mode),
4376 rtx_mode_t (arg3, arg3_mode),
4377 rtx_mode_t (arg4, arg4_mode)
4378 };
4379 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
4380 }
4381
4382 /* Like emit_library_call, but return the value produced by the call.
4383 Use VALUE to store the result if it is nonnull, otherwise pick a
4384 convenient location. */
4385
4386 inline rtx
4387 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4388 machine_mode outmode)
4389 {
4390 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4391 }
4392
4393 inline rtx
4394 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4395 machine_mode outmode,
4396 rtx arg1, machine_mode arg1_mode)
4397 {
4398 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4399 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4400 }
4401
4402 inline rtx
4403 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4404 machine_mode outmode,
4405 rtx arg1, machine_mode arg1_mode,
4406 rtx arg2, machine_mode arg2_mode)
4407 {
4408 rtx_mode_t args[] = {
4409 rtx_mode_t (arg1, arg1_mode),
4410 rtx_mode_t (arg2, arg2_mode)
4411 };
4412 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4413 }
4414
4415 inline rtx
4416 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4417 machine_mode outmode,
4418 rtx arg1, machine_mode arg1_mode,
4419 rtx arg2, machine_mode arg2_mode,
4420 rtx arg3, machine_mode arg3_mode)
4421 {
4422 rtx_mode_t args[] = {
4423 rtx_mode_t (arg1, arg1_mode),
4424 rtx_mode_t (arg2, arg2_mode),
4425 rtx_mode_t (arg3, arg3_mode)
4426 };
4427 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4428 }
4429
4430 inline rtx
4431 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4432 machine_mode outmode,
4433 rtx arg1, machine_mode arg1_mode,
4434 rtx arg2, machine_mode arg2_mode,
4435 rtx arg3, machine_mode arg3_mode,
4436 rtx arg4, machine_mode arg4_mode)
4437 {
4438 rtx_mode_t args[] = {
4439 rtx_mode_t (arg1, arg1_mode),
4440 rtx_mode_t (arg2, arg2_mode),
4441 rtx_mode_t (arg3, arg3_mode),
4442 rtx_mode_t (arg4, arg4_mode)
4443 };
4444 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4445 }
4446
4447 /* In varasm.cc */
4448 extern void init_varasm_once (void);
4449
4450 extern rtx make_debug_expr_from_rtl (const_rtx);
4451
4452 /* In read-rtl.cc */
4453 #ifdef GENERATOR_FILE
4454 extern bool read_rtx (const char *, vec<rtx> *);
4455 #endif
4456
4457 /* In alias.cc */
4458 extern rtx canon_rtx (rtx);
4459 extern int true_dependence (const_rtx, machine_mode, const_rtx);
4460 extern rtx get_addr (rtx);
4461 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
4462 const_rtx, rtx);
4463 extern int read_dependence (const_rtx, const_rtx);
4464 extern int anti_dependence (const_rtx, const_rtx);
4465 extern int canon_anti_dependence (const_rtx, bool,
4466 const_rtx, machine_mode, rtx);
4467 extern int output_dependence (const_rtx, const_rtx);
4468 extern int canon_output_dependence (const_rtx, bool,
4469 const_rtx, machine_mode, rtx);
4470 extern int may_alias_p (const_rtx, const_rtx);
4471 extern void init_alias_target (void);
4472 extern void init_alias_analysis (void);
4473 extern void end_alias_analysis (void);
4474 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4475 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4476 extern bool may_be_sp_based_p (rtx);
4477 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4478 extern rtx get_reg_known_value (unsigned int);
4479 extern bool get_reg_known_equiv_p (unsigned int);
4480 extern rtx get_reg_base_value (unsigned int);
4481 extern rtx extract_mem_from_operand (rtx);
4482
4483 #ifdef STACK_REGS
4484 extern int stack_regs_mentioned (const_rtx insn);
4485 #endif
4486
4487 /* In toplev.cc */
4488 extern GTY(()) rtx stack_limit_rtx;
4489
4490 /* In var-tracking.cc */
4491 extern unsigned int variable_tracking_main (void);
4492 extern void delete_vta_debug_insns (bool);
4493
4494 /* In stor-layout.cc. */
4495 extern void get_mode_bounds (scalar_int_mode, int,
4496 scalar_int_mode, rtx *, rtx *);
4497
4498 /* In loop-iv.cc */
4499 extern rtx canon_condition (rtx);
4500 extern void simplify_using_condition (rtx, rtx *, bitmap);
4501
4502 /* In final.cc */
4503 extern unsigned int compute_alignments (void);
4504 extern void update_alignments (vec<rtx> &);
4505 extern int asm_str_count (const char *templ);
4506 \f
4507 struct rtl_hooks
4508 {
4509 rtx (*gen_lowpart) (machine_mode, rtx);
4510 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4511 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4512 unsigned HOST_WIDE_INT *);
4513 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4514 unsigned int *);
4515 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4516
4517 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4518 };
4519
4520 /* Each pass can provide its own. */
4521 extern struct rtl_hooks rtl_hooks;
4522
4523 /* ... but then it has to restore these. */
4524 extern const struct rtl_hooks general_rtl_hooks;
4525
4526 /* Keep this for the nonce. */
4527 #define gen_lowpart rtl_hooks.gen_lowpart
4528
4529 extern void insn_locations_init (void);
4530 extern void insn_locations_finalize (void);
4531 extern void set_curr_insn_location (location_t);
4532 extern location_t curr_insn_location (void);
4533 extern void set_insn_locations (rtx_insn *, location_t);
4534
4535 /* rtl-error.cc */
4536 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4537 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4538 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4539 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4540
4541 #define fatal_insn(msgid, insn) \
4542 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4543 #define fatal_insn_not_found(insn) \
4544 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4545
4546 /* reginfo.cc */
4547 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4548
4549 /* Information about the function that is propagated by the RTL backend.
4550 Available only for functions that has been already assembled. */
4551
4552 struct GTY(()) cgraph_rtl_info {
4553 unsigned int preferred_incoming_stack_boundary;
4554
4555 /* Which registers the function clobbers, either directly or by
4556 calling another function. */
4557 HARD_REG_SET function_used_regs;
4558 };
4559
4560 /* If loads from memories of mode MODE always sign or zero extend,
4561 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4562 otherwise. */
4563
4564 inline rtx_code
4565 load_extend_op (machine_mode mode)
4566 {
4567 scalar_int_mode int_mode;
4568 if (is_a <scalar_int_mode> (mode, &int_mode)
4569 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4570 return LOAD_EXTEND_OP (int_mode);
4571 return UNKNOWN;
4572 }
4573
4574 /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4575 and return the base. Return X otherwise. */
4576
4577 inline rtx
4578 strip_offset_and_add (rtx x, poly_int64_pod *offset)
4579 {
4580 if (GET_CODE (x) == PLUS)
4581 {
4582 poly_int64 suboffset;
4583 x = strip_offset (x, &suboffset);
4584 *offset = poly_uint64 (*offset) + suboffset;
4585 }
4586 return x;
4587 }
4588
4589 /* Return true if X is an operation that always operates on the full
4590 registers for WORD_REGISTER_OPERATIONS architectures. */
4591
4592 inline bool
4593 word_register_operation_p (const_rtx x)
4594 {
4595 switch (GET_CODE (x))
4596 {
4597 case CONST_INT:
4598 case ROTATE:
4599 case ROTATERT:
4600 case SIGN_EXTRACT:
4601 case ZERO_EXTRACT:
4602 return false;
4603
4604 default:
4605 return true;
4606 }
4607 }
4608
4609 /* Holds an rtx comparison to simplify passing many parameters pertaining to a
4610 single comparison. */
4611
4612 struct rtx_comparison {
4613 rtx_code code;
4614 rtx op0, op1;
4615 machine_mode mode;
4616 };
4617
4618 /* gtype-desc.cc. */
4619 extern void gt_ggc_mx (rtx &);
4620 extern void gt_pch_nx (rtx &);
4621 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4622
4623 #endif /* ! GCC_RTL_H */
This page took 0.256714 seconds and 5 git commands to generate.