]> gcc.gnu.org Git - gcc.git/blob - gcc/reorg.c
flow.c: Update comment.
[gcc.git] / gcc / reorg.c
1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 93, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
4 Hacked by Michael Tiemann (tiemann@cygnus.com).
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Instruction reorganization pass.
24
25 This pass runs after register allocation and final jump
26 optimization. It should be the last pass to run before peephole.
27 It serves primarily to fill delay slots of insns, typically branch
28 and call insns. Other insns typically involve more complicated
29 interactions of data dependencies and resource constraints, and
30 are better handled by scheduling before register allocation (by the
31 function `schedule_insns').
32
33 The Branch Penalty is the number of extra cycles that are needed to
34 execute a branch insn. On an ideal machine, branches take a single
35 cycle, and the Branch Penalty is 0. Several RISC machines approach
36 branch delays differently:
37
38 The MIPS and AMD 29000 have a single branch delay slot. Most insns
39 (except other branches) can be used to fill this slot. When the
40 slot is filled, two insns execute in two cycles, reducing the
41 branch penalty to zero.
42
43 The Motorola 88000 conditionally exposes its branch delay slot,
44 so code is shorter when it is turned off, but will run faster
45 when useful insns are scheduled there.
46
47 The IBM ROMP has two forms of branch and call insns, both with and
48 without a delay slot. Much like the 88k, insns not using the delay
49 slot can be shorted (2 bytes vs. 4 bytes), but will run slowed.
50
51 The SPARC always has a branch delay slot, but its effects can be
52 annulled when the branch is not taken. This means that failing to
53 find other sources of insns, we can hoist an insn from the branch
54 target that would only be safe to execute knowing that the branch
55 is taken.
56
57 The HP-PA always has a branch delay slot. For unconditional branches
58 its effects can be annulled when the branch is taken. The effects
59 of the delay slot in a conditional branch can be nullified for forward
60 taken branches, or for untaken backward branches. This means
61 we can hoist insns from the fall-through path for forward branches or
62 steal insns from the target of backward branches.
63
64 Three techniques for filling delay slots have been implemented so far:
65
66 (1) `fill_simple_delay_slots' is the simplest, most efficient way
67 to fill delay slots. This pass first looks for insns which come
68 from before the branch and which are safe to execute after the
69 branch. Then it searches after the insn requiring delay slots or,
70 in the case of a branch, for insns that are after the point at
71 which the branch merges into the fallthrough code, if such a point
72 exists. When such insns are found, the branch penalty decreases
73 and no code expansion takes place.
74
75 (2) `fill_eager_delay_slots' is more complicated: it is used for
76 scheduling conditional jumps, or for scheduling jumps which cannot
77 be filled using (1). A machine need not have annulled jumps to use
78 this strategy, but it helps (by keeping more options open).
79 `fill_eager_delay_slots' tries to guess the direction the branch
80 will go; if it guesses right 100% of the time, it can reduce the
81 branch penalty as much as `fill_simple_delay_slots' does. If it
82 guesses wrong 100% of the time, it might as well schedule nops (or
83 on the m88k, unexpose the branch slot). When
84 `fill_eager_delay_slots' takes insns from the fall-through path of
85 the jump, usually there is no code expansion; when it takes insns
86 from the branch target, there is code expansion if it is not the
87 only way to reach that target.
88
89 (3) `relax_delay_slots' uses a set of rules to simplify code that
90 has been reorganized by (1) and (2). It finds cases where
91 conditional test can be eliminated, jumps can be threaded, extra
92 insns can be eliminated, etc. It is the job of (1) and (2) to do a
93 good job of scheduling locally; `relax_delay_slots' takes care of
94 making the various individual schedules work well together. It is
95 especially tuned to handle the control flow interactions of branch
96 insns. It does nothing for insns with delay slots that do not
97 branch.
98
99 On machines that use CC0, we are very conservative. We will not make
100 a copy of an insn involving CC0 since we want to maintain a 1-1
101 correspondence between the insn that sets and uses CC0. The insns are
102 allowed to be separated by placing an insn that sets CC0 (but not an insn
103 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
104 delay slot. In that case, we point each insn at the other with REG_CC_USER
105 and REG_CC_SETTER notes. Note that these restrictions affect very few
106 machines because most RISC machines with delay slots will not use CC0
107 (the RT is the only known exception at this point).
108
109 Not yet implemented:
110
111 The Acorn Risc Machine can conditionally execute most insns, so
112 it is profitable to move single insns into a position to execute
113 based on the condition code of the previous insn.
114
115 The HP-PA can conditionally nullify insns, providing a similar
116 effect to the ARM, differing mostly in which insn is "in charge". */
117
118 #include "config.h"
119 #include "system.h"
120 #include "rtl.h"
121 #include "expr.h"
122 #include "insn-config.h"
123 #include "conditions.h"
124 #include "hard-reg-set.h"
125 #include "basic-block.h"
126 #include "regs.h"
127 #include "insn-flags.h"
128 #include "recog.h"
129 #include "flags.h"
130 #include "output.h"
131 #include "obstack.h"
132 #include "insn-attr.h"
133
134 /* Import list of registers used as spill regs from reload. */
135 extern HARD_REG_SET used_spill_regs;
136
137 /* Import highest label used in function at end of reload. */
138 extern int max_label_num_after_reload;
139
140
141 #ifdef DELAY_SLOTS
142
143 #define obstack_chunk_alloc xmalloc
144 #define obstack_chunk_free free
145
146 #ifndef ANNUL_IFTRUE_SLOTS
147 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
148 #endif
149 #ifndef ANNUL_IFFALSE_SLOTS
150 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
151 #endif
152
153 /* Insns which have delay slots that have not yet been filled. */
154
155 static struct obstack unfilled_slots_obstack;
156 static rtx *unfilled_firstobj;
157
158 /* Define macros to refer to the first and last slot containing unfilled
159 insns. These are used because the list may move and its address
160 should be recomputed at each use. */
161
162 #define unfilled_slots_base \
163 ((rtx *) obstack_base (&unfilled_slots_obstack))
164
165 #define unfilled_slots_next \
166 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
167
168 /* This structure is used to indicate which hardware resources are set or
169 needed by insns so far. */
170
171 struct resources
172 {
173 char memory; /* Insn sets or needs a memory location. */
174 char unch_memory; /* Insn sets of needs a "unchanging" MEM. */
175 char volatil; /* Insn sets or needs a volatile memory loc. */
176 char cc; /* Insn sets or needs the condition codes. */
177 HARD_REG_SET regs; /* Which registers are set or needed. */
178 };
179
180 /* Macro to clear all resources. */
181 #define CLEAR_RESOURCE(RES) \
182 do { (RES)->memory = (RES)->unch_memory = (RES)->volatil = (RES)->cc = 0; \
183 CLEAR_HARD_REG_SET ((RES)->regs); } while (0)
184
185 /* Indicates what resources are required at the beginning of the epilogue. */
186 static struct resources start_of_epilogue_needs;
187
188 /* Indicates what resources are required at function end. */
189 static struct resources end_of_function_needs;
190
191 /* Points to the label before the end of the function. */
192 static rtx end_of_function_label;
193
194 /* This structure is used to record liveness information at the targets or
195 fallthrough insns of branches. We will most likely need the information
196 at targets again, so save them in a hash table rather than recomputing them
197 each time. */
198
199 struct target_info
200 {
201 int uid; /* INSN_UID of target. */
202 struct target_info *next; /* Next info for same hash bucket. */
203 HARD_REG_SET live_regs; /* Registers live at target. */
204 int block; /* Basic block number containing target. */
205 int bb_tick; /* Generation count of basic block info. */
206 };
207
208 #define TARGET_HASH_PRIME 257
209
210 /* Define the hash table itself. */
211 static struct target_info **target_hash_table;
212
213 /* For each basic block, we maintain a generation number of its basic
214 block info, which is updated each time we move an insn from the
215 target of a jump. This is the generation number indexed by block
216 number. */
217
218 static int *bb_ticks;
219
220 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
221 not always monotonically increase. */
222 static int *uid_to_ruid;
223
224 /* Highest valid index in `uid_to_ruid'. */
225 static int max_uid;
226
227 static void mark_referenced_resources PROTO((rtx, struct resources *, int));
228 static void mark_set_resources PROTO((rtx, struct resources *, int, int));
229 static int stop_search_p PROTO((rtx, int));
230 static int resource_conflicts_p PROTO((struct resources *,
231 struct resources *));
232 static int insn_references_resource_p PROTO((rtx, struct resources *, int));
233 static int insn_sets_resource_p PROTO((rtx, struct resources *, int));
234 static rtx find_end_label PROTO((void));
235 static rtx emit_delay_sequence PROTO((rtx, rtx, int));
236 static rtx add_to_delay_list PROTO((rtx, rtx));
237 static rtx delete_from_delay_slot PROTO((rtx));
238 static void delete_scheduled_jump PROTO((rtx));
239 static void note_delay_statistics PROTO((int, int));
240 static rtx optimize_skip PROTO((rtx));
241 static int get_jump_flags PROTO((rtx, rtx));
242 static int rare_destination PROTO((rtx));
243 static int mostly_true_jump PROTO((rtx, rtx));
244 static rtx get_branch_condition PROTO((rtx, rtx));
245 static int condition_dominates_p PROTO((rtx, rtx));
246 static rtx steal_delay_list_from_target PROTO((rtx, rtx, rtx, rtx,
247 struct resources *,
248 struct resources *,
249 struct resources *,
250 int, int *, int *, rtx *));
251 static rtx steal_delay_list_from_fallthrough PROTO((rtx, rtx, rtx, rtx,
252 struct resources *,
253 struct resources *,
254 struct resources *,
255 int, int *, int *));
256 static void try_merge_delay_insns PROTO((rtx, rtx));
257 static rtx redundant_insn PROTO((rtx, rtx, rtx));
258 static int own_thread_p PROTO((rtx, rtx, int));
259 static int find_basic_block PROTO((rtx));
260 static void update_block PROTO((rtx, rtx));
261 static int reorg_redirect_jump PROTO((rtx, rtx));
262 static void update_reg_dead_notes PROTO((rtx, rtx));
263 static void fix_reg_dead_note PROTO((rtx, rtx));
264 static void update_reg_unused_notes PROTO((rtx, rtx));
265 static void update_live_status PROTO((rtx, rtx));
266 static rtx next_insn_no_annul PROTO((rtx));
267 static rtx find_dead_or_set_registers PROTO ((rtx, struct resources *, rtx *,
268 int, struct resources,
269 struct resources));
270 static void mark_target_live_regs PROTO((rtx, struct resources *));
271 static void fill_simple_delay_slots PROTO((int));
272 static rtx fill_slots_from_thread PROTO((rtx, rtx, rtx, rtx, int, int,
273 int, int, int *, rtx));
274 static void fill_eager_delay_slots PROTO((void));
275 static void relax_delay_slots PROTO((rtx));
276 static void make_return_insns PROTO((rtx));
277 static int redirect_with_delay_slots_safe_p PROTO ((rtx, rtx, rtx));
278 static int redirect_with_delay_list_safe_p PROTO ((rtx, rtx, rtx));
279 \f
280 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
281 which resources are references by the insn. If INCLUDE_DELAYED_EFFECTS
282 is TRUE, resources used by the called routine will be included for
283 CALL_INSNs. */
284
285 static void
286 mark_referenced_resources (x, res, include_delayed_effects)
287 register rtx x;
288 register struct resources *res;
289 register int include_delayed_effects;
290 {
291 register enum rtx_code code = GET_CODE (x);
292 register int i, j;
293 register char *format_ptr;
294
295 /* Handle leaf items for which we set resource flags. Also, special-case
296 CALL, SET and CLOBBER operators. */
297 switch (code)
298 {
299 case CONST:
300 case CONST_INT:
301 case CONST_DOUBLE:
302 case PC:
303 case SYMBOL_REF:
304 case LABEL_REF:
305 return;
306
307 case SUBREG:
308 if (GET_CODE (SUBREG_REG (x)) != REG)
309 mark_referenced_resources (SUBREG_REG (x), res, 0);
310 else
311 {
312 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
313 int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
314 for (i = regno; i < last_regno; i++)
315 SET_HARD_REG_BIT (res->regs, i);
316 }
317 return;
318
319 case REG:
320 for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
321 SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
322 return;
323
324 case MEM:
325 /* If this memory shouldn't change, it really isn't referencing
326 memory. */
327 if (RTX_UNCHANGING_P (x))
328 res->unch_memory = 1;
329 else
330 res->memory = 1;
331 res->volatil = MEM_VOLATILE_P (x);
332
333 /* Mark registers used to access memory. */
334 mark_referenced_resources (XEXP (x, 0), res, 0);
335 return;
336
337 case CC0:
338 res->cc = 1;
339 return;
340
341 case UNSPEC_VOLATILE:
342 case ASM_INPUT:
343 /* Traditional asm's are always volatile. */
344 res->volatil = 1;
345 return;
346
347 case TRAP_IF:
348 res->volatil = 1;
349 break;
350
351 case ASM_OPERANDS:
352 res->volatil = MEM_VOLATILE_P (x);
353
354 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
355 We can not just fall through here since then we would be confused
356 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
357 traditional asms unlike their normal usage. */
358
359 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
360 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
361 return;
362
363 case CALL:
364 /* The first operand will be a (MEM (xxx)) but doesn't really reference
365 memory. The second operand may be referenced, though. */
366 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
367 mark_referenced_resources (XEXP (x, 1), res, 0);
368 return;
369
370 case SET:
371 /* Usually, the first operand of SET is set, not referenced. But
372 registers used to access memory are referenced. SET_DEST is
373 also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */
374
375 mark_referenced_resources (SET_SRC (x), res, 0);
376
377 x = SET_DEST (x);
378 if (GET_CODE (x) == SIGN_EXTRACT || GET_CODE (x) == ZERO_EXTRACT)
379 mark_referenced_resources (x, res, 0);
380 else if (GET_CODE (x) == SUBREG)
381 x = SUBREG_REG (x);
382 if (GET_CODE (x) == MEM)
383 mark_referenced_resources (XEXP (x, 0), res, 0);
384 return;
385
386 case CLOBBER:
387 return;
388
389 case CALL_INSN:
390 if (include_delayed_effects)
391 {
392 /* A CALL references memory, the frame pointer if it exists, the
393 stack pointer, any global registers and any registers given in
394 USE insns immediately in front of the CALL.
395
396 However, we may have moved some of the parameter loading insns
397 into the delay slot of this CALL. If so, the USE's for them
398 don't count and should be skipped. */
399 rtx insn = PREV_INSN (x);
400 rtx sequence = 0;
401 int seq_size = 0;
402 rtx next = NEXT_INSN (x);
403 int i;
404
405 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
406 if (NEXT_INSN (insn) != x)
407 {
408 next = NEXT_INSN (NEXT_INSN (insn));
409 sequence = PATTERN (NEXT_INSN (insn));
410 seq_size = XVECLEN (sequence, 0);
411 if (GET_CODE (sequence) != SEQUENCE)
412 abort ();
413 }
414
415 res->memory = 1;
416 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
417 if (frame_pointer_needed)
418 {
419 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
420 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
421 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
422 #endif
423 }
424
425 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
426 if (global_regs[i])
427 SET_HARD_REG_BIT (res->regs, i);
428
429 /* Check for a NOTE_INSN_SETJMP. If it exists, then we must
430 assume that this call can need any register.
431
432 This is done to be more conservative about how we handle setjmp.
433 We assume that they both use and set all registers. Using all
434 registers ensures that a register will not be considered dead
435 just because it crosses a setjmp call. A register should be
436 considered dead only if the setjmp call returns non-zero. */
437 if (next && GET_CODE (next) == NOTE
438 && NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
439 SET_HARD_REG_SET (res->regs);
440
441 {
442 rtx link;
443
444 for (link = CALL_INSN_FUNCTION_USAGE (x);
445 link;
446 link = XEXP (link, 1))
447 if (GET_CODE (XEXP (link, 0)) == USE)
448 {
449 for (i = 1; i < seq_size; i++)
450 {
451 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
452 if (GET_CODE (slot_pat) == SET
453 && rtx_equal_p (SET_DEST (slot_pat),
454 SET_DEST (XEXP (link, 0))))
455 break;
456 }
457 if (i >= seq_size)
458 mark_referenced_resources (SET_DEST (XEXP (link, 0)),
459 res, 0);
460 }
461 }
462 }
463
464 /* ... fall through to other INSN processing ... */
465
466 case INSN:
467 case JUMP_INSN:
468
469 #ifdef INSN_REFERENCES_ARE_DELAYED
470 if (! include_delayed_effects
471 && INSN_REFERENCES_ARE_DELAYED (x))
472 return;
473 #endif
474
475 /* No special processing, just speed up. */
476 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
477 return;
478
479 default:
480 break;
481 }
482
483 /* Process each sub-expression and flag what it needs. */
484 format_ptr = GET_RTX_FORMAT (code);
485 for (i = 0; i < GET_RTX_LENGTH (code); i++)
486 switch (*format_ptr++)
487 {
488 case 'e':
489 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
490 break;
491
492 case 'E':
493 for (j = 0; j < XVECLEN (x, i); j++)
494 mark_referenced_resources (XVECEXP (x, i, j), res,
495 include_delayed_effects);
496 break;
497 }
498 }
499 \f
500 /* Given X, a part of an insn, and a pointer to a `struct resource',
501 RES, indicate which resources are modified by the insn. If
502 INCLUDE_DELAYED_EFFECTS is nonzero, also mark resources potentially
503 set by the called routine.
504
505 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
506 objects are being referenced instead of set.
507
508 We never mark the insn as modifying the condition code unless it explicitly
509 SETs CC0 even though this is not totally correct. The reason for this is
510 that we require a SET of CC0 to immediately precede the reference to CC0.
511 So if some other insn sets CC0 as a side-effect, we know it cannot affect
512 our computation and thus may be placed in a delay slot. */
513
514 static void
515 mark_set_resources (x, res, in_dest, include_delayed_effects)
516 register rtx x;
517 register struct resources *res;
518 int in_dest;
519 int include_delayed_effects;
520 {
521 register enum rtx_code code;
522 register int i, j;
523 register char *format_ptr;
524
525 restart:
526
527 code = GET_CODE (x);
528
529 switch (code)
530 {
531 case NOTE:
532 case BARRIER:
533 case CODE_LABEL:
534 case USE:
535 case CONST_INT:
536 case CONST_DOUBLE:
537 case LABEL_REF:
538 case SYMBOL_REF:
539 case CONST:
540 case PC:
541 /* These don't set any resources. */
542 return;
543
544 case CC0:
545 if (in_dest)
546 res->cc = 1;
547 return;
548
549 case CALL_INSN:
550 /* Called routine modifies the condition code, memory, any registers
551 that aren't saved across calls, global registers and anything
552 explicitly CLOBBERed immediately after the CALL_INSN. */
553
554 if (include_delayed_effects)
555 {
556 rtx next = NEXT_INSN (x);
557 rtx prev = PREV_INSN (x);
558 rtx link;
559
560 res->cc = res->memory = 1;
561 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
562 if (call_used_regs[i] || global_regs[i])
563 SET_HARD_REG_BIT (res->regs, i);
564
565 /* If X is part of a delay slot sequence, then NEXT should be
566 the first insn after the sequence. */
567 if (NEXT_INSN (prev) != x)
568 next = NEXT_INSN (NEXT_INSN (prev));
569
570 for (link = CALL_INSN_FUNCTION_USAGE (x);
571 link; link = XEXP (link, 1))
572 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
573 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1, 0);
574
575 /* Check for a NOTE_INSN_SETJMP. If it exists, then we must
576 assume that this call can clobber any register. */
577 if (next && GET_CODE (next) == NOTE
578 && NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
579 SET_HARD_REG_SET (res->regs);
580 }
581
582 /* ... and also what its RTL says it modifies, if anything. */
583
584 case JUMP_INSN:
585 case INSN:
586
587 /* An insn consisting of just a CLOBBER (or USE) is just for flow
588 and doesn't actually do anything, so we ignore it. */
589
590 #ifdef INSN_SETS_ARE_DELAYED
591 if (! include_delayed_effects
592 && INSN_SETS_ARE_DELAYED (x))
593 return;
594 #endif
595
596 x = PATTERN (x);
597 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
598 goto restart;
599 return;
600
601 case SET:
602 /* If the source of a SET is a CALL, this is actually done by
603 the called routine. So only include it if we are to include the
604 effects of the calling routine. */
605
606 mark_set_resources (SET_DEST (x), res,
607 (include_delayed_effects
608 || GET_CODE (SET_SRC (x)) != CALL),
609 0);
610
611 mark_set_resources (SET_SRC (x), res, 0, 0);
612 return;
613
614 case CLOBBER:
615 mark_set_resources (XEXP (x, 0), res, 1, 0);
616 return;
617
618 case SEQUENCE:
619 for (i = 0; i < XVECLEN (x, 0); i++)
620 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
621 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
622 mark_set_resources (XVECEXP (x, 0, i), res, 0,
623 include_delayed_effects);
624 return;
625
626 case POST_INC:
627 case PRE_INC:
628 case POST_DEC:
629 case PRE_DEC:
630 mark_set_resources (XEXP (x, 0), res, 1, 0);
631 return;
632
633 case ZERO_EXTRACT:
634 mark_set_resources (XEXP (x, 0), res, in_dest, 0);
635 mark_set_resources (XEXP (x, 1), res, 0, 0);
636 mark_set_resources (XEXP (x, 2), res, 0, 0);
637 return;
638
639 case MEM:
640 if (in_dest)
641 {
642 res->memory = 1;
643 res->unch_memory = RTX_UNCHANGING_P (x);
644 res->volatil = MEM_VOLATILE_P (x);
645 }
646
647 mark_set_resources (XEXP (x, 0), res, 0, 0);
648 return;
649
650 case SUBREG:
651 if (in_dest)
652 {
653 if (GET_CODE (SUBREG_REG (x)) != REG)
654 mark_set_resources (SUBREG_REG (x), res,
655 in_dest, include_delayed_effects);
656 else
657 {
658 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
659 int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
660 for (i = regno; i < last_regno; i++)
661 SET_HARD_REG_BIT (res->regs, i);
662 }
663 }
664 return;
665
666 case REG:
667 if (in_dest)
668 for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
669 SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
670 return;
671
672 default:
673 break;
674 }
675
676 /* Process each sub-expression and flag what it needs. */
677 format_ptr = GET_RTX_FORMAT (code);
678 for (i = 0; i < GET_RTX_LENGTH (code); i++)
679 switch (*format_ptr++)
680 {
681 case 'e':
682 mark_set_resources (XEXP (x, i), res, in_dest, include_delayed_effects);
683 break;
684
685 case 'E':
686 for (j = 0; j < XVECLEN (x, i); j++)
687 mark_set_resources (XVECEXP (x, i, j), res, in_dest,
688 include_delayed_effects);
689 break;
690 }
691 }
692 \f
693 /* Return TRUE if this insn should stop the search for insn to fill delay
694 slots. LABELS_P indicates that labels should terminate the search.
695 In all cases, jumps terminate the search. */
696
697 static int
698 stop_search_p (insn, labels_p)
699 rtx insn;
700 int labels_p;
701 {
702 if (insn == 0)
703 return 1;
704
705 switch (GET_CODE (insn))
706 {
707 case NOTE:
708 case CALL_INSN:
709 return 0;
710
711 case CODE_LABEL:
712 return labels_p;
713
714 case JUMP_INSN:
715 case BARRIER:
716 return 1;
717
718 case INSN:
719 /* OK unless it contains a delay slot or is an `asm' insn of some type.
720 We don't know anything about these. */
721 return (GET_CODE (PATTERN (insn)) == SEQUENCE
722 || GET_CODE (PATTERN (insn)) == ASM_INPUT
723 || asm_noperands (PATTERN (insn)) >= 0);
724
725 default:
726 abort ();
727 }
728 }
729 \f
730 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
731 resource set contains a volatile memory reference. Otherwise, return FALSE. */
732
733 static int
734 resource_conflicts_p (res1, res2)
735 struct resources *res1, *res2;
736 {
737 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
738 || (res1->unch_memory && res2->unch_memory)
739 || res1->volatil || res2->volatil)
740 return 1;
741
742 #ifdef HARD_REG_SET
743 return (res1->regs & res2->regs) != HARD_CONST (0);
744 #else
745 {
746 int i;
747
748 for (i = 0; i < HARD_REG_SET_LONGS; i++)
749 if ((res1->regs[i] & res2->regs[i]) != 0)
750 return 1;
751 return 0;
752 }
753 #endif
754 }
755
756 /* Return TRUE if any resource marked in RES, a `struct resources', is
757 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
758 routine is using those resources.
759
760 We compute this by computing all the resources referenced by INSN and
761 seeing if this conflicts with RES. It might be faster to directly check
762 ourselves, and this is the way it used to work, but it means duplicating
763 a large block of complex code. */
764
765 static int
766 insn_references_resource_p (insn, res, include_delayed_effects)
767 register rtx insn;
768 register struct resources *res;
769 int include_delayed_effects;
770 {
771 struct resources insn_res;
772
773 CLEAR_RESOURCE (&insn_res);
774 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
775 return resource_conflicts_p (&insn_res, res);
776 }
777
778 /* Return TRUE if INSN modifies resources that are marked in RES.
779 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
780 included. CC0 is only modified if it is explicitly set; see comments
781 in front of mark_set_resources for details. */
782
783 static int
784 insn_sets_resource_p (insn, res, include_delayed_effects)
785 register rtx insn;
786 register struct resources *res;
787 int include_delayed_effects;
788 {
789 struct resources insn_sets;
790
791 CLEAR_RESOURCE (&insn_sets);
792 mark_set_resources (insn, &insn_sets, 0, include_delayed_effects);
793 return resource_conflicts_p (&insn_sets, res);
794 }
795 \f
796 /* Find a label at the end of the function or before a RETURN. If there is
797 none, make one. */
798
799 static rtx
800 find_end_label ()
801 {
802 rtx insn;
803
804 /* If we found one previously, return it. */
805 if (end_of_function_label)
806 return end_of_function_label;
807
808 /* Otherwise, see if there is a label at the end of the function. If there
809 is, it must be that RETURN insns aren't needed, so that is our return
810 label and we don't have to do anything else. */
811
812 insn = get_last_insn ();
813 while (GET_CODE (insn) == NOTE
814 || (GET_CODE (insn) == INSN
815 && (GET_CODE (PATTERN (insn)) == USE
816 || GET_CODE (PATTERN (insn)) == CLOBBER)))
817 insn = PREV_INSN (insn);
818
819 /* When a target threads its epilogue we might already have a
820 suitable return insn. If so put a label before it for the
821 end_of_function_label. */
822 if (GET_CODE (insn) == BARRIER
823 && GET_CODE (PREV_INSN (insn)) == JUMP_INSN
824 && GET_CODE (PATTERN (PREV_INSN (insn))) == RETURN)
825 {
826 rtx temp = PREV_INSN (PREV_INSN (insn));
827 end_of_function_label = gen_label_rtx ();
828 LABEL_NUSES (end_of_function_label) = 0;
829
830 /* Put the label before an USE insns that may proceed the RETURN insn. */
831 while (GET_CODE (temp) == USE)
832 temp = PREV_INSN (temp);
833
834 emit_label_after (end_of_function_label, temp);
835 }
836
837 else if (GET_CODE (insn) == CODE_LABEL)
838 end_of_function_label = insn;
839 else
840 {
841 /* Otherwise, make a new label and emit a RETURN and BARRIER,
842 if needed. */
843 end_of_function_label = gen_label_rtx ();
844 LABEL_NUSES (end_of_function_label) = 0;
845 emit_label (end_of_function_label);
846 #ifdef HAVE_return
847 if (HAVE_return)
848 {
849 /* The return we make may have delay slots too. */
850 rtx insn = gen_return ();
851 insn = emit_jump_insn (insn);
852 emit_barrier ();
853 if (num_delay_slots (insn) > 0)
854 obstack_ptr_grow (&unfilled_slots_obstack, insn);
855 }
856 #endif
857 }
858
859 /* Show one additional use for this label so it won't go away until
860 we are done. */
861 ++LABEL_NUSES (end_of_function_label);
862
863 return end_of_function_label;
864 }
865 \f
866 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
867 the pattern of INSN with the SEQUENCE.
868
869 Chain the insns so that NEXT_INSN of each insn in the sequence points to
870 the next and NEXT_INSN of the last insn in the sequence points to
871 the first insn after the sequence. Similarly for PREV_INSN. This makes
872 it easier to scan all insns.
873
874 Returns the SEQUENCE that replaces INSN. */
875
876 static rtx
877 emit_delay_sequence (insn, list, length)
878 rtx insn;
879 rtx list;
880 int length;
881 {
882 register int i = 1;
883 register rtx li;
884 int had_barrier = 0;
885
886 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
887 rtvec seqv = rtvec_alloc (length + 1);
888 rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
889 rtx seq_insn = make_insn_raw (seq);
890 rtx first = get_insns ();
891 rtx last = get_last_insn ();
892
893 /* Make a copy of the insn having delay slots. */
894 rtx delay_insn = copy_rtx (insn);
895
896 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
897 confuse further processing. Update LAST in case it was the last insn.
898 We will put the BARRIER back in later. */
899 if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == BARRIER)
900 {
901 delete_insn (NEXT_INSN (insn));
902 last = get_last_insn ();
903 had_barrier = 1;
904 }
905
906 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
907 NEXT_INSN (seq_insn) = NEXT_INSN (insn);
908 PREV_INSN (seq_insn) = PREV_INSN (insn);
909
910 if (insn != last)
911 PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
912
913 if (insn != first)
914 NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
915
916 /* Note the calls to set_new_first_and_last_insn must occur after
917 SEQ_INSN has been completely spliced into the insn stream.
918
919 Otherwise CUR_INSN_UID will get set to an incorrect value because
920 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
921 if (insn == last)
922 set_new_first_and_last_insn (first, seq_insn);
923
924 if (insn == first)
925 set_new_first_and_last_insn (seq_insn, last);
926
927 /* Build our SEQUENCE and rebuild the insn chain. */
928 XVECEXP (seq, 0, 0) = delay_insn;
929 INSN_DELETED_P (delay_insn) = 0;
930 PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
931
932 for (li = list; li; li = XEXP (li, 1), i++)
933 {
934 rtx tem = XEXP (li, 0);
935 rtx note;
936
937 /* Show that this copy of the insn isn't deleted. */
938 INSN_DELETED_P (tem) = 0;
939
940 XVECEXP (seq, 0, i) = tem;
941 PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
942 NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
943
944 /* Remove any REG_DEAD notes because we can't rely on them now
945 that the insn has been moved. */
946 for (note = REG_NOTES (tem); note; note = XEXP (note, 1))
947 if (REG_NOTE_KIND (note) == REG_DEAD)
948 XEXP (note, 0) = const0_rtx;
949 }
950
951 NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
952
953 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
954 last insn in that SEQUENCE to point to us. Similarly for the first
955 insn in the following insn if it is a SEQUENCE. */
956
957 if (PREV_INSN (seq_insn) && GET_CODE (PREV_INSN (seq_insn)) == INSN
958 && GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
959 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
960 XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
961 = seq_insn;
962
963 if (NEXT_INSN (seq_insn) && GET_CODE (NEXT_INSN (seq_insn)) == INSN
964 && GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
965 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
966
967 /* If there used to be a BARRIER, put it back. */
968 if (had_barrier)
969 emit_barrier_after (seq_insn);
970
971 if (i != length + 1)
972 abort ();
973
974 return seq_insn;
975 }
976
977 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
978 be in the order in which the insns are to be executed. */
979
980 static rtx
981 add_to_delay_list (insn, delay_list)
982 rtx insn;
983 rtx delay_list;
984 {
985 /* If we have an empty list, just make a new list element. If
986 INSN has its block number recorded, clear it since we may
987 be moving the insn to a new block. */
988
989 if (delay_list == 0)
990 {
991 struct target_info *tinfo;
992
993 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
994 tinfo; tinfo = tinfo->next)
995 if (tinfo->uid == INSN_UID (insn))
996 break;
997
998 if (tinfo)
999 tinfo->block = -1;
1000
1001 return gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
1002 }
1003
1004 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
1005 list. */
1006 XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
1007
1008 return delay_list;
1009 }
1010 \f
1011 /* Delete INSN from the delay slot of the insn that it is in. This may
1012 produce an insn without anything in its delay slots. */
1013
1014 static rtx
1015 delete_from_delay_slot (insn)
1016 rtx insn;
1017 {
1018 rtx trial, seq_insn, seq, prev;
1019 rtx delay_list = 0;
1020 int i;
1021
1022 /* We first must find the insn containing the SEQUENCE with INSN in its
1023 delay slot. Do this by finding an insn, TRIAL, where
1024 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
1025
1026 for (trial = insn;
1027 PREV_INSN (NEXT_INSN (trial)) == trial;
1028 trial = NEXT_INSN (trial))
1029 ;
1030
1031 seq_insn = PREV_INSN (NEXT_INSN (trial));
1032 seq = PATTERN (seq_insn);
1033
1034 /* Create a delay list consisting of all the insns other than the one
1035 we are deleting (unless we were the only one). */
1036 if (XVECLEN (seq, 0) > 2)
1037 for (i = 1; i < XVECLEN (seq, 0); i++)
1038 if (XVECEXP (seq, 0, i) != insn)
1039 delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
1040
1041 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
1042 list, and rebuild the delay list if non-empty. */
1043 prev = PREV_INSN (seq_insn);
1044 trial = XVECEXP (seq, 0, 0);
1045 delete_insn (seq_insn);
1046 add_insn_after (trial, prev);
1047
1048 if (GET_CODE (trial) == JUMP_INSN
1049 && (simplejump_p (trial) || GET_CODE (PATTERN (trial)) == RETURN))
1050 emit_barrier_after (trial);
1051
1052 /* If there are any delay insns, remit them. Otherwise clear the
1053 annul flag. */
1054 if (delay_list)
1055 trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
1056 else
1057 INSN_ANNULLED_BRANCH_P (trial) = 0;
1058
1059 INSN_FROM_TARGET_P (insn) = 0;
1060
1061 /* Show we need to fill this insn again. */
1062 obstack_ptr_grow (&unfilled_slots_obstack, trial);
1063
1064 return trial;
1065 }
1066 \f
1067 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
1068 the insn that sets CC0 for it and delete it too. */
1069
1070 static void
1071 delete_scheduled_jump (insn)
1072 rtx insn;
1073 {
1074 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
1075 delete the insn that sets the condition code, but it is hard to find it.
1076 Since this case is rare anyway, don't bother trying; there would likely
1077 be other insns that became dead anyway, which we wouldn't know to
1078 delete. */
1079
1080 #ifdef HAVE_cc0
1081 if (reg_mentioned_p (cc0_rtx, insn))
1082 {
1083 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1084
1085 /* If a reg-note was found, it points to an insn to set CC0. This
1086 insn is in the delay list of some other insn. So delete it from
1087 the delay list it was in. */
1088 if (note)
1089 {
1090 if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
1091 && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
1092 delete_from_delay_slot (XEXP (note, 0));
1093 }
1094 else
1095 {
1096 /* The insn setting CC0 is our previous insn, but it may be in
1097 a delay slot. It will be the last insn in the delay slot, if
1098 it is. */
1099 rtx trial = previous_insn (insn);
1100 if (GET_CODE (trial) == NOTE)
1101 trial = prev_nonnote_insn (trial);
1102 if (sets_cc0_p (PATTERN (trial)) != 1
1103 || FIND_REG_INC_NOTE (trial, 0))
1104 return;
1105 if (PREV_INSN (NEXT_INSN (trial)) == trial)
1106 delete_insn (trial);
1107 else
1108 delete_from_delay_slot (trial);
1109 }
1110 }
1111 #endif
1112
1113 delete_insn (insn);
1114 }
1115 \f
1116 /* Counters for delay-slot filling. */
1117
1118 #define NUM_REORG_FUNCTIONS 2
1119 #define MAX_DELAY_HISTOGRAM 3
1120 #define MAX_REORG_PASSES 2
1121
1122 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
1123
1124 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
1125
1126 static int reorg_pass_number;
1127
1128 static void
1129 note_delay_statistics (slots_filled, index)
1130 int slots_filled, index;
1131 {
1132 num_insns_needing_delays[index][reorg_pass_number]++;
1133 if (slots_filled > MAX_DELAY_HISTOGRAM)
1134 slots_filled = MAX_DELAY_HISTOGRAM;
1135 num_filled_delays[index][slots_filled][reorg_pass_number]++;
1136 }
1137 \f
1138 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
1139
1140 /* Optimize the following cases:
1141
1142 1. When a conditional branch skips over only one instruction,
1143 use an annulling branch and put that insn in the delay slot.
1144 Use either a branch that annuls when the condition if true or
1145 invert the test with a branch that annuls when the condition is
1146 false. This saves insns, since otherwise we must copy an insn
1147 from the L1 target.
1148
1149 (orig) (skip) (otherwise)
1150 Bcc.n L1 Bcc',a L1 Bcc,a L1'
1151 insn insn insn2
1152 L1: L1: L1:
1153 insn2 insn2 insn2
1154 insn3 insn3 L1':
1155 insn3
1156
1157 2. When a conditional branch skips over only one instruction,
1158 and after that, it unconditionally branches somewhere else,
1159 perform the similar optimization. This saves executing the
1160 second branch in the case where the inverted condition is true.
1161
1162 Bcc.n L1 Bcc',a L2
1163 insn insn
1164 L1: L1:
1165 Bra L2 Bra L2
1166
1167 INSN is a JUMP_INSN.
1168
1169 This should be expanded to skip over N insns, where N is the number
1170 of delay slots required. */
1171
1172 static rtx
1173 optimize_skip (insn)
1174 register rtx insn;
1175 {
1176 register rtx trial = next_nonnote_insn (insn);
1177 rtx next_trial = next_active_insn (trial);
1178 rtx delay_list = 0;
1179 rtx target_label;
1180 int flags;
1181
1182 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1183
1184 if (trial == 0
1185 || GET_CODE (trial) != INSN
1186 || GET_CODE (PATTERN (trial)) == SEQUENCE
1187 || recog_memoized (trial) < 0
1188 || (! eligible_for_annul_false (insn, 0, trial, flags)
1189 && ! eligible_for_annul_true (insn, 0, trial, flags)))
1190 return 0;
1191
1192 /* There are two cases where we are just executing one insn (we assume
1193 here that a branch requires only one insn; this should be generalized
1194 at some point): Where the branch goes around a single insn or where
1195 we have one insn followed by a branch to the same label we branch to.
1196 In both of these cases, inverting the jump and annulling the delay
1197 slot give the same effect in fewer insns. */
1198 if ((next_trial == next_active_insn (JUMP_LABEL (insn)))
1199 || (next_trial != 0
1200 && GET_CODE (next_trial) == JUMP_INSN
1201 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)
1202 && (simplejump_p (next_trial)
1203 || GET_CODE (PATTERN (next_trial)) == RETURN)))
1204 {
1205 if (eligible_for_annul_false (insn, 0, trial, flags))
1206 {
1207 if (invert_jump (insn, JUMP_LABEL (insn)))
1208 INSN_FROM_TARGET_P (trial) = 1;
1209 else if (! eligible_for_annul_true (insn, 0, trial, flags))
1210 return 0;
1211 }
1212
1213 delay_list = add_to_delay_list (trial, NULL_RTX);
1214 next_trial = next_active_insn (trial);
1215 update_block (trial, trial);
1216 delete_insn (trial);
1217
1218 /* Also, if we are targeting an unconditional
1219 branch, thread our jump to the target of that branch. Don't
1220 change this into a RETURN here, because it may not accept what
1221 we have in the delay slot. We'll fix this up later. */
1222 if (next_trial && GET_CODE (next_trial) == JUMP_INSN
1223 && (simplejump_p (next_trial)
1224 || GET_CODE (PATTERN (next_trial)) == RETURN))
1225 {
1226 target_label = JUMP_LABEL (next_trial);
1227 if (target_label == 0)
1228 target_label = find_end_label ();
1229
1230 /* Recompute the flags based on TARGET_LABEL since threading
1231 the jump to TARGET_LABEL may change the direction of the
1232 jump (which may change the circumstances in which the
1233 delay slot is nullified). */
1234 flags = get_jump_flags (insn, target_label);
1235 if (eligible_for_annul_true (insn, 0, trial, flags))
1236 reorg_redirect_jump (insn, target_label);
1237 }
1238
1239 INSN_ANNULLED_BRANCH_P (insn) = 1;
1240 }
1241
1242 return delay_list;
1243 }
1244 #endif
1245 \f
1246
1247 /* Encode and return branch direction and prediction information for
1248 INSN assuming it will jump to LABEL.
1249
1250 Non conditional branches return no direction information and
1251 are predicted as very likely taken. */
1252
1253 static int
1254 get_jump_flags (insn, label)
1255 rtx insn, label;
1256 {
1257 int flags;
1258
1259 /* get_jump_flags can be passed any insn with delay slots, these may
1260 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
1261 direction information, and only if they are conditional jumps.
1262
1263 If LABEL is zero, then there is no way to determine the branch
1264 direction. */
1265 if (GET_CODE (insn) == JUMP_INSN
1266 && (condjump_p (insn) || condjump_in_parallel_p (insn))
1267 && INSN_UID (insn) <= max_uid
1268 && label != 0
1269 && INSN_UID (label) <= max_uid)
1270 flags
1271 = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
1272 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
1273 /* No valid direction information. */
1274 else
1275 flags = 0;
1276
1277 /* If insn is a conditional branch call mostly_true_jump to get
1278 determine the branch prediction.
1279
1280 Non conditional branches are predicted as very likely taken. */
1281 if (GET_CODE (insn) == JUMP_INSN
1282 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
1283 {
1284 int prediction;
1285
1286 prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
1287 switch (prediction)
1288 {
1289 case 2:
1290 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
1291 break;
1292 case 1:
1293 flags |= ATTR_FLAG_likely;
1294 break;
1295 case 0:
1296 flags |= ATTR_FLAG_unlikely;
1297 break;
1298 case -1:
1299 flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
1300 break;
1301
1302 default:
1303 abort();
1304 }
1305 }
1306 else
1307 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
1308
1309 return flags;
1310 }
1311
1312 /* Return 1 if INSN is a destination that will be branched to rarely (the
1313 return point of a function); return 2 if DEST will be branched to very
1314 rarely (a call to a function that doesn't return). Otherwise,
1315 return 0. */
1316
1317 static int
1318 rare_destination (insn)
1319 rtx insn;
1320 {
1321 int jump_count = 0;
1322 rtx next;
1323
1324 for (; insn; insn = next)
1325 {
1326 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1327 insn = XVECEXP (PATTERN (insn), 0, 0);
1328
1329 next = NEXT_INSN (insn);
1330
1331 switch (GET_CODE (insn))
1332 {
1333 case CODE_LABEL:
1334 return 0;
1335 case BARRIER:
1336 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
1337 don't scan past JUMP_INSNs, so any barrier we find here must
1338 have been after a CALL_INSN and hence mean the call doesn't
1339 return. */
1340 return 2;
1341 case JUMP_INSN:
1342 if (GET_CODE (PATTERN (insn)) == RETURN)
1343 return 1;
1344 else if (simplejump_p (insn)
1345 && jump_count++ < 10)
1346 next = JUMP_LABEL (insn);
1347 else
1348 return 0;
1349
1350 default:
1351 break;
1352 }
1353 }
1354
1355 /* If we got here it means we hit the end of the function. So this
1356 is an unlikely destination. */
1357
1358 return 1;
1359 }
1360
1361 /* Return truth value of the statement that this branch
1362 is mostly taken. If we think that the branch is extremely likely
1363 to be taken, we return 2. If the branch is slightly more likely to be
1364 taken, return 1. If the branch is slightly less likely to be taken,
1365 return 0 and if the branch is highly unlikely to be taken, return -1.
1366
1367 CONDITION, if non-zero, is the condition that JUMP_INSN is testing. */
1368
1369 static int
1370 mostly_true_jump (jump_insn, condition)
1371 rtx jump_insn, condition;
1372 {
1373 rtx target_label = JUMP_LABEL (jump_insn);
1374 rtx insn;
1375 int rare_dest = rare_destination (target_label);
1376 int rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
1377
1378 /* If branch probabilities are available, then use that number since it
1379 always gives a correct answer. */
1380 if (flag_branch_probabilities)
1381 {
1382 rtx note = find_reg_note (jump_insn, REG_BR_PROB, 0);;
1383 if (note)
1384 {
1385 int prob = XINT (note, 0);
1386
1387 if (prob >= REG_BR_PROB_BASE * 9 / 10)
1388 return 2;
1389 else if (prob >= REG_BR_PROB_BASE / 2)
1390 return 1;
1391 else if (prob >= REG_BR_PROB_BASE / 10)
1392 return 0;
1393 else
1394 return -1;
1395 }
1396 }
1397
1398 /* If this is a branch outside a loop, it is highly unlikely. */
1399 if (GET_CODE (PATTERN (jump_insn)) == SET
1400 && GET_CODE (SET_SRC (PATTERN (jump_insn))) == IF_THEN_ELSE
1401 && ((GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn)), 1)) == LABEL_REF
1402 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn)), 1)))
1403 || (GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn)), 2)) == LABEL_REF
1404 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn)), 2)))))
1405 return -1;
1406
1407 if (target_label)
1408 {
1409 /* If this is the test of a loop, it is very likely true. We scan
1410 backwards from the target label. If we find a NOTE_INSN_LOOP_BEG
1411 before the next real insn, we assume the branch is to the top of
1412 the loop. */
1413 for (insn = PREV_INSN (target_label);
1414 insn && GET_CODE (insn) == NOTE;
1415 insn = PREV_INSN (insn))
1416 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1417 return 2;
1418
1419 /* If this is a jump to the test of a loop, it is likely true. We scan
1420 forwards from the target label. If we find a NOTE_INSN_LOOP_VTOP
1421 before the next real insn, we assume the branch is to the loop branch
1422 test. */
1423 for (insn = NEXT_INSN (target_label);
1424 insn && GET_CODE (insn) == NOTE;
1425 insn = PREV_INSN (insn))
1426 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP)
1427 return 1;
1428 }
1429
1430 /* Look at the relative rarities of the fallthrough and destination. If
1431 they differ, we can predict the branch that way. */
1432
1433 switch (rare_fallthrough - rare_dest)
1434 {
1435 case -2:
1436 return -1;
1437 case -1:
1438 return 0;
1439 case 0:
1440 break;
1441 case 1:
1442 return 1;
1443 case 2:
1444 return 2;
1445 }
1446
1447 /* If we couldn't figure out what this jump was, assume it won't be
1448 taken. This should be rare. */
1449 if (condition == 0)
1450 return 0;
1451
1452 /* EQ tests are usually false and NE tests are usually true. Also,
1453 most quantities are positive, so we can make the appropriate guesses
1454 about signed comparisons against zero. */
1455 switch (GET_CODE (condition))
1456 {
1457 case CONST_INT:
1458 /* Unconditional branch. */
1459 return 1;
1460 case EQ:
1461 return 0;
1462 case NE:
1463 return 1;
1464 case LE:
1465 case LT:
1466 if (XEXP (condition, 1) == const0_rtx)
1467 return 0;
1468 break;
1469 case GE:
1470 case GT:
1471 if (XEXP (condition, 1) == const0_rtx)
1472 return 1;
1473 break;
1474
1475 default:
1476 break;
1477 }
1478
1479 /* Predict backward branches usually take, forward branches usually not. If
1480 we don't know whether this is forward or backward, assume the branch
1481 will be taken, since most are. */
1482 return (target_label == 0 || INSN_UID (jump_insn) > max_uid
1483 || INSN_UID (target_label) > max_uid
1484 || (uid_to_ruid[INSN_UID (jump_insn)]
1485 > uid_to_ruid[INSN_UID (target_label)]));;
1486 }
1487
1488 /* Return the condition under which INSN will branch to TARGET. If TARGET
1489 is zero, return the condition under which INSN will return. If INSN is
1490 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1491 type of jump, or it doesn't go to TARGET, return 0. */
1492
1493 static rtx
1494 get_branch_condition (insn, target)
1495 rtx insn;
1496 rtx target;
1497 {
1498 rtx pat = PATTERN (insn);
1499 rtx src;
1500
1501 if (condjump_in_parallel_p (insn))
1502 pat = XVECEXP (pat, 0, 0);
1503
1504 if (GET_CODE (pat) == RETURN)
1505 return target == 0 ? const_true_rtx : 0;
1506
1507 else if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
1508 return 0;
1509
1510 src = SET_SRC (pat);
1511 if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
1512 return const_true_rtx;
1513
1514 else if (GET_CODE (src) == IF_THEN_ELSE
1515 && ((target == 0 && GET_CODE (XEXP (src, 1)) == RETURN)
1516 || (GET_CODE (XEXP (src, 1)) == LABEL_REF
1517 && XEXP (XEXP (src, 1), 0) == target))
1518 && XEXP (src, 2) == pc_rtx)
1519 return XEXP (src, 0);
1520
1521 else if (GET_CODE (src) == IF_THEN_ELSE
1522 && ((target == 0 && GET_CODE (XEXP (src, 2)) == RETURN)
1523 || (GET_CODE (XEXP (src, 2)) == LABEL_REF
1524 && XEXP (XEXP (src, 2), 0) == target))
1525 && XEXP (src, 1) == pc_rtx)
1526 return gen_rtx_fmt_ee (reverse_condition (GET_CODE (XEXP (src, 0))),
1527 GET_MODE (XEXP (src, 0)),
1528 XEXP (XEXP (src, 0), 0), XEXP (XEXP (src, 0), 1));
1529
1530 return 0;
1531 }
1532
1533 /* Return non-zero if CONDITION is more strict than the condition of
1534 INSN, i.e., if INSN will always branch if CONDITION is true. */
1535
1536 static int
1537 condition_dominates_p (condition, insn)
1538 rtx condition;
1539 rtx insn;
1540 {
1541 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
1542 enum rtx_code code = GET_CODE (condition);
1543 enum rtx_code other_code;
1544
1545 if (rtx_equal_p (condition, other_condition)
1546 || other_condition == const_true_rtx)
1547 return 1;
1548
1549 else if (condition == const_true_rtx || other_condition == 0)
1550 return 0;
1551
1552 other_code = GET_CODE (other_condition);
1553 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
1554 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
1555 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
1556 return 0;
1557
1558 return comparison_dominates_p (code, other_code);
1559 }
1560
1561 /* Return non-zero if redirecting JUMP to NEWLABEL does not invalidate
1562 any insns already in the delay slot of JUMP. */
1563
1564 static int
1565 redirect_with_delay_slots_safe_p (jump, newlabel, seq)
1566 rtx jump, newlabel, seq;
1567 {
1568 int flags, i;
1569 rtx pat = PATTERN (seq);
1570
1571 /* Make sure all the delay slots of this jump would still
1572 be valid after threading the jump. If they are still
1573 valid, then return non-zero. */
1574
1575 flags = get_jump_flags (jump, newlabel);
1576 for (i = 1; i < XVECLEN (pat, 0); i++)
1577 if (! (
1578 #ifdef ANNUL_IFFALSE_SLOTS
1579 (INSN_ANNULLED_BRANCH_P (jump)
1580 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1581 ? eligible_for_annul_false (jump, i - 1,
1582 XVECEXP (pat, 0, i), flags) :
1583 #endif
1584 #ifdef ANNUL_IFTRUE_SLOTS
1585 (INSN_ANNULLED_BRANCH_P (jump)
1586 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1587 ? eligible_for_annul_true (jump, i - 1,
1588 XVECEXP (pat, 0, i), flags) :
1589 #endif
1590 eligible_for_delay (jump, i -1, XVECEXP (pat, 0, i), flags)))
1591 break;
1592
1593 return (i == XVECLEN (pat, 0));
1594 }
1595
1596 /* Return non-zero if redirecting JUMP to NEWLABEL does not invalidate
1597 any insns we wish to place in the delay slot of JUMP. */
1598
1599 static int
1600 redirect_with_delay_list_safe_p (jump, newlabel, delay_list)
1601 rtx jump, newlabel, delay_list;
1602 {
1603 int flags, i;
1604 rtx li;
1605
1606 /* Make sure all the insns in DELAY_LIST would still be
1607 valid after threading the jump. If they are still
1608 valid, then return non-zero. */
1609
1610 flags = get_jump_flags (jump, newlabel);
1611 for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
1612 if (! (
1613 #ifdef ANNUL_IFFALSE_SLOTS
1614 (INSN_ANNULLED_BRANCH_P (jump)
1615 && INSN_FROM_TARGET_P (XEXP (li, 0)))
1616 ? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
1617 #endif
1618 #ifdef ANNUL_IFTRUE_SLOTS
1619 (INSN_ANNULLED_BRANCH_P (jump)
1620 && ! INSN_FROM_TARGET_P (XEXP (li, 0)))
1621 ? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
1622 #endif
1623 eligible_for_delay (jump, i, XEXP (li, 0), flags)))
1624 break;
1625
1626 return (li == NULL);
1627 }
1628
1629 /* DELAY_LIST is a list of insns that have already been placed into delay
1630 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1631 If not, return 0; otherwise return 1. */
1632
1633 static int
1634 check_annul_list_true_false (annul_true_p, delay_list)
1635 int annul_true_p;
1636 rtx delay_list;
1637 {
1638 rtx temp;
1639
1640 if (delay_list)
1641 {
1642 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1643 {
1644 rtx trial = XEXP (temp, 0);
1645
1646 if ((annul_true_p && INSN_FROM_TARGET_P (trial))
1647 || (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
1648 return 0;
1649 }
1650 }
1651 return 1;
1652 }
1653
1654 \f
1655 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1656 the condition tested by INSN is CONDITION and the resources shown in
1657 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1658 from SEQ's delay list, in addition to whatever insns it may execute
1659 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1660 needed while searching for delay slot insns. Return the concatenated
1661 delay list if possible, otherwise, return 0.
1662
1663 SLOTS_TO_FILL is the total number of slots required by INSN, and
1664 PSLOTS_FILLED points to the number filled so far (also the number of
1665 insns in DELAY_LIST). It is updated with the number that have been
1666 filled from the SEQUENCE, if any.
1667
1668 PANNUL_P points to a non-zero value if we already know that we need
1669 to annul INSN. If this routine determines that annulling is needed,
1670 it may set that value non-zero.
1671
1672 PNEW_THREAD points to a location that is to receive the place at which
1673 execution should continue. */
1674
1675 static rtx
1676 steal_delay_list_from_target (insn, condition, seq, delay_list,
1677 sets, needed, other_needed,
1678 slots_to_fill, pslots_filled, pannul_p,
1679 pnew_thread)
1680 rtx insn, condition;
1681 rtx seq;
1682 rtx delay_list;
1683 struct resources *sets, *needed, *other_needed;
1684 int slots_to_fill;
1685 int *pslots_filled;
1686 int *pannul_p;
1687 rtx *pnew_thread;
1688 {
1689 rtx temp;
1690 int slots_remaining = slots_to_fill - *pslots_filled;
1691 int total_slots_filled = *pslots_filled;
1692 rtx new_delay_list = 0;
1693 int must_annul = *pannul_p;
1694 int i;
1695 int used_annul = 0;
1696
1697 /* We can't do anything if there are more delay slots in SEQ than we
1698 can handle, or if we don't know that it will be a taken branch.
1699 We know that it will be a taken branch if it is either an unconditional
1700 branch or a conditional branch with a stricter branch condition.
1701
1702 Also, exit if the branch has more than one set, since then it is computing
1703 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1704 ??? It may be possible to move other sets into INSN in addition to
1705 moving the instructions in the delay slots. */
1706
1707 if (XVECLEN (seq, 0) - 1 > slots_remaining
1708 || ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
1709 || ! single_set (XVECEXP (seq, 0, 0)))
1710 return delay_list;
1711
1712 for (i = 1; i < XVECLEN (seq, 0); i++)
1713 {
1714 rtx trial = XVECEXP (seq, 0, i);
1715 int flags;
1716
1717 if (insn_references_resource_p (trial, sets, 0)
1718 || insn_sets_resource_p (trial, needed, 0)
1719 || insn_sets_resource_p (trial, sets, 0)
1720 #ifdef HAVE_cc0
1721 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1722 delay list. */
1723 || find_reg_note (trial, REG_CC_USER, NULL_RTX)
1724 #endif
1725 /* If TRIAL is from the fallthrough code of an annulled branch insn
1726 in SEQ, we cannot use it. */
1727 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
1728 && ! INSN_FROM_TARGET_P (trial)))
1729 return delay_list;
1730
1731 /* If this insn was already done (usually in a previous delay slot),
1732 pretend we put it in our delay slot. */
1733 if (redundant_insn (trial, insn, new_delay_list))
1734 continue;
1735
1736 /* We will end up re-vectoring this branch, so compute flags
1737 based on jumping to the new label. */
1738 flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
1739
1740 if (! must_annul
1741 && ((condition == const_true_rtx
1742 || (! insn_sets_resource_p (trial, other_needed, 0)
1743 && ! may_trap_p (PATTERN (trial)))))
1744 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1745 : (must_annul || (delay_list == NULL && new_delay_list == NULL))
1746 && (must_annul = 1,
1747 check_annul_list_true_false (0, delay_list)
1748 && check_annul_list_true_false (0, new_delay_list)
1749 && eligible_for_annul_false (insn, total_slots_filled,
1750 trial, flags)))
1751 {
1752 if (must_annul)
1753 used_annul = 1;
1754 temp = copy_rtx (trial);
1755 INSN_FROM_TARGET_P (temp) = 1;
1756 new_delay_list = add_to_delay_list (temp, new_delay_list);
1757 total_slots_filled++;
1758
1759 if (--slots_remaining == 0)
1760 break;
1761 }
1762 else
1763 return delay_list;
1764 }
1765
1766 /* Show the place to which we will be branching. */
1767 *pnew_thread = next_active_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
1768
1769 /* Add any new insns to the delay list and update the count of the
1770 number of slots filled. */
1771 *pslots_filled = total_slots_filled;
1772 if (used_annul)
1773 *pannul_p = 1;
1774
1775 if (delay_list == 0)
1776 return new_delay_list;
1777
1778 for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
1779 delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
1780
1781 return delay_list;
1782 }
1783 \f
1784 /* Similar to steal_delay_list_from_target except that SEQ is on the
1785 fallthrough path of INSN. Here we only do something if the delay insn
1786 of SEQ is an unconditional branch. In that case we steal its delay slot
1787 for INSN since unconditional branches are much easier to fill. */
1788
1789 static rtx
1790 steal_delay_list_from_fallthrough (insn, condition, seq,
1791 delay_list, sets, needed, other_needed,
1792 slots_to_fill, pslots_filled, pannul_p)
1793 rtx insn, condition;
1794 rtx seq;
1795 rtx delay_list;
1796 struct resources *sets, *needed, *other_needed;
1797 int slots_to_fill;
1798 int *pslots_filled;
1799 int *pannul_p;
1800 {
1801 int i;
1802 int flags;
1803 int must_annul = *pannul_p;
1804 int used_annul = 0;
1805
1806 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1807
1808 /* We can't do anything if SEQ's delay insn isn't an
1809 unconditional branch. */
1810
1811 if (! simplejump_p (XVECEXP (seq, 0, 0))
1812 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) != RETURN)
1813 return delay_list;
1814
1815 for (i = 1; i < XVECLEN (seq, 0); i++)
1816 {
1817 rtx trial = XVECEXP (seq, 0, i);
1818
1819 /* If TRIAL sets CC0, stealing it will move it too far from the use
1820 of CC0. */
1821 if (insn_references_resource_p (trial, sets, 0)
1822 || insn_sets_resource_p (trial, needed, 0)
1823 || insn_sets_resource_p (trial, sets, 0)
1824 #ifdef HAVE_cc0
1825 || sets_cc0_p (PATTERN (trial))
1826 #endif
1827 )
1828
1829 break;
1830
1831 /* If this insn was already done, we don't need it. */
1832 if (redundant_insn (trial, insn, delay_list))
1833 {
1834 delete_from_delay_slot (trial);
1835 continue;
1836 }
1837
1838 if (! must_annul
1839 && ((condition == const_true_rtx
1840 || (! insn_sets_resource_p (trial, other_needed, 0)
1841 && ! may_trap_p (PATTERN (trial)))))
1842 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1843 : (must_annul || delay_list == NULL) && (must_annul = 1,
1844 check_annul_list_true_false (1, delay_list)
1845 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1846 {
1847 if (must_annul)
1848 used_annul = 1;
1849 delete_from_delay_slot (trial);
1850 delay_list = add_to_delay_list (trial, delay_list);
1851
1852 if (++(*pslots_filled) == slots_to_fill)
1853 break;
1854 }
1855 else
1856 break;
1857 }
1858
1859 if (used_annul)
1860 *pannul_p = 1;
1861 return delay_list;
1862 }
1863
1864 \f
1865 /* Try merging insns starting at THREAD which match exactly the insns in
1866 INSN's delay list.
1867
1868 If all insns were matched and the insn was previously annulling, the
1869 annul bit will be cleared.
1870
1871 For each insn that is merged, if the branch is or will be non-annulling,
1872 we delete the merged insn. */
1873
1874 static void
1875 try_merge_delay_insns (insn, thread)
1876 rtx insn, thread;
1877 {
1878 rtx trial, next_trial;
1879 rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
1880 int annul_p = INSN_ANNULLED_BRANCH_P (delay_insn);
1881 int slot_number = 1;
1882 int num_slots = XVECLEN (PATTERN (insn), 0);
1883 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1884 struct resources set, needed;
1885 rtx merged_insns = 0;
1886 int i;
1887 int flags;
1888
1889 flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1890
1891 CLEAR_RESOURCE (&needed);
1892 CLEAR_RESOURCE (&set);
1893
1894 /* If this is not an annulling branch, take into account anything needed in
1895 INSN's delay slot. This prevents two increments from being incorrectly
1896 folded into one. If we are annulling, this would be the correct
1897 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1898 will essentially disable this optimization. This method is somewhat of
1899 a kludge, but I don't see a better way.) */
1900 if (! annul_p)
1901 for (i = 1 ; i < num_slots ; i++)
1902 if (XVECEXP (PATTERN (insn), 0, i))
1903 mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed, 1);
1904
1905 for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1906 {
1907 rtx pat = PATTERN (trial);
1908 rtx oldtrial = trial;
1909
1910 next_trial = next_nonnote_insn (trial);
1911
1912 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1913 if (GET_CODE (trial) == INSN
1914 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1915 continue;
1916
1917 if (GET_CODE (next_to_match) == GET_CODE (trial)
1918 #ifdef HAVE_cc0
1919 /* We can't share an insn that sets cc0. */
1920 && ! sets_cc0_p (pat)
1921 #endif
1922 && ! insn_references_resource_p (trial, &set, 1)
1923 && ! insn_sets_resource_p (trial, &set, 1)
1924 && ! insn_sets_resource_p (trial, &needed, 1)
1925 && (trial = try_split (pat, trial, 0)) != 0
1926 /* Update next_trial, in case try_split succeeded. */
1927 && (next_trial = next_nonnote_insn (trial))
1928 /* Likewise THREAD. */
1929 && (thread = oldtrial == thread ? trial : thread)
1930 && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1931 /* Have to test this condition if annul condition is different
1932 from (and less restrictive than) non-annulling one. */
1933 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1934 {
1935
1936 if (! annul_p)
1937 {
1938 update_block (trial, thread);
1939 if (trial == thread)
1940 thread = next_active_insn (thread);
1941
1942 delete_insn (trial);
1943 INSN_FROM_TARGET_P (next_to_match) = 0;
1944 }
1945 else
1946 merged_insns = gen_rtx_INSN_LIST (VOIDmode, trial, merged_insns);
1947
1948 if (++slot_number == num_slots)
1949 break;
1950
1951 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1952 }
1953
1954 mark_set_resources (trial, &set, 0, 1);
1955 mark_referenced_resources (trial, &needed, 1);
1956 }
1957
1958 /* See if we stopped on a filled insn. If we did, try to see if its
1959 delay slots match. */
1960 if (slot_number != num_slots
1961 && trial && GET_CODE (trial) == INSN
1962 && GET_CODE (PATTERN (trial)) == SEQUENCE
1963 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0)))
1964 {
1965 rtx pat = PATTERN (trial);
1966 rtx filled_insn = XVECEXP (pat, 0, 0);
1967
1968 /* Account for resources set/needed by the filled insn. */
1969 mark_set_resources (filled_insn, &set, 0, 1);
1970 mark_referenced_resources (filled_insn, &needed, 1);
1971
1972 for (i = 1; i < XVECLEN (pat, 0); i++)
1973 {
1974 rtx dtrial = XVECEXP (pat, 0, i);
1975
1976 if (! insn_references_resource_p (dtrial, &set, 1)
1977 && ! insn_sets_resource_p (dtrial, &set, 1)
1978 && ! insn_sets_resource_p (dtrial, &needed, 1)
1979 #ifdef HAVE_cc0
1980 && ! sets_cc0_p (PATTERN (dtrial))
1981 #endif
1982 && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1983 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1984 {
1985 if (! annul_p)
1986 {
1987 rtx new;
1988
1989 update_block (dtrial, thread);
1990 new = delete_from_delay_slot (dtrial);
1991 if (INSN_DELETED_P (thread))
1992 thread = new;
1993 INSN_FROM_TARGET_P (next_to_match) = 0;
1994 }
1995 else
1996 merged_insns = gen_rtx_INSN_LIST (SImode, dtrial,
1997 merged_insns);
1998
1999 if (++slot_number == num_slots)
2000 break;
2001
2002 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
2003 }
2004 else
2005 {
2006 /* Keep track of the set/referenced resources for the delay
2007 slots of any trial insns we encounter. */
2008 mark_set_resources (dtrial, &set, 0, 1);
2009 mark_referenced_resources (dtrial, &needed, 1);
2010 }
2011 }
2012 }
2013
2014 /* If all insns in the delay slot have been matched and we were previously
2015 annulling the branch, we need not any more. In that case delete all the
2016 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
2017 the delay list so that we know that it isn't only being used at the
2018 target. */
2019 if (slot_number == num_slots && annul_p)
2020 {
2021 for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
2022 {
2023 if (GET_MODE (merged_insns) == SImode)
2024 {
2025 rtx new;
2026
2027 update_block (XEXP (merged_insns, 0), thread);
2028 new = delete_from_delay_slot (XEXP (merged_insns, 0));
2029 if (INSN_DELETED_P (thread))
2030 thread = new;
2031 }
2032 else
2033 {
2034 update_block (XEXP (merged_insns, 0), thread);
2035 delete_insn (XEXP (merged_insns, 0));
2036 }
2037 }
2038
2039 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
2040
2041 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2042 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
2043 }
2044 }
2045 \f
2046 /* See if INSN is redundant with an insn in front of TARGET. Often this
2047 is called when INSN is a candidate for a delay slot of TARGET.
2048 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
2049 of INSN. Often INSN will be redundant with an insn in a delay slot of
2050 some previous insn. This happens when we have a series of branches to the
2051 same label; in that case the first insn at the target might want to go
2052 into each of the delay slots.
2053
2054 If we are not careful, this routine can take up a significant fraction
2055 of the total compilation time (4%), but only wins rarely. Hence we
2056 speed this routine up by making two passes. The first pass goes back
2057 until it hits a label and sees if it find an insn with an identical
2058 pattern. Only in this (relatively rare) event does it check for
2059 data conflicts.
2060
2061 We do not split insns we encounter. This could cause us not to find a
2062 redundant insn, but the cost of splitting seems greater than the possible
2063 gain in rare cases. */
2064
2065 static rtx
2066 redundant_insn (insn, target, delay_list)
2067 rtx insn;
2068 rtx target;
2069 rtx delay_list;
2070 {
2071 rtx target_main = target;
2072 rtx ipat = PATTERN (insn);
2073 rtx trial, pat;
2074 struct resources needed, set;
2075 int i;
2076
2077 /* If INSN has any REG_UNUSED notes, it can't match anything since we
2078 are allowed to not actually assign to such a register. */
2079 if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
2080 return 0;
2081
2082 /* Scan backwards looking for a match. */
2083 for (trial = PREV_INSN (target); trial; trial = PREV_INSN (trial))
2084 {
2085 if (GET_CODE (trial) == CODE_LABEL)
2086 return 0;
2087
2088 if (GET_RTX_CLASS (GET_CODE (trial)) != 'i')
2089 continue;
2090
2091 pat = PATTERN (trial);
2092 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2093 continue;
2094
2095 if (GET_CODE (pat) == SEQUENCE)
2096 {
2097 /* Stop for a CALL and its delay slots because it is difficult to
2098 track its resource needs correctly. */
2099 if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL_INSN)
2100 return 0;
2101
2102 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
2103 slots because it is difficult to track its resource needs
2104 correctly. */
2105
2106 #ifdef INSN_SETS_ARE_DELAYED
2107 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
2108 return 0;
2109 #endif
2110
2111 #ifdef INSN_REFERENCES_ARE_DELAYED
2112 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
2113 return 0;
2114 #endif
2115
2116 /* See if any of the insns in the delay slot match, updating
2117 resource requirements as we go. */
2118 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
2119 if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
2120 && rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat)
2121 && ! find_reg_note (XVECEXP (pat, 0, i), REG_UNUSED, NULL_RTX))
2122 break;
2123
2124 /* If found a match, exit this loop early. */
2125 if (i > 0)
2126 break;
2127 }
2128
2129 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
2130 && ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
2131 break;
2132 }
2133
2134 /* If we didn't find an insn that matches, return 0. */
2135 if (trial == 0)
2136 return 0;
2137
2138 /* See what resources this insn sets and needs. If they overlap, or
2139 if this insn references CC0, it can't be redundant. */
2140
2141 CLEAR_RESOURCE (&needed);
2142 CLEAR_RESOURCE (&set);
2143 mark_set_resources (insn, &set, 0, 1);
2144 mark_referenced_resources (insn, &needed, 1);
2145
2146 /* If TARGET is a SEQUENCE, get the main insn. */
2147 if (GET_CODE (target) == INSN && GET_CODE (PATTERN (target)) == SEQUENCE)
2148 target_main = XVECEXP (PATTERN (target), 0, 0);
2149
2150 if (resource_conflicts_p (&needed, &set)
2151 #ifdef HAVE_cc0
2152 || reg_mentioned_p (cc0_rtx, ipat)
2153 #endif
2154 /* The insn requiring the delay may not set anything needed or set by
2155 INSN. */
2156 || insn_sets_resource_p (target_main, &needed, 1)
2157 || insn_sets_resource_p (target_main, &set, 1))
2158 return 0;
2159
2160 /* Insns we pass may not set either NEEDED or SET, so merge them for
2161 simpler tests. */
2162 needed.memory |= set.memory;
2163 needed.unch_memory |= set.unch_memory;
2164 IOR_HARD_REG_SET (needed.regs, set.regs);
2165
2166 /* This insn isn't redundant if it conflicts with an insn that either is
2167 or will be in a delay slot of TARGET. */
2168
2169 while (delay_list)
2170 {
2171 if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, 1))
2172 return 0;
2173 delay_list = XEXP (delay_list, 1);
2174 }
2175
2176 if (GET_CODE (target) == INSN && GET_CODE (PATTERN (target)) == SEQUENCE)
2177 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
2178 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed, 1))
2179 return 0;
2180
2181 /* Scan backwards until we reach a label or an insn that uses something
2182 INSN sets or sets something insn uses or sets. */
2183
2184 for (trial = PREV_INSN (target);
2185 trial && GET_CODE (trial) != CODE_LABEL;
2186 trial = PREV_INSN (trial))
2187 {
2188 if (GET_CODE (trial) != INSN && GET_CODE (trial) != CALL_INSN
2189 && GET_CODE (trial) != JUMP_INSN)
2190 continue;
2191
2192 pat = PATTERN (trial);
2193 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2194 continue;
2195
2196 if (GET_CODE (pat) == SEQUENCE)
2197 {
2198 /* If this is a CALL_INSN and its delay slots, it is hard to track
2199 the resource needs properly, so give up. */
2200 if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL_INSN)
2201 return 0;
2202
2203 /* If this is an INSN or JUMP_INSN with delayed effects, it
2204 is hard to track the resource needs properly, so give up. */
2205
2206 #ifdef INSN_SETS_ARE_DELAYED
2207 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
2208 return 0;
2209 #endif
2210
2211 #ifdef INSN_REFERENCES_ARE_DELAYED
2212 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
2213 return 0;
2214 #endif
2215
2216 /* See if any of the insns in the delay slot match, updating
2217 resource requirements as we go. */
2218 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
2219 {
2220 rtx candidate = XVECEXP (pat, 0, i);
2221
2222 /* If an insn will be annulled if the branch is false, it isn't
2223 considered as a possible duplicate insn. */
2224 if (rtx_equal_p (PATTERN (candidate), ipat)
2225 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
2226 && INSN_FROM_TARGET_P (candidate)))
2227 {
2228 /* Show that this insn will be used in the sequel. */
2229 INSN_FROM_TARGET_P (candidate) = 0;
2230 return candidate;
2231 }
2232
2233 /* Unless this is an annulled insn from the target of a branch,
2234 we must stop if it sets anything needed or set by INSN. */
2235 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
2236 || ! INSN_FROM_TARGET_P (candidate))
2237 && insn_sets_resource_p (candidate, &needed, 1))
2238 return 0;
2239 }
2240
2241
2242 /* If the insn requiring the delay slot conflicts with INSN, we
2243 must stop. */
2244 if (insn_sets_resource_p (XVECEXP (pat, 0, 0), &needed, 1))
2245 return 0;
2246 }
2247 else
2248 {
2249 /* See if TRIAL is the same as INSN. */
2250 pat = PATTERN (trial);
2251 if (rtx_equal_p (pat, ipat))
2252 return trial;
2253
2254 /* Can't go any further if TRIAL conflicts with INSN. */
2255 if (insn_sets_resource_p (trial, &needed, 1))
2256 return 0;
2257 }
2258 }
2259
2260 return 0;
2261 }
2262 \f
2263 /* Return 1 if THREAD can only be executed in one way. If LABEL is non-zero,
2264 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
2265 is non-zero, we are allowed to fall into this thread; otherwise, we are
2266 not.
2267
2268 If LABEL is used more than one or we pass a label other than LABEL before
2269 finding an active insn, we do not own this thread. */
2270
2271 static int
2272 own_thread_p (thread, label, allow_fallthrough)
2273 rtx thread;
2274 rtx label;
2275 int allow_fallthrough;
2276 {
2277 rtx active_insn;
2278 rtx insn;
2279
2280 /* We don't own the function end. */
2281 if (thread == 0)
2282 return 0;
2283
2284 /* Get the first active insn, or THREAD, if it is an active insn. */
2285 active_insn = next_active_insn (PREV_INSN (thread));
2286
2287 for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
2288 if (GET_CODE (insn) == CODE_LABEL
2289 && (insn != label || LABEL_NUSES (insn) != 1))
2290 return 0;
2291
2292 if (allow_fallthrough)
2293 return 1;
2294
2295 /* Ensure that we reach a BARRIER before any insn or label. */
2296 for (insn = prev_nonnote_insn (thread);
2297 insn == 0 || GET_CODE (insn) != BARRIER;
2298 insn = prev_nonnote_insn (insn))
2299 if (insn == 0
2300 || GET_CODE (insn) == CODE_LABEL
2301 || (GET_CODE (insn) == INSN
2302 && GET_CODE (PATTERN (insn)) != USE
2303 && GET_CODE (PATTERN (insn)) != CLOBBER))
2304 return 0;
2305
2306 return 1;
2307 }
2308 \f
2309 /* Find the number of the basic block that starts closest to INSN. Return -1
2310 if we couldn't find such a basic block. */
2311
2312 static int
2313 find_basic_block (insn)
2314 rtx insn;
2315 {
2316 int i;
2317
2318 /* Scan backwards to the previous BARRIER. Then see if we can find a
2319 label that starts a basic block. Return the basic block number. */
2320
2321 for (insn = prev_nonnote_insn (insn);
2322 insn && GET_CODE (insn) != BARRIER;
2323 insn = prev_nonnote_insn (insn))
2324 ;
2325
2326 /* The start of the function is basic block zero. */
2327 if (insn == 0)
2328 return 0;
2329
2330 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
2331 anything other than a CODE_LABEL or note, we can't find this code. */
2332 for (insn = next_nonnote_insn (insn);
2333 insn && GET_CODE (insn) == CODE_LABEL;
2334 insn = next_nonnote_insn (insn))
2335 {
2336 for (i = 0; i < n_basic_blocks; i++)
2337 if (insn == basic_block_head[i])
2338 return i;
2339 }
2340
2341 return -1;
2342 }
2343 \f
2344 /* Called when INSN is being moved from a location near the target of a jump.
2345 We leave a marker of the form (use (INSN)) immediately in front
2346 of WHERE for mark_target_live_regs. These markers will be deleted when
2347 reorg finishes.
2348
2349 We used to try to update the live status of registers if WHERE is at
2350 the start of a basic block, but that can't work since we may remove a
2351 BARRIER in relax_delay_slots. */
2352
2353 static void
2354 update_block (insn, where)
2355 rtx insn;
2356 rtx where;
2357 {
2358 int b;
2359
2360 /* Ignore if this was in a delay slot and it came from the target of
2361 a branch. */
2362 if (INSN_FROM_TARGET_P (insn))
2363 return;
2364
2365 emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
2366
2367 /* INSN might be making a value live in a block where it didn't use to
2368 be. So recompute liveness information for this block. */
2369
2370 b = find_basic_block (insn);
2371 if (b != -1)
2372 bb_ticks[b]++;
2373 }
2374
2375 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
2376 the basic block containing the jump. */
2377
2378 static int
2379 reorg_redirect_jump (jump, nlabel)
2380 rtx jump;
2381 rtx nlabel;
2382 {
2383 int b = find_basic_block (jump);
2384
2385 if (b != -1)
2386 bb_ticks[b]++;
2387
2388 return redirect_jump (jump, nlabel);
2389 }
2390
2391 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
2392 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
2393 that reference values used in INSN. If we find one, then we move the
2394 REG_DEAD note to INSN.
2395
2396 This is needed to handle the case where an later insn (after INSN) has a
2397 REG_DEAD note for a register used by INSN, and this later insn subsequently
2398 gets moved before a CODE_LABEL because it is a redundant insn. In this
2399 case, mark_target_live_regs may be confused into thinking the register
2400 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
2401
2402 static void
2403 update_reg_dead_notes (insn, delayed_insn)
2404 rtx insn, delayed_insn;
2405 {
2406 rtx p, link, next;
2407
2408 for (p = next_nonnote_insn (insn); p != delayed_insn;
2409 p = next_nonnote_insn (p))
2410 for (link = REG_NOTES (p); link; link = next)
2411 {
2412 next = XEXP (link, 1);
2413
2414 if (REG_NOTE_KIND (link) != REG_DEAD
2415 || GET_CODE (XEXP (link, 0)) != REG)
2416 continue;
2417
2418 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
2419 {
2420 /* Move the REG_DEAD note from P to INSN. */
2421 remove_note (p, link);
2422 XEXP (link, 1) = REG_NOTES (insn);
2423 REG_NOTES (insn) = link;
2424 }
2425 }
2426 }
2427
2428 /* Called when an insn redundant with start_insn is deleted. If there
2429 is a REG_DEAD note for the target of start_insn between start_insn
2430 and stop_insn, then the REG_DEAD note needs to be deleted since the
2431 value no longer dies there.
2432
2433 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
2434 confused into thinking the register is dead. */
2435
2436 static void
2437 fix_reg_dead_note (start_insn, stop_insn)
2438 rtx start_insn, stop_insn;
2439 {
2440 rtx p, link, next;
2441
2442 for (p = next_nonnote_insn (start_insn); p != stop_insn;
2443 p = next_nonnote_insn (p))
2444 for (link = REG_NOTES (p); link; link = next)
2445 {
2446 next = XEXP (link, 1);
2447
2448 if (REG_NOTE_KIND (link) != REG_DEAD
2449 || GET_CODE (XEXP (link, 0)) != REG)
2450 continue;
2451
2452 if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
2453 {
2454 remove_note (p, link);
2455 return;
2456 }
2457 }
2458 }
2459
2460 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
2461
2462 This handles the case of udivmodXi4 instructions which optimize their
2463 output depending on whether any REG_UNUSED notes are present.
2464 we must make sure that INSN calculates as many results as REDUNDANT_INSN
2465 does. */
2466
2467 static void
2468 update_reg_unused_notes (insn, redundant_insn)
2469 rtx insn, redundant_insn;
2470 {
2471 rtx link, next;
2472
2473 for (link = REG_NOTES (insn); link; link = next)
2474 {
2475 next = XEXP (link, 1);
2476
2477 if (REG_NOTE_KIND (link) != REG_UNUSED
2478 || GET_CODE (XEXP (link, 0)) != REG)
2479 continue;
2480
2481 if (! find_regno_note (redundant_insn, REG_UNUSED,
2482 REGNO (XEXP (link, 0))))
2483 remove_note (insn, link);
2484 }
2485 }
2486 \f
2487 /* Marks registers possibly live at the current place being scanned by
2488 mark_target_live_regs. Used only by next two function. */
2489
2490 static HARD_REG_SET current_live_regs;
2491
2492 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
2493 Also only used by the next two functions. */
2494
2495 static HARD_REG_SET pending_dead_regs;
2496
2497 /* Utility function called from mark_target_live_regs via note_stores.
2498 It deadens any CLOBBERed registers and livens any SET registers. */
2499
2500 static void
2501 update_live_status (dest, x)
2502 rtx dest;
2503 rtx x;
2504 {
2505 int first_regno, last_regno;
2506 int i;
2507
2508 if (GET_CODE (dest) != REG
2509 && (GET_CODE (dest) != SUBREG || GET_CODE (SUBREG_REG (dest)) != REG))
2510 return;
2511
2512 if (GET_CODE (dest) == SUBREG)
2513 first_regno = REGNO (SUBREG_REG (dest)) + SUBREG_WORD (dest);
2514 else
2515 first_regno = REGNO (dest);
2516
2517 last_regno = first_regno + HARD_REGNO_NREGS (first_regno, GET_MODE (dest));
2518
2519 if (GET_CODE (x) == CLOBBER)
2520 for (i = first_regno; i < last_regno; i++)
2521 CLEAR_HARD_REG_BIT (current_live_regs, i);
2522 else
2523 for (i = first_regno; i < last_regno; i++)
2524 {
2525 SET_HARD_REG_BIT (current_live_regs, i);
2526 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
2527 }
2528 }
2529
2530 /* Similar to next_insn, but ignores insns in the delay slots of
2531 an annulled branch. */
2532
2533 static rtx
2534 next_insn_no_annul (insn)
2535 rtx insn;
2536 {
2537 if (insn)
2538 {
2539 /* If INSN is an annulled branch, skip any insns from the target
2540 of the branch. */
2541 if (INSN_ANNULLED_BRANCH_P (insn)
2542 && NEXT_INSN (PREV_INSN (insn)) != insn)
2543 while (INSN_FROM_TARGET_P (NEXT_INSN (insn)))
2544 insn = NEXT_INSN (insn);
2545
2546 insn = NEXT_INSN (insn);
2547 if (insn && GET_CODE (insn) == INSN
2548 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2549 insn = XVECEXP (PATTERN (insn), 0, 0);
2550 }
2551
2552 return insn;
2553 }
2554 \f
2555 /* A subroutine of mark_target_live_regs. Search forward from TARGET
2556 looking for registers that are set before they are used. These are dead.
2557 Stop after passing a few conditional jumps, and/or a small
2558 number of unconditional branches. */
2559
2560 static rtx
2561 find_dead_or_set_registers (target, res, jump_target, jump_count, set, needed)
2562 rtx target;
2563 struct resources *res;
2564 rtx *jump_target;
2565 int jump_count;
2566 struct resources set, needed;
2567 {
2568 HARD_REG_SET scratch;
2569 rtx insn, next;
2570 rtx jump_insn = 0;
2571 int i;
2572
2573 for (insn = target; insn; insn = next)
2574 {
2575 rtx this_jump_insn = insn;
2576
2577 next = NEXT_INSN (insn);
2578 switch (GET_CODE (insn))
2579 {
2580 case CODE_LABEL:
2581 /* After a label, any pending dead registers that weren't yet
2582 used can be made dead. */
2583 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
2584 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
2585 CLEAR_HARD_REG_SET (pending_dead_regs);
2586
2587 if (CODE_LABEL_NUMBER (insn) < max_label_num_after_reload)
2588 {
2589 /* All spill registers are dead at a label, so kill all of the
2590 ones that aren't needed also. */
2591 COPY_HARD_REG_SET (scratch, used_spill_regs);
2592 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
2593 AND_COMPL_HARD_REG_SET (res->regs, scratch);
2594 }
2595 continue;
2596
2597 case BARRIER:
2598 case NOTE:
2599 continue;
2600
2601 case INSN:
2602 if (GET_CODE (PATTERN (insn)) == USE)
2603 {
2604 /* If INSN is a USE made by update_block, we care about the
2605 underlying insn. Any registers set by the underlying insn
2606 are live since the insn is being done somewhere else. */
2607 if (GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
2608 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0, 1);
2609
2610 /* All other USE insns are to be ignored. */
2611 continue;
2612 }
2613 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
2614 continue;
2615 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2616 {
2617 /* An unconditional jump can be used to fill the delay slot
2618 of a call, so search for a JUMP_INSN in any position. */
2619 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2620 {
2621 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
2622 if (GET_CODE (this_jump_insn) == JUMP_INSN)
2623 break;
2624 }
2625 }
2626
2627 default:
2628 break;
2629 }
2630
2631 if (GET_CODE (this_jump_insn) == JUMP_INSN)
2632 {
2633 if (jump_count++ < 10)
2634 {
2635 if (simplejump_p (this_jump_insn)
2636 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
2637 {
2638 next = JUMP_LABEL (this_jump_insn);
2639 if (jump_insn == 0)
2640 {
2641 jump_insn = insn;
2642 if (jump_target)
2643 *jump_target = JUMP_LABEL (this_jump_insn);
2644 }
2645 }
2646 else if (condjump_p (this_jump_insn)
2647 || condjump_in_parallel_p (this_jump_insn))
2648 {
2649 struct resources target_set, target_res;
2650 struct resources fallthrough_res;
2651
2652 /* We can handle conditional branches here by following
2653 both paths, and then IOR the results of the two paths
2654 together, which will give us registers that are dead
2655 on both paths. Since this is expensive, we give it
2656 a much higher cost than unconditional branches. The
2657 cost was chosen so that we will follow at most 1
2658 conditional branch. */
2659
2660 jump_count += 4;
2661 if (jump_count >= 10)
2662 break;
2663
2664 mark_referenced_resources (insn, &needed, 1);
2665
2666 /* For an annulled branch, mark_set_resources ignores slots
2667 filled by instructions from the target. This is correct
2668 if the branch is not taken. Since we are following both
2669 paths from the branch, we must also compute correct info
2670 if the branch is taken. We do this by inverting all of
2671 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
2672 and then inverting the INSN_FROM_TARGET_P bits again. */
2673
2674 if (GET_CODE (PATTERN (insn)) == SEQUENCE
2675 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
2676 {
2677 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
2678 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
2679 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
2680
2681 target_set = set;
2682 mark_set_resources (insn, &target_set, 0, 1);
2683
2684 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
2685 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
2686 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
2687
2688 mark_set_resources (insn, &set, 0, 1);
2689 }
2690 else
2691 {
2692 mark_set_resources (insn, &set, 0, 1);
2693 target_set = set;
2694 }
2695
2696 target_res = *res;
2697 COPY_HARD_REG_SET (scratch, target_set.regs);
2698 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
2699 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
2700
2701 fallthrough_res = *res;
2702 COPY_HARD_REG_SET (scratch, set.regs);
2703 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
2704 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
2705
2706 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
2707 &target_res, 0, jump_count,
2708 target_set, needed);
2709 find_dead_or_set_registers (next,
2710 &fallthrough_res, 0, jump_count,
2711 set, needed);
2712 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
2713 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
2714 break;
2715 }
2716 else
2717 break;
2718 }
2719 else
2720 {
2721 /* Don't try this optimization if we expired our jump count
2722 above, since that would mean there may be an infinite loop
2723 in the function being compiled. */
2724 jump_insn = 0;
2725 break;
2726 }
2727 }
2728
2729 mark_referenced_resources (insn, &needed, 1);
2730 mark_set_resources (insn, &set, 0, 1);
2731
2732 COPY_HARD_REG_SET (scratch, set.regs);
2733 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
2734 AND_COMPL_HARD_REG_SET (res->regs, scratch);
2735 }
2736
2737 return jump_insn;
2738 }
2739
2740 /* Set the resources that are live at TARGET.
2741
2742 If TARGET is zero, we refer to the end of the current function and can
2743 return our precomputed value.
2744
2745 Otherwise, we try to find out what is live by consulting the basic block
2746 information. This is tricky, because we must consider the actions of
2747 reload and jump optimization, which occur after the basic block information
2748 has been computed.
2749
2750 Accordingly, we proceed as follows::
2751
2752 We find the previous BARRIER and look at all immediately following labels
2753 (with no intervening active insns) to see if any of them start a basic
2754 block. If we hit the start of the function first, we use block 0.
2755
2756 Once we have found a basic block and a corresponding first insns, we can
2757 accurately compute the live status from basic_block_live_regs and
2758 reg_renumber. (By starting at a label following a BARRIER, we are immune
2759 to actions taken by reload and jump.) Then we scan all insns between
2760 that point and our target. For each CLOBBER (or for call-clobbered regs
2761 when we pass a CALL_INSN), mark the appropriate registers are dead. For
2762 a SET, mark them as live.
2763
2764 We have to be careful when using REG_DEAD notes because they are not
2765 updated by such things as find_equiv_reg. So keep track of registers
2766 marked as dead that haven't been assigned to, and mark them dead at the
2767 next CODE_LABEL since reload and jump won't propagate values across labels.
2768
2769 If we cannot find the start of a basic block (should be a very rare
2770 case, if it can happen at all), mark everything as potentially live.
2771
2772 Next, scan forward from TARGET looking for things set or clobbered
2773 before they are used. These are not live.
2774
2775 Because we can be called many times on the same target, save our results
2776 in a hash table indexed by INSN_UID. */
2777
2778 static void
2779 mark_target_live_regs (target, res)
2780 rtx target;
2781 struct resources *res;
2782 {
2783 int b = -1;
2784 int i;
2785 struct target_info *tinfo;
2786 rtx insn;
2787 rtx jump_insn = 0;
2788 rtx jump_target;
2789 HARD_REG_SET scratch;
2790 struct resources set, needed;
2791
2792 /* Handle end of function. */
2793 if (target == 0)
2794 {
2795 *res = end_of_function_needs;
2796 return;
2797 }
2798
2799 /* We have to assume memory is needed, but the CC isn't. */
2800 res->memory = 1;
2801 res->volatil = res->unch_memory = 0;
2802 res->cc = 0;
2803
2804 /* See if we have computed this value already. */
2805 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
2806 tinfo; tinfo = tinfo->next)
2807 if (tinfo->uid == INSN_UID (target))
2808 break;
2809
2810 /* Start by getting the basic block number. If we have saved information,
2811 we can get it from there unless the insn at the start of the basic block
2812 has been deleted. */
2813 if (tinfo && tinfo->block != -1
2814 && ! INSN_DELETED_P (basic_block_head[tinfo->block]))
2815 b = tinfo->block;
2816
2817 if (b == -1)
2818 b = find_basic_block (target);
2819
2820 if (tinfo)
2821 {
2822 /* If the information is up-to-date, use it. Otherwise, we will
2823 update it below. */
2824 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
2825 {
2826 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
2827 return;
2828 }
2829 }
2830 else
2831 {
2832 /* Allocate a place to put our results and chain it into the
2833 hash table. */
2834 tinfo = (struct target_info *) oballoc (sizeof (struct target_info));
2835 tinfo->uid = INSN_UID (target);
2836 tinfo->block = b;
2837 tinfo->next = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
2838 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
2839 }
2840
2841 CLEAR_HARD_REG_SET (pending_dead_regs);
2842
2843 /* If we found a basic block, get the live registers from it and update
2844 them with anything set or killed between its start and the insn before
2845 TARGET. Otherwise, we must assume everything is live. */
2846 if (b != -1)
2847 {
2848 regset regs_live = basic_block_live_at_start[b];
2849 int j;
2850 int regno;
2851 rtx start_insn, stop_insn;
2852
2853 /* Compute hard regs live at start of block -- this is the real hard regs
2854 marked live, plus live pseudo regs that have been renumbered to
2855 hard regs. */
2856
2857 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
2858
2859 EXECUTE_IF_SET_IN_REG_SET
2860 (regs_live, FIRST_PSEUDO_REGISTER, i,
2861 {
2862 if ((regno = reg_renumber[i]) >= 0)
2863 for (j = regno;
2864 j < regno + HARD_REGNO_NREGS (regno,
2865 PSEUDO_REGNO_MODE (i));
2866 j++)
2867 SET_HARD_REG_BIT (current_live_regs, j);
2868 });
2869
2870 /* Get starting and ending insn, handling the case where each might
2871 be a SEQUENCE. */
2872 start_insn = (b == 0 ? get_insns () : basic_block_head[b]);
2873 stop_insn = target;
2874
2875 if (GET_CODE (start_insn) == INSN
2876 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
2877 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
2878
2879 if (GET_CODE (stop_insn) == INSN
2880 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
2881 stop_insn = next_insn (PREV_INSN (stop_insn));
2882
2883 for (insn = start_insn; insn != stop_insn;
2884 insn = next_insn_no_annul (insn))
2885 {
2886 rtx link;
2887 rtx real_insn = insn;
2888
2889 /* If this insn is from the target of a branch, it isn't going to
2890 be used in the sequel. If it is used in both cases, this
2891 test will not be true. */
2892 if (INSN_FROM_TARGET_P (insn))
2893 continue;
2894
2895 /* If this insn is a USE made by update_block, we care about the
2896 underlying insn. */
2897 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
2898 && GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
2899 real_insn = XEXP (PATTERN (insn), 0);
2900
2901 if (GET_CODE (real_insn) == CALL_INSN)
2902 {
2903 /* CALL clobbers all call-used regs that aren't fixed except
2904 sp, ap, and fp. Do this before setting the result of the
2905 call live. */
2906 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2907 if (call_used_regs[i]
2908 && i != STACK_POINTER_REGNUM && i != FRAME_POINTER_REGNUM
2909 && i != ARG_POINTER_REGNUM
2910 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2911 && i != HARD_FRAME_POINTER_REGNUM
2912 #endif
2913 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2914 && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
2915 #endif
2916 #ifdef PIC_OFFSET_TABLE_REGNUM
2917 && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
2918 #endif
2919 )
2920 CLEAR_HARD_REG_BIT (current_live_regs, i);
2921
2922 /* A CALL_INSN sets any global register live, since it may
2923 have been modified by the call. */
2924 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2925 if (global_regs[i])
2926 SET_HARD_REG_BIT (current_live_regs, i);
2927 }
2928
2929 /* Mark anything killed in an insn to be deadened at the next
2930 label. Ignore USE insns; the only REG_DEAD notes will be for
2931 parameters. But they might be early. A CALL_INSN will usually
2932 clobber registers used for parameters. It isn't worth bothering
2933 with the unlikely case when it won't. */
2934 if ((GET_CODE (real_insn) == INSN
2935 && GET_CODE (PATTERN (real_insn)) != USE
2936 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
2937 || GET_CODE (real_insn) == JUMP_INSN
2938 || GET_CODE (real_insn) == CALL_INSN)
2939 {
2940 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
2941 if (REG_NOTE_KIND (link) == REG_DEAD
2942 && GET_CODE (XEXP (link, 0)) == REG
2943 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
2944 {
2945 int first_regno = REGNO (XEXP (link, 0));
2946 int last_regno
2947 = (first_regno
2948 + HARD_REGNO_NREGS (first_regno,
2949 GET_MODE (XEXP (link, 0))));
2950
2951 for (i = first_regno; i < last_regno; i++)
2952 SET_HARD_REG_BIT (pending_dead_regs, i);
2953 }
2954
2955 note_stores (PATTERN (real_insn), update_live_status);
2956
2957 /* If any registers were unused after this insn, kill them.
2958 These notes will always be accurate. */
2959 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
2960 if (REG_NOTE_KIND (link) == REG_UNUSED
2961 && GET_CODE (XEXP (link, 0)) == REG
2962 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
2963 {
2964 int first_regno = REGNO (XEXP (link, 0));
2965 int last_regno
2966 = (first_regno
2967 + HARD_REGNO_NREGS (first_regno,
2968 GET_MODE (XEXP (link, 0))));
2969
2970 for (i = first_regno; i < last_regno; i++)
2971 CLEAR_HARD_REG_BIT (current_live_regs, i);
2972 }
2973 }
2974
2975 else if (GET_CODE (real_insn) == CODE_LABEL)
2976 {
2977 /* A label clobbers the pending dead registers since neither
2978 reload nor jump will propagate a value across a label. */
2979 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
2980 CLEAR_HARD_REG_SET (pending_dead_regs);
2981 }
2982
2983 /* The beginning of the epilogue corresponds to the end of the
2984 RTL chain when there are no epilogue insns. Certain resources
2985 are implicitly required at that point. */
2986 else if (GET_CODE (real_insn) == NOTE
2987 && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
2988 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
2989 }
2990
2991 COPY_HARD_REG_SET (res->regs, current_live_regs);
2992 tinfo->block = b;
2993 tinfo->bb_tick = bb_ticks[b];
2994 }
2995 else
2996 /* We didn't find the start of a basic block. Assume everything
2997 in use. This should happen only extremely rarely. */
2998 SET_HARD_REG_SET (res->regs);
2999
3000 CLEAR_RESOURCE (&set);
3001 CLEAR_RESOURCE (&needed);
3002
3003 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
3004 set, needed);
3005
3006 /* If we hit an unconditional branch, we have another way of finding out
3007 what is live: we can see what is live at the branch target and include
3008 anything used but not set before the branch. The only things that are
3009 live are those that are live using the above test and the test below. */
3010
3011 if (jump_insn)
3012 {
3013 struct resources new_resources;
3014 rtx stop_insn = next_active_insn (jump_insn);
3015
3016 mark_target_live_regs (next_active_insn (jump_target), &new_resources);
3017 CLEAR_RESOURCE (&set);
3018 CLEAR_RESOURCE (&needed);
3019
3020 /* Include JUMP_INSN in the needed registers. */
3021 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
3022 {
3023 mark_referenced_resources (insn, &needed, 1);
3024
3025 COPY_HARD_REG_SET (scratch, needed.regs);
3026 AND_COMPL_HARD_REG_SET (scratch, set.regs);
3027 IOR_HARD_REG_SET (new_resources.regs, scratch);
3028
3029 mark_set_resources (insn, &set, 0, 1);
3030 }
3031
3032 AND_HARD_REG_SET (res->regs, new_resources.regs);
3033 }
3034
3035 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
3036 }
3037 \f
3038 /* Scan a function looking for insns that need a delay slot and find insns to
3039 put into the delay slot.
3040
3041 NON_JUMPS_P is non-zero if we are to only try to fill non-jump insns (such
3042 as calls). We do these first since we don't want jump insns (that are
3043 easier to fill) to get the only insns that could be used for non-jump insns.
3044 When it is zero, only try to fill JUMP_INSNs.
3045
3046 When slots are filled in this manner, the insns (including the
3047 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
3048 it is possible to tell whether a delay slot has really been filled
3049 or not. `final' knows how to deal with this, by communicating
3050 through FINAL_SEQUENCE. */
3051
3052 static void
3053 fill_simple_delay_slots (non_jumps_p)
3054 int non_jumps_p;
3055 {
3056 register rtx insn, pat, trial, next_trial;
3057 register int i;
3058 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
3059 struct resources needed, set;
3060 int slots_to_fill, slots_filled;
3061 rtx delay_list;
3062
3063 for (i = 0; i < num_unfilled_slots; i++)
3064 {
3065 int flags;
3066 /* Get the next insn to fill. If it has already had any slots assigned,
3067 we can't do anything with it. Maybe we'll improve this later. */
3068
3069 insn = unfilled_slots_base[i];
3070 if (insn == 0
3071 || INSN_DELETED_P (insn)
3072 || (GET_CODE (insn) == INSN
3073 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3074 || (GET_CODE (insn) == JUMP_INSN && non_jumps_p)
3075 || (GET_CODE (insn) != JUMP_INSN && ! non_jumps_p))
3076 continue;
3077
3078 if (GET_CODE (insn) == JUMP_INSN)
3079 flags = get_jump_flags (insn, JUMP_LABEL (insn));
3080 else
3081 flags = get_jump_flags (insn, NULL_RTX);
3082 slots_to_fill = num_delay_slots (insn);
3083
3084 /* Some machine description have defined instructions to have
3085 delay slots only in certain circumstances which may depend on
3086 nearby insns (which change due to reorg's actions).
3087
3088 For example, the PA port normally has delay slots for unconditional
3089 jumps.
3090
3091 However, the PA port claims such jumps do not have a delay slot
3092 if they are immediate successors of certain CALL_INSNs. This
3093 allows the port to favor filling the delay slot of the call with
3094 the unconditional jump. */
3095 if (slots_to_fill == 0)
3096 continue;
3097
3098 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
3099 says how many. After initialization, first try optimizing
3100
3101 call _foo call _foo
3102 nop add %o7,.-L1,%o7
3103 b,a L1
3104 nop
3105
3106 If this case applies, the delay slot of the call is filled with
3107 the unconditional jump. This is done first to avoid having the
3108 delay slot of the call filled in the backward scan. Also, since
3109 the unconditional jump is likely to also have a delay slot, that
3110 insn must exist when it is subsequently scanned.
3111
3112 This is tried on each insn with delay slots as some machines
3113 have insns which perform calls, but are not represented as
3114 CALL_INSNs. */
3115
3116 slots_filled = 0;
3117 delay_list = 0;
3118
3119 if ((trial = next_active_insn (insn))
3120 && GET_CODE (trial) == JUMP_INSN
3121 && simplejump_p (trial)
3122 && eligible_for_delay (insn, slots_filled, trial, flags)
3123 && no_labels_between_p (insn, trial))
3124 {
3125 rtx *tmp;
3126 slots_filled++;
3127 delay_list = add_to_delay_list (trial, delay_list);
3128
3129 /* TRIAL may have had its delay slot filled, then unfilled. When
3130 the delay slot is unfilled, TRIAL is placed back on the unfilled
3131 slots obstack. Unfortunately, it is placed on the end of the
3132 obstack, not in its original location. Therefore, we must search
3133 from entry i + 1 to the end of the unfilled slots obstack to
3134 try and find TRIAL. */
3135 tmp = &unfilled_slots_base[i + 1];
3136 while (*tmp != trial && tmp != unfilled_slots_next)
3137 tmp++;
3138
3139 /* Remove the unconditional jump from consideration for delay slot
3140 filling and unthread it. */
3141 if (*tmp == trial)
3142 *tmp = 0;
3143 {
3144 rtx next = NEXT_INSN (trial);
3145 rtx prev = PREV_INSN (trial);
3146 if (prev)
3147 NEXT_INSN (prev) = next;
3148 if (next)
3149 PREV_INSN (next) = prev;
3150 }
3151 }
3152
3153 /* Now, scan backwards from the insn to search for a potential
3154 delay-slot candidate. Stop searching when a label or jump is hit.
3155
3156 For each candidate, if it is to go into the delay slot (moved
3157 forward in execution sequence), it must not need or set any resources
3158 that were set by later insns and must not set any resources that
3159 are needed for those insns.
3160
3161 The delay slot insn itself sets resources unless it is a call
3162 (in which case the called routine, not the insn itself, is doing
3163 the setting). */
3164
3165 if (slots_filled < slots_to_fill)
3166 {
3167 CLEAR_RESOURCE (&needed);
3168 CLEAR_RESOURCE (&set);
3169 mark_set_resources (insn, &set, 0, 0);
3170 mark_referenced_resources (insn, &needed, 0);
3171
3172 for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
3173 trial = next_trial)
3174 {
3175 next_trial = prev_nonnote_insn (trial);
3176
3177 /* This must be an INSN or CALL_INSN. */
3178 pat = PATTERN (trial);
3179
3180 /* USE and CLOBBER at this level was just for flow; ignore it. */
3181 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
3182 continue;
3183
3184 /* Check for resource conflict first, to avoid unnecessary
3185 splitting. */
3186 if (! insn_references_resource_p (trial, &set, 1)
3187 && ! insn_sets_resource_p (trial, &set, 1)
3188 && ! insn_sets_resource_p (trial, &needed, 1)
3189 #ifdef HAVE_cc0
3190 /* Can't separate set of cc0 from its use. */
3191 && ! (reg_mentioned_p (cc0_rtx, pat)
3192 && ! sets_cc0_p (cc0_rtx, pat))
3193 #endif
3194 )
3195 {
3196 trial = try_split (pat, trial, 1);
3197 next_trial = prev_nonnote_insn (trial);
3198 if (eligible_for_delay (insn, slots_filled, trial, flags))
3199 {
3200 /* In this case, we are searching backward, so if we
3201 find insns to put on the delay list, we want
3202 to put them at the head, rather than the
3203 tail, of the list. */
3204
3205 update_reg_dead_notes (trial, insn);
3206 delay_list = gen_rtx_INSN_LIST (VOIDmode,
3207 trial, delay_list);
3208 update_block (trial, trial);
3209 delete_insn (trial);
3210 if (slots_to_fill == ++slots_filled)
3211 break;
3212 continue;
3213 }
3214 }
3215
3216 mark_set_resources (trial, &set, 0, 1);
3217 mark_referenced_resources (trial, &needed, 1);
3218 }
3219 }
3220
3221 /* If all needed slots haven't been filled, we come here. */
3222
3223 /* Try to optimize case of jumping around a single insn. */
3224 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
3225 if (slots_filled != slots_to_fill
3226 && delay_list == 0
3227 && GET_CODE (insn) == JUMP_INSN
3228 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
3229 {
3230 delay_list = optimize_skip (insn);
3231 if (delay_list)
3232 slots_filled += 1;
3233 }
3234 #endif
3235
3236 /* Try to get insns from beyond the insn needing the delay slot.
3237 These insns can neither set or reference resources set in insns being
3238 skipped, cannot set resources in the insn being skipped, and, if this
3239 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
3240 call might not return).
3241
3242 There used to be code which continued past the target label if
3243 we saw all uses of the target label. This code did not work,
3244 because it failed to account for some instructions which were
3245 both annulled and marked as from the target. This can happen as a
3246 result of optimize_skip. Since this code was redundant with
3247 fill_eager_delay_slots anyways, it was just deleted. */
3248
3249 if (slots_filled != slots_to_fill
3250 && (GET_CODE (insn) != JUMP_INSN
3251 || ((condjump_p (insn) || condjump_in_parallel_p (insn))
3252 && ! simplejump_p (insn)
3253 && JUMP_LABEL (insn) != 0)))
3254 {
3255 rtx target = 0;
3256 int maybe_never = 0;
3257 struct resources needed_at_jump;
3258
3259 CLEAR_RESOURCE (&needed);
3260 CLEAR_RESOURCE (&set);
3261
3262 if (GET_CODE (insn) == CALL_INSN)
3263 {
3264 mark_set_resources (insn, &set, 0, 1);
3265 mark_referenced_resources (insn, &needed, 1);
3266 maybe_never = 1;
3267 }
3268 else
3269 {
3270 mark_set_resources (insn, &set, 0, 1);
3271 mark_referenced_resources (insn, &needed, 1);
3272 if (GET_CODE (insn) == JUMP_INSN)
3273 target = JUMP_LABEL (insn);
3274 }
3275
3276 for (trial = next_nonnote_insn (insn); trial; trial = next_trial)
3277 {
3278 rtx pat, trial_delay;
3279
3280 next_trial = next_nonnote_insn (trial);
3281
3282 if (GET_CODE (trial) == CODE_LABEL
3283 || GET_CODE (trial) == BARRIER)
3284 break;
3285
3286 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
3287 pat = PATTERN (trial);
3288
3289 /* Stand-alone USE and CLOBBER are just for flow. */
3290 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
3291 continue;
3292
3293 /* If this already has filled delay slots, get the insn needing
3294 the delay slots. */
3295 if (GET_CODE (pat) == SEQUENCE)
3296 trial_delay = XVECEXP (pat, 0, 0);
3297 else
3298 trial_delay = trial;
3299
3300 /* If this is a jump insn to our target, indicate that we have
3301 seen another jump to it. If we aren't handling a conditional
3302 jump, stop our search. Otherwise, compute the needs at its
3303 target and add them to NEEDED. */
3304 if (GET_CODE (trial_delay) == JUMP_INSN)
3305 {
3306 if (target == 0)
3307 break;
3308 else if (JUMP_LABEL (trial_delay) != target)
3309 {
3310 mark_target_live_regs
3311 (next_active_insn (JUMP_LABEL (trial_delay)),
3312 &needed_at_jump);
3313 needed.memory |= needed_at_jump.memory;
3314 needed.unch_memory |= needed_at_jump.unch_memory;
3315 IOR_HARD_REG_SET (needed.regs, needed_at_jump.regs);
3316 }
3317 }
3318
3319 /* See if we have a resource problem before we try to
3320 split. */
3321 if (target == 0
3322 && GET_CODE (pat) != SEQUENCE
3323 && ! insn_references_resource_p (trial, &set, 1)
3324 && ! insn_sets_resource_p (trial, &set, 1)
3325 && ! insn_sets_resource_p (trial, &needed, 1)
3326 #ifdef HAVE_cc0
3327 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
3328 #endif
3329 && ! (maybe_never && may_trap_p (pat))
3330 && (trial = try_split (pat, trial, 0))
3331 && eligible_for_delay (insn, slots_filled, trial, flags))
3332 {
3333 next_trial = next_nonnote_insn (trial);
3334 delay_list = add_to_delay_list (trial, delay_list);
3335
3336 #ifdef HAVE_cc0
3337 if (reg_mentioned_p (cc0_rtx, pat))
3338 link_cc0_insns (trial);
3339 #endif
3340
3341 delete_insn (trial);
3342 if (slots_to_fill == ++slots_filled)
3343 break;
3344 continue;
3345 }
3346
3347 mark_set_resources (trial, &set, 0, 1);
3348 mark_referenced_resources (trial, &needed, 1);
3349
3350 /* Ensure we don't put insns between the setting of cc and the
3351 comparison by moving a setting of cc into an earlier delay
3352 slot since these insns could clobber the condition code. */
3353 set.cc = 1;
3354
3355 /* If this is a call or jump, we might not get here. */
3356 if (GET_CODE (trial_delay) == CALL_INSN
3357 || GET_CODE (trial_delay) == JUMP_INSN)
3358 maybe_never = 1;
3359 }
3360
3361 /* If there are slots left to fill and our search was stopped by an
3362 unconditional branch, try the insn at the branch target. We can
3363 redirect the branch if it works.
3364
3365 Don't do this if the insn at the branch target is a branch. */
3366 if (slots_to_fill != slots_filled
3367 && trial
3368 && GET_CODE (trial) == JUMP_INSN
3369 && simplejump_p (trial)
3370 && (target == 0 || JUMP_LABEL (trial) == target)
3371 && (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
3372 && ! (GET_CODE (next_trial) == INSN
3373 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
3374 && GET_CODE (next_trial) != JUMP_INSN
3375 && ! insn_references_resource_p (next_trial, &set, 1)
3376 && ! insn_sets_resource_p (next_trial, &set, 1)
3377 && ! insn_sets_resource_p (next_trial, &needed, 1)
3378 #ifdef HAVE_cc0
3379 && ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
3380 #endif
3381 && ! (maybe_never && may_trap_p (PATTERN (next_trial)))
3382 && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
3383 && eligible_for_delay (insn, slots_filled, next_trial, flags))
3384 {
3385 rtx new_label = next_active_insn (next_trial);
3386
3387 if (new_label != 0)
3388 new_label = get_label_before (new_label);
3389 else
3390 new_label = find_end_label ();
3391
3392 delay_list
3393 = add_to_delay_list (copy_rtx (next_trial), delay_list);
3394 slots_filled++;
3395 reorg_redirect_jump (trial, new_label);
3396
3397 /* If we merged because we both jumped to the same place,
3398 redirect the original insn also. */
3399 if (target)
3400 reorg_redirect_jump (insn, new_label);
3401 }
3402 }
3403
3404 /* If this is an unconditional jump, then try to get insns from the
3405 target of the jump. */
3406 if (GET_CODE (insn) == JUMP_INSN
3407 && simplejump_p (insn)
3408 && slots_filled != slots_to_fill)
3409 delay_list
3410 = fill_slots_from_thread (insn, const_true_rtx,
3411 next_active_insn (JUMP_LABEL (insn)),
3412 NULL, 1, 1,
3413 own_thread_p (JUMP_LABEL (insn),
3414 JUMP_LABEL (insn), 0),
3415 slots_to_fill, &slots_filled,
3416 delay_list);
3417
3418 if (delay_list)
3419 unfilled_slots_base[i]
3420 = emit_delay_sequence (insn, delay_list, slots_filled);
3421
3422 if (slots_to_fill == slots_filled)
3423 unfilled_slots_base[i] = 0;
3424
3425 note_delay_statistics (slots_filled, 0);
3426 }
3427
3428 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3429 /* See if the epilogue needs any delay slots. Try to fill them if so.
3430 The only thing we can do is scan backwards from the end of the
3431 function. If we did this in a previous pass, it is incorrect to do it
3432 again. */
3433 if (current_function_epilogue_delay_list)
3434 return;
3435
3436 slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
3437 if (slots_to_fill == 0)
3438 return;
3439
3440 slots_filled = 0;
3441 CLEAR_RESOURCE (&set);
3442
3443 /* The frame pointer and stack pointer are needed at the beginning of
3444 the epilogue, so instructions setting them can not be put in the
3445 epilogue delay slot. However, everything else needed at function
3446 end is safe, so we don't want to use end_of_function_needs here. */
3447 CLEAR_RESOURCE (&needed);
3448 if (frame_pointer_needed)
3449 {
3450 SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
3451 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3452 SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
3453 #endif
3454 #ifdef EXIT_IGNORE_STACK
3455 if (! EXIT_IGNORE_STACK
3456 || current_function_sp_is_unchanging)
3457 #endif
3458 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
3459 }
3460 else
3461 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
3462
3463 #ifdef EPILOGUE_USES
3464 for (i = 0; i <FIRST_PSEUDO_REGISTER; i++)
3465 {
3466 if (EPILOGUE_USES (i))
3467 SET_HARD_REG_BIT (needed.regs, i);
3468 }
3469 #endif
3470
3471 for (trial = get_last_insn (); ! stop_search_p (trial, 1);
3472 trial = PREV_INSN (trial))
3473 {
3474 if (GET_CODE (trial) == NOTE)
3475 continue;
3476 pat = PATTERN (trial);
3477 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
3478 continue;
3479
3480 if (! insn_references_resource_p (trial, &set, 1)
3481 && ! insn_sets_resource_p (trial, &needed, 1)
3482 && ! insn_sets_resource_p (trial, &set, 1)
3483 #ifdef HAVE_cc0
3484 /* Don't want to mess with cc0 here. */
3485 && ! reg_mentioned_p (cc0_rtx, pat)
3486 #endif
3487 )
3488 {
3489 trial = try_split (pat, trial, 1);
3490 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
3491 {
3492 /* Here as well we are searching backward, so put the
3493 insns we find on the head of the list. */
3494
3495 current_function_epilogue_delay_list
3496 = gen_rtx_INSN_LIST (VOIDmode, trial,
3497 current_function_epilogue_delay_list);
3498 mark_referenced_resources (trial, &end_of_function_needs, 1);
3499 update_block (trial, trial);
3500 delete_insn (trial);
3501
3502 /* Clear deleted bit so final.c will output the insn. */
3503 INSN_DELETED_P (trial) = 0;
3504
3505 if (slots_to_fill == ++slots_filled)
3506 break;
3507 continue;
3508 }
3509 }
3510
3511 mark_set_resources (trial, &set, 0, 1);
3512 mark_referenced_resources (trial, &needed, 1);
3513 }
3514
3515 note_delay_statistics (slots_filled, 0);
3516 #endif
3517 }
3518 \f
3519 /* Try to find insns to place in delay slots.
3520
3521 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
3522 or is an unconditional branch if CONDITION is const_true_rtx.
3523 *PSLOTS_FILLED is updated with the number of slots that we have filled.
3524
3525 THREAD is a flow-of-control, either the insns to be executed if the
3526 branch is true or if the branch is false, THREAD_IF_TRUE says which.
3527
3528 OPPOSITE_THREAD is the thread in the opposite direction. It is used
3529 to see if any potential delay slot insns set things needed there.
3530
3531 LIKELY is non-zero if it is extremely likely that the branch will be
3532 taken and THREAD_IF_TRUE is set. This is used for the branch at the
3533 end of a loop back up to the top.
3534
3535 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
3536 thread. I.e., it is the fallthrough code of our jump or the target of the
3537 jump when we are the only jump going there.
3538
3539 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
3540 case, we can only take insns from the head of the thread for our delay
3541 slot. We then adjust the jump to point after the insns we have taken. */
3542
3543 static rtx
3544 fill_slots_from_thread (insn, condition, thread, opposite_thread, likely,
3545 thread_if_true, own_thread,
3546 slots_to_fill, pslots_filled, delay_list)
3547 rtx insn;
3548 rtx condition;
3549 rtx thread, opposite_thread;
3550 int likely;
3551 int thread_if_true;
3552 int own_thread;
3553 int slots_to_fill, *pslots_filled;
3554 rtx delay_list;
3555 {
3556 rtx new_thread;
3557 struct resources opposite_needed, set, needed;
3558 rtx trial;
3559 int lose = 0;
3560 int must_annul = 0;
3561 int flags;
3562
3563 /* Validate our arguments. */
3564 if ((condition == const_true_rtx && ! thread_if_true)
3565 || (! own_thread && ! thread_if_true))
3566 abort ();
3567
3568 flags = get_jump_flags (insn, JUMP_LABEL (insn));
3569
3570 /* If our thread is the end of subroutine, we can't get any delay
3571 insns from that. */
3572 if (thread == 0)
3573 return delay_list;
3574
3575 /* If this is an unconditional branch, nothing is needed at the
3576 opposite thread. Otherwise, compute what is needed there. */
3577 if (condition == const_true_rtx)
3578 CLEAR_RESOURCE (&opposite_needed);
3579 else
3580 mark_target_live_regs (opposite_thread, &opposite_needed);
3581
3582 /* If the insn at THREAD can be split, do it here to avoid having to
3583 update THREAD and NEW_THREAD if it is done in the loop below. Also
3584 initialize NEW_THREAD. */
3585
3586 new_thread = thread = try_split (PATTERN (thread), thread, 0);
3587
3588 /* Scan insns at THREAD. We are looking for an insn that can be removed
3589 from THREAD (it neither sets nor references resources that were set
3590 ahead of it and it doesn't set anything needs by the insns ahead of
3591 it) and that either can be placed in an annulling insn or aren't
3592 needed at OPPOSITE_THREAD. */
3593
3594 CLEAR_RESOURCE (&needed);
3595 CLEAR_RESOURCE (&set);
3596
3597 /* If we do not own this thread, we must stop as soon as we find
3598 something that we can't put in a delay slot, since all we can do
3599 is branch into THREAD at a later point. Therefore, labels stop
3600 the search if this is not the `true' thread. */
3601
3602 for (trial = thread;
3603 ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
3604 trial = next_nonnote_insn (trial))
3605 {
3606 rtx pat, old_trial;
3607
3608 /* If we have passed a label, we no longer own this thread. */
3609 if (GET_CODE (trial) == CODE_LABEL)
3610 {
3611 own_thread = 0;
3612 continue;
3613 }
3614
3615 pat = PATTERN (trial);
3616 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
3617 continue;
3618
3619 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
3620 don't separate or copy insns that set and use CC0. */
3621 if (! insn_references_resource_p (trial, &set, 1)
3622 && ! insn_sets_resource_p (trial, &set, 1)
3623 && ! insn_sets_resource_p (trial, &needed, 1)
3624 #ifdef HAVE_cc0
3625 && ! (reg_mentioned_p (cc0_rtx, pat)
3626 && (! own_thread || ! sets_cc0_p (pat)))
3627 #endif
3628 )
3629 {
3630 rtx prior_insn;
3631
3632 /* If TRIAL is redundant with some insn before INSN, we don't
3633 actually need to add it to the delay list; we can merely pretend
3634 we did. */
3635 if ((prior_insn = redundant_insn (trial, insn, delay_list)))
3636 {
3637 fix_reg_dead_note (prior_insn, insn);
3638 if (own_thread)
3639 {
3640 update_block (trial, thread);
3641 if (trial == thread)
3642 {
3643 thread = next_active_insn (thread);
3644 if (new_thread == trial)
3645 new_thread = thread;
3646 }
3647
3648 delete_insn (trial);
3649 }
3650 else
3651 {
3652 update_reg_unused_notes (prior_insn, trial);
3653 new_thread = next_active_insn (trial);
3654 }
3655
3656 continue;
3657 }
3658
3659 /* There are two ways we can win: If TRIAL doesn't set anything
3660 needed at the opposite thread and can't trap, or if it can
3661 go into an annulled delay slot. */
3662 if (!must_annul
3663 && (condition == const_true_rtx
3664 || (! insn_sets_resource_p (trial, &opposite_needed, 1)
3665 && ! may_trap_p (pat))))
3666 {
3667 old_trial = trial;
3668 trial = try_split (pat, trial, 0);
3669 if (new_thread == old_trial)
3670 new_thread = trial;
3671 if (thread == old_trial)
3672 thread = trial;
3673 pat = PATTERN (trial);
3674 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
3675 goto winner;
3676 }
3677 else if (0
3678 #ifdef ANNUL_IFTRUE_SLOTS
3679 || ! thread_if_true
3680 #endif
3681 #ifdef ANNUL_IFFALSE_SLOTS
3682 || thread_if_true
3683 #endif
3684 )
3685 {
3686 old_trial = trial;
3687 trial = try_split (pat, trial, 0);
3688 if (new_thread == old_trial)
3689 new_thread = trial;
3690 if (thread == old_trial)
3691 thread = trial;
3692 pat = PATTERN (trial);
3693 if ((must_annul || delay_list == NULL) && (thread_if_true
3694 ? check_annul_list_true_false (0, delay_list)
3695 && eligible_for_annul_false (insn, *pslots_filled, trial, flags)
3696 : check_annul_list_true_false (1, delay_list)
3697 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
3698 {
3699 rtx temp;
3700
3701 must_annul = 1;
3702 winner:
3703
3704 #ifdef HAVE_cc0
3705 if (reg_mentioned_p (cc0_rtx, pat))
3706 link_cc0_insns (trial);
3707 #endif
3708
3709 /* If we own this thread, delete the insn. If this is the
3710 destination of a branch, show that a basic block status
3711 may have been updated. In any case, mark the new
3712 starting point of this thread. */
3713 if (own_thread)
3714 {
3715 update_block (trial, thread);
3716 if (trial == thread)
3717 {
3718 thread = next_active_insn (thread);
3719 if (new_thread == trial)
3720 new_thread = thread;
3721 }
3722 delete_insn (trial);
3723 }
3724 else
3725 new_thread = next_active_insn (trial);
3726
3727 temp = own_thread ? trial : copy_rtx (trial);
3728 if (thread_if_true)
3729 INSN_FROM_TARGET_P (temp) = 1;
3730
3731 delay_list = add_to_delay_list (temp, delay_list);
3732
3733 mark_set_resources (trial, &opposite_needed, 0, 1);
3734
3735 if (slots_to_fill == ++(*pslots_filled))
3736 {
3737 /* Even though we have filled all the slots, we
3738 may be branching to a location that has a
3739 redundant insn. Skip any if so. */
3740 while (new_thread && ! own_thread
3741 && ! insn_sets_resource_p (new_thread, &set, 1)
3742 && ! insn_sets_resource_p (new_thread, &needed, 1)
3743 && ! insn_references_resource_p (new_thread,
3744 &set, 1)
3745 && (prior_insn
3746 = redundant_insn (new_thread, insn,
3747 delay_list)))
3748 {
3749 /* We know we do not own the thread, so no need
3750 to call update_block and delete_insn. */
3751 fix_reg_dead_note (prior_insn, insn);
3752 update_reg_unused_notes (prior_insn, new_thread);
3753 new_thread = next_active_insn (new_thread);
3754 }
3755 break;
3756 }
3757
3758 continue;
3759 }
3760 }
3761 }
3762
3763 /* This insn can't go into a delay slot. */
3764 lose = 1;
3765 mark_set_resources (trial, &set, 0, 1);
3766 mark_referenced_resources (trial, &needed, 1);
3767
3768 /* Ensure we don't put insns between the setting of cc and the comparison
3769 by moving a setting of cc into an earlier delay slot since these insns
3770 could clobber the condition code. */
3771 set.cc = 1;
3772
3773 /* If this insn is a register-register copy and the next insn has
3774 a use of our destination, change it to use our source. That way,
3775 it will become a candidate for our delay slot the next time
3776 through this loop. This case occurs commonly in loops that
3777 scan a list.
3778
3779 We could check for more complex cases than those tested below,
3780 but it doesn't seem worth it. It might also be a good idea to try
3781 to swap the two insns. That might do better.
3782
3783 We can't do this if the next insn modifies our destination, because
3784 that would make the replacement into the insn invalid. We also can't
3785 do this if it modifies our source, because it might be an earlyclobber
3786 operand. This latter test also prevents updating the contents of
3787 a PRE_INC. */
3788
3789 if (GET_CODE (trial) == INSN && GET_CODE (pat) == SET
3790 && GET_CODE (SET_SRC (pat)) == REG
3791 && GET_CODE (SET_DEST (pat)) == REG)
3792 {
3793 rtx next = next_nonnote_insn (trial);
3794
3795 if (next && GET_CODE (next) == INSN
3796 && GET_CODE (PATTERN (next)) != USE
3797 && ! reg_set_p (SET_DEST (pat), next)
3798 && ! reg_set_p (SET_SRC (pat), next)
3799 && reg_referenced_p (SET_DEST (pat), PATTERN (next)))
3800 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
3801 }
3802 }
3803
3804 /* If we stopped on a branch insn that has delay slots, see if we can
3805 steal some of the insns in those slots. */
3806 if (trial && GET_CODE (trial) == INSN
3807 && GET_CODE (PATTERN (trial)) == SEQUENCE
3808 && GET_CODE (XVECEXP (PATTERN (trial), 0, 0)) == JUMP_INSN)
3809 {
3810 /* If this is the `true' thread, we will want to follow the jump,
3811 so we can only do this if we have taken everything up to here. */
3812 if (thread_if_true && trial == new_thread
3813 && ! insn_references_resource_p (XVECEXP (PATTERN (trial), 0, 0),
3814 &opposite_needed, 0))
3815 delay_list
3816 = steal_delay_list_from_target (insn, condition, PATTERN (trial),
3817 delay_list, &set, &needed,
3818 &opposite_needed, slots_to_fill,
3819 pslots_filled, &must_annul,
3820 &new_thread);
3821 else if (! thread_if_true)
3822 delay_list
3823 = steal_delay_list_from_fallthrough (insn, condition,
3824 PATTERN (trial),
3825 delay_list, &set, &needed,
3826 &opposite_needed, slots_to_fill,
3827 pslots_filled, &must_annul);
3828 }
3829
3830 /* If we haven't found anything for this delay slot and it is very
3831 likely that the branch will be taken, see if the insn at our target
3832 increments or decrements a register with an increment that does not
3833 depend on the destination register. If so, try to place the opposite
3834 arithmetic insn after the jump insn and put the arithmetic insn in the
3835 delay slot. If we can't do this, return. */
3836 if (delay_list == 0 && likely && new_thread
3837 && GET_CODE (new_thread) == INSN
3838 && GET_CODE (PATTERN (new_thread)) != ASM_INPUT
3839 && asm_noperands (PATTERN (new_thread)) < 0)
3840 {
3841 rtx pat = PATTERN (new_thread);
3842 rtx dest;
3843 rtx src;
3844
3845 trial = new_thread;
3846 pat = PATTERN (trial);
3847
3848 if (GET_CODE (trial) != INSN || GET_CODE (pat) != SET
3849 || ! eligible_for_delay (insn, 0, trial, flags))
3850 return 0;
3851
3852 dest = SET_DEST (pat), src = SET_SRC (pat);
3853 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
3854 && rtx_equal_p (XEXP (src, 0), dest)
3855 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1)))
3856 {
3857 rtx other = XEXP (src, 1);
3858 rtx new_arith;
3859 rtx ninsn;
3860
3861 /* If this is a constant adjustment, use the same code with
3862 the negated constant. Otherwise, reverse the sense of the
3863 arithmetic. */
3864 if (GET_CODE (other) == CONST_INT)
3865 new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
3866 negate_rtx (GET_MODE (src), other));
3867 else
3868 new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
3869 GET_MODE (src), dest, other);
3870
3871 ninsn = emit_insn_after (gen_rtx_SET (VOIDmode, dest, new_arith),
3872 insn);
3873
3874 if (recog_memoized (ninsn) < 0
3875 || (insn_extract (ninsn),
3876 ! constrain_operands (INSN_CODE (ninsn), 1)))
3877 {
3878 delete_insn (ninsn);
3879 return 0;
3880 }
3881
3882 if (own_thread)
3883 {
3884 update_block (trial, thread);
3885 if (trial == thread)
3886 {
3887 thread = next_active_insn (thread);
3888 if (new_thread == trial)
3889 new_thread = thread;
3890 }
3891 delete_insn (trial);
3892 }
3893 else
3894 new_thread = next_active_insn (trial);
3895
3896 ninsn = own_thread ? trial : copy_rtx (trial);
3897 if (thread_if_true)
3898 INSN_FROM_TARGET_P (ninsn) = 1;
3899
3900 delay_list = add_to_delay_list (ninsn, NULL_RTX);
3901 (*pslots_filled)++;
3902 }
3903 }
3904
3905 if (delay_list && must_annul)
3906 INSN_ANNULLED_BRANCH_P (insn) = 1;
3907
3908 /* If we are to branch into the middle of this thread, find an appropriate
3909 label or make a new one if none, and redirect INSN to it. If we hit the
3910 end of the function, use the end-of-function label. */
3911 if (new_thread != thread)
3912 {
3913 rtx label;
3914
3915 if (! thread_if_true)
3916 abort ();
3917
3918 if (new_thread && GET_CODE (new_thread) == JUMP_INSN
3919 && (simplejump_p (new_thread)
3920 || GET_CODE (PATTERN (new_thread)) == RETURN)
3921 && redirect_with_delay_list_safe_p (insn,
3922 JUMP_LABEL (new_thread),
3923 delay_list))
3924 new_thread = follow_jumps (JUMP_LABEL (new_thread));
3925
3926 if (new_thread == 0)
3927 label = find_end_label ();
3928 else if (GET_CODE (new_thread) == CODE_LABEL)
3929 label = new_thread;
3930 else
3931 label = get_label_before (new_thread);
3932
3933 reorg_redirect_jump (insn, label);
3934 }
3935
3936 return delay_list;
3937 }
3938 \f
3939 /* Make another attempt to find insns to place in delay slots.
3940
3941 We previously looked for insns located in front of the delay insn
3942 and, for non-jump delay insns, located behind the delay insn.
3943
3944 Here only try to schedule jump insns and try to move insns from either
3945 the target or the following insns into the delay slot. If annulling is
3946 supported, we will be likely to do this. Otherwise, we can do this only
3947 if safe. */
3948
3949 static void
3950 fill_eager_delay_slots ()
3951 {
3952 register rtx insn;
3953 register int i;
3954 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
3955
3956 for (i = 0; i < num_unfilled_slots; i++)
3957 {
3958 rtx condition;
3959 rtx target_label, insn_at_target, fallthrough_insn;
3960 rtx delay_list = 0;
3961 int own_target;
3962 int own_fallthrough;
3963 int prediction, slots_to_fill, slots_filled;
3964
3965 insn = unfilled_slots_base[i];
3966 if (insn == 0
3967 || INSN_DELETED_P (insn)
3968 || GET_CODE (insn) != JUMP_INSN
3969 || ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
3970 continue;
3971
3972 slots_to_fill = num_delay_slots (insn);
3973 /* Some machine description have defined instructions to have
3974 delay slots only in certain circumstances which may depend on
3975 nearby insns (which change due to reorg's actions).
3976
3977 For example, the PA port normally has delay slots for unconditional
3978 jumps.
3979
3980 However, the PA port claims such jumps do not have a delay slot
3981 if they are immediate successors of certain CALL_INSNs. This
3982 allows the port to favor filling the delay slot of the call with
3983 the unconditional jump. */
3984 if (slots_to_fill == 0)
3985 continue;
3986
3987 slots_filled = 0;
3988 target_label = JUMP_LABEL (insn);
3989 condition = get_branch_condition (insn, target_label);
3990
3991 if (condition == 0)
3992 continue;
3993
3994 /* Get the next active fallthrough and target insns and see if we own
3995 them. Then see whether the branch is likely true. We don't need
3996 to do a lot of this for unconditional branches. */
3997
3998 insn_at_target = next_active_insn (target_label);
3999 own_target = own_thread_p (target_label, target_label, 0);
4000
4001 if (condition == const_true_rtx)
4002 {
4003 own_fallthrough = 0;
4004 fallthrough_insn = 0;
4005 prediction = 2;
4006 }
4007 else
4008 {
4009 fallthrough_insn = next_active_insn (insn);
4010 own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
4011 prediction = mostly_true_jump (insn, condition);
4012 }
4013
4014 /* If this insn is expected to branch, first try to get insns from our
4015 target, then our fallthrough insns. If it is not, expected to branch,
4016 try the other order. */
4017
4018 if (prediction > 0)
4019 {
4020 delay_list
4021 = fill_slots_from_thread (insn, condition, insn_at_target,
4022 fallthrough_insn, prediction == 2, 1,
4023 own_target,
4024 slots_to_fill, &slots_filled, delay_list);
4025
4026 if (delay_list == 0 && own_fallthrough)
4027 {
4028 /* Even though we didn't find anything for delay slots,
4029 we might have found a redundant insn which we deleted
4030 from the thread that was filled. So we have to recompute
4031 the next insn at the target. */
4032 target_label = JUMP_LABEL (insn);
4033 insn_at_target = next_active_insn (target_label);
4034
4035 delay_list
4036 = fill_slots_from_thread (insn, condition, fallthrough_insn,
4037 insn_at_target, 0, 0,
4038 own_fallthrough,
4039 slots_to_fill, &slots_filled,
4040 delay_list);
4041 }
4042 }
4043 else
4044 {
4045 if (own_fallthrough)
4046 delay_list
4047 = fill_slots_from_thread (insn, condition, fallthrough_insn,
4048 insn_at_target, 0, 0,
4049 own_fallthrough,
4050 slots_to_fill, &slots_filled,
4051 delay_list);
4052
4053 if (delay_list == 0)
4054 delay_list
4055 = fill_slots_from_thread (insn, condition, insn_at_target,
4056 next_active_insn (insn), 0, 1,
4057 own_target,
4058 slots_to_fill, &slots_filled,
4059 delay_list);
4060 }
4061
4062 if (delay_list)
4063 unfilled_slots_base[i]
4064 = emit_delay_sequence (insn, delay_list, slots_filled);
4065
4066 if (slots_to_fill == slots_filled)
4067 unfilled_slots_base[i] = 0;
4068
4069 note_delay_statistics (slots_filled, 1);
4070 }
4071 }
4072 \f
4073 /* Once we have tried two ways to fill a delay slot, make a pass over the
4074 code to try to improve the results and to do such things as more jump
4075 threading. */
4076
4077 static void
4078 relax_delay_slots (first)
4079 rtx first;
4080 {
4081 register rtx insn, next, pat;
4082 register rtx trial, delay_insn, target_label;
4083
4084 /* Look at every JUMP_INSN and see if we can improve it. */
4085 for (insn = first; insn; insn = next)
4086 {
4087 rtx other;
4088
4089 next = next_active_insn (insn);
4090
4091 /* If this is a jump insn, see if it now jumps to a jump, jumps to
4092 the next insn, or jumps to a label that is not the last of a
4093 group of consecutive labels. */
4094 if (GET_CODE (insn) == JUMP_INSN
4095 && (condjump_p (insn) || condjump_in_parallel_p (insn))
4096 && (target_label = JUMP_LABEL (insn)) != 0)
4097 {
4098 target_label = follow_jumps (target_label);
4099 target_label = prev_label (next_active_insn (target_label));
4100
4101 if (target_label == 0)
4102 target_label = find_end_label ();
4103
4104 if (next_active_insn (target_label) == next
4105 && ! condjump_in_parallel_p (insn))
4106 {
4107 delete_jump (insn);
4108 continue;
4109 }
4110
4111 if (target_label != JUMP_LABEL (insn))
4112 reorg_redirect_jump (insn, target_label);
4113
4114 /* See if this jump branches around a unconditional jump.
4115 If so, invert this jump and point it to the target of the
4116 second jump. */
4117 if (next && GET_CODE (next) == JUMP_INSN
4118 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
4119 && next_active_insn (target_label) == next_active_insn (next)
4120 && no_labels_between_p (insn, next))
4121 {
4122 rtx label = JUMP_LABEL (next);
4123
4124 /* Be careful how we do this to avoid deleting code or
4125 labels that are momentarily dead. See similar optimization
4126 in jump.c.
4127
4128 We also need to ensure we properly handle the case when
4129 invert_jump fails. */
4130
4131 ++LABEL_NUSES (target_label);
4132 if (label)
4133 ++LABEL_NUSES (label);
4134
4135 if (invert_jump (insn, label))
4136 {
4137 delete_insn (next);
4138 next = insn;
4139 }
4140
4141 if (label)
4142 --LABEL_NUSES (label);
4143
4144 if (--LABEL_NUSES (target_label) == 0)
4145 delete_insn (target_label);
4146
4147 continue;
4148 }
4149 }
4150
4151 /* If this is an unconditional jump and the previous insn is a
4152 conditional jump, try reversing the condition of the previous
4153 insn and swapping our targets. The next pass might be able to
4154 fill the slots.
4155
4156 Don't do this if we expect the conditional branch to be true, because
4157 we would then be making the more common case longer. */
4158
4159 if (GET_CODE (insn) == JUMP_INSN
4160 && (simplejump_p (insn) || GET_CODE (PATTERN (insn)) == RETURN)
4161 && (other = prev_active_insn (insn)) != 0
4162 && (condjump_p (other) || condjump_in_parallel_p (other))
4163 && no_labels_between_p (other, insn)
4164 && 0 < mostly_true_jump (other,
4165 get_branch_condition (other,
4166 JUMP_LABEL (other))))
4167 {
4168 rtx other_target = JUMP_LABEL (other);
4169 target_label = JUMP_LABEL (insn);
4170
4171 /* Increment the count of OTHER_TARGET, so it doesn't get deleted
4172 as we move the label. */
4173 if (other_target)
4174 ++LABEL_NUSES (other_target);
4175
4176 if (invert_jump (other, target_label))
4177 reorg_redirect_jump (insn, other_target);
4178
4179 if (other_target)
4180 --LABEL_NUSES (other_target);
4181 }
4182
4183 /* Now look only at cases where we have filled a delay slot. */
4184 if (GET_CODE (insn) != INSN
4185 || GET_CODE (PATTERN (insn)) != SEQUENCE)
4186 continue;
4187
4188 pat = PATTERN (insn);
4189 delay_insn = XVECEXP (pat, 0, 0);
4190
4191 /* See if the first insn in the delay slot is redundant with some
4192 previous insn. Remove it from the delay slot if so; then set up
4193 to reprocess this insn. */
4194 if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
4195 {
4196 delete_from_delay_slot (XVECEXP (pat, 0, 1));
4197 next = prev_active_insn (next);
4198 continue;
4199 }
4200
4201 /* Now look only at the cases where we have a filled JUMP_INSN. */
4202 if (GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) != JUMP_INSN
4203 || ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
4204 || condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
4205 continue;
4206
4207 target_label = JUMP_LABEL (delay_insn);
4208
4209 if (target_label)
4210 {
4211 /* If this jump goes to another unconditional jump, thread it, but
4212 don't convert a jump into a RETURN here. */
4213 trial = follow_jumps (target_label);
4214 /* We use next_real_insn instead of next_active_insn, so that
4215 the special USE insns emitted by reorg won't be ignored.
4216 If they are ignored, then they will get deleted if target_label
4217 is now unreachable, and that would cause mark_target_live_regs
4218 to fail. */
4219 trial = prev_label (next_real_insn (trial));
4220 if (trial == 0 && target_label != 0)
4221 trial = find_end_label ();
4222
4223 if (trial != target_label
4224 && redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
4225 {
4226 reorg_redirect_jump (delay_insn, trial);
4227 target_label = trial;
4228 }
4229
4230 /* If the first insn at TARGET_LABEL is redundant with a previous
4231 insn, redirect the jump to the following insn process again. */
4232 trial = next_active_insn (target_label);
4233 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
4234 && redundant_insn (trial, insn, 0))
4235 {
4236 rtx tmp;
4237
4238 /* Figure out where to emit the special USE insn so we don't
4239 later incorrectly compute register live/death info. */
4240 tmp = next_active_insn (trial);
4241 if (tmp == 0)
4242 tmp = find_end_label ();
4243
4244 /* Insert the special USE insn and update dataflow info. */
4245 update_block (trial, tmp);
4246
4247 /* Now emit a label before the special USE insn, and
4248 redirect our jump to the new label. */
4249 target_label = get_label_before (PREV_INSN (tmp));
4250 reorg_redirect_jump (delay_insn, target_label);
4251 next = insn;
4252 continue;
4253 }
4254
4255 /* Similarly, if it is an unconditional jump with one insn in its
4256 delay list and that insn is redundant, thread the jump. */
4257 if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
4258 && XVECLEN (PATTERN (trial), 0) == 2
4259 && GET_CODE (XVECEXP (PATTERN (trial), 0, 0)) == JUMP_INSN
4260 && (simplejump_p (XVECEXP (PATTERN (trial), 0, 0))
4261 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial), 0, 0))) == RETURN)
4262 && redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
4263 {
4264 target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
4265 if (target_label == 0)
4266 target_label = find_end_label ();
4267
4268 if (redirect_with_delay_slots_safe_p (delay_insn, target_label,
4269 insn))
4270 {
4271 reorg_redirect_jump (delay_insn, target_label);
4272 next = insn;
4273 continue;
4274 }
4275 }
4276 }
4277
4278 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
4279 && prev_active_insn (target_label) == insn
4280 && ! condjump_in_parallel_p (delay_insn)
4281 #ifdef HAVE_cc0
4282 /* If the last insn in the delay slot sets CC0 for some insn,
4283 various code assumes that it is in a delay slot. We could
4284 put it back where it belonged and delete the register notes,
4285 but it doesn't seem worthwhile in this uncommon case. */
4286 && ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
4287 REG_CC_USER, NULL_RTX)
4288 #endif
4289 )
4290 {
4291 int i;
4292
4293 /* All this insn does is execute its delay list and jump to the
4294 following insn. So delete the jump and just execute the delay
4295 list insns.
4296
4297 We do this by deleting the INSN containing the SEQUENCE, then
4298 re-emitting the insns separately, and then deleting the jump.
4299 This allows the count of the jump target to be properly
4300 decremented. */
4301
4302 /* Clear the from target bit, since these insns are no longer
4303 in delay slots. */
4304 for (i = 0; i < XVECLEN (pat, 0); i++)
4305 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
4306
4307 trial = PREV_INSN (insn);
4308 delete_insn (insn);
4309 emit_insn_after (pat, trial);
4310 delete_scheduled_jump (delay_insn);
4311 continue;
4312 }
4313
4314 /* See if this is an unconditional jump around a single insn which is
4315 identical to the one in its delay slot. In this case, we can just
4316 delete the branch and the insn in its delay slot. */
4317 if (next && GET_CODE (next) == INSN
4318 && prev_label (next_active_insn (next)) == target_label
4319 && simplejump_p (insn)
4320 && XVECLEN (pat, 0) == 2
4321 && rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
4322 {
4323 delete_insn (insn);
4324 continue;
4325 }
4326
4327 /* See if this jump (with its delay slots) branches around another
4328 jump (without delay slots). If so, invert this jump and point
4329 it to the target of the second jump. We cannot do this for
4330 annulled jumps, though. Again, don't convert a jump to a RETURN
4331 here. */
4332 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
4333 && next && GET_CODE (next) == JUMP_INSN
4334 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
4335 && next_active_insn (target_label) == next_active_insn (next)
4336 && no_labels_between_p (insn, next))
4337 {
4338 rtx label = JUMP_LABEL (next);
4339 rtx old_label = JUMP_LABEL (delay_insn);
4340
4341 if (label == 0)
4342 label = find_end_label ();
4343
4344 if (redirect_with_delay_slots_safe_p (delay_insn, label, insn))
4345 {
4346 /* Be careful how we do this to avoid deleting code or labels
4347 that are momentarily dead. See similar optimization in
4348 jump.c */
4349 if (old_label)
4350 ++LABEL_NUSES (old_label);
4351
4352 if (invert_jump (delay_insn, label))
4353 {
4354 int i;
4355
4356 /* Must update the INSN_FROM_TARGET_P bits now that
4357 the branch is reversed, so that mark_target_live_regs
4358 will handle the delay slot insn correctly. */
4359 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
4360 {
4361 rtx slot = XVECEXP (PATTERN (insn), 0, i);
4362 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
4363 }
4364
4365 delete_insn (next);
4366 next = insn;
4367 }
4368
4369 if (old_label && --LABEL_NUSES (old_label) == 0)
4370 delete_insn (old_label);
4371 continue;
4372 }
4373 }
4374
4375 /* If we own the thread opposite the way this insn branches, see if we
4376 can merge its delay slots with following insns. */
4377 if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
4378 && own_thread_p (NEXT_INSN (insn), 0, 1))
4379 try_merge_delay_insns (insn, next);
4380 else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
4381 && own_thread_p (target_label, target_label, 0))
4382 try_merge_delay_insns (insn, next_active_insn (target_label));
4383
4384 /* If we get here, we haven't deleted INSN. But we may have deleted
4385 NEXT, so recompute it. */
4386 next = next_active_insn (insn);
4387 }
4388 }
4389 \f
4390 #ifdef HAVE_return
4391
4392 /* Look for filled jumps to the end of function label. We can try to convert
4393 them into RETURN insns if the insns in the delay slot are valid for the
4394 RETURN as well. */
4395
4396 static void
4397 make_return_insns (first)
4398 rtx first;
4399 {
4400 rtx insn, jump_insn, pat;
4401 rtx real_return_label = end_of_function_label;
4402 int slots, i;
4403
4404 /* See if there is a RETURN insn in the function other than the one we
4405 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
4406 into a RETURN to jump to it. */
4407 for (insn = first; insn; insn = NEXT_INSN (insn))
4408 if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == RETURN)
4409 {
4410 real_return_label = get_label_before (insn);
4411 break;
4412 }
4413
4414 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
4415 was equal to END_OF_FUNCTION_LABEL. */
4416 LABEL_NUSES (real_return_label)++;
4417
4418 /* Clear the list of insns to fill so we can use it. */
4419 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
4420
4421 for (insn = first; insn; insn = NEXT_INSN (insn))
4422 {
4423 int flags;
4424
4425 /* Only look at filled JUMP_INSNs that go to the end of function
4426 label. */
4427 if (GET_CODE (insn) != INSN
4428 || GET_CODE (PATTERN (insn)) != SEQUENCE
4429 || GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) != JUMP_INSN
4430 || JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) != end_of_function_label)
4431 continue;
4432
4433 pat = PATTERN (insn);
4434 jump_insn = XVECEXP (pat, 0, 0);
4435
4436 /* If we can't make the jump into a RETURN, try to redirect it to the best
4437 RETURN and go on to the next insn. */
4438 if (! reorg_redirect_jump (jump_insn, NULL_RTX))
4439 {
4440 /* Make sure redirecting the jump will not invalidate the delay
4441 slot insns. */
4442 if (redirect_with_delay_slots_safe_p (jump_insn,
4443 real_return_label,
4444 insn))
4445 reorg_redirect_jump (jump_insn, real_return_label);
4446 continue;
4447 }
4448
4449 /* See if this RETURN can accept the insns current in its delay slot.
4450 It can if it has more or an equal number of slots and the contents
4451 of each is valid. */
4452
4453 flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
4454 slots = num_delay_slots (jump_insn);
4455 if (slots >= XVECLEN (pat, 0) - 1)
4456 {
4457 for (i = 1; i < XVECLEN (pat, 0); i++)
4458 if (! (
4459 #ifdef ANNUL_IFFALSE_SLOTS
4460 (INSN_ANNULLED_BRANCH_P (jump_insn)
4461 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
4462 ? eligible_for_annul_false (jump_insn, i - 1,
4463 XVECEXP (pat, 0, i), flags) :
4464 #endif
4465 #ifdef ANNUL_IFTRUE_SLOTS
4466 (INSN_ANNULLED_BRANCH_P (jump_insn)
4467 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
4468 ? eligible_for_annul_true (jump_insn, i - 1,
4469 XVECEXP (pat, 0, i), flags) :
4470 #endif
4471 eligible_for_delay (jump_insn, i -1, XVECEXP (pat, 0, i), flags)))
4472 break;
4473 }
4474 else
4475 i = 0;
4476
4477 if (i == XVECLEN (pat, 0))
4478 continue;
4479
4480 /* We have to do something with this insn. If it is an unconditional
4481 RETURN, delete the SEQUENCE and output the individual insns,
4482 followed by the RETURN. Then set things up so we try to find
4483 insns for its delay slots, if it needs some. */
4484 if (GET_CODE (PATTERN (jump_insn)) == RETURN)
4485 {
4486 rtx prev = PREV_INSN (insn);
4487
4488 delete_insn (insn);
4489 for (i = 1; i < XVECLEN (pat, 0); i++)
4490 prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
4491
4492 insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
4493 emit_barrier_after (insn);
4494
4495 if (slots)
4496 obstack_ptr_grow (&unfilled_slots_obstack, insn);
4497 }
4498 else
4499 /* It is probably more efficient to keep this with its current
4500 delay slot as a branch to a RETURN. */
4501 reorg_redirect_jump (jump_insn, real_return_label);
4502 }
4503
4504 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
4505 new delay slots we have created. */
4506 if (--LABEL_NUSES (real_return_label) == 0)
4507 delete_insn (real_return_label);
4508
4509 fill_simple_delay_slots (1);
4510 fill_simple_delay_slots (0);
4511 }
4512 #endif
4513 \f
4514 /* Try to find insns to place in delay slots. */
4515
4516 void
4517 dbr_schedule (first, file)
4518 rtx first;
4519 FILE *file;
4520 {
4521 rtx insn, next, epilogue_insn = 0;
4522 int i;
4523 #if 0
4524 int old_flag_no_peephole = flag_no_peephole;
4525
4526 /* Execute `final' once in prescan mode to delete any insns that won't be
4527 used. Don't let final try to do any peephole optimization--it will
4528 ruin dataflow information for this pass. */
4529
4530 flag_no_peephole = 1;
4531 final (first, 0, NO_DEBUG, 1, 1);
4532 flag_no_peephole = old_flag_no_peephole;
4533 #endif
4534
4535 /* If the current function has no insns other than the prologue and
4536 epilogue, then do not try to fill any delay slots. */
4537 if (n_basic_blocks == 0)
4538 return;
4539
4540 /* Find the highest INSN_UID and allocate and initialize our map from
4541 INSN_UID's to position in code. */
4542 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
4543 {
4544 if (INSN_UID (insn) > max_uid)
4545 max_uid = INSN_UID (insn);
4546 if (GET_CODE (insn) == NOTE
4547 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
4548 epilogue_insn = insn;
4549 }
4550
4551 uid_to_ruid = (int *) alloca ((max_uid + 1) * sizeof (int));
4552 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
4553 uid_to_ruid[INSN_UID (insn)] = i;
4554
4555 /* Initialize the list of insns that need filling. */
4556 if (unfilled_firstobj == 0)
4557 {
4558 gcc_obstack_init (&unfilled_slots_obstack);
4559 unfilled_firstobj = (rtx *) obstack_alloc (&unfilled_slots_obstack, 0);
4560 }
4561
4562 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
4563 {
4564 rtx target;
4565
4566 INSN_ANNULLED_BRANCH_P (insn) = 0;
4567 INSN_FROM_TARGET_P (insn) = 0;
4568
4569 /* Skip vector tables. We can't get attributes for them. */
4570 if (GET_CODE (insn) == JUMP_INSN
4571 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
4572 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
4573 continue;
4574
4575 if (num_delay_slots (insn) > 0)
4576 obstack_ptr_grow (&unfilled_slots_obstack, insn);
4577
4578 /* Ensure all jumps go to the last of a set of consecutive labels. */
4579 if (GET_CODE (insn) == JUMP_INSN
4580 && (condjump_p (insn) || condjump_in_parallel_p (insn))
4581 && JUMP_LABEL (insn) != 0
4582 && ((target = prev_label (next_active_insn (JUMP_LABEL (insn))))
4583 != JUMP_LABEL (insn)))
4584 redirect_jump (insn, target);
4585 }
4586
4587 /* Indicate what resources are required to be valid at the end of the current
4588 function. The condition code never is and memory always is. If the
4589 frame pointer is needed, it is and so is the stack pointer unless
4590 EXIT_IGNORE_STACK is non-zero. If the frame pointer is not needed, the
4591 stack pointer is. Registers used to return the function value are
4592 needed. Registers holding global variables are needed. */
4593
4594 end_of_function_needs.cc = 0;
4595 end_of_function_needs.memory = 1;
4596 end_of_function_needs.unch_memory = 0;
4597 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
4598
4599 if (frame_pointer_needed)
4600 {
4601 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
4602 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4603 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
4604 #endif
4605 #ifdef EXIT_IGNORE_STACK
4606 if (! EXIT_IGNORE_STACK
4607 || current_function_sp_is_unchanging)
4608 #endif
4609 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
4610 }
4611 else
4612 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
4613
4614 if (current_function_return_rtx != 0)
4615 mark_referenced_resources (current_function_return_rtx,
4616 &end_of_function_needs, 1);
4617
4618 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4619 if (global_regs[i]
4620 #ifdef EPILOGUE_USES
4621 || EPILOGUE_USES (i)
4622 #endif
4623 )
4624 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
4625
4626 /* The registers required to be live at the end of the function are
4627 represented in the flow information as being dead just prior to
4628 reaching the end of the function. For example, the return of a value
4629 might be represented by a USE of the return register immediately
4630 followed by an unconditional jump to the return label where the
4631 return label is the end of the RTL chain. The end of the RTL chain
4632 is then taken to mean that the return register is live.
4633
4634 This sequence is no longer maintained when epilogue instructions are
4635 added to the RTL chain. To reconstruct the original meaning, the
4636 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
4637 point where these registers become live (start_of_epilogue_needs).
4638 If epilogue instructions are present, the registers set by those
4639 instructions won't have been processed by flow. Thus, those
4640 registers are additionally required at the end of the RTL chain
4641 (end_of_function_needs). */
4642
4643 start_of_epilogue_needs = end_of_function_needs;
4644
4645 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
4646 mark_set_resources (epilogue_insn, &end_of_function_needs, 0, 1);
4647
4648 /* Show we haven't computed an end-of-function label yet. */
4649 end_of_function_label = 0;
4650
4651 /* Allocate and initialize the tables used by mark_target_live_regs. */
4652 target_hash_table
4653 = (struct target_info **) alloca ((TARGET_HASH_PRIME
4654 * sizeof (struct target_info *)));
4655 bzero ((char *) target_hash_table,
4656 TARGET_HASH_PRIME * sizeof (struct target_info *));
4657
4658 bb_ticks = (int *) alloca (n_basic_blocks * sizeof (int));
4659 bzero ((char *) bb_ticks, n_basic_blocks * sizeof (int));
4660
4661 /* Initialize the statistics for this function. */
4662 bzero ((char *) num_insns_needing_delays, sizeof num_insns_needing_delays);
4663 bzero ((char *) num_filled_delays, sizeof num_filled_delays);
4664
4665 /* Now do the delay slot filling. Try everything twice in case earlier
4666 changes make more slots fillable. */
4667
4668 for (reorg_pass_number = 0;
4669 reorg_pass_number < MAX_REORG_PASSES;
4670 reorg_pass_number++)
4671 {
4672 fill_simple_delay_slots (1);
4673 fill_simple_delay_slots (0);
4674 fill_eager_delay_slots ();
4675 relax_delay_slots (first);
4676 }
4677
4678 /* Delete any USE insns made by update_block; subsequent passes don't need
4679 them or know how to deal with them. */
4680 for (insn = first; insn; insn = next)
4681 {
4682 next = NEXT_INSN (insn);
4683
4684 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
4685 && GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
4686 next = delete_insn (insn);
4687 }
4688
4689 /* If we made an end of function label, indicate that it is now
4690 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
4691 If it is now unused, delete it. */
4692 if (end_of_function_label && --LABEL_NUSES (end_of_function_label) == 0)
4693 delete_insn (end_of_function_label);
4694
4695 #ifdef HAVE_return
4696 if (HAVE_return && end_of_function_label != 0)
4697 make_return_insns (first);
4698 #endif
4699
4700 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
4701
4702 /* It is not clear why the line below is needed, but it does seem to be. */
4703 unfilled_firstobj = (rtx *) obstack_alloc (&unfilled_slots_obstack, 0);
4704
4705 /* Reposition the prologue and epilogue notes in case we moved the
4706 prologue/epilogue insns. */
4707 reposition_prologue_and_epilogue_notes (first);
4708
4709 if (file)
4710 {
4711 register int i, j, need_comma;
4712
4713 for (reorg_pass_number = 0;
4714 reorg_pass_number < MAX_REORG_PASSES;
4715 reorg_pass_number++)
4716 {
4717 fprintf (file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
4718 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
4719 {
4720 need_comma = 0;
4721 fprintf (file, ";; Reorg function #%d\n", i);
4722
4723 fprintf (file, ";; %d insns needing delay slots\n;; ",
4724 num_insns_needing_delays[i][reorg_pass_number]);
4725
4726 for (j = 0; j < MAX_DELAY_HISTOGRAM; j++)
4727 if (num_filled_delays[i][j][reorg_pass_number])
4728 {
4729 if (need_comma)
4730 fprintf (file, ", ");
4731 need_comma = 1;
4732 fprintf (file, "%d got %d delays",
4733 num_filled_delays[i][j][reorg_pass_number], j);
4734 }
4735 fprintf (file, "\n");
4736 }
4737 }
4738 }
4739
4740 /* For all JUMP insns, fill in branch prediction notes, so that during
4741 assembler output a target can set branch prediction bits in the code.
4742 We have to do this now, as up until this point the destinations of
4743 JUMPS can be moved around and changed, but past right here that cannot
4744 happen. */
4745 for (insn = first; insn; insn = NEXT_INSN (insn))
4746 {
4747 int pred_flags;
4748
4749 if (GET_CODE (insn) == INSN)
4750 {
4751 rtx pat = PATTERN (insn);
4752
4753 if (GET_CODE (pat) == SEQUENCE)
4754 insn = XVECEXP (pat, 0, 0);
4755 }
4756 if (GET_CODE (insn) != JUMP_INSN)
4757 continue;
4758
4759 pred_flags = get_jump_flags (insn, JUMP_LABEL (insn));
4760 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_BR_PRED,
4761 GEN_INT (pred_flags),
4762 REG_NOTES (insn));
4763 }
4764 }
4765 #endif /* DELAY_SLOTS */
This page took 0.250175 seconds and 5 git commands to generate.