]> gcc.gnu.org Git - gcc.git/blob - gcc/reload1.c
whitespace changes
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "regs.h"
36 #include "basic-block.h"
37 #include "reload.h"
38 #include "recog.h"
39 #include "output.h"
40 #include "cselib.h"
41 #include "real.h"
42 #include "toplev.h"
43 #include "except.h"
44
45 /* This file contains the reload pass of the compiler, which is
46 run after register allocation has been done. It checks that
47 each insn is valid (operands required to be in registers really
48 are in registers of the proper class) and fixes up invalid ones
49 by copying values temporarily into registers for the insns
50 that need them.
51
52 The results of register allocation are described by the vector
53 reg_renumber; the insns still contain pseudo regs, but reg_renumber
54 can be used to find which hard reg, if any, a pseudo reg is in.
55
56 The technique we always use is to free up a few hard regs that are
57 called ``reload regs'', and for each place where a pseudo reg
58 must be in a hard reg, copy it temporarily into one of the reload regs.
59
60 Reload regs are allocated locally for every instruction that needs
61 reloads. When there are pseudos which are allocated to a register that
62 has been chosen as a reload reg, such pseudos must be ``spilled''.
63 This means that they go to other hard regs, or to stack slots if no other
64 available hard regs can be found. Spilling can invalidate more
65 insns, requiring additional need for reloads, so we must keep checking
66 until the process stabilizes.
67
68 For machines with different classes of registers, we must keep track
69 of the register class needed for each reload, and make sure that
70 we allocate enough reload registers of each class.
71
72 The file reload.c contains the code that checks one insn for
73 validity and reports the reloads that it needs. This file
74 is in charge of scanning the entire rtl code, accumulating the
75 reload needs, spilling, assigning reload registers to use for
76 fixing up each insn, and generating the new insns to copy values
77 into the reload registers. */
78
79 #ifndef REGISTER_MOVE_COST
80 #define REGISTER_MOVE_COST(m, x, y) 2
81 #endif
82
83 #ifndef LOCAL_REGNO
84 #define LOCAL_REGNO(REGNO) 0
85 #endif
86 \f
87 /* During reload_as_needed, element N contains a REG rtx for the hard reg
88 into which reg N has been reloaded (perhaps for a previous insn). */
89 static rtx *reg_last_reload_reg;
90
91 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
92 for an output reload that stores into reg N. */
93 static char *reg_has_output_reload;
94
95 /* Indicates which hard regs are reload-registers for an output reload
96 in the current insn. */
97 static HARD_REG_SET reg_is_output_reload;
98
99 /* Element N is the constant value to which pseudo reg N is equivalent,
100 or zero if pseudo reg N is not equivalent to a constant.
101 find_reloads looks at this in order to replace pseudo reg N
102 with the constant it stands for. */
103 rtx *reg_equiv_constant;
104
105 /* Element N is a memory location to which pseudo reg N is equivalent,
106 prior to any register elimination (such as frame pointer to stack
107 pointer). Depending on whether or not it is a valid address, this value
108 is transferred to either reg_equiv_address or reg_equiv_mem. */
109 rtx *reg_equiv_memory_loc;
110
111 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
112 This is used when the address is not valid as a memory address
113 (because its displacement is too big for the machine.) */
114 rtx *reg_equiv_address;
115
116 /* Element N is the memory slot to which pseudo reg N is equivalent,
117 or zero if pseudo reg N is not equivalent to a memory slot. */
118 rtx *reg_equiv_mem;
119
120 /* Widest width in which each pseudo reg is referred to (via subreg). */
121 static unsigned int *reg_max_ref_width;
122
123 /* Element N is the list of insns that initialized reg N from its equivalent
124 constant or memory slot. */
125 static rtx *reg_equiv_init;
126
127 /* Vector to remember old contents of reg_renumber before spilling. */
128 static short *reg_old_renumber;
129
130 /* During reload_as_needed, element N contains the last pseudo regno reloaded
131 into hard register N. If that pseudo reg occupied more than one register,
132 reg_reloaded_contents points to that pseudo for each spill register in
133 use; all of these must remain set for an inheritance to occur. */
134 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
135
136 /* During reload_as_needed, element N contains the insn for which
137 hard register N was last used. Its contents are significant only
138 when reg_reloaded_valid is set for this register. */
139 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
140
141 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
142 static HARD_REG_SET reg_reloaded_valid;
143 /* Indicate if the register was dead at the end of the reload.
144 This is only valid if reg_reloaded_contents is set and valid. */
145 static HARD_REG_SET reg_reloaded_dead;
146
147 /* Number of spill-regs so far; number of valid elements of spill_regs. */
148 static int n_spills;
149
150 /* In parallel with spill_regs, contains REG rtx's for those regs.
151 Holds the last rtx used for any given reg, or 0 if it has never
152 been used for spilling yet. This rtx is reused, provided it has
153 the proper mode. */
154 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
155
156 /* In parallel with spill_regs, contains nonzero for a spill reg
157 that was stored after the last time it was used.
158 The precise value is the insn generated to do the store. */
159 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
160
161 /* This is the register that was stored with spill_reg_store. This is a
162 copy of reload_out / reload_out_reg when the value was stored; if
163 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
164 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
165
166 /* This table is the inverse mapping of spill_regs:
167 indexed by hard reg number,
168 it contains the position of that reg in spill_regs,
169 or -1 for something that is not in spill_regs.
170
171 ?!? This is no longer accurate. */
172 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
173
174 /* This reg set indicates registers that can't be used as spill registers for
175 the currently processed insn. These are the hard registers which are live
176 during the insn, but not allocated to pseudos, as well as fixed
177 registers. */
178 static HARD_REG_SET bad_spill_regs;
179
180 /* These are the hard registers that can't be used as spill register for any
181 insn. This includes registers used for user variables and registers that
182 we can't eliminate. A register that appears in this set also can't be used
183 to retry register allocation. */
184 static HARD_REG_SET bad_spill_regs_global;
185
186 /* Describes order of use of registers for reloading
187 of spilled pseudo-registers. `n_spills' is the number of
188 elements that are actually valid; new ones are added at the end.
189
190 Both spill_regs and spill_reg_order are used on two occasions:
191 once during find_reload_regs, where they keep track of the spill registers
192 for a single insn, but also during reload_as_needed where they show all
193 the registers ever used by reload. For the latter case, the information
194 is calculated during finish_spills. */
195 static short spill_regs[FIRST_PSEUDO_REGISTER];
196
197 /* This vector of reg sets indicates, for each pseudo, which hard registers
198 may not be used for retrying global allocation because the register was
199 formerly spilled from one of them. If we allowed reallocating a pseudo to
200 a register that it was already allocated to, reload might not
201 terminate. */
202 static HARD_REG_SET *pseudo_previous_regs;
203
204 /* This vector of reg sets indicates, for each pseudo, which hard
205 registers may not be used for retrying global allocation because they
206 are used as spill registers during one of the insns in which the
207 pseudo is live. */
208 static HARD_REG_SET *pseudo_forbidden_regs;
209
210 /* All hard regs that have been used as spill registers for any insn are
211 marked in this set. */
212 static HARD_REG_SET used_spill_regs;
213
214 /* Index of last register assigned as a spill register. We allocate in
215 a round-robin fashion. */
216 static int last_spill_reg;
217
218 /* Nonzero if indirect addressing is supported on the machine; this means
219 that spilling (REG n) does not require reloading it into a register in
220 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
221 value indicates the level of indirect addressing supported, e.g., two
222 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
223 a hard register. */
224 static char spill_indirect_levels;
225
226 /* Nonzero if indirect addressing is supported when the innermost MEM is
227 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
228 which these are valid is the same as spill_indirect_levels, above. */
229 char indirect_symref_ok;
230
231 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
232 char double_reg_address_ok;
233
234 /* Record the stack slot for each spilled hard register. */
235 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
236
237 /* Width allocated so far for that stack slot. */
238 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
239
240 /* Record which pseudos needed to be spilled. */
241 static regset_head spilled_pseudos;
242
243 /* Used for communication between order_regs_for_reload and count_pseudo.
244 Used to avoid counting one pseudo twice. */
245 static regset_head pseudos_counted;
246
247 /* First uid used by insns created by reload in this function.
248 Used in find_equiv_reg. */
249 int reload_first_uid;
250
251 /* Flag set by local-alloc or global-alloc if anything is live in
252 a call-clobbered reg across calls. */
253 int caller_save_needed;
254
255 /* Set to 1 while reload_as_needed is operating.
256 Required by some machines to handle any generated moves differently. */
257 int reload_in_progress = 0;
258
259 /* These arrays record the insn_code of insns that may be needed to
260 perform input and output reloads of special objects. They provide a
261 place to pass a scratch register. */
262 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
263 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
264
265 /* This obstack is used for allocation of rtl during register elimination.
266 The allocated storage can be freed once find_reloads has processed the
267 insn. */
268 struct obstack reload_obstack;
269
270 /* Points to the beginning of the reload_obstack. All insn_chain structures
271 are allocated first. */
272 char *reload_startobj;
273
274 /* The point after all insn_chain structures. Used to quickly deallocate
275 memory allocated in copy_reloads during calculate_needs_all_insns. */
276 char *reload_firstobj;
277
278 /* This points before all local rtl generated by register elimination.
279 Used to quickly free all memory after processing one insn. */
280 static char *reload_insn_firstobj;
281
282 #define obstack_chunk_alloc xmalloc
283 #define obstack_chunk_free free
284
285 /* List of insn_chain instructions, one for every insn that reload needs to
286 examine. */
287 struct insn_chain *reload_insn_chain;
288
289 #ifdef TREE_CODE
290 extern tree current_function_decl;
291 #else
292 extern union tree_node *current_function_decl;
293 #endif
294
295 /* List of all insns needing reloads. */
296 static struct insn_chain *insns_need_reload;
297 \f
298 /* This structure is used to record information about register eliminations.
299 Each array entry describes one possible way of eliminating a register
300 in favor of another. If there is more than one way of eliminating a
301 particular register, the most preferred should be specified first. */
302
303 struct elim_table
304 {
305 int from; /* Register number to be eliminated. */
306 int to; /* Register number used as replacement. */
307 int initial_offset; /* Initial difference between values. */
308 int can_eliminate; /* Non-zero if this elimination can be done. */
309 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
310 insns made by reload. */
311 int offset; /* Current offset between the two regs. */
312 int previous_offset; /* Offset at end of previous insn. */
313 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
314 rtx from_rtx; /* REG rtx for the register to be eliminated.
315 We cannot simply compare the number since
316 we might then spuriously replace a hard
317 register corresponding to a pseudo
318 assigned to the reg to be eliminated. */
319 rtx to_rtx; /* REG rtx for the replacement. */
320 };
321
322 static struct elim_table *reg_eliminate = 0;
323
324 /* This is an intermediate structure to initialize the table. It has
325 exactly the members provided by ELIMINABLE_REGS. */
326 static struct elim_table_1
327 {
328 int from;
329 int to;
330 } reg_eliminate_1[] =
331
332 /* If a set of eliminable registers was specified, define the table from it.
333 Otherwise, default to the normal case of the frame pointer being
334 replaced by the stack pointer. */
335
336 #ifdef ELIMINABLE_REGS
337 ELIMINABLE_REGS;
338 #else
339 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
340 #endif
341
342 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
343
344 /* Record the number of pending eliminations that have an offset not equal
345 to their initial offset. If non-zero, we use a new copy of each
346 replacement result in any insns encountered. */
347 int num_not_at_initial_offset;
348
349 /* Count the number of registers that we may be able to eliminate. */
350 static int num_eliminable;
351 /* And the number of registers that are equivalent to a constant that
352 can be eliminated to frame_pointer / arg_pointer + constant. */
353 static int num_eliminable_invariants;
354
355 /* For each label, we record the offset of each elimination. If we reach
356 a label by more than one path and an offset differs, we cannot do the
357 elimination. This information is indexed by the number of the label.
358 The first table is an array of flags that records whether we have yet
359 encountered a label and the second table is an array of arrays, one
360 entry in the latter array for each elimination. */
361
362 static char *offsets_known_at;
363 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
364
365 /* Number of labels in the current function. */
366
367 static int num_labels;
368 \f
369 static void replace_pseudos_in_call_usage PARAMS((rtx *,
370 enum machine_mode,
371 rtx));
372 static void maybe_fix_stack_asms PARAMS ((void));
373 static void copy_reloads PARAMS ((struct insn_chain *));
374 static void calculate_needs_all_insns PARAMS ((int));
375 static int find_reg PARAMS ((struct insn_chain *, int));
376 static void find_reload_regs PARAMS ((struct insn_chain *));
377 static void select_reload_regs PARAMS ((void));
378 static void delete_caller_save_insns PARAMS ((void));
379
380 static void spill_failure PARAMS ((rtx, enum reg_class));
381 static void count_spilled_pseudo PARAMS ((int, int, int));
382 static void delete_dead_insn PARAMS ((rtx));
383 static void alter_reg PARAMS ((int, int));
384 static void set_label_offsets PARAMS ((rtx, rtx, int));
385 static void check_eliminable_occurrences PARAMS ((rtx));
386 static void elimination_effects PARAMS ((rtx, enum machine_mode));
387 static int eliminate_regs_in_insn PARAMS ((rtx, int));
388 static void update_eliminable_offsets PARAMS ((void));
389 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
390 static void set_initial_elim_offsets PARAMS ((void));
391 static void verify_initial_elim_offsets PARAMS ((void));
392 static void set_initial_label_offsets PARAMS ((void));
393 static void set_offsets_for_label PARAMS ((rtx));
394 static void init_elim_table PARAMS ((void));
395 static void update_eliminables PARAMS ((HARD_REG_SET *));
396 static void spill_hard_reg PARAMS ((unsigned int, int));
397 static int finish_spills PARAMS ((int));
398 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
399 static void scan_paradoxical_subregs PARAMS ((rtx));
400 static void count_pseudo PARAMS ((int));
401 static void order_regs_for_reload PARAMS ((struct insn_chain *));
402 static void reload_as_needed PARAMS ((int));
403 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
404 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
405 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
406 enum reload_type,
407 enum machine_mode));
408 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
409 enum reload_type,
410 enum machine_mode));
411 static int reload_reg_free_p PARAMS ((unsigned int, int,
412 enum reload_type));
413 static int reload_reg_free_for_value_p PARAMS ((int, int, int,
414 enum reload_type,
415 rtx, rtx, int, int));
416 static int free_for_value_p PARAMS ((int, enum machine_mode, int,
417 enum reload_type, rtx, rtx,
418 int, int));
419 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
420 enum reload_type));
421 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
422 int));
423 static int conflicts_with_override PARAMS ((rtx));
424 static void failed_reload PARAMS ((rtx, int));
425 static int set_reload_reg PARAMS ((int, int));
426 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
427 static void choose_reload_regs PARAMS ((struct insn_chain *));
428 static void merge_assigned_reloads PARAMS ((rtx));
429 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
430 struct reload *, rtx, int));
431 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
432 struct reload *, int));
433 static void do_input_reload PARAMS ((struct insn_chain *,
434 struct reload *, int));
435 static void do_output_reload PARAMS ((struct insn_chain *,
436 struct reload *, int));
437 static void emit_reload_insns PARAMS ((struct insn_chain *));
438 static void delete_output_reload PARAMS ((rtx, int, int));
439 static void delete_address_reloads PARAMS ((rtx, rtx));
440 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
441 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
442 static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
443 static void reload_cse_regs_1 PARAMS ((rtx));
444 static int reload_cse_noop_set_p PARAMS ((rtx));
445 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
446 static int reload_cse_simplify_operands PARAMS ((rtx));
447 static void reload_combine PARAMS ((void));
448 static void reload_combine_note_use PARAMS ((rtx *, rtx));
449 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
450 static void reload_cse_move2add PARAMS ((rtx));
451 static void move2add_note_store PARAMS ((rtx, rtx, void *));
452 #ifdef AUTO_INC_DEC
453 static void add_auto_inc_notes PARAMS ((rtx, rtx));
454 #endif
455 static void copy_eh_notes PARAMS ((rtx, rtx));
456 static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
457 HOST_WIDE_INT));
458 static void failed_reload PARAMS ((rtx, int));
459 static int set_reload_reg PARAMS ((int, int));
460 static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
461 static void reload_cse_simplify PARAMS ((rtx));
462 static void fixup_abnormal_edges PARAMS ((void));
463 extern void dump_needs PARAMS ((struct insn_chain *));
464 \f
465 /* Initialize the reload pass once per compilation. */
466
467 void
468 init_reload ()
469 {
470 int i;
471
472 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
473 Set spill_indirect_levels to the number of levels such addressing is
474 permitted, zero if it is not permitted at all. */
475
476 rtx tem
477 = gen_rtx_MEM (Pmode,
478 gen_rtx_PLUS (Pmode,
479 gen_rtx_REG (Pmode,
480 LAST_VIRTUAL_REGISTER + 1),
481 GEN_INT (4)));
482 spill_indirect_levels = 0;
483
484 while (memory_address_p (QImode, tem))
485 {
486 spill_indirect_levels++;
487 tem = gen_rtx_MEM (Pmode, tem);
488 }
489
490 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
491
492 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
493 indirect_symref_ok = memory_address_p (QImode, tem);
494
495 /* See if reg+reg is a valid (and offsettable) address. */
496
497 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
498 {
499 tem = gen_rtx_PLUS (Pmode,
500 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
501 gen_rtx_REG (Pmode, i));
502
503 /* This way, we make sure that reg+reg is an offsettable address. */
504 tem = plus_constant (tem, 4);
505
506 if (memory_address_p (QImode, tem))
507 {
508 double_reg_address_ok = 1;
509 break;
510 }
511 }
512
513 /* Initialize obstack for our rtl allocation. */
514 gcc_obstack_init (&reload_obstack);
515 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
516
517 INIT_REG_SET (&spilled_pseudos);
518 INIT_REG_SET (&pseudos_counted);
519 }
520
521 /* List of insn chains that are currently unused. */
522 static struct insn_chain *unused_insn_chains = 0;
523
524 /* Allocate an empty insn_chain structure. */
525 struct insn_chain *
526 new_insn_chain ()
527 {
528 struct insn_chain *c;
529
530 if (unused_insn_chains == 0)
531 {
532 c = (struct insn_chain *)
533 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
534 INIT_REG_SET (&c->live_throughout);
535 INIT_REG_SET (&c->dead_or_set);
536 }
537 else
538 {
539 c = unused_insn_chains;
540 unused_insn_chains = c->next;
541 }
542 c->is_caller_save_insn = 0;
543 c->need_operand_change = 0;
544 c->need_reload = 0;
545 c->need_elim = 0;
546 return c;
547 }
548
549 /* Small utility function to set all regs in hard reg set TO which are
550 allocated to pseudos in regset FROM. */
551
552 void
553 compute_use_by_pseudos (to, from)
554 HARD_REG_SET *to;
555 regset from;
556 {
557 unsigned int regno;
558
559 EXECUTE_IF_SET_IN_REG_SET
560 (from, FIRST_PSEUDO_REGISTER, regno,
561 {
562 int r = reg_renumber[regno];
563 int nregs;
564
565 if (r < 0)
566 {
567 /* reload_combine uses the information from
568 BASIC_BLOCK->global_live_at_start, which might still
569 contain registers that have not actually been allocated
570 since they have an equivalence. */
571 if (! reload_completed)
572 abort ();
573 }
574 else
575 {
576 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
577 while (nregs-- > 0)
578 SET_HARD_REG_BIT (*to, r + nregs);
579 }
580 });
581 }
582
583 /* Replace all pseudos found in LOC with their corresponding
584 equivalences. */
585
586 static void
587 replace_pseudos_in_call_usage (loc, mem_mode, usage)
588 rtx *loc;
589 enum machine_mode mem_mode;
590 rtx usage;
591 {
592 rtx x = *loc;
593 enum rtx_code code;
594 const char *fmt;
595 int i, j;
596
597 if (! x)
598 return;
599
600 code = GET_CODE (x);
601 if (code == REG)
602 {
603 unsigned int regno = REGNO (x);
604
605 if (regno < FIRST_PSEUDO_REGISTER)
606 return;
607
608 x = eliminate_regs (x, mem_mode, usage);
609 if (x != *loc)
610 {
611 *loc = x;
612 replace_pseudos_in_call_usage (loc, mem_mode, usage);
613 return;
614 }
615
616 if (reg_equiv_constant[regno])
617 *loc = reg_equiv_constant[regno];
618 else if (reg_equiv_mem[regno])
619 *loc = reg_equiv_mem[regno];
620 else if (reg_equiv_address[regno])
621 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
622 else if (GET_CODE (regno_reg_rtx[regno]) != REG
623 || REGNO (regno_reg_rtx[regno]) != regno)
624 *loc = regno_reg_rtx[regno];
625 else
626 abort ();
627
628 return;
629 }
630 else if (code == MEM)
631 {
632 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
633 return;
634 }
635
636 /* Process each of our operands recursively. */
637 fmt = GET_RTX_FORMAT (code);
638 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
639 if (*fmt == 'e')
640 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
641 else if (*fmt == 'E')
642 for (j = 0; j < XVECLEN (x, i); j++)
643 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
644 }
645
646 \f
647 /* Global variables used by reload and its subroutines. */
648
649 /* Set during calculate_needs if an insn needs register elimination. */
650 static int something_needs_elimination;
651 /* Set during calculate_needs if an insn needs an operand changed. */
652 int something_needs_operands_changed;
653
654 /* Nonzero means we couldn't get enough spill regs. */
655 static int failure;
656
657 /* Main entry point for the reload pass.
658
659 FIRST is the first insn of the function being compiled.
660
661 GLOBAL nonzero means we were called from global_alloc
662 and should attempt to reallocate any pseudoregs that we
663 displace from hard regs we will use for reloads.
664 If GLOBAL is zero, we do not have enough information to do that,
665 so any pseudo reg that is spilled must go to the stack.
666
667 Return value is nonzero if reload failed
668 and we must not do any more for this function. */
669
670 int
671 reload (first, global)
672 rtx first;
673 int global;
674 {
675 int i;
676 rtx insn;
677 struct elim_table *ep;
678
679 /* The two pointers used to track the true location of the memory used
680 for label offsets. */
681 char *real_known_ptr = NULL;
682 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
683
684 /* Make sure even insns with volatile mem refs are recognizable. */
685 init_recog ();
686
687 failure = 0;
688
689 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
690
691 /* Make sure that the last insn in the chain
692 is not something that needs reloading. */
693 emit_note (NULL, NOTE_INSN_DELETED);
694
695 /* Enable find_equiv_reg to distinguish insns made by reload. */
696 reload_first_uid = get_max_uid ();
697
698 #ifdef SECONDARY_MEMORY_NEEDED
699 /* Initialize the secondary memory table. */
700 clear_secondary_mem ();
701 #endif
702
703 /* We don't have a stack slot for any spill reg yet. */
704 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
705 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
706
707 /* Initialize the save area information for caller-save, in case some
708 are needed. */
709 init_save_areas ();
710
711 /* Compute which hard registers are now in use
712 as homes for pseudo registers.
713 This is done here rather than (eg) in global_alloc
714 because this point is reached even if not optimizing. */
715 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
716 mark_home_live (i);
717
718 /* A function that receives a nonlocal goto must save all call-saved
719 registers. */
720 if (current_function_has_nonlocal_label)
721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
722 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
723 regs_ever_live[i] = 1;
724
725 /* Find all the pseudo registers that didn't get hard regs
726 but do have known equivalent constants or memory slots.
727 These include parameters (known equivalent to parameter slots)
728 and cse'd or loop-moved constant memory addresses.
729
730 Record constant equivalents in reg_equiv_constant
731 so they will be substituted by find_reloads.
732 Record memory equivalents in reg_mem_equiv so they can
733 be substituted eventually by altering the REG-rtx's. */
734
735 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
736 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
737 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
738 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
739 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
740 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
741 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
742 pseudo_forbidden_regs
743 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
744 pseudo_previous_regs
745 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
746
747 CLEAR_HARD_REG_SET (bad_spill_regs_global);
748
749 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
750 Also find all paradoxical subregs and find largest such for each pseudo.
751 On machines with small register classes, record hard registers that
752 are used for user variables. These can never be used for spills.
753 Also look for a "constant" REG_SETJMP. This means that all
754 caller-saved registers must be marked live. */
755
756 num_eliminable_invariants = 0;
757 for (insn = first; insn; insn = NEXT_INSN (insn))
758 {
759 rtx set = single_set (insn);
760
761 /* We may introduce USEs that we want to remove at the end, so
762 we'll mark them with QImode. Make sure there are no
763 previously-marked insns left by say regmove. */
764 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
765 && GET_MODE (insn) != VOIDmode)
766 PUT_MODE (insn, VOIDmode);
767
768 if (GET_CODE (insn) == CALL_INSN
769 && find_reg_note (insn, REG_SETJMP, NULL))
770 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
771 if (! call_used_regs[i])
772 regs_ever_live[i] = 1;
773
774 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
775 {
776 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
777 if (note
778 #ifdef LEGITIMATE_PIC_OPERAND_P
779 && (! function_invariant_p (XEXP (note, 0))
780 || ! flag_pic
781 /* A function invariant is often CONSTANT_P but may
782 include a register. We promise to only pass
783 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
784 || (CONSTANT_P (XEXP (note, 0))
785 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
786 #endif
787 )
788 {
789 rtx x = XEXP (note, 0);
790 i = REGNO (SET_DEST (set));
791 if (i > LAST_VIRTUAL_REGISTER)
792 {
793 if (GET_CODE (x) == MEM)
794 {
795 /* Always unshare the equivalence, so we can
796 substitute into this insn without touching the
797 equivalence. */
798 reg_equiv_memory_loc[i] = copy_rtx (x);
799 }
800 else if (function_invariant_p (x))
801 {
802 if (GET_CODE (x) == PLUS)
803 {
804 /* This is PLUS of frame pointer and a constant,
805 and might be shared. Unshare it. */
806 reg_equiv_constant[i] = copy_rtx (x);
807 num_eliminable_invariants++;
808 }
809 else if (x == frame_pointer_rtx
810 || x == arg_pointer_rtx)
811 {
812 reg_equiv_constant[i] = x;
813 num_eliminable_invariants++;
814 }
815 else if (LEGITIMATE_CONSTANT_P (x))
816 reg_equiv_constant[i] = x;
817 else
818 reg_equiv_memory_loc[i]
819 = force_const_mem (GET_MODE (SET_DEST (set)), x);
820 }
821 else
822 continue;
823
824 /* If this register is being made equivalent to a MEM
825 and the MEM is not SET_SRC, the equivalencing insn
826 is one with the MEM as a SET_DEST and it occurs later.
827 So don't mark this insn now. */
828 if (GET_CODE (x) != MEM
829 || rtx_equal_p (SET_SRC (set), x))
830 reg_equiv_init[i]
831 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
832 }
833 }
834 }
835
836 /* If this insn is setting a MEM from a register equivalent to it,
837 this is the equivalencing insn. */
838 else if (set && GET_CODE (SET_DEST (set)) == MEM
839 && GET_CODE (SET_SRC (set)) == REG
840 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
841 && rtx_equal_p (SET_DEST (set),
842 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
843 reg_equiv_init[REGNO (SET_SRC (set))]
844 = gen_rtx_INSN_LIST (VOIDmode, insn,
845 reg_equiv_init[REGNO (SET_SRC (set))]);
846
847 if (INSN_P (insn))
848 scan_paradoxical_subregs (PATTERN (insn));
849 }
850
851 init_elim_table ();
852
853 num_labels = max_label_num () - get_first_label_num ();
854
855 /* Allocate the tables used to store offset information at labels. */
856 /* We used to use alloca here, but the size of what it would try to
857 allocate would occasionally cause it to exceed the stack limit and
858 cause a core dump. */
859 real_known_ptr = xmalloc (num_labels);
860 real_at_ptr
861 = (int (*)[NUM_ELIMINABLE_REGS])
862 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
863
864 offsets_known_at = real_known_ptr - get_first_label_num ();
865 offsets_at
866 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
867
868 /* Alter each pseudo-reg rtx to contain its hard reg number.
869 Assign stack slots to the pseudos that lack hard regs or equivalents.
870 Do not touch virtual registers. */
871
872 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
873 alter_reg (i, -1);
874
875 /* If we have some registers we think can be eliminated, scan all insns to
876 see if there is an insn that sets one of these registers to something
877 other than itself plus a constant. If so, the register cannot be
878 eliminated. Doing this scan here eliminates an extra pass through the
879 main reload loop in the most common case where register elimination
880 cannot be done. */
881 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
882 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
883 || GET_CODE (insn) == CALL_INSN)
884 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
885
886 maybe_fix_stack_asms ();
887
888 insns_need_reload = 0;
889 something_needs_elimination = 0;
890
891 /* Initialize to -1, which means take the first spill register. */
892 last_spill_reg = -1;
893
894 /* Spill any hard regs that we know we can't eliminate. */
895 CLEAR_HARD_REG_SET (used_spill_regs);
896 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
897 if (! ep->can_eliminate)
898 spill_hard_reg (ep->from, 1);
899
900 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
901 if (frame_pointer_needed)
902 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
903 #endif
904 finish_spills (global);
905
906 /* From now on, we may need to generate moves differently. We may also
907 allow modifications of insns which cause them to not be recognized.
908 Any such modifications will be cleaned up during reload itself. */
909 reload_in_progress = 1;
910
911 /* This loop scans the entire function each go-round
912 and repeats until one repetition spills no additional hard regs. */
913 for (;;)
914 {
915 int something_changed;
916 int did_spill;
917
918 HOST_WIDE_INT starting_frame_size;
919
920 /* Round size of stack frame to stack_alignment_needed. This must be done
921 here because the stack size may be a part of the offset computation
922 for register elimination, and there might have been new stack slots
923 created in the last iteration of this loop. */
924 if (cfun->stack_alignment_needed)
925 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
926
927 starting_frame_size = get_frame_size ();
928
929 set_initial_elim_offsets ();
930 set_initial_label_offsets ();
931
932 /* For each pseudo register that has an equivalent location defined,
933 try to eliminate any eliminable registers (such as the frame pointer)
934 assuming initial offsets for the replacement register, which
935 is the normal case.
936
937 If the resulting location is directly addressable, substitute
938 the MEM we just got directly for the old REG.
939
940 If it is not addressable but is a constant or the sum of a hard reg
941 and constant, it is probably not addressable because the constant is
942 out of range, in that case record the address; we will generate
943 hairy code to compute the address in a register each time it is
944 needed. Similarly if it is a hard register, but one that is not
945 valid as an address register.
946
947 If the location is not addressable, but does not have one of the
948 above forms, assign a stack slot. We have to do this to avoid the
949 potential of producing lots of reloads if, e.g., a location involves
950 a pseudo that didn't get a hard register and has an equivalent memory
951 location that also involves a pseudo that didn't get a hard register.
952
953 Perhaps at some point we will improve reload_when_needed handling
954 so this problem goes away. But that's very hairy. */
955
956 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
957 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
958 {
959 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
960
961 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
962 XEXP (x, 0)))
963 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
964 else if (CONSTANT_P (XEXP (x, 0))
965 || (GET_CODE (XEXP (x, 0)) == REG
966 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
967 || (GET_CODE (XEXP (x, 0)) == PLUS
968 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
969 && (REGNO (XEXP (XEXP (x, 0), 0))
970 < FIRST_PSEUDO_REGISTER)
971 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
972 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
973 else
974 {
975 /* Make a new stack slot. Then indicate that something
976 changed so we go back and recompute offsets for
977 eliminable registers because the allocation of memory
978 below might change some offset. reg_equiv_{mem,address}
979 will be set up for this pseudo on the next pass around
980 the loop. */
981 reg_equiv_memory_loc[i] = 0;
982 reg_equiv_init[i] = 0;
983 alter_reg (i, -1);
984 }
985 }
986
987 if (caller_save_needed)
988 setup_save_areas ();
989
990 /* If we allocated another stack slot, redo elimination bookkeeping. */
991 if (starting_frame_size != get_frame_size ())
992 continue;
993
994 if (caller_save_needed)
995 {
996 save_call_clobbered_regs ();
997 /* That might have allocated new insn_chain structures. */
998 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
999 }
1000
1001 calculate_needs_all_insns (global);
1002
1003 CLEAR_REG_SET (&spilled_pseudos);
1004 did_spill = 0;
1005
1006 something_changed = 0;
1007
1008 /* If we allocated any new memory locations, make another pass
1009 since it might have changed elimination offsets. */
1010 if (starting_frame_size != get_frame_size ())
1011 something_changed = 1;
1012
1013 {
1014 HARD_REG_SET to_spill;
1015 CLEAR_HARD_REG_SET (to_spill);
1016 update_eliminables (&to_spill);
1017 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1018 if (TEST_HARD_REG_BIT (to_spill, i))
1019 {
1020 spill_hard_reg (i, 1);
1021 did_spill = 1;
1022
1023 /* Regardless of the state of spills, if we previously had
1024 a register that we thought we could eliminate, but no can
1025 not eliminate, we must run another pass.
1026
1027 Consider pseudos which have an entry in reg_equiv_* which
1028 reference an eliminable register. We must make another pass
1029 to update reg_equiv_* so that we do not substitute in the
1030 old value from when we thought the elimination could be
1031 performed. */
1032 something_changed = 1;
1033 }
1034 }
1035
1036 select_reload_regs ();
1037 if (failure)
1038 goto failed;
1039
1040 if (insns_need_reload != 0 || did_spill)
1041 something_changed |= finish_spills (global);
1042
1043 if (! something_changed)
1044 break;
1045
1046 if (caller_save_needed)
1047 delete_caller_save_insns ();
1048
1049 obstack_free (&reload_obstack, reload_firstobj);
1050 }
1051
1052 /* If global-alloc was run, notify it of any register eliminations we have
1053 done. */
1054 if (global)
1055 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1056 if (ep->can_eliminate)
1057 mark_elimination (ep->from, ep->to);
1058
1059 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1060 If that insn didn't set the register (i.e., it copied the register to
1061 memory), just delete that insn instead of the equivalencing insn plus
1062 anything now dead. If we call delete_dead_insn on that insn, we may
1063 delete the insn that actually sets the register if the register dies
1064 there and that is incorrect. */
1065
1066 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1067 {
1068 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1069 {
1070 rtx list;
1071 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1072 {
1073 rtx equiv_insn = XEXP (list, 0);
1074 if (GET_CODE (equiv_insn) == NOTE)
1075 continue;
1076 if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1077 delete_dead_insn (equiv_insn);
1078 else
1079 {
1080 PUT_CODE (equiv_insn, NOTE);
1081 NOTE_SOURCE_FILE (equiv_insn) = 0;
1082 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1083 }
1084 }
1085 }
1086 }
1087
1088 /* Use the reload registers where necessary
1089 by generating move instructions to move the must-be-register
1090 values into or out of the reload registers. */
1091
1092 if (insns_need_reload != 0 || something_needs_elimination
1093 || something_needs_operands_changed)
1094 {
1095 HOST_WIDE_INT old_frame_size = get_frame_size ();
1096
1097 reload_as_needed (global);
1098
1099 if (old_frame_size != get_frame_size ())
1100 abort ();
1101
1102 if (num_eliminable)
1103 verify_initial_elim_offsets ();
1104 }
1105
1106 /* If we were able to eliminate the frame pointer, show that it is no
1107 longer live at the start of any basic block. If it ls live by
1108 virtue of being in a pseudo, that pseudo will be marked live
1109 and hence the frame pointer will be known to be live via that
1110 pseudo. */
1111
1112 if (! frame_pointer_needed)
1113 for (i = 0; i < n_basic_blocks; i++)
1114 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
1115 HARD_FRAME_POINTER_REGNUM);
1116
1117 /* Come here (with failure set nonzero) if we can't get enough spill regs
1118 and we decide not to abort about it. */
1119 failed:
1120
1121 CLEAR_REG_SET (&spilled_pseudos);
1122 reload_in_progress = 0;
1123
1124 /* Now eliminate all pseudo regs by modifying them into
1125 their equivalent memory references.
1126 The REG-rtx's for the pseudos are modified in place,
1127 so all insns that used to refer to them now refer to memory.
1128
1129 For a reg that has a reg_equiv_address, all those insns
1130 were changed by reloading so that no insns refer to it any longer;
1131 but the DECL_RTL of a variable decl may refer to it,
1132 and if so this causes the debugging info to mention the variable. */
1133
1134 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1135 {
1136 rtx addr = 0;
1137
1138 if (reg_equiv_mem[i])
1139 addr = XEXP (reg_equiv_mem[i], 0);
1140
1141 if (reg_equiv_address[i])
1142 addr = reg_equiv_address[i];
1143
1144 if (addr)
1145 {
1146 if (reg_renumber[i] < 0)
1147 {
1148 rtx reg = regno_reg_rtx[i];
1149
1150 PUT_CODE (reg, MEM);
1151 XEXP (reg, 0) = addr;
1152 REG_USERVAR_P (reg) = 0;
1153 if (reg_equiv_memory_loc[i])
1154 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1155 else
1156 {
1157 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1158 = MEM_SCALAR_P (reg) = 0;
1159 MEM_ATTRS (reg) = 0;
1160 }
1161 }
1162 else if (reg_equiv_mem[i])
1163 XEXP (reg_equiv_mem[i], 0) = addr;
1164 }
1165 }
1166
1167 /* We must set reload_completed now since the cleanup_subreg_operands call
1168 below will re-recognize each insn and reload may have generated insns
1169 which are only valid during and after reload. */
1170 reload_completed = 1;
1171
1172 /* Make a pass over all the insns and delete all USEs which we inserted
1173 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1174 notes. Delete all CLOBBER insns that don't refer to the return value
1175 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1176 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1177 and regenerate REG_INC notes that may have been moved around. */
1178
1179 for (insn = first; insn; insn = NEXT_INSN (insn))
1180 if (INSN_P (insn))
1181 {
1182 rtx *pnote;
1183
1184 if (GET_CODE (insn) == CALL_INSN)
1185 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1186 VOIDmode,
1187 CALL_INSN_FUNCTION_USAGE (insn));
1188
1189 if ((GET_CODE (PATTERN (insn)) == USE
1190 /* We mark with QImode USEs introduced by reload itself. */
1191 && (GET_MODE (insn) == QImode
1192 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1193 || (GET_CODE (PATTERN (insn)) == CLOBBER
1194 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1195 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1196 {
1197 delete_insn (insn);
1198 continue;
1199 }
1200
1201 pnote = &REG_NOTES (insn);
1202 while (*pnote != 0)
1203 {
1204 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1205 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1206 || REG_NOTE_KIND (*pnote) == REG_INC
1207 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1208 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1209 *pnote = XEXP (*pnote, 1);
1210 else
1211 pnote = &XEXP (*pnote, 1);
1212 }
1213
1214 #ifdef AUTO_INC_DEC
1215 add_auto_inc_notes (insn, PATTERN (insn));
1216 #endif
1217
1218 /* And simplify (subreg (reg)) if it appears as an operand. */
1219 cleanup_subreg_operands (insn);
1220 }
1221
1222 /* If we are doing stack checking, give a warning if this function's
1223 frame size is larger than we expect. */
1224 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1225 {
1226 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1227 static int verbose_warned = 0;
1228
1229 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1230 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1231 size += UNITS_PER_WORD;
1232
1233 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1234 {
1235 warning ("frame size too large for reliable stack checking");
1236 if (! verbose_warned)
1237 {
1238 warning ("try reducing the number of local variables");
1239 verbose_warned = 1;
1240 }
1241 }
1242 }
1243
1244 /* Indicate that we no longer have known memory locations or constants. */
1245 if (reg_equiv_constant)
1246 free (reg_equiv_constant);
1247 reg_equiv_constant = 0;
1248 if (reg_equiv_memory_loc)
1249 free (reg_equiv_memory_loc);
1250 reg_equiv_memory_loc = 0;
1251
1252 if (real_known_ptr)
1253 free (real_known_ptr);
1254 if (real_at_ptr)
1255 free (real_at_ptr);
1256
1257 free (reg_equiv_mem);
1258 free (reg_equiv_init);
1259 free (reg_equiv_address);
1260 free (reg_max_ref_width);
1261 free (reg_old_renumber);
1262 free (pseudo_previous_regs);
1263 free (pseudo_forbidden_regs);
1264
1265 CLEAR_HARD_REG_SET (used_spill_regs);
1266 for (i = 0; i < n_spills; i++)
1267 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1268
1269 /* Free all the insn_chain structures at once. */
1270 obstack_free (&reload_obstack, reload_startobj);
1271 unused_insn_chains = 0;
1272 fixup_abnormal_edges ();
1273
1274 return failure;
1275 }
1276
1277 /* Yet another special case. Unfortunately, reg-stack forces people to
1278 write incorrect clobbers in asm statements. These clobbers must not
1279 cause the register to appear in bad_spill_regs, otherwise we'll call
1280 fatal_insn later. We clear the corresponding regnos in the live
1281 register sets to avoid this.
1282 The whole thing is rather sick, I'm afraid. */
1283
1284 static void
1285 maybe_fix_stack_asms ()
1286 {
1287 #ifdef STACK_REGS
1288 const char *constraints[MAX_RECOG_OPERANDS];
1289 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1290 struct insn_chain *chain;
1291
1292 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1293 {
1294 int i, noperands;
1295 HARD_REG_SET clobbered, allowed;
1296 rtx pat;
1297
1298 if (! INSN_P (chain->insn)
1299 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1300 continue;
1301 pat = PATTERN (chain->insn);
1302 if (GET_CODE (pat) != PARALLEL)
1303 continue;
1304
1305 CLEAR_HARD_REG_SET (clobbered);
1306 CLEAR_HARD_REG_SET (allowed);
1307
1308 /* First, make a mask of all stack regs that are clobbered. */
1309 for (i = 0; i < XVECLEN (pat, 0); i++)
1310 {
1311 rtx t = XVECEXP (pat, 0, i);
1312 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1313 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1314 }
1315
1316 /* Get the operand values and constraints out of the insn. */
1317 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1318 constraints, operand_mode);
1319
1320 /* For every operand, see what registers are allowed. */
1321 for (i = 0; i < noperands; i++)
1322 {
1323 const char *p = constraints[i];
1324 /* For every alternative, we compute the class of registers allowed
1325 for reloading in CLS, and merge its contents into the reg set
1326 ALLOWED. */
1327 int cls = (int) NO_REGS;
1328
1329 for (;;)
1330 {
1331 char c = *p++;
1332
1333 if (c == '\0' || c == ',' || c == '#')
1334 {
1335 /* End of one alternative - mark the regs in the current
1336 class, and reset the class. */
1337 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1338 cls = NO_REGS;
1339 if (c == '#')
1340 do {
1341 c = *p++;
1342 } while (c != '\0' && c != ',');
1343 if (c == '\0')
1344 break;
1345 continue;
1346 }
1347
1348 switch (c)
1349 {
1350 case '=': case '+': case '*': case '%': case '?': case '!':
1351 case '0': case '1': case '2': case '3': case '4': case 'm':
1352 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1353 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1354 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1355 case 'P':
1356 break;
1357
1358 case 'p':
1359 cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
1360 break;
1361
1362 case 'g':
1363 case 'r':
1364 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1365 break;
1366
1367 default:
1368 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
1369
1370 }
1371 }
1372 }
1373 /* Those of the registers which are clobbered, but allowed by the
1374 constraints, must be usable as reload registers. So clear them
1375 out of the life information. */
1376 AND_HARD_REG_SET (allowed, clobbered);
1377 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1378 if (TEST_HARD_REG_BIT (allowed, i))
1379 {
1380 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1381 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1382 }
1383 }
1384
1385 #endif
1386 }
1387 \f
1388 /* Copy the global variables n_reloads and rld into the corresponding elts
1389 of CHAIN. */
1390 static void
1391 copy_reloads (chain)
1392 struct insn_chain *chain;
1393 {
1394 chain->n_reloads = n_reloads;
1395 chain->rld
1396 = (struct reload *) obstack_alloc (&reload_obstack,
1397 n_reloads * sizeof (struct reload));
1398 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1399 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1400 }
1401
1402 /* Walk the chain of insns, and determine for each whether it needs reloads
1403 and/or eliminations. Build the corresponding insns_need_reload list, and
1404 set something_needs_elimination as appropriate. */
1405 static void
1406 calculate_needs_all_insns (global)
1407 int global;
1408 {
1409 struct insn_chain **pprev_reload = &insns_need_reload;
1410 struct insn_chain *chain, *next = 0;
1411
1412 something_needs_elimination = 0;
1413
1414 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1415 for (chain = reload_insn_chain; chain != 0; chain = next)
1416 {
1417 rtx insn = chain->insn;
1418
1419 next = chain->next;
1420
1421 /* Clear out the shortcuts. */
1422 chain->n_reloads = 0;
1423 chain->need_elim = 0;
1424 chain->need_reload = 0;
1425 chain->need_operand_change = 0;
1426
1427 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1428 include REG_LABEL), we need to see what effects this has on the
1429 known offsets at labels. */
1430
1431 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1432 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1433 set_label_offsets (insn, insn, 0);
1434
1435 if (INSN_P (insn))
1436 {
1437 rtx old_body = PATTERN (insn);
1438 int old_code = INSN_CODE (insn);
1439 rtx old_notes = REG_NOTES (insn);
1440 int did_elimination = 0;
1441 int operands_changed = 0;
1442 rtx set = single_set (insn);
1443
1444 /* Skip insns that only set an equivalence. */
1445 if (set && GET_CODE (SET_DEST (set)) == REG
1446 && reg_renumber[REGNO (SET_DEST (set))] < 0
1447 && reg_equiv_constant[REGNO (SET_DEST (set))])
1448 continue;
1449
1450 /* If needed, eliminate any eliminable registers. */
1451 if (num_eliminable || num_eliminable_invariants)
1452 did_elimination = eliminate_regs_in_insn (insn, 0);
1453
1454 /* Analyze the instruction. */
1455 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1456 global, spill_reg_order);
1457
1458 /* If a no-op set needs more than one reload, this is likely
1459 to be something that needs input address reloads. We
1460 can't get rid of this cleanly later, and it is of no use
1461 anyway, so discard it now.
1462 We only do this when expensive_optimizations is enabled,
1463 since this complements reload inheritance / output
1464 reload deletion, and it can make debugging harder. */
1465 if (flag_expensive_optimizations && n_reloads > 1)
1466 {
1467 rtx set = single_set (insn);
1468 if (set
1469 && SET_SRC (set) == SET_DEST (set)
1470 && GET_CODE (SET_SRC (set)) == REG
1471 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1472 {
1473 delete_insn (insn);
1474 /* Delete it from the reload chain */
1475 if (chain->prev)
1476 chain->prev->next = next;
1477 else
1478 reload_insn_chain = next;
1479 if (next)
1480 next->prev = chain->prev;
1481 chain->next = unused_insn_chains;
1482 unused_insn_chains = chain;
1483 continue;
1484 }
1485 }
1486 if (num_eliminable)
1487 update_eliminable_offsets ();
1488
1489 /* Remember for later shortcuts which insns had any reloads or
1490 register eliminations. */
1491 chain->need_elim = did_elimination;
1492 chain->need_reload = n_reloads > 0;
1493 chain->need_operand_change = operands_changed;
1494
1495 /* Discard any register replacements done. */
1496 if (did_elimination)
1497 {
1498 obstack_free (&reload_obstack, reload_insn_firstobj);
1499 PATTERN (insn) = old_body;
1500 INSN_CODE (insn) = old_code;
1501 REG_NOTES (insn) = old_notes;
1502 something_needs_elimination = 1;
1503 }
1504
1505 something_needs_operands_changed |= operands_changed;
1506
1507 if (n_reloads != 0)
1508 {
1509 copy_reloads (chain);
1510 *pprev_reload = chain;
1511 pprev_reload = &chain->next_need_reload;
1512 }
1513 }
1514 }
1515 *pprev_reload = 0;
1516 }
1517 \f
1518 /* Comparison function for qsort to decide which of two reloads
1519 should be handled first. *P1 and *P2 are the reload numbers. */
1520
1521 static int
1522 reload_reg_class_lower (r1p, r2p)
1523 const PTR r1p;
1524 const PTR r2p;
1525 {
1526 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1527 int t;
1528
1529 /* Consider required reloads before optional ones. */
1530 t = rld[r1].optional - rld[r2].optional;
1531 if (t != 0)
1532 return t;
1533
1534 /* Count all solitary classes before non-solitary ones. */
1535 t = ((reg_class_size[(int) rld[r2].class] == 1)
1536 - (reg_class_size[(int) rld[r1].class] == 1));
1537 if (t != 0)
1538 return t;
1539
1540 /* Aside from solitaires, consider all multi-reg groups first. */
1541 t = rld[r2].nregs - rld[r1].nregs;
1542 if (t != 0)
1543 return t;
1544
1545 /* Consider reloads in order of increasing reg-class number. */
1546 t = (int) rld[r1].class - (int) rld[r2].class;
1547 if (t != 0)
1548 return t;
1549
1550 /* If reloads are equally urgent, sort by reload number,
1551 so that the results of qsort leave nothing to chance. */
1552 return r1 - r2;
1553 }
1554 \f
1555 /* The cost of spilling each hard reg. */
1556 static int spill_cost[FIRST_PSEUDO_REGISTER];
1557
1558 /* When spilling multiple hard registers, we use SPILL_COST for the first
1559 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1560 only the first hard reg for a multi-reg pseudo. */
1561 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1562
1563 /* Update the spill cost arrays, considering that pseudo REG is live. */
1564
1565 static void
1566 count_pseudo (reg)
1567 int reg;
1568 {
1569 int freq = REG_FREQ (reg);
1570 int r = reg_renumber[reg];
1571 int nregs;
1572
1573 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1574 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1575 return;
1576
1577 SET_REGNO_REG_SET (&pseudos_counted, reg);
1578
1579 if (r < 0)
1580 abort ();
1581
1582 spill_add_cost[r] += freq;
1583
1584 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1585 while (nregs-- > 0)
1586 spill_cost[r + nregs] += freq;
1587 }
1588
1589 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1590 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1591
1592 static void
1593 order_regs_for_reload (chain)
1594 struct insn_chain *chain;
1595 {
1596 int i;
1597 HARD_REG_SET used_by_pseudos;
1598 HARD_REG_SET used_by_pseudos2;
1599
1600 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1601
1602 memset (spill_cost, 0, sizeof spill_cost);
1603 memset (spill_add_cost, 0, sizeof spill_add_cost);
1604
1605 /* Count number of uses of each hard reg by pseudo regs allocated to it
1606 and then order them by decreasing use. First exclude hard registers
1607 that are live in or across this insn. */
1608
1609 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1610 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1611 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1612 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1613
1614 /* Now find out which pseudos are allocated to it, and update
1615 hard_reg_n_uses. */
1616 CLEAR_REG_SET (&pseudos_counted);
1617
1618 EXECUTE_IF_SET_IN_REG_SET
1619 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1620 {
1621 count_pseudo (i);
1622 });
1623 EXECUTE_IF_SET_IN_REG_SET
1624 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1625 {
1626 count_pseudo (i);
1627 });
1628 CLEAR_REG_SET (&pseudos_counted);
1629 }
1630 \f
1631 /* Vector of reload-numbers showing the order in which the reloads should
1632 be processed. */
1633 static short reload_order[MAX_RELOADS];
1634
1635 /* This is used to keep track of the spill regs used in one insn. */
1636 static HARD_REG_SET used_spill_regs_local;
1637
1638 /* We decided to spill hard register SPILLED, which has a size of
1639 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1640 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1641 update SPILL_COST/SPILL_ADD_COST. */
1642
1643 static void
1644 count_spilled_pseudo (spilled, spilled_nregs, reg)
1645 int spilled, spilled_nregs, reg;
1646 {
1647 int r = reg_renumber[reg];
1648 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1649
1650 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1651 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1652 return;
1653
1654 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1655
1656 spill_add_cost[r] -= REG_FREQ (reg);
1657 while (nregs-- > 0)
1658 spill_cost[r + nregs] -= REG_FREQ (reg);
1659 }
1660
1661 /* Find reload register to use for reload number ORDER. */
1662
1663 static int
1664 find_reg (chain, order)
1665 struct insn_chain *chain;
1666 int order;
1667 {
1668 int rnum = reload_order[order];
1669 struct reload *rl = rld + rnum;
1670 int best_cost = INT_MAX;
1671 int best_reg = -1;
1672 unsigned int i, j;
1673 int k;
1674 HARD_REG_SET not_usable;
1675 HARD_REG_SET used_by_other_reload;
1676
1677 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1678 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1679 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1680
1681 CLEAR_HARD_REG_SET (used_by_other_reload);
1682 for (k = 0; k < order; k++)
1683 {
1684 int other = reload_order[k];
1685
1686 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1687 for (j = 0; j < rld[other].nregs; j++)
1688 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1689 }
1690
1691 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1692 {
1693 unsigned int regno = i;
1694
1695 if (! TEST_HARD_REG_BIT (not_usable, regno)
1696 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1697 && HARD_REGNO_MODE_OK (regno, rl->mode))
1698 {
1699 int this_cost = spill_cost[regno];
1700 int ok = 1;
1701 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1702
1703 for (j = 1; j < this_nregs; j++)
1704 {
1705 this_cost += spill_add_cost[regno + j];
1706 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1707 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1708 ok = 0;
1709 }
1710 if (! ok)
1711 continue;
1712 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1713 this_cost--;
1714 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1715 this_cost--;
1716 if (this_cost < best_cost
1717 /* Among registers with equal cost, prefer caller-saved ones, or
1718 use REG_ALLOC_ORDER if it is defined. */
1719 || (this_cost == best_cost
1720 #ifdef REG_ALLOC_ORDER
1721 && (inv_reg_alloc_order[regno]
1722 < inv_reg_alloc_order[best_reg])
1723 #else
1724 && call_used_regs[regno]
1725 && ! call_used_regs[best_reg]
1726 #endif
1727 ))
1728 {
1729 best_reg = regno;
1730 best_cost = this_cost;
1731 }
1732 }
1733 }
1734 if (best_reg == -1)
1735 return 0;
1736
1737 if (rtl_dump_file)
1738 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1739
1740 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1741 rl->regno = best_reg;
1742
1743 EXECUTE_IF_SET_IN_REG_SET
1744 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1745 {
1746 count_spilled_pseudo (best_reg, rl->nregs, j);
1747 });
1748
1749 EXECUTE_IF_SET_IN_REG_SET
1750 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1751 {
1752 count_spilled_pseudo (best_reg, rl->nregs, j);
1753 });
1754
1755 for (i = 0; i < rl->nregs; i++)
1756 {
1757 if (spill_cost[best_reg + i] != 0
1758 || spill_add_cost[best_reg + i] != 0)
1759 abort ();
1760 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1761 }
1762 return 1;
1763 }
1764
1765 /* Find more reload regs to satisfy the remaining need of an insn, which
1766 is given by CHAIN.
1767 Do it by ascending class number, since otherwise a reg
1768 might be spilled for a big class and might fail to count
1769 for a smaller class even though it belongs to that class. */
1770
1771 static void
1772 find_reload_regs (chain)
1773 struct insn_chain *chain;
1774 {
1775 int i;
1776
1777 /* In order to be certain of getting the registers we need,
1778 we must sort the reloads into order of increasing register class.
1779 Then our grabbing of reload registers will parallel the process
1780 that provided the reload registers. */
1781 for (i = 0; i < chain->n_reloads; i++)
1782 {
1783 /* Show whether this reload already has a hard reg. */
1784 if (chain->rld[i].reg_rtx)
1785 {
1786 int regno = REGNO (chain->rld[i].reg_rtx);
1787 chain->rld[i].regno = regno;
1788 chain->rld[i].nregs
1789 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1790 }
1791 else
1792 chain->rld[i].regno = -1;
1793 reload_order[i] = i;
1794 }
1795
1796 n_reloads = chain->n_reloads;
1797 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1798
1799 CLEAR_HARD_REG_SET (used_spill_regs_local);
1800
1801 if (rtl_dump_file)
1802 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1803
1804 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1805
1806 /* Compute the order of preference for hard registers to spill. */
1807
1808 order_regs_for_reload (chain);
1809
1810 for (i = 0; i < n_reloads; i++)
1811 {
1812 int r = reload_order[i];
1813
1814 /* Ignore reloads that got marked inoperative. */
1815 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1816 && ! rld[r].optional
1817 && rld[r].regno == -1)
1818 if (! find_reg (chain, i))
1819 {
1820 spill_failure (chain->insn, rld[r].class);
1821 failure = 1;
1822 return;
1823 }
1824 }
1825
1826 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1827 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1828
1829 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1830 }
1831
1832 static void
1833 select_reload_regs ()
1834 {
1835 struct insn_chain *chain;
1836
1837 /* Try to satisfy the needs for each insn. */
1838 for (chain = insns_need_reload; chain != 0;
1839 chain = chain->next_need_reload)
1840 find_reload_regs (chain);
1841 }
1842 \f
1843 /* Delete all insns that were inserted by emit_caller_save_insns during
1844 this iteration. */
1845 static void
1846 delete_caller_save_insns ()
1847 {
1848 struct insn_chain *c = reload_insn_chain;
1849
1850 while (c != 0)
1851 {
1852 while (c != 0 && c->is_caller_save_insn)
1853 {
1854 struct insn_chain *next = c->next;
1855 rtx insn = c->insn;
1856
1857 if (c == reload_insn_chain)
1858 reload_insn_chain = next;
1859 delete_insn (insn);
1860
1861 if (next)
1862 next->prev = c->prev;
1863 if (c->prev)
1864 c->prev->next = next;
1865 c->next = unused_insn_chains;
1866 unused_insn_chains = c;
1867 c = next;
1868 }
1869 if (c != 0)
1870 c = c->next;
1871 }
1872 }
1873 \f
1874 /* Handle the failure to find a register to spill.
1875 INSN should be one of the insns which needed this particular spill reg. */
1876
1877 static void
1878 spill_failure (insn, class)
1879 rtx insn;
1880 enum reg_class class;
1881 {
1882 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1883 if (asm_noperands (PATTERN (insn)) >= 0)
1884 error_for_asm (insn, "Can't find a register in class `%s' while reloading `asm'.",
1885 reg_class_names[class]);
1886 else
1887 {
1888 error ("Unable to find a register to spill in class `%s'.",
1889 reg_class_names[class]);
1890 fatal_insn ("This is the insn:", insn);
1891 }
1892 }
1893 \f
1894 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1895 data that is dead in INSN. */
1896
1897 static void
1898 delete_dead_insn (insn)
1899 rtx insn;
1900 {
1901 rtx prev = prev_real_insn (insn);
1902 rtx prev_dest;
1903
1904 /* If the previous insn sets a register that dies in our insn, delete it
1905 too. */
1906 if (prev && GET_CODE (PATTERN (prev)) == SET
1907 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1908 && reg_mentioned_p (prev_dest, PATTERN (insn))
1909 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1910 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1911 delete_dead_insn (prev);
1912
1913 PUT_CODE (insn, NOTE);
1914 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1915 NOTE_SOURCE_FILE (insn) = 0;
1916 }
1917
1918 /* Modify the home of pseudo-reg I.
1919 The new home is present in reg_renumber[I].
1920
1921 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1922 or it may be -1, meaning there is none or it is not relevant.
1923 This is used so that all pseudos spilled from a given hard reg
1924 can share one stack slot. */
1925
1926 static void
1927 alter_reg (i, from_reg)
1928 int i;
1929 int from_reg;
1930 {
1931 /* When outputting an inline function, this can happen
1932 for a reg that isn't actually used. */
1933 if (regno_reg_rtx[i] == 0)
1934 return;
1935
1936 /* If the reg got changed to a MEM at rtl-generation time,
1937 ignore it. */
1938 if (GET_CODE (regno_reg_rtx[i]) != REG)
1939 return;
1940
1941 /* Modify the reg-rtx to contain the new hard reg
1942 number or else to contain its pseudo reg number. */
1943 REGNO (regno_reg_rtx[i])
1944 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1945
1946 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1947 allocate a stack slot for it. */
1948
1949 if (reg_renumber[i] < 0
1950 && REG_N_REFS (i) > 0
1951 && reg_equiv_constant[i] == 0
1952 && reg_equiv_memory_loc[i] == 0)
1953 {
1954 rtx x;
1955 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1956 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1957 int adjust = 0;
1958
1959 /* Each pseudo reg has an inherent size which comes from its own mode,
1960 and a total size which provides room for paradoxical subregs
1961 which refer to the pseudo reg in wider modes.
1962
1963 We can use a slot already allocated if it provides both
1964 enough inherent space and enough total space.
1965 Otherwise, we allocate a new slot, making sure that it has no less
1966 inherent space, and no less total space, then the previous slot. */
1967 if (from_reg == -1)
1968 {
1969 /* No known place to spill from => no slot to reuse. */
1970 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1971 inherent_size == total_size ? 0 : -1);
1972 if (BYTES_BIG_ENDIAN)
1973 /* Cancel the big-endian correction done in assign_stack_local.
1974 Get the address of the beginning of the slot.
1975 This is so we can do a big-endian correction unconditionally
1976 below. */
1977 adjust = inherent_size - total_size;
1978
1979 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
1980
1981 /* Nothing can alias this slot except this pseudo. */
1982 set_mem_alias_set (x, new_alias_set ());
1983 }
1984
1985 /* Reuse a stack slot if possible. */
1986 else if (spill_stack_slot[from_reg] != 0
1987 && spill_stack_slot_width[from_reg] >= total_size
1988 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1989 >= inherent_size))
1990 x = spill_stack_slot[from_reg];
1991
1992 /* Allocate a bigger slot. */
1993 else
1994 {
1995 /* Compute maximum size needed, both for inherent size
1996 and for total size. */
1997 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1998 rtx stack_slot;
1999
2000 if (spill_stack_slot[from_reg])
2001 {
2002 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2003 > inherent_size)
2004 mode = GET_MODE (spill_stack_slot[from_reg]);
2005 if (spill_stack_slot_width[from_reg] > total_size)
2006 total_size = spill_stack_slot_width[from_reg];
2007 }
2008
2009 /* Make a slot with that size. */
2010 x = assign_stack_local (mode, total_size,
2011 inherent_size == total_size ? 0 : -1);
2012 stack_slot = x;
2013
2014 /* All pseudos mapped to this slot can alias each other. */
2015 if (spill_stack_slot[from_reg])
2016 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2017 else
2018 set_mem_alias_set (x, new_alias_set ());
2019
2020 if (BYTES_BIG_ENDIAN)
2021 {
2022 /* Cancel the big-endian correction done in assign_stack_local.
2023 Get the address of the beginning of the slot.
2024 This is so we can do a big-endian correction unconditionally
2025 below. */
2026 adjust = GET_MODE_SIZE (mode) - total_size;
2027 if (adjust)
2028 stack_slot
2029 = adjust_address_nv (x, mode_for_size (total_size
2030 * BITS_PER_UNIT,
2031 MODE_INT, 1),
2032 adjust);
2033 }
2034
2035 spill_stack_slot[from_reg] = stack_slot;
2036 spill_stack_slot_width[from_reg] = total_size;
2037 }
2038
2039 /* On a big endian machine, the "address" of the slot
2040 is the address of the low part that fits its inherent mode. */
2041 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2042 adjust += (total_size - inherent_size);
2043
2044 /* If we have any adjustment to make, or if the stack slot is the
2045 wrong mode, make a new stack slot. */
2046 if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
2047 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2048
2049 /* Save the stack slot for later. */
2050 reg_equiv_memory_loc[i] = x;
2051 }
2052 }
2053
2054 /* Mark the slots in regs_ever_live for the hard regs
2055 used by pseudo-reg number REGNO. */
2056
2057 void
2058 mark_home_live (regno)
2059 int regno;
2060 {
2061 int i, lim;
2062
2063 i = reg_renumber[regno];
2064 if (i < 0)
2065 return;
2066 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2067 while (i < lim)
2068 regs_ever_live[i++] = 1;
2069 }
2070 \f
2071 /* This function handles the tracking of elimination offsets around branches.
2072
2073 X is a piece of RTL being scanned.
2074
2075 INSN is the insn that it came from, if any.
2076
2077 INITIAL_P is non-zero if we are to set the offset to be the initial
2078 offset and zero if we are setting the offset of the label to be the
2079 current offset. */
2080
2081 static void
2082 set_label_offsets (x, insn, initial_p)
2083 rtx x;
2084 rtx insn;
2085 int initial_p;
2086 {
2087 enum rtx_code code = GET_CODE (x);
2088 rtx tem;
2089 unsigned int i;
2090 struct elim_table *p;
2091
2092 switch (code)
2093 {
2094 case LABEL_REF:
2095 if (LABEL_REF_NONLOCAL_P (x))
2096 return;
2097
2098 x = XEXP (x, 0);
2099
2100 /* ... fall through ... */
2101
2102 case CODE_LABEL:
2103 /* If we know nothing about this label, set the desired offsets. Note
2104 that this sets the offset at a label to be the offset before a label
2105 if we don't know anything about the label. This is not correct for
2106 the label after a BARRIER, but is the best guess we can make. If
2107 we guessed wrong, we will suppress an elimination that might have
2108 been possible had we been able to guess correctly. */
2109
2110 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2111 {
2112 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2113 offsets_at[CODE_LABEL_NUMBER (x)][i]
2114 = (initial_p ? reg_eliminate[i].initial_offset
2115 : reg_eliminate[i].offset);
2116 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2117 }
2118
2119 /* Otherwise, if this is the definition of a label and it is
2120 preceded by a BARRIER, set our offsets to the known offset of
2121 that label. */
2122
2123 else if (x == insn
2124 && (tem = prev_nonnote_insn (insn)) != 0
2125 && GET_CODE (tem) == BARRIER)
2126 set_offsets_for_label (insn);
2127 else
2128 /* If neither of the above cases is true, compare each offset
2129 with those previously recorded and suppress any eliminations
2130 where the offsets disagree. */
2131
2132 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2133 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2134 != (initial_p ? reg_eliminate[i].initial_offset
2135 : reg_eliminate[i].offset))
2136 reg_eliminate[i].can_eliminate = 0;
2137
2138 return;
2139
2140 case JUMP_INSN:
2141 set_label_offsets (PATTERN (insn), insn, initial_p);
2142
2143 /* ... fall through ... */
2144
2145 case INSN:
2146 case CALL_INSN:
2147 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2148 and hence must have all eliminations at their initial offsets. */
2149 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2150 if (REG_NOTE_KIND (tem) == REG_LABEL)
2151 set_label_offsets (XEXP (tem, 0), insn, 1);
2152 return;
2153
2154 case PARALLEL:
2155 case ADDR_VEC:
2156 case ADDR_DIFF_VEC:
2157 /* Each of the labels in the parallel or address vector must be
2158 at their initial offsets. We want the first field for PARALLEL
2159 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2160
2161 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2162 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2163 insn, initial_p);
2164 return;
2165
2166 case SET:
2167 /* We only care about setting PC. If the source is not RETURN,
2168 IF_THEN_ELSE, or a label, disable any eliminations not at
2169 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2170 isn't one of those possibilities. For branches to a label,
2171 call ourselves recursively.
2172
2173 Note that this can disable elimination unnecessarily when we have
2174 a non-local goto since it will look like a non-constant jump to
2175 someplace in the current function. This isn't a significant
2176 problem since such jumps will normally be when all elimination
2177 pairs are back to their initial offsets. */
2178
2179 if (SET_DEST (x) != pc_rtx)
2180 return;
2181
2182 switch (GET_CODE (SET_SRC (x)))
2183 {
2184 case PC:
2185 case RETURN:
2186 return;
2187
2188 case LABEL_REF:
2189 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2190 return;
2191
2192 case IF_THEN_ELSE:
2193 tem = XEXP (SET_SRC (x), 1);
2194 if (GET_CODE (tem) == LABEL_REF)
2195 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2196 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2197 break;
2198
2199 tem = XEXP (SET_SRC (x), 2);
2200 if (GET_CODE (tem) == LABEL_REF)
2201 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2202 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2203 break;
2204 return;
2205
2206 default:
2207 break;
2208 }
2209
2210 /* If we reach here, all eliminations must be at their initial
2211 offset because we are doing a jump to a variable address. */
2212 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2213 if (p->offset != p->initial_offset)
2214 p->can_eliminate = 0;
2215 break;
2216
2217 default:
2218 break;
2219 }
2220 }
2221 \f
2222 /* Scan X and replace any eliminable registers (such as fp) with a
2223 replacement (such as sp), plus an offset.
2224
2225 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2226 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2227 MEM, we are allowed to replace a sum of a register and the constant zero
2228 with the register, which we cannot do outside a MEM. In addition, we need
2229 to record the fact that a register is referenced outside a MEM.
2230
2231 If INSN is an insn, it is the insn containing X. If we replace a REG
2232 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2233 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2234 the REG is being modified.
2235
2236 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2237 That's used when we eliminate in expressions stored in notes.
2238 This means, do not set ref_outside_mem even if the reference
2239 is outside of MEMs.
2240
2241 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2242 replacements done assuming all offsets are at their initial values. If
2243 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2244 encounter, return the actual location so that find_reloads will do
2245 the proper thing. */
2246
2247 rtx
2248 eliminate_regs (x, mem_mode, insn)
2249 rtx x;
2250 enum machine_mode mem_mode;
2251 rtx insn;
2252 {
2253 enum rtx_code code = GET_CODE (x);
2254 struct elim_table *ep;
2255 int regno;
2256 rtx new;
2257 int i, j;
2258 const char *fmt;
2259 int copied = 0;
2260
2261 if (! current_function_decl)
2262 return x;
2263
2264 switch (code)
2265 {
2266 case CONST_INT:
2267 case CONST_DOUBLE:
2268 case CONST:
2269 case SYMBOL_REF:
2270 case CODE_LABEL:
2271 case PC:
2272 case CC0:
2273 case ASM_INPUT:
2274 case ADDR_VEC:
2275 case ADDR_DIFF_VEC:
2276 case RETURN:
2277 return x;
2278
2279 case ADDRESSOF:
2280 /* This is only for the benefit of the debugging backends, which call
2281 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2282 removed after CSE. */
2283 new = eliminate_regs (XEXP (x, 0), 0, insn);
2284 if (GET_CODE (new) == MEM)
2285 return XEXP (new, 0);
2286 return x;
2287
2288 case REG:
2289 regno = REGNO (x);
2290
2291 /* First handle the case where we encounter a bare register that
2292 is eliminable. Replace it with a PLUS. */
2293 if (regno < FIRST_PSEUDO_REGISTER)
2294 {
2295 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2296 ep++)
2297 if (ep->from_rtx == x && ep->can_eliminate)
2298 return plus_constant (ep->to_rtx, ep->previous_offset);
2299
2300 }
2301 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2302 && reg_equiv_constant[regno]
2303 && ! CONSTANT_P (reg_equiv_constant[regno]))
2304 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2305 mem_mode, insn);
2306 return x;
2307
2308 /* You might think handling MINUS in a manner similar to PLUS is a
2309 good idea. It is not. It has been tried multiple times and every
2310 time the change has had to have been reverted.
2311
2312 Other parts of reload know a PLUS is special (gen_reload for example)
2313 and require special code to handle code a reloaded PLUS operand.
2314
2315 Also consider backends where the flags register is clobbered by a
2316 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2317 lea instruction comes to mind). If we try to reload a MINUS, we
2318 may kill the flags register that was holding a useful value.
2319
2320 So, please before trying to handle MINUS, consider reload as a
2321 whole instead of this little section as well as the backend issues. */
2322 case PLUS:
2323 /* If this is the sum of an eliminable register and a constant, rework
2324 the sum. */
2325 if (GET_CODE (XEXP (x, 0)) == REG
2326 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2327 && CONSTANT_P (XEXP (x, 1)))
2328 {
2329 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2330 ep++)
2331 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2332 {
2333 /* The only time we want to replace a PLUS with a REG (this
2334 occurs when the constant operand of the PLUS is the negative
2335 of the offset) is when we are inside a MEM. We won't want
2336 to do so at other times because that would change the
2337 structure of the insn in a way that reload can't handle.
2338 We special-case the commonest situation in
2339 eliminate_regs_in_insn, so just replace a PLUS with a
2340 PLUS here, unless inside a MEM. */
2341 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2342 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2343 return ep->to_rtx;
2344 else
2345 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2346 plus_constant (XEXP (x, 1),
2347 ep->previous_offset));
2348 }
2349
2350 /* If the register is not eliminable, we are done since the other
2351 operand is a constant. */
2352 return x;
2353 }
2354
2355 /* If this is part of an address, we want to bring any constant to the
2356 outermost PLUS. We will do this by doing register replacement in
2357 our operands and seeing if a constant shows up in one of them.
2358
2359 Note that there is no risk of modifying the structure of the insn,
2360 since we only get called for its operands, thus we are either
2361 modifying the address inside a MEM, or something like an address
2362 operand of a load-address insn. */
2363
2364 {
2365 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2366 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2367
2368 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2369 {
2370 /* If one side is a PLUS and the other side is a pseudo that
2371 didn't get a hard register but has a reg_equiv_constant,
2372 we must replace the constant here since it may no longer
2373 be in the position of any operand. */
2374 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2375 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2376 && reg_renumber[REGNO (new1)] < 0
2377 && reg_equiv_constant != 0
2378 && reg_equiv_constant[REGNO (new1)] != 0)
2379 new1 = reg_equiv_constant[REGNO (new1)];
2380 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2381 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2382 && reg_renumber[REGNO (new0)] < 0
2383 && reg_equiv_constant[REGNO (new0)] != 0)
2384 new0 = reg_equiv_constant[REGNO (new0)];
2385
2386 new = form_sum (new0, new1);
2387
2388 /* As above, if we are not inside a MEM we do not want to
2389 turn a PLUS into something else. We might try to do so here
2390 for an addition of 0 if we aren't optimizing. */
2391 if (! mem_mode && GET_CODE (new) != PLUS)
2392 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2393 else
2394 return new;
2395 }
2396 }
2397 return x;
2398
2399 case MULT:
2400 /* If this is the product of an eliminable register and a
2401 constant, apply the distribute law and move the constant out
2402 so that we have (plus (mult ..) ..). This is needed in order
2403 to keep load-address insns valid. This case is pathological.
2404 We ignore the possibility of overflow here. */
2405 if (GET_CODE (XEXP (x, 0)) == REG
2406 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2407 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2408 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2409 ep++)
2410 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2411 {
2412 if (! mem_mode
2413 /* Refs inside notes don't count for this purpose. */
2414 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2415 || GET_CODE (insn) == INSN_LIST)))
2416 ep->ref_outside_mem = 1;
2417
2418 return
2419 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2420 ep->previous_offset * INTVAL (XEXP (x, 1)));
2421 }
2422
2423 /* ... fall through ... */
2424
2425 case CALL:
2426 case COMPARE:
2427 /* See comments before PLUS about handling MINUS. */
2428 case MINUS:
2429 case DIV: case UDIV:
2430 case MOD: case UMOD:
2431 case AND: case IOR: case XOR:
2432 case ROTATERT: case ROTATE:
2433 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2434 case NE: case EQ:
2435 case GE: case GT: case GEU: case GTU:
2436 case LE: case LT: case LEU: case LTU:
2437 {
2438 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2439 rtx new1
2440 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2441
2442 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2443 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2444 }
2445 return x;
2446
2447 case EXPR_LIST:
2448 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2449 if (XEXP (x, 0))
2450 {
2451 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2452 if (new != XEXP (x, 0))
2453 {
2454 /* If this is a REG_DEAD note, it is not valid anymore.
2455 Using the eliminated version could result in creating a
2456 REG_DEAD note for the stack or frame pointer. */
2457 if (GET_MODE (x) == REG_DEAD)
2458 return (XEXP (x, 1)
2459 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2460 : NULL_RTX);
2461
2462 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2463 }
2464 }
2465
2466 /* ... fall through ... */
2467
2468 case INSN_LIST:
2469 /* Now do eliminations in the rest of the chain. If this was
2470 an EXPR_LIST, this might result in allocating more memory than is
2471 strictly needed, but it simplifies the code. */
2472 if (XEXP (x, 1))
2473 {
2474 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2475 if (new != XEXP (x, 1))
2476 return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2477 }
2478 return x;
2479
2480 case PRE_INC:
2481 case POST_INC:
2482 case PRE_DEC:
2483 case POST_DEC:
2484 case STRICT_LOW_PART:
2485 case NEG: case NOT:
2486 case SIGN_EXTEND: case ZERO_EXTEND:
2487 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2488 case FLOAT: case FIX:
2489 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2490 case ABS:
2491 case SQRT:
2492 case FFS:
2493 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2494 if (new != XEXP (x, 0))
2495 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2496 return x;
2497
2498 case SUBREG:
2499 /* Similar to above processing, but preserve SUBREG_BYTE.
2500 Convert (subreg (mem)) to (mem) if not paradoxical.
2501 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2502 pseudo didn't get a hard reg, we must replace this with the
2503 eliminated version of the memory location because push_reloads
2504 may do the replacement in certain circumstances. */
2505 if (GET_CODE (SUBREG_REG (x)) == REG
2506 && (GET_MODE_SIZE (GET_MODE (x))
2507 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2508 && reg_equiv_memory_loc != 0
2509 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2510 {
2511 new = SUBREG_REG (x);
2512 }
2513 else
2514 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2515
2516 if (new != SUBREG_REG (x))
2517 {
2518 int x_size = GET_MODE_SIZE (GET_MODE (x));
2519 int new_size = GET_MODE_SIZE (GET_MODE (new));
2520
2521 if (GET_CODE (new) == MEM
2522 && ((x_size < new_size
2523 #ifdef WORD_REGISTER_OPERATIONS
2524 /* On these machines, combine can create rtl of the form
2525 (set (subreg:m1 (reg:m2 R) 0) ...)
2526 where m1 < m2, and expects something interesting to
2527 happen to the entire word. Moreover, it will use the
2528 (reg:m2 R) later, expecting all bits to be preserved.
2529 So if the number of words is the same, preserve the
2530 subreg so that push_reloads can see it. */
2531 && ! ((x_size - 1) / UNITS_PER_WORD
2532 == (new_size -1 ) / UNITS_PER_WORD)
2533 #endif
2534 )
2535 || x_size == new_size)
2536 )
2537 {
2538 int offset = SUBREG_BYTE (x);
2539 enum machine_mode mode = GET_MODE (x);
2540
2541 PUT_MODE (new, mode);
2542 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
2543 return new;
2544 }
2545 else
2546 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2547 }
2548
2549 return x;
2550
2551 case MEM:
2552 /* This is only for the benefit of the debugging backends, which call
2553 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2554 removed after CSE. */
2555 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2556 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2557
2558 /* Our only special processing is to pass the mode of the MEM to our
2559 recursive call and copy the flags. While we are here, handle this
2560 case more efficiently. */
2561 return
2562 replace_equiv_address_nv (x,
2563 eliminate_regs (XEXP (x, 0),
2564 GET_MODE (x), insn));
2565
2566 case USE:
2567 /* Handle insn_list USE that a call to a pure function may generate. */
2568 new = eliminate_regs (XEXP (x, 0), 0, insn);
2569 if (new != XEXP (x, 0))
2570 return gen_rtx_USE (GET_MODE (x), new);
2571 return x;
2572
2573 case CLOBBER:
2574 case ASM_OPERANDS:
2575 case SET:
2576 abort ();
2577
2578 default:
2579 break;
2580 }
2581
2582 /* Process each of our operands recursively. If any have changed, make a
2583 copy of the rtx. */
2584 fmt = GET_RTX_FORMAT (code);
2585 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2586 {
2587 if (*fmt == 'e')
2588 {
2589 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2590 if (new != XEXP (x, i) && ! copied)
2591 {
2592 rtx new_x = rtx_alloc (code);
2593 memcpy (new_x, x,
2594 (sizeof (*new_x) - sizeof (new_x->fld)
2595 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2596 x = new_x;
2597 copied = 1;
2598 }
2599 XEXP (x, i) = new;
2600 }
2601 else if (*fmt == 'E')
2602 {
2603 int copied_vec = 0;
2604 for (j = 0; j < XVECLEN (x, i); j++)
2605 {
2606 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2607 if (new != XVECEXP (x, i, j) && ! copied_vec)
2608 {
2609 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2610 XVEC (x, i)->elem);
2611 if (! copied)
2612 {
2613 rtx new_x = rtx_alloc (code);
2614 memcpy (new_x, x,
2615 (sizeof (*new_x) - sizeof (new_x->fld)
2616 + (sizeof (new_x->fld[0])
2617 * GET_RTX_LENGTH (code))));
2618 x = new_x;
2619 copied = 1;
2620 }
2621 XVEC (x, i) = new_v;
2622 copied_vec = 1;
2623 }
2624 XVECEXP (x, i, j) = new;
2625 }
2626 }
2627 }
2628
2629 return x;
2630 }
2631
2632 /* Scan rtx X for modifications of elimination target registers. Update
2633 the table of eliminables to reflect the changed state. MEM_MODE is
2634 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2635
2636 static void
2637 elimination_effects (x, mem_mode)
2638 rtx x;
2639 enum machine_mode mem_mode;
2640
2641 {
2642 enum rtx_code code = GET_CODE (x);
2643 struct elim_table *ep;
2644 int regno;
2645 int i, j;
2646 const char *fmt;
2647
2648 switch (code)
2649 {
2650 case CONST_INT:
2651 case CONST_DOUBLE:
2652 case CONST:
2653 case SYMBOL_REF:
2654 case CODE_LABEL:
2655 case PC:
2656 case CC0:
2657 case ASM_INPUT:
2658 case ADDR_VEC:
2659 case ADDR_DIFF_VEC:
2660 case RETURN:
2661 return;
2662
2663 case ADDRESSOF:
2664 abort ();
2665
2666 case REG:
2667 regno = REGNO (x);
2668
2669 /* First handle the case where we encounter a bare register that
2670 is eliminable. Replace it with a PLUS. */
2671 if (regno < FIRST_PSEUDO_REGISTER)
2672 {
2673 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2674 ep++)
2675 if (ep->from_rtx == x && ep->can_eliminate)
2676 {
2677 if (! mem_mode)
2678 ep->ref_outside_mem = 1;
2679 return;
2680 }
2681
2682 }
2683 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2684 && reg_equiv_constant[regno]
2685 && ! CONSTANT_P (reg_equiv_constant[regno]))
2686 elimination_effects (reg_equiv_constant[regno], mem_mode);
2687 return;
2688
2689 case PRE_INC:
2690 case POST_INC:
2691 case PRE_DEC:
2692 case POST_DEC:
2693 case POST_MODIFY:
2694 case PRE_MODIFY:
2695 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2696 if (ep->to_rtx == XEXP (x, 0))
2697 {
2698 int size = GET_MODE_SIZE (mem_mode);
2699
2700 /* If more bytes than MEM_MODE are pushed, account for them. */
2701 #ifdef PUSH_ROUNDING
2702 if (ep->to_rtx == stack_pointer_rtx)
2703 size = PUSH_ROUNDING (size);
2704 #endif
2705 if (code == PRE_DEC || code == POST_DEC)
2706 ep->offset += size;
2707 else if (code == PRE_INC || code == POST_INC)
2708 ep->offset -= size;
2709 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2710 && GET_CODE (XEXP (x, 1)) == PLUS
2711 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2712 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2713 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2714 }
2715
2716 /* These two aren't unary operators. */
2717 if (code == POST_MODIFY || code == PRE_MODIFY)
2718 break;
2719
2720 /* Fall through to generic unary operation case. */
2721 case STRICT_LOW_PART:
2722 case NEG: case NOT:
2723 case SIGN_EXTEND: case ZERO_EXTEND:
2724 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2725 case FLOAT: case FIX:
2726 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2727 case ABS:
2728 case SQRT:
2729 case FFS:
2730 elimination_effects (XEXP (x, 0), mem_mode);
2731 return;
2732
2733 case SUBREG:
2734 if (GET_CODE (SUBREG_REG (x)) == REG
2735 && (GET_MODE_SIZE (GET_MODE (x))
2736 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2737 && reg_equiv_memory_loc != 0
2738 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2739 return;
2740
2741 elimination_effects (SUBREG_REG (x), mem_mode);
2742 return;
2743
2744 case USE:
2745 /* If using a register that is the source of an eliminate we still
2746 think can be performed, note it cannot be performed since we don't
2747 know how this register is used. */
2748 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2749 if (ep->from_rtx == XEXP (x, 0))
2750 ep->can_eliminate = 0;
2751
2752 elimination_effects (XEXP (x, 0), mem_mode);
2753 return;
2754
2755 case CLOBBER:
2756 /* If clobbering a register that is the replacement register for an
2757 elimination we still think can be performed, note that it cannot
2758 be performed. Otherwise, we need not be concerned about it. */
2759 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2760 if (ep->to_rtx == XEXP (x, 0))
2761 ep->can_eliminate = 0;
2762
2763 elimination_effects (XEXP (x, 0), mem_mode);
2764 return;
2765
2766 case SET:
2767 /* Check for setting a register that we know about. */
2768 if (GET_CODE (SET_DEST (x)) == REG)
2769 {
2770 /* See if this is setting the replacement register for an
2771 elimination.
2772
2773 If DEST is the hard frame pointer, we do nothing because we
2774 assume that all assignments to the frame pointer are for
2775 non-local gotos and are being done at a time when they are valid
2776 and do not disturb anything else. Some machines want to
2777 eliminate a fake argument pointer (or even a fake frame pointer)
2778 with either the real frame or the stack pointer. Assignments to
2779 the hard frame pointer must not prevent this elimination. */
2780
2781 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2782 ep++)
2783 if (ep->to_rtx == SET_DEST (x)
2784 && SET_DEST (x) != hard_frame_pointer_rtx)
2785 {
2786 /* If it is being incremented, adjust the offset. Otherwise,
2787 this elimination can't be done. */
2788 rtx src = SET_SRC (x);
2789
2790 if (GET_CODE (src) == PLUS
2791 && XEXP (src, 0) == SET_DEST (x)
2792 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2793 ep->offset -= INTVAL (XEXP (src, 1));
2794 else
2795 ep->can_eliminate = 0;
2796 }
2797 }
2798
2799 elimination_effects (SET_DEST (x), 0);
2800 elimination_effects (SET_SRC (x), 0);
2801 return;
2802
2803 case MEM:
2804 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2805 abort ();
2806
2807 /* Our only special processing is to pass the mode of the MEM to our
2808 recursive call. */
2809 elimination_effects (XEXP (x, 0), GET_MODE (x));
2810 return;
2811
2812 default:
2813 break;
2814 }
2815
2816 fmt = GET_RTX_FORMAT (code);
2817 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2818 {
2819 if (*fmt == 'e')
2820 elimination_effects (XEXP (x, i), mem_mode);
2821 else if (*fmt == 'E')
2822 for (j = 0; j < XVECLEN (x, i); j++)
2823 elimination_effects (XVECEXP (x, i, j), mem_mode);
2824 }
2825 }
2826
2827 /* Descend through rtx X and verify that no references to eliminable registers
2828 remain. If any do remain, mark the involved register as not
2829 eliminable. */
2830
2831 static void
2832 check_eliminable_occurrences (x)
2833 rtx x;
2834 {
2835 const char *fmt;
2836 int i;
2837 enum rtx_code code;
2838
2839 if (x == 0)
2840 return;
2841
2842 code = GET_CODE (x);
2843
2844 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2845 {
2846 struct elim_table *ep;
2847
2848 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2849 if (ep->from_rtx == x && ep->can_eliminate)
2850 ep->can_eliminate = 0;
2851 return;
2852 }
2853
2854 fmt = GET_RTX_FORMAT (code);
2855 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2856 {
2857 if (*fmt == 'e')
2858 check_eliminable_occurrences (XEXP (x, i));
2859 else if (*fmt == 'E')
2860 {
2861 int j;
2862 for (j = 0; j < XVECLEN (x, i); j++)
2863 check_eliminable_occurrences (XVECEXP (x, i, j));
2864 }
2865 }
2866 }
2867 \f
2868 /* Scan INSN and eliminate all eliminable registers in it.
2869
2870 If REPLACE is nonzero, do the replacement destructively. Also
2871 delete the insn as dead it if it is setting an eliminable register.
2872
2873 If REPLACE is zero, do all our allocations in reload_obstack.
2874
2875 If no eliminations were done and this insn doesn't require any elimination
2876 processing (these are not identical conditions: it might be updating sp,
2877 but not referencing fp; this needs to be seen during reload_as_needed so
2878 that the offset between fp and sp can be taken into consideration), zero
2879 is returned. Otherwise, 1 is returned. */
2880
2881 static int
2882 eliminate_regs_in_insn (insn, replace)
2883 rtx insn;
2884 int replace;
2885 {
2886 int icode = recog_memoized (insn);
2887 rtx old_body = PATTERN (insn);
2888 int insn_is_asm = asm_noperands (old_body) >= 0;
2889 rtx old_set = single_set (insn);
2890 rtx new_body;
2891 int val = 0;
2892 int i, any_changes;
2893 rtx substed_operand[MAX_RECOG_OPERANDS];
2894 rtx orig_operand[MAX_RECOG_OPERANDS];
2895 struct elim_table *ep;
2896
2897 if (! insn_is_asm && icode < 0)
2898 {
2899 if (GET_CODE (PATTERN (insn)) == USE
2900 || GET_CODE (PATTERN (insn)) == CLOBBER
2901 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2902 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2903 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2904 return 0;
2905 abort ();
2906 }
2907
2908 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2909 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2910 {
2911 /* Check for setting an eliminable register. */
2912 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2913 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2914 {
2915 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2916 /* If this is setting the frame pointer register to the
2917 hardware frame pointer register and this is an elimination
2918 that will be done (tested above), this insn is really
2919 adjusting the frame pointer downward to compensate for
2920 the adjustment done before a nonlocal goto. */
2921 if (ep->from == FRAME_POINTER_REGNUM
2922 && ep->to == HARD_FRAME_POINTER_REGNUM)
2923 {
2924 rtx src = SET_SRC (old_set);
2925 int offset = 0, ok = 0;
2926 rtx prev_insn, prev_set;
2927
2928 if (src == ep->to_rtx)
2929 offset = 0, ok = 1;
2930 else if (GET_CODE (src) == PLUS
2931 && GET_CODE (XEXP (src, 0)) == CONST_INT
2932 && XEXP (src, 1) == ep->to_rtx)
2933 offset = INTVAL (XEXP (src, 0)), ok = 1;
2934 else if (GET_CODE (src) == PLUS
2935 && GET_CODE (XEXP (src, 1)) == CONST_INT
2936 && XEXP (src, 0) == ep->to_rtx)
2937 offset = INTVAL (XEXP (src, 1)), ok = 1;
2938 else if ((prev_insn = prev_nonnote_insn (insn)) != 0
2939 && (prev_set = single_set (prev_insn)) != 0
2940 && rtx_equal_p (SET_DEST (prev_set), src))
2941 {
2942 src = SET_SRC (prev_set);
2943 if (src == ep->to_rtx)
2944 offset = 0, ok = 1;
2945 else if (GET_CODE (src) == PLUS
2946 && GET_CODE (XEXP (src, 0)) == CONST_INT
2947 && XEXP (src, 1) == ep->to_rtx)
2948 offset = INTVAL (XEXP (src, 0)), ok = 1;
2949 else if (GET_CODE (src) == PLUS
2950 && GET_CODE (XEXP (src, 1)) == CONST_INT
2951 && XEXP (src, 0) == ep->to_rtx)
2952 offset = INTVAL (XEXP (src, 1)), ok = 1;
2953 }
2954
2955 if (ok)
2956 {
2957 rtx src
2958 = plus_constant (ep->to_rtx, offset - ep->offset);
2959
2960 new_body = old_body;
2961 if (! replace)
2962 {
2963 new_body = copy_insn (old_body);
2964 if (REG_NOTES (insn))
2965 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2966 }
2967 PATTERN (insn) = new_body;
2968 old_set = single_set (insn);
2969
2970 /* First see if this insn remains valid when we
2971 make the change. If not, keep the INSN_CODE
2972 the same and let reload fit it up. */
2973 validate_change (insn, &SET_SRC (old_set), src, 1);
2974 validate_change (insn, &SET_DEST (old_set),
2975 ep->to_rtx, 1);
2976 if (! apply_change_group ())
2977 {
2978 SET_SRC (old_set) = src;
2979 SET_DEST (old_set) = ep->to_rtx;
2980 }
2981
2982 val = 1;
2983 goto done;
2984 }
2985 }
2986 #endif
2987
2988 /* In this case this insn isn't serving a useful purpose. We
2989 will delete it in reload_as_needed once we know that this
2990 elimination is, in fact, being done.
2991
2992 If REPLACE isn't set, we can't delete this insn, but needn't
2993 process it since it won't be used unless something changes. */
2994 if (replace)
2995 {
2996 delete_dead_insn (insn);
2997 return 1;
2998 }
2999 val = 1;
3000 goto done;
3001 }
3002 }
3003
3004 /* We allow one special case which happens to work on all machines we
3005 currently support: a single set with the source being a PLUS of an
3006 eliminable register and a constant. */
3007 if (old_set
3008 && GET_CODE (SET_DEST (old_set)) == REG
3009 && GET_CODE (SET_SRC (old_set)) == PLUS
3010 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3011 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3012 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3013 {
3014 rtx reg = XEXP (SET_SRC (old_set), 0);
3015 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
3016
3017 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3018 if (ep->from_rtx == reg && ep->can_eliminate)
3019 {
3020 offset += ep->offset;
3021
3022 if (offset == 0)
3023 {
3024 int num_clobbers;
3025 /* We assume here that if we need a PARALLEL with
3026 CLOBBERs for this assignment, we can do with the
3027 MATCH_SCRATCHes that add_clobbers allocates.
3028 There's not much we can do if that doesn't work. */
3029 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3030 SET_DEST (old_set),
3031 ep->to_rtx);
3032 num_clobbers = 0;
3033 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3034 if (num_clobbers)
3035 {
3036 rtvec vec = rtvec_alloc (num_clobbers + 1);
3037
3038 vec->elem[0] = PATTERN (insn);
3039 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3040 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3041 }
3042 if (INSN_CODE (insn) < 0)
3043 abort ();
3044 }
3045 else
3046 {
3047 new_body = old_body;
3048 if (! replace)
3049 {
3050 new_body = copy_insn (old_body);
3051 if (REG_NOTES (insn))
3052 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3053 }
3054 PATTERN (insn) = new_body;
3055 old_set = single_set (insn);
3056
3057 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3058 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3059 }
3060 val = 1;
3061 /* This can't have an effect on elimination offsets, so skip right
3062 to the end. */
3063 goto done;
3064 }
3065 }
3066
3067 /* Determine the effects of this insn on elimination offsets. */
3068 elimination_effects (old_body, 0);
3069
3070 /* Eliminate all eliminable registers occurring in operands that
3071 can be handled by reload. */
3072 extract_insn (insn);
3073 any_changes = 0;
3074 for (i = 0; i < recog_data.n_operands; i++)
3075 {
3076 orig_operand[i] = recog_data.operand[i];
3077 substed_operand[i] = recog_data.operand[i];
3078
3079 /* For an asm statement, every operand is eliminable. */
3080 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3081 {
3082 /* Check for setting a register that we know about. */
3083 if (recog_data.operand_type[i] != OP_IN
3084 && GET_CODE (orig_operand[i]) == REG)
3085 {
3086 /* If we are assigning to a register that can be eliminated, it
3087 must be as part of a PARALLEL, since the code above handles
3088 single SETs. We must indicate that we can no longer
3089 eliminate this reg. */
3090 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3091 ep++)
3092 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3093 ep->can_eliminate = 0;
3094 }
3095
3096 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3097 replace ? insn : NULL_RTX);
3098 if (substed_operand[i] != orig_operand[i])
3099 val = any_changes = 1;
3100 /* Terminate the search in check_eliminable_occurrences at
3101 this point. */
3102 *recog_data.operand_loc[i] = 0;
3103
3104 /* If an output operand changed from a REG to a MEM and INSN is an
3105 insn, write a CLOBBER insn. */
3106 if (recog_data.operand_type[i] != OP_IN
3107 && GET_CODE (orig_operand[i]) == REG
3108 && GET_CODE (substed_operand[i]) == MEM
3109 && replace)
3110 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3111 insn);
3112 }
3113 }
3114
3115 for (i = 0; i < recog_data.n_dups; i++)
3116 *recog_data.dup_loc[i]
3117 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3118
3119 /* If any eliminable remain, they aren't eliminable anymore. */
3120 check_eliminable_occurrences (old_body);
3121
3122 /* Substitute the operands; the new values are in the substed_operand
3123 array. */
3124 for (i = 0; i < recog_data.n_operands; i++)
3125 *recog_data.operand_loc[i] = substed_operand[i];
3126 for (i = 0; i < recog_data.n_dups; i++)
3127 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3128
3129 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3130 re-recognize the insn. We do this in case we had a simple addition
3131 but now can do this as a load-address. This saves an insn in this
3132 common case.
3133 If re-recognition fails, the old insn code number will still be used,
3134 and some register operands may have changed into PLUS expressions.
3135 These will be handled by find_reloads by loading them into a register
3136 again. */
3137
3138 if (val)
3139 {
3140 /* If we aren't replacing things permanently and we changed something,
3141 make another copy to ensure that all the RTL is new. Otherwise
3142 things can go wrong if find_reload swaps commutative operands
3143 and one is inside RTL that has been copied while the other is not. */
3144 new_body = old_body;
3145 if (! replace)
3146 {
3147 new_body = copy_insn (old_body);
3148 if (REG_NOTES (insn))
3149 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3150 }
3151 PATTERN (insn) = new_body;
3152
3153 /* If we had a move insn but now we don't, rerecognize it. This will
3154 cause spurious re-recognition if the old move had a PARALLEL since
3155 the new one still will, but we can't call single_set without
3156 having put NEW_BODY into the insn and the re-recognition won't
3157 hurt in this rare case. */
3158 /* ??? Why this huge if statement - why don't we just rerecognize the
3159 thing always? */
3160 if (! insn_is_asm
3161 && old_set != 0
3162 && ((GET_CODE (SET_SRC (old_set)) == REG
3163 && (GET_CODE (new_body) != SET
3164 || GET_CODE (SET_SRC (new_body)) != REG))
3165 /* If this was a load from or store to memory, compare
3166 the MEM in recog_data.operand to the one in the insn.
3167 If they are not equal, then rerecognize the insn. */
3168 || (old_set != 0
3169 && ((GET_CODE (SET_SRC (old_set)) == MEM
3170 && SET_SRC (old_set) != recog_data.operand[1])
3171 || (GET_CODE (SET_DEST (old_set)) == MEM
3172 && SET_DEST (old_set) != recog_data.operand[0])))
3173 /* If this was an add insn before, rerecognize. */
3174 || GET_CODE (SET_SRC (old_set)) == PLUS))
3175 {
3176 int new_icode = recog (PATTERN (insn), insn, 0);
3177 if (new_icode < 0)
3178 INSN_CODE (insn) = icode;
3179 }
3180 }
3181
3182 /* Restore the old body. If there were any changes to it, we made a copy
3183 of it while the changes were still in place, so we'll correctly return
3184 a modified insn below. */
3185 if (! replace)
3186 {
3187 /* Restore the old body. */
3188 for (i = 0; i < recog_data.n_operands; i++)
3189 *recog_data.operand_loc[i] = orig_operand[i];
3190 for (i = 0; i < recog_data.n_dups; i++)
3191 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3192 }
3193
3194 /* Update all elimination pairs to reflect the status after the current
3195 insn. The changes we make were determined by the earlier call to
3196 elimination_effects.
3197
3198 We also detect a cases where register elimination cannot be done,
3199 namely, if a register would be both changed and referenced outside a MEM
3200 in the resulting insn since such an insn is often undefined and, even if
3201 not, we cannot know what meaning will be given to it. Note that it is
3202 valid to have a register used in an address in an insn that changes it
3203 (presumably with a pre- or post-increment or decrement).
3204
3205 If anything changes, return nonzero. */
3206
3207 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3208 {
3209 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3210 ep->can_eliminate = 0;
3211
3212 ep->ref_outside_mem = 0;
3213
3214 if (ep->previous_offset != ep->offset)
3215 val = 1;
3216 }
3217
3218 done:
3219 /* If we changed something, perform elimination in REG_NOTES. This is
3220 needed even when REPLACE is zero because a REG_DEAD note might refer
3221 to a register that we eliminate and could cause a different number
3222 of spill registers to be needed in the final reload pass than in
3223 the pre-passes. */
3224 if (val && REG_NOTES (insn) != 0)
3225 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3226
3227 return val;
3228 }
3229
3230 /* Loop through all elimination pairs.
3231 Recalculate the number not at initial offset.
3232
3233 Compute the maximum offset (minimum offset if the stack does not
3234 grow downward) for each elimination pair. */
3235
3236 static void
3237 update_eliminable_offsets ()
3238 {
3239 struct elim_table *ep;
3240
3241 num_not_at_initial_offset = 0;
3242 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3243 {
3244 ep->previous_offset = ep->offset;
3245 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3246 num_not_at_initial_offset++;
3247 }
3248 }
3249
3250 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3251 replacement we currently believe is valid, mark it as not eliminable if X
3252 modifies DEST in any way other than by adding a constant integer to it.
3253
3254 If DEST is the frame pointer, we do nothing because we assume that
3255 all assignments to the hard frame pointer are nonlocal gotos and are being
3256 done at a time when they are valid and do not disturb anything else.
3257 Some machines want to eliminate a fake argument pointer with either the
3258 frame or stack pointer. Assignments to the hard frame pointer must not
3259 prevent this elimination.
3260
3261 Called via note_stores from reload before starting its passes to scan
3262 the insns of the function. */
3263
3264 static void
3265 mark_not_eliminable (dest, x, data)
3266 rtx dest;
3267 rtx x;
3268 void *data ATTRIBUTE_UNUSED;
3269 {
3270 unsigned int i;
3271
3272 /* A SUBREG of a hard register here is just changing its mode. We should
3273 not see a SUBREG of an eliminable hard register, but check just in
3274 case. */
3275 if (GET_CODE (dest) == SUBREG)
3276 dest = SUBREG_REG (dest);
3277
3278 if (dest == hard_frame_pointer_rtx)
3279 return;
3280
3281 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3282 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3283 && (GET_CODE (x) != SET
3284 || GET_CODE (SET_SRC (x)) != PLUS
3285 || XEXP (SET_SRC (x), 0) != dest
3286 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3287 {
3288 reg_eliminate[i].can_eliminate_previous
3289 = reg_eliminate[i].can_eliminate = 0;
3290 num_eliminable--;
3291 }
3292 }
3293
3294 /* Verify that the initial elimination offsets did not change since the
3295 last call to set_initial_elim_offsets. This is used to catch cases
3296 where something illegal happened during reload_as_needed that could
3297 cause incorrect code to be generated if we did not check for it. */
3298
3299 static void
3300 verify_initial_elim_offsets ()
3301 {
3302 int t;
3303
3304 #ifdef ELIMINABLE_REGS
3305 struct elim_table *ep;
3306
3307 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3308 {
3309 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3310 if (t != ep->initial_offset)
3311 abort ();
3312 }
3313 #else
3314 INITIAL_FRAME_POINTER_OFFSET (t);
3315 if (t != reg_eliminate[0].initial_offset)
3316 abort ();
3317 #endif
3318 }
3319
3320 /* Reset all offsets on eliminable registers to their initial values. */
3321
3322 static void
3323 set_initial_elim_offsets ()
3324 {
3325 struct elim_table *ep = reg_eliminate;
3326
3327 #ifdef ELIMINABLE_REGS
3328 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3329 {
3330 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3331 ep->previous_offset = ep->offset = ep->initial_offset;
3332 }
3333 #else
3334 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3335 ep->previous_offset = ep->offset = ep->initial_offset;
3336 #endif
3337
3338 num_not_at_initial_offset = 0;
3339 }
3340
3341 /* Initialize the known label offsets.
3342 Set a known offset for each forced label to be at the initial offset
3343 of each elimination. We do this because we assume that all
3344 computed jumps occur from a location where each elimination is
3345 at its initial offset.
3346 For all other labels, show that we don't know the offsets. */
3347
3348 static void
3349 set_initial_label_offsets ()
3350 {
3351 rtx x;
3352 memset ((char *) &offsets_known_at[get_first_label_num ()], 0, num_labels);
3353
3354 for (x = forced_labels; x; x = XEXP (x, 1))
3355 if (XEXP (x, 0))
3356 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3357 }
3358
3359 /* Set all elimination offsets to the known values for the code label given
3360 by INSN. */
3361
3362 static void
3363 set_offsets_for_label (insn)
3364 rtx insn;
3365 {
3366 unsigned int i;
3367 int label_nr = CODE_LABEL_NUMBER (insn);
3368 struct elim_table *ep;
3369
3370 num_not_at_initial_offset = 0;
3371 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3372 {
3373 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3374 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3375 num_not_at_initial_offset++;
3376 }
3377 }
3378
3379 /* See if anything that happened changes which eliminations are valid.
3380 For example, on the Sparc, whether or not the frame pointer can
3381 be eliminated can depend on what registers have been used. We need
3382 not check some conditions again (such as flag_omit_frame_pointer)
3383 since they can't have changed. */
3384
3385 static void
3386 update_eliminables (pset)
3387 HARD_REG_SET *pset;
3388 {
3389 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3390 int previous_frame_pointer_needed = frame_pointer_needed;
3391 #endif
3392 struct elim_table *ep;
3393
3394 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3395 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3396 #ifdef ELIMINABLE_REGS
3397 || ! CAN_ELIMINATE (ep->from, ep->to)
3398 #endif
3399 )
3400 ep->can_eliminate = 0;
3401
3402 /* Look for the case where we have discovered that we can't replace
3403 register A with register B and that means that we will now be
3404 trying to replace register A with register C. This means we can
3405 no longer replace register C with register B and we need to disable
3406 such an elimination, if it exists. This occurs often with A == ap,
3407 B == sp, and C == fp. */
3408
3409 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3410 {
3411 struct elim_table *op;
3412 int new_to = -1;
3413
3414 if (! ep->can_eliminate && ep->can_eliminate_previous)
3415 {
3416 /* Find the current elimination for ep->from, if there is a
3417 new one. */
3418 for (op = reg_eliminate;
3419 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3420 if (op->from == ep->from && op->can_eliminate)
3421 {
3422 new_to = op->to;
3423 break;
3424 }
3425
3426 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3427 disable it. */
3428 for (op = reg_eliminate;
3429 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3430 if (op->from == new_to && op->to == ep->to)
3431 op->can_eliminate = 0;
3432 }
3433 }
3434
3435 /* See if any registers that we thought we could eliminate the previous
3436 time are no longer eliminable. If so, something has changed and we
3437 must spill the register. Also, recompute the number of eliminable
3438 registers and see if the frame pointer is needed; it is if there is
3439 no elimination of the frame pointer that we can perform. */
3440
3441 frame_pointer_needed = 1;
3442 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3443 {
3444 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3445 && ep->to != HARD_FRAME_POINTER_REGNUM)
3446 frame_pointer_needed = 0;
3447
3448 if (! ep->can_eliminate && ep->can_eliminate_previous)
3449 {
3450 ep->can_eliminate_previous = 0;
3451 SET_HARD_REG_BIT (*pset, ep->from);
3452 num_eliminable--;
3453 }
3454 }
3455
3456 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3457 /* If we didn't need a frame pointer last time, but we do now, spill
3458 the hard frame pointer. */
3459 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3460 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3461 #endif
3462 }
3463
3464 /* Initialize the table of registers to eliminate. */
3465
3466 static void
3467 init_elim_table ()
3468 {
3469 struct elim_table *ep;
3470 #ifdef ELIMINABLE_REGS
3471 struct elim_table_1 *ep1;
3472 #endif
3473
3474 if (!reg_eliminate)
3475 reg_eliminate = (struct elim_table *)
3476 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3477
3478 /* Does this function require a frame pointer? */
3479
3480 frame_pointer_needed = (! flag_omit_frame_pointer
3481 #ifdef EXIT_IGNORE_STACK
3482 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3483 and restore sp for alloca. So we can't eliminate
3484 the frame pointer in that case. At some point,
3485 we should improve this by emitting the
3486 sp-adjusting insns for this case. */
3487 || (current_function_calls_alloca
3488 && EXIT_IGNORE_STACK)
3489 #endif
3490 || FRAME_POINTER_REQUIRED);
3491
3492 num_eliminable = 0;
3493
3494 #ifdef ELIMINABLE_REGS
3495 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3496 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3497 {
3498 ep->from = ep1->from;
3499 ep->to = ep1->to;
3500 ep->can_eliminate = ep->can_eliminate_previous
3501 = (CAN_ELIMINATE (ep->from, ep->to)
3502 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3503 }
3504 #else
3505 reg_eliminate[0].from = reg_eliminate_1[0].from;
3506 reg_eliminate[0].to = reg_eliminate_1[0].to;
3507 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3508 = ! frame_pointer_needed;
3509 #endif
3510
3511 /* Count the number of eliminable registers and build the FROM and TO
3512 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3513 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3514 We depend on this. */
3515 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3516 {
3517 num_eliminable += ep->can_eliminate;
3518 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3519 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3520 }
3521 }
3522 \f
3523 /* Kick all pseudos out of hard register REGNO.
3524
3525 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3526 because we found we can't eliminate some register. In the case, no pseudos
3527 are allowed to be in the register, even if they are only in a block that
3528 doesn't require spill registers, unlike the case when we are spilling this
3529 hard reg to produce another spill register.
3530
3531 Return nonzero if any pseudos needed to be kicked out. */
3532
3533 static void
3534 spill_hard_reg (regno, cant_eliminate)
3535 unsigned int regno;
3536 int cant_eliminate;
3537 {
3538 int i;
3539
3540 if (cant_eliminate)
3541 {
3542 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3543 regs_ever_live[regno] = 1;
3544 }
3545
3546 /* Spill every pseudo reg that was allocated to this reg
3547 or to something that overlaps this reg. */
3548
3549 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3550 if (reg_renumber[i] >= 0
3551 && (unsigned int) reg_renumber[i] <= regno
3552 && ((unsigned int) reg_renumber[i]
3553 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3554 PSEUDO_REGNO_MODE (i))
3555 > regno))
3556 SET_REGNO_REG_SET (&spilled_pseudos, i);
3557 }
3558
3559 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3560 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3561
3562 static void
3563 ior_hard_reg_set (set1, set2)
3564 HARD_REG_SET *set1, *set2;
3565 {
3566 IOR_HARD_REG_SET (*set1, *set2);
3567 }
3568
3569 /* After find_reload_regs has been run for all insn that need reloads,
3570 and/or spill_hard_regs was called, this function is used to actually
3571 spill pseudo registers and try to reallocate them. It also sets up the
3572 spill_regs array for use by choose_reload_regs. */
3573
3574 static int
3575 finish_spills (global)
3576 int global;
3577 {
3578 struct insn_chain *chain;
3579 int something_changed = 0;
3580 int i;
3581
3582 /* Build the spill_regs array for the function. */
3583 /* If there are some registers still to eliminate and one of the spill regs
3584 wasn't ever used before, additional stack space may have to be
3585 allocated to store this register. Thus, we may have changed the offset
3586 between the stack and frame pointers, so mark that something has changed.
3587
3588 One might think that we need only set VAL to 1 if this is a call-used
3589 register. However, the set of registers that must be saved by the
3590 prologue is not identical to the call-used set. For example, the
3591 register used by the call insn for the return PC is a call-used register,
3592 but must be saved by the prologue. */
3593
3594 n_spills = 0;
3595 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3596 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3597 {
3598 spill_reg_order[i] = n_spills;
3599 spill_regs[n_spills++] = i;
3600 if (num_eliminable && ! regs_ever_live[i])
3601 something_changed = 1;
3602 regs_ever_live[i] = 1;
3603 }
3604 else
3605 spill_reg_order[i] = -1;
3606
3607 EXECUTE_IF_SET_IN_REG_SET
3608 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3609 {
3610 /* Record the current hard register the pseudo is allocated to in
3611 pseudo_previous_regs so we avoid reallocating it to the same
3612 hard reg in a later pass. */
3613 if (reg_renumber[i] < 0)
3614 abort ();
3615
3616 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3617 /* Mark it as no longer having a hard register home. */
3618 reg_renumber[i] = -1;
3619 /* We will need to scan everything again. */
3620 something_changed = 1;
3621 });
3622
3623 /* Retry global register allocation if possible. */
3624 if (global)
3625 {
3626 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3627 /* For every insn that needs reloads, set the registers used as spill
3628 regs in pseudo_forbidden_regs for every pseudo live across the
3629 insn. */
3630 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3631 {
3632 EXECUTE_IF_SET_IN_REG_SET
3633 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3634 {
3635 ior_hard_reg_set (pseudo_forbidden_regs + i,
3636 &chain->used_spill_regs);
3637 });
3638 EXECUTE_IF_SET_IN_REG_SET
3639 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3640 {
3641 ior_hard_reg_set (pseudo_forbidden_regs + i,
3642 &chain->used_spill_regs);
3643 });
3644 }
3645
3646 /* Retry allocating the spilled pseudos. For each reg, merge the
3647 various reg sets that indicate which hard regs can't be used,
3648 and call retry_global_alloc.
3649 We change spill_pseudos here to only contain pseudos that did not
3650 get a new hard register. */
3651 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3652 if (reg_old_renumber[i] != reg_renumber[i])
3653 {
3654 HARD_REG_SET forbidden;
3655 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3656 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3657 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3658 retry_global_alloc (i, forbidden);
3659 if (reg_renumber[i] >= 0)
3660 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3661 }
3662 }
3663
3664 /* Fix up the register information in the insn chain.
3665 This involves deleting those of the spilled pseudos which did not get
3666 a new hard register home from the live_{before,after} sets. */
3667 for (chain = reload_insn_chain; chain; chain = chain->next)
3668 {
3669 HARD_REG_SET used_by_pseudos;
3670 HARD_REG_SET used_by_pseudos2;
3671
3672 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3673 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3674
3675 /* Mark any unallocated hard regs as available for spills. That
3676 makes inheritance work somewhat better. */
3677 if (chain->need_reload)
3678 {
3679 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3680 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3681 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3682
3683 /* Save the old value for the sanity test below. */
3684 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3685
3686 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3687 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3688 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3689 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3690
3691 /* Make sure we only enlarge the set. */
3692 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3693 abort ();
3694 ok:;
3695 }
3696 }
3697
3698 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3699 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3700 {
3701 int regno = reg_renumber[i];
3702 if (reg_old_renumber[i] == regno)
3703 continue;
3704
3705 alter_reg (i, reg_old_renumber[i]);
3706 reg_old_renumber[i] = regno;
3707 if (rtl_dump_file)
3708 {
3709 if (regno == -1)
3710 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3711 else
3712 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3713 i, reg_renumber[i]);
3714 }
3715 }
3716
3717 return something_changed;
3718 }
3719 \f
3720 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3721 Also mark any hard registers used to store user variables as
3722 forbidden from being used for spill registers. */
3723
3724 static void
3725 scan_paradoxical_subregs (x)
3726 rtx x;
3727 {
3728 int i;
3729 const char *fmt;
3730 enum rtx_code code = GET_CODE (x);
3731
3732 switch (code)
3733 {
3734 case REG:
3735 #if 0
3736 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3737 && REG_USERVAR_P (x))
3738 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3739 #endif
3740 return;
3741
3742 case CONST_INT:
3743 case CONST:
3744 case SYMBOL_REF:
3745 case LABEL_REF:
3746 case CONST_DOUBLE:
3747 case CC0:
3748 case PC:
3749 case USE:
3750 case CLOBBER:
3751 return;
3752
3753 case SUBREG:
3754 if (GET_CODE (SUBREG_REG (x)) == REG
3755 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3756 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3757 = GET_MODE_SIZE (GET_MODE (x));
3758 return;
3759
3760 default:
3761 break;
3762 }
3763
3764 fmt = GET_RTX_FORMAT (code);
3765 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3766 {
3767 if (fmt[i] == 'e')
3768 scan_paradoxical_subregs (XEXP (x, i));
3769 else if (fmt[i] == 'E')
3770 {
3771 int j;
3772 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3773 scan_paradoxical_subregs (XVECEXP (x, i, j));
3774 }
3775 }
3776 }
3777 \f
3778 /* Reload pseudo-registers into hard regs around each insn as needed.
3779 Additional register load insns are output before the insn that needs it
3780 and perhaps store insns after insns that modify the reloaded pseudo reg.
3781
3782 reg_last_reload_reg and reg_reloaded_contents keep track of
3783 which registers are already available in reload registers.
3784 We update these for the reloads that we perform,
3785 as the insns are scanned. */
3786
3787 static void
3788 reload_as_needed (live_known)
3789 int live_known;
3790 {
3791 struct insn_chain *chain;
3792 #if defined (AUTO_INC_DEC)
3793 int i;
3794 #endif
3795 rtx x;
3796
3797 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3798 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
3799 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3800 reg_has_output_reload = (char *) xmalloc (max_regno);
3801 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3802
3803 set_initial_elim_offsets ();
3804
3805 for (chain = reload_insn_chain; chain; chain = chain->next)
3806 {
3807 rtx prev;
3808 rtx insn = chain->insn;
3809 rtx old_next = NEXT_INSN (insn);
3810
3811 /* If we pass a label, copy the offsets from the label information
3812 into the current offsets of each elimination. */
3813 if (GET_CODE (insn) == CODE_LABEL)
3814 set_offsets_for_label (insn);
3815
3816 else if (INSN_P (insn))
3817 {
3818 rtx oldpat = PATTERN (insn);
3819
3820 /* If this is a USE and CLOBBER of a MEM, ensure that any
3821 references to eliminable registers have been removed. */
3822
3823 if ((GET_CODE (PATTERN (insn)) == USE
3824 || GET_CODE (PATTERN (insn)) == CLOBBER)
3825 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3826 XEXP (XEXP (PATTERN (insn), 0), 0)
3827 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3828 GET_MODE (XEXP (PATTERN (insn), 0)),
3829 NULL_RTX);
3830
3831 /* If we need to do register elimination processing, do so.
3832 This might delete the insn, in which case we are done. */
3833 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3834 {
3835 eliminate_regs_in_insn (insn, 1);
3836 if (GET_CODE (insn) == NOTE)
3837 {
3838 update_eliminable_offsets ();
3839 continue;
3840 }
3841 }
3842
3843 /* If need_elim is nonzero but need_reload is zero, one might think
3844 that we could simply set n_reloads to 0. However, find_reloads
3845 could have done some manipulation of the insn (such as swapping
3846 commutative operands), and these manipulations are lost during
3847 the first pass for every insn that needs register elimination.
3848 So the actions of find_reloads must be redone here. */
3849
3850 if (! chain->need_elim && ! chain->need_reload
3851 && ! chain->need_operand_change)
3852 n_reloads = 0;
3853 /* First find the pseudo regs that must be reloaded for this insn.
3854 This info is returned in the tables reload_... (see reload.h).
3855 Also modify the body of INSN by substituting RELOAD
3856 rtx's for those pseudo regs. */
3857 else
3858 {
3859 memset (reg_has_output_reload, 0, max_regno);
3860 CLEAR_HARD_REG_SET (reg_is_output_reload);
3861
3862 find_reloads (insn, 1, spill_indirect_levels, live_known,
3863 spill_reg_order);
3864 }
3865
3866 if (n_reloads > 0)
3867 {
3868 rtx next = NEXT_INSN (insn);
3869 rtx p;
3870
3871 prev = PREV_INSN (insn);
3872
3873 /* Now compute which reload regs to reload them into. Perhaps
3874 reusing reload regs from previous insns, or else output
3875 load insns to reload them. Maybe output store insns too.
3876 Record the choices of reload reg in reload_reg_rtx. */
3877 choose_reload_regs (chain);
3878
3879 /* Merge any reloads that we didn't combine for fear of
3880 increasing the number of spill registers needed but now
3881 discover can be safely merged. */
3882 if (SMALL_REGISTER_CLASSES)
3883 merge_assigned_reloads (insn);
3884
3885 /* Generate the insns to reload operands into or out of
3886 their reload regs. */
3887 emit_reload_insns (chain);
3888
3889 /* Substitute the chosen reload regs from reload_reg_rtx
3890 into the insn's body (or perhaps into the bodies of other
3891 load and store insn that we just made for reloading
3892 and that we moved the structure into). */
3893 subst_reloads (insn);
3894
3895 /* If this was an ASM, make sure that all the reload insns
3896 we have generated are valid. If not, give an error
3897 and delete them. */
3898
3899 if (asm_noperands (PATTERN (insn)) >= 0)
3900 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3901 if (p != insn && INSN_P (p)
3902 && (recog_memoized (p) < 0
3903 || (extract_insn (p), ! constrain_operands (1))))
3904 {
3905 error_for_asm (insn,
3906 "`asm' operand requires impossible reload");
3907 delete_insn (p);
3908 }
3909 }
3910
3911 if (num_eliminable && chain->need_elim)
3912 update_eliminable_offsets ();
3913
3914 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3915 is no longer validly lying around to save a future reload.
3916 Note that this does not detect pseudos that were reloaded
3917 for this insn in order to be stored in
3918 (obeying register constraints). That is correct; such reload
3919 registers ARE still valid. */
3920 note_stores (oldpat, forget_old_reloads_1, NULL);
3921
3922 /* There may have been CLOBBER insns placed after INSN. So scan
3923 between INSN and NEXT and use them to forget old reloads. */
3924 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3925 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3926 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3927
3928 #ifdef AUTO_INC_DEC
3929 /* Likewise for regs altered by auto-increment in this insn.
3930 REG_INC notes have been changed by reloading:
3931 find_reloads_address_1 records substitutions for them,
3932 which have been performed by subst_reloads above. */
3933 for (i = n_reloads - 1; i >= 0; i--)
3934 {
3935 rtx in_reg = rld[i].in_reg;
3936 if (in_reg)
3937 {
3938 enum rtx_code code = GET_CODE (in_reg);
3939 /* PRE_INC / PRE_DEC will have the reload register ending up
3940 with the same value as the stack slot, but that doesn't
3941 hold true for POST_INC / POST_DEC. Either we have to
3942 convert the memory access to a true POST_INC / POST_DEC,
3943 or we can't use the reload register for inheritance. */
3944 if ((code == POST_INC || code == POST_DEC)
3945 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3946 REGNO (rld[i].reg_rtx))
3947 /* Make sure it is the inc/dec pseudo, and not
3948 some other (e.g. output operand) pseudo. */
3949 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3950 == REGNO (XEXP (in_reg, 0))))
3951
3952 {
3953 rtx reload_reg = rld[i].reg_rtx;
3954 enum machine_mode mode = GET_MODE (reload_reg);
3955 int n = 0;
3956 rtx p;
3957
3958 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3959 {
3960 /* We really want to ignore REG_INC notes here, so
3961 use PATTERN (p) as argument to reg_set_p . */
3962 if (reg_set_p (reload_reg, PATTERN (p)))
3963 break;
3964 n = count_occurrences (PATTERN (p), reload_reg, 0);
3965 if (! n)
3966 continue;
3967 if (n == 1)
3968 {
3969 n = validate_replace_rtx (reload_reg,
3970 gen_rtx (code, mode,
3971 reload_reg),
3972 p);
3973
3974 /* We must also verify that the constraints
3975 are met after the replacement. */
3976 extract_insn (p);
3977 if (n)
3978 n = constrain_operands (1);
3979 else
3980 break;
3981
3982 /* If the constraints were not met, then
3983 undo the replacement. */
3984 if (!n)
3985 {
3986 validate_replace_rtx (gen_rtx (code, mode,
3987 reload_reg),
3988 reload_reg, p);
3989 break;
3990 }
3991
3992 }
3993 break;
3994 }
3995 if (n == 1)
3996 {
3997 REG_NOTES (p)
3998 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
3999 REG_NOTES (p));
4000 /* Mark this as having an output reload so that the
4001 REG_INC processing code below won't invalidate
4002 the reload for inheritance. */
4003 SET_HARD_REG_BIT (reg_is_output_reload,
4004 REGNO (reload_reg));
4005 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4006 }
4007 else
4008 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4009 NULL);
4010 }
4011 else if ((code == PRE_INC || code == PRE_DEC)
4012 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4013 REGNO (rld[i].reg_rtx))
4014 /* Make sure it is the inc/dec pseudo, and not
4015 some other (e.g. output operand) pseudo. */
4016 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4017 == REGNO (XEXP (in_reg, 0))))
4018 {
4019 SET_HARD_REG_BIT (reg_is_output_reload,
4020 REGNO (rld[i].reg_rtx));
4021 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4022 }
4023 }
4024 }
4025 /* If a pseudo that got a hard register is auto-incremented,
4026 we must purge records of copying it into pseudos without
4027 hard registers. */
4028 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4029 if (REG_NOTE_KIND (x) == REG_INC)
4030 {
4031 /* See if this pseudo reg was reloaded in this insn.
4032 If so, its last-reload info is still valid
4033 because it is based on this insn's reload. */
4034 for (i = 0; i < n_reloads; i++)
4035 if (rld[i].out == XEXP (x, 0))
4036 break;
4037
4038 if (i == n_reloads)
4039 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4040 }
4041 #endif
4042 }
4043 /* A reload reg's contents are unknown after a label. */
4044 if (GET_CODE (insn) == CODE_LABEL)
4045 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4046
4047 /* Don't assume a reload reg is still good after a call insn
4048 if it is a call-used reg. */
4049 else if (GET_CODE (insn) == CALL_INSN)
4050 AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
4051 }
4052
4053 /* Clean up. */
4054 free (reg_last_reload_reg);
4055 free (reg_has_output_reload);
4056 }
4057
4058 /* Discard all record of any value reloaded from X,
4059 or reloaded in X from someplace else;
4060 unless X is an output reload reg of the current insn.
4061
4062 X may be a hard reg (the reload reg)
4063 or it may be a pseudo reg that was reloaded from. */
4064
4065 static void
4066 forget_old_reloads_1 (x, ignored, data)
4067 rtx x;
4068 rtx ignored ATTRIBUTE_UNUSED;
4069 void *data ATTRIBUTE_UNUSED;
4070 {
4071 unsigned int regno;
4072 unsigned int nr;
4073 int offset = 0;
4074
4075 /* note_stores does give us subregs of hard regs,
4076 subreg_regno_offset will abort if it is not a hard reg. */
4077 while (GET_CODE (x) == SUBREG)
4078 {
4079 offset += subreg_regno_offset (REGNO (SUBREG_REG (x)),
4080 GET_MODE (SUBREG_REG (x)),
4081 SUBREG_BYTE (x),
4082 GET_MODE (x));
4083 x = SUBREG_REG (x);
4084 }
4085
4086 if (GET_CODE (x) != REG)
4087 return;
4088
4089 regno = REGNO (x) + offset;
4090
4091 if (regno >= FIRST_PSEUDO_REGISTER)
4092 nr = 1;
4093 else
4094 {
4095 unsigned int i;
4096
4097 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4098 /* Storing into a spilled-reg invalidates its contents.
4099 This can happen if a block-local pseudo is allocated to that reg
4100 and it wasn't spilled because this block's total need is 0.
4101 Then some insn might have an optional reload and use this reg. */
4102 for (i = 0; i < nr; i++)
4103 /* But don't do this if the reg actually serves as an output
4104 reload reg in the current instruction. */
4105 if (n_reloads == 0
4106 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4107 {
4108 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4109 spill_reg_store[regno + i] = 0;
4110 }
4111 }
4112
4113 /* Since value of X has changed,
4114 forget any value previously copied from it. */
4115
4116 while (nr-- > 0)
4117 /* But don't forget a copy if this is the output reload
4118 that establishes the copy's validity. */
4119 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4120 reg_last_reload_reg[regno + nr] = 0;
4121 }
4122 \f
4123 /* The following HARD_REG_SETs indicate when each hard register is
4124 used for a reload of various parts of the current insn. */
4125
4126 /* If reg is unavailable for all reloads. */
4127 static HARD_REG_SET reload_reg_unavailable;
4128 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4129 static HARD_REG_SET reload_reg_used;
4130 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4131 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4132 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4133 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4134 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4135 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4136 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4137 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4138 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4139 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4140 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4141 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4142 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4143 static HARD_REG_SET reload_reg_used_in_op_addr;
4144 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4145 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4146 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4147 static HARD_REG_SET reload_reg_used_in_insn;
4148 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4149 static HARD_REG_SET reload_reg_used_in_other_addr;
4150
4151 /* If reg is in use as a reload reg for any sort of reload. */
4152 static HARD_REG_SET reload_reg_used_at_all;
4153
4154 /* If reg is use as an inherited reload. We just mark the first register
4155 in the group. */
4156 static HARD_REG_SET reload_reg_used_for_inherit;
4157
4158 /* Records which hard regs are used in any way, either as explicit use or
4159 by being allocated to a pseudo during any point of the current insn. */
4160 static HARD_REG_SET reg_used_in_insn;
4161
4162 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4163 TYPE. MODE is used to indicate how many consecutive regs are
4164 actually used. */
4165
4166 static void
4167 mark_reload_reg_in_use (regno, opnum, type, mode)
4168 unsigned int regno;
4169 int opnum;
4170 enum reload_type type;
4171 enum machine_mode mode;
4172 {
4173 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4174 unsigned int i;
4175
4176 for (i = regno; i < nregs + regno; i++)
4177 {
4178 switch (type)
4179 {
4180 case RELOAD_OTHER:
4181 SET_HARD_REG_BIT (reload_reg_used, i);
4182 break;
4183
4184 case RELOAD_FOR_INPUT_ADDRESS:
4185 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4186 break;
4187
4188 case RELOAD_FOR_INPADDR_ADDRESS:
4189 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4190 break;
4191
4192 case RELOAD_FOR_OUTPUT_ADDRESS:
4193 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4194 break;
4195
4196 case RELOAD_FOR_OUTADDR_ADDRESS:
4197 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4198 break;
4199
4200 case RELOAD_FOR_OPERAND_ADDRESS:
4201 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4202 break;
4203
4204 case RELOAD_FOR_OPADDR_ADDR:
4205 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4206 break;
4207
4208 case RELOAD_FOR_OTHER_ADDRESS:
4209 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4210 break;
4211
4212 case RELOAD_FOR_INPUT:
4213 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4214 break;
4215
4216 case RELOAD_FOR_OUTPUT:
4217 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4218 break;
4219
4220 case RELOAD_FOR_INSN:
4221 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4222 break;
4223 }
4224
4225 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4226 }
4227 }
4228
4229 /* Similarly, but show REGNO is no longer in use for a reload. */
4230
4231 static void
4232 clear_reload_reg_in_use (regno, opnum, type, mode)
4233 unsigned int regno;
4234 int opnum;
4235 enum reload_type type;
4236 enum machine_mode mode;
4237 {
4238 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4239 unsigned int start_regno, end_regno, r;
4240 int i;
4241 /* A complication is that for some reload types, inheritance might
4242 allow multiple reloads of the same types to share a reload register.
4243 We set check_opnum if we have to check only reloads with the same
4244 operand number, and check_any if we have to check all reloads. */
4245 int check_opnum = 0;
4246 int check_any = 0;
4247 HARD_REG_SET *used_in_set;
4248
4249 switch (type)
4250 {
4251 case RELOAD_OTHER:
4252 used_in_set = &reload_reg_used;
4253 break;
4254
4255 case RELOAD_FOR_INPUT_ADDRESS:
4256 used_in_set = &reload_reg_used_in_input_addr[opnum];
4257 break;
4258
4259 case RELOAD_FOR_INPADDR_ADDRESS:
4260 check_opnum = 1;
4261 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4262 break;
4263
4264 case RELOAD_FOR_OUTPUT_ADDRESS:
4265 used_in_set = &reload_reg_used_in_output_addr[opnum];
4266 break;
4267
4268 case RELOAD_FOR_OUTADDR_ADDRESS:
4269 check_opnum = 1;
4270 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4271 break;
4272
4273 case RELOAD_FOR_OPERAND_ADDRESS:
4274 used_in_set = &reload_reg_used_in_op_addr;
4275 break;
4276
4277 case RELOAD_FOR_OPADDR_ADDR:
4278 check_any = 1;
4279 used_in_set = &reload_reg_used_in_op_addr_reload;
4280 break;
4281
4282 case RELOAD_FOR_OTHER_ADDRESS:
4283 used_in_set = &reload_reg_used_in_other_addr;
4284 check_any = 1;
4285 break;
4286
4287 case RELOAD_FOR_INPUT:
4288 used_in_set = &reload_reg_used_in_input[opnum];
4289 break;
4290
4291 case RELOAD_FOR_OUTPUT:
4292 used_in_set = &reload_reg_used_in_output[opnum];
4293 break;
4294
4295 case RELOAD_FOR_INSN:
4296 used_in_set = &reload_reg_used_in_insn;
4297 break;
4298 default:
4299 abort ();
4300 }
4301 /* We resolve conflicts with remaining reloads of the same type by
4302 excluding the intervals of of reload registers by them from the
4303 interval of freed reload registers. Since we only keep track of
4304 one set of interval bounds, we might have to exclude somewhat
4305 more then what would be necessary if we used a HARD_REG_SET here.
4306 But this should only happen very infrequently, so there should
4307 be no reason to worry about it. */
4308
4309 start_regno = regno;
4310 end_regno = regno + nregs;
4311 if (check_opnum || check_any)
4312 {
4313 for (i = n_reloads - 1; i >= 0; i--)
4314 {
4315 if (rld[i].when_needed == type
4316 && (check_any || rld[i].opnum == opnum)
4317 && rld[i].reg_rtx)
4318 {
4319 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4320 unsigned int conflict_end
4321 = (conflict_start
4322 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4323
4324 /* If there is an overlap with the first to-be-freed register,
4325 adjust the interval start. */
4326 if (conflict_start <= start_regno && conflict_end > start_regno)
4327 start_regno = conflict_end;
4328 /* Otherwise, if there is a conflict with one of the other
4329 to-be-freed registers, adjust the interval end. */
4330 if (conflict_start > start_regno && conflict_start < end_regno)
4331 end_regno = conflict_start;
4332 }
4333 }
4334 }
4335
4336 for (r = start_regno; r < end_regno; r++)
4337 CLEAR_HARD_REG_BIT (*used_in_set, r);
4338 }
4339
4340 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4341 specified by OPNUM and TYPE. */
4342
4343 static int
4344 reload_reg_free_p (regno, opnum, type)
4345 unsigned int regno;
4346 int opnum;
4347 enum reload_type type;
4348 {
4349 int i;
4350
4351 /* In use for a RELOAD_OTHER means it's not available for anything. */
4352 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4353 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4354 return 0;
4355
4356 switch (type)
4357 {
4358 case RELOAD_OTHER:
4359 /* In use for anything means we can't use it for RELOAD_OTHER. */
4360 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4361 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4362 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4363 return 0;
4364
4365 for (i = 0; i < reload_n_operands; i++)
4366 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4367 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4368 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4369 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4370 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4371 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4372 return 0;
4373
4374 return 1;
4375
4376 case RELOAD_FOR_INPUT:
4377 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4378 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4379 return 0;
4380
4381 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4382 return 0;
4383
4384 /* If it is used for some other input, can't use it. */
4385 for (i = 0; i < reload_n_operands; i++)
4386 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4387 return 0;
4388
4389 /* If it is used in a later operand's address, can't use it. */
4390 for (i = opnum + 1; i < reload_n_operands; i++)
4391 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4392 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4393 return 0;
4394
4395 return 1;
4396
4397 case RELOAD_FOR_INPUT_ADDRESS:
4398 /* Can't use a register if it is used for an input address for this
4399 operand or used as an input in an earlier one. */
4400 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4401 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4402 return 0;
4403
4404 for (i = 0; i < opnum; i++)
4405 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4406 return 0;
4407
4408 return 1;
4409
4410 case RELOAD_FOR_INPADDR_ADDRESS:
4411 /* Can't use a register if it is used for an input address
4412 for this operand or used as an input in an earlier
4413 one. */
4414 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4415 return 0;
4416
4417 for (i = 0; i < opnum; i++)
4418 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4419 return 0;
4420
4421 return 1;
4422
4423 case RELOAD_FOR_OUTPUT_ADDRESS:
4424 /* Can't use a register if it is used for an output address for this
4425 operand or used as an output in this or a later operand. Note
4426 that multiple output operands are emitted in reverse order, so
4427 the conflicting ones are those with lower indices. */
4428 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4429 return 0;
4430
4431 for (i = 0; i <= opnum; i++)
4432 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4433 return 0;
4434
4435 return 1;
4436
4437 case RELOAD_FOR_OUTADDR_ADDRESS:
4438 /* Can't use a register if it is used for an output address
4439 for this operand or used as an output in this or a
4440 later operand. Note that multiple output operands are
4441 emitted in reverse order, so the conflicting ones are
4442 those with lower indices. */
4443 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4444 return 0;
4445
4446 for (i = 0; i <= opnum; i++)
4447 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4448 return 0;
4449
4450 return 1;
4451
4452 case RELOAD_FOR_OPERAND_ADDRESS:
4453 for (i = 0; i < reload_n_operands; i++)
4454 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4455 return 0;
4456
4457 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4458 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4459
4460 case RELOAD_FOR_OPADDR_ADDR:
4461 for (i = 0; i < reload_n_operands; i++)
4462 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4463 return 0;
4464
4465 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4466
4467 case RELOAD_FOR_OUTPUT:
4468 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4469 outputs, or an operand address for this or an earlier output.
4470 Note that multiple output operands are emitted in reverse order,
4471 so the conflicting ones are those with higher indices. */
4472 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4473 return 0;
4474
4475 for (i = 0; i < reload_n_operands; i++)
4476 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4477 return 0;
4478
4479 for (i = opnum; i < reload_n_operands; i++)
4480 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4481 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4482 return 0;
4483
4484 return 1;
4485
4486 case RELOAD_FOR_INSN:
4487 for (i = 0; i < reload_n_operands; i++)
4488 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4489 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4490 return 0;
4491
4492 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4493 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4494
4495 case RELOAD_FOR_OTHER_ADDRESS:
4496 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4497 }
4498 abort ();
4499 }
4500
4501 /* Return 1 if the value in reload reg REGNO, as used by a reload
4502 needed for the part of the insn specified by OPNUM and TYPE,
4503 is still available in REGNO at the end of the insn.
4504
4505 We can assume that the reload reg was already tested for availability
4506 at the time it is needed, and we should not check this again,
4507 in case the reg has already been marked in use. */
4508
4509 static int
4510 reload_reg_reaches_end_p (regno, opnum, type)
4511 unsigned int regno;
4512 int opnum;
4513 enum reload_type type;
4514 {
4515 int i;
4516
4517 switch (type)
4518 {
4519 case RELOAD_OTHER:
4520 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4521 its value must reach the end. */
4522 return 1;
4523
4524 /* If this use is for part of the insn,
4525 its value reaches if no subsequent part uses the same register.
4526 Just like the above function, don't try to do this with lots
4527 of fallthroughs. */
4528
4529 case RELOAD_FOR_OTHER_ADDRESS:
4530 /* Here we check for everything else, since these don't conflict
4531 with anything else and everything comes later. */
4532
4533 for (i = 0; i < reload_n_operands; i++)
4534 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4535 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4536 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4537 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4538 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4539 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4540 return 0;
4541
4542 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4543 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4544 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4545
4546 case RELOAD_FOR_INPUT_ADDRESS:
4547 case RELOAD_FOR_INPADDR_ADDRESS:
4548 /* Similar, except that we check only for this and subsequent inputs
4549 and the address of only subsequent inputs and we do not need
4550 to check for RELOAD_OTHER objects since they are known not to
4551 conflict. */
4552
4553 for (i = opnum; i < reload_n_operands; i++)
4554 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4555 return 0;
4556
4557 for (i = opnum + 1; i < reload_n_operands; i++)
4558 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4559 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4560 return 0;
4561
4562 for (i = 0; i < reload_n_operands; i++)
4563 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4564 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4565 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4566 return 0;
4567
4568 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4569 return 0;
4570
4571 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4572 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4573 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4574
4575 case RELOAD_FOR_INPUT:
4576 /* Similar to input address, except we start at the next operand for
4577 both input and input address and we do not check for
4578 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4579 would conflict. */
4580
4581 for (i = opnum + 1; i < reload_n_operands; i++)
4582 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4583 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4584 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4585 return 0;
4586
4587 /* ... fall through ... */
4588
4589 case RELOAD_FOR_OPERAND_ADDRESS:
4590 /* Check outputs and their addresses. */
4591
4592 for (i = 0; i < reload_n_operands; i++)
4593 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4594 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4595 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4596 return 0;
4597
4598 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4599
4600 case RELOAD_FOR_OPADDR_ADDR:
4601 for (i = 0; i < reload_n_operands; i++)
4602 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4603 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4604 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4605 return 0;
4606
4607 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4608 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4609 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4610
4611 case RELOAD_FOR_INSN:
4612 /* These conflict with other outputs with RELOAD_OTHER. So
4613 we need only check for output addresses. */
4614
4615 opnum = reload_n_operands;
4616
4617 /* ... fall through ... */
4618
4619 case RELOAD_FOR_OUTPUT:
4620 case RELOAD_FOR_OUTPUT_ADDRESS:
4621 case RELOAD_FOR_OUTADDR_ADDRESS:
4622 /* We already know these can't conflict with a later output. So the
4623 only thing to check are later output addresses.
4624 Note that multiple output operands are emitted in reverse order,
4625 so the conflicting ones are those with lower indices. */
4626 for (i = 0; i < opnum; i++)
4627 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4628 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4629 return 0;
4630
4631 return 1;
4632 }
4633
4634 abort ();
4635 }
4636 \f
4637 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4638 Return 0 otherwise.
4639
4640 This function uses the same algorithm as reload_reg_free_p above. */
4641
4642 int
4643 reloads_conflict (r1, r2)
4644 int r1, r2;
4645 {
4646 enum reload_type r1_type = rld[r1].when_needed;
4647 enum reload_type r2_type = rld[r2].when_needed;
4648 int r1_opnum = rld[r1].opnum;
4649 int r2_opnum = rld[r2].opnum;
4650
4651 /* RELOAD_OTHER conflicts with everything. */
4652 if (r2_type == RELOAD_OTHER)
4653 return 1;
4654
4655 /* Otherwise, check conflicts differently for each type. */
4656
4657 switch (r1_type)
4658 {
4659 case RELOAD_FOR_INPUT:
4660 return (r2_type == RELOAD_FOR_INSN
4661 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4662 || r2_type == RELOAD_FOR_OPADDR_ADDR
4663 || r2_type == RELOAD_FOR_INPUT
4664 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4665 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4666 && r2_opnum > r1_opnum));
4667
4668 case RELOAD_FOR_INPUT_ADDRESS:
4669 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4670 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4671
4672 case RELOAD_FOR_INPADDR_ADDRESS:
4673 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4674 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4675
4676 case RELOAD_FOR_OUTPUT_ADDRESS:
4677 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4678 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4679
4680 case RELOAD_FOR_OUTADDR_ADDRESS:
4681 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4682 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4683
4684 case RELOAD_FOR_OPERAND_ADDRESS:
4685 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4686 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4687
4688 case RELOAD_FOR_OPADDR_ADDR:
4689 return (r2_type == RELOAD_FOR_INPUT
4690 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4691
4692 case RELOAD_FOR_OUTPUT:
4693 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4694 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4695 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4696 && r2_opnum >= r1_opnum));
4697
4698 case RELOAD_FOR_INSN:
4699 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4700 || r2_type == RELOAD_FOR_INSN
4701 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4702
4703 case RELOAD_FOR_OTHER_ADDRESS:
4704 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4705
4706 case RELOAD_OTHER:
4707 return 1;
4708
4709 default:
4710 abort ();
4711 }
4712 }
4713 \f
4714 /* Indexed by reload number, 1 if incoming value
4715 inherited from previous insns. */
4716 char reload_inherited[MAX_RELOADS];
4717
4718 /* For an inherited reload, this is the insn the reload was inherited from,
4719 if we know it. Otherwise, this is 0. */
4720 rtx reload_inheritance_insn[MAX_RELOADS];
4721
4722 /* If non-zero, this is a place to get the value of the reload,
4723 rather than using reload_in. */
4724 rtx reload_override_in[MAX_RELOADS];
4725
4726 /* For each reload, the hard register number of the register used,
4727 or -1 if we did not need a register for this reload. */
4728 int reload_spill_index[MAX_RELOADS];
4729
4730 /* Subroutine of free_for_value_p, used to check a single register.
4731 START_REGNO is the starting regno of the full reload register
4732 (possibly comprising multiple hard registers) that we are considering. */
4733
4734 static int
4735 reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4736 reloadnum, ignore_address_reloads)
4737 int start_regno, regno;
4738 int opnum;
4739 enum reload_type type;
4740 rtx value, out;
4741 int reloadnum;
4742 int ignore_address_reloads;
4743 {
4744 int time1;
4745 /* Set if we see an input reload that must not share its reload register
4746 with any new earlyclobber, but might otherwise share the reload
4747 register with an output or input-output reload. */
4748 int check_earlyclobber = 0;
4749 int i;
4750 int copy = 0;
4751
4752 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4753 return 0;
4754
4755 if (out == const0_rtx)
4756 {
4757 copy = 1;
4758 out = NULL_RTX;
4759 }
4760
4761 /* We use some pseudo 'time' value to check if the lifetimes of the
4762 new register use would overlap with the one of a previous reload
4763 that is not read-only or uses a different value.
4764 The 'time' used doesn't have to be linear in any shape or form, just
4765 monotonic.
4766 Some reload types use different 'buckets' for each operand.
4767 So there are MAX_RECOG_OPERANDS different time values for each
4768 such reload type.
4769 We compute TIME1 as the time when the register for the prospective
4770 new reload ceases to be live, and TIME2 for each existing
4771 reload as the time when that the reload register of that reload
4772 becomes live.
4773 Where there is little to be gained by exact lifetime calculations,
4774 we just make conservative assumptions, i.e. a longer lifetime;
4775 this is done in the 'default:' cases. */
4776 switch (type)
4777 {
4778 case RELOAD_FOR_OTHER_ADDRESS:
4779 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4780 time1 = copy ? 0 : 1;
4781 break;
4782 case RELOAD_OTHER:
4783 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4784 break;
4785 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4786 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4787 respectively, to the time values for these, we get distinct time
4788 values. To get distinct time values for each operand, we have to
4789 multiply opnum by at least three. We round that up to four because
4790 multiply by four is often cheaper. */
4791 case RELOAD_FOR_INPADDR_ADDRESS:
4792 time1 = opnum * 4 + 2;
4793 break;
4794 case RELOAD_FOR_INPUT_ADDRESS:
4795 time1 = opnum * 4 + 3;
4796 break;
4797 case RELOAD_FOR_INPUT:
4798 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4799 executes (inclusive). */
4800 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4801 break;
4802 case RELOAD_FOR_OPADDR_ADDR:
4803 /* opnum * 4 + 4
4804 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4805 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4806 break;
4807 case RELOAD_FOR_OPERAND_ADDRESS:
4808 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4809 is executed. */
4810 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4811 break;
4812 case RELOAD_FOR_OUTADDR_ADDRESS:
4813 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4814 break;
4815 case RELOAD_FOR_OUTPUT_ADDRESS:
4816 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4817 break;
4818 default:
4819 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4820 }
4821
4822 for (i = 0; i < n_reloads; i++)
4823 {
4824 rtx reg = rld[i].reg_rtx;
4825 if (reg && GET_CODE (reg) == REG
4826 && ((unsigned) regno - true_regnum (reg)
4827 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
4828 && i != reloadnum)
4829 {
4830 rtx other_input = rld[i].in;
4831
4832 /* If the other reload loads the same input value, that
4833 will not cause a conflict only if it's loading it into
4834 the same register. */
4835 if (true_regnum (reg) != start_regno)
4836 other_input = NULL_RTX;
4837 if (! other_input || ! rtx_equal_p (other_input, value)
4838 || rld[i].out || out)
4839 {
4840 int time2;
4841 switch (rld[i].when_needed)
4842 {
4843 case RELOAD_FOR_OTHER_ADDRESS:
4844 time2 = 0;
4845 break;
4846 case RELOAD_FOR_INPADDR_ADDRESS:
4847 /* find_reloads makes sure that a
4848 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4849 by at most one - the first -
4850 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4851 address reload is inherited, the address address reload
4852 goes away, so we can ignore this conflict. */
4853 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4854 && ignore_address_reloads
4855 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4856 Then the address address is still needed to store
4857 back the new address. */
4858 && ! rld[reloadnum].out)
4859 continue;
4860 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4861 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4862 reloads go away. */
4863 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4864 && ignore_address_reloads
4865 /* Unless we are reloading an auto_inc expression. */
4866 && ! rld[reloadnum].out)
4867 continue;
4868 time2 = rld[i].opnum * 4 + 2;
4869 break;
4870 case RELOAD_FOR_INPUT_ADDRESS:
4871 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4872 && ignore_address_reloads
4873 && ! rld[reloadnum].out)
4874 continue;
4875 time2 = rld[i].opnum * 4 + 3;
4876 break;
4877 case RELOAD_FOR_INPUT:
4878 time2 = rld[i].opnum * 4 + 4;
4879 check_earlyclobber = 1;
4880 break;
4881 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4882 == MAX_RECOG_OPERAND * 4 */
4883 case RELOAD_FOR_OPADDR_ADDR:
4884 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4885 && ignore_address_reloads
4886 && ! rld[reloadnum].out)
4887 continue;
4888 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4889 break;
4890 case RELOAD_FOR_OPERAND_ADDRESS:
4891 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4892 check_earlyclobber = 1;
4893 break;
4894 case RELOAD_FOR_INSN:
4895 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4896 break;
4897 case RELOAD_FOR_OUTPUT:
4898 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4899 instruction is executed. */
4900 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4901 break;
4902 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4903 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4904 value. */
4905 case RELOAD_FOR_OUTADDR_ADDRESS:
4906 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4907 && ignore_address_reloads
4908 && ! rld[reloadnum].out)
4909 continue;
4910 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4911 break;
4912 case RELOAD_FOR_OUTPUT_ADDRESS:
4913 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4914 break;
4915 case RELOAD_OTHER:
4916 /* If there is no conflict in the input part, handle this
4917 like an output reload. */
4918 if (! rld[i].in || rtx_equal_p (other_input, value))
4919 {
4920 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4921 /* Earlyclobbered outputs must conflict with inputs. */
4922 if (earlyclobber_operand_p (rld[i].out))
4923 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4924
4925 break;
4926 }
4927 time2 = 1;
4928 /* RELOAD_OTHER might be live beyond instruction execution,
4929 but this is not obvious when we set time2 = 1. So check
4930 here if there might be a problem with the new reload
4931 clobbering the register used by the RELOAD_OTHER. */
4932 if (out)
4933 return 0;
4934 break;
4935 default:
4936 return 0;
4937 }
4938 if ((time1 >= time2
4939 && (! rld[i].in || rld[i].out
4940 || ! rtx_equal_p (other_input, value)))
4941 || (out && rld[reloadnum].out_reg
4942 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4943 return 0;
4944 }
4945 }
4946 }
4947
4948 /* Earlyclobbered outputs must conflict with inputs. */
4949 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4950 return 0;
4951
4952 return 1;
4953 }
4954
4955 /* Return 1 if the value in reload reg REGNO, as used by a reload
4956 needed for the part of the insn specified by OPNUM and TYPE,
4957 may be used to load VALUE into it.
4958
4959 MODE is the mode in which the register is used, this is needed to
4960 determine how many hard regs to test.
4961
4962 Other read-only reloads with the same value do not conflict
4963 unless OUT is non-zero and these other reloads have to live while
4964 output reloads live.
4965 If OUT is CONST0_RTX, this is a special case: it means that the
4966 test should not be for using register REGNO as reload register, but
4967 for copying from register REGNO into the reload register.
4968
4969 RELOADNUM is the number of the reload we want to load this value for;
4970 a reload does not conflict with itself.
4971
4972 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4973 reloads that load an address for the very reload we are considering.
4974
4975 The caller has to make sure that there is no conflict with the return
4976 register. */
4977
4978 static int
4979 free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
4980 ignore_address_reloads)
4981 int regno;
4982 enum machine_mode mode;
4983 int opnum;
4984 enum reload_type type;
4985 rtx value, out;
4986 int reloadnum;
4987 int ignore_address_reloads;
4988 {
4989 int nregs = HARD_REGNO_NREGS (regno, mode);
4990 while (nregs-- > 0)
4991 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
4992 value, out, reloadnum,
4993 ignore_address_reloads))
4994 return 0;
4995 return 1;
4996 }
4997
4998 /* Determine whether the reload reg X overlaps any rtx'es used for
4999 overriding inheritance. Return nonzero if so. */
5000
5001 static int
5002 conflicts_with_override (x)
5003 rtx x;
5004 {
5005 int i;
5006 for (i = 0; i < n_reloads; i++)
5007 if (reload_override_in[i]
5008 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5009 return 1;
5010 return 0;
5011 }
5012 \f
5013 /* Give an error message saying we failed to find a reload for INSN,
5014 and clear out reload R. */
5015 static void
5016 failed_reload (insn, r)
5017 rtx insn;
5018 int r;
5019 {
5020 if (asm_noperands (PATTERN (insn)) < 0)
5021 /* It's the compiler's fault. */
5022 fatal_insn ("Could not find a spill register", insn);
5023
5024 /* It's the user's fault; the operand's mode and constraint
5025 don't match. Disable this reload so we don't crash in final. */
5026 error_for_asm (insn,
5027 "`asm' operand constraint incompatible with operand size");
5028 rld[r].in = 0;
5029 rld[r].out = 0;
5030 rld[r].reg_rtx = 0;
5031 rld[r].optional = 1;
5032 rld[r].secondary_p = 1;
5033 }
5034
5035 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5036 for reload R. If it's valid, get an rtx for it. Return nonzero if
5037 successful. */
5038 static int
5039 set_reload_reg (i, r)
5040 int i, r;
5041 {
5042 int regno;
5043 rtx reg = spill_reg_rtx[i];
5044
5045 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5046 spill_reg_rtx[i] = reg
5047 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5048
5049 regno = true_regnum (reg);
5050
5051 /* Detect when the reload reg can't hold the reload mode.
5052 This used to be one `if', but Sequent compiler can't handle that. */
5053 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5054 {
5055 enum machine_mode test_mode = VOIDmode;
5056 if (rld[r].in)
5057 test_mode = GET_MODE (rld[r].in);
5058 /* If rld[r].in has VOIDmode, it means we will load it
5059 in whatever mode the reload reg has: to wit, rld[r].mode.
5060 We have already tested that for validity. */
5061 /* Aside from that, we need to test that the expressions
5062 to reload from or into have modes which are valid for this
5063 reload register. Otherwise the reload insns would be invalid. */
5064 if (! (rld[r].in != 0 && test_mode != VOIDmode
5065 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5066 if (! (rld[r].out != 0
5067 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5068 {
5069 /* The reg is OK. */
5070 last_spill_reg = i;
5071
5072 /* Mark as in use for this insn the reload regs we use
5073 for this. */
5074 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5075 rld[r].when_needed, rld[r].mode);
5076
5077 rld[r].reg_rtx = reg;
5078 reload_spill_index[r] = spill_regs[i];
5079 return 1;
5080 }
5081 }
5082 return 0;
5083 }
5084
5085 /* Find a spill register to use as a reload register for reload R.
5086 LAST_RELOAD is non-zero if this is the last reload for the insn being
5087 processed.
5088
5089 Set rld[R].reg_rtx to the register allocated.
5090
5091 We return 1 if successful, or 0 if we couldn't find a spill reg and
5092 we didn't change anything. */
5093
5094 static int
5095 allocate_reload_reg (chain, r, last_reload)
5096 struct insn_chain *chain ATTRIBUTE_UNUSED;
5097 int r;
5098 int last_reload;
5099 {
5100 int i, pass, count;
5101
5102 /* If we put this reload ahead, thinking it is a group,
5103 then insist on finding a group. Otherwise we can grab a
5104 reg that some other reload needs.
5105 (That can happen when we have a 68000 DATA_OR_FP_REG
5106 which is a group of data regs or one fp reg.)
5107 We need not be so restrictive if there are no more reloads
5108 for this insn.
5109
5110 ??? Really it would be nicer to have smarter handling
5111 for that kind of reg class, where a problem like this is normal.
5112 Perhaps those classes should be avoided for reloading
5113 by use of more alternatives. */
5114
5115 int force_group = rld[r].nregs > 1 && ! last_reload;
5116
5117 /* If we want a single register and haven't yet found one,
5118 take any reg in the right class and not in use.
5119 If we want a consecutive group, here is where we look for it.
5120
5121 We use two passes so we can first look for reload regs to
5122 reuse, which are already in use for other reloads in this insn,
5123 and only then use additional registers.
5124 I think that maximizing reuse is needed to make sure we don't
5125 run out of reload regs. Suppose we have three reloads, and
5126 reloads A and B can share regs. These need two regs.
5127 Suppose A and B are given different regs.
5128 That leaves none for C. */
5129 for (pass = 0; pass < 2; pass++)
5130 {
5131 /* I is the index in spill_regs.
5132 We advance it round-robin between insns to use all spill regs
5133 equally, so that inherited reloads have a chance
5134 of leapfrogging each other. */
5135
5136 i = last_spill_reg;
5137
5138 for (count = 0; count < n_spills; count++)
5139 {
5140 int class = (int) rld[r].class;
5141 int regnum;
5142
5143 i++;
5144 if (i >= n_spills)
5145 i -= n_spills;
5146 regnum = spill_regs[i];
5147
5148 if ((reload_reg_free_p (regnum, rld[r].opnum,
5149 rld[r].when_needed)
5150 || (rld[r].in
5151 /* We check reload_reg_used to make sure we
5152 don't clobber the return register. */
5153 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5154 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5155 rld[r].when_needed, rld[r].in,
5156 rld[r].out, r, 1)))
5157 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5158 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5159 /* Look first for regs to share, then for unshared. But
5160 don't share regs used for inherited reloads; they are
5161 the ones we want to preserve. */
5162 && (pass
5163 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5164 regnum)
5165 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5166 regnum))))
5167 {
5168 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5169 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5170 (on 68000) got us two FP regs. If NR is 1,
5171 we would reject both of them. */
5172 if (force_group)
5173 nr = rld[r].nregs;
5174 /* If we need only one reg, we have already won. */
5175 if (nr == 1)
5176 {
5177 /* But reject a single reg if we demand a group. */
5178 if (force_group)
5179 continue;
5180 break;
5181 }
5182 /* Otherwise check that as many consecutive regs as we need
5183 are available here. */
5184 while (nr > 1)
5185 {
5186 int regno = regnum + nr - 1;
5187 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5188 && spill_reg_order[regno] >= 0
5189 && reload_reg_free_p (regno, rld[r].opnum,
5190 rld[r].when_needed)))
5191 break;
5192 nr--;
5193 }
5194 if (nr == 1)
5195 break;
5196 }
5197 }
5198
5199 /* If we found something on pass 1, omit pass 2. */
5200 if (count < n_spills)
5201 break;
5202 }
5203
5204 /* We should have found a spill register by now. */
5205 if (count >= n_spills)
5206 return 0;
5207
5208 /* I is the index in SPILL_REG_RTX of the reload register we are to
5209 allocate. Get an rtx for it and find its register number. */
5210
5211 return set_reload_reg (i, r);
5212 }
5213 \f
5214 /* Initialize all the tables needed to allocate reload registers.
5215 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5216 is the array we use to restore the reg_rtx field for every reload. */
5217
5218 static void
5219 choose_reload_regs_init (chain, save_reload_reg_rtx)
5220 struct insn_chain *chain;
5221 rtx *save_reload_reg_rtx;
5222 {
5223 int i;
5224
5225 for (i = 0; i < n_reloads; i++)
5226 rld[i].reg_rtx = save_reload_reg_rtx[i];
5227
5228 memset (reload_inherited, 0, MAX_RELOADS);
5229 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5230 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5231
5232 CLEAR_HARD_REG_SET (reload_reg_used);
5233 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5234 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5235 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5236 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5237 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5238
5239 CLEAR_HARD_REG_SET (reg_used_in_insn);
5240 {
5241 HARD_REG_SET tmp;
5242 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5243 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5244 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5245 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5246 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5247 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5248 }
5249
5250 for (i = 0; i < reload_n_operands; i++)
5251 {
5252 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5253 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5254 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5255 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5256 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5257 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5258 }
5259
5260 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5261
5262 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5263
5264 for (i = 0; i < n_reloads; i++)
5265 /* If we have already decided to use a certain register,
5266 don't use it in another way. */
5267 if (rld[i].reg_rtx)
5268 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5269 rld[i].when_needed, rld[i].mode);
5270 }
5271
5272 /* Assign hard reg targets for the pseudo-registers we must reload
5273 into hard regs for this insn.
5274 Also output the instructions to copy them in and out of the hard regs.
5275
5276 For machines with register classes, we are responsible for
5277 finding a reload reg in the proper class. */
5278
5279 static void
5280 choose_reload_regs (chain)
5281 struct insn_chain *chain;
5282 {
5283 rtx insn = chain->insn;
5284 int i, j;
5285 unsigned int max_group_size = 1;
5286 enum reg_class group_class = NO_REGS;
5287 int pass, win, inheritance;
5288
5289 rtx save_reload_reg_rtx[MAX_RELOADS];
5290
5291 /* In order to be certain of getting the registers we need,
5292 we must sort the reloads into order of increasing register class.
5293 Then our grabbing of reload registers will parallel the process
5294 that provided the reload registers.
5295
5296 Also note whether any of the reloads wants a consecutive group of regs.
5297 If so, record the maximum size of the group desired and what
5298 register class contains all the groups needed by this insn. */
5299
5300 for (j = 0; j < n_reloads; j++)
5301 {
5302 reload_order[j] = j;
5303 reload_spill_index[j] = -1;
5304
5305 if (rld[j].nregs > 1)
5306 {
5307 max_group_size = MAX (rld[j].nregs, max_group_size);
5308 group_class
5309 = reg_class_superunion[(int) rld[j].class][(int)group_class];
5310 }
5311
5312 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5313 }
5314
5315 if (n_reloads > 1)
5316 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5317
5318 /* If -O, try first with inheritance, then turning it off.
5319 If not -O, don't do inheritance.
5320 Using inheritance when not optimizing leads to paradoxes
5321 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5322 because one side of the comparison might be inherited. */
5323 win = 0;
5324 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5325 {
5326 choose_reload_regs_init (chain, save_reload_reg_rtx);
5327
5328 /* Process the reloads in order of preference just found.
5329 Beyond this point, subregs can be found in reload_reg_rtx.
5330
5331 This used to look for an existing reloaded home for all of the
5332 reloads, and only then perform any new reloads. But that could lose
5333 if the reloads were done out of reg-class order because a later
5334 reload with a looser constraint might have an old home in a register
5335 needed by an earlier reload with a tighter constraint.
5336
5337 To solve this, we make two passes over the reloads, in the order
5338 described above. In the first pass we try to inherit a reload
5339 from a previous insn. If there is a later reload that needs a
5340 class that is a proper subset of the class being processed, we must
5341 also allocate a spill register during the first pass.
5342
5343 Then make a second pass over the reloads to allocate any reloads
5344 that haven't been given registers yet. */
5345
5346 for (j = 0; j < n_reloads; j++)
5347 {
5348 int r = reload_order[j];
5349 rtx search_equiv = NULL_RTX;
5350
5351 /* Ignore reloads that got marked inoperative. */
5352 if (rld[r].out == 0 && rld[r].in == 0
5353 && ! rld[r].secondary_p)
5354 continue;
5355
5356 /* If find_reloads chose to use reload_in or reload_out as a reload
5357 register, we don't need to chose one. Otherwise, try even if it
5358 found one since we might save an insn if we find the value lying
5359 around.
5360 Try also when reload_in is a pseudo without a hard reg. */
5361 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5362 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5363 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5364 && GET_CODE (rld[r].in) != MEM
5365 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5366 continue;
5367
5368 #if 0 /* No longer needed for correct operation.
5369 It might give better code, or might not; worth an experiment? */
5370 /* If this is an optional reload, we can't inherit from earlier insns
5371 until we are sure that any non-optional reloads have been allocated.
5372 The following code takes advantage of the fact that optional reloads
5373 are at the end of reload_order. */
5374 if (rld[r].optional != 0)
5375 for (i = 0; i < j; i++)
5376 if ((rld[reload_order[i]].out != 0
5377 || rld[reload_order[i]].in != 0
5378 || rld[reload_order[i]].secondary_p)
5379 && ! rld[reload_order[i]].optional
5380 && rld[reload_order[i]].reg_rtx == 0)
5381 allocate_reload_reg (chain, reload_order[i], 0);
5382 #endif
5383
5384 /* First see if this pseudo is already available as reloaded
5385 for a previous insn. We cannot try to inherit for reloads
5386 that are smaller than the maximum number of registers needed
5387 for groups unless the register we would allocate cannot be used
5388 for the groups.
5389
5390 We could check here to see if this is a secondary reload for
5391 an object that is already in a register of the desired class.
5392 This would avoid the need for the secondary reload register.
5393 But this is complex because we can't easily determine what
5394 objects might want to be loaded via this reload. So let a
5395 register be allocated here. In `emit_reload_insns' we suppress
5396 one of the loads in the case described above. */
5397
5398 if (inheritance)
5399 {
5400 int byte = 0;
5401 int regno = -1;
5402 enum machine_mode mode = VOIDmode;
5403
5404 if (rld[r].in == 0)
5405 ;
5406 else if (GET_CODE (rld[r].in) == REG)
5407 {
5408 regno = REGNO (rld[r].in);
5409 mode = GET_MODE (rld[r].in);
5410 }
5411 else if (GET_CODE (rld[r].in_reg) == REG)
5412 {
5413 regno = REGNO (rld[r].in_reg);
5414 mode = GET_MODE (rld[r].in_reg);
5415 }
5416 else if (GET_CODE (rld[r].in_reg) == SUBREG
5417 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5418 {
5419 byte = SUBREG_BYTE (rld[r].in_reg);
5420 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5421 if (regno < FIRST_PSEUDO_REGISTER)
5422 regno = subreg_regno (rld[r].in_reg);
5423 mode = GET_MODE (rld[r].in_reg);
5424 }
5425 #ifdef AUTO_INC_DEC
5426 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5427 || GET_CODE (rld[r].in_reg) == PRE_DEC
5428 || GET_CODE (rld[r].in_reg) == POST_INC
5429 || GET_CODE (rld[r].in_reg) == POST_DEC)
5430 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5431 {
5432 regno = REGNO (XEXP (rld[r].in_reg, 0));
5433 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5434 rld[r].out = rld[r].in;
5435 }
5436 #endif
5437 #if 0
5438 /* This won't work, since REGNO can be a pseudo reg number.
5439 Also, it takes much more hair to keep track of all the things
5440 that can invalidate an inherited reload of part of a pseudoreg. */
5441 else if (GET_CODE (rld[r].in) == SUBREG
5442 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5443 regno = subreg_regno (rld[r].in);
5444 #endif
5445
5446 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5447 {
5448 enum reg_class class = rld[r].class, last_class;
5449 rtx last_reg = reg_last_reload_reg[regno];
5450 enum machine_mode need_mode;
5451
5452 i = REGNO (last_reg);
5453 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5454 last_class = REGNO_REG_CLASS (i);
5455
5456 if (byte == 0)
5457 need_mode = mode;
5458 else
5459 need_mode
5460 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5461 GET_MODE_CLASS (mode));
5462
5463 if (
5464 #ifdef CLASS_CANNOT_CHANGE_MODE
5465 (TEST_HARD_REG_BIT
5466 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
5467 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
5468 need_mode)
5469 : (GET_MODE_SIZE (GET_MODE (last_reg))
5470 >= GET_MODE_SIZE (need_mode)))
5471 #else
5472 (GET_MODE_SIZE (GET_MODE (last_reg))
5473 >= GET_MODE_SIZE (need_mode))
5474 #endif
5475 && reg_reloaded_contents[i] == regno
5476 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5477 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5478 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5479 /* Even if we can't use this register as a reload
5480 register, we might use it for reload_override_in,
5481 if copying it to the desired class is cheap
5482 enough. */
5483 || ((REGISTER_MOVE_COST (mode, last_class, class)
5484 < MEMORY_MOVE_COST (mode, class, 1))
5485 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5486 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5487 last_reg)
5488 == NO_REGS)
5489 #endif
5490 #ifdef SECONDARY_MEMORY_NEEDED
5491 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5492 mode)
5493 #endif
5494 ))
5495
5496 && (rld[r].nregs == max_group_size
5497 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5498 i))
5499 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5500 rld[r].when_needed, rld[r].in,
5501 const0_rtx, r, 1))
5502 {
5503 /* If a group is needed, verify that all the subsequent
5504 registers still have their values intact. */
5505 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5506 int k;
5507
5508 for (k = 1; k < nr; k++)
5509 if (reg_reloaded_contents[i + k] != regno
5510 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5511 break;
5512
5513 if (k == nr)
5514 {
5515 int i1;
5516 int bad_for_class;
5517
5518 last_reg = (GET_MODE (last_reg) == mode
5519 ? last_reg : gen_rtx_REG (mode, i));
5520
5521 bad_for_class = 0;
5522 for (k = 0; k < nr; k++)
5523 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5524 i+k);
5525
5526 /* We found a register that contains the
5527 value we need. If this register is the
5528 same as an `earlyclobber' operand of the
5529 current insn, just mark it as a place to
5530 reload from since we can't use it as the
5531 reload register itself. */
5532
5533 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5534 if (reg_overlap_mentioned_for_reload_p
5535 (reg_last_reload_reg[regno],
5536 reload_earlyclobbers[i1]))
5537 break;
5538
5539 if (i1 != n_earlyclobbers
5540 || ! (free_for_value_p (i, rld[r].mode,
5541 rld[r].opnum,
5542 rld[r].when_needed, rld[r].in,
5543 rld[r].out, r, 1))
5544 /* Don't use it if we'd clobber a pseudo reg. */
5545 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5546 && rld[r].out
5547 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5548 /* Don't clobber the frame pointer. */
5549 || (i == HARD_FRAME_POINTER_REGNUM
5550 && rld[r].out)
5551 /* Don't really use the inherited spill reg
5552 if we need it wider than we've got it. */
5553 || (GET_MODE_SIZE (rld[r].mode)
5554 > GET_MODE_SIZE (mode))
5555 || bad_for_class
5556
5557 /* If find_reloads chose reload_out as reload
5558 register, stay with it - that leaves the
5559 inherited register for subsequent reloads. */
5560 || (rld[r].out && rld[r].reg_rtx
5561 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5562 {
5563 if (! rld[r].optional)
5564 {
5565 reload_override_in[r] = last_reg;
5566 reload_inheritance_insn[r]
5567 = reg_reloaded_insn[i];
5568 }
5569 }
5570 else
5571 {
5572 int k;
5573 /* We can use this as a reload reg. */
5574 /* Mark the register as in use for this part of
5575 the insn. */
5576 mark_reload_reg_in_use (i,
5577 rld[r].opnum,
5578 rld[r].when_needed,
5579 rld[r].mode);
5580 rld[r].reg_rtx = last_reg;
5581 reload_inherited[r] = 1;
5582 reload_inheritance_insn[r]
5583 = reg_reloaded_insn[i];
5584 reload_spill_index[r] = i;
5585 for (k = 0; k < nr; k++)
5586 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5587 i + k);
5588 }
5589 }
5590 }
5591 }
5592 }
5593
5594 /* Here's another way to see if the value is already lying around. */
5595 if (inheritance
5596 && rld[r].in != 0
5597 && ! reload_inherited[r]
5598 && rld[r].out == 0
5599 && (CONSTANT_P (rld[r].in)
5600 || GET_CODE (rld[r].in) == PLUS
5601 || GET_CODE (rld[r].in) == REG
5602 || GET_CODE (rld[r].in) == MEM)
5603 && (rld[r].nregs == max_group_size
5604 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5605 search_equiv = rld[r].in;
5606 /* If this is an output reload from a simple move insn, look
5607 if an equivalence for the input is available. */
5608 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5609 {
5610 rtx set = single_set (insn);
5611
5612 if (set
5613 && rtx_equal_p (rld[r].out, SET_DEST (set))
5614 && CONSTANT_P (SET_SRC (set)))
5615 search_equiv = SET_SRC (set);
5616 }
5617
5618 if (search_equiv)
5619 {
5620 rtx equiv
5621 = find_equiv_reg (search_equiv, insn, rld[r].class,
5622 -1, NULL, 0, rld[r].mode);
5623 int regno = 0;
5624
5625 if (equiv != 0)
5626 {
5627 if (GET_CODE (equiv) == REG)
5628 regno = REGNO (equiv);
5629 else if (GET_CODE (equiv) == SUBREG)
5630 {
5631 /* This must be a SUBREG of a hard register.
5632 Make a new REG since this might be used in an
5633 address and not all machines support SUBREGs
5634 there. */
5635 regno = subreg_regno (equiv);
5636 equiv = gen_rtx_REG (rld[r].mode, regno);
5637 }
5638 else
5639 abort ();
5640 }
5641
5642 /* If we found a spill reg, reject it unless it is free
5643 and of the desired class. */
5644 if (equiv != 0
5645 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5646 && ! free_for_value_p (regno, rld[r].mode,
5647 rld[r].opnum, rld[r].when_needed,
5648 rld[r].in, rld[r].out, r, 1))
5649 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5650 regno)))
5651 equiv = 0;
5652
5653 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5654 equiv = 0;
5655
5656 /* We found a register that contains the value we need.
5657 If this register is the same as an `earlyclobber' operand
5658 of the current insn, just mark it as a place to reload from
5659 since we can't use it as the reload register itself. */
5660
5661 if (equiv != 0)
5662 for (i = 0; i < n_earlyclobbers; i++)
5663 if (reg_overlap_mentioned_for_reload_p (equiv,
5664 reload_earlyclobbers[i]))
5665 {
5666 if (! rld[r].optional)
5667 reload_override_in[r] = equiv;
5668 equiv = 0;
5669 break;
5670 }
5671
5672 /* If the equiv register we have found is explicitly clobbered
5673 in the current insn, it depends on the reload type if we
5674 can use it, use it for reload_override_in, or not at all.
5675 In particular, we then can't use EQUIV for a
5676 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5677
5678 if (equiv != 0)
5679 {
5680 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5681 switch (rld[r].when_needed)
5682 {
5683 case RELOAD_FOR_OTHER_ADDRESS:
5684 case RELOAD_FOR_INPADDR_ADDRESS:
5685 case RELOAD_FOR_INPUT_ADDRESS:
5686 case RELOAD_FOR_OPADDR_ADDR:
5687 break;
5688 case RELOAD_OTHER:
5689 case RELOAD_FOR_INPUT:
5690 case RELOAD_FOR_OPERAND_ADDRESS:
5691 if (! rld[r].optional)
5692 reload_override_in[r] = equiv;
5693 /* Fall through. */
5694 default:
5695 equiv = 0;
5696 break;
5697 }
5698 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5699 switch (rld[r].when_needed)
5700 {
5701 case RELOAD_FOR_OTHER_ADDRESS:
5702 case RELOAD_FOR_INPADDR_ADDRESS:
5703 case RELOAD_FOR_INPUT_ADDRESS:
5704 case RELOAD_FOR_OPADDR_ADDR:
5705 case RELOAD_FOR_OPERAND_ADDRESS:
5706 case RELOAD_FOR_INPUT:
5707 break;
5708 case RELOAD_OTHER:
5709 if (! rld[r].optional)
5710 reload_override_in[r] = equiv;
5711 /* Fall through. */
5712 default:
5713 equiv = 0;
5714 break;
5715 }
5716 }
5717
5718 /* If we found an equivalent reg, say no code need be generated
5719 to load it, and use it as our reload reg. */
5720 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
5721 {
5722 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5723 int k;
5724 rld[r].reg_rtx = equiv;
5725 reload_inherited[r] = 1;
5726
5727 /* If reg_reloaded_valid is not set for this register,
5728 there might be a stale spill_reg_store lying around.
5729 We must clear it, since otherwise emit_reload_insns
5730 might delete the store. */
5731 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5732 spill_reg_store[regno] = NULL_RTX;
5733 /* If any of the hard registers in EQUIV are spill
5734 registers, mark them as in use for this insn. */
5735 for (k = 0; k < nr; k++)
5736 {
5737 i = spill_reg_order[regno + k];
5738 if (i >= 0)
5739 {
5740 mark_reload_reg_in_use (regno, rld[r].opnum,
5741 rld[r].when_needed,
5742 rld[r].mode);
5743 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5744 regno + k);
5745 }
5746 }
5747 }
5748 }
5749
5750 /* If we found a register to use already, or if this is an optional
5751 reload, we are done. */
5752 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5753 continue;
5754
5755 #if 0
5756 /* No longer needed for correct operation. Might or might
5757 not give better code on the average. Want to experiment? */
5758
5759 /* See if there is a later reload that has a class different from our
5760 class that intersects our class or that requires less register
5761 than our reload. If so, we must allocate a register to this
5762 reload now, since that reload might inherit a previous reload
5763 and take the only available register in our class. Don't do this
5764 for optional reloads since they will force all previous reloads
5765 to be allocated. Also don't do this for reloads that have been
5766 turned off. */
5767
5768 for (i = j + 1; i < n_reloads; i++)
5769 {
5770 int s = reload_order[i];
5771
5772 if ((rld[s].in == 0 && rld[s].out == 0
5773 && ! rld[s].secondary_p)
5774 || rld[s].optional)
5775 continue;
5776
5777 if ((rld[s].class != rld[r].class
5778 && reg_classes_intersect_p (rld[r].class,
5779 rld[s].class))
5780 || rld[s].nregs < rld[r].nregs)
5781 break;
5782 }
5783
5784 if (i == n_reloads)
5785 continue;
5786
5787 allocate_reload_reg (chain, r, j == n_reloads - 1);
5788 #endif
5789 }
5790
5791 /* Now allocate reload registers for anything non-optional that
5792 didn't get one yet. */
5793 for (j = 0; j < n_reloads; j++)
5794 {
5795 int r = reload_order[j];
5796
5797 /* Ignore reloads that got marked inoperative. */
5798 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5799 continue;
5800
5801 /* Skip reloads that already have a register allocated or are
5802 optional. */
5803 if (rld[r].reg_rtx != 0 || rld[r].optional)
5804 continue;
5805
5806 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5807 break;
5808 }
5809
5810 /* If that loop got all the way, we have won. */
5811 if (j == n_reloads)
5812 {
5813 win = 1;
5814 break;
5815 }
5816
5817 /* Loop around and try without any inheritance. */
5818 }
5819
5820 if (! win)
5821 {
5822 /* First undo everything done by the failed attempt
5823 to allocate with inheritance. */
5824 choose_reload_regs_init (chain, save_reload_reg_rtx);
5825
5826 /* Some sanity tests to verify that the reloads found in the first
5827 pass are identical to the ones we have now. */
5828 if (chain->n_reloads != n_reloads)
5829 abort ();
5830
5831 for (i = 0; i < n_reloads; i++)
5832 {
5833 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5834 continue;
5835 if (chain->rld[i].when_needed != rld[i].when_needed)
5836 abort ();
5837 for (j = 0; j < n_spills; j++)
5838 if (spill_regs[j] == chain->rld[i].regno)
5839 if (! set_reload_reg (j, i))
5840 failed_reload (chain->insn, i);
5841 }
5842 }
5843
5844 /* If we thought we could inherit a reload, because it seemed that
5845 nothing else wanted the same reload register earlier in the insn,
5846 verify that assumption, now that all reloads have been assigned.
5847 Likewise for reloads where reload_override_in has been set. */
5848
5849 /* If doing expensive optimizations, do one preliminary pass that doesn't
5850 cancel any inheritance, but removes reloads that have been needed only
5851 for reloads that we know can be inherited. */
5852 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5853 {
5854 for (j = 0; j < n_reloads; j++)
5855 {
5856 int r = reload_order[j];
5857 rtx check_reg;
5858 if (reload_inherited[r] && rld[r].reg_rtx)
5859 check_reg = rld[r].reg_rtx;
5860 else if (reload_override_in[r]
5861 && (GET_CODE (reload_override_in[r]) == REG
5862 || GET_CODE (reload_override_in[r]) == SUBREG))
5863 check_reg = reload_override_in[r];
5864 else
5865 continue;
5866 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5867 rld[r].opnum, rld[r].when_needed, rld[r].in,
5868 (reload_inherited[r]
5869 ? rld[r].out : const0_rtx),
5870 r, 1))
5871 {
5872 if (pass)
5873 continue;
5874 reload_inherited[r] = 0;
5875 reload_override_in[r] = 0;
5876 }
5877 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5878 reload_override_in, then we do not need its related
5879 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5880 likewise for other reload types.
5881 We handle this by removing a reload when its only replacement
5882 is mentioned in reload_in of the reload we are going to inherit.
5883 A special case are auto_inc expressions; even if the input is
5884 inherited, we still need the address for the output. We can
5885 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5886 If we suceeded removing some reload and we are doing a preliminary
5887 pass just to remove such reloads, make another pass, since the
5888 removal of one reload might allow us to inherit another one. */
5889 else if (rld[r].in
5890 && rld[r].out != rld[r].in
5891 && remove_address_replacements (rld[r].in) && pass)
5892 pass = 2;
5893 }
5894 }
5895
5896 /* Now that reload_override_in is known valid,
5897 actually override reload_in. */
5898 for (j = 0; j < n_reloads; j++)
5899 if (reload_override_in[j])
5900 rld[j].in = reload_override_in[j];
5901
5902 /* If this reload won't be done because it has been cancelled or is
5903 optional and not inherited, clear reload_reg_rtx so other
5904 routines (such as subst_reloads) don't get confused. */
5905 for (j = 0; j < n_reloads; j++)
5906 if (rld[j].reg_rtx != 0
5907 && ((rld[j].optional && ! reload_inherited[j])
5908 || (rld[j].in == 0 && rld[j].out == 0
5909 && ! rld[j].secondary_p)))
5910 {
5911 int regno = true_regnum (rld[j].reg_rtx);
5912
5913 if (spill_reg_order[regno] >= 0)
5914 clear_reload_reg_in_use (regno, rld[j].opnum,
5915 rld[j].when_needed, rld[j].mode);
5916 rld[j].reg_rtx = 0;
5917 reload_spill_index[j] = -1;
5918 }
5919
5920 /* Record which pseudos and which spill regs have output reloads. */
5921 for (j = 0; j < n_reloads; j++)
5922 {
5923 int r = reload_order[j];
5924
5925 i = reload_spill_index[r];
5926
5927 /* I is nonneg if this reload uses a register.
5928 If rld[r].reg_rtx is 0, this is an optional reload
5929 that we opted to ignore. */
5930 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5931 && rld[r].reg_rtx != 0)
5932 {
5933 int nregno = REGNO (rld[r].out_reg);
5934 int nr = 1;
5935
5936 if (nregno < FIRST_PSEUDO_REGISTER)
5937 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5938
5939 while (--nr >= 0)
5940 reg_has_output_reload[nregno + nr] = 1;
5941
5942 if (i >= 0)
5943 {
5944 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5945 while (--nr >= 0)
5946 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5947 }
5948
5949 if (rld[r].when_needed != RELOAD_OTHER
5950 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5951 && rld[r].when_needed != RELOAD_FOR_INSN)
5952 abort ();
5953 }
5954 }
5955 }
5956
5957 /* Deallocate the reload register for reload R. This is called from
5958 remove_address_replacements. */
5959
5960 void
5961 deallocate_reload_reg (r)
5962 int r;
5963 {
5964 int regno;
5965
5966 if (! rld[r].reg_rtx)
5967 return;
5968 regno = true_regnum (rld[r].reg_rtx);
5969 rld[r].reg_rtx = 0;
5970 if (spill_reg_order[regno] >= 0)
5971 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5972 rld[r].mode);
5973 reload_spill_index[r] = -1;
5974 }
5975 \f
5976 /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
5977 reloads of the same item for fear that we might not have enough reload
5978 registers. However, normally they will get the same reload register
5979 and hence actually need not be loaded twice.
5980
5981 Here we check for the most common case of this phenomenon: when we have
5982 a number of reloads for the same object, each of which were allocated
5983 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5984 reload, and is not modified in the insn itself. If we find such,
5985 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5986 This will not increase the number of spill registers needed and will
5987 prevent redundant code. */
5988
5989 static void
5990 merge_assigned_reloads (insn)
5991 rtx insn;
5992 {
5993 int i, j;
5994
5995 /* Scan all the reloads looking for ones that only load values and
5996 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5997 assigned and not modified by INSN. */
5998
5999 for (i = 0; i < n_reloads; i++)
6000 {
6001 int conflicting_input = 0;
6002 int max_input_address_opnum = -1;
6003 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6004
6005 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6006 || rld[i].out != 0 || rld[i].reg_rtx == 0
6007 || reg_set_p (rld[i].reg_rtx, insn))
6008 continue;
6009
6010 /* Look at all other reloads. Ensure that the only use of this
6011 reload_reg_rtx is in a reload that just loads the same value
6012 as we do. Note that any secondary reloads must be of the identical
6013 class since the values, modes, and result registers are the
6014 same, so we need not do anything with any secondary reloads. */
6015
6016 for (j = 0; j < n_reloads; j++)
6017 {
6018 if (i == j || rld[j].reg_rtx == 0
6019 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6020 rld[i].reg_rtx))
6021 continue;
6022
6023 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6024 && rld[j].opnum > max_input_address_opnum)
6025 max_input_address_opnum = rld[j].opnum;
6026
6027 /* If the reload regs aren't exactly the same (e.g, different modes)
6028 or if the values are different, we can't merge this reload.
6029 But if it is an input reload, we might still merge
6030 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6031
6032 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6033 || rld[j].out != 0 || rld[j].in == 0
6034 || ! rtx_equal_p (rld[i].in, rld[j].in))
6035 {
6036 if (rld[j].when_needed != RELOAD_FOR_INPUT
6037 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6038 || rld[i].opnum > rld[j].opnum)
6039 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6040 break;
6041 conflicting_input = 1;
6042 if (min_conflicting_input_opnum > rld[j].opnum)
6043 min_conflicting_input_opnum = rld[j].opnum;
6044 }
6045 }
6046
6047 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6048 we, in fact, found any matching reloads. */
6049
6050 if (j == n_reloads
6051 && max_input_address_opnum <= min_conflicting_input_opnum)
6052 {
6053 for (j = 0; j < n_reloads; j++)
6054 if (i != j && rld[j].reg_rtx != 0
6055 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6056 && (! conflicting_input
6057 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6058 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6059 {
6060 rld[i].when_needed = RELOAD_OTHER;
6061 rld[j].in = 0;
6062 reload_spill_index[j] = -1;
6063 transfer_replacements (i, j);
6064 }
6065
6066 /* If this is now RELOAD_OTHER, look for any reloads that load
6067 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6068 if they were for inputs, RELOAD_OTHER for outputs. Note that
6069 this test is equivalent to looking for reloads for this operand
6070 number. */
6071
6072 if (rld[i].when_needed == RELOAD_OTHER)
6073 for (j = 0; j < n_reloads; j++)
6074 if (rld[j].in != 0
6075 && rld[j].when_needed != RELOAD_OTHER
6076 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6077 rld[i].in))
6078 rld[j].when_needed
6079 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6080 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6081 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6082 }
6083 }
6084 }
6085 \f
6086 /* These arrays are filled by emit_reload_insns and its subroutines. */
6087 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6088 static rtx other_input_address_reload_insns = 0;
6089 static rtx other_input_reload_insns = 0;
6090 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6091 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6092 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6093 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6094 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6095 static rtx operand_reload_insns = 0;
6096 static rtx other_operand_reload_insns = 0;
6097 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6098
6099 /* Values to be put in spill_reg_store are put here first. */
6100 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6101 static HARD_REG_SET reg_reloaded_died;
6102
6103 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6104 has the number J. OLD contains the value to be used as input. */
6105
6106 static void
6107 emit_input_reload_insns (chain, rl, old, j)
6108 struct insn_chain *chain;
6109 struct reload *rl;
6110 rtx old;
6111 int j;
6112 {
6113 rtx insn = chain->insn;
6114 rtx reloadreg = rl->reg_rtx;
6115 rtx oldequiv_reg = 0;
6116 rtx oldequiv = 0;
6117 int special = 0;
6118 enum machine_mode mode;
6119 rtx *where;
6120
6121 /* Determine the mode to reload in.
6122 This is very tricky because we have three to choose from.
6123 There is the mode the insn operand wants (rl->inmode).
6124 There is the mode of the reload register RELOADREG.
6125 There is the intrinsic mode of the operand, which we could find
6126 by stripping some SUBREGs.
6127 It turns out that RELOADREG's mode is irrelevant:
6128 we can change that arbitrarily.
6129
6130 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6131 then the reload reg may not support QImode moves, so use SImode.
6132 If foo is in memory due to spilling a pseudo reg, this is safe,
6133 because the QImode value is in the least significant part of a
6134 slot big enough for a SImode. If foo is some other sort of
6135 memory reference, then it is impossible to reload this case,
6136 so previous passes had better make sure this never happens.
6137
6138 Then consider a one-word union which has SImode and one of its
6139 members is a float, being fetched as (SUBREG:SF union:SI).
6140 We must fetch that as SFmode because we could be loading into
6141 a float-only register. In this case OLD's mode is correct.
6142
6143 Consider an immediate integer: it has VOIDmode. Here we need
6144 to get a mode from something else.
6145
6146 In some cases, there is a fourth mode, the operand's
6147 containing mode. If the insn specifies a containing mode for
6148 this operand, it overrides all others.
6149
6150 I am not sure whether the algorithm here is always right,
6151 but it does the right things in those cases. */
6152
6153 mode = GET_MODE (old);
6154 if (mode == VOIDmode)
6155 mode = rl->inmode;
6156
6157 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6158 /* If we need a secondary register for this operation, see if
6159 the value is already in a register in that class. Don't
6160 do this if the secondary register will be used as a scratch
6161 register. */
6162
6163 if (rl->secondary_in_reload >= 0
6164 && rl->secondary_in_icode == CODE_FOR_nothing
6165 && optimize)
6166 oldequiv
6167 = find_equiv_reg (old, insn,
6168 rld[rl->secondary_in_reload].class,
6169 -1, NULL, 0, mode);
6170 #endif
6171
6172 /* If reloading from memory, see if there is a register
6173 that already holds the same value. If so, reload from there.
6174 We can pass 0 as the reload_reg_p argument because
6175 any other reload has either already been emitted,
6176 in which case find_equiv_reg will see the reload-insn,
6177 or has yet to be emitted, in which case it doesn't matter
6178 because we will use this equiv reg right away. */
6179
6180 if (oldequiv == 0 && optimize
6181 && (GET_CODE (old) == MEM
6182 || (GET_CODE (old) == REG
6183 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6184 && reg_renumber[REGNO (old)] < 0)))
6185 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6186
6187 if (oldequiv)
6188 {
6189 unsigned int regno = true_regnum (oldequiv);
6190
6191 /* Don't use OLDEQUIV if any other reload changes it at an
6192 earlier stage of this insn or at this stage. */
6193 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6194 rl->in, const0_rtx, j, 0))
6195 oldequiv = 0;
6196
6197 /* If it is no cheaper to copy from OLDEQUIV into the
6198 reload register than it would be to move from memory,
6199 don't use it. Likewise, if we need a secondary register
6200 or memory. */
6201
6202 if (oldequiv != 0
6203 && ((REGNO_REG_CLASS (regno) != rl->class
6204 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6205 rl->class)
6206 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6207 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6208 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6209 mode, oldequiv)
6210 != NO_REGS)
6211 #endif
6212 #ifdef SECONDARY_MEMORY_NEEDED
6213 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6214 rl->class,
6215 mode)
6216 #endif
6217 ))
6218 oldequiv = 0;
6219 }
6220
6221 /* delete_output_reload is only invoked properly if old contains
6222 the original pseudo register. Since this is replaced with a
6223 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6224 find the pseudo in RELOAD_IN_REG. */
6225 if (oldequiv == 0
6226 && reload_override_in[j]
6227 && GET_CODE (rl->in_reg) == REG)
6228 {
6229 oldequiv = old;
6230 old = rl->in_reg;
6231 }
6232 if (oldequiv == 0)
6233 oldequiv = old;
6234 else if (GET_CODE (oldequiv) == REG)
6235 oldequiv_reg = oldequiv;
6236 else if (GET_CODE (oldequiv) == SUBREG)
6237 oldequiv_reg = SUBREG_REG (oldequiv);
6238
6239 /* If we are reloading from a register that was recently stored in
6240 with an output-reload, see if we can prove there was
6241 actually no need to store the old value in it. */
6242
6243 if (optimize && GET_CODE (oldequiv) == REG
6244 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6245 && spill_reg_store[REGNO (oldequiv)]
6246 && GET_CODE (old) == REG
6247 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6248 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6249 rl->out_reg)))
6250 delete_output_reload (insn, j, REGNO (oldequiv));
6251
6252 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6253 then load RELOADREG from OLDEQUIV. Note that we cannot use
6254 gen_lowpart_common since it can do the wrong thing when
6255 RELOADREG has a multi-word mode. Note that RELOADREG
6256 must always be a REG here. */
6257
6258 if (GET_MODE (reloadreg) != mode)
6259 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6260 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6261 oldequiv = SUBREG_REG (oldequiv);
6262 if (GET_MODE (oldequiv) != VOIDmode
6263 && mode != GET_MODE (oldequiv))
6264 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6265
6266 /* Switch to the right place to emit the reload insns. */
6267 switch (rl->when_needed)
6268 {
6269 case RELOAD_OTHER:
6270 where = &other_input_reload_insns;
6271 break;
6272 case RELOAD_FOR_INPUT:
6273 where = &input_reload_insns[rl->opnum];
6274 break;
6275 case RELOAD_FOR_INPUT_ADDRESS:
6276 where = &input_address_reload_insns[rl->opnum];
6277 break;
6278 case RELOAD_FOR_INPADDR_ADDRESS:
6279 where = &inpaddr_address_reload_insns[rl->opnum];
6280 break;
6281 case RELOAD_FOR_OUTPUT_ADDRESS:
6282 where = &output_address_reload_insns[rl->opnum];
6283 break;
6284 case RELOAD_FOR_OUTADDR_ADDRESS:
6285 where = &outaddr_address_reload_insns[rl->opnum];
6286 break;
6287 case RELOAD_FOR_OPERAND_ADDRESS:
6288 where = &operand_reload_insns;
6289 break;
6290 case RELOAD_FOR_OPADDR_ADDR:
6291 where = &other_operand_reload_insns;
6292 break;
6293 case RELOAD_FOR_OTHER_ADDRESS:
6294 where = &other_input_address_reload_insns;
6295 break;
6296 default:
6297 abort ();
6298 }
6299
6300 push_to_sequence (*where);
6301
6302 /* Auto-increment addresses must be reloaded in a special way. */
6303 if (rl->out && ! rl->out_reg)
6304 {
6305 /* We are not going to bother supporting the case where a
6306 incremented register can't be copied directly from
6307 OLDEQUIV since this seems highly unlikely. */
6308 if (rl->secondary_in_reload >= 0)
6309 abort ();
6310
6311 if (reload_inherited[j])
6312 oldequiv = reloadreg;
6313
6314 old = XEXP (rl->in_reg, 0);
6315
6316 if (optimize && GET_CODE (oldequiv) == REG
6317 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6318 && spill_reg_store[REGNO (oldequiv)]
6319 && GET_CODE (old) == REG
6320 && (dead_or_set_p (insn,
6321 spill_reg_stored_to[REGNO (oldequiv)])
6322 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6323 old)))
6324 delete_output_reload (insn, j, REGNO (oldequiv));
6325
6326 /* Prevent normal processing of this reload. */
6327 special = 1;
6328 /* Output a special code sequence for this case. */
6329 new_spill_reg_store[REGNO (reloadreg)]
6330 = inc_for_reload (reloadreg, oldequiv, rl->out,
6331 rl->inc);
6332 }
6333
6334 /* If we are reloading a pseudo-register that was set by the previous
6335 insn, see if we can get rid of that pseudo-register entirely
6336 by redirecting the previous insn into our reload register. */
6337
6338 else if (optimize && GET_CODE (old) == REG
6339 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6340 && dead_or_set_p (insn, old)
6341 /* This is unsafe if some other reload
6342 uses the same reg first. */
6343 && ! conflicts_with_override (reloadreg)
6344 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6345 rl->when_needed, old, rl->out, j, 0))
6346 {
6347 rtx temp = PREV_INSN (insn);
6348 while (temp && GET_CODE (temp) == NOTE)
6349 temp = PREV_INSN (temp);
6350 if (temp
6351 && GET_CODE (temp) == INSN
6352 && GET_CODE (PATTERN (temp)) == SET
6353 && SET_DEST (PATTERN (temp)) == old
6354 /* Make sure we can access insn_operand_constraint. */
6355 && asm_noperands (PATTERN (temp)) < 0
6356 /* This is unsafe if prev insn rejects our reload reg. */
6357 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6358 reloadreg)
6359 /* This is unsafe if operand occurs more than once in current
6360 insn. Perhaps some occurrences aren't reloaded. */
6361 && count_occurrences (PATTERN (insn), old, 0) == 1
6362 /* Don't risk splitting a matching pair of operands. */
6363 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6364 {
6365 /* Store into the reload register instead of the pseudo. */
6366 SET_DEST (PATTERN (temp)) = reloadreg;
6367
6368 /* If the previous insn is an output reload, the source is
6369 a reload register, and its spill_reg_store entry will
6370 contain the previous destination. This is now
6371 invalid. */
6372 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6373 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6374 {
6375 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6376 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6377 }
6378
6379 /* If these are the only uses of the pseudo reg,
6380 pretend for GDB it lives in the reload reg we used. */
6381 if (REG_N_DEATHS (REGNO (old)) == 1
6382 && REG_N_SETS (REGNO (old)) == 1)
6383 {
6384 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6385 alter_reg (REGNO (old), -1);
6386 }
6387 special = 1;
6388 }
6389 }
6390
6391 /* We can't do that, so output an insn to load RELOADREG. */
6392
6393 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6394 /* If we have a secondary reload, pick up the secondary register
6395 and icode, if any. If OLDEQUIV and OLD are different or
6396 if this is an in-out reload, recompute whether or not we
6397 still need a secondary register and what the icode should
6398 be. If we still need a secondary register and the class or
6399 icode is different, go back to reloading from OLD if using
6400 OLDEQUIV means that we got the wrong type of register. We
6401 cannot have different class or icode due to an in-out reload
6402 because we don't make such reloads when both the input and
6403 output need secondary reload registers. */
6404
6405 if (! special && rl->secondary_in_reload >= 0)
6406 {
6407 rtx second_reload_reg = 0;
6408 int secondary_reload = rl->secondary_in_reload;
6409 rtx real_oldequiv = oldequiv;
6410 rtx real_old = old;
6411 rtx tmp;
6412 enum insn_code icode;
6413
6414 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6415 and similarly for OLD.
6416 See comments in get_secondary_reload in reload.c. */
6417 /* If it is a pseudo that cannot be replaced with its
6418 equivalent MEM, we must fall back to reload_in, which
6419 will have all the necessary substitutions registered.
6420 Likewise for a pseudo that can't be replaced with its
6421 equivalent constant.
6422
6423 Take extra care for subregs of such pseudos. Note that
6424 we cannot use reg_equiv_mem in this case because it is
6425 not in the right mode. */
6426
6427 tmp = oldequiv;
6428 if (GET_CODE (tmp) == SUBREG)
6429 tmp = SUBREG_REG (tmp);
6430 if (GET_CODE (tmp) == REG
6431 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6432 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6433 || reg_equiv_constant[REGNO (tmp)] != 0))
6434 {
6435 if (! reg_equiv_mem[REGNO (tmp)]
6436 || num_not_at_initial_offset
6437 || GET_CODE (oldequiv) == SUBREG)
6438 real_oldequiv = rl->in;
6439 else
6440 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6441 }
6442
6443 tmp = old;
6444 if (GET_CODE (tmp) == SUBREG)
6445 tmp = SUBREG_REG (tmp);
6446 if (GET_CODE (tmp) == REG
6447 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6448 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6449 || reg_equiv_constant[REGNO (tmp)] != 0))
6450 {
6451 if (! reg_equiv_mem[REGNO (tmp)]
6452 || num_not_at_initial_offset
6453 || GET_CODE (old) == SUBREG)
6454 real_old = rl->in;
6455 else
6456 real_old = reg_equiv_mem[REGNO (tmp)];
6457 }
6458
6459 second_reload_reg = rld[secondary_reload].reg_rtx;
6460 icode = rl->secondary_in_icode;
6461
6462 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6463 || (rl->in != 0 && rl->out != 0))
6464 {
6465 enum reg_class new_class
6466 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6467 mode, real_oldequiv);
6468
6469 if (new_class == NO_REGS)
6470 second_reload_reg = 0;
6471 else
6472 {
6473 enum insn_code new_icode;
6474 enum machine_mode new_mode;
6475
6476 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6477 REGNO (second_reload_reg)))
6478 oldequiv = old, real_oldequiv = real_old;
6479 else
6480 {
6481 new_icode = reload_in_optab[(int) mode];
6482 if (new_icode != CODE_FOR_nothing
6483 && ((insn_data[(int) new_icode].operand[0].predicate
6484 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6485 (reloadreg, mode)))
6486 || (insn_data[(int) new_icode].operand[1].predicate
6487 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6488 (real_oldequiv, mode)))))
6489 new_icode = CODE_FOR_nothing;
6490
6491 if (new_icode == CODE_FOR_nothing)
6492 new_mode = mode;
6493 else
6494 new_mode = insn_data[(int) new_icode].operand[2].mode;
6495
6496 if (GET_MODE (second_reload_reg) != new_mode)
6497 {
6498 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6499 new_mode))
6500 oldequiv = old, real_oldequiv = real_old;
6501 else
6502 second_reload_reg
6503 = gen_rtx_REG (new_mode,
6504 REGNO (second_reload_reg));
6505 }
6506 }
6507 }
6508 }
6509
6510 /* If we still need a secondary reload register, check
6511 to see if it is being used as a scratch or intermediate
6512 register and generate code appropriately. If we need
6513 a scratch register, use REAL_OLDEQUIV since the form of
6514 the insn may depend on the actual address if it is
6515 a MEM. */
6516
6517 if (second_reload_reg)
6518 {
6519 if (icode != CODE_FOR_nothing)
6520 {
6521 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6522 second_reload_reg));
6523 special = 1;
6524 }
6525 else
6526 {
6527 /* See if we need a scratch register to load the
6528 intermediate register (a tertiary reload). */
6529 enum insn_code tertiary_icode
6530 = rld[secondary_reload].secondary_in_icode;
6531
6532 if (tertiary_icode != CODE_FOR_nothing)
6533 {
6534 rtx third_reload_reg
6535 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6536
6537 emit_insn ((GEN_FCN (tertiary_icode)
6538 (second_reload_reg, real_oldequiv,
6539 third_reload_reg)));
6540 }
6541 else
6542 gen_reload (second_reload_reg, real_oldequiv,
6543 rl->opnum,
6544 rl->when_needed);
6545
6546 oldequiv = second_reload_reg;
6547 }
6548 }
6549 }
6550 #endif
6551
6552 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6553 {
6554 rtx real_oldequiv = oldequiv;
6555
6556 if ((GET_CODE (oldequiv) == REG
6557 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6558 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6559 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6560 || (GET_CODE (oldequiv) == SUBREG
6561 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6562 && (REGNO (SUBREG_REG (oldequiv))
6563 >= FIRST_PSEUDO_REGISTER)
6564 && ((reg_equiv_memory_loc
6565 [REGNO (SUBREG_REG (oldequiv))] != 0)
6566 || (reg_equiv_constant
6567 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6568 || (CONSTANT_P (oldequiv)
6569 && PREFERRED_RELOAD_CLASS (oldequiv,
6570 (REGNO_REG_CLASS (REGNO (reloadreg)))
6571 == NO_REGS)))
6572 real_oldequiv = rl->in;
6573 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6574 rl->when_needed);
6575 }
6576
6577 if (flag_non_call_exceptions)
6578 copy_eh_notes (insn, get_insns ());
6579
6580 /* End this sequence. */
6581 *where = get_insns ();
6582 end_sequence ();
6583
6584 /* Update reload_override_in so that delete_address_reloads_1
6585 can see the actual register usage. */
6586 if (oldequiv_reg)
6587 reload_override_in[j] = oldequiv;
6588 }
6589
6590 /* Generate insns to for the output reload RL, which is for the insn described
6591 by CHAIN and has the number J. */
6592 static void
6593 emit_output_reload_insns (chain, rl, j)
6594 struct insn_chain *chain;
6595 struct reload *rl;
6596 int j;
6597 {
6598 rtx reloadreg = rl->reg_rtx;
6599 rtx insn = chain->insn;
6600 int special = 0;
6601 rtx old = rl->out;
6602 enum machine_mode mode = GET_MODE (old);
6603 rtx p;
6604
6605 if (rl->when_needed == RELOAD_OTHER)
6606 start_sequence ();
6607 else
6608 push_to_sequence (output_reload_insns[rl->opnum]);
6609
6610 /* Determine the mode to reload in.
6611 See comments above (for input reloading). */
6612
6613 if (mode == VOIDmode)
6614 {
6615 /* VOIDmode should never happen for an output. */
6616 if (asm_noperands (PATTERN (insn)) < 0)
6617 /* It's the compiler's fault. */
6618 fatal_insn ("VOIDmode on an output", insn);
6619 error_for_asm (insn, "output operand is constant in `asm'");
6620 /* Prevent crash--use something we know is valid. */
6621 mode = word_mode;
6622 old = gen_rtx_REG (mode, REGNO (reloadreg));
6623 }
6624
6625 if (GET_MODE (reloadreg) != mode)
6626 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6627
6628 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6629
6630 /* If we need two reload regs, set RELOADREG to the intermediate
6631 one, since it will be stored into OLD. We might need a secondary
6632 register only for an input reload, so check again here. */
6633
6634 if (rl->secondary_out_reload >= 0)
6635 {
6636 rtx real_old = old;
6637
6638 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6639 && reg_equiv_mem[REGNO (old)] != 0)
6640 real_old = reg_equiv_mem[REGNO (old)];
6641
6642 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6643 mode, real_old)
6644 != NO_REGS))
6645 {
6646 rtx second_reloadreg = reloadreg;
6647 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6648
6649 /* See if RELOADREG is to be used as a scratch register
6650 or as an intermediate register. */
6651 if (rl->secondary_out_icode != CODE_FOR_nothing)
6652 {
6653 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6654 (real_old, second_reloadreg, reloadreg)));
6655 special = 1;
6656 }
6657 else
6658 {
6659 /* See if we need both a scratch and intermediate reload
6660 register. */
6661
6662 int secondary_reload = rl->secondary_out_reload;
6663 enum insn_code tertiary_icode
6664 = rld[secondary_reload].secondary_out_icode;
6665
6666 if (GET_MODE (reloadreg) != mode)
6667 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6668
6669 if (tertiary_icode != CODE_FOR_nothing)
6670 {
6671 rtx third_reloadreg
6672 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6673 rtx tem;
6674
6675 /* Copy primary reload reg to secondary reload reg.
6676 (Note that these have been swapped above, then
6677 secondary reload reg to OLD using our insn.) */
6678
6679 /* If REAL_OLD is a paradoxical SUBREG, remove it
6680 and try to put the opposite SUBREG on
6681 RELOADREG. */
6682 if (GET_CODE (real_old) == SUBREG
6683 && (GET_MODE_SIZE (GET_MODE (real_old))
6684 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6685 && 0 != (tem = gen_lowpart_common
6686 (GET_MODE (SUBREG_REG (real_old)),
6687 reloadreg)))
6688 real_old = SUBREG_REG (real_old), reloadreg = tem;
6689
6690 gen_reload (reloadreg, second_reloadreg,
6691 rl->opnum, rl->when_needed);
6692 emit_insn ((GEN_FCN (tertiary_icode)
6693 (real_old, reloadreg, third_reloadreg)));
6694 special = 1;
6695 }
6696
6697 else
6698 /* Copy between the reload regs here and then to
6699 OUT later. */
6700
6701 gen_reload (reloadreg, second_reloadreg,
6702 rl->opnum, rl->when_needed);
6703 }
6704 }
6705 }
6706 #endif
6707
6708 /* Output the last reload insn. */
6709 if (! special)
6710 {
6711 rtx set;
6712
6713 /* Don't output the last reload if OLD is not the dest of
6714 INSN and is in the src and is clobbered by INSN. */
6715 if (! flag_expensive_optimizations
6716 || GET_CODE (old) != REG
6717 || !(set = single_set (insn))
6718 || rtx_equal_p (old, SET_DEST (set))
6719 || !reg_mentioned_p (old, SET_SRC (set))
6720 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6721 gen_reload (old, reloadreg, rl->opnum,
6722 rl->when_needed);
6723 }
6724
6725 /* Look at all insns we emitted, just to be safe. */
6726 for (p = get_insns (); p; p = NEXT_INSN (p))
6727 if (INSN_P (p))
6728 {
6729 rtx pat = PATTERN (p);
6730
6731 /* If this output reload doesn't come from a spill reg,
6732 clear any memory of reloaded copies of the pseudo reg.
6733 If this output reload comes from a spill reg,
6734 reg_has_output_reload will make this do nothing. */
6735 note_stores (pat, forget_old_reloads_1, NULL);
6736
6737 if (reg_mentioned_p (rl->reg_rtx, pat))
6738 {
6739 rtx set = single_set (insn);
6740 if (reload_spill_index[j] < 0
6741 && set
6742 && SET_SRC (set) == rl->reg_rtx)
6743 {
6744 int src = REGNO (SET_SRC (set));
6745
6746 reload_spill_index[j] = src;
6747 SET_HARD_REG_BIT (reg_is_output_reload, src);
6748 if (find_regno_note (insn, REG_DEAD, src))
6749 SET_HARD_REG_BIT (reg_reloaded_died, src);
6750 }
6751 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6752 {
6753 int s = rl->secondary_out_reload;
6754 set = single_set (p);
6755 /* If this reload copies only to the secondary reload
6756 register, the secondary reload does the actual
6757 store. */
6758 if (s >= 0 && set == NULL_RTX)
6759 /* We can't tell what function the secondary reload
6760 has and where the actual store to the pseudo is
6761 made; leave new_spill_reg_store alone. */
6762 ;
6763 else if (s >= 0
6764 && SET_SRC (set) == rl->reg_rtx
6765 && SET_DEST (set) == rld[s].reg_rtx)
6766 {
6767 /* Usually the next instruction will be the
6768 secondary reload insn; if we can confirm
6769 that it is, setting new_spill_reg_store to
6770 that insn will allow an extra optimization. */
6771 rtx s_reg = rld[s].reg_rtx;
6772 rtx next = NEXT_INSN (p);
6773 rld[s].out = rl->out;
6774 rld[s].out_reg = rl->out_reg;
6775 set = single_set (next);
6776 if (set && SET_SRC (set) == s_reg
6777 && ! new_spill_reg_store[REGNO (s_reg)])
6778 {
6779 SET_HARD_REG_BIT (reg_is_output_reload,
6780 REGNO (s_reg));
6781 new_spill_reg_store[REGNO (s_reg)] = next;
6782 }
6783 }
6784 else
6785 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6786 }
6787 }
6788 }
6789
6790 if (rl->when_needed == RELOAD_OTHER)
6791 {
6792 emit_insns (other_output_reload_insns[rl->opnum]);
6793 other_output_reload_insns[rl->opnum] = get_insns ();
6794 }
6795 else
6796 output_reload_insns[rl->opnum] = get_insns ();
6797
6798 if (flag_non_call_exceptions)
6799 copy_eh_notes (insn, get_insns ());
6800
6801 end_sequence ();
6802 }
6803
6804 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6805 and has the number J. */
6806 static void
6807 do_input_reload (chain, rl, j)
6808 struct insn_chain *chain;
6809 struct reload *rl;
6810 int j;
6811 {
6812 int expect_occurrences = 1;
6813 rtx insn = chain->insn;
6814 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6815 ? rl->in_reg : rl->in);
6816
6817 if (old != 0
6818 /* AUTO_INC reloads need to be handled even if inherited. We got an
6819 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6820 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6821 && ! rtx_equal_p (rl->reg_rtx, old)
6822 && rl->reg_rtx != 0)
6823 emit_input_reload_insns (chain, rld + j, old, j);
6824
6825 /* When inheriting a wider reload, we have a MEM in rl->in,
6826 e.g. inheriting a SImode output reload for
6827 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6828 if (optimize && reload_inherited[j] && rl->in
6829 && GET_CODE (rl->in) == MEM
6830 && GET_CODE (rl->in_reg) == MEM
6831 && reload_spill_index[j] >= 0
6832 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6833 {
6834 expect_occurrences
6835 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
6836 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6837 }
6838
6839 /* If we are reloading a register that was recently stored in with an
6840 output-reload, see if we can prove there was
6841 actually no need to store the old value in it. */
6842
6843 if (optimize
6844 && (reload_inherited[j] || reload_override_in[j])
6845 && rl->reg_rtx
6846 && GET_CODE (rl->reg_rtx) == REG
6847 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6848 #if 0
6849 /* There doesn't seem to be any reason to restrict this to pseudos
6850 and doing so loses in the case where we are copying from a
6851 register of the wrong class. */
6852 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6853 >= FIRST_PSEUDO_REGISTER)
6854 #endif
6855 /* The insn might have already some references to stackslots
6856 replaced by MEMs, while reload_out_reg still names the
6857 original pseudo. */
6858 && (dead_or_set_p (insn,
6859 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6860 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6861 rl->out_reg)))
6862 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6863 }
6864
6865 /* Do output reloading for reload RL, which is for the insn described by
6866 CHAIN and has the number J.
6867 ??? At some point we need to support handling output reloads of
6868 JUMP_INSNs or insns that set cc0. */
6869 static void
6870 do_output_reload (chain, rl, j)
6871 struct insn_chain *chain;
6872 struct reload *rl;
6873 int j;
6874 {
6875 rtx note, old;
6876 rtx insn = chain->insn;
6877 /* If this is an output reload that stores something that is
6878 not loaded in this same reload, see if we can eliminate a previous
6879 store. */
6880 rtx pseudo = rl->out_reg;
6881
6882 if (pseudo
6883 && GET_CODE (pseudo) == REG
6884 && ! rtx_equal_p (rl->in_reg, pseudo)
6885 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6886 && reg_last_reload_reg[REGNO (pseudo)])
6887 {
6888 int pseudo_no = REGNO (pseudo);
6889 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6890
6891 /* We don't need to test full validity of last_regno for
6892 inherit here; we only want to know if the store actually
6893 matches the pseudo. */
6894 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6895 && reg_reloaded_contents[last_regno] == pseudo_no
6896 && spill_reg_store[last_regno]
6897 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6898 delete_output_reload (insn, j, last_regno);
6899 }
6900
6901 old = rl->out_reg;
6902 if (old == 0
6903 || rl->reg_rtx == old
6904 || rl->reg_rtx == 0)
6905 return;
6906
6907 /* An output operand that dies right away does need a reload,
6908 but need not be copied from it. Show the new location in the
6909 REG_UNUSED note. */
6910 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6911 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6912 {
6913 XEXP (note, 0) = rl->reg_rtx;
6914 return;
6915 }
6916 /* Likewise for a SUBREG of an operand that dies. */
6917 else if (GET_CODE (old) == SUBREG
6918 && GET_CODE (SUBREG_REG (old)) == REG
6919 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6920 SUBREG_REG (old))))
6921 {
6922 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6923 rl->reg_rtx);
6924 return;
6925 }
6926 else if (GET_CODE (old) == SCRATCH)
6927 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6928 but we don't want to make an output reload. */
6929 return;
6930
6931 /* If is a JUMP_INSN, we can't support output reloads yet. */
6932 if (GET_CODE (insn) == JUMP_INSN)
6933 abort ();
6934
6935 emit_output_reload_insns (chain, rld + j, j);
6936 }
6937
6938 /* Output insns to reload values in and out of the chosen reload regs. */
6939
6940 static void
6941 emit_reload_insns (chain)
6942 struct insn_chain *chain;
6943 {
6944 rtx insn = chain->insn;
6945
6946 int j;
6947
6948 CLEAR_HARD_REG_SET (reg_reloaded_died);
6949
6950 for (j = 0; j < reload_n_operands; j++)
6951 input_reload_insns[j] = input_address_reload_insns[j]
6952 = inpaddr_address_reload_insns[j]
6953 = output_reload_insns[j] = output_address_reload_insns[j]
6954 = outaddr_address_reload_insns[j]
6955 = other_output_reload_insns[j] = 0;
6956 other_input_address_reload_insns = 0;
6957 other_input_reload_insns = 0;
6958 operand_reload_insns = 0;
6959 other_operand_reload_insns = 0;
6960
6961 /* Dump reloads into the dump file. */
6962 if (rtl_dump_file)
6963 {
6964 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6965 debug_reload_to_stream (rtl_dump_file);
6966 }
6967
6968 /* Now output the instructions to copy the data into and out of the
6969 reload registers. Do these in the order that the reloads were reported,
6970 since reloads of base and index registers precede reloads of operands
6971 and the operands may need the base and index registers reloaded. */
6972
6973 for (j = 0; j < n_reloads; j++)
6974 {
6975 if (rld[j].reg_rtx
6976 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6977 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6978
6979 do_input_reload (chain, rld + j, j);
6980 do_output_reload (chain, rld + j, j);
6981 }
6982
6983 /* Now write all the insns we made for reloads in the order expected by
6984 the allocation functions. Prior to the insn being reloaded, we write
6985 the following reloads:
6986
6987 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6988
6989 RELOAD_OTHER reloads.
6990
6991 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6992 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6993 RELOAD_FOR_INPUT reload for the operand.
6994
6995 RELOAD_FOR_OPADDR_ADDRS reloads.
6996
6997 RELOAD_FOR_OPERAND_ADDRESS reloads.
6998
6999 After the insn being reloaded, we write the following:
7000
7001 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7002 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7003 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7004 reloads for the operand. The RELOAD_OTHER output reloads are
7005 output in descending order by reload number. */
7006
7007 emit_insns_before (other_input_address_reload_insns, insn);
7008 emit_insns_before (other_input_reload_insns, insn);
7009
7010 for (j = 0; j < reload_n_operands; j++)
7011 {
7012 emit_insns_before (inpaddr_address_reload_insns[j], insn);
7013 emit_insns_before (input_address_reload_insns[j], insn);
7014 emit_insns_before (input_reload_insns[j], insn);
7015 }
7016
7017 emit_insns_before (other_operand_reload_insns, insn);
7018 emit_insns_before (operand_reload_insns, insn);
7019
7020 for (j = 0; j < reload_n_operands; j++)
7021 {
7022 rtx x = emit_insns_after (outaddr_address_reload_insns[j], insn);
7023 x = emit_insns_after (output_address_reload_insns[j], x);
7024 x = emit_insns_after (output_reload_insns[j], x);
7025 emit_insns_after (other_output_reload_insns[j], x);
7026 }
7027
7028 /* For all the spill regs newly reloaded in this instruction,
7029 record what they were reloaded from, so subsequent instructions
7030 can inherit the reloads.
7031
7032 Update spill_reg_store for the reloads of this insn.
7033 Copy the elements that were updated in the loop above. */
7034
7035 for (j = 0; j < n_reloads; j++)
7036 {
7037 int r = reload_order[j];
7038 int i = reload_spill_index[r];
7039
7040 /* If this is a non-inherited input reload from a pseudo, we must
7041 clear any memory of a previous store to the same pseudo. Only do
7042 something if there will not be an output reload for the pseudo
7043 being reloaded. */
7044 if (rld[r].in_reg != 0
7045 && ! (reload_inherited[r] || reload_override_in[r]))
7046 {
7047 rtx reg = rld[r].in_reg;
7048
7049 if (GET_CODE (reg) == SUBREG)
7050 reg = SUBREG_REG (reg);
7051
7052 if (GET_CODE (reg) == REG
7053 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7054 && ! reg_has_output_reload[REGNO (reg)])
7055 {
7056 int nregno = REGNO (reg);
7057
7058 if (reg_last_reload_reg[nregno])
7059 {
7060 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7061
7062 if (reg_reloaded_contents[last_regno] == nregno)
7063 spill_reg_store[last_regno] = 0;
7064 }
7065 }
7066 }
7067
7068 /* I is nonneg if this reload used a register.
7069 If rld[r].reg_rtx is 0, this is an optional reload
7070 that we opted to ignore. */
7071
7072 if (i >= 0 && rld[r].reg_rtx != 0)
7073 {
7074 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7075 int k;
7076 int part_reaches_end = 0;
7077 int all_reaches_end = 1;
7078
7079 /* For a multi register reload, we need to check if all or part
7080 of the value lives to the end. */
7081 for (k = 0; k < nr; k++)
7082 {
7083 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7084 rld[r].when_needed))
7085 part_reaches_end = 1;
7086 else
7087 all_reaches_end = 0;
7088 }
7089
7090 /* Ignore reloads that don't reach the end of the insn in
7091 entirety. */
7092 if (all_reaches_end)
7093 {
7094 /* First, clear out memory of what used to be in this spill reg.
7095 If consecutive registers are used, clear them all. */
7096
7097 for (k = 0; k < nr; k++)
7098 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7099
7100 /* Maybe the spill reg contains a copy of reload_out. */
7101 if (rld[r].out != 0
7102 && (GET_CODE (rld[r].out) == REG
7103 #ifdef AUTO_INC_DEC
7104 || ! rld[r].out_reg
7105 #endif
7106 || GET_CODE (rld[r].out_reg) == REG))
7107 {
7108 rtx out = (GET_CODE (rld[r].out) == REG
7109 ? rld[r].out
7110 : rld[r].out_reg
7111 ? rld[r].out_reg
7112 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7113 int nregno = REGNO (out);
7114 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7115 : HARD_REGNO_NREGS (nregno,
7116 GET_MODE (rld[r].reg_rtx)));
7117
7118 spill_reg_store[i] = new_spill_reg_store[i];
7119 spill_reg_stored_to[i] = out;
7120 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7121
7122 /* If NREGNO is a hard register, it may occupy more than
7123 one register. If it does, say what is in the
7124 rest of the registers assuming that both registers
7125 agree on how many words the object takes. If not,
7126 invalidate the subsequent registers. */
7127
7128 if (nregno < FIRST_PSEUDO_REGISTER)
7129 for (k = 1; k < nnr; k++)
7130 reg_last_reload_reg[nregno + k]
7131 = (nr == nnr
7132 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7133 REGNO (rld[r].reg_rtx) + k)
7134 : 0);
7135
7136 /* Now do the inverse operation. */
7137 for (k = 0; k < nr; k++)
7138 {
7139 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7140 reg_reloaded_contents[i + k]
7141 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7142 ? nregno
7143 : nregno + k);
7144 reg_reloaded_insn[i + k] = insn;
7145 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7146 }
7147 }
7148
7149 /* Maybe the spill reg contains a copy of reload_in. Only do
7150 something if there will not be an output reload for
7151 the register being reloaded. */
7152 else if (rld[r].out_reg == 0
7153 && rld[r].in != 0
7154 && ((GET_CODE (rld[r].in) == REG
7155 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7156 && ! reg_has_output_reload[REGNO (rld[r].in)])
7157 || (GET_CODE (rld[r].in_reg) == REG
7158 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7159 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7160 {
7161 int nregno;
7162 int nnr;
7163
7164 if (GET_CODE (rld[r].in) == REG
7165 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7166 nregno = REGNO (rld[r].in);
7167 else if (GET_CODE (rld[r].in_reg) == REG)
7168 nregno = REGNO (rld[r].in_reg);
7169 else
7170 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7171
7172 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7173 : HARD_REGNO_NREGS (nregno,
7174 GET_MODE (rld[r].reg_rtx)));
7175
7176 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7177
7178 if (nregno < FIRST_PSEUDO_REGISTER)
7179 for (k = 1; k < nnr; k++)
7180 reg_last_reload_reg[nregno + k]
7181 = (nr == nnr
7182 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7183 REGNO (rld[r].reg_rtx) + k)
7184 : 0);
7185
7186 /* Unless we inherited this reload, show we haven't
7187 recently done a store.
7188 Previous stores of inherited auto_inc expressions
7189 also have to be discarded. */
7190 if (! reload_inherited[r]
7191 || (rld[r].out && ! rld[r].out_reg))
7192 spill_reg_store[i] = 0;
7193
7194 for (k = 0; k < nr; k++)
7195 {
7196 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7197 reg_reloaded_contents[i + k]
7198 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7199 ? nregno
7200 : nregno + k);
7201 reg_reloaded_insn[i + k] = insn;
7202 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7203 }
7204 }
7205 }
7206
7207 /* However, if part of the reload reaches the end, then we must
7208 invalidate the old info for the part that survives to the end. */
7209 else if (part_reaches_end)
7210 {
7211 for (k = 0; k < nr; k++)
7212 if (reload_reg_reaches_end_p (i + k,
7213 rld[r].opnum,
7214 rld[r].when_needed))
7215 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7216 }
7217 }
7218
7219 /* The following if-statement was #if 0'd in 1.34 (or before...).
7220 It's reenabled in 1.35 because supposedly nothing else
7221 deals with this problem. */
7222
7223 /* If a register gets output-reloaded from a non-spill register,
7224 that invalidates any previous reloaded copy of it.
7225 But forget_old_reloads_1 won't get to see it, because
7226 it thinks only about the original insn. So invalidate it here. */
7227 if (i < 0 && rld[r].out != 0
7228 && (GET_CODE (rld[r].out) == REG
7229 || (GET_CODE (rld[r].out) == MEM
7230 && GET_CODE (rld[r].out_reg) == REG)))
7231 {
7232 rtx out = (GET_CODE (rld[r].out) == REG
7233 ? rld[r].out : rld[r].out_reg);
7234 int nregno = REGNO (out);
7235 if (nregno >= FIRST_PSEUDO_REGISTER)
7236 {
7237 rtx src_reg, store_insn = NULL_RTX;
7238
7239 reg_last_reload_reg[nregno] = 0;
7240
7241 /* If we can find a hard register that is stored, record
7242 the storing insn so that we may delete this insn with
7243 delete_output_reload. */
7244 src_reg = rld[r].reg_rtx;
7245
7246 /* If this is an optional reload, try to find the source reg
7247 from an input reload. */
7248 if (! src_reg)
7249 {
7250 rtx set = single_set (insn);
7251 if (set && SET_DEST (set) == rld[r].out)
7252 {
7253 int k;
7254
7255 src_reg = SET_SRC (set);
7256 store_insn = insn;
7257 for (k = 0; k < n_reloads; k++)
7258 {
7259 if (rld[k].in == src_reg)
7260 {
7261 src_reg = rld[k].reg_rtx;
7262 break;
7263 }
7264 }
7265 }
7266 }
7267 else
7268 store_insn = new_spill_reg_store[REGNO (src_reg)];
7269 if (src_reg && GET_CODE (src_reg) == REG
7270 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7271 {
7272 int src_regno = REGNO (src_reg);
7273 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7274 /* The place where to find a death note varies with
7275 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7276 necessarily checked exactly in the code that moves
7277 notes, so just check both locations. */
7278 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7279 if (! note && store_insn)
7280 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7281 while (nr-- > 0)
7282 {
7283 spill_reg_store[src_regno + nr] = store_insn;
7284 spill_reg_stored_to[src_regno + nr] = out;
7285 reg_reloaded_contents[src_regno + nr] = nregno;
7286 reg_reloaded_insn[src_regno + nr] = store_insn;
7287 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7288 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7289 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7290 if (note)
7291 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7292 else
7293 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7294 }
7295 reg_last_reload_reg[nregno] = src_reg;
7296 }
7297 }
7298 else
7299 {
7300 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7301
7302 while (num_regs-- > 0)
7303 reg_last_reload_reg[nregno + num_regs] = 0;
7304 }
7305 }
7306 }
7307 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7308 }
7309 \f
7310 /* Emit code to perform a reload from IN (which may be a reload register) to
7311 OUT (which may also be a reload register). IN or OUT is from operand
7312 OPNUM with reload type TYPE.
7313
7314 Returns first insn emitted. */
7315
7316 rtx
7317 gen_reload (out, in, opnum, type)
7318 rtx out;
7319 rtx in;
7320 int opnum;
7321 enum reload_type type;
7322 {
7323 rtx last = get_last_insn ();
7324 rtx tem;
7325
7326 /* If IN is a paradoxical SUBREG, remove it and try to put the
7327 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7328 if (GET_CODE (in) == SUBREG
7329 && (GET_MODE_SIZE (GET_MODE (in))
7330 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7331 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7332 in = SUBREG_REG (in), out = tem;
7333 else if (GET_CODE (out) == SUBREG
7334 && (GET_MODE_SIZE (GET_MODE (out))
7335 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7336 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7337 out = SUBREG_REG (out), in = tem;
7338
7339 /* How to do this reload can get quite tricky. Normally, we are being
7340 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7341 register that didn't get a hard register. In that case we can just
7342 call emit_move_insn.
7343
7344 We can also be asked to reload a PLUS that adds a register or a MEM to
7345 another register, constant or MEM. This can occur during frame pointer
7346 elimination and while reloading addresses. This case is handled by
7347 trying to emit a single insn to perform the add. If it is not valid,
7348 we use a two insn sequence.
7349
7350 Finally, we could be called to handle an 'o' constraint by putting
7351 an address into a register. In that case, we first try to do this
7352 with a named pattern of "reload_load_address". If no such pattern
7353 exists, we just emit a SET insn and hope for the best (it will normally
7354 be valid on machines that use 'o').
7355
7356 This entire process is made complex because reload will never
7357 process the insns we generate here and so we must ensure that
7358 they will fit their constraints and also by the fact that parts of
7359 IN might be being reloaded separately and replaced with spill registers.
7360 Because of this, we are, in some sense, just guessing the right approach
7361 here. The one listed above seems to work.
7362
7363 ??? At some point, this whole thing needs to be rethought. */
7364
7365 if (GET_CODE (in) == PLUS
7366 && (GET_CODE (XEXP (in, 0)) == REG
7367 || GET_CODE (XEXP (in, 0)) == SUBREG
7368 || GET_CODE (XEXP (in, 0)) == MEM)
7369 && (GET_CODE (XEXP (in, 1)) == REG
7370 || GET_CODE (XEXP (in, 1)) == SUBREG
7371 || CONSTANT_P (XEXP (in, 1))
7372 || GET_CODE (XEXP (in, 1)) == MEM))
7373 {
7374 /* We need to compute the sum of a register or a MEM and another
7375 register, constant, or MEM, and put it into the reload
7376 register. The best possible way of doing this is if the machine
7377 has a three-operand ADD insn that accepts the required operands.
7378
7379 The simplest approach is to try to generate such an insn and see if it
7380 is recognized and matches its constraints. If so, it can be used.
7381
7382 It might be better not to actually emit the insn unless it is valid,
7383 but we need to pass the insn as an operand to `recog' and
7384 `extract_insn' and it is simpler to emit and then delete the insn if
7385 not valid than to dummy things up. */
7386
7387 rtx op0, op1, tem, insn;
7388 int code;
7389
7390 op0 = find_replacement (&XEXP (in, 0));
7391 op1 = find_replacement (&XEXP (in, 1));
7392
7393 /* Since constraint checking is strict, commutativity won't be
7394 checked, so we need to do that here to avoid spurious failure
7395 if the add instruction is two-address and the second operand
7396 of the add is the same as the reload reg, which is frequently
7397 the case. If the insn would be A = B + A, rearrange it so
7398 it will be A = A + B as constrain_operands expects. */
7399
7400 if (GET_CODE (XEXP (in, 1)) == REG
7401 && REGNO (out) == REGNO (XEXP (in, 1)))
7402 tem = op0, op0 = op1, op1 = tem;
7403
7404 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7405 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7406
7407 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7408 code = recog_memoized (insn);
7409
7410 if (code >= 0)
7411 {
7412 extract_insn (insn);
7413 /* We want constrain operands to treat this insn strictly in
7414 its validity determination, i.e., the way it would after reload
7415 has completed. */
7416 if (constrain_operands (1))
7417 return insn;
7418 }
7419
7420 delete_insns_since (last);
7421
7422 /* If that failed, we must use a conservative two-insn sequence.
7423
7424 Use a move to copy one operand into the reload register. Prefer
7425 to reload a constant, MEM or pseudo since the move patterns can
7426 handle an arbitrary operand. If OP1 is not a constant, MEM or
7427 pseudo and OP1 is not a valid operand for an add instruction, then
7428 reload OP1.
7429
7430 After reloading one of the operands into the reload register, add
7431 the reload register to the output register.
7432
7433 If there is another way to do this for a specific machine, a
7434 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7435 we emit below. */
7436
7437 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7438
7439 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7440 || (GET_CODE (op1) == REG
7441 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7442 || (code != CODE_FOR_nothing
7443 && ! ((*insn_data[code].operand[2].predicate)
7444 (op1, insn_data[code].operand[2].mode))))
7445 tem = op0, op0 = op1, op1 = tem;
7446
7447 gen_reload (out, op0, opnum, type);
7448
7449 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7450 This fixes a problem on the 32K where the stack pointer cannot
7451 be used as an operand of an add insn. */
7452
7453 if (rtx_equal_p (op0, op1))
7454 op1 = out;
7455
7456 insn = emit_insn (gen_add2_insn (out, op1));
7457
7458 /* If that failed, copy the address register to the reload register.
7459 Then add the constant to the reload register. */
7460
7461 code = recog_memoized (insn);
7462
7463 if (code >= 0)
7464 {
7465 extract_insn (insn);
7466 /* We want constrain operands to treat this insn strictly in
7467 its validity determination, i.e., the way it would after reload
7468 has completed. */
7469 if (constrain_operands (1))
7470 {
7471 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7472 REG_NOTES (insn)
7473 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7474 return insn;
7475 }
7476 }
7477
7478 delete_insns_since (last);
7479
7480 gen_reload (out, op1, opnum, type);
7481 insn = emit_insn (gen_add2_insn (out, op0));
7482 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7483 }
7484
7485 #ifdef SECONDARY_MEMORY_NEEDED
7486 /* If we need a memory location to do the move, do it that way. */
7487 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
7488 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
7489 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
7490 REGNO_REG_CLASS (REGNO (out)),
7491 GET_MODE (out)))
7492 {
7493 /* Get the memory to use and rewrite both registers to its mode. */
7494 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7495
7496 if (GET_MODE (loc) != GET_MODE (out))
7497 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7498
7499 if (GET_MODE (loc) != GET_MODE (in))
7500 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7501
7502 gen_reload (loc, in, opnum, type);
7503 gen_reload (out, loc, opnum, type);
7504 }
7505 #endif
7506
7507 /* If IN is a simple operand, use gen_move_insn. */
7508 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7509 emit_insn (gen_move_insn (out, in));
7510
7511 #ifdef HAVE_reload_load_address
7512 else if (HAVE_reload_load_address)
7513 emit_insn (gen_reload_load_address (out, in));
7514 #endif
7515
7516 /* Otherwise, just write (set OUT IN) and hope for the best. */
7517 else
7518 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7519
7520 /* Return the first insn emitted.
7521 We can not just return get_last_insn, because there may have
7522 been multiple instructions emitted. Also note that gen_move_insn may
7523 emit more than one insn itself, so we can not assume that there is one
7524 insn emitted per emit_insn_before call. */
7525
7526 return last ? NEXT_INSN (last) : get_insns ();
7527 }
7528 \f
7529 /* Delete a previously made output-reload
7530 whose result we now believe is not needed.
7531 First we double-check.
7532
7533 INSN is the insn now being processed.
7534 LAST_RELOAD_REG is the hard register number for which we want to delete
7535 the last output reload.
7536 J is the reload-number that originally used REG. The caller has made
7537 certain that reload J doesn't use REG any longer for input. */
7538
7539 static void
7540 delete_output_reload (insn, j, last_reload_reg)
7541 rtx insn;
7542 int j;
7543 int last_reload_reg;
7544 {
7545 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7546 rtx reg = spill_reg_stored_to[last_reload_reg];
7547 int k;
7548 int n_occurrences;
7549 int n_inherited = 0;
7550 rtx i1;
7551 rtx substed;
7552
7553 /* Get the raw pseudo-register referred to. */
7554
7555 while (GET_CODE (reg) == SUBREG)
7556 reg = SUBREG_REG (reg);
7557 substed = reg_equiv_memory_loc[REGNO (reg)];
7558
7559 /* This is unsafe if the operand occurs more often in the current
7560 insn than it is inherited. */
7561 for (k = n_reloads - 1; k >= 0; k--)
7562 {
7563 rtx reg2 = rld[k].in;
7564 if (! reg2)
7565 continue;
7566 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7567 reg2 = rld[k].in_reg;
7568 #ifdef AUTO_INC_DEC
7569 if (rld[k].out && ! rld[k].out_reg)
7570 reg2 = XEXP (rld[k].in_reg, 0);
7571 #endif
7572 while (GET_CODE (reg2) == SUBREG)
7573 reg2 = SUBREG_REG (reg2);
7574 if (rtx_equal_p (reg2, reg))
7575 {
7576 if (reload_inherited[k] || reload_override_in[k] || k == j)
7577 {
7578 n_inherited++;
7579 reg2 = rld[k].out_reg;
7580 if (! reg2)
7581 continue;
7582 while (GET_CODE (reg2) == SUBREG)
7583 reg2 = XEXP (reg2, 0);
7584 if (rtx_equal_p (reg2, reg))
7585 n_inherited++;
7586 }
7587 else
7588 return;
7589 }
7590 }
7591 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7592 if (substed)
7593 n_occurrences += count_occurrences (PATTERN (insn),
7594 eliminate_regs (substed, 0,
7595 NULL_RTX), 0);
7596 if (n_occurrences > n_inherited)
7597 return;
7598
7599 /* If the pseudo-reg we are reloading is no longer referenced
7600 anywhere between the store into it and here,
7601 and no jumps or labels intervene, then the value can get
7602 here through the reload reg alone.
7603 Otherwise, give up--return. */
7604 for (i1 = NEXT_INSN (output_reload_insn);
7605 i1 != insn; i1 = NEXT_INSN (i1))
7606 {
7607 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7608 return;
7609 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7610 && reg_mentioned_p (reg, PATTERN (i1)))
7611 {
7612 /* If this is USE in front of INSN, we only have to check that
7613 there are no more references than accounted for by inheritance. */
7614 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7615 {
7616 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7617 i1 = NEXT_INSN (i1);
7618 }
7619 if (n_occurrences <= n_inherited && i1 == insn)
7620 break;
7621 return;
7622 }
7623 }
7624
7625 /* The caller has already checked that REG dies or is set in INSN.
7626 It has also checked that we are optimizing, and thus some inaccurancies
7627 in the debugging information are acceptable.
7628 So we could just delete output_reload_insn.
7629 But in some cases we can improve the debugging information without
7630 sacrificing optimization - maybe even improving the code:
7631 See if the pseudo reg has been completely replaced
7632 with reload regs. If so, delete the store insn
7633 and forget we had a stack slot for the pseudo. */
7634 if (rld[j].out != rld[j].in
7635 && REG_N_DEATHS (REGNO (reg)) == 1
7636 && REG_N_SETS (REGNO (reg)) == 1
7637 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7638 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7639 {
7640 rtx i2;
7641
7642 /* We know that it was used only between here
7643 and the beginning of the current basic block.
7644 (We also know that the last use before INSN was
7645 the output reload we are thinking of deleting, but never mind that.)
7646 Search that range; see if any ref remains. */
7647 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7648 {
7649 rtx set = single_set (i2);
7650
7651 /* Uses which just store in the pseudo don't count,
7652 since if they are the only uses, they are dead. */
7653 if (set != 0 && SET_DEST (set) == reg)
7654 continue;
7655 if (GET_CODE (i2) == CODE_LABEL
7656 || GET_CODE (i2) == JUMP_INSN)
7657 break;
7658 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7659 && reg_mentioned_p (reg, PATTERN (i2)))
7660 {
7661 /* Some other ref remains; just delete the output reload we
7662 know to be dead. */
7663 delete_address_reloads (output_reload_insn, insn);
7664 delete_insn (output_reload_insn);
7665 return;
7666 }
7667 }
7668
7669 /* Delete the now-dead stores into this pseudo. */
7670 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7671 {
7672 rtx set = single_set (i2);
7673
7674 if (set != 0 && SET_DEST (set) == reg)
7675 {
7676 delete_address_reloads (i2, insn);
7677 /* This might be a basic block head,
7678 thus don't use delete_insn. */
7679 delete_insn (i2);
7680 }
7681 if (GET_CODE (i2) == CODE_LABEL
7682 || GET_CODE (i2) == JUMP_INSN)
7683 break;
7684 }
7685
7686 /* For the debugging info,
7687 say the pseudo lives in this reload reg. */
7688 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7689 alter_reg (REGNO (reg), -1);
7690 }
7691 delete_address_reloads (output_reload_insn, insn);
7692 delete_insn (output_reload_insn);
7693
7694 }
7695
7696 /* We are going to delete DEAD_INSN. Recursively delete loads of
7697 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7698 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7699 static void
7700 delete_address_reloads (dead_insn, current_insn)
7701 rtx dead_insn, current_insn;
7702 {
7703 rtx set = single_set (dead_insn);
7704 rtx set2, dst, prev, next;
7705 if (set)
7706 {
7707 rtx dst = SET_DEST (set);
7708 if (GET_CODE (dst) == MEM)
7709 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7710 }
7711 /* If we deleted the store from a reloaded post_{in,de}c expression,
7712 we can delete the matching adds. */
7713 prev = PREV_INSN (dead_insn);
7714 next = NEXT_INSN (dead_insn);
7715 if (! prev || ! next)
7716 return;
7717 set = single_set (next);
7718 set2 = single_set (prev);
7719 if (! set || ! set2
7720 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7721 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7722 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7723 return;
7724 dst = SET_DEST (set);
7725 if (! rtx_equal_p (dst, SET_DEST (set2))
7726 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7727 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7728 || (INTVAL (XEXP (SET_SRC (set), 1))
7729 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7730 return;
7731 delete_related_insns (prev);
7732 delete_related_insns (next);
7733 }
7734
7735 /* Subfunction of delete_address_reloads: process registers found in X. */
7736 static void
7737 delete_address_reloads_1 (dead_insn, x, current_insn)
7738 rtx dead_insn, x, current_insn;
7739 {
7740 rtx prev, set, dst, i2;
7741 int i, j;
7742 enum rtx_code code = GET_CODE (x);
7743
7744 if (code != REG)
7745 {
7746 const char *fmt = GET_RTX_FORMAT (code);
7747 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7748 {
7749 if (fmt[i] == 'e')
7750 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7751 else if (fmt[i] == 'E')
7752 {
7753 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7754 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7755 current_insn);
7756 }
7757 }
7758 return;
7759 }
7760
7761 if (spill_reg_order[REGNO (x)] < 0)
7762 return;
7763
7764 /* Scan backwards for the insn that sets x. This might be a way back due
7765 to inheritance. */
7766 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7767 {
7768 code = GET_CODE (prev);
7769 if (code == CODE_LABEL || code == JUMP_INSN)
7770 return;
7771 if (GET_RTX_CLASS (code) != 'i')
7772 continue;
7773 if (reg_set_p (x, PATTERN (prev)))
7774 break;
7775 if (reg_referenced_p (x, PATTERN (prev)))
7776 return;
7777 }
7778 if (! prev || INSN_UID (prev) < reload_first_uid)
7779 return;
7780 /* Check that PREV only sets the reload register. */
7781 set = single_set (prev);
7782 if (! set)
7783 return;
7784 dst = SET_DEST (set);
7785 if (GET_CODE (dst) != REG
7786 || ! rtx_equal_p (dst, x))
7787 return;
7788 if (! reg_set_p (dst, PATTERN (dead_insn)))
7789 {
7790 /* Check if DST was used in a later insn -
7791 it might have been inherited. */
7792 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7793 {
7794 if (GET_CODE (i2) == CODE_LABEL)
7795 break;
7796 if (! INSN_P (i2))
7797 continue;
7798 if (reg_referenced_p (dst, PATTERN (i2)))
7799 {
7800 /* If there is a reference to the register in the current insn,
7801 it might be loaded in a non-inherited reload. If no other
7802 reload uses it, that means the register is set before
7803 referenced. */
7804 if (i2 == current_insn)
7805 {
7806 for (j = n_reloads - 1; j >= 0; j--)
7807 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7808 || reload_override_in[j] == dst)
7809 return;
7810 for (j = n_reloads - 1; j >= 0; j--)
7811 if (rld[j].in && rld[j].reg_rtx == dst)
7812 break;
7813 if (j >= 0)
7814 break;
7815 }
7816 return;
7817 }
7818 if (GET_CODE (i2) == JUMP_INSN)
7819 break;
7820 /* If DST is still live at CURRENT_INSN, check if it is used for
7821 any reload. Note that even if CURRENT_INSN sets DST, we still
7822 have to check the reloads. */
7823 if (i2 == current_insn)
7824 {
7825 for (j = n_reloads - 1; j >= 0; j--)
7826 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7827 || reload_override_in[j] == dst)
7828 return;
7829 /* ??? We can't finish the loop here, because dst might be
7830 allocated to a pseudo in this block if no reload in this
7831 block needs any of the clsses containing DST - see
7832 spill_hard_reg. There is no easy way to tell this, so we
7833 have to scan till the end of the basic block. */
7834 }
7835 if (reg_set_p (dst, PATTERN (i2)))
7836 break;
7837 }
7838 }
7839 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7840 reg_reloaded_contents[REGNO (dst)] = -1;
7841 delete_insn (prev);
7842 }
7843 \f
7844 /* Output reload-insns to reload VALUE into RELOADREG.
7845 VALUE is an autoincrement or autodecrement RTX whose operand
7846 is a register or memory location;
7847 so reloading involves incrementing that location.
7848 IN is either identical to VALUE, or some cheaper place to reload from.
7849
7850 INC_AMOUNT is the number to increment or decrement by (always positive).
7851 This cannot be deduced from VALUE.
7852
7853 Return the instruction that stores into RELOADREG. */
7854
7855 static rtx
7856 inc_for_reload (reloadreg, in, value, inc_amount)
7857 rtx reloadreg;
7858 rtx in, value;
7859 int inc_amount;
7860 {
7861 /* REG or MEM to be copied and incremented. */
7862 rtx incloc = XEXP (value, 0);
7863 /* Nonzero if increment after copying. */
7864 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7865 rtx last;
7866 rtx inc;
7867 rtx add_insn;
7868 int code;
7869 rtx store;
7870 rtx real_in = in == value ? XEXP (in, 0) : in;
7871
7872 /* No hard register is equivalent to this register after
7873 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7874 we could inc/dec that register as well (maybe even using it for
7875 the source), but I'm not sure it's worth worrying about. */
7876 if (GET_CODE (incloc) == REG)
7877 reg_last_reload_reg[REGNO (incloc)] = 0;
7878
7879 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7880 inc_amount = -inc_amount;
7881
7882 inc = GEN_INT (inc_amount);
7883
7884 /* If this is post-increment, first copy the location to the reload reg. */
7885 if (post && real_in != reloadreg)
7886 emit_insn (gen_move_insn (reloadreg, real_in));
7887
7888 if (in == value)
7889 {
7890 /* See if we can directly increment INCLOC. Use a method similar to
7891 that in gen_reload. */
7892
7893 last = get_last_insn ();
7894 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7895 gen_rtx_PLUS (GET_MODE (incloc),
7896 incloc, inc)));
7897
7898 code = recog_memoized (add_insn);
7899 if (code >= 0)
7900 {
7901 extract_insn (add_insn);
7902 if (constrain_operands (1))
7903 {
7904 /* If this is a pre-increment and we have incremented the value
7905 where it lives, copy the incremented value to RELOADREG to
7906 be used as an address. */
7907
7908 if (! post)
7909 emit_insn (gen_move_insn (reloadreg, incloc));
7910
7911 return add_insn;
7912 }
7913 }
7914 delete_insns_since (last);
7915 }
7916
7917 /* If couldn't do the increment directly, must increment in RELOADREG.
7918 The way we do this depends on whether this is pre- or post-increment.
7919 For pre-increment, copy INCLOC to the reload register, increment it
7920 there, then save back. */
7921
7922 if (! post)
7923 {
7924 if (in != reloadreg)
7925 emit_insn (gen_move_insn (reloadreg, real_in));
7926 emit_insn (gen_add2_insn (reloadreg, inc));
7927 store = emit_insn (gen_move_insn (incloc, reloadreg));
7928 }
7929 else
7930 {
7931 /* Postincrement.
7932 Because this might be a jump insn or a compare, and because RELOADREG
7933 may not be available after the insn in an input reload, we must do
7934 the incrementation before the insn being reloaded for.
7935
7936 We have already copied IN to RELOADREG. Increment the copy in
7937 RELOADREG, save that back, then decrement RELOADREG so it has
7938 the original value. */
7939
7940 emit_insn (gen_add2_insn (reloadreg, inc));
7941 store = emit_insn (gen_move_insn (incloc, reloadreg));
7942 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7943 }
7944
7945 return store;
7946 }
7947 \f
7948 /* Return 1 if we are certain that the constraint-string STRING allows
7949 the hard register REG. Return 0 if we can't be sure of this. */
7950
7951 static int
7952 constraint_accepts_reg_p (string, reg)
7953 const char *string;
7954 rtx reg;
7955 {
7956 int value = 0;
7957 int regno = true_regnum (reg);
7958 int c;
7959
7960 /* Initialize for first alternative. */
7961 value = 0;
7962 /* Check that each alternative contains `g' or `r'. */
7963 while (1)
7964 switch (c = *string++)
7965 {
7966 case 0:
7967 /* If an alternative lacks `g' or `r', we lose. */
7968 return value;
7969 case ',':
7970 /* If an alternative lacks `g' or `r', we lose. */
7971 if (value == 0)
7972 return 0;
7973 /* Initialize for next alternative. */
7974 value = 0;
7975 break;
7976 case 'g':
7977 case 'r':
7978 /* Any general reg wins for this alternative. */
7979 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
7980 value = 1;
7981 break;
7982 default:
7983 /* Any reg in specified class wins for this alternative. */
7984 {
7985 enum reg_class class = REG_CLASS_FROM_LETTER (c);
7986
7987 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
7988 value = 1;
7989 }
7990 }
7991 }
7992 \f
7993 /* INSN is a no-op; delete it.
7994 If this sets the return value of the function, we must keep a USE around,
7995 in case this is in a different basic block than the final USE. Otherwise,
7996 we could loose important register lifeness information on
7997 SMALL_REGISTER_CLASSES machines, where return registers might be used as
7998 spills: subsequent passes assume that spill registers are dead at the end
7999 of a basic block.
8000 VALUE must be the return value in such a case, NULL otherwise. */
8001 static void
8002 reload_cse_delete_noop_set (insn, value)
8003 rtx insn, value;
8004 {
8005 if (value)
8006 {
8007 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
8008 INSN_CODE (insn) = -1;
8009 REG_NOTES (insn) = NULL_RTX;
8010 }
8011 else
8012 delete_insn (insn);
8013 }
8014
8015 /* See whether a single set SET is a noop. */
8016 static int
8017 reload_cse_noop_set_p (set)
8018 rtx set;
8019 {
8020 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8021 }
8022
8023 /* Try to simplify INSN. */
8024 static void
8025 reload_cse_simplify (insn)
8026 rtx insn;
8027 {
8028 rtx body = PATTERN (insn);
8029
8030 if (GET_CODE (body) == SET)
8031 {
8032 int count = 0;
8033
8034 /* Simplify even if we may think it is a no-op.
8035 We may think a memory load of a value smaller than WORD_SIZE
8036 is redundant because we haven't taken into account possible
8037 implicit extension. reload_cse_simplify_set() will bring
8038 this out, so it's safer to simplify before we delete. */
8039 count += reload_cse_simplify_set (body, insn);
8040
8041 if (!count && reload_cse_noop_set_p (body))
8042 {
8043 rtx value = SET_DEST (body);
8044 if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
8045 value = 0;
8046 reload_cse_delete_noop_set (insn, value);
8047 return;
8048 }
8049
8050 if (count > 0)
8051 apply_change_group ();
8052 else
8053 reload_cse_simplify_operands (insn);
8054 }
8055 else if (GET_CODE (body) == PARALLEL)
8056 {
8057 int i;
8058 int count = 0;
8059 rtx value = NULL_RTX;
8060
8061 /* If every action in a PARALLEL is a noop, we can delete
8062 the entire PARALLEL. */
8063 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8064 {
8065 rtx part = XVECEXP (body, 0, i);
8066 if (GET_CODE (part) == SET)
8067 {
8068 if (! reload_cse_noop_set_p (part))
8069 break;
8070 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
8071 {
8072 if (value)
8073 break;
8074 value = SET_DEST (part);
8075 }
8076 }
8077 else if (GET_CODE (part) != CLOBBER)
8078 break;
8079 }
8080
8081 if (i < 0)
8082 {
8083 reload_cse_delete_noop_set (insn, value);
8084 /* We're done with this insn. */
8085 return;
8086 }
8087
8088 /* It's not a no-op, but we can try to simplify it. */
8089 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8090 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8091 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8092
8093 if (count > 0)
8094 apply_change_group ();
8095 else
8096 reload_cse_simplify_operands (insn);
8097 }
8098 }
8099
8100 /* Do a very simple CSE pass over the hard registers.
8101
8102 This function detects no-op moves where we happened to assign two
8103 different pseudo-registers to the same hard register, and then
8104 copied one to the other. Reload will generate a useless
8105 instruction copying a register to itself.
8106
8107 This function also detects cases where we load a value from memory
8108 into two different registers, and (if memory is more expensive than
8109 registers) changes it to simply copy the first register into the
8110 second register.
8111
8112 Another optimization is performed that scans the operands of each
8113 instruction to see whether the value is already available in a
8114 hard register. It then replaces the operand with the hard register
8115 if possible, much like an optional reload would. */
8116
8117 static void
8118 reload_cse_regs_1 (first)
8119 rtx first;
8120 {
8121 rtx insn;
8122
8123 cselib_init ();
8124 init_alias_analysis ();
8125
8126 for (insn = first; insn; insn = NEXT_INSN (insn))
8127 {
8128 if (INSN_P (insn))
8129 reload_cse_simplify (insn);
8130
8131 cselib_process_insn (insn);
8132 }
8133
8134 /* Clean up. */
8135 end_alias_analysis ();
8136 cselib_finish ();
8137 }
8138
8139 /* Call cse / combine like post-reload optimization phases.
8140 FIRST is the first instruction. */
8141 void
8142 reload_cse_regs (first)
8143 rtx first;
8144 {
8145 reload_cse_regs_1 (first);
8146 reload_combine ();
8147 reload_cse_move2add (first);
8148 if (flag_expensive_optimizations)
8149 reload_cse_regs_1 (first);
8150 }
8151
8152 /* Try to simplify a single SET instruction. SET is the set pattern.
8153 INSN is the instruction it came from.
8154 This function only handles one case: if we set a register to a value
8155 which is not a register, we try to find that value in some other register
8156 and change the set into a register copy. */
8157
8158 static int
8159 reload_cse_simplify_set (set, insn)
8160 rtx set;
8161 rtx insn;
8162 {
8163 int did_change = 0;
8164 int dreg;
8165 rtx src;
8166 enum reg_class dclass;
8167 int old_cost;
8168 cselib_val *val;
8169 struct elt_loc_list *l;
8170 #ifdef LOAD_EXTEND_OP
8171 enum rtx_code extend_op = NIL;
8172 #endif
8173
8174 dreg = true_regnum (SET_DEST (set));
8175 if (dreg < 0)
8176 return 0;
8177
8178 src = SET_SRC (set);
8179 if (side_effects_p (src) || true_regnum (src) >= 0)
8180 return 0;
8181
8182 dclass = REGNO_REG_CLASS (dreg);
8183
8184 #ifdef LOAD_EXTEND_OP
8185 /* When replacing a memory with a register, we need to honor assumptions
8186 that combine made wrt the contents of sign bits. We'll do this by
8187 generating an extend instruction instead of a reg->reg copy. Thus
8188 the destination must be a register that we can widen. */
8189 if (GET_CODE (src) == MEM
8190 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8191 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8192 && GET_CODE (SET_DEST (set)) != REG)
8193 return 0;
8194 #endif
8195
8196 /* If memory loads are cheaper than register copies, don't change them. */
8197 if (GET_CODE (src) == MEM)
8198 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8199 else if (CONSTANT_P (src))
8200 old_cost = rtx_cost (src, SET);
8201 else if (GET_CODE (src) == REG)
8202 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8203 REGNO_REG_CLASS (REGNO (src)), dclass);
8204 else
8205 /* ??? */
8206 old_cost = rtx_cost (src, SET);
8207
8208 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
8209 if (! val)
8210 return 0;
8211 for (l = val->locs; l; l = l->next)
8212 {
8213 rtx this_rtx = l->loc;
8214 int this_cost;
8215
8216 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8217 {
8218 #ifdef LOAD_EXTEND_OP
8219 if (extend_op != NIL)
8220 {
8221 HOST_WIDE_INT this_val;
8222
8223 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8224 constants, such as SYMBOL_REF, cannot be extended. */
8225 if (GET_CODE (this_rtx) != CONST_INT)
8226 continue;
8227
8228 this_val = INTVAL (this_rtx);
8229 switch (extend_op)
8230 {
8231 case ZERO_EXTEND:
8232 this_val &= GET_MODE_MASK (GET_MODE (src));
8233 break;
8234 case SIGN_EXTEND:
8235 /* ??? In theory we're already extended. */
8236 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8237 break;
8238 default:
8239 abort ();
8240 }
8241 this_rtx = GEN_INT (this_val);
8242 }
8243 #endif
8244 this_cost = rtx_cost (this_rtx, SET);
8245 }
8246 else if (GET_CODE (this_rtx) == REG)
8247 {
8248 #ifdef LOAD_EXTEND_OP
8249 if (extend_op != NIL)
8250 {
8251 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8252 this_cost = rtx_cost (this_rtx, SET);
8253 }
8254 else
8255 #endif
8256 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8257 REGNO_REG_CLASS (REGNO (this_rtx)),
8258 dclass);
8259 }
8260 else
8261 continue;
8262
8263 /* If equal costs, prefer registers over anything else. That
8264 tends to lead to smaller instructions on some machines. */
8265 if (this_cost < old_cost
8266 || (this_cost == old_cost
8267 && GET_CODE (this_rtx) == REG
8268 && GET_CODE (SET_SRC (set)) != REG))
8269 {
8270 #ifdef LOAD_EXTEND_OP
8271 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8272 && extend_op != NIL)
8273 {
8274 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8275 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8276 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8277 }
8278 #endif
8279
8280 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8281 old_cost = this_cost, did_change = 1;
8282 }
8283 }
8284
8285 return did_change;
8286 }
8287
8288 /* Try to replace operands in INSN with equivalent values that are already
8289 in registers. This can be viewed as optional reloading.
8290
8291 For each non-register operand in the insn, see if any hard regs are
8292 known to be equivalent to that operand. Record the alternatives which
8293 can accept these hard registers. Among all alternatives, select the
8294 ones which are better or equal to the one currently matching, where
8295 "better" is in terms of '?' and '!' constraints. Among the remaining
8296 alternatives, select the one which replaces most operands with
8297 hard registers. */
8298
8299 static int
8300 reload_cse_simplify_operands (insn)
8301 rtx insn;
8302 {
8303 int i, j;
8304
8305 /* For each operand, all registers that are equivalent to it. */
8306 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8307
8308 const char *constraints[MAX_RECOG_OPERANDS];
8309
8310 /* Vector recording how bad an alternative is. */
8311 int *alternative_reject;
8312 /* Vector recording how many registers can be introduced by choosing
8313 this alternative. */
8314 int *alternative_nregs;
8315 /* Array of vectors recording, for each operand and each alternative,
8316 which hard register to substitute, or -1 if the operand should be
8317 left as it is. */
8318 int *op_alt_regno[MAX_RECOG_OPERANDS];
8319 /* Array of alternatives, sorted in order of decreasing desirability. */
8320 int *alternative_order;
8321 rtx reg = gen_rtx_REG (VOIDmode, -1);
8322
8323 extract_insn (insn);
8324
8325 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8326 return 0;
8327
8328 /* Figure out which alternative currently matches. */
8329 if (! constrain_operands (1))
8330 fatal_insn_not_found (insn);
8331
8332 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8333 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8334 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8335 memset ((char *)alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8336 memset ((char *)alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8337
8338 /* For each operand, find out which regs are equivalent. */
8339 for (i = 0; i < recog_data.n_operands; i++)
8340 {
8341 cselib_val *v;
8342 struct elt_loc_list *l;
8343
8344 CLEAR_HARD_REG_SET (equiv_regs[i]);
8345
8346 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8347 right, so avoid the problem here. Likewise if we have a constant
8348 and the insn pattern doesn't tell us the mode we need. */
8349 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8350 || (CONSTANT_P (recog_data.operand[i])
8351 && recog_data.operand_mode[i] == VOIDmode))
8352 continue;
8353
8354 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8355 if (! v)
8356 continue;
8357
8358 for (l = v->locs; l; l = l->next)
8359 if (GET_CODE (l->loc) == REG)
8360 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8361 }
8362
8363 for (i = 0; i < recog_data.n_operands; i++)
8364 {
8365 enum machine_mode mode;
8366 int regno;
8367 const char *p;
8368
8369 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8370 for (j = 0; j < recog_data.n_alternatives; j++)
8371 op_alt_regno[i][j] = -1;
8372
8373 p = constraints[i] = recog_data.constraints[i];
8374 mode = recog_data.operand_mode[i];
8375
8376 /* Add the reject values for each alternative given by the constraints
8377 for this operand. */
8378 j = 0;
8379 while (*p != '\0')
8380 {
8381 char c = *p++;
8382 if (c == ',')
8383 j++;
8384 else if (c == '?')
8385 alternative_reject[j] += 3;
8386 else if (c == '!')
8387 alternative_reject[j] += 300;
8388 }
8389
8390 /* We won't change operands which are already registers. We
8391 also don't want to modify output operands. */
8392 regno = true_regnum (recog_data.operand[i]);
8393 if (regno >= 0
8394 || constraints[i][0] == '='
8395 || constraints[i][0] == '+')
8396 continue;
8397
8398 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8399 {
8400 int class = (int) NO_REGS;
8401
8402 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8403 continue;
8404
8405 REGNO (reg) = regno;
8406 PUT_MODE (reg, mode);
8407
8408 /* We found a register equal to this operand. Now look for all
8409 alternatives that can accept this register and have not been
8410 assigned a register they can use yet. */
8411 j = 0;
8412 p = constraints[i];
8413 for (;;)
8414 {
8415 char c = *p++;
8416
8417 switch (c)
8418 {
8419 case '=': case '+': case '?':
8420 case '#': case '&': case '!':
8421 case '*': case '%':
8422 case '0': case '1': case '2': case '3': case '4':
8423 case '5': case '6': case '7': case '8': case '9':
8424 case 'm': case '<': case '>': case 'V': case 'o':
8425 case 'E': case 'F': case 'G': case 'H':
8426 case 's': case 'i': case 'n':
8427 case 'I': case 'J': case 'K': case 'L':
8428 case 'M': case 'N': case 'O': case 'P':
8429 case 'p': case 'X':
8430 /* These don't say anything we care about. */
8431 break;
8432
8433 case 'g': case 'r':
8434 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8435 break;
8436
8437 default:
8438 class
8439 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
8440 break;
8441
8442 case ',': case '\0':
8443 /* See if REGNO fits this alternative, and set it up as the
8444 replacement register if we don't have one for this
8445 alternative yet and the operand being replaced is not
8446 a cheap CONST_INT. */
8447 if (op_alt_regno[i][j] == -1
8448 && reg_fits_class_p (reg, class, 0, mode)
8449 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8450 || (rtx_cost (recog_data.operand[i], SET)
8451 > rtx_cost (reg, SET))))
8452 {
8453 alternative_nregs[j]++;
8454 op_alt_regno[i][j] = regno;
8455 }
8456 j++;
8457 break;
8458 }
8459
8460 if (c == '\0')
8461 break;
8462 }
8463 }
8464 }
8465
8466 /* Record all alternatives which are better or equal to the currently
8467 matching one in the alternative_order array. */
8468 for (i = j = 0; i < recog_data.n_alternatives; i++)
8469 if (alternative_reject[i] <= alternative_reject[which_alternative])
8470 alternative_order[j++] = i;
8471 recog_data.n_alternatives = j;
8472
8473 /* Sort it. Given a small number of alternatives, a dumb algorithm
8474 won't hurt too much. */
8475 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8476 {
8477 int best = i;
8478 int best_reject = alternative_reject[alternative_order[i]];
8479 int best_nregs = alternative_nregs[alternative_order[i]];
8480 int tmp;
8481
8482 for (j = i + 1; j < recog_data.n_alternatives; j++)
8483 {
8484 int this_reject = alternative_reject[alternative_order[j]];
8485 int this_nregs = alternative_nregs[alternative_order[j]];
8486
8487 if (this_reject < best_reject
8488 || (this_reject == best_reject && this_nregs < best_nregs))
8489 {
8490 best = j;
8491 best_reject = this_reject;
8492 best_nregs = this_nregs;
8493 }
8494 }
8495
8496 tmp = alternative_order[best];
8497 alternative_order[best] = alternative_order[i];
8498 alternative_order[i] = tmp;
8499 }
8500
8501 /* Substitute the operands as determined by op_alt_regno for the best
8502 alternative. */
8503 j = alternative_order[0];
8504
8505 for (i = 0; i < recog_data.n_operands; i++)
8506 {
8507 enum machine_mode mode = recog_data.operand_mode[i];
8508 if (op_alt_regno[i][j] == -1)
8509 continue;
8510
8511 validate_change (insn, recog_data.operand_loc[i],
8512 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8513 }
8514
8515 for (i = recog_data.n_dups - 1; i >= 0; i--)
8516 {
8517 int op = recog_data.dup_num[i];
8518 enum machine_mode mode = recog_data.operand_mode[op];
8519
8520 if (op_alt_regno[op][j] == -1)
8521 continue;
8522
8523 validate_change (insn, recog_data.dup_loc[i],
8524 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8525 }
8526
8527 return apply_change_group ();
8528 }
8529 \f
8530 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8531 addressing now.
8532 This code might also be useful when reload gave up on reg+reg addresssing
8533 because of clashes between the return register and INDEX_REG_CLASS. */
8534
8535 /* The maximum number of uses of a register we can keep track of to
8536 replace them with reg+reg addressing. */
8537 #define RELOAD_COMBINE_MAX_USES 6
8538
8539 /* INSN is the insn where a register has ben used, and USEP points to the
8540 location of the register within the rtl. */
8541 struct reg_use { rtx insn, *usep; };
8542
8543 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8544 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8545 indicates where it becomes live again.
8546 Otherwise, USE_INDEX is the index of the last encountered use of the
8547 register (which is first among these we have seen since we scan backwards),
8548 OFFSET contains the constant offset that is added to the register in
8549 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8550 last, of these uses.
8551 STORE_RUID is always meaningful if we only want to use a value in a
8552 register in a different place: it denotes the next insn in the insn
8553 stream (i.e. the last ecountered) that sets or clobbers the register. */
8554 static struct
8555 {
8556 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8557 int use_index;
8558 rtx offset;
8559 int store_ruid;
8560 int use_ruid;
8561 } reg_state[FIRST_PSEUDO_REGISTER];
8562
8563 /* Reverse linear uid. This is increased in reload_combine while scanning
8564 the instructions from last to first. It is used to set last_label_ruid
8565 and the store_ruid / use_ruid fields in reg_state. */
8566 static int reload_combine_ruid;
8567
8568 #define LABEL_LIVE(LABEL) \
8569 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8570
8571 static void
8572 reload_combine ()
8573 {
8574 rtx insn, set;
8575 int first_index_reg = -1;
8576 int last_index_reg = 0;
8577 int i;
8578 unsigned int r;
8579 int last_label_ruid;
8580 int min_labelno, n_labels;
8581 HARD_REG_SET ever_live_at_start, *label_live;
8582
8583 /* If reg+reg can be used in offsetable memory adresses, the main chunk of
8584 reload has already used it where appropriate, so there is no use in
8585 trying to generate it now. */
8586 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8587 return;
8588
8589 /* To avoid wasting too much time later searching for an index register,
8590 determine the minimum and maximum index register numbers. */
8591 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8592 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8593 {
8594 if (first_index_reg == -1)
8595 first_index_reg = r;
8596
8597 last_index_reg = r;
8598 }
8599
8600 /* If no index register is available, we can quit now. */
8601 if (first_index_reg == -1)
8602 return;
8603
8604 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8605 information is a bit fuzzy immediately after reload, but it's
8606 still good enough to determine which registers are live at a jump
8607 destination. */
8608 min_labelno = get_first_label_num ();
8609 n_labels = max_label_num () - min_labelno;
8610 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8611 CLEAR_HARD_REG_SET (ever_live_at_start);
8612
8613 for (i = n_basic_blocks - 1; i >= 0; i--)
8614 {
8615 insn = BLOCK_HEAD (i);
8616 if (GET_CODE (insn) == CODE_LABEL)
8617 {
8618 HARD_REG_SET live;
8619
8620 REG_SET_TO_HARD_REG_SET (live,
8621 BASIC_BLOCK (i)->global_live_at_start);
8622 compute_use_by_pseudos (&live,
8623 BASIC_BLOCK (i)->global_live_at_start);
8624 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8625 IOR_HARD_REG_SET (ever_live_at_start, live);
8626 }
8627 }
8628
8629 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8630 last_label_ruid = reload_combine_ruid = 0;
8631 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8632 {
8633 reg_state[r].store_ruid = reload_combine_ruid;
8634 if (fixed_regs[r])
8635 reg_state[r].use_index = -1;
8636 else
8637 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8638 }
8639
8640 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8641 {
8642 rtx note;
8643
8644 /* We cannot do our optimization across labels. Invalidating all the use
8645 information we have would be costly, so we just note where the label
8646 is and then later disable any optimization that would cross it. */
8647 if (GET_CODE (insn) == CODE_LABEL)
8648 last_label_ruid = reload_combine_ruid;
8649 else if (GET_CODE (insn) == BARRIER)
8650 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8651 if (! fixed_regs[r])
8652 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8653
8654 if (! INSN_P (insn))
8655 continue;
8656
8657 reload_combine_ruid++;
8658
8659 /* Look for (set (REGX) (CONST_INT))
8660 (set (REGX) (PLUS (REGX) (REGY)))
8661 ...
8662 ... (MEM (REGX)) ...
8663 and convert it to
8664 (set (REGZ) (CONST_INT))
8665 ...
8666 ... (MEM (PLUS (REGZ) (REGY)))... .
8667
8668 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8669 and that we know all uses of REGX before it dies. */
8670 set = single_set (insn);
8671 if (set != NULL_RTX
8672 && GET_CODE (SET_DEST (set)) == REG
8673 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8674 GET_MODE (SET_DEST (set)))
8675 == 1)
8676 && GET_CODE (SET_SRC (set)) == PLUS
8677 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8678 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8679 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8680 {
8681 rtx reg = SET_DEST (set);
8682 rtx plus = SET_SRC (set);
8683 rtx base = XEXP (plus, 1);
8684 rtx prev = prev_nonnote_insn (insn);
8685 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8686 unsigned int regno = REGNO (reg);
8687 rtx const_reg = NULL_RTX;
8688 rtx reg_sum = NULL_RTX;
8689
8690 /* Now, we need an index register.
8691 We'll set index_reg to this index register, const_reg to the
8692 register that is to be loaded with the constant
8693 (denoted as REGZ in the substitution illustration above),
8694 and reg_sum to the register-register that we want to use to
8695 substitute uses of REG (typically in MEMs) with.
8696 First check REG and BASE for being index registers;
8697 we can use them even if they are not dead. */
8698 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8699 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8700 REGNO (base)))
8701 {
8702 const_reg = reg;
8703 reg_sum = plus;
8704 }
8705 else
8706 {
8707 /* Otherwise, look for a free index register. Since we have
8708 checked above that neiter REG nor BASE are index registers,
8709 if we find anything at all, it will be different from these
8710 two registers. */
8711 for (i = first_index_reg; i <= last_index_reg; i++)
8712 {
8713 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8714 i)
8715 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8716 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8717 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8718 {
8719 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8720
8721 const_reg = index_reg;
8722 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8723 break;
8724 }
8725 }
8726 }
8727
8728 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8729 (REGY), i.e. BASE, is not clobbered before the last use we'll
8730 create. */
8731 if (prev_set != 0
8732 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8733 && rtx_equal_p (SET_DEST (prev_set), reg)
8734 && reg_state[regno].use_index >= 0
8735 && (reg_state[REGNO (base)].store_ruid
8736 <= reg_state[regno].use_ruid)
8737 && reg_sum != 0)
8738 {
8739 int i;
8740
8741 /* Change destination register and, if necessary, the
8742 constant value in PREV, the constant loading instruction. */
8743 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8744 if (reg_state[regno].offset != const0_rtx)
8745 validate_change (prev,
8746 &SET_SRC (prev_set),
8747 GEN_INT (INTVAL (SET_SRC (prev_set))
8748 + INTVAL (reg_state[regno].offset)),
8749 1);
8750
8751 /* Now for every use of REG that we have recorded, replace REG
8752 with REG_SUM. */
8753 for (i = reg_state[regno].use_index;
8754 i < RELOAD_COMBINE_MAX_USES; i++)
8755 validate_change (reg_state[regno].reg_use[i].insn,
8756 reg_state[regno].reg_use[i].usep,
8757 reg_sum, 1);
8758
8759 if (apply_change_group ())
8760 {
8761 rtx *np;
8762
8763 /* Delete the reg-reg addition. */
8764 delete_insn (insn);
8765
8766 if (reg_state[regno].offset != const0_rtx)
8767 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8768 are now invalid. */
8769 for (np = &REG_NOTES (prev); *np;)
8770 {
8771 if (REG_NOTE_KIND (*np) == REG_EQUAL
8772 || REG_NOTE_KIND (*np) == REG_EQUIV)
8773 *np = XEXP (*np, 1);
8774 else
8775 np = &XEXP (*np, 1);
8776 }
8777
8778 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8779 reg_state[REGNO (const_reg)].store_ruid
8780 = reload_combine_ruid;
8781 continue;
8782 }
8783 }
8784 }
8785
8786 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8787
8788 if (GET_CODE (insn) == CALL_INSN)
8789 {
8790 rtx link;
8791
8792 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8793 if (call_used_regs[r])
8794 {
8795 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8796 reg_state[r].store_ruid = reload_combine_ruid;
8797 }
8798
8799 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8800 link = XEXP (link, 1))
8801 {
8802 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8803 if (GET_CODE (usage_rtx) == REG)
8804 {
8805 unsigned int i;
8806 unsigned int start_reg = REGNO (usage_rtx);
8807 unsigned int num_regs =
8808 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8809 unsigned int end_reg = start_reg + num_regs - 1;
8810 for (i = start_reg; i <= end_reg; i++)
8811 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8812 {
8813 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8814 reg_state[i].store_ruid = reload_combine_ruid;
8815 }
8816 else
8817 reg_state[i].use_index = -1;
8818 }
8819 }
8820
8821 }
8822 else if (GET_CODE (insn) == JUMP_INSN
8823 && GET_CODE (PATTERN (insn)) != RETURN)
8824 {
8825 /* Non-spill registers might be used at the call destination in
8826 some unknown fashion, so we have to mark the unknown use. */
8827 HARD_REG_SET *live;
8828
8829 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8830 && JUMP_LABEL (insn))
8831 live = &LABEL_LIVE (JUMP_LABEL (insn));
8832 else
8833 live = &ever_live_at_start;
8834
8835 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8836 if (TEST_HARD_REG_BIT (*live, i))
8837 reg_state[i].use_index = -1;
8838 }
8839
8840 reload_combine_note_use (&PATTERN (insn), insn);
8841 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8842 {
8843 if (REG_NOTE_KIND (note) == REG_INC
8844 && GET_CODE (XEXP (note, 0)) == REG)
8845 {
8846 int regno = REGNO (XEXP (note, 0));
8847
8848 reg_state[regno].store_ruid = reload_combine_ruid;
8849 reg_state[regno].use_index = -1;
8850 }
8851 }
8852 }
8853
8854 free (label_live);
8855 }
8856
8857 /* Check if DST is a register or a subreg of a register; if it is,
8858 update reg_state[regno].store_ruid and reg_state[regno].use_index
8859 accordingly. Called via note_stores from reload_combine. */
8860
8861 static void
8862 reload_combine_note_store (dst, set, data)
8863 rtx dst, set;
8864 void *data ATTRIBUTE_UNUSED;
8865 {
8866 int regno = 0;
8867 int i;
8868 enum machine_mode mode = GET_MODE (dst);
8869
8870 if (GET_CODE (dst) == SUBREG)
8871 {
8872 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8873 GET_MODE (SUBREG_REG (dst)),
8874 SUBREG_BYTE (dst),
8875 GET_MODE (dst));
8876 dst = SUBREG_REG (dst);
8877 }
8878 if (GET_CODE (dst) != REG)
8879 return;
8880 regno += REGNO (dst);
8881
8882 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8883 careful with registers / register parts that are not full words.
8884
8885 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8886 if (GET_CODE (set) != SET
8887 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8888 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8889 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8890 {
8891 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8892 {
8893 reg_state[i].use_index = -1;
8894 reg_state[i].store_ruid = reload_combine_ruid;
8895 }
8896 }
8897 else
8898 {
8899 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8900 {
8901 reg_state[i].store_ruid = reload_combine_ruid;
8902 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8903 }
8904 }
8905 }
8906
8907 /* XP points to a piece of rtl that has to be checked for any uses of
8908 registers.
8909 *XP is the pattern of INSN, or a part of it.
8910 Called from reload_combine, and recursively by itself. */
8911 static void
8912 reload_combine_note_use (xp, insn)
8913 rtx *xp, insn;
8914 {
8915 rtx x = *xp;
8916 enum rtx_code code = x->code;
8917 const char *fmt;
8918 int i, j;
8919 rtx offset = const0_rtx; /* For the REG case below. */
8920
8921 switch (code)
8922 {
8923 case SET:
8924 if (GET_CODE (SET_DEST (x)) == REG)
8925 {
8926 reload_combine_note_use (&SET_SRC (x), insn);
8927 return;
8928 }
8929 break;
8930
8931 case USE:
8932 /* If this is the USE of a return value, we can't change it. */
8933 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8934 {
8935 /* Mark the return register as used in an unknown fashion. */
8936 rtx reg = XEXP (x, 0);
8937 int regno = REGNO (reg);
8938 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8939
8940 while (--nregs >= 0)
8941 reg_state[regno + nregs].use_index = -1;
8942 return;
8943 }
8944 break;
8945
8946 case CLOBBER:
8947 if (GET_CODE (SET_DEST (x)) == REG)
8948 {
8949 /* No spurious CLOBBERs of pseudo registers may remain. */
8950 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
8951 abort ();
8952 return;
8953 }
8954 break;
8955
8956 case PLUS:
8957 /* We are interested in (plus (reg) (const_int)) . */
8958 if (GET_CODE (XEXP (x, 0)) != REG
8959 || GET_CODE (XEXP (x, 1)) != CONST_INT)
8960 break;
8961 offset = XEXP (x, 1);
8962 x = XEXP (x, 0);
8963 /* Fall through. */
8964 case REG:
8965 {
8966 int regno = REGNO (x);
8967 int use_index;
8968 int nregs;
8969
8970 /* No spurious USEs of pseudo registers may remain. */
8971 if (regno >= FIRST_PSEUDO_REGISTER)
8972 abort ();
8973
8974 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8975
8976 /* We can't substitute into multi-hard-reg uses. */
8977 if (nregs > 1)
8978 {
8979 while (--nregs >= 0)
8980 reg_state[regno + nregs].use_index = -1;
8981 return;
8982 }
8983
8984 /* If this register is already used in some unknown fashion, we
8985 can't do anything.
8986 If we decrement the index from zero to -1, we can't store more
8987 uses, so this register becomes used in an unknown fashion. */
8988 use_index = --reg_state[regno].use_index;
8989 if (use_index < 0)
8990 return;
8991
8992 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
8993 {
8994 /* We have found another use for a register that is already
8995 used later. Check if the offsets match; if not, mark the
8996 register as used in an unknown fashion. */
8997 if (! rtx_equal_p (offset, reg_state[regno].offset))
8998 {
8999 reg_state[regno].use_index = -1;
9000 return;
9001 }
9002 }
9003 else
9004 {
9005 /* This is the first use of this register we have seen since we
9006 marked it as dead. */
9007 reg_state[regno].offset = offset;
9008 reg_state[regno].use_ruid = reload_combine_ruid;
9009 }
9010 reg_state[regno].reg_use[use_index].insn = insn;
9011 reg_state[regno].reg_use[use_index].usep = xp;
9012 return;
9013 }
9014
9015 default:
9016 break;
9017 }
9018
9019 /* Recursively process the components of X. */
9020 fmt = GET_RTX_FORMAT (code);
9021 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9022 {
9023 if (fmt[i] == 'e')
9024 reload_combine_note_use (&XEXP (x, i), insn);
9025 else if (fmt[i] == 'E')
9026 {
9027 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9028 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9029 }
9030 }
9031 }
9032 \f
9033 /* See if we can reduce the cost of a constant by replacing a move
9034 with an add. We track situations in which a register is set to a
9035 constant or to a register plus a constant. */
9036 /* We cannot do our optimization across labels. Invalidating all the
9037 information about register contents we have would be costly, so we
9038 use move2add_last_label_luid to note where the label is and then
9039 later disable any optimization that would cross it.
9040 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9041 reg_set_luid[n] is greater than last_label_luid[n] . */
9042 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
9043
9044 /* If reg_base_reg[n] is negative, register n has been set to
9045 reg_offset[n] in mode reg_mode[n] .
9046 If reg_base_reg[n] is non-negative, register n has been set to the
9047 sum of reg_offset[n] and the value of register reg_base_reg[n]
9048 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9049 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
9050 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9051 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
9052
9053 /* move2add_luid is linearily increased while scanning the instructions
9054 from first to last. It is used to set reg_set_luid in
9055 reload_cse_move2add and move2add_note_store. */
9056 static int move2add_luid;
9057
9058 /* move2add_last_label_luid is set whenever a label is found. Labels
9059 invalidate all previously collected reg_offset data. */
9060 static int move2add_last_label_luid;
9061
9062 /* Generate a CONST_INT and force it in the range of MODE. */
9063
9064 static HOST_WIDE_INT
9065 sext_for_mode (mode, value)
9066 enum machine_mode mode;
9067 HOST_WIDE_INT value;
9068 {
9069 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9070 int width = GET_MODE_BITSIZE (mode);
9071
9072 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9073 sign extend it. */
9074 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9075 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9076 cval |= (HOST_WIDE_INT) -1 << width;
9077
9078 return cval;
9079 }
9080
9081 /* ??? We don't know how zero / sign extension is handled, hence we
9082 can't go from a narrower to a wider mode. */
9083 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9084 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9085 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9086 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9087 GET_MODE_BITSIZE (INMODE))))
9088
9089 static void
9090 reload_cse_move2add (first)
9091 rtx first;
9092 {
9093 int i;
9094 rtx insn;
9095
9096 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9097 reg_set_luid[i] = 0;
9098
9099 move2add_last_label_luid = 0;
9100 move2add_luid = 2;
9101 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9102 {
9103 rtx pat, note;
9104
9105 if (GET_CODE (insn) == CODE_LABEL)
9106 {
9107 move2add_last_label_luid = move2add_luid;
9108 /* We're going to increment move2add_luid twice after a
9109 label, so that we can use move2add_last_label_luid + 1 as
9110 the luid for constants. */
9111 move2add_luid++;
9112 continue;
9113 }
9114 if (! INSN_P (insn))
9115 continue;
9116 pat = PATTERN (insn);
9117 /* For simplicity, we only perform this optimization on
9118 straightforward SETs. */
9119 if (GET_CODE (pat) == SET
9120 && GET_CODE (SET_DEST (pat)) == REG)
9121 {
9122 rtx reg = SET_DEST (pat);
9123 int regno = REGNO (reg);
9124 rtx src = SET_SRC (pat);
9125
9126 /* Check if we have valid information on the contents of this
9127 register in the mode of REG. */
9128 if (reg_set_luid[regno] > move2add_last_label_luid
9129 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
9130 {
9131 /* Try to transform (set (REGX) (CONST_INT A))
9132 ...
9133 (set (REGX) (CONST_INT B))
9134 to
9135 (set (REGX) (CONST_INT A))
9136 ...
9137 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9138
9139 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9140 {
9141 int success = 0;
9142 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9143 INTVAL (src)
9144 - reg_offset[regno]));
9145 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9146 use (set (reg) (reg)) instead.
9147 We don't delete this insn, nor do we convert it into a
9148 note, to avoid losing register notes or the return
9149 value flag. jump2 already knowns how to get rid of
9150 no-op moves. */
9151 if (new_src == const0_rtx)
9152 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9153 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
9154 && have_add2_insn (reg, new_src))
9155 success = validate_change (insn, &PATTERN (insn),
9156 gen_add2_insn (reg, new_src), 0);
9157 reg_set_luid[regno] = move2add_luid;
9158 reg_mode[regno] = GET_MODE (reg);
9159 reg_offset[regno] = INTVAL (src);
9160 continue;
9161 }
9162
9163 /* Try to transform (set (REGX) (REGY))
9164 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9165 ...
9166 (set (REGX) (REGY))
9167 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9168 to
9169 (REGX) (REGY))
9170 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9171 ...
9172 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9173 else if (GET_CODE (src) == REG
9174 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9175 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9176 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9177 reg_mode[REGNO (src)]))
9178 {
9179 rtx next = next_nonnote_insn (insn);
9180 rtx set = NULL_RTX;
9181 if (next)
9182 set = single_set (next);
9183 if (set
9184 && SET_DEST (set) == reg
9185 && GET_CODE (SET_SRC (set)) == PLUS
9186 && XEXP (SET_SRC (set), 0) == reg
9187 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9188 {
9189 rtx src3 = XEXP (SET_SRC (set), 1);
9190 HOST_WIDE_INT added_offset = INTVAL (src3);
9191 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9192 HOST_WIDE_INT regno_offset = reg_offset[regno];
9193 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9194 added_offset
9195 + base_offset
9196 - regno_offset));
9197 int success = 0;
9198
9199 if (new_src == const0_rtx)
9200 /* See above why we create (set (reg) (reg)) here. */
9201 success
9202 = validate_change (next, &SET_SRC (set), reg, 0);
9203 else if ((rtx_cost (new_src, PLUS)
9204 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
9205 && have_add2_insn (reg, new_src))
9206 success
9207 = validate_change (next, &PATTERN (next),
9208 gen_add2_insn (reg, new_src), 0);
9209 if (success)
9210 delete_insn (insn);
9211 insn = next;
9212 reg_mode[regno] = GET_MODE (reg);
9213 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9214 added_offset
9215 + base_offset);
9216 continue;
9217 }
9218 }
9219 }
9220 }
9221
9222 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9223 {
9224 if (REG_NOTE_KIND (note) == REG_INC
9225 && GET_CODE (XEXP (note, 0)) == REG)
9226 {
9227 /* Reset the information about this register. */
9228 int regno = REGNO (XEXP (note, 0));
9229 if (regno < FIRST_PSEUDO_REGISTER)
9230 reg_set_luid[regno] = 0;
9231 }
9232 }
9233 note_stores (PATTERN (insn), move2add_note_store, NULL);
9234 /* If this is a CALL_INSN, all call used registers are stored with
9235 unknown values. */
9236 if (GET_CODE (insn) == CALL_INSN)
9237 {
9238 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9239 {
9240 if (call_used_regs[i])
9241 /* Reset the information about this register. */
9242 reg_set_luid[i] = 0;
9243 }
9244 }
9245 }
9246 }
9247
9248 /* SET is a SET or CLOBBER that sets DST.
9249 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9250 Called from reload_cse_move2add via note_stores. */
9251
9252 static void
9253 move2add_note_store (dst, set, data)
9254 rtx dst, set;
9255 void *data ATTRIBUTE_UNUSED;
9256 {
9257 unsigned int regno = 0;
9258 unsigned int i;
9259 enum machine_mode mode = GET_MODE (dst);
9260
9261 if (GET_CODE (dst) == SUBREG)
9262 {
9263 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9264 GET_MODE (SUBREG_REG (dst)),
9265 SUBREG_BYTE (dst),
9266 GET_MODE (dst));
9267 dst = SUBREG_REG (dst);
9268 }
9269
9270 /* Some targets do argument pushes without adding REG_INC notes. */
9271
9272 if (GET_CODE (dst) == MEM)
9273 {
9274 dst = XEXP (dst, 0);
9275 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
9276 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
9277 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
9278 return;
9279 }
9280 if (GET_CODE (dst) != REG)
9281 return;
9282
9283 regno += REGNO (dst);
9284
9285 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9286 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9287 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9288 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9289 {
9290 rtx src = SET_SRC (set);
9291 rtx base_reg;
9292 HOST_WIDE_INT offset;
9293 int base_regno;
9294 /* This may be different from mode, if SET_DEST (set) is a
9295 SUBREG. */
9296 enum machine_mode dst_mode = GET_MODE (dst);
9297
9298 switch (GET_CODE (src))
9299 {
9300 case PLUS:
9301 if (GET_CODE (XEXP (src, 0)) == REG)
9302 {
9303 base_reg = XEXP (src, 0);
9304
9305 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9306 offset = INTVAL (XEXP (src, 1));
9307 else if (GET_CODE (XEXP (src, 1)) == REG
9308 && (reg_set_luid[REGNO (XEXP (src, 1))]
9309 > move2add_last_label_luid)
9310 && (MODES_OK_FOR_MOVE2ADD
9311 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9312 {
9313 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9314 offset = reg_offset[REGNO (XEXP (src, 1))];
9315 /* Maybe the first register is known to be a
9316 constant. */
9317 else if (reg_set_luid[REGNO (base_reg)]
9318 > move2add_last_label_luid
9319 && (MODES_OK_FOR_MOVE2ADD
9320 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9321 && reg_base_reg[REGNO (base_reg)] < 0)
9322 {
9323 offset = reg_offset[REGNO (base_reg)];
9324 base_reg = XEXP (src, 1);
9325 }
9326 else
9327 goto invalidate;
9328 }
9329 else
9330 goto invalidate;
9331
9332 break;
9333 }
9334
9335 goto invalidate;
9336
9337 case REG:
9338 base_reg = src;
9339 offset = 0;
9340 break;
9341
9342 case CONST_INT:
9343 /* Start tracking the register as a constant. */
9344 reg_base_reg[regno] = -1;
9345 reg_offset[regno] = INTVAL (SET_SRC (set));
9346 /* We assign the same luid to all registers set to constants. */
9347 reg_set_luid[regno] = move2add_last_label_luid + 1;
9348 reg_mode[regno] = mode;
9349 return;
9350
9351 default:
9352 invalidate:
9353 /* Invalidate the contents of the register. */
9354 reg_set_luid[regno] = 0;
9355 return;
9356 }
9357
9358 base_regno = REGNO (base_reg);
9359 /* If information about the base register is not valid, set it
9360 up as a new base register, pretending its value is known
9361 starting from the current insn. */
9362 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9363 {
9364 reg_base_reg[base_regno] = base_regno;
9365 reg_offset[base_regno] = 0;
9366 reg_set_luid[base_regno] = move2add_luid;
9367 reg_mode[base_regno] = mode;
9368 }
9369 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9370 reg_mode[base_regno]))
9371 goto invalidate;
9372
9373 reg_mode[regno] = mode;
9374
9375 /* Copy base information from our base register. */
9376 reg_set_luid[regno] = reg_set_luid[base_regno];
9377 reg_base_reg[regno] = reg_base_reg[base_regno];
9378
9379 /* Compute the sum of the offsets or constants. */
9380 reg_offset[regno] = sext_for_mode (dst_mode,
9381 offset
9382 + reg_offset[base_regno]);
9383 }
9384 else
9385 {
9386 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9387
9388 for (i = regno; i < endregno; i++)
9389 /* Reset the information about this register. */
9390 reg_set_luid[i] = 0;
9391 }
9392 }
9393
9394 #ifdef AUTO_INC_DEC
9395 static void
9396 add_auto_inc_notes (insn, x)
9397 rtx insn;
9398 rtx x;
9399 {
9400 enum rtx_code code = GET_CODE (x);
9401 const char *fmt;
9402 int i, j;
9403
9404 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9405 {
9406 REG_NOTES (insn)
9407 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9408 return;
9409 }
9410
9411 /* Scan all the operand sub-expressions. */
9412 fmt = GET_RTX_FORMAT (code);
9413 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9414 {
9415 if (fmt[i] == 'e')
9416 add_auto_inc_notes (insn, XEXP (x, i));
9417 else if (fmt[i] == 'E')
9418 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9419 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9420 }
9421 }
9422 #endif
9423
9424 /* Copy EH notes from an insn to its reloads. */
9425 static void
9426 copy_eh_notes (insn, x)
9427 rtx insn;
9428 rtx x;
9429 {
9430 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9431 if (eh_note)
9432 {
9433 for (; x != 0; x = NEXT_INSN (x))
9434 {
9435 if (may_trap_p (PATTERN (x)))
9436 REG_NOTES (x)
9437 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9438 REG_NOTES (x));
9439 }
9440 }
9441 }
9442
9443 /* This is used by reload pass, that does emit some instructions after
9444 abnormal calls moving basic block end, but in fact it wants to emit
9445 them on the edge. Looks for abnormal call edges, find backward the
9446 proper call and fix the damage.
9447
9448 Similar handle instructions throwing exceptions internally. */
9449 static void
9450 fixup_abnormal_edges ()
9451 {
9452 int i;
9453 bool inserted = false;
9454
9455 for (i = 0; i < n_basic_blocks; i++)
9456 {
9457 basic_block bb = BASIC_BLOCK (i);
9458 edge e;
9459
9460 /* Look for cases we are interested in - an calls or instructions causing
9461 exceptions. */
9462 for (e = bb->succ; e; e = e->succ_next)
9463 {
9464 if (e->flags & EDGE_ABNORMAL_CALL)
9465 break;
9466 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
9467 == (EDGE_ABNORMAL | EDGE_EH))
9468 break;
9469 }
9470 if (e && GET_CODE (bb->end) != CALL_INSN && !can_throw_internal (bb->end))
9471 {
9472 rtx insn = bb->end, stop = NEXT_INSN (bb->end);
9473 rtx next;
9474 for (e = bb->succ; e; e = e->succ_next)
9475 if (e->flags & EDGE_FALLTHRU)
9476 break;
9477 /* Get past the new insns generated. Allow notes, as the insns may
9478 be already deleted. */
9479 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
9480 && !can_throw_internal (insn)
9481 && insn != bb->head)
9482 insn = PREV_INSN (insn);
9483 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
9484 abort ();
9485 bb->end = insn;
9486 inserted = true;
9487 insn = NEXT_INSN (insn);
9488 while (insn && insn != stop)
9489 {
9490 next = NEXT_INSN (insn);
9491 if (INSN_P (insn))
9492 {
9493 insert_insn_on_edge (PATTERN (insn), e);
9494 delete_insn (insn);
9495 }
9496 insn = next;
9497 }
9498 }
9499 }
9500 if (inserted)
9501 commit_edge_insertions ();
9502 }
This page took 0.474144 seconds and 6 git commands to generate.