]> gcc.gnu.org Git - gcc.git/blob - gcc/resource.c
240cf2323344d79f932a1b02bf66fdf932842f05
[gcc.git] / gcc / resource.c
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "function.h"
32 #include "regs.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "resource.h"
36 #include "except.h"
37 #include "insn-attr.h"
38 #include "params.h"
39
40 /* This structure is used to record liveness information at the targets or
41 fallthrough insns of branches. We will most likely need the information
42 at targets again, so save them in a hash table rather than recomputing them
43 each time. */
44
45 struct target_info
46 {
47 int uid; /* INSN_UID of target. */
48 struct target_info *next; /* Next info for same hash bucket. */
49 HARD_REG_SET live_regs; /* Registers live at target. */
50 int block; /* Basic block number containing target. */
51 int bb_tick; /* Generation count of basic block info. */
52 };
53
54 #define TARGET_HASH_PRIME 257
55
56 /* Indicates what resources are required at the beginning of the epilogue. */
57 static struct resources start_of_epilogue_needs;
58
59 /* Indicates what resources are required at function end. */
60 static struct resources end_of_function_needs;
61
62 /* Define the hash table itself. */
63 static struct target_info **target_hash_table = NULL;
64
65 /* For each basic block, we maintain a generation number of its basic
66 block info, which is updated each time we move an insn from the
67 target of a jump. This is the generation number indexed by block
68 number. */
69
70 static int *bb_ticks;
71
72 /* Marks registers possibly live at the current place being scanned by
73 mark_target_live_regs. Also used by update_live_status. */
74
75 static HARD_REG_SET current_live_regs;
76
77 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
78 Also only used by the next two functions. */
79
80 static HARD_REG_SET pending_dead_regs;
81 \f
82 static void update_live_status (rtx, rtx, void *);
83 static int find_basic_block (rtx, int);
84 static rtx next_insn_no_annul (rtx);
85 static rtx find_dead_or_set_registers (rtx, struct resources*,
86 rtx*, int, struct resources,
87 struct resources);
88 \f
89 /* Utility function called from mark_target_live_regs via note_stores.
90 It deadens any CLOBBERed registers and livens any SET registers. */
91
92 static void
93 update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
94 {
95 int first_regno, last_regno;
96 int i;
97
98 if (GET_CODE (dest) != REG
99 && (GET_CODE (dest) != SUBREG || GET_CODE (SUBREG_REG (dest)) != REG))
100 return;
101
102 if (GET_CODE (dest) == SUBREG)
103 first_regno = subreg_regno (dest);
104 else
105 first_regno = REGNO (dest);
106
107 last_regno = first_regno + HARD_REGNO_NREGS (first_regno, GET_MODE (dest));
108
109 if (GET_CODE (x) == CLOBBER)
110 for (i = first_regno; i < last_regno; i++)
111 CLEAR_HARD_REG_BIT (current_live_regs, i);
112 else
113 for (i = first_regno; i < last_regno; i++)
114 {
115 SET_HARD_REG_BIT (current_live_regs, i);
116 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
117 }
118 }
119
120 /* Find the number of the basic block with correct live register
121 information that starts closest to INSN. Return -1 if we couldn't
122 find such a basic block or the beginning is more than
123 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
124 an unlimited search.
125
126 The delay slot filling code destroys the control-flow graph so,
127 instead of finding the basic block containing INSN, we search
128 backwards toward a BARRIER where the live register information is
129 correct. */
130
131 static int
132 find_basic_block (rtx insn, int search_limit)
133 {
134 basic_block bb;
135
136 /* Scan backwards to the previous BARRIER. Then see if we can find a
137 label that starts a basic block. Return the basic block number. */
138 for (insn = prev_nonnote_insn (insn);
139 insn && GET_CODE (insn) != BARRIER && search_limit != 0;
140 insn = prev_nonnote_insn (insn), --search_limit)
141 ;
142
143 /* The closest BARRIER is too far away. */
144 if (search_limit == 0)
145 return -1;
146
147 /* The start of the function. */
148 else if (insn == 0)
149 return ENTRY_BLOCK_PTR->next_bb->index;
150
151 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
152 anything other than a CODE_LABEL or note, we can't find this code. */
153 for (insn = next_nonnote_insn (insn);
154 insn && GET_CODE (insn) == CODE_LABEL;
155 insn = next_nonnote_insn (insn))
156 {
157 FOR_EACH_BB (bb)
158 if (insn == BB_HEAD (bb))
159 return bb->index;
160 }
161
162 return -1;
163 }
164 \f
165 /* Similar to next_insn, but ignores insns in the delay slots of
166 an annulled branch. */
167
168 static rtx
169 next_insn_no_annul (rtx insn)
170 {
171 if (insn)
172 {
173 /* If INSN is an annulled branch, skip any insns from the target
174 of the branch. */
175 if ((GET_CODE (insn) == JUMP_INSN
176 || GET_CODE (insn) == CALL_INSN
177 || GET_CODE (insn) == INSN)
178 && INSN_ANNULLED_BRANCH_P (insn)
179 && NEXT_INSN (PREV_INSN (insn)) != insn)
180 {
181 rtx next = NEXT_INSN (insn);
182 enum rtx_code code = GET_CODE (next);
183
184 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
185 && INSN_FROM_TARGET_P (next))
186 {
187 insn = next;
188 next = NEXT_INSN (insn);
189 code = GET_CODE (next);
190 }
191 }
192
193 insn = NEXT_INSN (insn);
194 if (insn && GET_CODE (insn) == INSN
195 && GET_CODE (PATTERN (insn)) == SEQUENCE)
196 insn = XVECEXP (PATTERN (insn), 0, 0);
197 }
198
199 return insn;
200 }
201 \f
202 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
203 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
204 is TRUE, resources used by the called routine will be included for
205 CALL_INSNs. */
206
207 void
208 mark_referenced_resources (rtx x, struct resources *res,
209 int include_delayed_effects)
210 {
211 enum rtx_code code = GET_CODE (x);
212 int i, j;
213 unsigned int r;
214 const char *format_ptr;
215
216 /* Handle leaf items for which we set resource flags. Also, special-case
217 CALL, SET and CLOBBER operators. */
218 switch (code)
219 {
220 case CONST:
221 case CONST_INT:
222 case CONST_DOUBLE:
223 case CONST_VECTOR:
224 case PC:
225 case SYMBOL_REF:
226 case LABEL_REF:
227 return;
228
229 case SUBREG:
230 if (GET_CODE (SUBREG_REG (x)) != REG)
231 mark_referenced_resources (SUBREG_REG (x), res, 0);
232 else
233 {
234 unsigned int regno = subreg_regno (x);
235 unsigned int last_regno
236 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
237
238 if (last_regno > FIRST_PSEUDO_REGISTER)
239 abort ();
240 for (r = regno; r < last_regno; r++)
241 SET_HARD_REG_BIT (res->regs, r);
242 }
243 return;
244
245 case REG:
246 {
247 unsigned int regno = REGNO (x);
248 unsigned int last_regno
249 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
250
251 if (last_regno > FIRST_PSEUDO_REGISTER)
252 abort ();
253 for (r = regno; r < last_regno; r++)
254 SET_HARD_REG_BIT (res->regs, r);
255 }
256 return;
257
258 case MEM:
259 /* If this memory shouldn't change, it really isn't referencing
260 memory. */
261 if (RTX_UNCHANGING_P (x))
262 res->unch_memory = 1;
263 else
264 res->memory = 1;
265 res->volatil |= MEM_VOLATILE_P (x);
266
267 /* Mark registers used to access memory. */
268 mark_referenced_resources (XEXP (x, 0), res, 0);
269 return;
270
271 case CC0:
272 res->cc = 1;
273 return;
274
275 case UNSPEC_VOLATILE:
276 case ASM_INPUT:
277 /* Traditional asm's are always volatile. */
278 res->volatil = 1;
279 return;
280
281 case TRAP_IF:
282 res->volatil = 1;
283 break;
284
285 case ASM_OPERANDS:
286 res->volatil |= MEM_VOLATILE_P (x);
287
288 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
289 We can not just fall through here since then we would be confused
290 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
291 traditional asms unlike their normal usage. */
292
293 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
294 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
295 return;
296
297 case CALL:
298 /* The first operand will be a (MEM (xxx)) but doesn't really reference
299 memory. The second operand may be referenced, though. */
300 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
301 mark_referenced_resources (XEXP (x, 1), res, 0);
302 return;
303
304 case SET:
305 /* Usually, the first operand of SET is set, not referenced. But
306 registers used to access memory are referenced. SET_DEST is
307 also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */
308
309 mark_referenced_resources (SET_SRC (x), res, 0);
310
311 x = SET_DEST (x);
312 if (GET_CODE (x) == SIGN_EXTRACT
313 || GET_CODE (x) == ZERO_EXTRACT
314 || GET_CODE (x) == STRICT_LOW_PART)
315 mark_referenced_resources (x, res, 0);
316 else if (GET_CODE (x) == SUBREG)
317 x = SUBREG_REG (x);
318 if (GET_CODE (x) == MEM)
319 mark_referenced_resources (XEXP (x, 0), res, 0);
320 return;
321
322 case CLOBBER:
323 return;
324
325 case CALL_INSN:
326 if (include_delayed_effects)
327 {
328 /* A CALL references memory, the frame pointer if it exists, the
329 stack pointer, any global registers and any registers given in
330 USE insns immediately in front of the CALL.
331
332 However, we may have moved some of the parameter loading insns
333 into the delay slot of this CALL. If so, the USE's for them
334 don't count and should be skipped. */
335 rtx insn = PREV_INSN (x);
336 rtx sequence = 0;
337 int seq_size = 0;
338 int i;
339
340 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
341 if (NEXT_INSN (insn) != x)
342 {
343 sequence = PATTERN (NEXT_INSN (insn));
344 seq_size = XVECLEN (sequence, 0);
345 if (GET_CODE (sequence) != SEQUENCE)
346 abort ();
347 }
348
349 res->memory = 1;
350 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
351 if (frame_pointer_needed)
352 {
353 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
354 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
355 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
356 #endif
357 }
358
359 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
360 if (global_regs[i])
361 SET_HARD_REG_BIT (res->regs, i);
362
363 /* Check for a REG_SETJMP. If it exists, then we must
364 assume that this call can need any register.
365
366 This is done to be more conservative about how we handle setjmp.
367 We assume that they both use and set all registers. Using all
368 registers ensures that a register will not be considered dead
369 just because it crosses a setjmp call. A register should be
370 considered dead only if the setjmp call returns nonzero. */
371 if (find_reg_note (x, REG_SETJMP, NULL))
372 SET_HARD_REG_SET (res->regs);
373
374 {
375 rtx link;
376
377 for (link = CALL_INSN_FUNCTION_USAGE (x);
378 link;
379 link = XEXP (link, 1))
380 if (GET_CODE (XEXP (link, 0)) == USE)
381 {
382 for (i = 1; i < seq_size; i++)
383 {
384 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
385 if (GET_CODE (slot_pat) == SET
386 && rtx_equal_p (SET_DEST (slot_pat),
387 XEXP (XEXP (link, 0), 0)))
388 break;
389 }
390 if (i >= seq_size)
391 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
392 res, 0);
393 }
394 }
395 }
396
397 /* ... fall through to other INSN processing ... */
398
399 case INSN:
400 case JUMP_INSN:
401
402 #ifdef INSN_REFERENCES_ARE_DELAYED
403 if (! include_delayed_effects
404 && INSN_REFERENCES_ARE_DELAYED (x))
405 return;
406 #endif
407
408 /* No special processing, just speed up. */
409 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
410 return;
411
412 default:
413 break;
414 }
415
416 /* Process each sub-expression and flag what it needs. */
417 format_ptr = GET_RTX_FORMAT (code);
418 for (i = 0; i < GET_RTX_LENGTH (code); i++)
419 switch (*format_ptr++)
420 {
421 case 'e':
422 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
423 break;
424
425 case 'E':
426 for (j = 0; j < XVECLEN (x, i); j++)
427 mark_referenced_resources (XVECEXP (x, i, j), res,
428 include_delayed_effects);
429 break;
430 }
431 }
432 \f
433 /* A subroutine of mark_target_live_regs. Search forward from TARGET
434 looking for registers that are set before they are used. These are dead.
435 Stop after passing a few conditional jumps, and/or a small
436 number of unconditional branches. */
437
438 static rtx
439 find_dead_or_set_registers (rtx target, struct resources *res,
440 rtx *jump_target, int jump_count,
441 struct resources set, struct resources needed)
442 {
443 HARD_REG_SET scratch;
444 rtx insn, next;
445 rtx jump_insn = 0;
446 int i;
447
448 for (insn = target; insn; insn = next)
449 {
450 rtx this_jump_insn = insn;
451
452 next = NEXT_INSN (insn);
453
454 /* If this instruction can throw an exception, then we don't
455 know where we might end up next. That means that we have to
456 assume that whatever we have already marked as live really is
457 live. */
458 if (can_throw_internal (insn))
459 break;
460
461 switch (GET_CODE (insn))
462 {
463 case CODE_LABEL:
464 /* After a label, any pending dead registers that weren't yet
465 used can be made dead. */
466 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
467 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
468 CLEAR_HARD_REG_SET (pending_dead_regs);
469
470 continue;
471
472 case BARRIER:
473 case NOTE:
474 continue;
475
476 case INSN:
477 if (GET_CODE (PATTERN (insn)) == USE)
478 {
479 /* If INSN is a USE made by update_block, we care about the
480 underlying insn. Any registers set by the underlying insn
481 are live since the insn is being done somewhere else. */
482 if (INSN_P (XEXP (PATTERN (insn), 0)))
483 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
484 MARK_SRC_DEST_CALL);
485
486 /* All other USE insns are to be ignored. */
487 continue;
488 }
489 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
490 continue;
491 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
492 {
493 /* An unconditional jump can be used to fill the delay slot
494 of a call, so search for a JUMP_INSN in any position. */
495 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
496 {
497 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
498 if (GET_CODE (this_jump_insn) == JUMP_INSN)
499 break;
500 }
501 }
502
503 default:
504 break;
505 }
506
507 if (GET_CODE (this_jump_insn) == JUMP_INSN)
508 {
509 if (jump_count++ < 10)
510 {
511 if (any_uncondjump_p (this_jump_insn)
512 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
513 {
514 next = JUMP_LABEL (this_jump_insn);
515 if (jump_insn == 0)
516 {
517 jump_insn = insn;
518 if (jump_target)
519 *jump_target = JUMP_LABEL (this_jump_insn);
520 }
521 }
522 else if (any_condjump_p (this_jump_insn))
523 {
524 struct resources target_set, target_res;
525 struct resources fallthrough_res;
526
527 /* We can handle conditional branches here by following
528 both paths, and then IOR the results of the two paths
529 together, which will give us registers that are dead
530 on both paths. Since this is expensive, we give it
531 a much higher cost than unconditional branches. The
532 cost was chosen so that we will follow at most 1
533 conditional branch. */
534
535 jump_count += 4;
536 if (jump_count >= 10)
537 break;
538
539 mark_referenced_resources (insn, &needed, 1);
540
541 /* For an annulled branch, mark_set_resources ignores slots
542 filled by instructions from the target. This is correct
543 if the branch is not taken. Since we are following both
544 paths from the branch, we must also compute correct info
545 if the branch is taken. We do this by inverting all of
546 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
547 and then inverting the INSN_FROM_TARGET_P bits again. */
548
549 if (GET_CODE (PATTERN (insn)) == SEQUENCE
550 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
551 {
552 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
553 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
554 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
555
556 target_set = set;
557 mark_set_resources (insn, &target_set, 0,
558 MARK_SRC_DEST_CALL);
559
560 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
561 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
562 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
563
564 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
565 }
566 else
567 {
568 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
569 target_set = set;
570 }
571
572 target_res = *res;
573 COPY_HARD_REG_SET (scratch, target_set.regs);
574 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
575 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
576
577 fallthrough_res = *res;
578 COPY_HARD_REG_SET (scratch, set.regs);
579 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
580 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
581
582 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
583 &target_res, 0, jump_count,
584 target_set, needed);
585 find_dead_or_set_registers (next,
586 &fallthrough_res, 0, jump_count,
587 set, needed);
588 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
589 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
590 break;
591 }
592 else
593 break;
594 }
595 else
596 {
597 /* Don't try this optimization if we expired our jump count
598 above, since that would mean there may be an infinite loop
599 in the function being compiled. */
600 jump_insn = 0;
601 break;
602 }
603 }
604
605 mark_referenced_resources (insn, &needed, 1);
606 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
607
608 COPY_HARD_REG_SET (scratch, set.regs);
609 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
610 AND_COMPL_HARD_REG_SET (res->regs, scratch);
611 }
612
613 return jump_insn;
614 }
615 \f
616 /* Given X, a part of an insn, and a pointer to a `struct resource',
617 RES, indicate which resources are modified by the insn. If
618 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
619 set by the called routine.
620
621 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
622 objects are being referenced instead of set.
623
624 We never mark the insn as modifying the condition code unless it explicitly
625 SETs CC0 even though this is not totally correct. The reason for this is
626 that we require a SET of CC0 to immediately precede the reference to CC0.
627 So if some other insn sets CC0 as a side-effect, we know it cannot affect
628 our computation and thus may be placed in a delay slot. */
629
630 void
631 mark_set_resources (rtx x, struct resources *res, int in_dest,
632 enum mark_resource_type mark_type)
633 {
634 enum rtx_code code;
635 int i, j;
636 unsigned int r;
637 const char *format_ptr;
638
639 restart:
640
641 code = GET_CODE (x);
642
643 switch (code)
644 {
645 case NOTE:
646 case BARRIER:
647 case CODE_LABEL:
648 case USE:
649 case CONST_INT:
650 case CONST_DOUBLE:
651 case CONST_VECTOR:
652 case LABEL_REF:
653 case SYMBOL_REF:
654 case CONST:
655 case PC:
656 /* These don't set any resources. */
657 return;
658
659 case CC0:
660 if (in_dest)
661 res->cc = 1;
662 return;
663
664 case CALL_INSN:
665 /* Called routine modifies the condition code, memory, any registers
666 that aren't saved across calls, global registers and anything
667 explicitly CLOBBERed immediately after the CALL_INSN. */
668
669 if (mark_type == MARK_SRC_DEST_CALL)
670 {
671 rtx link;
672
673 res->cc = res->memory = 1;
674 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
675 if (call_used_regs[r] || global_regs[r])
676 SET_HARD_REG_BIT (res->regs, r);
677
678 for (link = CALL_INSN_FUNCTION_USAGE (x);
679 link; link = XEXP (link, 1))
680 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
681 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
682 MARK_SRC_DEST);
683
684 /* Check for a REG_SETJMP. If it exists, then we must
685 assume that this call can clobber any register. */
686 if (find_reg_note (x, REG_SETJMP, NULL))
687 SET_HARD_REG_SET (res->regs);
688 }
689
690 /* ... and also what its RTL says it modifies, if anything. */
691
692 case JUMP_INSN:
693 case INSN:
694
695 /* An insn consisting of just a CLOBBER (or USE) is just for flow
696 and doesn't actually do anything, so we ignore it. */
697
698 #ifdef INSN_SETS_ARE_DELAYED
699 if (mark_type != MARK_SRC_DEST_CALL
700 && INSN_SETS_ARE_DELAYED (x))
701 return;
702 #endif
703
704 x = PATTERN (x);
705 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
706 goto restart;
707 return;
708
709 case SET:
710 /* If the source of a SET is a CALL, this is actually done by
711 the called routine. So only include it if we are to include the
712 effects of the calling routine. */
713
714 mark_set_resources (SET_DEST (x), res,
715 (mark_type == MARK_SRC_DEST_CALL
716 || GET_CODE (SET_SRC (x)) != CALL),
717 mark_type);
718
719 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
720 return;
721
722 case CLOBBER:
723 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
724 return;
725
726 case SEQUENCE:
727 for (i = 0; i < XVECLEN (x, 0); i++)
728 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
729 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
730 mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
731 return;
732
733 case POST_INC:
734 case PRE_INC:
735 case POST_DEC:
736 case PRE_DEC:
737 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
738 return;
739
740 case PRE_MODIFY:
741 case POST_MODIFY:
742 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
743 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
744 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
745 return;
746
747 case SIGN_EXTRACT:
748 case ZERO_EXTRACT:
749 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
750 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
751 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
752 return;
753
754 case MEM:
755 if (in_dest)
756 {
757 res->memory = 1;
758 res->unch_memory |= RTX_UNCHANGING_P (x);
759 res->volatil |= MEM_VOLATILE_P (x);
760 }
761
762 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
763 return;
764
765 case SUBREG:
766 if (in_dest)
767 {
768 if (GET_CODE (SUBREG_REG (x)) != REG)
769 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
770 else
771 {
772 unsigned int regno = subreg_regno (x);
773 unsigned int last_regno
774 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
775
776 if (last_regno > FIRST_PSEUDO_REGISTER)
777 abort ();
778 for (r = regno; r < last_regno; r++)
779 SET_HARD_REG_BIT (res->regs, r);
780 }
781 }
782 return;
783
784 case REG:
785 if (in_dest)
786 {
787 unsigned int regno = REGNO (x);
788 unsigned int last_regno
789 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
790
791 if (last_regno > FIRST_PSEUDO_REGISTER)
792 abort ();
793 for (r = regno; r < last_regno; r++)
794 SET_HARD_REG_BIT (res->regs, r);
795 }
796 return;
797
798 case UNSPEC_VOLATILE:
799 case ASM_INPUT:
800 /* Traditional asm's are always volatile. */
801 res->volatil = 1;
802 return;
803
804 case TRAP_IF:
805 res->volatil = 1;
806 break;
807
808 case ASM_OPERANDS:
809 res->volatil |= MEM_VOLATILE_P (x);
810
811 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
812 We can not just fall through here since then we would be confused
813 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
814 traditional asms unlike their normal usage. */
815
816 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
817 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
818 MARK_SRC_DEST);
819 return;
820
821 default:
822 break;
823 }
824
825 /* Process each sub-expression and flag what it needs. */
826 format_ptr = GET_RTX_FORMAT (code);
827 for (i = 0; i < GET_RTX_LENGTH (code); i++)
828 switch (*format_ptr++)
829 {
830 case 'e':
831 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
832 break;
833
834 case 'E':
835 for (j = 0; j < XVECLEN (x, i); j++)
836 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
837 break;
838 }
839 }
840 \f
841 /* Set the resources that are live at TARGET.
842
843 If TARGET is zero, we refer to the end of the current function and can
844 return our precomputed value.
845
846 Otherwise, we try to find out what is live by consulting the basic block
847 information. This is tricky, because we must consider the actions of
848 reload and jump optimization, which occur after the basic block information
849 has been computed.
850
851 Accordingly, we proceed as follows::
852
853 We find the previous BARRIER and look at all immediately following labels
854 (with no intervening active insns) to see if any of them start a basic
855 block. If we hit the start of the function first, we use block 0.
856
857 Once we have found a basic block and a corresponding first insns, we can
858 accurately compute the live status from basic_block_live_regs and
859 reg_renumber. (By starting at a label following a BARRIER, we are immune
860 to actions taken by reload and jump.) Then we scan all insns between
861 that point and our target. For each CLOBBER (or for call-clobbered regs
862 when we pass a CALL_INSN), mark the appropriate registers are dead. For
863 a SET, mark them as live.
864
865 We have to be careful when using REG_DEAD notes because they are not
866 updated by such things as find_equiv_reg. So keep track of registers
867 marked as dead that haven't been assigned to, and mark them dead at the
868 next CODE_LABEL since reload and jump won't propagate values across labels.
869
870 If we cannot find the start of a basic block (should be a very rare
871 case, if it can happen at all), mark everything as potentially live.
872
873 Next, scan forward from TARGET looking for things set or clobbered
874 before they are used. These are not live.
875
876 Because we can be called many times on the same target, save our results
877 in a hash table indexed by INSN_UID. This is only done if the function
878 init_resource_info () was invoked before we are called. */
879
880 void
881 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
882 {
883 int b = -1;
884 unsigned int i;
885 struct target_info *tinfo = NULL;
886 rtx insn;
887 rtx jump_insn = 0;
888 rtx jump_target;
889 HARD_REG_SET scratch;
890 struct resources set, needed;
891
892 /* Handle end of function. */
893 if (target == 0)
894 {
895 *res = end_of_function_needs;
896 return;
897 }
898
899 /* We have to assume memory is needed, but the CC isn't. */
900 res->memory = 1;
901 res->volatil = res->unch_memory = 0;
902 res->cc = 0;
903
904 /* See if we have computed this value already. */
905 if (target_hash_table != NULL)
906 {
907 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
908 tinfo; tinfo = tinfo->next)
909 if (tinfo->uid == INSN_UID (target))
910 break;
911
912 /* Start by getting the basic block number. If we have saved
913 information, we can get it from there unless the insn at the
914 start of the basic block has been deleted. */
915 if (tinfo && tinfo->block != -1
916 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
917 b = tinfo->block;
918 }
919
920 if (b == -1)
921 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
922
923 if (target_hash_table != NULL)
924 {
925 if (tinfo)
926 {
927 /* If the information is up-to-date, use it. Otherwise, we will
928 update it below. */
929 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
930 {
931 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
932 return;
933 }
934 }
935 else
936 {
937 /* Allocate a place to put our results and chain it into the
938 hash table. */
939 tinfo = xmalloc (sizeof (struct target_info));
940 tinfo->uid = INSN_UID (target);
941 tinfo->block = b;
942 tinfo->next
943 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
944 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
945 }
946 }
947
948 CLEAR_HARD_REG_SET (pending_dead_regs);
949
950 /* If we found a basic block, get the live registers from it and update
951 them with anything set or killed between its start and the insn before
952 TARGET. Otherwise, we must assume everything is live. */
953 if (b != -1)
954 {
955 regset regs_live = BASIC_BLOCK (b)->global_live_at_start;
956 unsigned int j;
957 unsigned int regno;
958 rtx start_insn, stop_insn;
959
960 /* Compute hard regs live at start of block -- this is the real hard regs
961 marked live, plus live pseudo regs that have been renumbered to
962 hard regs. */
963
964 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
965
966 EXECUTE_IF_SET_IN_REG_SET
967 (regs_live, FIRST_PSEUDO_REGISTER, i,
968 {
969 if (reg_renumber[i] >= 0)
970 {
971 regno = reg_renumber[i];
972 for (j = regno;
973 j < regno + HARD_REGNO_NREGS (regno,
974 PSEUDO_REGNO_MODE (i));
975 j++)
976 SET_HARD_REG_BIT (current_live_regs, j);
977 }
978 });
979
980 /* Get starting and ending insn, handling the case where each might
981 be a SEQUENCE. */
982 start_insn = (b == 0 ? insns : BB_HEAD (BASIC_BLOCK (b)));
983 stop_insn = target;
984
985 if (GET_CODE (start_insn) == INSN
986 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
987 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
988
989 if (GET_CODE (stop_insn) == INSN
990 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
991 stop_insn = next_insn (PREV_INSN (stop_insn));
992
993 for (insn = start_insn; insn != stop_insn;
994 insn = next_insn_no_annul (insn))
995 {
996 rtx link;
997 rtx real_insn = insn;
998 enum rtx_code code = GET_CODE (insn);
999
1000 /* If this insn is from the target of a branch, it isn't going to
1001 be used in the sequel. If it is used in both cases, this
1002 test will not be true. */
1003 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1004 && INSN_FROM_TARGET_P (insn))
1005 continue;
1006
1007 /* If this insn is a USE made by update_block, we care about the
1008 underlying insn. */
1009 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
1010 && INSN_P (XEXP (PATTERN (insn), 0)))
1011 real_insn = XEXP (PATTERN (insn), 0);
1012
1013 if (GET_CODE (real_insn) == CALL_INSN)
1014 {
1015 /* CALL clobbers all call-used regs that aren't fixed except
1016 sp, ap, and fp. Do this before setting the result of the
1017 call live. */
1018 AND_COMPL_HARD_REG_SET (current_live_regs,
1019 regs_invalidated_by_call);
1020
1021 /* A CALL_INSN sets any global register live, since it may
1022 have been modified by the call. */
1023 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1024 if (global_regs[i])
1025 SET_HARD_REG_BIT (current_live_regs, i);
1026 }
1027
1028 /* Mark anything killed in an insn to be deadened at the next
1029 label. Ignore USE insns; the only REG_DEAD notes will be for
1030 parameters. But they might be early. A CALL_INSN will usually
1031 clobber registers used for parameters. It isn't worth bothering
1032 with the unlikely case when it won't. */
1033 if ((GET_CODE (real_insn) == INSN
1034 && GET_CODE (PATTERN (real_insn)) != USE
1035 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1036 || GET_CODE (real_insn) == JUMP_INSN
1037 || GET_CODE (real_insn) == CALL_INSN)
1038 {
1039 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1040 if (REG_NOTE_KIND (link) == REG_DEAD
1041 && GET_CODE (XEXP (link, 0)) == REG
1042 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1043 {
1044 unsigned int first_regno = REGNO (XEXP (link, 0));
1045 unsigned int last_regno
1046 = (first_regno
1047 + HARD_REGNO_NREGS (first_regno,
1048 GET_MODE (XEXP (link, 0))));
1049
1050 for (i = first_regno; i < last_regno; i++)
1051 SET_HARD_REG_BIT (pending_dead_regs, i);
1052 }
1053
1054 note_stores (PATTERN (real_insn), update_live_status, NULL);
1055
1056 /* If any registers were unused after this insn, kill them.
1057 These notes will always be accurate. */
1058 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1059 if (REG_NOTE_KIND (link) == REG_UNUSED
1060 && GET_CODE (XEXP (link, 0)) == REG
1061 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1062 {
1063 unsigned int first_regno = REGNO (XEXP (link, 0));
1064 unsigned int last_regno
1065 = (first_regno
1066 + HARD_REGNO_NREGS (first_regno,
1067 GET_MODE (XEXP (link, 0))));
1068
1069 for (i = first_regno; i < last_regno; i++)
1070 CLEAR_HARD_REG_BIT (current_live_regs, i);
1071 }
1072 }
1073
1074 else if (GET_CODE (real_insn) == CODE_LABEL)
1075 {
1076 /* A label clobbers the pending dead registers since neither
1077 reload nor jump will propagate a value across a label. */
1078 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1079 CLEAR_HARD_REG_SET (pending_dead_regs);
1080 }
1081
1082 /* The beginning of the epilogue corresponds to the end of the
1083 RTL chain when there are no epilogue insns. Certain resources
1084 are implicitly required at that point. */
1085 else if (GET_CODE (real_insn) == NOTE
1086 && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1087 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1088 }
1089
1090 COPY_HARD_REG_SET (res->regs, current_live_regs);
1091 if (tinfo != NULL)
1092 {
1093 tinfo->block = b;
1094 tinfo->bb_tick = bb_ticks[b];
1095 }
1096 }
1097 else
1098 /* We didn't find the start of a basic block. Assume everything
1099 in use. This should happen only extremely rarely. */
1100 SET_HARD_REG_SET (res->regs);
1101
1102 CLEAR_RESOURCE (&set);
1103 CLEAR_RESOURCE (&needed);
1104
1105 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1106 set, needed);
1107
1108 /* If we hit an unconditional branch, we have another way of finding out
1109 what is live: we can see what is live at the branch target and include
1110 anything used but not set before the branch. We add the live
1111 resources found using the test below to those found until now. */
1112
1113 if (jump_insn)
1114 {
1115 struct resources new_resources;
1116 rtx stop_insn = next_active_insn (jump_insn);
1117
1118 mark_target_live_regs (insns, next_active_insn (jump_target),
1119 &new_resources);
1120 CLEAR_RESOURCE (&set);
1121 CLEAR_RESOURCE (&needed);
1122
1123 /* Include JUMP_INSN in the needed registers. */
1124 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1125 {
1126 mark_referenced_resources (insn, &needed, 1);
1127
1128 COPY_HARD_REG_SET (scratch, needed.regs);
1129 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1130 IOR_HARD_REG_SET (new_resources.regs, scratch);
1131
1132 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1133 }
1134
1135 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1136 }
1137
1138 if (tinfo != NULL)
1139 {
1140 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1141 }
1142 }
1143 \f
1144 /* Initialize the resources required by mark_target_live_regs ().
1145 This should be invoked before the first call to mark_target_live_regs. */
1146
1147 void
1148 init_resource_info (rtx epilogue_insn)
1149 {
1150 int i;
1151
1152 /* Indicate what resources are required to be valid at the end of the current
1153 function. The condition code never is and memory always is. If the
1154 frame pointer is needed, it is and so is the stack pointer unless
1155 EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the
1156 stack pointer is. Registers used to return the function value are
1157 needed. Registers holding global variables are needed. */
1158
1159 end_of_function_needs.cc = 0;
1160 end_of_function_needs.memory = 1;
1161 end_of_function_needs.unch_memory = 0;
1162 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1163
1164 if (frame_pointer_needed)
1165 {
1166 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1167 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1168 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1169 #endif
1170 if (! EXIT_IGNORE_STACK
1171 || current_function_sp_is_unchanging)
1172 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1173 }
1174 else
1175 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1176
1177 if (current_function_return_rtx != 0)
1178 mark_referenced_resources (current_function_return_rtx,
1179 &end_of_function_needs, 1);
1180
1181 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1182 if (global_regs[i]
1183 #ifdef EPILOGUE_USES
1184 || EPILOGUE_USES (i)
1185 #endif
1186 )
1187 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1188
1189 /* The registers required to be live at the end of the function are
1190 represented in the flow information as being dead just prior to
1191 reaching the end of the function. For example, the return of a value
1192 might be represented by a USE of the return register immediately
1193 followed by an unconditional jump to the return label where the
1194 return label is the end of the RTL chain. The end of the RTL chain
1195 is then taken to mean that the return register is live.
1196
1197 This sequence is no longer maintained when epilogue instructions are
1198 added to the RTL chain. To reconstruct the original meaning, the
1199 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1200 point where these registers become live (start_of_epilogue_needs).
1201 If epilogue instructions are present, the registers set by those
1202 instructions won't have been processed by flow. Thus, those
1203 registers are additionally required at the end of the RTL chain
1204 (end_of_function_needs). */
1205
1206 start_of_epilogue_needs = end_of_function_needs;
1207
1208 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1209 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1210 MARK_SRC_DEST_CALL);
1211
1212 /* Allocate and initialize the tables used by mark_target_live_regs. */
1213 target_hash_table = xcalloc (TARGET_HASH_PRIME, sizeof (struct target_info *));
1214 bb_ticks = xcalloc (last_basic_block, sizeof (int));
1215 }
1216 \f
1217 /* Free up the resources allocated to mark_target_live_regs (). This
1218 should be invoked after the last call to mark_target_live_regs (). */
1219
1220 void
1221 free_resource_info (void)
1222 {
1223 if (target_hash_table != NULL)
1224 {
1225 int i;
1226
1227 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1228 {
1229 struct target_info *ti = target_hash_table[i];
1230
1231 while (ti)
1232 {
1233 struct target_info *next = ti->next;
1234 free (ti);
1235 ti = next;
1236 }
1237 }
1238
1239 free (target_hash_table);
1240 target_hash_table = NULL;
1241 }
1242
1243 if (bb_ticks != NULL)
1244 {
1245 free (bb_ticks);
1246 bb_ticks = NULL;
1247 }
1248 }
1249 \f
1250 /* Clear any hashed information that we have stored for INSN. */
1251
1252 void
1253 clear_hashed_info_for_insn (rtx insn)
1254 {
1255 struct target_info *tinfo;
1256
1257 if (target_hash_table != NULL)
1258 {
1259 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1260 tinfo; tinfo = tinfo->next)
1261 if (tinfo->uid == INSN_UID (insn))
1262 break;
1263
1264 if (tinfo)
1265 tinfo->block = -1;
1266 }
1267 }
1268 \f
1269 /* Increment the tick count for the basic block that contains INSN. */
1270
1271 void
1272 incr_ticks_for_insn (rtx insn)
1273 {
1274 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1275
1276 if (b != -1)
1277 bb_ticks[b]++;
1278 }
1279 \f
1280 /* Add TRIAL to the set of resources used at the end of the current
1281 function. */
1282 void
1283 mark_end_of_function_resources (rtx trial, int include_delayed_effects)
1284 {
1285 mark_referenced_resources (trial, &end_of_function_needs,
1286 include_delayed_effects);
1287 }
This page took 0.087702 seconds and 4 git commands to generate.