]> gcc.gnu.org Git - gcc.git/blob - gcc/reload1.c
bb-reorder.c (make_reorder_chain, [...]): Use FOR_EACH_BB macros to iterate over...
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "regs.h"
36 #include "basic-block.h"
37 #include "reload.h"
38 #include "recog.h"
39 #include "output.h"
40 #include "cselib.h"
41 #include "real.h"
42 #include "toplev.h"
43 #include "except.h"
44 #include "tree.h"
45
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
52
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
56
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
60
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
68
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
72
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
79
80 #ifndef REGISTER_MOVE_COST
81 #define REGISTER_MOVE_COST(m, x, y) 2
82 #endif
83
84 #ifndef LOCAL_REGNO
85 #define LOCAL_REGNO(REGNO) 0
86 #endif
87 \f
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
91
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static char *reg_has_output_reload;
95
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
99
100 /* Element N is the constant value to which pseudo reg N is equivalent,
101 or zero if pseudo reg N is not equivalent to a constant.
102 find_reloads looks at this in order to replace pseudo reg N
103 with the constant it stands for. */
104 rtx *reg_equiv_constant;
105
106 /* Element N is a memory location to which pseudo reg N is equivalent,
107 prior to any register elimination (such as frame pointer to stack
108 pointer). Depending on whether or not it is a valid address, this value
109 is transferred to either reg_equiv_address or reg_equiv_mem. */
110 rtx *reg_equiv_memory_loc;
111
112 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
113 This is used when the address is not valid as a memory address
114 (because its displacement is too big for the machine.) */
115 rtx *reg_equiv_address;
116
117 /* Element N is the memory slot to which pseudo reg N is equivalent,
118 or zero if pseudo reg N is not equivalent to a memory slot. */
119 rtx *reg_equiv_mem;
120
121 /* Widest width in which each pseudo reg is referred to (via subreg). */
122 static unsigned int *reg_max_ref_width;
123
124 /* Element N is the list of insns that initialized reg N from its equivalent
125 constant or memory slot. */
126 static rtx *reg_equiv_init;
127
128 /* Vector to remember old contents of reg_renumber before spilling. */
129 static short *reg_old_renumber;
130
131 /* During reload_as_needed, element N contains the last pseudo regno reloaded
132 into hard register N. If that pseudo reg occupied more than one register,
133 reg_reloaded_contents points to that pseudo for each spill register in
134 use; all of these must remain set for an inheritance to occur. */
135 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
136
137 /* During reload_as_needed, element N contains the insn for which
138 hard register N was last used. Its contents are significant only
139 when reg_reloaded_valid is set for this register. */
140 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
141
142 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
143 static HARD_REG_SET reg_reloaded_valid;
144 /* Indicate if the register was dead at the end of the reload.
145 This is only valid if reg_reloaded_contents is set and valid. */
146 static HARD_REG_SET reg_reloaded_dead;
147
148 /* Number of spill-regs so far; number of valid elements of spill_regs. */
149 static int n_spills;
150
151 /* In parallel with spill_regs, contains REG rtx's for those regs.
152 Holds the last rtx used for any given reg, or 0 if it has never
153 been used for spilling yet. This rtx is reused, provided it has
154 the proper mode. */
155 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
156
157 /* In parallel with spill_regs, contains nonzero for a spill reg
158 that was stored after the last time it was used.
159 The precise value is the insn generated to do the store. */
160 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
161
162 /* This is the register that was stored with spill_reg_store. This is a
163 copy of reload_out / reload_out_reg when the value was stored; if
164 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
165 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
166
167 /* This table is the inverse mapping of spill_regs:
168 indexed by hard reg number,
169 it contains the position of that reg in spill_regs,
170 or -1 for something that is not in spill_regs.
171
172 ?!? This is no longer accurate. */
173 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
174
175 /* This reg set indicates registers that can't be used as spill registers for
176 the currently processed insn. These are the hard registers which are live
177 during the insn, but not allocated to pseudos, as well as fixed
178 registers. */
179 static HARD_REG_SET bad_spill_regs;
180
181 /* These are the hard registers that can't be used as spill register for any
182 insn. This includes registers used for user variables and registers that
183 we can't eliminate. A register that appears in this set also can't be used
184 to retry register allocation. */
185 static HARD_REG_SET bad_spill_regs_global;
186
187 /* Describes order of use of registers for reloading
188 of spilled pseudo-registers. `n_spills' is the number of
189 elements that are actually valid; new ones are added at the end.
190
191 Both spill_regs and spill_reg_order are used on two occasions:
192 once during find_reload_regs, where they keep track of the spill registers
193 for a single insn, but also during reload_as_needed where they show all
194 the registers ever used by reload. For the latter case, the information
195 is calculated during finish_spills. */
196 static short spill_regs[FIRST_PSEUDO_REGISTER];
197
198 /* This vector of reg sets indicates, for each pseudo, which hard registers
199 may not be used for retrying global allocation because the register was
200 formerly spilled from one of them. If we allowed reallocating a pseudo to
201 a register that it was already allocated to, reload might not
202 terminate. */
203 static HARD_REG_SET *pseudo_previous_regs;
204
205 /* This vector of reg sets indicates, for each pseudo, which hard
206 registers may not be used for retrying global allocation because they
207 are used as spill registers during one of the insns in which the
208 pseudo is live. */
209 static HARD_REG_SET *pseudo_forbidden_regs;
210
211 /* All hard regs that have been used as spill registers for any insn are
212 marked in this set. */
213 static HARD_REG_SET used_spill_regs;
214
215 /* Index of last register assigned as a spill register. We allocate in
216 a round-robin fashion. */
217 static int last_spill_reg;
218
219 /* Nonzero if indirect addressing is supported on the machine; this means
220 that spilling (REG n) does not require reloading it into a register in
221 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
222 value indicates the level of indirect addressing supported, e.g., two
223 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
224 a hard register. */
225 static char spill_indirect_levels;
226
227 /* Nonzero if indirect addressing is supported when the innermost MEM is
228 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
229 which these are valid is the same as spill_indirect_levels, above. */
230 char indirect_symref_ok;
231
232 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
233 char double_reg_address_ok;
234
235 /* Record the stack slot for each spilled hard register. */
236 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
237
238 /* Width allocated so far for that stack slot. */
239 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
240
241 /* Record which pseudos needed to be spilled. */
242 static regset_head spilled_pseudos;
243
244 /* Used for communication between order_regs_for_reload and count_pseudo.
245 Used to avoid counting one pseudo twice. */
246 static regset_head pseudos_counted;
247
248 /* First uid used by insns created by reload in this function.
249 Used in find_equiv_reg. */
250 int reload_first_uid;
251
252 /* Flag set by local-alloc or global-alloc if anything is live in
253 a call-clobbered reg across calls. */
254 int caller_save_needed;
255
256 /* Set to 1 while reload_as_needed is operating.
257 Required by some machines to handle any generated moves differently. */
258 int reload_in_progress = 0;
259
260 /* These arrays record the insn_code of insns that may be needed to
261 perform input and output reloads of special objects. They provide a
262 place to pass a scratch register. */
263 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
264 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
265
266 /* This obstack is used for allocation of rtl during register elimination.
267 The allocated storage can be freed once find_reloads has processed the
268 insn. */
269 struct obstack reload_obstack;
270
271 /* Points to the beginning of the reload_obstack. All insn_chain structures
272 are allocated first. */
273 char *reload_startobj;
274
275 /* The point after all insn_chain structures. Used to quickly deallocate
276 memory allocated in copy_reloads during calculate_needs_all_insns. */
277 char *reload_firstobj;
278
279 /* This points before all local rtl generated by register elimination.
280 Used to quickly free all memory after processing one insn. */
281 static char *reload_insn_firstobj;
282
283 #define obstack_chunk_alloc xmalloc
284 #define obstack_chunk_free free
285
286 /* List of insn_chain instructions, one for every insn that reload needs to
287 examine. */
288 struct insn_chain *reload_insn_chain;
289
290 #ifdef TREE_CODE
291 extern tree current_function_decl;
292 #else
293 extern union tree_node *current_function_decl;
294 #endif
295
296 /* List of all insns needing reloads. */
297 static struct insn_chain *insns_need_reload;
298 \f
299 /* This structure is used to record information about register eliminations.
300 Each array entry describes one possible way of eliminating a register
301 in favor of another. If there is more than one way of eliminating a
302 particular register, the most preferred should be specified first. */
303
304 struct elim_table
305 {
306 int from; /* Register number to be eliminated. */
307 int to; /* Register number used as replacement. */
308 int initial_offset; /* Initial difference between values. */
309 int can_eliminate; /* Non-zero if this elimination can be done. */
310 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
311 insns made by reload. */
312 int offset; /* Current offset between the two regs. */
313 int previous_offset; /* Offset at end of previous insn. */
314 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
315 rtx from_rtx; /* REG rtx for the register to be eliminated.
316 We cannot simply compare the number since
317 we might then spuriously replace a hard
318 register corresponding to a pseudo
319 assigned to the reg to be eliminated. */
320 rtx to_rtx; /* REG rtx for the replacement. */
321 };
322
323 static struct elim_table *reg_eliminate = 0;
324
325 /* This is an intermediate structure to initialize the table. It has
326 exactly the members provided by ELIMINABLE_REGS. */
327 static const struct elim_table_1
328 {
329 const int from;
330 const int to;
331 } reg_eliminate_1[] =
332
333 /* If a set of eliminable registers was specified, define the table from it.
334 Otherwise, default to the normal case of the frame pointer being
335 replaced by the stack pointer. */
336
337 #ifdef ELIMINABLE_REGS
338 ELIMINABLE_REGS;
339 #else
340 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
341 #endif
342
343 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
344
345 /* Record the number of pending eliminations that have an offset not equal
346 to their initial offset. If non-zero, we use a new copy of each
347 replacement result in any insns encountered. */
348 int num_not_at_initial_offset;
349
350 /* Count the number of registers that we may be able to eliminate. */
351 static int num_eliminable;
352 /* And the number of registers that are equivalent to a constant that
353 can be eliminated to frame_pointer / arg_pointer + constant. */
354 static int num_eliminable_invariants;
355
356 /* For each label, we record the offset of each elimination. If we reach
357 a label by more than one path and an offset differs, we cannot do the
358 elimination. This information is indexed by the number of the label.
359 The first table is an array of flags that records whether we have yet
360 encountered a label and the second table is an array of arrays, one
361 entry in the latter array for each elimination. */
362
363 static char *offsets_known_at;
364 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
365
366 /* Number of labels in the current function. */
367
368 static int num_labels;
369 \f
370 static void replace_pseudos_in_call_usage PARAMS ((rtx *,
371 enum machine_mode,
372 rtx));
373 static void maybe_fix_stack_asms PARAMS ((void));
374 static void copy_reloads PARAMS ((struct insn_chain *));
375 static void calculate_needs_all_insns PARAMS ((int));
376 static int find_reg PARAMS ((struct insn_chain *, int));
377 static void find_reload_regs PARAMS ((struct insn_chain *));
378 static void select_reload_regs PARAMS ((void));
379 static void delete_caller_save_insns PARAMS ((void));
380
381 static void spill_failure PARAMS ((rtx, enum reg_class));
382 static void count_spilled_pseudo PARAMS ((int, int, int));
383 static void delete_dead_insn PARAMS ((rtx));
384 static void alter_reg PARAMS ((int, int));
385 static void set_label_offsets PARAMS ((rtx, rtx, int));
386 static void check_eliminable_occurrences PARAMS ((rtx));
387 static void elimination_effects PARAMS ((rtx, enum machine_mode));
388 static int eliminate_regs_in_insn PARAMS ((rtx, int));
389 static void update_eliminable_offsets PARAMS ((void));
390 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
391 static void set_initial_elim_offsets PARAMS ((void));
392 static void verify_initial_elim_offsets PARAMS ((void));
393 static void set_initial_label_offsets PARAMS ((void));
394 static void set_offsets_for_label PARAMS ((rtx));
395 static void init_elim_table PARAMS ((void));
396 static void update_eliminables PARAMS ((HARD_REG_SET *));
397 static void spill_hard_reg PARAMS ((unsigned int, int));
398 static int finish_spills PARAMS ((int));
399 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
400 static void scan_paradoxical_subregs PARAMS ((rtx));
401 static void count_pseudo PARAMS ((int));
402 static void order_regs_for_reload PARAMS ((struct insn_chain *));
403 static void reload_as_needed PARAMS ((int));
404 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
405 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
406 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
407 enum reload_type,
408 enum machine_mode));
409 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
410 enum reload_type,
411 enum machine_mode));
412 static int reload_reg_free_p PARAMS ((unsigned int, int,
413 enum reload_type));
414 static int reload_reg_free_for_value_p PARAMS ((int, int, int,
415 enum reload_type,
416 rtx, rtx, int, int));
417 static int free_for_value_p PARAMS ((int, enum machine_mode, int,
418 enum reload_type, rtx, rtx,
419 int, int));
420 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
421 enum reload_type));
422 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
423 int));
424 static int conflicts_with_override PARAMS ((rtx));
425 static void failed_reload PARAMS ((rtx, int));
426 static int set_reload_reg PARAMS ((int, int));
427 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
428 static void choose_reload_regs PARAMS ((struct insn_chain *));
429 static void merge_assigned_reloads PARAMS ((rtx));
430 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
431 struct reload *, rtx, int));
432 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
433 struct reload *, int));
434 static void do_input_reload PARAMS ((struct insn_chain *,
435 struct reload *, int));
436 static void do_output_reload PARAMS ((struct insn_chain *,
437 struct reload *, int));
438 static void emit_reload_insns PARAMS ((struct insn_chain *));
439 static void delete_output_reload PARAMS ((rtx, int, int));
440 static void delete_address_reloads PARAMS ((rtx, rtx));
441 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
442 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
443 static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
444 static void reload_cse_regs_1 PARAMS ((rtx));
445 static int reload_cse_noop_set_p PARAMS ((rtx));
446 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
447 static int reload_cse_simplify_operands PARAMS ((rtx));
448 static void reload_combine PARAMS ((void));
449 static void reload_combine_note_use PARAMS ((rtx *, rtx));
450 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
451 static void reload_cse_move2add PARAMS ((rtx));
452 static void move2add_note_store PARAMS ((rtx, rtx, void *));
453 #ifdef AUTO_INC_DEC
454 static void add_auto_inc_notes PARAMS ((rtx, rtx));
455 #endif
456 static void copy_eh_notes PARAMS ((rtx, rtx));
457 static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
458 HOST_WIDE_INT));
459 static void failed_reload PARAMS ((rtx, int));
460 static int set_reload_reg PARAMS ((int, int));
461 static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
462 static void reload_cse_simplify PARAMS ((rtx));
463 void fixup_abnormal_edges PARAMS ((void));
464 extern void dump_needs PARAMS ((struct insn_chain *));
465 \f
466 /* Initialize the reload pass once per compilation. */
467
468 void
469 init_reload ()
470 {
471 int i;
472
473 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
474 Set spill_indirect_levels to the number of levels such addressing is
475 permitted, zero if it is not permitted at all. */
476
477 rtx tem
478 = gen_rtx_MEM (Pmode,
479 gen_rtx_PLUS (Pmode,
480 gen_rtx_REG (Pmode,
481 LAST_VIRTUAL_REGISTER + 1),
482 GEN_INT (4)));
483 spill_indirect_levels = 0;
484
485 while (memory_address_p (QImode, tem))
486 {
487 spill_indirect_levels++;
488 tem = gen_rtx_MEM (Pmode, tem);
489 }
490
491 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
492
493 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
494 indirect_symref_ok = memory_address_p (QImode, tem);
495
496 /* See if reg+reg is a valid (and offsettable) address. */
497
498 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
499 {
500 tem = gen_rtx_PLUS (Pmode,
501 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
502 gen_rtx_REG (Pmode, i));
503
504 /* This way, we make sure that reg+reg is an offsettable address. */
505 tem = plus_constant (tem, 4);
506
507 if (memory_address_p (QImode, tem))
508 {
509 double_reg_address_ok = 1;
510 break;
511 }
512 }
513
514 /* Initialize obstack for our rtl allocation. */
515 gcc_obstack_init (&reload_obstack);
516 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
517
518 INIT_REG_SET (&spilled_pseudos);
519 INIT_REG_SET (&pseudos_counted);
520 }
521
522 /* List of insn chains that are currently unused. */
523 static struct insn_chain *unused_insn_chains = 0;
524
525 /* Allocate an empty insn_chain structure. */
526 struct insn_chain *
527 new_insn_chain ()
528 {
529 struct insn_chain *c;
530
531 if (unused_insn_chains == 0)
532 {
533 c = (struct insn_chain *)
534 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
535 INIT_REG_SET (&c->live_throughout);
536 INIT_REG_SET (&c->dead_or_set);
537 }
538 else
539 {
540 c = unused_insn_chains;
541 unused_insn_chains = c->next;
542 }
543 c->is_caller_save_insn = 0;
544 c->need_operand_change = 0;
545 c->need_reload = 0;
546 c->need_elim = 0;
547 return c;
548 }
549
550 /* Small utility function to set all regs in hard reg set TO which are
551 allocated to pseudos in regset FROM. */
552
553 void
554 compute_use_by_pseudos (to, from)
555 HARD_REG_SET *to;
556 regset from;
557 {
558 unsigned int regno;
559
560 EXECUTE_IF_SET_IN_REG_SET
561 (from, FIRST_PSEUDO_REGISTER, regno,
562 {
563 int r = reg_renumber[regno];
564 int nregs;
565
566 if (r < 0)
567 {
568 /* reload_combine uses the information from
569 BASIC_BLOCK->global_live_at_start, which might still
570 contain registers that have not actually been allocated
571 since they have an equivalence. */
572 if (! reload_completed)
573 abort ();
574 }
575 else
576 {
577 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
578 while (nregs-- > 0)
579 SET_HARD_REG_BIT (*to, r + nregs);
580 }
581 });
582 }
583
584 /* Replace all pseudos found in LOC with their corresponding
585 equivalences. */
586
587 static void
588 replace_pseudos_in_call_usage (loc, mem_mode, usage)
589 rtx *loc;
590 enum machine_mode mem_mode;
591 rtx usage;
592 {
593 rtx x = *loc;
594 enum rtx_code code;
595 const char *fmt;
596 int i, j;
597
598 if (! x)
599 return;
600
601 code = GET_CODE (x);
602 if (code == REG)
603 {
604 unsigned int regno = REGNO (x);
605
606 if (regno < FIRST_PSEUDO_REGISTER)
607 return;
608
609 x = eliminate_regs (x, mem_mode, usage);
610 if (x != *loc)
611 {
612 *loc = x;
613 replace_pseudos_in_call_usage (loc, mem_mode, usage);
614 return;
615 }
616
617 if (reg_equiv_constant[regno])
618 *loc = reg_equiv_constant[regno];
619 else if (reg_equiv_mem[regno])
620 *loc = reg_equiv_mem[regno];
621 else if (reg_equiv_address[regno])
622 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
623 else if (GET_CODE (regno_reg_rtx[regno]) != REG
624 || REGNO (regno_reg_rtx[regno]) != regno)
625 *loc = regno_reg_rtx[regno];
626 else
627 abort ();
628
629 return;
630 }
631 else if (code == MEM)
632 {
633 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
634 return;
635 }
636
637 /* Process each of our operands recursively. */
638 fmt = GET_RTX_FORMAT (code);
639 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
640 if (*fmt == 'e')
641 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
642 else if (*fmt == 'E')
643 for (j = 0; j < XVECLEN (x, i); j++)
644 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
645 }
646
647 \f
648 /* Global variables used by reload and its subroutines. */
649
650 /* Set during calculate_needs if an insn needs register elimination. */
651 static int something_needs_elimination;
652 /* Set during calculate_needs if an insn needs an operand changed. */
653 int something_needs_operands_changed;
654
655 /* Nonzero means we couldn't get enough spill regs. */
656 static int failure;
657
658 /* Main entry point for the reload pass.
659
660 FIRST is the first insn of the function being compiled.
661
662 GLOBAL nonzero means we were called from global_alloc
663 and should attempt to reallocate any pseudoregs that we
664 displace from hard regs we will use for reloads.
665 If GLOBAL is zero, we do not have enough information to do that,
666 so any pseudo reg that is spilled must go to the stack.
667
668 Return value is nonzero if reload failed
669 and we must not do any more for this function. */
670
671 int
672 reload (first, global)
673 rtx first;
674 int global;
675 {
676 int i;
677 rtx insn;
678 struct elim_table *ep;
679 basic_block bb;
680
681 /* The two pointers used to track the true location of the memory used
682 for label offsets. */
683 char *real_known_ptr = NULL;
684 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
685
686 /* Make sure even insns with volatile mem refs are recognizable. */
687 init_recog ();
688
689 failure = 0;
690
691 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
692
693 /* Make sure that the last insn in the chain
694 is not something that needs reloading. */
695 emit_note (NULL, NOTE_INSN_DELETED);
696
697 /* Enable find_equiv_reg to distinguish insns made by reload. */
698 reload_first_uid = get_max_uid ();
699
700 #ifdef SECONDARY_MEMORY_NEEDED
701 /* Initialize the secondary memory table. */
702 clear_secondary_mem ();
703 #endif
704
705 /* We don't have a stack slot for any spill reg yet. */
706 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
707 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
708
709 /* Initialize the save area information for caller-save, in case some
710 are needed. */
711 init_save_areas ();
712
713 /* Compute which hard registers are now in use
714 as homes for pseudo registers.
715 This is done here rather than (eg) in global_alloc
716 because this point is reached even if not optimizing. */
717 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
718 mark_home_live (i);
719
720 /* A function that receives a nonlocal goto must save all call-saved
721 registers. */
722 if (current_function_has_nonlocal_label)
723 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
724 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
725 regs_ever_live[i] = 1;
726
727 /* Find all the pseudo registers that didn't get hard regs
728 but do have known equivalent constants or memory slots.
729 These include parameters (known equivalent to parameter slots)
730 and cse'd or loop-moved constant memory addresses.
731
732 Record constant equivalents in reg_equiv_constant
733 so they will be substituted by find_reloads.
734 Record memory equivalents in reg_mem_equiv so they can
735 be substituted eventually by altering the REG-rtx's. */
736
737 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
738 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
739 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
740 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
741 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
742 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
743 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
744 pseudo_forbidden_regs
745 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
746 pseudo_previous_regs
747 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
748
749 CLEAR_HARD_REG_SET (bad_spill_regs_global);
750
751 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
752 Also find all paradoxical subregs and find largest such for each pseudo.
753 On machines with small register classes, record hard registers that
754 are used for user variables. These can never be used for spills.
755 Also look for a "constant" REG_SETJMP. This means that all
756 caller-saved registers must be marked live. */
757
758 num_eliminable_invariants = 0;
759 for (insn = first; insn; insn = NEXT_INSN (insn))
760 {
761 rtx set = single_set (insn);
762
763 /* We may introduce USEs that we want to remove at the end, so
764 we'll mark them with QImode. Make sure there are no
765 previously-marked insns left by say regmove. */
766 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
767 && GET_MODE (insn) != VOIDmode)
768 PUT_MODE (insn, VOIDmode);
769
770 if (GET_CODE (insn) == CALL_INSN
771 && find_reg_note (insn, REG_SETJMP, NULL))
772 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
773 if (! call_used_regs[i])
774 regs_ever_live[i] = 1;
775
776 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
777 {
778 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
779 if (note
780 #ifdef LEGITIMATE_PIC_OPERAND_P
781 && (! function_invariant_p (XEXP (note, 0))
782 || ! flag_pic
783 /* A function invariant is often CONSTANT_P but may
784 include a register. We promise to only pass
785 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
786 || (CONSTANT_P (XEXP (note, 0))
787 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
788 #endif
789 )
790 {
791 rtx x = XEXP (note, 0);
792 i = REGNO (SET_DEST (set));
793 if (i > LAST_VIRTUAL_REGISTER)
794 {
795 /* It can happen that a REG_EQUIV note contains a MEM
796 that is not a legitimate memory operand. As later
797 stages of reload assume that all addresses found
798 in the reg_equiv_* arrays were originally legitimate,
799 we ignore such REG_EQUIV notes. */
800 if (memory_operand (x, VOIDmode))
801 {
802 /* Always unshare the equivalence, so we can
803 substitute into this insn without touching the
804 equivalence. */
805 reg_equiv_memory_loc[i] = copy_rtx (x);
806 }
807 else if (function_invariant_p (x))
808 {
809 if (GET_CODE (x) == PLUS)
810 {
811 /* This is PLUS of frame pointer and a constant,
812 and might be shared. Unshare it. */
813 reg_equiv_constant[i] = copy_rtx (x);
814 num_eliminable_invariants++;
815 }
816 else if (x == frame_pointer_rtx
817 || x == arg_pointer_rtx)
818 {
819 reg_equiv_constant[i] = x;
820 num_eliminable_invariants++;
821 }
822 else if (LEGITIMATE_CONSTANT_P (x))
823 reg_equiv_constant[i] = x;
824 else
825 reg_equiv_memory_loc[i]
826 = force_const_mem (GET_MODE (SET_DEST (set)), x);
827 }
828 else
829 continue;
830
831 /* If this register is being made equivalent to a MEM
832 and the MEM is not SET_SRC, the equivalencing insn
833 is one with the MEM as a SET_DEST and it occurs later.
834 So don't mark this insn now. */
835 if (GET_CODE (x) != MEM
836 || rtx_equal_p (SET_SRC (set), x))
837 reg_equiv_init[i]
838 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
839 }
840 }
841 }
842
843 /* If this insn is setting a MEM from a register equivalent to it,
844 this is the equivalencing insn. */
845 else if (set && GET_CODE (SET_DEST (set)) == MEM
846 && GET_CODE (SET_SRC (set)) == REG
847 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
848 && rtx_equal_p (SET_DEST (set),
849 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
850 reg_equiv_init[REGNO (SET_SRC (set))]
851 = gen_rtx_INSN_LIST (VOIDmode, insn,
852 reg_equiv_init[REGNO (SET_SRC (set))]);
853
854 if (INSN_P (insn))
855 scan_paradoxical_subregs (PATTERN (insn));
856 }
857
858 init_elim_table ();
859
860 num_labels = max_label_num () - get_first_label_num ();
861
862 /* Allocate the tables used to store offset information at labels. */
863 /* We used to use alloca here, but the size of what it would try to
864 allocate would occasionally cause it to exceed the stack limit and
865 cause a core dump. */
866 real_known_ptr = xmalloc (num_labels);
867 real_at_ptr
868 = (int (*)[NUM_ELIMINABLE_REGS])
869 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
870
871 offsets_known_at = real_known_ptr - get_first_label_num ();
872 offsets_at
873 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
874
875 /* Alter each pseudo-reg rtx to contain its hard reg number.
876 Assign stack slots to the pseudos that lack hard regs or equivalents.
877 Do not touch virtual registers. */
878
879 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
880 alter_reg (i, -1);
881
882 /* If we have some registers we think can be eliminated, scan all insns to
883 see if there is an insn that sets one of these registers to something
884 other than itself plus a constant. If so, the register cannot be
885 eliminated. Doing this scan here eliminates an extra pass through the
886 main reload loop in the most common case where register elimination
887 cannot be done. */
888 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
889 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
890 || GET_CODE (insn) == CALL_INSN)
891 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
892
893 maybe_fix_stack_asms ();
894
895 insns_need_reload = 0;
896 something_needs_elimination = 0;
897
898 /* Initialize to -1, which means take the first spill register. */
899 last_spill_reg = -1;
900
901 /* Spill any hard regs that we know we can't eliminate. */
902 CLEAR_HARD_REG_SET (used_spill_regs);
903 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
904 if (! ep->can_eliminate)
905 spill_hard_reg (ep->from, 1);
906
907 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
908 if (frame_pointer_needed)
909 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
910 #endif
911 finish_spills (global);
912
913 /* From now on, we may need to generate moves differently. We may also
914 allow modifications of insns which cause them to not be recognized.
915 Any such modifications will be cleaned up during reload itself. */
916 reload_in_progress = 1;
917
918 /* This loop scans the entire function each go-round
919 and repeats until one repetition spills no additional hard regs. */
920 for (;;)
921 {
922 int something_changed;
923 int did_spill;
924
925 HOST_WIDE_INT starting_frame_size;
926
927 /* Round size of stack frame to stack_alignment_needed. This must be done
928 here because the stack size may be a part of the offset computation
929 for register elimination, and there might have been new stack slots
930 created in the last iteration of this loop. */
931 if (cfun->stack_alignment_needed)
932 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
933
934 starting_frame_size = get_frame_size ();
935
936 set_initial_elim_offsets ();
937 set_initial_label_offsets ();
938
939 /* For each pseudo register that has an equivalent location defined,
940 try to eliminate any eliminable registers (such as the frame pointer)
941 assuming initial offsets for the replacement register, which
942 is the normal case.
943
944 If the resulting location is directly addressable, substitute
945 the MEM we just got directly for the old REG.
946
947 If it is not addressable but is a constant or the sum of a hard reg
948 and constant, it is probably not addressable because the constant is
949 out of range, in that case record the address; we will generate
950 hairy code to compute the address in a register each time it is
951 needed. Similarly if it is a hard register, but one that is not
952 valid as an address register.
953
954 If the location is not addressable, but does not have one of the
955 above forms, assign a stack slot. We have to do this to avoid the
956 potential of producing lots of reloads if, e.g., a location involves
957 a pseudo that didn't get a hard register and has an equivalent memory
958 location that also involves a pseudo that didn't get a hard register.
959
960 Perhaps at some point we will improve reload_when_needed handling
961 so this problem goes away. But that's very hairy. */
962
963 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
964 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
965 {
966 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
967
968 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
969 XEXP (x, 0)))
970 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
971 else if (CONSTANT_P (XEXP (x, 0))
972 || (GET_CODE (XEXP (x, 0)) == REG
973 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
974 || (GET_CODE (XEXP (x, 0)) == PLUS
975 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
976 && (REGNO (XEXP (XEXP (x, 0), 0))
977 < FIRST_PSEUDO_REGISTER)
978 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
979 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
980 else
981 {
982 /* Make a new stack slot. Then indicate that something
983 changed so we go back and recompute offsets for
984 eliminable registers because the allocation of memory
985 below might change some offset. reg_equiv_{mem,address}
986 will be set up for this pseudo on the next pass around
987 the loop. */
988 reg_equiv_memory_loc[i] = 0;
989 reg_equiv_init[i] = 0;
990 alter_reg (i, -1);
991 }
992 }
993
994 if (caller_save_needed)
995 setup_save_areas ();
996
997 /* If we allocated another stack slot, redo elimination bookkeeping. */
998 if (starting_frame_size != get_frame_size ())
999 continue;
1000
1001 if (caller_save_needed)
1002 {
1003 save_call_clobbered_regs ();
1004 /* That might have allocated new insn_chain structures. */
1005 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1006 }
1007
1008 calculate_needs_all_insns (global);
1009
1010 CLEAR_REG_SET (&spilled_pseudos);
1011 did_spill = 0;
1012
1013 something_changed = 0;
1014
1015 /* If we allocated any new memory locations, make another pass
1016 since it might have changed elimination offsets. */
1017 if (starting_frame_size != get_frame_size ())
1018 something_changed = 1;
1019
1020 {
1021 HARD_REG_SET to_spill;
1022 CLEAR_HARD_REG_SET (to_spill);
1023 update_eliminables (&to_spill);
1024 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1025 if (TEST_HARD_REG_BIT (to_spill, i))
1026 {
1027 spill_hard_reg (i, 1);
1028 did_spill = 1;
1029
1030 /* Regardless of the state of spills, if we previously had
1031 a register that we thought we could eliminate, but no can
1032 not eliminate, we must run another pass.
1033
1034 Consider pseudos which have an entry in reg_equiv_* which
1035 reference an eliminable register. We must make another pass
1036 to update reg_equiv_* so that we do not substitute in the
1037 old value from when we thought the elimination could be
1038 performed. */
1039 something_changed = 1;
1040 }
1041 }
1042
1043 select_reload_regs ();
1044 if (failure)
1045 goto failed;
1046
1047 if (insns_need_reload != 0 || did_spill)
1048 something_changed |= finish_spills (global);
1049
1050 if (! something_changed)
1051 break;
1052
1053 if (caller_save_needed)
1054 delete_caller_save_insns ();
1055
1056 obstack_free (&reload_obstack, reload_firstobj);
1057 }
1058
1059 /* If global-alloc was run, notify it of any register eliminations we have
1060 done. */
1061 if (global)
1062 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1063 if (ep->can_eliminate)
1064 mark_elimination (ep->from, ep->to);
1065
1066 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1067 If that insn didn't set the register (i.e., it copied the register to
1068 memory), just delete that insn instead of the equivalencing insn plus
1069 anything now dead. If we call delete_dead_insn on that insn, we may
1070 delete the insn that actually sets the register if the register dies
1071 there and that is incorrect. */
1072
1073 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1074 {
1075 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1076 {
1077 rtx list;
1078 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1079 {
1080 rtx equiv_insn = XEXP (list, 0);
1081
1082 /* If we already deleted the insn or if it may trap, we can't
1083 delete it. The latter case shouldn't happen, but can
1084 if an insn has a variable address, gets a REG_EH_REGION
1085 note added to it, and then gets converted into an load
1086 from a constant address. */
1087 if (GET_CODE (equiv_insn) == NOTE
1088 || can_throw_internal (equiv_insn))
1089 ;
1090 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1091 delete_dead_insn (equiv_insn);
1092 else
1093 {
1094 PUT_CODE (equiv_insn, NOTE);
1095 NOTE_SOURCE_FILE (equiv_insn) = 0;
1096 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1097 }
1098 }
1099 }
1100 }
1101
1102 /* Use the reload registers where necessary
1103 by generating move instructions to move the must-be-register
1104 values into or out of the reload registers. */
1105
1106 if (insns_need_reload != 0 || something_needs_elimination
1107 || something_needs_operands_changed)
1108 {
1109 HOST_WIDE_INT old_frame_size = get_frame_size ();
1110
1111 reload_as_needed (global);
1112
1113 if (old_frame_size != get_frame_size ())
1114 abort ();
1115
1116 if (num_eliminable)
1117 verify_initial_elim_offsets ();
1118 }
1119
1120 /* If we were able to eliminate the frame pointer, show that it is no
1121 longer live at the start of any basic block. If it ls live by
1122 virtue of being in a pseudo, that pseudo will be marked live
1123 and hence the frame pointer will be known to be live via that
1124 pseudo. */
1125
1126 if (! frame_pointer_needed)
1127 FOR_EACH_BB (bb)
1128 CLEAR_REGNO_REG_SET (bb->global_live_at_start,
1129 HARD_FRAME_POINTER_REGNUM);
1130
1131 /* Come here (with failure set nonzero) if we can't get enough spill regs
1132 and we decide not to abort about it. */
1133 failed:
1134
1135 CLEAR_REG_SET (&spilled_pseudos);
1136 reload_in_progress = 0;
1137
1138 /* Now eliminate all pseudo regs by modifying them into
1139 their equivalent memory references.
1140 The REG-rtx's for the pseudos are modified in place,
1141 so all insns that used to refer to them now refer to memory.
1142
1143 For a reg that has a reg_equiv_address, all those insns
1144 were changed by reloading so that no insns refer to it any longer;
1145 but the DECL_RTL of a variable decl may refer to it,
1146 and if so this causes the debugging info to mention the variable. */
1147
1148 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1149 {
1150 rtx addr = 0;
1151
1152 if (reg_equiv_mem[i])
1153 addr = XEXP (reg_equiv_mem[i], 0);
1154
1155 if (reg_equiv_address[i])
1156 addr = reg_equiv_address[i];
1157
1158 if (addr)
1159 {
1160 if (reg_renumber[i] < 0)
1161 {
1162 rtx reg = regno_reg_rtx[i];
1163
1164 REG_USERVAR_P (reg) = 0;
1165 PUT_CODE (reg, MEM);
1166 XEXP (reg, 0) = addr;
1167 if (reg_equiv_memory_loc[i])
1168 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1169 else
1170 {
1171 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1172 = MEM_SCALAR_P (reg) = 0;
1173 MEM_ATTRS (reg) = 0;
1174 }
1175 }
1176 else if (reg_equiv_mem[i])
1177 XEXP (reg_equiv_mem[i], 0) = addr;
1178 }
1179 }
1180
1181 /* We must set reload_completed now since the cleanup_subreg_operands call
1182 below will re-recognize each insn and reload may have generated insns
1183 which are only valid during and after reload. */
1184 reload_completed = 1;
1185
1186 /* Make a pass over all the insns and delete all USEs which we inserted
1187 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1188 notes. Delete all CLOBBER insns that don't refer to the return value
1189 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1190 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1191 and regenerate REG_INC notes that may have been moved around. */
1192
1193 for (insn = first; insn; insn = NEXT_INSN (insn))
1194 if (INSN_P (insn))
1195 {
1196 rtx *pnote;
1197
1198 if (GET_CODE (insn) == CALL_INSN)
1199 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1200 VOIDmode,
1201 CALL_INSN_FUNCTION_USAGE (insn));
1202
1203 if ((GET_CODE (PATTERN (insn)) == USE
1204 /* We mark with QImode USEs introduced by reload itself. */
1205 && (GET_MODE (insn) == QImode
1206 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1207 || (GET_CODE (PATTERN (insn)) == CLOBBER
1208 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1209 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1210 {
1211 delete_insn (insn);
1212 continue;
1213 }
1214
1215 pnote = &REG_NOTES (insn);
1216 while (*pnote != 0)
1217 {
1218 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1219 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1220 || REG_NOTE_KIND (*pnote) == REG_INC
1221 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1222 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1223 *pnote = XEXP (*pnote, 1);
1224 else
1225 pnote = &XEXP (*pnote, 1);
1226 }
1227
1228 #ifdef AUTO_INC_DEC
1229 add_auto_inc_notes (insn, PATTERN (insn));
1230 #endif
1231
1232 /* And simplify (subreg (reg)) if it appears as an operand. */
1233 cleanup_subreg_operands (insn);
1234 }
1235
1236 /* If we are doing stack checking, give a warning if this function's
1237 frame size is larger than we expect. */
1238 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1239 {
1240 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1241 static int verbose_warned = 0;
1242
1243 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1244 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1245 size += UNITS_PER_WORD;
1246
1247 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1248 {
1249 warning ("frame size too large for reliable stack checking");
1250 if (! verbose_warned)
1251 {
1252 warning ("try reducing the number of local variables");
1253 verbose_warned = 1;
1254 }
1255 }
1256 }
1257
1258 /* Indicate that we no longer have known memory locations or constants. */
1259 if (reg_equiv_constant)
1260 free (reg_equiv_constant);
1261 reg_equiv_constant = 0;
1262 if (reg_equiv_memory_loc)
1263 free (reg_equiv_memory_loc);
1264 reg_equiv_memory_loc = 0;
1265
1266 if (real_known_ptr)
1267 free (real_known_ptr);
1268 if (real_at_ptr)
1269 free (real_at_ptr);
1270
1271 free (reg_equiv_mem);
1272 free (reg_equiv_init);
1273 free (reg_equiv_address);
1274 free (reg_max_ref_width);
1275 free (reg_old_renumber);
1276 free (pseudo_previous_regs);
1277 free (pseudo_forbidden_regs);
1278
1279 CLEAR_HARD_REG_SET (used_spill_regs);
1280 for (i = 0; i < n_spills; i++)
1281 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1282
1283 /* Free all the insn_chain structures at once. */
1284 obstack_free (&reload_obstack, reload_startobj);
1285 unused_insn_chains = 0;
1286 fixup_abnormal_edges ();
1287
1288 /* Replacing pseudos with their memory equivalents might have
1289 created shared rtx. Subsequent passes would get confused
1290 by this, so unshare everything here. */
1291 unshare_all_rtl_again (first);
1292
1293 return failure;
1294 }
1295
1296 /* Yet another special case. Unfortunately, reg-stack forces people to
1297 write incorrect clobbers in asm statements. These clobbers must not
1298 cause the register to appear in bad_spill_regs, otherwise we'll call
1299 fatal_insn later. We clear the corresponding regnos in the live
1300 register sets to avoid this.
1301 The whole thing is rather sick, I'm afraid. */
1302
1303 static void
1304 maybe_fix_stack_asms ()
1305 {
1306 #ifdef STACK_REGS
1307 const char *constraints[MAX_RECOG_OPERANDS];
1308 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1309 struct insn_chain *chain;
1310
1311 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1312 {
1313 int i, noperands;
1314 HARD_REG_SET clobbered, allowed;
1315 rtx pat;
1316
1317 if (! INSN_P (chain->insn)
1318 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1319 continue;
1320 pat = PATTERN (chain->insn);
1321 if (GET_CODE (pat) != PARALLEL)
1322 continue;
1323
1324 CLEAR_HARD_REG_SET (clobbered);
1325 CLEAR_HARD_REG_SET (allowed);
1326
1327 /* First, make a mask of all stack regs that are clobbered. */
1328 for (i = 0; i < XVECLEN (pat, 0); i++)
1329 {
1330 rtx t = XVECEXP (pat, 0, i);
1331 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1332 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1333 }
1334
1335 /* Get the operand values and constraints out of the insn. */
1336 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1337 constraints, operand_mode);
1338
1339 /* For every operand, see what registers are allowed. */
1340 for (i = 0; i < noperands; i++)
1341 {
1342 const char *p = constraints[i];
1343 /* For every alternative, we compute the class of registers allowed
1344 for reloading in CLS, and merge its contents into the reg set
1345 ALLOWED. */
1346 int cls = (int) NO_REGS;
1347
1348 for (;;)
1349 {
1350 char c = *p++;
1351
1352 if (c == '\0' || c == ',' || c == '#')
1353 {
1354 /* End of one alternative - mark the regs in the current
1355 class, and reset the class. */
1356 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1357 cls = NO_REGS;
1358 if (c == '#')
1359 do {
1360 c = *p++;
1361 } while (c != '\0' && c != ',');
1362 if (c == '\0')
1363 break;
1364 continue;
1365 }
1366
1367 switch (c)
1368 {
1369 case '=': case '+': case '*': case '%': case '?': case '!':
1370 case '0': case '1': case '2': case '3': case '4': case 'm':
1371 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1372 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1373 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1374 case 'P':
1375 break;
1376
1377 case 'p':
1378 cls = (int) reg_class_subunion[cls]
1379 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1380 break;
1381
1382 case 'g':
1383 case 'r':
1384 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1385 break;
1386
1387 default:
1388 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
1389
1390 }
1391 }
1392 }
1393 /* Those of the registers which are clobbered, but allowed by the
1394 constraints, must be usable as reload registers. So clear them
1395 out of the life information. */
1396 AND_HARD_REG_SET (allowed, clobbered);
1397 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1398 if (TEST_HARD_REG_BIT (allowed, i))
1399 {
1400 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1401 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1402 }
1403 }
1404
1405 #endif
1406 }
1407 \f
1408 /* Copy the global variables n_reloads and rld into the corresponding elts
1409 of CHAIN. */
1410 static void
1411 copy_reloads (chain)
1412 struct insn_chain *chain;
1413 {
1414 chain->n_reloads = n_reloads;
1415 chain->rld
1416 = (struct reload *) obstack_alloc (&reload_obstack,
1417 n_reloads * sizeof (struct reload));
1418 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1419 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1420 }
1421
1422 /* Walk the chain of insns, and determine for each whether it needs reloads
1423 and/or eliminations. Build the corresponding insns_need_reload list, and
1424 set something_needs_elimination as appropriate. */
1425 static void
1426 calculate_needs_all_insns (global)
1427 int global;
1428 {
1429 struct insn_chain **pprev_reload = &insns_need_reload;
1430 struct insn_chain *chain, *next = 0;
1431
1432 something_needs_elimination = 0;
1433
1434 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1435 for (chain = reload_insn_chain; chain != 0; chain = next)
1436 {
1437 rtx insn = chain->insn;
1438
1439 next = chain->next;
1440
1441 /* Clear out the shortcuts. */
1442 chain->n_reloads = 0;
1443 chain->need_elim = 0;
1444 chain->need_reload = 0;
1445 chain->need_operand_change = 0;
1446
1447 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1448 include REG_LABEL), we need to see what effects this has on the
1449 known offsets at labels. */
1450
1451 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1452 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1453 set_label_offsets (insn, insn, 0);
1454
1455 if (INSN_P (insn))
1456 {
1457 rtx old_body = PATTERN (insn);
1458 int old_code = INSN_CODE (insn);
1459 rtx old_notes = REG_NOTES (insn);
1460 int did_elimination = 0;
1461 int operands_changed = 0;
1462 rtx set = single_set (insn);
1463
1464 /* Skip insns that only set an equivalence. */
1465 if (set && GET_CODE (SET_DEST (set)) == REG
1466 && reg_renumber[REGNO (SET_DEST (set))] < 0
1467 && reg_equiv_constant[REGNO (SET_DEST (set))])
1468 continue;
1469
1470 /* If needed, eliminate any eliminable registers. */
1471 if (num_eliminable || num_eliminable_invariants)
1472 did_elimination = eliminate_regs_in_insn (insn, 0);
1473
1474 /* Analyze the instruction. */
1475 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1476 global, spill_reg_order);
1477
1478 /* If a no-op set needs more than one reload, this is likely
1479 to be something that needs input address reloads. We
1480 can't get rid of this cleanly later, and it is of no use
1481 anyway, so discard it now.
1482 We only do this when expensive_optimizations is enabled,
1483 since this complements reload inheritance / output
1484 reload deletion, and it can make debugging harder. */
1485 if (flag_expensive_optimizations && n_reloads > 1)
1486 {
1487 rtx set = single_set (insn);
1488 if (set
1489 && SET_SRC (set) == SET_DEST (set)
1490 && GET_CODE (SET_SRC (set)) == REG
1491 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1492 {
1493 delete_insn (insn);
1494 /* Delete it from the reload chain */
1495 if (chain->prev)
1496 chain->prev->next = next;
1497 else
1498 reload_insn_chain = next;
1499 if (next)
1500 next->prev = chain->prev;
1501 chain->next = unused_insn_chains;
1502 unused_insn_chains = chain;
1503 continue;
1504 }
1505 }
1506 if (num_eliminable)
1507 update_eliminable_offsets ();
1508
1509 /* Remember for later shortcuts which insns had any reloads or
1510 register eliminations. */
1511 chain->need_elim = did_elimination;
1512 chain->need_reload = n_reloads > 0;
1513 chain->need_operand_change = operands_changed;
1514
1515 /* Discard any register replacements done. */
1516 if (did_elimination)
1517 {
1518 obstack_free (&reload_obstack, reload_insn_firstobj);
1519 PATTERN (insn) = old_body;
1520 INSN_CODE (insn) = old_code;
1521 REG_NOTES (insn) = old_notes;
1522 something_needs_elimination = 1;
1523 }
1524
1525 something_needs_operands_changed |= operands_changed;
1526
1527 if (n_reloads != 0)
1528 {
1529 copy_reloads (chain);
1530 *pprev_reload = chain;
1531 pprev_reload = &chain->next_need_reload;
1532 }
1533 }
1534 }
1535 *pprev_reload = 0;
1536 }
1537 \f
1538 /* Comparison function for qsort to decide which of two reloads
1539 should be handled first. *P1 and *P2 are the reload numbers. */
1540
1541 static int
1542 reload_reg_class_lower (r1p, r2p)
1543 const PTR r1p;
1544 const PTR r2p;
1545 {
1546 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1547 int t;
1548
1549 /* Consider required reloads before optional ones. */
1550 t = rld[r1].optional - rld[r2].optional;
1551 if (t != 0)
1552 return t;
1553
1554 /* Count all solitary classes before non-solitary ones. */
1555 t = ((reg_class_size[(int) rld[r2].class] == 1)
1556 - (reg_class_size[(int) rld[r1].class] == 1));
1557 if (t != 0)
1558 return t;
1559
1560 /* Aside from solitaires, consider all multi-reg groups first. */
1561 t = rld[r2].nregs - rld[r1].nregs;
1562 if (t != 0)
1563 return t;
1564
1565 /* Consider reloads in order of increasing reg-class number. */
1566 t = (int) rld[r1].class - (int) rld[r2].class;
1567 if (t != 0)
1568 return t;
1569
1570 /* If reloads are equally urgent, sort by reload number,
1571 so that the results of qsort leave nothing to chance. */
1572 return r1 - r2;
1573 }
1574 \f
1575 /* The cost of spilling each hard reg. */
1576 static int spill_cost[FIRST_PSEUDO_REGISTER];
1577
1578 /* When spilling multiple hard registers, we use SPILL_COST for the first
1579 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1580 only the first hard reg for a multi-reg pseudo. */
1581 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1582
1583 /* Update the spill cost arrays, considering that pseudo REG is live. */
1584
1585 static void
1586 count_pseudo (reg)
1587 int reg;
1588 {
1589 int freq = REG_FREQ (reg);
1590 int r = reg_renumber[reg];
1591 int nregs;
1592
1593 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1594 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1595 return;
1596
1597 SET_REGNO_REG_SET (&pseudos_counted, reg);
1598
1599 if (r < 0)
1600 abort ();
1601
1602 spill_add_cost[r] += freq;
1603
1604 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1605 while (nregs-- > 0)
1606 spill_cost[r + nregs] += freq;
1607 }
1608
1609 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1610 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1611
1612 static void
1613 order_regs_for_reload (chain)
1614 struct insn_chain *chain;
1615 {
1616 int i;
1617 HARD_REG_SET used_by_pseudos;
1618 HARD_REG_SET used_by_pseudos2;
1619
1620 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1621
1622 memset (spill_cost, 0, sizeof spill_cost);
1623 memset (spill_add_cost, 0, sizeof spill_add_cost);
1624
1625 /* Count number of uses of each hard reg by pseudo regs allocated to it
1626 and then order them by decreasing use. First exclude hard registers
1627 that are live in or across this insn. */
1628
1629 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1630 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1631 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1632 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1633
1634 /* Now find out which pseudos are allocated to it, and update
1635 hard_reg_n_uses. */
1636 CLEAR_REG_SET (&pseudos_counted);
1637
1638 EXECUTE_IF_SET_IN_REG_SET
1639 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1640 {
1641 count_pseudo (i);
1642 });
1643 EXECUTE_IF_SET_IN_REG_SET
1644 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1645 {
1646 count_pseudo (i);
1647 });
1648 CLEAR_REG_SET (&pseudos_counted);
1649 }
1650 \f
1651 /* Vector of reload-numbers showing the order in which the reloads should
1652 be processed. */
1653 static short reload_order[MAX_RELOADS];
1654
1655 /* This is used to keep track of the spill regs used in one insn. */
1656 static HARD_REG_SET used_spill_regs_local;
1657
1658 /* We decided to spill hard register SPILLED, which has a size of
1659 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1660 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1661 update SPILL_COST/SPILL_ADD_COST. */
1662
1663 static void
1664 count_spilled_pseudo (spilled, spilled_nregs, reg)
1665 int spilled, spilled_nregs, reg;
1666 {
1667 int r = reg_renumber[reg];
1668 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1669
1670 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1671 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1672 return;
1673
1674 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1675
1676 spill_add_cost[r] -= REG_FREQ (reg);
1677 while (nregs-- > 0)
1678 spill_cost[r + nregs] -= REG_FREQ (reg);
1679 }
1680
1681 /* Find reload register to use for reload number ORDER. */
1682
1683 static int
1684 find_reg (chain, order)
1685 struct insn_chain *chain;
1686 int order;
1687 {
1688 int rnum = reload_order[order];
1689 struct reload *rl = rld + rnum;
1690 int best_cost = INT_MAX;
1691 int best_reg = -1;
1692 unsigned int i, j;
1693 int k;
1694 HARD_REG_SET not_usable;
1695 HARD_REG_SET used_by_other_reload;
1696
1697 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1698 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1699 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1700
1701 CLEAR_HARD_REG_SET (used_by_other_reload);
1702 for (k = 0; k < order; k++)
1703 {
1704 int other = reload_order[k];
1705
1706 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1707 for (j = 0; j < rld[other].nregs; j++)
1708 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1709 }
1710
1711 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1712 {
1713 unsigned int regno = i;
1714
1715 if (! TEST_HARD_REG_BIT (not_usable, regno)
1716 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1717 && HARD_REGNO_MODE_OK (regno, rl->mode))
1718 {
1719 int this_cost = spill_cost[regno];
1720 int ok = 1;
1721 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1722
1723 for (j = 1; j < this_nregs; j++)
1724 {
1725 this_cost += spill_add_cost[regno + j];
1726 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1727 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1728 ok = 0;
1729 }
1730 if (! ok)
1731 continue;
1732 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1733 this_cost--;
1734 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1735 this_cost--;
1736 if (this_cost < best_cost
1737 /* Among registers with equal cost, prefer caller-saved ones, or
1738 use REG_ALLOC_ORDER if it is defined. */
1739 || (this_cost == best_cost
1740 #ifdef REG_ALLOC_ORDER
1741 && (inv_reg_alloc_order[regno]
1742 < inv_reg_alloc_order[best_reg])
1743 #else
1744 && call_used_regs[regno]
1745 && ! call_used_regs[best_reg]
1746 #endif
1747 ))
1748 {
1749 best_reg = regno;
1750 best_cost = this_cost;
1751 }
1752 }
1753 }
1754 if (best_reg == -1)
1755 return 0;
1756
1757 if (rtl_dump_file)
1758 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1759
1760 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1761 rl->regno = best_reg;
1762
1763 EXECUTE_IF_SET_IN_REG_SET
1764 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1765 {
1766 count_spilled_pseudo (best_reg, rl->nregs, j);
1767 });
1768
1769 EXECUTE_IF_SET_IN_REG_SET
1770 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1771 {
1772 count_spilled_pseudo (best_reg, rl->nregs, j);
1773 });
1774
1775 for (i = 0; i < rl->nregs; i++)
1776 {
1777 if (spill_cost[best_reg + i] != 0
1778 || spill_add_cost[best_reg + i] != 0)
1779 abort ();
1780 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1781 }
1782 return 1;
1783 }
1784
1785 /* Find more reload regs to satisfy the remaining need of an insn, which
1786 is given by CHAIN.
1787 Do it by ascending class number, since otherwise a reg
1788 might be spilled for a big class and might fail to count
1789 for a smaller class even though it belongs to that class. */
1790
1791 static void
1792 find_reload_regs (chain)
1793 struct insn_chain *chain;
1794 {
1795 int i;
1796
1797 /* In order to be certain of getting the registers we need,
1798 we must sort the reloads into order of increasing register class.
1799 Then our grabbing of reload registers will parallel the process
1800 that provided the reload registers. */
1801 for (i = 0; i < chain->n_reloads; i++)
1802 {
1803 /* Show whether this reload already has a hard reg. */
1804 if (chain->rld[i].reg_rtx)
1805 {
1806 int regno = REGNO (chain->rld[i].reg_rtx);
1807 chain->rld[i].regno = regno;
1808 chain->rld[i].nregs
1809 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1810 }
1811 else
1812 chain->rld[i].regno = -1;
1813 reload_order[i] = i;
1814 }
1815
1816 n_reloads = chain->n_reloads;
1817 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1818
1819 CLEAR_HARD_REG_SET (used_spill_regs_local);
1820
1821 if (rtl_dump_file)
1822 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1823
1824 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1825
1826 /* Compute the order of preference for hard registers to spill. */
1827
1828 order_regs_for_reload (chain);
1829
1830 for (i = 0; i < n_reloads; i++)
1831 {
1832 int r = reload_order[i];
1833
1834 /* Ignore reloads that got marked inoperative. */
1835 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1836 && ! rld[r].optional
1837 && rld[r].regno == -1)
1838 if (! find_reg (chain, i))
1839 {
1840 spill_failure (chain->insn, rld[r].class);
1841 failure = 1;
1842 return;
1843 }
1844 }
1845
1846 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1847 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1848
1849 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1850 }
1851
1852 static void
1853 select_reload_regs ()
1854 {
1855 struct insn_chain *chain;
1856
1857 /* Try to satisfy the needs for each insn. */
1858 for (chain = insns_need_reload; chain != 0;
1859 chain = chain->next_need_reload)
1860 find_reload_regs (chain);
1861 }
1862 \f
1863 /* Delete all insns that were inserted by emit_caller_save_insns during
1864 this iteration. */
1865 static void
1866 delete_caller_save_insns ()
1867 {
1868 struct insn_chain *c = reload_insn_chain;
1869
1870 while (c != 0)
1871 {
1872 while (c != 0 && c->is_caller_save_insn)
1873 {
1874 struct insn_chain *next = c->next;
1875 rtx insn = c->insn;
1876
1877 if (c == reload_insn_chain)
1878 reload_insn_chain = next;
1879 delete_insn (insn);
1880
1881 if (next)
1882 next->prev = c->prev;
1883 if (c->prev)
1884 c->prev->next = next;
1885 c->next = unused_insn_chains;
1886 unused_insn_chains = c;
1887 c = next;
1888 }
1889 if (c != 0)
1890 c = c->next;
1891 }
1892 }
1893 \f
1894 /* Handle the failure to find a register to spill.
1895 INSN should be one of the insns which needed this particular spill reg. */
1896
1897 static void
1898 spill_failure (insn, class)
1899 rtx insn;
1900 enum reg_class class;
1901 {
1902 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1903 if (asm_noperands (PATTERN (insn)) >= 0)
1904 error_for_asm (insn, "can't find a register in class `%s' while reloading `asm'",
1905 reg_class_names[class]);
1906 else
1907 {
1908 error ("unable to find a register to spill in class `%s'",
1909 reg_class_names[class]);
1910 fatal_insn ("this is the insn:", insn);
1911 }
1912 }
1913 \f
1914 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1915 data that is dead in INSN. */
1916
1917 static void
1918 delete_dead_insn (insn)
1919 rtx insn;
1920 {
1921 rtx prev = prev_real_insn (insn);
1922 rtx prev_dest;
1923
1924 /* If the previous insn sets a register that dies in our insn, delete it
1925 too. */
1926 if (prev && GET_CODE (PATTERN (prev)) == SET
1927 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1928 && reg_mentioned_p (prev_dest, PATTERN (insn))
1929 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1930 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1931 delete_dead_insn (prev);
1932
1933 PUT_CODE (insn, NOTE);
1934 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1935 NOTE_SOURCE_FILE (insn) = 0;
1936 }
1937
1938 /* Modify the home of pseudo-reg I.
1939 The new home is present in reg_renumber[I].
1940
1941 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1942 or it may be -1, meaning there is none or it is not relevant.
1943 This is used so that all pseudos spilled from a given hard reg
1944 can share one stack slot. */
1945
1946 static void
1947 alter_reg (i, from_reg)
1948 int i;
1949 int from_reg;
1950 {
1951 /* When outputting an inline function, this can happen
1952 for a reg that isn't actually used. */
1953 if (regno_reg_rtx[i] == 0)
1954 return;
1955
1956 /* If the reg got changed to a MEM at rtl-generation time,
1957 ignore it. */
1958 if (GET_CODE (regno_reg_rtx[i]) != REG)
1959 return;
1960
1961 /* Modify the reg-rtx to contain the new hard reg
1962 number or else to contain its pseudo reg number. */
1963 REGNO (regno_reg_rtx[i])
1964 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1965
1966 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1967 allocate a stack slot for it. */
1968
1969 if (reg_renumber[i] < 0
1970 && REG_N_REFS (i) > 0
1971 && reg_equiv_constant[i] == 0
1972 && reg_equiv_memory_loc[i] == 0)
1973 {
1974 rtx x;
1975 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1976 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1977 int adjust = 0;
1978
1979 /* Each pseudo reg has an inherent size which comes from its own mode,
1980 and a total size which provides room for paradoxical subregs
1981 which refer to the pseudo reg in wider modes.
1982
1983 We can use a slot already allocated if it provides both
1984 enough inherent space and enough total space.
1985 Otherwise, we allocate a new slot, making sure that it has no less
1986 inherent space, and no less total space, then the previous slot. */
1987 if (from_reg == -1)
1988 {
1989 /* No known place to spill from => no slot to reuse. */
1990 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1991 inherent_size == total_size ? 0 : -1);
1992 if (BYTES_BIG_ENDIAN)
1993 /* Cancel the big-endian correction done in assign_stack_local.
1994 Get the address of the beginning of the slot.
1995 This is so we can do a big-endian correction unconditionally
1996 below. */
1997 adjust = inherent_size - total_size;
1998
1999 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
2000
2001 /* Nothing can alias this slot except this pseudo. */
2002 set_mem_alias_set (x, new_alias_set ());
2003 }
2004
2005 /* Reuse a stack slot if possible. */
2006 else if (spill_stack_slot[from_reg] != 0
2007 && spill_stack_slot_width[from_reg] >= total_size
2008 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2009 >= inherent_size))
2010 x = spill_stack_slot[from_reg];
2011
2012 /* Allocate a bigger slot. */
2013 else
2014 {
2015 /* Compute maximum size needed, both for inherent size
2016 and for total size. */
2017 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2018 rtx stack_slot;
2019
2020 if (spill_stack_slot[from_reg])
2021 {
2022 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2023 > inherent_size)
2024 mode = GET_MODE (spill_stack_slot[from_reg]);
2025 if (spill_stack_slot_width[from_reg] > total_size)
2026 total_size = spill_stack_slot_width[from_reg];
2027 }
2028
2029 /* Make a slot with that size. */
2030 x = assign_stack_local (mode, total_size,
2031 inherent_size == total_size ? 0 : -1);
2032 stack_slot = x;
2033
2034 /* All pseudos mapped to this slot can alias each other. */
2035 if (spill_stack_slot[from_reg])
2036 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2037 else
2038 set_mem_alias_set (x, new_alias_set ());
2039
2040 if (BYTES_BIG_ENDIAN)
2041 {
2042 /* Cancel the big-endian correction done in assign_stack_local.
2043 Get the address of the beginning of the slot.
2044 This is so we can do a big-endian correction unconditionally
2045 below. */
2046 adjust = GET_MODE_SIZE (mode) - total_size;
2047 if (adjust)
2048 stack_slot
2049 = adjust_address_nv (x, mode_for_size (total_size
2050 * BITS_PER_UNIT,
2051 MODE_INT, 1),
2052 adjust);
2053 }
2054
2055 spill_stack_slot[from_reg] = stack_slot;
2056 spill_stack_slot_width[from_reg] = total_size;
2057 }
2058
2059 /* On a big endian machine, the "address" of the slot
2060 is the address of the low part that fits its inherent mode. */
2061 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2062 adjust += (total_size - inherent_size);
2063
2064 /* If we have any adjustment to make, or if the stack slot is the
2065 wrong mode, make a new stack slot. */
2066 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2067
2068 /* If we have a decl for the original register, set it for the
2069 memory. If this is a shared MEM, make a copy. */
2070 if (REGNO_DECL (i))
2071 {
2072 rtx decl = DECL_RTL_IF_SET (REGNO_DECL (i));
2073
2074 /* We can do this only for the DECLs home pseudo, not for
2075 any copies of it, since otherwise when the stack slot
2076 is reused, nonoverlapping_memrefs_p might think they
2077 cannot overlap. */
2078 if (decl && GET_CODE (decl) == REG && REGNO (decl) == (unsigned) i)
2079 {
2080 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2081 x = copy_rtx (x);
2082
2083 set_mem_expr (x, REGNO_DECL (i));
2084 }
2085 }
2086
2087 /* Save the stack slot for later. */
2088 reg_equiv_memory_loc[i] = x;
2089 }
2090 }
2091
2092 /* Mark the slots in regs_ever_live for the hard regs
2093 used by pseudo-reg number REGNO. */
2094
2095 void
2096 mark_home_live (regno)
2097 int regno;
2098 {
2099 int i, lim;
2100
2101 i = reg_renumber[regno];
2102 if (i < 0)
2103 return;
2104 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2105 while (i < lim)
2106 regs_ever_live[i++] = 1;
2107 }
2108 \f
2109 /* This function handles the tracking of elimination offsets around branches.
2110
2111 X is a piece of RTL being scanned.
2112
2113 INSN is the insn that it came from, if any.
2114
2115 INITIAL_P is non-zero if we are to set the offset to be the initial
2116 offset and zero if we are setting the offset of the label to be the
2117 current offset. */
2118
2119 static void
2120 set_label_offsets (x, insn, initial_p)
2121 rtx x;
2122 rtx insn;
2123 int initial_p;
2124 {
2125 enum rtx_code code = GET_CODE (x);
2126 rtx tem;
2127 unsigned int i;
2128 struct elim_table *p;
2129
2130 switch (code)
2131 {
2132 case LABEL_REF:
2133 if (LABEL_REF_NONLOCAL_P (x))
2134 return;
2135
2136 x = XEXP (x, 0);
2137
2138 /* ... fall through ... */
2139
2140 case CODE_LABEL:
2141 /* If we know nothing about this label, set the desired offsets. Note
2142 that this sets the offset at a label to be the offset before a label
2143 if we don't know anything about the label. This is not correct for
2144 the label after a BARRIER, but is the best guess we can make. If
2145 we guessed wrong, we will suppress an elimination that might have
2146 been possible had we been able to guess correctly. */
2147
2148 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2149 {
2150 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2151 offsets_at[CODE_LABEL_NUMBER (x)][i]
2152 = (initial_p ? reg_eliminate[i].initial_offset
2153 : reg_eliminate[i].offset);
2154 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2155 }
2156
2157 /* Otherwise, if this is the definition of a label and it is
2158 preceded by a BARRIER, set our offsets to the known offset of
2159 that label. */
2160
2161 else if (x == insn
2162 && (tem = prev_nonnote_insn (insn)) != 0
2163 && GET_CODE (tem) == BARRIER)
2164 set_offsets_for_label (insn);
2165 else
2166 /* If neither of the above cases is true, compare each offset
2167 with those previously recorded and suppress any eliminations
2168 where the offsets disagree. */
2169
2170 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2171 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2172 != (initial_p ? reg_eliminate[i].initial_offset
2173 : reg_eliminate[i].offset))
2174 reg_eliminate[i].can_eliminate = 0;
2175
2176 return;
2177
2178 case JUMP_INSN:
2179 set_label_offsets (PATTERN (insn), insn, initial_p);
2180
2181 /* ... fall through ... */
2182
2183 case INSN:
2184 case CALL_INSN:
2185 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2186 and hence must have all eliminations at their initial offsets. */
2187 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2188 if (REG_NOTE_KIND (tem) == REG_LABEL)
2189 set_label_offsets (XEXP (tem, 0), insn, 1);
2190 return;
2191
2192 case PARALLEL:
2193 case ADDR_VEC:
2194 case ADDR_DIFF_VEC:
2195 /* Each of the labels in the parallel or address vector must be
2196 at their initial offsets. We want the first field for PARALLEL
2197 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2198
2199 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2200 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2201 insn, initial_p);
2202 return;
2203
2204 case SET:
2205 /* We only care about setting PC. If the source is not RETURN,
2206 IF_THEN_ELSE, or a label, disable any eliminations not at
2207 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2208 isn't one of those possibilities. For branches to a label,
2209 call ourselves recursively.
2210
2211 Note that this can disable elimination unnecessarily when we have
2212 a non-local goto since it will look like a non-constant jump to
2213 someplace in the current function. This isn't a significant
2214 problem since such jumps will normally be when all elimination
2215 pairs are back to their initial offsets. */
2216
2217 if (SET_DEST (x) != pc_rtx)
2218 return;
2219
2220 switch (GET_CODE (SET_SRC (x)))
2221 {
2222 case PC:
2223 case RETURN:
2224 return;
2225
2226 case LABEL_REF:
2227 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2228 return;
2229
2230 case IF_THEN_ELSE:
2231 tem = XEXP (SET_SRC (x), 1);
2232 if (GET_CODE (tem) == LABEL_REF)
2233 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2234 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2235 break;
2236
2237 tem = XEXP (SET_SRC (x), 2);
2238 if (GET_CODE (tem) == LABEL_REF)
2239 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2240 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2241 break;
2242 return;
2243
2244 default:
2245 break;
2246 }
2247
2248 /* If we reach here, all eliminations must be at their initial
2249 offset because we are doing a jump to a variable address. */
2250 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2251 if (p->offset != p->initial_offset)
2252 p->can_eliminate = 0;
2253 break;
2254
2255 default:
2256 break;
2257 }
2258 }
2259 \f
2260 /* Scan X and replace any eliminable registers (such as fp) with a
2261 replacement (such as sp), plus an offset.
2262
2263 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2264 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2265 MEM, we are allowed to replace a sum of a register and the constant zero
2266 with the register, which we cannot do outside a MEM. In addition, we need
2267 to record the fact that a register is referenced outside a MEM.
2268
2269 If INSN is an insn, it is the insn containing X. If we replace a REG
2270 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2271 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2272 the REG is being modified.
2273
2274 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2275 That's used when we eliminate in expressions stored in notes.
2276 This means, do not set ref_outside_mem even if the reference
2277 is outside of MEMs.
2278
2279 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2280 replacements done assuming all offsets are at their initial values. If
2281 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2282 encounter, return the actual location so that find_reloads will do
2283 the proper thing. */
2284
2285 rtx
2286 eliminate_regs (x, mem_mode, insn)
2287 rtx x;
2288 enum machine_mode mem_mode;
2289 rtx insn;
2290 {
2291 enum rtx_code code = GET_CODE (x);
2292 struct elim_table *ep;
2293 int regno;
2294 rtx new;
2295 int i, j;
2296 const char *fmt;
2297 int copied = 0;
2298
2299 if (! current_function_decl)
2300 return x;
2301
2302 switch (code)
2303 {
2304 case CONST_INT:
2305 case CONST_DOUBLE:
2306 case CONST_VECTOR:
2307 case CONST:
2308 case SYMBOL_REF:
2309 case CODE_LABEL:
2310 case PC:
2311 case CC0:
2312 case ASM_INPUT:
2313 case ADDR_VEC:
2314 case ADDR_DIFF_VEC:
2315 case RETURN:
2316 return x;
2317
2318 case ADDRESSOF:
2319 /* This is only for the benefit of the debugging backends, which call
2320 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2321 removed after CSE. */
2322 new = eliminate_regs (XEXP (x, 0), 0, insn);
2323 if (GET_CODE (new) == MEM)
2324 return XEXP (new, 0);
2325 return x;
2326
2327 case REG:
2328 regno = REGNO (x);
2329
2330 /* First handle the case where we encounter a bare register that
2331 is eliminable. Replace it with a PLUS. */
2332 if (regno < FIRST_PSEUDO_REGISTER)
2333 {
2334 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2335 ep++)
2336 if (ep->from_rtx == x && ep->can_eliminate)
2337 return plus_constant (ep->to_rtx, ep->previous_offset);
2338
2339 }
2340 else if (reg_renumber && reg_renumber[regno] < 0
2341 && reg_equiv_constant && reg_equiv_constant[regno]
2342 && ! CONSTANT_P (reg_equiv_constant[regno]))
2343 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2344 mem_mode, insn);
2345 return x;
2346
2347 /* You might think handling MINUS in a manner similar to PLUS is a
2348 good idea. It is not. It has been tried multiple times and every
2349 time the change has had to have been reverted.
2350
2351 Other parts of reload know a PLUS is special (gen_reload for example)
2352 and require special code to handle code a reloaded PLUS operand.
2353
2354 Also consider backends where the flags register is clobbered by a
2355 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2356 lea instruction comes to mind). If we try to reload a MINUS, we
2357 may kill the flags register that was holding a useful value.
2358
2359 So, please before trying to handle MINUS, consider reload as a
2360 whole instead of this little section as well as the backend issues. */
2361 case PLUS:
2362 /* If this is the sum of an eliminable register and a constant, rework
2363 the sum. */
2364 if (GET_CODE (XEXP (x, 0)) == REG
2365 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2366 && CONSTANT_P (XEXP (x, 1)))
2367 {
2368 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2369 ep++)
2370 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2371 {
2372 /* The only time we want to replace a PLUS with a REG (this
2373 occurs when the constant operand of the PLUS is the negative
2374 of the offset) is when we are inside a MEM. We won't want
2375 to do so at other times because that would change the
2376 structure of the insn in a way that reload can't handle.
2377 We special-case the commonest situation in
2378 eliminate_regs_in_insn, so just replace a PLUS with a
2379 PLUS here, unless inside a MEM. */
2380 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2381 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2382 return ep->to_rtx;
2383 else
2384 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2385 plus_constant (XEXP (x, 1),
2386 ep->previous_offset));
2387 }
2388
2389 /* If the register is not eliminable, we are done since the other
2390 operand is a constant. */
2391 return x;
2392 }
2393
2394 /* If this is part of an address, we want to bring any constant to the
2395 outermost PLUS. We will do this by doing register replacement in
2396 our operands and seeing if a constant shows up in one of them.
2397
2398 Note that there is no risk of modifying the structure of the insn,
2399 since we only get called for its operands, thus we are either
2400 modifying the address inside a MEM, or something like an address
2401 operand of a load-address insn. */
2402
2403 {
2404 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2405 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2406
2407 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2408 {
2409 /* If one side is a PLUS and the other side is a pseudo that
2410 didn't get a hard register but has a reg_equiv_constant,
2411 we must replace the constant here since it may no longer
2412 be in the position of any operand. */
2413 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2414 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2415 && reg_renumber[REGNO (new1)] < 0
2416 && reg_equiv_constant != 0
2417 && reg_equiv_constant[REGNO (new1)] != 0)
2418 new1 = reg_equiv_constant[REGNO (new1)];
2419 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2420 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2421 && reg_renumber[REGNO (new0)] < 0
2422 && reg_equiv_constant[REGNO (new0)] != 0)
2423 new0 = reg_equiv_constant[REGNO (new0)];
2424
2425 new = form_sum (new0, new1);
2426
2427 /* As above, if we are not inside a MEM we do not want to
2428 turn a PLUS into something else. We might try to do so here
2429 for an addition of 0 if we aren't optimizing. */
2430 if (! mem_mode && GET_CODE (new) != PLUS)
2431 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2432 else
2433 return new;
2434 }
2435 }
2436 return x;
2437
2438 case MULT:
2439 /* If this is the product of an eliminable register and a
2440 constant, apply the distribute law and move the constant out
2441 so that we have (plus (mult ..) ..). This is needed in order
2442 to keep load-address insns valid. This case is pathological.
2443 We ignore the possibility of overflow here. */
2444 if (GET_CODE (XEXP (x, 0)) == REG
2445 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2446 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2447 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2448 ep++)
2449 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2450 {
2451 if (! mem_mode
2452 /* Refs inside notes don't count for this purpose. */
2453 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2454 || GET_CODE (insn) == INSN_LIST)))
2455 ep->ref_outside_mem = 1;
2456
2457 return
2458 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2459 ep->previous_offset * INTVAL (XEXP (x, 1)));
2460 }
2461
2462 /* ... fall through ... */
2463
2464 case CALL:
2465 case COMPARE:
2466 /* See comments before PLUS about handling MINUS. */
2467 case MINUS:
2468 case DIV: case UDIV:
2469 case MOD: case UMOD:
2470 case AND: case IOR: case XOR:
2471 case ROTATERT: case ROTATE:
2472 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2473 case NE: case EQ:
2474 case GE: case GT: case GEU: case GTU:
2475 case LE: case LT: case LEU: case LTU:
2476 {
2477 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2478 rtx new1
2479 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2480
2481 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2482 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2483 }
2484 return x;
2485
2486 case EXPR_LIST:
2487 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2488 if (XEXP (x, 0))
2489 {
2490 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2491 if (new != XEXP (x, 0))
2492 {
2493 /* If this is a REG_DEAD note, it is not valid anymore.
2494 Using the eliminated version could result in creating a
2495 REG_DEAD note for the stack or frame pointer. */
2496 if (GET_MODE (x) == REG_DEAD)
2497 return (XEXP (x, 1)
2498 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2499 : NULL_RTX);
2500
2501 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2502 }
2503 }
2504
2505 /* ... fall through ... */
2506
2507 case INSN_LIST:
2508 /* Now do eliminations in the rest of the chain. If this was
2509 an EXPR_LIST, this might result in allocating more memory than is
2510 strictly needed, but it simplifies the code. */
2511 if (XEXP (x, 1))
2512 {
2513 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2514 if (new != XEXP (x, 1))
2515 return
2516 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2517 }
2518 return x;
2519
2520 case PRE_INC:
2521 case POST_INC:
2522 case PRE_DEC:
2523 case POST_DEC:
2524 case STRICT_LOW_PART:
2525 case NEG: case NOT:
2526 case SIGN_EXTEND: case ZERO_EXTEND:
2527 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2528 case FLOAT: case FIX:
2529 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2530 case ABS:
2531 case SQRT:
2532 case FFS:
2533 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2534 if (new != XEXP (x, 0))
2535 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2536 return x;
2537
2538 case SUBREG:
2539 /* Similar to above processing, but preserve SUBREG_BYTE.
2540 Convert (subreg (mem)) to (mem) if not paradoxical.
2541 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2542 pseudo didn't get a hard reg, we must replace this with the
2543 eliminated version of the memory location because push_reloads
2544 may do the replacement in certain circumstances. */
2545 if (GET_CODE (SUBREG_REG (x)) == REG
2546 && (GET_MODE_SIZE (GET_MODE (x))
2547 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2548 && reg_equiv_memory_loc != 0
2549 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2550 {
2551 new = SUBREG_REG (x);
2552 }
2553 else
2554 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2555
2556 if (new != SUBREG_REG (x))
2557 {
2558 int x_size = GET_MODE_SIZE (GET_MODE (x));
2559 int new_size = GET_MODE_SIZE (GET_MODE (new));
2560
2561 if (GET_CODE (new) == MEM
2562 && ((x_size < new_size
2563 #ifdef WORD_REGISTER_OPERATIONS
2564 /* On these machines, combine can create rtl of the form
2565 (set (subreg:m1 (reg:m2 R) 0) ...)
2566 where m1 < m2, and expects something interesting to
2567 happen to the entire word. Moreover, it will use the
2568 (reg:m2 R) later, expecting all bits to be preserved.
2569 So if the number of words is the same, preserve the
2570 subreg so that push_reloads can see it. */
2571 && ! ((x_size - 1) / UNITS_PER_WORD
2572 == (new_size -1 ) / UNITS_PER_WORD)
2573 #endif
2574 )
2575 || x_size == new_size)
2576 )
2577 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2578 else
2579 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2580 }
2581
2582 return x;
2583
2584 case MEM:
2585 /* This is only for the benefit of the debugging backends, which call
2586 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2587 removed after CSE. */
2588 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2589 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2590
2591 /* Our only special processing is to pass the mode of the MEM to our
2592 recursive call and copy the flags. While we are here, handle this
2593 case more efficiently. */
2594 return
2595 replace_equiv_address_nv (x,
2596 eliminate_regs (XEXP (x, 0),
2597 GET_MODE (x), insn));
2598
2599 case USE:
2600 /* Handle insn_list USE that a call to a pure function may generate. */
2601 new = eliminate_regs (XEXP (x, 0), 0, insn);
2602 if (new != XEXP (x, 0))
2603 return gen_rtx_USE (GET_MODE (x), new);
2604 return x;
2605
2606 case CLOBBER:
2607 case ASM_OPERANDS:
2608 case SET:
2609 abort ();
2610
2611 default:
2612 break;
2613 }
2614
2615 /* Process each of our operands recursively. If any have changed, make a
2616 copy of the rtx. */
2617 fmt = GET_RTX_FORMAT (code);
2618 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2619 {
2620 if (*fmt == 'e')
2621 {
2622 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2623 if (new != XEXP (x, i) && ! copied)
2624 {
2625 rtx new_x = rtx_alloc (code);
2626 memcpy (new_x, x,
2627 (sizeof (*new_x) - sizeof (new_x->fld)
2628 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2629 x = new_x;
2630 copied = 1;
2631 }
2632 XEXP (x, i) = new;
2633 }
2634 else if (*fmt == 'E')
2635 {
2636 int copied_vec = 0;
2637 for (j = 0; j < XVECLEN (x, i); j++)
2638 {
2639 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2640 if (new != XVECEXP (x, i, j) && ! copied_vec)
2641 {
2642 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2643 XVEC (x, i)->elem);
2644 if (! copied)
2645 {
2646 rtx new_x = rtx_alloc (code);
2647 memcpy (new_x, x,
2648 (sizeof (*new_x) - sizeof (new_x->fld)
2649 + (sizeof (new_x->fld[0])
2650 * GET_RTX_LENGTH (code))));
2651 x = new_x;
2652 copied = 1;
2653 }
2654 XVEC (x, i) = new_v;
2655 copied_vec = 1;
2656 }
2657 XVECEXP (x, i, j) = new;
2658 }
2659 }
2660 }
2661
2662 return x;
2663 }
2664
2665 /* Scan rtx X for modifications of elimination target registers. Update
2666 the table of eliminables to reflect the changed state. MEM_MODE is
2667 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2668
2669 static void
2670 elimination_effects (x, mem_mode)
2671 rtx x;
2672 enum machine_mode mem_mode;
2673
2674 {
2675 enum rtx_code code = GET_CODE (x);
2676 struct elim_table *ep;
2677 int regno;
2678 int i, j;
2679 const char *fmt;
2680
2681 switch (code)
2682 {
2683 case CONST_INT:
2684 case CONST_DOUBLE:
2685 case CONST_VECTOR:
2686 case CONST:
2687 case SYMBOL_REF:
2688 case CODE_LABEL:
2689 case PC:
2690 case CC0:
2691 case ASM_INPUT:
2692 case ADDR_VEC:
2693 case ADDR_DIFF_VEC:
2694 case RETURN:
2695 return;
2696
2697 case ADDRESSOF:
2698 abort ();
2699
2700 case REG:
2701 regno = REGNO (x);
2702
2703 /* First handle the case where we encounter a bare register that
2704 is eliminable. Replace it with a PLUS. */
2705 if (regno < FIRST_PSEUDO_REGISTER)
2706 {
2707 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2708 ep++)
2709 if (ep->from_rtx == x && ep->can_eliminate)
2710 {
2711 if (! mem_mode)
2712 ep->ref_outside_mem = 1;
2713 return;
2714 }
2715
2716 }
2717 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2718 && reg_equiv_constant[regno]
2719 && ! function_invariant_p (reg_equiv_constant[regno]))
2720 elimination_effects (reg_equiv_constant[regno], mem_mode);
2721 return;
2722
2723 case PRE_INC:
2724 case POST_INC:
2725 case PRE_DEC:
2726 case POST_DEC:
2727 case POST_MODIFY:
2728 case PRE_MODIFY:
2729 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2730 if (ep->to_rtx == XEXP (x, 0))
2731 {
2732 int size = GET_MODE_SIZE (mem_mode);
2733
2734 /* If more bytes than MEM_MODE are pushed, account for them. */
2735 #ifdef PUSH_ROUNDING
2736 if (ep->to_rtx == stack_pointer_rtx)
2737 size = PUSH_ROUNDING (size);
2738 #endif
2739 if (code == PRE_DEC || code == POST_DEC)
2740 ep->offset += size;
2741 else if (code == PRE_INC || code == POST_INC)
2742 ep->offset -= size;
2743 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2744 && GET_CODE (XEXP (x, 1)) == PLUS
2745 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2746 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2747 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2748 }
2749
2750 /* These two aren't unary operators. */
2751 if (code == POST_MODIFY || code == PRE_MODIFY)
2752 break;
2753
2754 /* Fall through to generic unary operation case. */
2755 case STRICT_LOW_PART:
2756 case NEG: case NOT:
2757 case SIGN_EXTEND: case ZERO_EXTEND:
2758 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2759 case FLOAT: case FIX:
2760 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2761 case ABS:
2762 case SQRT:
2763 case FFS:
2764 elimination_effects (XEXP (x, 0), mem_mode);
2765 return;
2766
2767 case SUBREG:
2768 if (GET_CODE (SUBREG_REG (x)) == REG
2769 && (GET_MODE_SIZE (GET_MODE (x))
2770 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2771 && reg_equiv_memory_loc != 0
2772 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2773 return;
2774
2775 elimination_effects (SUBREG_REG (x), mem_mode);
2776 return;
2777
2778 case USE:
2779 /* If using a register that is the source of an eliminate we still
2780 think can be performed, note it cannot be performed since we don't
2781 know how this register is used. */
2782 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2783 if (ep->from_rtx == XEXP (x, 0))
2784 ep->can_eliminate = 0;
2785
2786 elimination_effects (XEXP (x, 0), mem_mode);
2787 return;
2788
2789 case CLOBBER:
2790 /* If clobbering a register that is the replacement register for an
2791 elimination we still think can be performed, note that it cannot
2792 be performed. Otherwise, we need not be concerned about it. */
2793 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2794 if (ep->to_rtx == XEXP (x, 0))
2795 ep->can_eliminate = 0;
2796
2797 elimination_effects (XEXP (x, 0), mem_mode);
2798 return;
2799
2800 case SET:
2801 /* Check for setting a register that we know about. */
2802 if (GET_CODE (SET_DEST (x)) == REG)
2803 {
2804 /* See if this is setting the replacement register for an
2805 elimination.
2806
2807 If DEST is the hard frame pointer, we do nothing because we
2808 assume that all assignments to the frame pointer are for
2809 non-local gotos and are being done at a time when they are valid
2810 and do not disturb anything else. Some machines want to
2811 eliminate a fake argument pointer (or even a fake frame pointer)
2812 with either the real frame or the stack pointer. Assignments to
2813 the hard frame pointer must not prevent this elimination. */
2814
2815 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2816 ep++)
2817 if (ep->to_rtx == SET_DEST (x)
2818 && SET_DEST (x) != hard_frame_pointer_rtx)
2819 {
2820 /* If it is being incremented, adjust the offset. Otherwise,
2821 this elimination can't be done. */
2822 rtx src = SET_SRC (x);
2823
2824 if (GET_CODE (src) == PLUS
2825 && XEXP (src, 0) == SET_DEST (x)
2826 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2827 ep->offset -= INTVAL (XEXP (src, 1));
2828 else
2829 ep->can_eliminate = 0;
2830 }
2831 }
2832
2833 elimination_effects (SET_DEST (x), 0);
2834 elimination_effects (SET_SRC (x), 0);
2835 return;
2836
2837 case MEM:
2838 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2839 abort ();
2840
2841 /* Our only special processing is to pass the mode of the MEM to our
2842 recursive call. */
2843 elimination_effects (XEXP (x, 0), GET_MODE (x));
2844 return;
2845
2846 default:
2847 break;
2848 }
2849
2850 fmt = GET_RTX_FORMAT (code);
2851 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2852 {
2853 if (*fmt == 'e')
2854 elimination_effects (XEXP (x, i), mem_mode);
2855 else if (*fmt == 'E')
2856 for (j = 0; j < XVECLEN (x, i); j++)
2857 elimination_effects (XVECEXP (x, i, j), mem_mode);
2858 }
2859 }
2860
2861 /* Descend through rtx X and verify that no references to eliminable registers
2862 remain. If any do remain, mark the involved register as not
2863 eliminable. */
2864
2865 static void
2866 check_eliminable_occurrences (x)
2867 rtx x;
2868 {
2869 const char *fmt;
2870 int i;
2871 enum rtx_code code;
2872
2873 if (x == 0)
2874 return;
2875
2876 code = GET_CODE (x);
2877
2878 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2879 {
2880 struct elim_table *ep;
2881
2882 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2883 if (ep->from_rtx == x && ep->can_eliminate)
2884 ep->can_eliminate = 0;
2885 return;
2886 }
2887
2888 fmt = GET_RTX_FORMAT (code);
2889 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2890 {
2891 if (*fmt == 'e')
2892 check_eliminable_occurrences (XEXP (x, i));
2893 else if (*fmt == 'E')
2894 {
2895 int j;
2896 for (j = 0; j < XVECLEN (x, i); j++)
2897 check_eliminable_occurrences (XVECEXP (x, i, j));
2898 }
2899 }
2900 }
2901 \f
2902 /* Scan INSN and eliminate all eliminable registers in it.
2903
2904 If REPLACE is nonzero, do the replacement destructively. Also
2905 delete the insn as dead it if it is setting an eliminable register.
2906
2907 If REPLACE is zero, do all our allocations in reload_obstack.
2908
2909 If no eliminations were done and this insn doesn't require any elimination
2910 processing (these are not identical conditions: it might be updating sp,
2911 but not referencing fp; this needs to be seen during reload_as_needed so
2912 that the offset between fp and sp can be taken into consideration), zero
2913 is returned. Otherwise, 1 is returned. */
2914
2915 static int
2916 eliminate_regs_in_insn (insn, replace)
2917 rtx insn;
2918 int replace;
2919 {
2920 int icode = recog_memoized (insn);
2921 rtx old_body = PATTERN (insn);
2922 int insn_is_asm = asm_noperands (old_body) >= 0;
2923 rtx old_set = single_set (insn);
2924 rtx new_body;
2925 int val = 0;
2926 int i, any_changes;
2927 rtx substed_operand[MAX_RECOG_OPERANDS];
2928 rtx orig_operand[MAX_RECOG_OPERANDS];
2929 struct elim_table *ep;
2930
2931 if (! insn_is_asm && icode < 0)
2932 {
2933 if (GET_CODE (PATTERN (insn)) == USE
2934 || GET_CODE (PATTERN (insn)) == CLOBBER
2935 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2936 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2937 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2938 return 0;
2939 abort ();
2940 }
2941
2942 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2943 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2944 {
2945 /* Check for setting an eliminable register. */
2946 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2947 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2948 {
2949 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2950 /* If this is setting the frame pointer register to the
2951 hardware frame pointer register and this is an elimination
2952 that will be done (tested above), this insn is really
2953 adjusting the frame pointer downward to compensate for
2954 the adjustment done before a nonlocal goto. */
2955 if (ep->from == FRAME_POINTER_REGNUM
2956 && ep->to == HARD_FRAME_POINTER_REGNUM)
2957 {
2958 rtx base = SET_SRC (old_set);
2959 rtx base_insn = insn;
2960 int offset = 0;
2961
2962 while (base != ep->to_rtx)
2963 {
2964 rtx prev_insn, prev_set;
2965
2966 if (GET_CODE (base) == PLUS
2967 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2968 {
2969 offset += INTVAL (XEXP (base, 1));
2970 base = XEXP (base, 0);
2971 }
2972 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2973 && (prev_set = single_set (prev_insn)) != 0
2974 && rtx_equal_p (SET_DEST (prev_set), base))
2975 {
2976 base = SET_SRC (prev_set);
2977 base_insn = prev_insn;
2978 }
2979 else
2980 break;
2981 }
2982
2983 if (base == ep->to_rtx)
2984 {
2985 rtx src
2986 = plus_constant (ep->to_rtx, offset - ep->offset);
2987
2988 new_body = old_body;
2989 if (! replace)
2990 {
2991 new_body = copy_insn (old_body);
2992 if (REG_NOTES (insn))
2993 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2994 }
2995 PATTERN (insn) = new_body;
2996 old_set = single_set (insn);
2997
2998 /* First see if this insn remains valid when we
2999 make the change. If not, keep the INSN_CODE
3000 the same and let reload fit it up. */
3001 validate_change (insn, &SET_SRC (old_set), src, 1);
3002 validate_change (insn, &SET_DEST (old_set),
3003 ep->to_rtx, 1);
3004 if (! apply_change_group ())
3005 {
3006 SET_SRC (old_set) = src;
3007 SET_DEST (old_set) = ep->to_rtx;
3008 }
3009
3010 val = 1;
3011 goto done;
3012 }
3013 }
3014 #endif
3015
3016 /* In this case this insn isn't serving a useful purpose. We
3017 will delete it in reload_as_needed once we know that this
3018 elimination is, in fact, being done.
3019
3020 If REPLACE isn't set, we can't delete this insn, but needn't
3021 process it since it won't be used unless something changes. */
3022 if (replace)
3023 {
3024 delete_dead_insn (insn);
3025 return 1;
3026 }
3027 val = 1;
3028 goto done;
3029 }
3030 }
3031
3032 /* We allow one special case which happens to work on all machines we
3033 currently support: a single set with the source being a PLUS of an
3034 eliminable register and a constant. */
3035 if (old_set
3036 && GET_CODE (SET_DEST (old_set)) == REG
3037 && GET_CODE (SET_SRC (old_set)) == PLUS
3038 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3039 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3040 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3041 {
3042 rtx reg = XEXP (SET_SRC (old_set), 0);
3043 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
3044
3045 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3046 if (ep->from_rtx == reg && ep->can_eliminate)
3047 {
3048 offset += ep->offset;
3049
3050 if (offset == 0)
3051 {
3052 int num_clobbers;
3053 /* We assume here that if we need a PARALLEL with
3054 CLOBBERs for this assignment, we can do with the
3055 MATCH_SCRATCHes that add_clobbers allocates.
3056 There's not much we can do if that doesn't work. */
3057 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3058 SET_DEST (old_set),
3059 ep->to_rtx);
3060 num_clobbers = 0;
3061 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3062 if (num_clobbers)
3063 {
3064 rtvec vec = rtvec_alloc (num_clobbers + 1);
3065
3066 vec->elem[0] = PATTERN (insn);
3067 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3068 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3069 }
3070 if (INSN_CODE (insn) < 0)
3071 abort ();
3072 }
3073 else
3074 {
3075 new_body = old_body;
3076 if (! replace)
3077 {
3078 new_body = copy_insn (old_body);
3079 if (REG_NOTES (insn))
3080 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3081 }
3082 PATTERN (insn) = new_body;
3083 old_set = single_set (insn);
3084
3085 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3086 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3087 }
3088 val = 1;
3089 /* This can't have an effect on elimination offsets, so skip right
3090 to the end. */
3091 goto done;
3092 }
3093 }
3094
3095 /* Determine the effects of this insn on elimination offsets. */
3096 elimination_effects (old_body, 0);
3097
3098 /* Eliminate all eliminable registers occurring in operands that
3099 can be handled by reload. */
3100 extract_insn (insn);
3101 any_changes = 0;
3102 for (i = 0; i < recog_data.n_operands; i++)
3103 {
3104 orig_operand[i] = recog_data.operand[i];
3105 substed_operand[i] = recog_data.operand[i];
3106
3107 /* For an asm statement, every operand is eliminable. */
3108 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3109 {
3110 /* Check for setting a register that we know about. */
3111 if (recog_data.operand_type[i] != OP_IN
3112 && GET_CODE (orig_operand[i]) == REG)
3113 {
3114 /* If we are assigning to a register that can be eliminated, it
3115 must be as part of a PARALLEL, since the code above handles
3116 single SETs. We must indicate that we can no longer
3117 eliminate this reg. */
3118 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3119 ep++)
3120 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3121 ep->can_eliminate = 0;
3122 }
3123
3124 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3125 replace ? insn : NULL_RTX);
3126 if (substed_operand[i] != orig_operand[i])
3127 val = any_changes = 1;
3128 /* Terminate the search in check_eliminable_occurrences at
3129 this point. */
3130 *recog_data.operand_loc[i] = 0;
3131
3132 /* If an output operand changed from a REG to a MEM and INSN is an
3133 insn, write a CLOBBER insn. */
3134 if (recog_data.operand_type[i] != OP_IN
3135 && GET_CODE (orig_operand[i]) == REG
3136 && GET_CODE (substed_operand[i]) == MEM
3137 && replace)
3138 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3139 insn);
3140 }
3141 }
3142
3143 for (i = 0; i < recog_data.n_dups; i++)
3144 *recog_data.dup_loc[i]
3145 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3146
3147 /* If any eliminable remain, they aren't eliminable anymore. */
3148 check_eliminable_occurrences (old_body);
3149
3150 /* Substitute the operands; the new values are in the substed_operand
3151 array. */
3152 for (i = 0; i < recog_data.n_operands; i++)
3153 *recog_data.operand_loc[i] = substed_operand[i];
3154 for (i = 0; i < recog_data.n_dups; i++)
3155 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3156
3157 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3158 re-recognize the insn. We do this in case we had a simple addition
3159 but now can do this as a load-address. This saves an insn in this
3160 common case.
3161 If re-recognition fails, the old insn code number will still be used,
3162 and some register operands may have changed into PLUS expressions.
3163 These will be handled by find_reloads by loading them into a register
3164 again. */
3165
3166 if (val)
3167 {
3168 /* If we aren't replacing things permanently and we changed something,
3169 make another copy to ensure that all the RTL is new. Otherwise
3170 things can go wrong if find_reload swaps commutative operands
3171 and one is inside RTL that has been copied while the other is not. */
3172 new_body = old_body;
3173 if (! replace)
3174 {
3175 new_body = copy_insn (old_body);
3176 if (REG_NOTES (insn))
3177 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3178 }
3179 PATTERN (insn) = new_body;
3180
3181 /* If we had a move insn but now we don't, rerecognize it. This will
3182 cause spurious re-recognition if the old move had a PARALLEL since
3183 the new one still will, but we can't call single_set without
3184 having put NEW_BODY into the insn and the re-recognition won't
3185 hurt in this rare case. */
3186 /* ??? Why this huge if statement - why don't we just rerecognize the
3187 thing always? */
3188 if (! insn_is_asm
3189 && old_set != 0
3190 && ((GET_CODE (SET_SRC (old_set)) == REG
3191 && (GET_CODE (new_body) != SET
3192 || GET_CODE (SET_SRC (new_body)) != REG))
3193 /* If this was a load from or store to memory, compare
3194 the MEM in recog_data.operand to the one in the insn.
3195 If they are not equal, then rerecognize the insn. */
3196 || (old_set != 0
3197 && ((GET_CODE (SET_SRC (old_set)) == MEM
3198 && SET_SRC (old_set) != recog_data.operand[1])
3199 || (GET_CODE (SET_DEST (old_set)) == MEM
3200 && SET_DEST (old_set) != recog_data.operand[0])))
3201 /* If this was an add insn before, rerecognize. */
3202 || GET_CODE (SET_SRC (old_set)) == PLUS))
3203 {
3204 int new_icode = recog (PATTERN (insn), insn, 0);
3205 if (new_icode < 0)
3206 INSN_CODE (insn) = icode;
3207 }
3208 }
3209
3210 /* Restore the old body. If there were any changes to it, we made a copy
3211 of it while the changes were still in place, so we'll correctly return
3212 a modified insn below. */
3213 if (! replace)
3214 {
3215 /* Restore the old body. */
3216 for (i = 0; i < recog_data.n_operands; i++)
3217 *recog_data.operand_loc[i] = orig_operand[i];
3218 for (i = 0; i < recog_data.n_dups; i++)
3219 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3220 }
3221
3222 /* Update all elimination pairs to reflect the status after the current
3223 insn. The changes we make were determined by the earlier call to
3224 elimination_effects.
3225
3226 We also detect a cases where register elimination cannot be done,
3227 namely, if a register would be both changed and referenced outside a MEM
3228 in the resulting insn since such an insn is often undefined and, even if
3229 not, we cannot know what meaning will be given to it. Note that it is
3230 valid to have a register used in an address in an insn that changes it
3231 (presumably with a pre- or post-increment or decrement).
3232
3233 If anything changes, return nonzero. */
3234
3235 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3236 {
3237 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3238 ep->can_eliminate = 0;
3239
3240 ep->ref_outside_mem = 0;
3241
3242 if (ep->previous_offset != ep->offset)
3243 val = 1;
3244 }
3245
3246 done:
3247 /* If we changed something, perform elimination in REG_NOTES. This is
3248 needed even when REPLACE is zero because a REG_DEAD note might refer
3249 to a register that we eliminate and could cause a different number
3250 of spill registers to be needed in the final reload pass than in
3251 the pre-passes. */
3252 if (val && REG_NOTES (insn) != 0)
3253 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3254
3255 return val;
3256 }
3257
3258 /* Loop through all elimination pairs.
3259 Recalculate the number not at initial offset.
3260
3261 Compute the maximum offset (minimum offset if the stack does not
3262 grow downward) for each elimination pair. */
3263
3264 static void
3265 update_eliminable_offsets ()
3266 {
3267 struct elim_table *ep;
3268
3269 num_not_at_initial_offset = 0;
3270 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3271 {
3272 ep->previous_offset = ep->offset;
3273 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3274 num_not_at_initial_offset++;
3275 }
3276 }
3277
3278 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3279 replacement we currently believe is valid, mark it as not eliminable if X
3280 modifies DEST in any way other than by adding a constant integer to it.
3281
3282 If DEST is the frame pointer, we do nothing because we assume that
3283 all assignments to the hard frame pointer are nonlocal gotos and are being
3284 done at a time when they are valid and do not disturb anything else.
3285 Some machines want to eliminate a fake argument pointer with either the
3286 frame or stack pointer. Assignments to the hard frame pointer must not
3287 prevent this elimination.
3288
3289 Called via note_stores from reload before starting its passes to scan
3290 the insns of the function. */
3291
3292 static void
3293 mark_not_eliminable (dest, x, data)
3294 rtx dest;
3295 rtx x;
3296 void *data ATTRIBUTE_UNUSED;
3297 {
3298 unsigned int i;
3299
3300 /* A SUBREG of a hard register here is just changing its mode. We should
3301 not see a SUBREG of an eliminable hard register, but check just in
3302 case. */
3303 if (GET_CODE (dest) == SUBREG)
3304 dest = SUBREG_REG (dest);
3305
3306 if (dest == hard_frame_pointer_rtx)
3307 return;
3308
3309 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3310 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3311 && (GET_CODE (x) != SET
3312 || GET_CODE (SET_SRC (x)) != PLUS
3313 || XEXP (SET_SRC (x), 0) != dest
3314 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3315 {
3316 reg_eliminate[i].can_eliminate_previous
3317 = reg_eliminate[i].can_eliminate = 0;
3318 num_eliminable--;
3319 }
3320 }
3321
3322 /* Verify that the initial elimination offsets did not change since the
3323 last call to set_initial_elim_offsets. This is used to catch cases
3324 where something illegal happened during reload_as_needed that could
3325 cause incorrect code to be generated if we did not check for it. */
3326
3327 static void
3328 verify_initial_elim_offsets ()
3329 {
3330 int t;
3331
3332 #ifdef ELIMINABLE_REGS
3333 struct elim_table *ep;
3334
3335 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3336 {
3337 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3338 if (t != ep->initial_offset)
3339 abort ();
3340 }
3341 #else
3342 INITIAL_FRAME_POINTER_OFFSET (t);
3343 if (t != reg_eliminate[0].initial_offset)
3344 abort ();
3345 #endif
3346 }
3347
3348 /* Reset all offsets on eliminable registers to their initial values. */
3349
3350 static void
3351 set_initial_elim_offsets ()
3352 {
3353 struct elim_table *ep = reg_eliminate;
3354
3355 #ifdef ELIMINABLE_REGS
3356 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3357 {
3358 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3359 ep->previous_offset = ep->offset = ep->initial_offset;
3360 }
3361 #else
3362 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3363 ep->previous_offset = ep->offset = ep->initial_offset;
3364 #endif
3365
3366 num_not_at_initial_offset = 0;
3367 }
3368
3369 /* Initialize the known label offsets.
3370 Set a known offset for each forced label to be at the initial offset
3371 of each elimination. We do this because we assume that all
3372 computed jumps occur from a location where each elimination is
3373 at its initial offset.
3374 For all other labels, show that we don't know the offsets. */
3375
3376 static void
3377 set_initial_label_offsets ()
3378 {
3379 rtx x;
3380 memset ((char *) &offsets_known_at[get_first_label_num ()], 0, num_labels);
3381
3382 for (x = forced_labels; x; x = XEXP (x, 1))
3383 if (XEXP (x, 0))
3384 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3385 }
3386
3387 /* Set all elimination offsets to the known values for the code label given
3388 by INSN. */
3389
3390 static void
3391 set_offsets_for_label (insn)
3392 rtx insn;
3393 {
3394 unsigned int i;
3395 int label_nr = CODE_LABEL_NUMBER (insn);
3396 struct elim_table *ep;
3397
3398 num_not_at_initial_offset = 0;
3399 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3400 {
3401 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3402 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3403 num_not_at_initial_offset++;
3404 }
3405 }
3406
3407 /* See if anything that happened changes which eliminations are valid.
3408 For example, on the Sparc, whether or not the frame pointer can
3409 be eliminated can depend on what registers have been used. We need
3410 not check some conditions again (such as flag_omit_frame_pointer)
3411 since they can't have changed. */
3412
3413 static void
3414 update_eliminables (pset)
3415 HARD_REG_SET *pset;
3416 {
3417 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3418 int previous_frame_pointer_needed = frame_pointer_needed;
3419 #endif
3420 struct elim_table *ep;
3421
3422 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3423 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3424 #ifdef ELIMINABLE_REGS
3425 || ! CAN_ELIMINATE (ep->from, ep->to)
3426 #endif
3427 )
3428 ep->can_eliminate = 0;
3429
3430 /* Look for the case where we have discovered that we can't replace
3431 register A with register B and that means that we will now be
3432 trying to replace register A with register C. This means we can
3433 no longer replace register C with register B and we need to disable
3434 such an elimination, if it exists. This occurs often with A == ap,
3435 B == sp, and C == fp. */
3436
3437 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3438 {
3439 struct elim_table *op;
3440 int new_to = -1;
3441
3442 if (! ep->can_eliminate && ep->can_eliminate_previous)
3443 {
3444 /* Find the current elimination for ep->from, if there is a
3445 new one. */
3446 for (op = reg_eliminate;
3447 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3448 if (op->from == ep->from && op->can_eliminate)
3449 {
3450 new_to = op->to;
3451 break;
3452 }
3453
3454 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3455 disable it. */
3456 for (op = reg_eliminate;
3457 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3458 if (op->from == new_to && op->to == ep->to)
3459 op->can_eliminate = 0;
3460 }
3461 }
3462
3463 /* See if any registers that we thought we could eliminate the previous
3464 time are no longer eliminable. If so, something has changed and we
3465 must spill the register. Also, recompute the number of eliminable
3466 registers and see if the frame pointer is needed; it is if there is
3467 no elimination of the frame pointer that we can perform. */
3468
3469 frame_pointer_needed = 1;
3470 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3471 {
3472 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3473 && ep->to != HARD_FRAME_POINTER_REGNUM)
3474 frame_pointer_needed = 0;
3475
3476 if (! ep->can_eliminate && ep->can_eliminate_previous)
3477 {
3478 ep->can_eliminate_previous = 0;
3479 SET_HARD_REG_BIT (*pset, ep->from);
3480 num_eliminable--;
3481 }
3482 }
3483
3484 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3485 /* If we didn't need a frame pointer last time, but we do now, spill
3486 the hard frame pointer. */
3487 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3488 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3489 #endif
3490 }
3491
3492 /* Initialize the table of registers to eliminate. */
3493
3494 static void
3495 init_elim_table ()
3496 {
3497 struct elim_table *ep;
3498 #ifdef ELIMINABLE_REGS
3499 const struct elim_table_1 *ep1;
3500 #endif
3501
3502 if (!reg_eliminate)
3503 reg_eliminate = (struct elim_table *)
3504 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3505
3506 /* Does this function require a frame pointer? */
3507
3508 frame_pointer_needed = (! flag_omit_frame_pointer
3509 #ifdef EXIT_IGNORE_STACK
3510 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3511 and restore sp for alloca. So we can't eliminate
3512 the frame pointer in that case. At some point,
3513 we should improve this by emitting the
3514 sp-adjusting insns for this case. */
3515 || (current_function_calls_alloca
3516 && EXIT_IGNORE_STACK)
3517 #endif
3518 || FRAME_POINTER_REQUIRED);
3519
3520 num_eliminable = 0;
3521
3522 #ifdef ELIMINABLE_REGS
3523 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3524 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3525 {
3526 ep->from = ep1->from;
3527 ep->to = ep1->to;
3528 ep->can_eliminate = ep->can_eliminate_previous
3529 = (CAN_ELIMINATE (ep->from, ep->to)
3530 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3531 }
3532 #else
3533 reg_eliminate[0].from = reg_eliminate_1[0].from;
3534 reg_eliminate[0].to = reg_eliminate_1[0].to;
3535 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3536 = ! frame_pointer_needed;
3537 #endif
3538
3539 /* Count the number of eliminable registers and build the FROM and TO
3540 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3541 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3542 We depend on this. */
3543 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3544 {
3545 num_eliminable += ep->can_eliminate;
3546 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3547 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3548 }
3549 }
3550 \f
3551 /* Kick all pseudos out of hard register REGNO.
3552
3553 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3554 because we found we can't eliminate some register. In the case, no pseudos
3555 are allowed to be in the register, even if they are only in a block that
3556 doesn't require spill registers, unlike the case when we are spilling this
3557 hard reg to produce another spill register.
3558
3559 Return nonzero if any pseudos needed to be kicked out. */
3560
3561 static void
3562 spill_hard_reg (regno, cant_eliminate)
3563 unsigned int regno;
3564 int cant_eliminate;
3565 {
3566 int i;
3567
3568 if (cant_eliminate)
3569 {
3570 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3571 regs_ever_live[regno] = 1;
3572 }
3573
3574 /* Spill every pseudo reg that was allocated to this reg
3575 or to something that overlaps this reg. */
3576
3577 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3578 if (reg_renumber[i] >= 0
3579 && (unsigned int) reg_renumber[i] <= regno
3580 && ((unsigned int) reg_renumber[i]
3581 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3582 PSEUDO_REGNO_MODE (i))
3583 > regno))
3584 SET_REGNO_REG_SET (&spilled_pseudos, i);
3585 }
3586
3587 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3588 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3589
3590 static void
3591 ior_hard_reg_set (set1, set2)
3592 HARD_REG_SET *set1, *set2;
3593 {
3594 IOR_HARD_REG_SET (*set1, *set2);
3595 }
3596
3597 /* After find_reload_regs has been run for all insn that need reloads,
3598 and/or spill_hard_regs was called, this function is used to actually
3599 spill pseudo registers and try to reallocate them. It also sets up the
3600 spill_regs array for use by choose_reload_regs. */
3601
3602 static int
3603 finish_spills (global)
3604 int global;
3605 {
3606 struct insn_chain *chain;
3607 int something_changed = 0;
3608 int i;
3609
3610 /* Build the spill_regs array for the function. */
3611 /* If there are some registers still to eliminate and one of the spill regs
3612 wasn't ever used before, additional stack space may have to be
3613 allocated to store this register. Thus, we may have changed the offset
3614 between the stack and frame pointers, so mark that something has changed.
3615
3616 One might think that we need only set VAL to 1 if this is a call-used
3617 register. However, the set of registers that must be saved by the
3618 prologue is not identical to the call-used set. For example, the
3619 register used by the call insn for the return PC is a call-used register,
3620 but must be saved by the prologue. */
3621
3622 n_spills = 0;
3623 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3624 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3625 {
3626 spill_reg_order[i] = n_spills;
3627 spill_regs[n_spills++] = i;
3628 if (num_eliminable && ! regs_ever_live[i])
3629 something_changed = 1;
3630 regs_ever_live[i] = 1;
3631 }
3632 else
3633 spill_reg_order[i] = -1;
3634
3635 EXECUTE_IF_SET_IN_REG_SET
3636 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3637 {
3638 /* Record the current hard register the pseudo is allocated to in
3639 pseudo_previous_regs so we avoid reallocating it to the same
3640 hard reg in a later pass. */
3641 if (reg_renumber[i] < 0)
3642 abort ();
3643
3644 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3645 /* Mark it as no longer having a hard register home. */
3646 reg_renumber[i] = -1;
3647 /* We will need to scan everything again. */
3648 something_changed = 1;
3649 });
3650
3651 /* Retry global register allocation if possible. */
3652 if (global)
3653 {
3654 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3655 /* For every insn that needs reloads, set the registers used as spill
3656 regs in pseudo_forbidden_regs for every pseudo live across the
3657 insn. */
3658 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3659 {
3660 EXECUTE_IF_SET_IN_REG_SET
3661 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3662 {
3663 ior_hard_reg_set (pseudo_forbidden_regs + i,
3664 &chain->used_spill_regs);
3665 });
3666 EXECUTE_IF_SET_IN_REG_SET
3667 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3668 {
3669 ior_hard_reg_set (pseudo_forbidden_regs + i,
3670 &chain->used_spill_regs);
3671 });
3672 }
3673
3674 /* Retry allocating the spilled pseudos. For each reg, merge the
3675 various reg sets that indicate which hard regs can't be used,
3676 and call retry_global_alloc.
3677 We change spill_pseudos here to only contain pseudos that did not
3678 get a new hard register. */
3679 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3680 if (reg_old_renumber[i] != reg_renumber[i])
3681 {
3682 HARD_REG_SET forbidden;
3683 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3684 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3685 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3686 retry_global_alloc (i, forbidden);
3687 if (reg_renumber[i] >= 0)
3688 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3689 }
3690 }
3691
3692 /* Fix up the register information in the insn chain.
3693 This involves deleting those of the spilled pseudos which did not get
3694 a new hard register home from the live_{before,after} sets. */
3695 for (chain = reload_insn_chain; chain; chain = chain->next)
3696 {
3697 HARD_REG_SET used_by_pseudos;
3698 HARD_REG_SET used_by_pseudos2;
3699
3700 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3701 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3702
3703 /* Mark any unallocated hard regs as available for spills. That
3704 makes inheritance work somewhat better. */
3705 if (chain->need_reload)
3706 {
3707 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3708 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3709 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3710
3711 /* Save the old value for the sanity test below. */
3712 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3713
3714 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3715 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3716 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3717 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3718
3719 /* Make sure we only enlarge the set. */
3720 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3721 abort ();
3722 ok:;
3723 }
3724 }
3725
3726 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3727 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3728 {
3729 int regno = reg_renumber[i];
3730 if (reg_old_renumber[i] == regno)
3731 continue;
3732
3733 alter_reg (i, reg_old_renumber[i]);
3734 reg_old_renumber[i] = regno;
3735 if (rtl_dump_file)
3736 {
3737 if (regno == -1)
3738 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3739 else
3740 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3741 i, reg_renumber[i]);
3742 }
3743 }
3744
3745 return something_changed;
3746 }
3747 \f
3748 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3749 Also mark any hard registers used to store user variables as
3750 forbidden from being used for spill registers. */
3751
3752 static void
3753 scan_paradoxical_subregs (x)
3754 rtx x;
3755 {
3756 int i;
3757 const char *fmt;
3758 enum rtx_code code = GET_CODE (x);
3759
3760 switch (code)
3761 {
3762 case REG:
3763 #if 0
3764 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3765 && REG_USERVAR_P (x))
3766 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3767 #endif
3768 return;
3769
3770 case CONST_INT:
3771 case CONST:
3772 case SYMBOL_REF:
3773 case LABEL_REF:
3774 case CONST_DOUBLE:
3775 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3776 case CC0:
3777 case PC:
3778 case USE:
3779 case CLOBBER:
3780 return;
3781
3782 case SUBREG:
3783 if (GET_CODE (SUBREG_REG (x)) == REG
3784 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3785 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3786 = GET_MODE_SIZE (GET_MODE (x));
3787 return;
3788
3789 default:
3790 break;
3791 }
3792
3793 fmt = GET_RTX_FORMAT (code);
3794 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3795 {
3796 if (fmt[i] == 'e')
3797 scan_paradoxical_subregs (XEXP (x, i));
3798 else if (fmt[i] == 'E')
3799 {
3800 int j;
3801 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3802 scan_paradoxical_subregs (XVECEXP (x, i, j));
3803 }
3804 }
3805 }
3806 \f
3807 /* Reload pseudo-registers into hard regs around each insn as needed.
3808 Additional register load insns are output before the insn that needs it
3809 and perhaps store insns after insns that modify the reloaded pseudo reg.
3810
3811 reg_last_reload_reg and reg_reloaded_contents keep track of
3812 which registers are already available in reload registers.
3813 We update these for the reloads that we perform,
3814 as the insns are scanned. */
3815
3816 static void
3817 reload_as_needed (live_known)
3818 int live_known;
3819 {
3820 struct insn_chain *chain;
3821 #if defined (AUTO_INC_DEC)
3822 int i;
3823 #endif
3824 rtx x;
3825
3826 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3827 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
3828 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3829 reg_has_output_reload = (char *) xmalloc (max_regno);
3830 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3831
3832 set_initial_elim_offsets ();
3833
3834 for (chain = reload_insn_chain; chain; chain = chain->next)
3835 {
3836 rtx prev;
3837 rtx insn = chain->insn;
3838 rtx old_next = NEXT_INSN (insn);
3839
3840 /* If we pass a label, copy the offsets from the label information
3841 into the current offsets of each elimination. */
3842 if (GET_CODE (insn) == CODE_LABEL)
3843 set_offsets_for_label (insn);
3844
3845 else if (INSN_P (insn))
3846 {
3847 rtx oldpat = PATTERN (insn);
3848
3849 /* If this is a USE and CLOBBER of a MEM, ensure that any
3850 references to eliminable registers have been removed. */
3851
3852 if ((GET_CODE (PATTERN (insn)) == USE
3853 || GET_CODE (PATTERN (insn)) == CLOBBER)
3854 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3855 XEXP (XEXP (PATTERN (insn), 0), 0)
3856 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3857 GET_MODE (XEXP (PATTERN (insn), 0)),
3858 NULL_RTX);
3859
3860 /* If we need to do register elimination processing, do so.
3861 This might delete the insn, in which case we are done. */
3862 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3863 {
3864 eliminate_regs_in_insn (insn, 1);
3865 if (GET_CODE (insn) == NOTE)
3866 {
3867 update_eliminable_offsets ();
3868 continue;
3869 }
3870 }
3871
3872 /* If need_elim is nonzero but need_reload is zero, one might think
3873 that we could simply set n_reloads to 0. However, find_reloads
3874 could have done some manipulation of the insn (such as swapping
3875 commutative operands), and these manipulations are lost during
3876 the first pass for every insn that needs register elimination.
3877 So the actions of find_reloads must be redone here. */
3878
3879 if (! chain->need_elim && ! chain->need_reload
3880 && ! chain->need_operand_change)
3881 n_reloads = 0;
3882 /* First find the pseudo regs that must be reloaded for this insn.
3883 This info is returned in the tables reload_... (see reload.h).
3884 Also modify the body of INSN by substituting RELOAD
3885 rtx's for those pseudo regs. */
3886 else
3887 {
3888 memset (reg_has_output_reload, 0, max_regno);
3889 CLEAR_HARD_REG_SET (reg_is_output_reload);
3890
3891 find_reloads (insn, 1, spill_indirect_levels, live_known,
3892 spill_reg_order);
3893 }
3894
3895 if (n_reloads > 0)
3896 {
3897 rtx next = NEXT_INSN (insn);
3898 rtx p;
3899
3900 prev = PREV_INSN (insn);
3901
3902 /* Now compute which reload regs to reload them into. Perhaps
3903 reusing reload regs from previous insns, or else output
3904 load insns to reload them. Maybe output store insns too.
3905 Record the choices of reload reg in reload_reg_rtx. */
3906 choose_reload_regs (chain);
3907
3908 /* Merge any reloads that we didn't combine for fear of
3909 increasing the number of spill registers needed but now
3910 discover can be safely merged. */
3911 if (SMALL_REGISTER_CLASSES)
3912 merge_assigned_reloads (insn);
3913
3914 /* Generate the insns to reload operands into or out of
3915 their reload regs. */
3916 emit_reload_insns (chain);
3917
3918 /* Substitute the chosen reload regs from reload_reg_rtx
3919 into the insn's body (or perhaps into the bodies of other
3920 load and store insn that we just made for reloading
3921 and that we moved the structure into). */
3922 subst_reloads (insn);
3923
3924 /* If this was an ASM, make sure that all the reload insns
3925 we have generated are valid. If not, give an error
3926 and delete them. */
3927
3928 if (asm_noperands (PATTERN (insn)) >= 0)
3929 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3930 if (p != insn && INSN_P (p)
3931 && (recog_memoized (p) < 0
3932 || (extract_insn (p), ! constrain_operands (1))))
3933 {
3934 error_for_asm (insn,
3935 "`asm' operand requires impossible reload");
3936 delete_insn (p);
3937 }
3938 }
3939
3940 if (num_eliminable && chain->need_elim)
3941 update_eliminable_offsets ();
3942
3943 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3944 is no longer validly lying around to save a future reload.
3945 Note that this does not detect pseudos that were reloaded
3946 for this insn in order to be stored in
3947 (obeying register constraints). That is correct; such reload
3948 registers ARE still valid. */
3949 note_stores (oldpat, forget_old_reloads_1, NULL);
3950
3951 /* There may have been CLOBBER insns placed after INSN. So scan
3952 between INSN and NEXT and use them to forget old reloads. */
3953 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3954 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3955 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3956
3957 #ifdef AUTO_INC_DEC
3958 /* Likewise for regs altered by auto-increment in this insn.
3959 REG_INC notes have been changed by reloading:
3960 find_reloads_address_1 records substitutions for them,
3961 which have been performed by subst_reloads above. */
3962 for (i = n_reloads - 1; i >= 0; i--)
3963 {
3964 rtx in_reg = rld[i].in_reg;
3965 if (in_reg)
3966 {
3967 enum rtx_code code = GET_CODE (in_reg);
3968 /* PRE_INC / PRE_DEC will have the reload register ending up
3969 with the same value as the stack slot, but that doesn't
3970 hold true for POST_INC / POST_DEC. Either we have to
3971 convert the memory access to a true POST_INC / POST_DEC,
3972 or we can't use the reload register for inheritance. */
3973 if ((code == POST_INC || code == POST_DEC)
3974 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3975 REGNO (rld[i].reg_rtx))
3976 /* Make sure it is the inc/dec pseudo, and not
3977 some other (e.g. output operand) pseudo. */
3978 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3979 == REGNO (XEXP (in_reg, 0))))
3980
3981 {
3982 rtx reload_reg = rld[i].reg_rtx;
3983 enum machine_mode mode = GET_MODE (reload_reg);
3984 int n = 0;
3985 rtx p;
3986
3987 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3988 {
3989 /* We really want to ignore REG_INC notes here, so
3990 use PATTERN (p) as argument to reg_set_p . */
3991 if (reg_set_p (reload_reg, PATTERN (p)))
3992 break;
3993 n = count_occurrences (PATTERN (p), reload_reg, 0);
3994 if (! n)
3995 continue;
3996 if (n == 1)
3997 {
3998 n = validate_replace_rtx (reload_reg,
3999 gen_rtx (code, mode,
4000 reload_reg),
4001 p);
4002
4003 /* We must also verify that the constraints
4004 are met after the replacement. */
4005 extract_insn (p);
4006 if (n)
4007 n = constrain_operands (1);
4008 else
4009 break;
4010
4011 /* If the constraints were not met, then
4012 undo the replacement. */
4013 if (!n)
4014 {
4015 validate_replace_rtx (gen_rtx (code, mode,
4016 reload_reg),
4017 reload_reg, p);
4018 break;
4019 }
4020
4021 }
4022 break;
4023 }
4024 if (n == 1)
4025 {
4026 REG_NOTES (p)
4027 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4028 REG_NOTES (p));
4029 /* Mark this as having an output reload so that the
4030 REG_INC processing code below won't invalidate
4031 the reload for inheritance. */
4032 SET_HARD_REG_BIT (reg_is_output_reload,
4033 REGNO (reload_reg));
4034 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4035 }
4036 else
4037 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4038 NULL);
4039 }
4040 else if ((code == PRE_INC || code == PRE_DEC)
4041 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4042 REGNO (rld[i].reg_rtx))
4043 /* Make sure it is the inc/dec pseudo, and not
4044 some other (e.g. output operand) pseudo. */
4045 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4046 == REGNO (XEXP (in_reg, 0))))
4047 {
4048 SET_HARD_REG_BIT (reg_is_output_reload,
4049 REGNO (rld[i].reg_rtx));
4050 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4051 }
4052 }
4053 }
4054 /* If a pseudo that got a hard register is auto-incremented,
4055 we must purge records of copying it into pseudos without
4056 hard registers. */
4057 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4058 if (REG_NOTE_KIND (x) == REG_INC)
4059 {
4060 /* See if this pseudo reg was reloaded in this insn.
4061 If so, its last-reload info is still valid
4062 because it is based on this insn's reload. */
4063 for (i = 0; i < n_reloads; i++)
4064 if (rld[i].out == XEXP (x, 0))
4065 break;
4066
4067 if (i == n_reloads)
4068 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4069 }
4070 #endif
4071 }
4072 /* A reload reg's contents are unknown after a label. */
4073 if (GET_CODE (insn) == CODE_LABEL)
4074 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4075
4076 /* Don't assume a reload reg is still good after a call insn
4077 if it is a call-used reg. */
4078 else if (GET_CODE (insn) == CALL_INSN)
4079 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4080 }
4081
4082 /* Clean up. */
4083 free (reg_last_reload_reg);
4084 free (reg_has_output_reload);
4085 }
4086
4087 /* Discard all record of any value reloaded from X,
4088 or reloaded in X from someplace else;
4089 unless X is an output reload reg of the current insn.
4090
4091 X may be a hard reg (the reload reg)
4092 or it may be a pseudo reg that was reloaded from. */
4093
4094 static void
4095 forget_old_reloads_1 (x, ignored, data)
4096 rtx x;
4097 rtx ignored ATTRIBUTE_UNUSED;
4098 void *data ATTRIBUTE_UNUSED;
4099 {
4100 unsigned int regno;
4101 unsigned int nr;
4102
4103 /* note_stores does give us subregs of hard regs,
4104 subreg_regno_offset will abort if it is not a hard reg. */
4105 while (GET_CODE (x) == SUBREG)
4106 {
4107 /* We ignore the subreg offset when calculating the regno,
4108 because we are using the entire underlying hard register
4109 below. */
4110 x = SUBREG_REG (x);
4111 }
4112
4113 if (GET_CODE (x) != REG)
4114 return;
4115
4116 regno = REGNO (x);
4117
4118 if (regno >= FIRST_PSEUDO_REGISTER)
4119 nr = 1;
4120 else
4121 {
4122 unsigned int i;
4123
4124 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4125 /* Storing into a spilled-reg invalidates its contents.
4126 This can happen if a block-local pseudo is allocated to that reg
4127 and it wasn't spilled because this block's total need is 0.
4128 Then some insn might have an optional reload and use this reg. */
4129 for (i = 0; i < nr; i++)
4130 /* But don't do this if the reg actually serves as an output
4131 reload reg in the current instruction. */
4132 if (n_reloads == 0
4133 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4134 {
4135 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4136 spill_reg_store[regno + i] = 0;
4137 }
4138 }
4139
4140 /* Since value of X has changed,
4141 forget any value previously copied from it. */
4142
4143 while (nr-- > 0)
4144 /* But don't forget a copy if this is the output reload
4145 that establishes the copy's validity. */
4146 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4147 reg_last_reload_reg[regno + nr] = 0;
4148 }
4149 \f
4150 /* The following HARD_REG_SETs indicate when each hard register is
4151 used for a reload of various parts of the current insn. */
4152
4153 /* If reg is unavailable for all reloads. */
4154 static HARD_REG_SET reload_reg_unavailable;
4155 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4156 static HARD_REG_SET reload_reg_used;
4157 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4158 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4159 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4160 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4161 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4162 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4163 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4164 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4165 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4166 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4167 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4168 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4169 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4170 static HARD_REG_SET reload_reg_used_in_op_addr;
4171 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4172 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4173 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4174 static HARD_REG_SET reload_reg_used_in_insn;
4175 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4176 static HARD_REG_SET reload_reg_used_in_other_addr;
4177
4178 /* If reg is in use as a reload reg for any sort of reload. */
4179 static HARD_REG_SET reload_reg_used_at_all;
4180
4181 /* If reg is use as an inherited reload. We just mark the first register
4182 in the group. */
4183 static HARD_REG_SET reload_reg_used_for_inherit;
4184
4185 /* Records which hard regs are used in any way, either as explicit use or
4186 by being allocated to a pseudo during any point of the current insn. */
4187 static HARD_REG_SET reg_used_in_insn;
4188
4189 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4190 TYPE. MODE is used to indicate how many consecutive regs are
4191 actually used. */
4192
4193 static void
4194 mark_reload_reg_in_use (regno, opnum, type, mode)
4195 unsigned int regno;
4196 int opnum;
4197 enum reload_type type;
4198 enum machine_mode mode;
4199 {
4200 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4201 unsigned int i;
4202
4203 for (i = regno; i < nregs + regno; i++)
4204 {
4205 switch (type)
4206 {
4207 case RELOAD_OTHER:
4208 SET_HARD_REG_BIT (reload_reg_used, i);
4209 break;
4210
4211 case RELOAD_FOR_INPUT_ADDRESS:
4212 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4213 break;
4214
4215 case RELOAD_FOR_INPADDR_ADDRESS:
4216 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4217 break;
4218
4219 case RELOAD_FOR_OUTPUT_ADDRESS:
4220 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4221 break;
4222
4223 case RELOAD_FOR_OUTADDR_ADDRESS:
4224 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4225 break;
4226
4227 case RELOAD_FOR_OPERAND_ADDRESS:
4228 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4229 break;
4230
4231 case RELOAD_FOR_OPADDR_ADDR:
4232 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4233 break;
4234
4235 case RELOAD_FOR_OTHER_ADDRESS:
4236 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4237 break;
4238
4239 case RELOAD_FOR_INPUT:
4240 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4241 break;
4242
4243 case RELOAD_FOR_OUTPUT:
4244 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4245 break;
4246
4247 case RELOAD_FOR_INSN:
4248 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4249 break;
4250 }
4251
4252 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4253 }
4254 }
4255
4256 /* Similarly, but show REGNO is no longer in use for a reload. */
4257
4258 static void
4259 clear_reload_reg_in_use (regno, opnum, type, mode)
4260 unsigned int regno;
4261 int opnum;
4262 enum reload_type type;
4263 enum machine_mode mode;
4264 {
4265 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4266 unsigned int start_regno, end_regno, r;
4267 int i;
4268 /* A complication is that for some reload types, inheritance might
4269 allow multiple reloads of the same types to share a reload register.
4270 We set check_opnum if we have to check only reloads with the same
4271 operand number, and check_any if we have to check all reloads. */
4272 int check_opnum = 0;
4273 int check_any = 0;
4274 HARD_REG_SET *used_in_set;
4275
4276 switch (type)
4277 {
4278 case RELOAD_OTHER:
4279 used_in_set = &reload_reg_used;
4280 break;
4281
4282 case RELOAD_FOR_INPUT_ADDRESS:
4283 used_in_set = &reload_reg_used_in_input_addr[opnum];
4284 break;
4285
4286 case RELOAD_FOR_INPADDR_ADDRESS:
4287 check_opnum = 1;
4288 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4289 break;
4290
4291 case RELOAD_FOR_OUTPUT_ADDRESS:
4292 used_in_set = &reload_reg_used_in_output_addr[opnum];
4293 break;
4294
4295 case RELOAD_FOR_OUTADDR_ADDRESS:
4296 check_opnum = 1;
4297 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4298 break;
4299
4300 case RELOAD_FOR_OPERAND_ADDRESS:
4301 used_in_set = &reload_reg_used_in_op_addr;
4302 break;
4303
4304 case RELOAD_FOR_OPADDR_ADDR:
4305 check_any = 1;
4306 used_in_set = &reload_reg_used_in_op_addr_reload;
4307 break;
4308
4309 case RELOAD_FOR_OTHER_ADDRESS:
4310 used_in_set = &reload_reg_used_in_other_addr;
4311 check_any = 1;
4312 break;
4313
4314 case RELOAD_FOR_INPUT:
4315 used_in_set = &reload_reg_used_in_input[opnum];
4316 break;
4317
4318 case RELOAD_FOR_OUTPUT:
4319 used_in_set = &reload_reg_used_in_output[opnum];
4320 break;
4321
4322 case RELOAD_FOR_INSN:
4323 used_in_set = &reload_reg_used_in_insn;
4324 break;
4325 default:
4326 abort ();
4327 }
4328 /* We resolve conflicts with remaining reloads of the same type by
4329 excluding the intervals of of reload registers by them from the
4330 interval of freed reload registers. Since we only keep track of
4331 one set of interval bounds, we might have to exclude somewhat
4332 more than what would be necessary if we used a HARD_REG_SET here.
4333 But this should only happen very infrequently, so there should
4334 be no reason to worry about it. */
4335
4336 start_regno = regno;
4337 end_regno = regno + nregs;
4338 if (check_opnum || check_any)
4339 {
4340 for (i = n_reloads - 1; i >= 0; i--)
4341 {
4342 if (rld[i].when_needed == type
4343 && (check_any || rld[i].opnum == opnum)
4344 && rld[i].reg_rtx)
4345 {
4346 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4347 unsigned int conflict_end
4348 = (conflict_start
4349 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4350
4351 /* If there is an overlap with the first to-be-freed register,
4352 adjust the interval start. */
4353 if (conflict_start <= start_regno && conflict_end > start_regno)
4354 start_regno = conflict_end;
4355 /* Otherwise, if there is a conflict with one of the other
4356 to-be-freed registers, adjust the interval end. */
4357 if (conflict_start > start_regno && conflict_start < end_regno)
4358 end_regno = conflict_start;
4359 }
4360 }
4361 }
4362
4363 for (r = start_regno; r < end_regno; r++)
4364 CLEAR_HARD_REG_BIT (*used_in_set, r);
4365 }
4366
4367 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4368 specified by OPNUM and TYPE. */
4369
4370 static int
4371 reload_reg_free_p (regno, opnum, type)
4372 unsigned int regno;
4373 int opnum;
4374 enum reload_type type;
4375 {
4376 int i;
4377
4378 /* In use for a RELOAD_OTHER means it's not available for anything. */
4379 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4380 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4381 return 0;
4382
4383 switch (type)
4384 {
4385 case RELOAD_OTHER:
4386 /* In use for anything means we can't use it for RELOAD_OTHER. */
4387 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4388 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4389 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4390 return 0;
4391
4392 for (i = 0; i < reload_n_operands; i++)
4393 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4394 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4395 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4396 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4397 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4398 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4399 return 0;
4400
4401 return 1;
4402
4403 case RELOAD_FOR_INPUT:
4404 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4405 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4406 return 0;
4407
4408 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4409 return 0;
4410
4411 /* If it is used for some other input, can't use it. */
4412 for (i = 0; i < reload_n_operands; i++)
4413 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4414 return 0;
4415
4416 /* If it is used in a later operand's address, can't use it. */
4417 for (i = opnum + 1; i < reload_n_operands; i++)
4418 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4419 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4420 return 0;
4421
4422 return 1;
4423
4424 case RELOAD_FOR_INPUT_ADDRESS:
4425 /* Can't use a register if it is used for an input address for this
4426 operand or used as an input in an earlier one. */
4427 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4428 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4429 return 0;
4430
4431 for (i = 0; i < opnum; i++)
4432 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4433 return 0;
4434
4435 return 1;
4436
4437 case RELOAD_FOR_INPADDR_ADDRESS:
4438 /* Can't use a register if it is used for an input address
4439 for this operand or used as an input in an earlier
4440 one. */
4441 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4442 return 0;
4443
4444 for (i = 0; i < opnum; i++)
4445 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4446 return 0;
4447
4448 return 1;
4449
4450 case RELOAD_FOR_OUTPUT_ADDRESS:
4451 /* Can't use a register if it is used for an output address for this
4452 operand or used as an output in this or a later operand. Note
4453 that multiple output operands are emitted in reverse order, so
4454 the conflicting ones are those with lower indices. */
4455 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4456 return 0;
4457
4458 for (i = 0; i <= opnum; i++)
4459 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4460 return 0;
4461
4462 return 1;
4463
4464 case RELOAD_FOR_OUTADDR_ADDRESS:
4465 /* Can't use a register if it is used for an output address
4466 for this operand or used as an output in this or a
4467 later operand. Note that multiple output operands are
4468 emitted in reverse order, so the conflicting ones are
4469 those with lower indices. */
4470 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4471 return 0;
4472
4473 for (i = 0; i <= opnum; i++)
4474 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4475 return 0;
4476
4477 return 1;
4478
4479 case RELOAD_FOR_OPERAND_ADDRESS:
4480 for (i = 0; i < reload_n_operands; i++)
4481 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4482 return 0;
4483
4484 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4485 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4486
4487 case RELOAD_FOR_OPADDR_ADDR:
4488 for (i = 0; i < reload_n_operands; i++)
4489 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4490 return 0;
4491
4492 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4493
4494 case RELOAD_FOR_OUTPUT:
4495 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4496 outputs, or an operand address for this or an earlier output.
4497 Note that multiple output operands are emitted in reverse order,
4498 so the conflicting ones are those with higher indices. */
4499 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4500 return 0;
4501
4502 for (i = 0; i < reload_n_operands; i++)
4503 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4504 return 0;
4505
4506 for (i = opnum; i < reload_n_operands; i++)
4507 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4508 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4509 return 0;
4510
4511 return 1;
4512
4513 case RELOAD_FOR_INSN:
4514 for (i = 0; i < reload_n_operands; i++)
4515 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4516 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4517 return 0;
4518
4519 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4520 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4521
4522 case RELOAD_FOR_OTHER_ADDRESS:
4523 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4524 }
4525 abort ();
4526 }
4527
4528 /* Return 1 if the value in reload reg REGNO, as used by a reload
4529 needed for the part of the insn specified by OPNUM and TYPE,
4530 is still available in REGNO at the end of the insn.
4531
4532 We can assume that the reload reg was already tested for availability
4533 at the time it is needed, and we should not check this again,
4534 in case the reg has already been marked in use. */
4535
4536 static int
4537 reload_reg_reaches_end_p (regno, opnum, type)
4538 unsigned int regno;
4539 int opnum;
4540 enum reload_type type;
4541 {
4542 int i;
4543
4544 switch (type)
4545 {
4546 case RELOAD_OTHER:
4547 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4548 its value must reach the end. */
4549 return 1;
4550
4551 /* If this use is for part of the insn,
4552 its value reaches if no subsequent part uses the same register.
4553 Just like the above function, don't try to do this with lots
4554 of fallthroughs. */
4555
4556 case RELOAD_FOR_OTHER_ADDRESS:
4557 /* Here we check for everything else, since these don't conflict
4558 with anything else and everything comes later. */
4559
4560 for (i = 0; i < reload_n_operands; i++)
4561 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4562 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4563 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4564 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4565 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4566 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4567 return 0;
4568
4569 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4570 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4571 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4572
4573 case RELOAD_FOR_INPUT_ADDRESS:
4574 case RELOAD_FOR_INPADDR_ADDRESS:
4575 /* Similar, except that we check only for this and subsequent inputs
4576 and the address of only subsequent inputs and we do not need
4577 to check for RELOAD_OTHER objects since they are known not to
4578 conflict. */
4579
4580 for (i = opnum; i < reload_n_operands; i++)
4581 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4582 return 0;
4583
4584 for (i = opnum + 1; i < reload_n_operands; i++)
4585 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4586 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4587 return 0;
4588
4589 for (i = 0; i < reload_n_operands; i++)
4590 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4591 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4592 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4593 return 0;
4594
4595 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4596 return 0;
4597
4598 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4599 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4600 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4601
4602 case RELOAD_FOR_INPUT:
4603 /* Similar to input address, except we start at the next operand for
4604 both input and input address and we do not check for
4605 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4606 would conflict. */
4607
4608 for (i = opnum + 1; i < reload_n_operands; i++)
4609 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4610 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4611 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4612 return 0;
4613
4614 /* ... fall through ... */
4615
4616 case RELOAD_FOR_OPERAND_ADDRESS:
4617 /* Check outputs and their addresses. */
4618
4619 for (i = 0; i < reload_n_operands; i++)
4620 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4621 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4622 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4623 return 0;
4624
4625 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4626
4627 case RELOAD_FOR_OPADDR_ADDR:
4628 for (i = 0; i < reload_n_operands; i++)
4629 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4630 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4631 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4632 return 0;
4633
4634 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4635 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4636 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4637
4638 case RELOAD_FOR_INSN:
4639 /* These conflict with other outputs with RELOAD_OTHER. So
4640 we need only check for output addresses. */
4641
4642 opnum = reload_n_operands;
4643
4644 /* ... fall through ... */
4645
4646 case RELOAD_FOR_OUTPUT:
4647 case RELOAD_FOR_OUTPUT_ADDRESS:
4648 case RELOAD_FOR_OUTADDR_ADDRESS:
4649 /* We already know these can't conflict with a later output. So the
4650 only thing to check are later output addresses.
4651 Note that multiple output operands are emitted in reverse order,
4652 so the conflicting ones are those with lower indices. */
4653 for (i = 0; i < opnum; i++)
4654 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4655 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4656 return 0;
4657
4658 return 1;
4659 }
4660
4661 abort ();
4662 }
4663 \f
4664 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4665 Return 0 otherwise.
4666
4667 This function uses the same algorithm as reload_reg_free_p above. */
4668
4669 int
4670 reloads_conflict (r1, r2)
4671 int r1, r2;
4672 {
4673 enum reload_type r1_type = rld[r1].when_needed;
4674 enum reload_type r2_type = rld[r2].when_needed;
4675 int r1_opnum = rld[r1].opnum;
4676 int r2_opnum = rld[r2].opnum;
4677
4678 /* RELOAD_OTHER conflicts with everything. */
4679 if (r2_type == RELOAD_OTHER)
4680 return 1;
4681
4682 /* Otherwise, check conflicts differently for each type. */
4683
4684 switch (r1_type)
4685 {
4686 case RELOAD_FOR_INPUT:
4687 return (r2_type == RELOAD_FOR_INSN
4688 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4689 || r2_type == RELOAD_FOR_OPADDR_ADDR
4690 || r2_type == RELOAD_FOR_INPUT
4691 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4692 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4693 && r2_opnum > r1_opnum));
4694
4695 case RELOAD_FOR_INPUT_ADDRESS:
4696 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4697 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4698
4699 case RELOAD_FOR_INPADDR_ADDRESS:
4700 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4701 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4702
4703 case RELOAD_FOR_OUTPUT_ADDRESS:
4704 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4705 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4706
4707 case RELOAD_FOR_OUTADDR_ADDRESS:
4708 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4709 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4710
4711 case RELOAD_FOR_OPERAND_ADDRESS:
4712 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4713 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4714
4715 case RELOAD_FOR_OPADDR_ADDR:
4716 return (r2_type == RELOAD_FOR_INPUT
4717 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4718
4719 case RELOAD_FOR_OUTPUT:
4720 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4721 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4722 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4723 && r2_opnum >= r1_opnum));
4724
4725 case RELOAD_FOR_INSN:
4726 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4727 || r2_type == RELOAD_FOR_INSN
4728 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4729
4730 case RELOAD_FOR_OTHER_ADDRESS:
4731 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4732
4733 case RELOAD_OTHER:
4734 return 1;
4735
4736 default:
4737 abort ();
4738 }
4739 }
4740 \f
4741 /* Indexed by reload number, 1 if incoming value
4742 inherited from previous insns. */
4743 char reload_inherited[MAX_RELOADS];
4744
4745 /* For an inherited reload, this is the insn the reload was inherited from,
4746 if we know it. Otherwise, this is 0. */
4747 rtx reload_inheritance_insn[MAX_RELOADS];
4748
4749 /* If non-zero, this is a place to get the value of the reload,
4750 rather than using reload_in. */
4751 rtx reload_override_in[MAX_RELOADS];
4752
4753 /* For each reload, the hard register number of the register used,
4754 or -1 if we did not need a register for this reload. */
4755 int reload_spill_index[MAX_RELOADS];
4756
4757 /* Subroutine of free_for_value_p, used to check a single register.
4758 START_REGNO is the starting regno of the full reload register
4759 (possibly comprising multiple hard registers) that we are considering. */
4760
4761 static int
4762 reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4763 reloadnum, ignore_address_reloads)
4764 int start_regno, regno;
4765 int opnum;
4766 enum reload_type type;
4767 rtx value, out;
4768 int reloadnum;
4769 int ignore_address_reloads;
4770 {
4771 int time1;
4772 /* Set if we see an input reload that must not share its reload register
4773 with any new earlyclobber, but might otherwise share the reload
4774 register with an output or input-output reload. */
4775 int check_earlyclobber = 0;
4776 int i;
4777 int copy = 0;
4778
4779 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4780 return 0;
4781
4782 if (out == const0_rtx)
4783 {
4784 copy = 1;
4785 out = NULL_RTX;
4786 }
4787
4788 /* We use some pseudo 'time' value to check if the lifetimes of the
4789 new register use would overlap with the one of a previous reload
4790 that is not read-only or uses a different value.
4791 The 'time' used doesn't have to be linear in any shape or form, just
4792 monotonic.
4793 Some reload types use different 'buckets' for each operand.
4794 So there are MAX_RECOG_OPERANDS different time values for each
4795 such reload type.
4796 We compute TIME1 as the time when the register for the prospective
4797 new reload ceases to be live, and TIME2 for each existing
4798 reload as the time when that the reload register of that reload
4799 becomes live.
4800 Where there is little to be gained by exact lifetime calculations,
4801 we just make conservative assumptions, i.e. a longer lifetime;
4802 this is done in the 'default:' cases. */
4803 switch (type)
4804 {
4805 case RELOAD_FOR_OTHER_ADDRESS:
4806 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4807 time1 = copy ? 0 : 1;
4808 break;
4809 case RELOAD_OTHER:
4810 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4811 break;
4812 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4813 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4814 respectively, to the time values for these, we get distinct time
4815 values. To get distinct time values for each operand, we have to
4816 multiply opnum by at least three. We round that up to four because
4817 multiply by four is often cheaper. */
4818 case RELOAD_FOR_INPADDR_ADDRESS:
4819 time1 = opnum * 4 + 2;
4820 break;
4821 case RELOAD_FOR_INPUT_ADDRESS:
4822 time1 = opnum * 4 + 3;
4823 break;
4824 case RELOAD_FOR_INPUT:
4825 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4826 executes (inclusive). */
4827 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4828 break;
4829 case RELOAD_FOR_OPADDR_ADDR:
4830 /* opnum * 4 + 4
4831 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4832 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4833 break;
4834 case RELOAD_FOR_OPERAND_ADDRESS:
4835 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4836 is executed. */
4837 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4838 break;
4839 case RELOAD_FOR_OUTADDR_ADDRESS:
4840 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4841 break;
4842 case RELOAD_FOR_OUTPUT_ADDRESS:
4843 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4844 break;
4845 default:
4846 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4847 }
4848
4849 for (i = 0; i < n_reloads; i++)
4850 {
4851 rtx reg = rld[i].reg_rtx;
4852 if (reg && GET_CODE (reg) == REG
4853 && ((unsigned) regno - true_regnum (reg)
4854 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned) 1)
4855 && i != reloadnum)
4856 {
4857 rtx other_input = rld[i].in;
4858
4859 /* If the other reload loads the same input value, that
4860 will not cause a conflict only if it's loading it into
4861 the same register. */
4862 if (true_regnum (reg) != start_regno)
4863 other_input = NULL_RTX;
4864 if (! other_input || ! rtx_equal_p (other_input, value)
4865 || rld[i].out || out)
4866 {
4867 int time2;
4868 switch (rld[i].when_needed)
4869 {
4870 case RELOAD_FOR_OTHER_ADDRESS:
4871 time2 = 0;
4872 break;
4873 case RELOAD_FOR_INPADDR_ADDRESS:
4874 /* find_reloads makes sure that a
4875 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4876 by at most one - the first -
4877 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4878 address reload is inherited, the address address reload
4879 goes away, so we can ignore this conflict. */
4880 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4881 && ignore_address_reloads
4882 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4883 Then the address address is still needed to store
4884 back the new address. */
4885 && ! rld[reloadnum].out)
4886 continue;
4887 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4888 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4889 reloads go away. */
4890 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4891 && ignore_address_reloads
4892 /* Unless we are reloading an auto_inc expression. */
4893 && ! rld[reloadnum].out)
4894 continue;
4895 time2 = rld[i].opnum * 4 + 2;
4896 break;
4897 case RELOAD_FOR_INPUT_ADDRESS:
4898 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4899 && ignore_address_reloads
4900 && ! rld[reloadnum].out)
4901 continue;
4902 time2 = rld[i].opnum * 4 + 3;
4903 break;
4904 case RELOAD_FOR_INPUT:
4905 time2 = rld[i].opnum * 4 + 4;
4906 check_earlyclobber = 1;
4907 break;
4908 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4909 == MAX_RECOG_OPERAND * 4 */
4910 case RELOAD_FOR_OPADDR_ADDR:
4911 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4912 && ignore_address_reloads
4913 && ! rld[reloadnum].out)
4914 continue;
4915 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4916 break;
4917 case RELOAD_FOR_OPERAND_ADDRESS:
4918 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4919 check_earlyclobber = 1;
4920 break;
4921 case RELOAD_FOR_INSN:
4922 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4923 break;
4924 case RELOAD_FOR_OUTPUT:
4925 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4926 instruction is executed. */
4927 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4928 break;
4929 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4930 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4931 value. */
4932 case RELOAD_FOR_OUTADDR_ADDRESS:
4933 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4934 && ignore_address_reloads
4935 && ! rld[reloadnum].out)
4936 continue;
4937 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4938 break;
4939 case RELOAD_FOR_OUTPUT_ADDRESS:
4940 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4941 break;
4942 case RELOAD_OTHER:
4943 /* If there is no conflict in the input part, handle this
4944 like an output reload. */
4945 if (! rld[i].in || rtx_equal_p (other_input, value))
4946 {
4947 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4948 /* Earlyclobbered outputs must conflict with inputs. */
4949 if (earlyclobber_operand_p (rld[i].out))
4950 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4951
4952 break;
4953 }
4954 time2 = 1;
4955 /* RELOAD_OTHER might be live beyond instruction execution,
4956 but this is not obvious when we set time2 = 1. So check
4957 here if there might be a problem with the new reload
4958 clobbering the register used by the RELOAD_OTHER. */
4959 if (out)
4960 return 0;
4961 break;
4962 default:
4963 return 0;
4964 }
4965 if ((time1 >= time2
4966 && (! rld[i].in || rld[i].out
4967 || ! rtx_equal_p (other_input, value)))
4968 || (out && rld[reloadnum].out_reg
4969 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4970 return 0;
4971 }
4972 }
4973 }
4974
4975 /* Earlyclobbered outputs must conflict with inputs. */
4976 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4977 return 0;
4978
4979 return 1;
4980 }
4981
4982 /* Return 1 if the value in reload reg REGNO, as used by a reload
4983 needed for the part of the insn specified by OPNUM and TYPE,
4984 may be used to load VALUE into it.
4985
4986 MODE is the mode in which the register is used, this is needed to
4987 determine how many hard regs to test.
4988
4989 Other read-only reloads with the same value do not conflict
4990 unless OUT is non-zero and these other reloads have to live while
4991 output reloads live.
4992 If OUT is CONST0_RTX, this is a special case: it means that the
4993 test should not be for using register REGNO as reload register, but
4994 for copying from register REGNO into the reload register.
4995
4996 RELOADNUM is the number of the reload we want to load this value for;
4997 a reload does not conflict with itself.
4998
4999 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5000 reloads that load an address for the very reload we are considering.
5001
5002 The caller has to make sure that there is no conflict with the return
5003 register. */
5004
5005 static int
5006 free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
5007 ignore_address_reloads)
5008 int regno;
5009 enum machine_mode mode;
5010 int opnum;
5011 enum reload_type type;
5012 rtx value, out;
5013 int reloadnum;
5014 int ignore_address_reloads;
5015 {
5016 int nregs = HARD_REGNO_NREGS (regno, mode);
5017 while (nregs-- > 0)
5018 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5019 value, out, reloadnum,
5020 ignore_address_reloads))
5021 return 0;
5022 return 1;
5023 }
5024
5025 /* Determine whether the reload reg X overlaps any rtx'es used for
5026 overriding inheritance. Return nonzero if so. */
5027
5028 static int
5029 conflicts_with_override (x)
5030 rtx x;
5031 {
5032 int i;
5033 for (i = 0; i < n_reloads; i++)
5034 if (reload_override_in[i]
5035 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5036 return 1;
5037 return 0;
5038 }
5039 \f
5040 /* Give an error message saying we failed to find a reload for INSN,
5041 and clear out reload R. */
5042 static void
5043 failed_reload (insn, r)
5044 rtx insn;
5045 int r;
5046 {
5047 if (asm_noperands (PATTERN (insn)) < 0)
5048 /* It's the compiler's fault. */
5049 fatal_insn ("could not find a spill register", insn);
5050
5051 /* It's the user's fault; the operand's mode and constraint
5052 don't match. Disable this reload so we don't crash in final. */
5053 error_for_asm (insn,
5054 "`asm' operand constraint incompatible with operand size");
5055 rld[r].in = 0;
5056 rld[r].out = 0;
5057 rld[r].reg_rtx = 0;
5058 rld[r].optional = 1;
5059 rld[r].secondary_p = 1;
5060 }
5061
5062 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5063 for reload R. If it's valid, get an rtx for it. Return nonzero if
5064 successful. */
5065 static int
5066 set_reload_reg (i, r)
5067 int i, r;
5068 {
5069 int regno;
5070 rtx reg = spill_reg_rtx[i];
5071
5072 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5073 spill_reg_rtx[i] = reg
5074 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5075
5076 regno = true_regnum (reg);
5077
5078 /* Detect when the reload reg can't hold the reload mode.
5079 This used to be one `if', but Sequent compiler can't handle that. */
5080 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5081 {
5082 enum machine_mode test_mode = VOIDmode;
5083 if (rld[r].in)
5084 test_mode = GET_MODE (rld[r].in);
5085 /* If rld[r].in has VOIDmode, it means we will load it
5086 in whatever mode the reload reg has: to wit, rld[r].mode.
5087 We have already tested that for validity. */
5088 /* Aside from that, we need to test that the expressions
5089 to reload from or into have modes which are valid for this
5090 reload register. Otherwise the reload insns would be invalid. */
5091 if (! (rld[r].in != 0 && test_mode != VOIDmode
5092 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5093 if (! (rld[r].out != 0
5094 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5095 {
5096 /* The reg is OK. */
5097 last_spill_reg = i;
5098
5099 /* Mark as in use for this insn the reload regs we use
5100 for this. */
5101 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5102 rld[r].when_needed, rld[r].mode);
5103
5104 rld[r].reg_rtx = reg;
5105 reload_spill_index[r] = spill_regs[i];
5106 return 1;
5107 }
5108 }
5109 return 0;
5110 }
5111
5112 /* Find a spill register to use as a reload register for reload R.
5113 LAST_RELOAD is non-zero if this is the last reload for the insn being
5114 processed.
5115
5116 Set rld[R].reg_rtx to the register allocated.
5117
5118 We return 1 if successful, or 0 if we couldn't find a spill reg and
5119 we didn't change anything. */
5120
5121 static int
5122 allocate_reload_reg (chain, r, last_reload)
5123 struct insn_chain *chain ATTRIBUTE_UNUSED;
5124 int r;
5125 int last_reload;
5126 {
5127 int i, pass, count;
5128
5129 /* If we put this reload ahead, thinking it is a group,
5130 then insist on finding a group. Otherwise we can grab a
5131 reg that some other reload needs.
5132 (That can happen when we have a 68000 DATA_OR_FP_REG
5133 which is a group of data regs or one fp reg.)
5134 We need not be so restrictive if there are no more reloads
5135 for this insn.
5136
5137 ??? Really it would be nicer to have smarter handling
5138 for that kind of reg class, where a problem like this is normal.
5139 Perhaps those classes should be avoided for reloading
5140 by use of more alternatives. */
5141
5142 int force_group = rld[r].nregs > 1 && ! last_reload;
5143
5144 /* If we want a single register and haven't yet found one,
5145 take any reg in the right class and not in use.
5146 If we want a consecutive group, here is where we look for it.
5147
5148 We use two passes so we can first look for reload regs to
5149 reuse, which are already in use for other reloads in this insn,
5150 and only then use additional registers.
5151 I think that maximizing reuse is needed to make sure we don't
5152 run out of reload regs. Suppose we have three reloads, and
5153 reloads A and B can share regs. These need two regs.
5154 Suppose A and B are given different regs.
5155 That leaves none for C. */
5156 for (pass = 0; pass < 2; pass++)
5157 {
5158 /* I is the index in spill_regs.
5159 We advance it round-robin between insns to use all spill regs
5160 equally, so that inherited reloads have a chance
5161 of leapfrogging each other. */
5162
5163 i = last_spill_reg;
5164
5165 for (count = 0; count < n_spills; count++)
5166 {
5167 int class = (int) rld[r].class;
5168 int regnum;
5169
5170 i++;
5171 if (i >= n_spills)
5172 i -= n_spills;
5173 regnum = spill_regs[i];
5174
5175 if ((reload_reg_free_p (regnum, rld[r].opnum,
5176 rld[r].when_needed)
5177 || (rld[r].in
5178 /* We check reload_reg_used to make sure we
5179 don't clobber the return register. */
5180 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5181 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5182 rld[r].when_needed, rld[r].in,
5183 rld[r].out, r, 1)))
5184 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5185 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5186 /* Look first for regs to share, then for unshared. But
5187 don't share regs used for inherited reloads; they are
5188 the ones we want to preserve. */
5189 && (pass
5190 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5191 regnum)
5192 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5193 regnum))))
5194 {
5195 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5196 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5197 (on 68000) got us two FP regs. If NR is 1,
5198 we would reject both of them. */
5199 if (force_group)
5200 nr = rld[r].nregs;
5201 /* If we need only one reg, we have already won. */
5202 if (nr == 1)
5203 {
5204 /* But reject a single reg if we demand a group. */
5205 if (force_group)
5206 continue;
5207 break;
5208 }
5209 /* Otherwise check that as many consecutive regs as we need
5210 are available here. */
5211 while (nr > 1)
5212 {
5213 int regno = regnum + nr - 1;
5214 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5215 && spill_reg_order[regno] >= 0
5216 && reload_reg_free_p (regno, rld[r].opnum,
5217 rld[r].when_needed)))
5218 break;
5219 nr--;
5220 }
5221 if (nr == 1)
5222 break;
5223 }
5224 }
5225
5226 /* If we found something on pass 1, omit pass 2. */
5227 if (count < n_spills)
5228 break;
5229 }
5230
5231 /* We should have found a spill register by now. */
5232 if (count >= n_spills)
5233 return 0;
5234
5235 /* I is the index in SPILL_REG_RTX of the reload register we are to
5236 allocate. Get an rtx for it and find its register number. */
5237
5238 return set_reload_reg (i, r);
5239 }
5240 \f
5241 /* Initialize all the tables needed to allocate reload registers.
5242 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5243 is the array we use to restore the reg_rtx field for every reload. */
5244
5245 static void
5246 choose_reload_regs_init (chain, save_reload_reg_rtx)
5247 struct insn_chain *chain;
5248 rtx *save_reload_reg_rtx;
5249 {
5250 int i;
5251
5252 for (i = 0; i < n_reloads; i++)
5253 rld[i].reg_rtx = save_reload_reg_rtx[i];
5254
5255 memset (reload_inherited, 0, MAX_RELOADS);
5256 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5257 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5258
5259 CLEAR_HARD_REG_SET (reload_reg_used);
5260 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5261 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5262 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5263 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5264 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5265
5266 CLEAR_HARD_REG_SET (reg_used_in_insn);
5267 {
5268 HARD_REG_SET tmp;
5269 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5270 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5271 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5272 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5273 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5274 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5275 }
5276
5277 for (i = 0; i < reload_n_operands; i++)
5278 {
5279 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5280 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5281 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5282 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5283 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5284 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5285 }
5286
5287 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5288
5289 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5290
5291 for (i = 0; i < n_reloads; i++)
5292 /* If we have already decided to use a certain register,
5293 don't use it in another way. */
5294 if (rld[i].reg_rtx)
5295 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5296 rld[i].when_needed, rld[i].mode);
5297 }
5298
5299 /* Assign hard reg targets for the pseudo-registers we must reload
5300 into hard regs for this insn.
5301 Also output the instructions to copy them in and out of the hard regs.
5302
5303 For machines with register classes, we are responsible for
5304 finding a reload reg in the proper class. */
5305
5306 static void
5307 choose_reload_regs (chain)
5308 struct insn_chain *chain;
5309 {
5310 rtx insn = chain->insn;
5311 int i, j;
5312 unsigned int max_group_size = 1;
5313 enum reg_class group_class = NO_REGS;
5314 int pass, win, inheritance;
5315
5316 rtx save_reload_reg_rtx[MAX_RELOADS];
5317
5318 /* In order to be certain of getting the registers we need,
5319 we must sort the reloads into order of increasing register class.
5320 Then our grabbing of reload registers will parallel the process
5321 that provided the reload registers.
5322
5323 Also note whether any of the reloads wants a consecutive group of regs.
5324 If so, record the maximum size of the group desired and what
5325 register class contains all the groups needed by this insn. */
5326
5327 for (j = 0; j < n_reloads; j++)
5328 {
5329 reload_order[j] = j;
5330 reload_spill_index[j] = -1;
5331
5332 if (rld[j].nregs > 1)
5333 {
5334 max_group_size = MAX (rld[j].nregs, max_group_size);
5335 group_class
5336 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5337 }
5338
5339 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5340 }
5341
5342 if (n_reloads > 1)
5343 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5344
5345 /* If -O, try first with inheritance, then turning it off.
5346 If not -O, don't do inheritance.
5347 Using inheritance when not optimizing leads to paradoxes
5348 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5349 because one side of the comparison might be inherited. */
5350 win = 0;
5351 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5352 {
5353 choose_reload_regs_init (chain, save_reload_reg_rtx);
5354
5355 /* Process the reloads in order of preference just found.
5356 Beyond this point, subregs can be found in reload_reg_rtx.
5357
5358 This used to look for an existing reloaded home for all of the
5359 reloads, and only then perform any new reloads. But that could lose
5360 if the reloads were done out of reg-class order because a later
5361 reload with a looser constraint might have an old home in a register
5362 needed by an earlier reload with a tighter constraint.
5363
5364 To solve this, we make two passes over the reloads, in the order
5365 described above. In the first pass we try to inherit a reload
5366 from a previous insn. If there is a later reload that needs a
5367 class that is a proper subset of the class being processed, we must
5368 also allocate a spill register during the first pass.
5369
5370 Then make a second pass over the reloads to allocate any reloads
5371 that haven't been given registers yet. */
5372
5373 for (j = 0; j < n_reloads; j++)
5374 {
5375 int r = reload_order[j];
5376 rtx search_equiv = NULL_RTX;
5377
5378 /* Ignore reloads that got marked inoperative. */
5379 if (rld[r].out == 0 && rld[r].in == 0
5380 && ! rld[r].secondary_p)
5381 continue;
5382
5383 /* If find_reloads chose to use reload_in or reload_out as a reload
5384 register, we don't need to chose one. Otherwise, try even if it
5385 found one since we might save an insn if we find the value lying
5386 around.
5387 Try also when reload_in is a pseudo without a hard reg. */
5388 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5389 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5390 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5391 && GET_CODE (rld[r].in) != MEM
5392 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5393 continue;
5394
5395 #if 0 /* No longer needed for correct operation.
5396 It might give better code, or might not; worth an experiment? */
5397 /* If this is an optional reload, we can't inherit from earlier insns
5398 until we are sure that any non-optional reloads have been allocated.
5399 The following code takes advantage of the fact that optional reloads
5400 are at the end of reload_order. */
5401 if (rld[r].optional != 0)
5402 for (i = 0; i < j; i++)
5403 if ((rld[reload_order[i]].out != 0
5404 || rld[reload_order[i]].in != 0
5405 || rld[reload_order[i]].secondary_p)
5406 && ! rld[reload_order[i]].optional
5407 && rld[reload_order[i]].reg_rtx == 0)
5408 allocate_reload_reg (chain, reload_order[i], 0);
5409 #endif
5410
5411 /* First see if this pseudo is already available as reloaded
5412 for a previous insn. We cannot try to inherit for reloads
5413 that are smaller than the maximum number of registers needed
5414 for groups unless the register we would allocate cannot be used
5415 for the groups.
5416
5417 We could check here to see if this is a secondary reload for
5418 an object that is already in a register of the desired class.
5419 This would avoid the need for the secondary reload register.
5420 But this is complex because we can't easily determine what
5421 objects might want to be loaded via this reload. So let a
5422 register be allocated here. In `emit_reload_insns' we suppress
5423 one of the loads in the case described above. */
5424
5425 if (inheritance)
5426 {
5427 int byte = 0;
5428 int regno = -1;
5429 enum machine_mode mode = VOIDmode;
5430
5431 if (rld[r].in == 0)
5432 ;
5433 else if (GET_CODE (rld[r].in) == REG)
5434 {
5435 regno = REGNO (rld[r].in);
5436 mode = GET_MODE (rld[r].in);
5437 }
5438 else if (GET_CODE (rld[r].in_reg) == REG)
5439 {
5440 regno = REGNO (rld[r].in_reg);
5441 mode = GET_MODE (rld[r].in_reg);
5442 }
5443 else if (GET_CODE (rld[r].in_reg) == SUBREG
5444 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5445 {
5446 byte = SUBREG_BYTE (rld[r].in_reg);
5447 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5448 if (regno < FIRST_PSEUDO_REGISTER)
5449 regno = subreg_regno (rld[r].in_reg);
5450 mode = GET_MODE (rld[r].in_reg);
5451 }
5452 #ifdef AUTO_INC_DEC
5453 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5454 || GET_CODE (rld[r].in_reg) == PRE_DEC
5455 || GET_CODE (rld[r].in_reg) == POST_INC
5456 || GET_CODE (rld[r].in_reg) == POST_DEC)
5457 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5458 {
5459 regno = REGNO (XEXP (rld[r].in_reg, 0));
5460 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5461 rld[r].out = rld[r].in;
5462 }
5463 #endif
5464 #if 0
5465 /* This won't work, since REGNO can be a pseudo reg number.
5466 Also, it takes much more hair to keep track of all the things
5467 that can invalidate an inherited reload of part of a pseudoreg. */
5468 else if (GET_CODE (rld[r].in) == SUBREG
5469 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5470 regno = subreg_regno (rld[r].in);
5471 #endif
5472
5473 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5474 {
5475 enum reg_class class = rld[r].class, last_class;
5476 rtx last_reg = reg_last_reload_reg[regno];
5477 enum machine_mode need_mode;
5478
5479 i = REGNO (last_reg);
5480 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5481 last_class = REGNO_REG_CLASS (i);
5482
5483 if (byte == 0)
5484 need_mode = mode;
5485 else
5486 need_mode
5487 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5488 GET_MODE_CLASS (mode));
5489
5490 if (
5491 #ifdef CLASS_CANNOT_CHANGE_MODE
5492 (TEST_HARD_REG_BIT
5493 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
5494 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
5495 need_mode)
5496 : (GET_MODE_SIZE (GET_MODE (last_reg))
5497 >= GET_MODE_SIZE (need_mode)))
5498 #else
5499 (GET_MODE_SIZE (GET_MODE (last_reg))
5500 >= GET_MODE_SIZE (need_mode))
5501 #endif
5502 && reg_reloaded_contents[i] == regno
5503 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5504 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5505 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5506 /* Even if we can't use this register as a reload
5507 register, we might use it for reload_override_in,
5508 if copying it to the desired class is cheap
5509 enough. */
5510 || ((REGISTER_MOVE_COST (mode, last_class, class)
5511 < MEMORY_MOVE_COST (mode, class, 1))
5512 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5513 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5514 last_reg)
5515 == NO_REGS)
5516 #endif
5517 #ifdef SECONDARY_MEMORY_NEEDED
5518 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5519 mode)
5520 #endif
5521 ))
5522
5523 && (rld[r].nregs == max_group_size
5524 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5525 i))
5526 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5527 rld[r].when_needed, rld[r].in,
5528 const0_rtx, r, 1))
5529 {
5530 /* If a group is needed, verify that all the subsequent
5531 registers still have their values intact. */
5532 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5533 int k;
5534
5535 for (k = 1; k < nr; k++)
5536 if (reg_reloaded_contents[i + k] != regno
5537 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5538 break;
5539
5540 if (k == nr)
5541 {
5542 int i1;
5543 int bad_for_class;
5544
5545 last_reg = (GET_MODE (last_reg) == mode
5546 ? last_reg : gen_rtx_REG (mode, i));
5547
5548 bad_for_class = 0;
5549 for (k = 0; k < nr; k++)
5550 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5551 i+k);
5552
5553 /* We found a register that contains the
5554 value we need. If this register is the
5555 same as an `earlyclobber' operand of the
5556 current insn, just mark it as a place to
5557 reload from since we can't use it as the
5558 reload register itself. */
5559
5560 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5561 if (reg_overlap_mentioned_for_reload_p
5562 (reg_last_reload_reg[regno],
5563 reload_earlyclobbers[i1]))
5564 break;
5565
5566 if (i1 != n_earlyclobbers
5567 || ! (free_for_value_p (i, rld[r].mode,
5568 rld[r].opnum,
5569 rld[r].when_needed, rld[r].in,
5570 rld[r].out, r, 1))
5571 /* Don't use it if we'd clobber a pseudo reg. */
5572 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5573 && rld[r].out
5574 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5575 /* Don't clobber the frame pointer. */
5576 || (i == HARD_FRAME_POINTER_REGNUM
5577 && frame_pointer_needed
5578 && rld[r].out)
5579 /* Don't really use the inherited spill reg
5580 if we need it wider than we've got it. */
5581 || (GET_MODE_SIZE (rld[r].mode)
5582 > GET_MODE_SIZE (mode))
5583 || bad_for_class
5584
5585 /* If find_reloads chose reload_out as reload
5586 register, stay with it - that leaves the
5587 inherited register for subsequent reloads. */
5588 || (rld[r].out && rld[r].reg_rtx
5589 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5590 {
5591 if (! rld[r].optional)
5592 {
5593 reload_override_in[r] = last_reg;
5594 reload_inheritance_insn[r]
5595 = reg_reloaded_insn[i];
5596 }
5597 }
5598 else
5599 {
5600 int k;
5601 /* We can use this as a reload reg. */
5602 /* Mark the register as in use for this part of
5603 the insn. */
5604 mark_reload_reg_in_use (i,
5605 rld[r].opnum,
5606 rld[r].when_needed,
5607 rld[r].mode);
5608 rld[r].reg_rtx = last_reg;
5609 reload_inherited[r] = 1;
5610 reload_inheritance_insn[r]
5611 = reg_reloaded_insn[i];
5612 reload_spill_index[r] = i;
5613 for (k = 0; k < nr; k++)
5614 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5615 i + k);
5616 }
5617 }
5618 }
5619 }
5620 }
5621
5622 /* Here's another way to see if the value is already lying around. */
5623 if (inheritance
5624 && rld[r].in != 0
5625 && ! reload_inherited[r]
5626 && rld[r].out == 0
5627 && (CONSTANT_P (rld[r].in)
5628 || GET_CODE (rld[r].in) == PLUS
5629 || GET_CODE (rld[r].in) == REG
5630 || GET_CODE (rld[r].in) == MEM)
5631 && (rld[r].nregs == max_group_size
5632 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5633 search_equiv = rld[r].in;
5634 /* If this is an output reload from a simple move insn, look
5635 if an equivalence for the input is available. */
5636 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5637 {
5638 rtx set = single_set (insn);
5639
5640 if (set
5641 && rtx_equal_p (rld[r].out, SET_DEST (set))
5642 && CONSTANT_P (SET_SRC (set)))
5643 search_equiv = SET_SRC (set);
5644 }
5645
5646 if (search_equiv)
5647 {
5648 rtx equiv
5649 = find_equiv_reg (search_equiv, insn, rld[r].class,
5650 -1, NULL, 0, rld[r].mode);
5651 int regno = 0;
5652
5653 if (equiv != 0)
5654 {
5655 if (GET_CODE (equiv) == REG)
5656 regno = REGNO (equiv);
5657 else if (GET_CODE (equiv) == SUBREG)
5658 {
5659 /* This must be a SUBREG of a hard register.
5660 Make a new REG since this might be used in an
5661 address and not all machines support SUBREGs
5662 there. */
5663 regno = subreg_regno (equiv);
5664 equiv = gen_rtx_REG (rld[r].mode, regno);
5665 }
5666 else
5667 abort ();
5668 }
5669
5670 /* If we found a spill reg, reject it unless it is free
5671 and of the desired class. */
5672 if (equiv != 0
5673 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5674 && ! free_for_value_p (regno, rld[r].mode,
5675 rld[r].opnum, rld[r].when_needed,
5676 rld[r].in, rld[r].out, r, 1))
5677 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5678 regno)))
5679 equiv = 0;
5680
5681 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5682 equiv = 0;
5683
5684 /* We found a register that contains the value we need.
5685 If this register is the same as an `earlyclobber' operand
5686 of the current insn, just mark it as a place to reload from
5687 since we can't use it as the reload register itself. */
5688
5689 if (equiv != 0)
5690 for (i = 0; i < n_earlyclobbers; i++)
5691 if (reg_overlap_mentioned_for_reload_p (equiv,
5692 reload_earlyclobbers[i]))
5693 {
5694 if (! rld[r].optional)
5695 reload_override_in[r] = equiv;
5696 equiv = 0;
5697 break;
5698 }
5699
5700 /* If the equiv register we have found is explicitly clobbered
5701 in the current insn, it depends on the reload type if we
5702 can use it, use it for reload_override_in, or not at all.
5703 In particular, we then can't use EQUIV for a
5704 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5705
5706 if (equiv != 0)
5707 {
5708 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5709 switch (rld[r].when_needed)
5710 {
5711 case RELOAD_FOR_OTHER_ADDRESS:
5712 case RELOAD_FOR_INPADDR_ADDRESS:
5713 case RELOAD_FOR_INPUT_ADDRESS:
5714 case RELOAD_FOR_OPADDR_ADDR:
5715 break;
5716 case RELOAD_OTHER:
5717 case RELOAD_FOR_INPUT:
5718 case RELOAD_FOR_OPERAND_ADDRESS:
5719 if (! rld[r].optional)
5720 reload_override_in[r] = equiv;
5721 /* Fall through. */
5722 default:
5723 equiv = 0;
5724 break;
5725 }
5726 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5727 switch (rld[r].when_needed)
5728 {
5729 case RELOAD_FOR_OTHER_ADDRESS:
5730 case RELOAD_FOR_INPADDR_ADDRESS:
5731 case RELOAD_FOR_INPUT_ADDRESS:
5732 case RELOAD_FOR_OPADDR_ADDR:
5733 case RELOAD_FOR_OPERAND_ADDRESS:
5734 case RELOAD_FOR_INPUT:
5735 break;
5736 case RELOAD_OTHER:
5737 if (! rld[r].optional)
5738 reload_override_in[r] = equiv;
5739 /* Fall through. */
5740 default:
5741 equiv = 0;
5742 break;
5743 }
5744 }
5745
5746 /* If we found an equivalent reg, say no code need be generated
5747 to load it, and use it as our reload reg. */
5748 if (equiv != 0
5749 && (regno != HARD_FRAME_POINTER_REGNUM
5750 || !frame_pointer_needed))
5751 {
5752 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5753 int k;
5754 rld[r].reg_rtx = equiv;
5755 reload_inherited[r] = 1;
5756
5757 /* If reg_reloaded_valid is not set for this register,
5758 there might be a stale spill_reg_store lying around.
5759 We must clear it, since otherwise emit_reload_insns
5760 might delete the store. */
5761 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5762 spill_reg_store[regno] = NULL_RTX;
5763 /* If any of the hard registers in EQUIV are spill
5764 registers, mark them as in use for this insn. */
5765 for (k = 0; k < nr; k++)
5766 {
5767 i = spill_reg_order[regno + k];
5768 if (i >= 0)
5769 {
5770 mark_reload_reg_in_use (regno, rld[r].opnum,
5771 rld[r].when_needed,
5772 rld[r].mode);
5773 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5774 regno + k);
5775 }
5776 }
5777 }
5778 }
5779
5780 /* If we found a register to use already, or if this is an optional
5781 reload, we are done. */
5782 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5783 continue;
5784
5785 #if 0
5786 /* No longer needed for correct operation. Might or might
5787 not give better code on the average. Want to experiment? */
5788
5789 /* See if there is a later reload that has a class different from our
5790 class that intersects our class or that requires less register
5791 than our reload. If so, we must allocate a register to this
5792 reload now, since that reload might inherit a previous reload
5793 and take the only available register in our class. Don't do this
5794 for optional reloads since they will force all previous reloads
5795 to be allocated. Also don't do this for reloads that have been
5796 turned off. */
5797
5798 for (i = j + 1; i < n_reloads; i++)
5799 {
5800 int s = reload_order[i];
5801
5802 if ((rld[s].in == 0 && rld[s].out == 0
5803 && ! rld[s].secondary_p)
5804 || rld[s].optional)
5805 continue;
5806
5807 if ((rld[s].class != rld[r].class
5808 && reg_classes_intersect_p (rld[r].class,
5809 rld[s].class))
5810 || rld[s].nregs < rld[r].nregs)
5811 break;
5812 }
5813
5814 if (i == n_reloads)
5815 continue;
5816
5817 allocate_reload_reg (chain, r, j == n_reloads - 1);
5818 #endif
5819 }
5820
5821 /* Now allocate reload registers for anything non-optional that
5822 didn't get one yet. */
5823 for (j = 0; j < n_reloads; j++)
5824 {
5825 int r = reload_order[j];
5826
5827 /* Ignore reloads that got marked inoperative. */
5828 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5829 continue;
5830
5831 /* Skip reloads that already have a register allocated or are
5832 optional. */
5833 if (rld[r].reg_rtx != 0 || rld[r].optional)
5834 continue;
5835
5836 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5837 break;
5838 }
5839
5840 /* If that loop got all the way, we have won. */
5841 if (j == n_reloads)
5842 {
5843 win = 1;
5844 break;
5845 }
5846
5847 /* Loop around and try without any inheritance. */
5848 }
5849
5850 if (! win)
5851 {
5852 /* First undo everything done by the failed attempt
5853 to allocate with inheritance. */
5854 choose_reload_regs_init (chain, save_reload_reg_rtx);
5855
5856 /* Some sanity tests to verify that the reloads found in the first
5857 pass are identical to the ones we have now. */
5858 if (chain->n_reloads != n_reloads)
5859 abort ();
5860
5861 for (i = 0; i < n_reloads; i++)
5862 {
5863 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5864 continue;
5865 if (chain->rld[i].when_needed != rld[i].when_needed)
5866 abort ();
5867 for (j = 0; j < n_spills; j++)
5868 if (spill_regs[j] == chain->rld[i].regno)
5869 if (! set_reload_reg (j, i))
5870 failed_reload (chain->insn, i);
5871 }
5872 }
5873
5874 /* If we thought we could inherit a reload, because it seemed that
5875 nothing else wanted the same reload register earlier in the insn,
5876 verify that assumption, now that all reloads have been assigned.
5877 Likewise for reloads where reload_override_in has been set. */
5878
5879 /* If doing expensive optimizations, do one preliminary pass that doesn't
5880 cancel any inheritance, but removes reloads that have been needed only
5881 for reloads that we know can be inherited. */
5882 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5883 {
5884 for (j = 0; j < n_reloads; j++)
5885 {
5886 int r = reload_order[j];
5887 rtx check_reg;
5888 if (reload_inherited[r] && rld[r].reg_rtx)
5889 check_reg = rld[r].reg_rtx;
5890 else if (reload_override_in[r]
5891 && (GET_CODE (reload_override_in[r]) == REG
5892 || GET_CODE (reload_override_in[r]) == SUBREG))
5893 check_reg = reload_override_in[r];
5894 else
5895 continue;
5896 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5897 rld[r].opnum, rld[r].when_needed, rld[r].in,
5898 (reload_inherited[r]
5899 ? rld[r].out : const0_rtx),
5900 r, 1))
5901 {
5902 if (pass)
5903 continue;
5904 reload_inherited[r] = 0;
5905 reload_override_in[r] = 0;
5906 }
5907 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5908 reload_override_in, then we do not need its related
5909 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5910 likewise for other reload types.
5911 We handle this by removing a reload when its only replacement
5912 is mentioned in reload_in of the reload we are going to inherit.
5913 A special case are auto_inc expressions; even if the input is
5914 inherited, we still need the address for the output. We can
5915 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5916 If we succeeded removing some reload and we are doing a preliminary
5917 pass just to remove such reloads, make another pass, since the
5918 removal of one reload might allow us to inherit another one. */
5919 else if (rld[r].in
5920 && rld[r].out != rld[r].in
5921 && remove_address_replacements (rld[r].in) && pass)
5922 pass = 2;
5923 }
5924 }
5925
5926 /* Now that reload_override_in is known valid,
5927 actually override reload_in. */
5928 for (j = 0; j < n_reloads; j++)
5929 if (reload_override_in[j])
5930 rld[j].in = reload_override_in[j];
5931
5932 /* If this reload won't be done because it has been cancelled or is
5933 optional and not inherited, clear reload_reg_rtx so other
5934 routines (such as subst_reloads) don't get confused. */
5935 for (j = 0; j < n_reloads; j++)
5936 if (rld[j].reg_rtx != 0
5937 && ((rld[j].optional && ! reload_inherited[j])
5938 || (rld[j].in == 0 && rld[j].out == 0
5939 && ! rld[j].secondary_p)))
5940 {
5941 int regno = true_regnum (rld[j].reg_rtx);
5942
5943 if (spill_reg_order[regno] >= 0)
5944 clear_reload_reg_in_use (regno, rld[j].opnum,
5945 rld[j].when_needed, rld[j].mode);
5946 rld[j].reg_rtx = 0;
5947 reload_spill_index[j] = -1;
5948 }
5949
5950 /* Record which pseudos and which spill regs have output reloads. */
5951 for (j = 0; j < n_reloads; j++)
5952 {
5953 int r = reload_order[j];
5954
5955 i = reload_spill_index[r];
5956
5957 /* I is nonneg if this reload uses a register.
5958 If rld[r].reg_rtx is 0, this is an optional reload
5959 that we opted to ignore. */
5960 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5961 && rld[r].reg_rtx != 0)
5962 {
5963 int nregno = REGNO (rld[r].out_reg);
5964 int nr = 1;
5965
5966 if (nregno < FIRST_PSEUDO_REGISTER)
5967 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5968
5969 while (--nr >= 0)
5970 reg_has_output_reload[nregno + nr] = 1;
5971
5972 if (i >= 0)
5973 {
5974 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5975 while (--nr >= 0)
5976 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5977 }
5978
5979 if (rld[r].when_needed != RELOAD_OTHER
5980 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5981 && rld[r].when_needed != RELOAD_FOR_INSN)
5982 abort ();
5983 }
5984 }
5985 }
5986
5987 /* Deallocate the reload register for reload R. This is called from
5988 remove_address_replacements. */
5989
5990 void
5991 deallocate_reload_reg (r)
5992 int r;
5993 {
5994 int regno;
5995
5996 if (! rld[r].reg_rtx)
5997 return;
5998 regno = true_regnum (rld[r].reg_rtx);
5999 rld[r].reg_rtx = 0;
6000 if (spill_reg_order[regno] >= 0)
6001 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6002 rld[r].mode);
6003 reload_spill_index[r] = -1;
6004 }
6005 \f
6006 /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
6007 reloads of the same item for fear that we might not have enough reload
6008 registers. However, normally they will get the same reload register
6009 and hence actually need not be loaded twice.
6010
6011 Here we check for the most common case of this phenomenon: when we have
6012 a number of reloads for the same object, each of which were allocated
6013 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6014 reload, and is not modified in the insn itself. If we find such,
6015 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6016 This will not increase the number of spill registers needed and will
6017 prevent redundant code. */
6018
6019 static void
6020 merge_assigned_reloads (insn)
6021 rtx insn;
6022 {
6023 int i, j;
6024
6025 /* Scan all the reloads looking for ones that only load values and
6026 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6027 assigned and not modified by INSN. */
6028
6029 for (i = 0; i < n_reloads; i++)
6030 {
6031 int conflicting_input = 0;
6032 int max_input_address_opnum = -1;
6033 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6034
6035 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6036 || rld[i].out != 0 || rld[i].reg_rtx == 0
6037 || reg_set_p (rld[i].reg_rtx, insn))
6038 continue;
6039
6040 /* Look at all other reloads. Ensure that the only use of this
6041 reload_reg_rtx is in a reload that just loads the same value
6042 as we do. Note that any secondary reloads must be of the identical
6043 class since the values, modes, and result registers are the
6044 same, so we need not do anything with any secondary reloads. */
6045
6046 for (j = 0; j < n_reloads; j++)
6047 {
6048 if (i == j || rld[j].reg_rtx == 0
6049 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6050 rld[i].reg_rtx))
6051 continue;
6052
6053 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6054 && rld[j].opnum > max_input_address_opnum)
6055 max_input_address_opnum = rld[j].opnum;
6056
6057 /* If the reload regs aren't exactly the same (e.g, different modes)
6058 or if the values are different, we can't merge this reload.
6059 But if it is an input reload, we might still merge
6060 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6061
6062 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6063 || rld[j].out != 0 || rld[j].in == 0
6064 || ! rtx_equal_p (rld[i].in, rld[j].in))
6065 {
6066 if (rld[j].when_needed != RELOAD_FOR_INPUT
6067 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6068 || rld[i].opnum > rld[j].opnum)
6069 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6070 break;
6071 conflicting_input = 1;
6072 if (min_conflicting_input_opnum > rld[j].opnum)
6073 min_conflicting_input_opnum = rld[j].opnum;
6074 }
6075 }
6076
6077 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6078 we, in fact, found any matching reloads. */
6079
6080 if (j == n_reloads
6081 && max_input_address_opnum <= min_conflicting_input_opnum)
6082 {
6083 for (j = 0; j < n_reloads; j++)
6084 if (i != j && rld[j].reg_rtx != 0
6085 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6086 && (! conflicting_input
6087 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6088 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6089 {
6090 rld[i].when_needed = RELOAD_OTHER;
6091 rld[j].in = 0;
6092 reload_spill_index[j] = -1;
6093 transfer_replacements (i, j);
6094 }
6095
6096 /* If this is now RELOAD_OTHER, look for any reloads that load
6097 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6098 if they were for inputs, RELOAD_OTHER for outputs. Note that
6099 this test is equivalent to looking for reloads for this operand
6100 number. */
6101
6102 if (rld[i].when_needed == RELOAD_OTHER)
6103 for (j = 0; j < n_reloads; j++)
6104 if (rld[j].in != 0
6105 && rld[j].when_needed != RELOAD_OTHER
6106 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6107 rld[i].in))
6108 rld[j].when_needed
6109 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6110 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6111 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6112 }
6113 }
6114 }
6115 \f
6116 /* These arrays are filled by emit_reload_insns and its subroutines. */
6117 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6118 static rtx other_input_address_reload_insns = 0;
6119 static rtx other_input_reload_insns = 0;
6120 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6121 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6122 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6123 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6124 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6125 static rtx operand_reload_insns = 0;
6126 static rtx other_operand_reload_insns = 0;
6127 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6128
6129 /* Values to be put in spill_reg_store are put here first. */
6130 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6131 static HARD_REG_SET reg_reloaded_died;
6132
6133 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6134 has the number J. OLD contains the value to be used as input. */
6135
6136 static void
6137 emit_input_reload_insns (chain, rl, old, j)
6138 struct insn_chain *chain;
6139 struct reload *rl;
6140 rtx old;
6141 int j;
6142 {
6143 rtx insn = chain->insn;
6144 rtx reloadreg = rl->reg_rtx;
6145 rtx oldequiv_reg = 0;
6146 rtx oldequiv = 0;
6147 int special = 0;
6148 enum machine_mode mode;
6149 rtx *where;
6150
6151 /* Determine the mode to reload in.
6152 This is very tricky because we have three to choose from.
6153 There is the mode the insn operand wants (rl->inmode).
6154 There is the mode of the reload register RELOADREG.
6155 There is the intrinsic mode of the operand, which we could find
6156 by stripping some SUBREGs.
6157 It turns out that RELOADREG's mode is irrelevant:
6158 we can change that arbitrarily.
6159
6160 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6161 then the reload reg may not support QImode moves, so use SImode.
6162 If foo is in memory due to spilling a pseudo reg, this is safe,
6163 because the QImode value is in the least significant part of a
6164 slot big enough for a SImode. If foo is some other sort of
6165 memory reference, then it is impossible to reload this case,
6166 so previous passes had better make sure this never happens.
6167
6168 Then consider a one-word union which has SImode and one of its
6169 members is a float, being fetched as (SUBREG:SF union:SI).
6170 We must fetch that as SFmode because we could be loading into
6171 a float-only register. In this case OLD's mode is correct.
6172
6173 Consider an immediate integer: it has VOIDmode. Here we need
6174 to get a mode from something else.
6175
6176 In some cases, there is a fourth mode, the operand's
6177 containing mode. If the insn specifies a containing mode for
6178 this operand, it overrides all others.
6179
6180 I am not sure whether the algorithm here is always right,
6181 but it does the right things in those cases. */
6182
6183 mode = GET_MODE (old);
6184 if (mode == VOIDmode)
6185 mode = rl->inmode;
6186
6187 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6188 /* If we need a secondary register for this operation, see if
6189 the value is already in a register in that class. Don't
6190 do this if the secondary register will be used as a scratch
6191 register. */
6192
6193 if (rl->secondary_in_reload >= 0
6194 && rl->secondary_in_icode == CODE_FOR_nothing
6195 && optimize)
6196 oldequiv
6197 = find_equiv_reg (old, insn,
6198 rld[rl->secondary_in_reload].class,
6199 -1, NULL, 0, mode);
6200 #endif
6201
6202 /* If reloading from memory, see if there is a register
6203 that already holds the same value. If so, reload from there.
6204 We can pass 0 as the reload_reg_p argument because
6205 any other reload has either already been emitted,
6206 in which case find_equiv_reg will see the reload-insn,
6207 or has yet to be emitted, in which case it doesn't matter
6208 because we will use this equiv reg right away. */
6209
6210 if (oldequiv == 0 && optimize
6211 && (GET_CODE (old) == MEM
6212 || (GET_CODE (old) == REG
6213 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6214 && reg_renumber[REGNO (old)] < 0)))
6215 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6216
6217 if (oldequiv)
6218 {
6219 unsigned int regno = true_regnum (oldequiv);
6220
6221 /* Don't use OLDEQUIV if any other reload changes it at an
6222 earlier stage of this insn or at this stage. */
6223 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6224 rl->in, const0_rtx, j, 0))
6225 oldequiv = 0;
6226
6227 /* If it is no cheaper to copy from OLDEQUIV into the
6228 reload register than it would be to move from memory,
6229 don't use it. Likewise, if we need a secondary register
6230 or memory. */
6231
6232 if (oldequiv != 0
6233 && ((REGNO_REG_CLASS (regno) != rl->class
6234 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6235 rl->class)
6236 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6237 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6238 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6239 mode, oldequiv)
6240 != NO_REGS)
6241 #endif
6242 #ifdef SECONDARY_MEMORY_NEEDED
6243 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6244 rl->class,
6245 mode)
6246 #endif
6247 ))
6248 oldequiv = 0;
6249 }
6250
6251 /* delete_output_reload is only invoked properly if old contains
6252 the original pseudo register. Since this is replaced with a
6253 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6254 find the pseudo in RELOAD_IN_REG. */
6255 if (oldequiv == 0
6256 && reload_override_in[j]
6257 && GET_CODE (rl->in_reg) == REG)
6258 {
6259 oldequiv = old;
6260 old = rl->in_reg;
6261 }
6262 if (oldequiv == 0)
6263 oldequiv = old;
6264 else if (GET_CODE (oldequiv) == REG)
6265 oldequiv_reg = oldequiv;
6266 else if (GET_CODE (oldequiv) == SUBREG)
6267 oldequiv_reg = SUBREG_REG (oldequiv);
6268
6269 /* If we are reloading from a register that was recently stored in
6270 with an output-reload, see if we can prove there was
6271 actually no need to store the old value in it. */
6272
6273 if (optimize && GET_CODE (oldequiv) == REG
6274 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6275 && spill_reg_store[REGNO (oldequiv)]
6276 && GET_CODE (old) == REG
6277 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6278 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6279 rl->out_reg)))
6280 delete_output_reload (insn, j, REGNO (oldequiv));
6281
6282 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6283 then load RELOADREG from OLDEQUIV. Note that we cannot use
6284 gen_lowpart_common since it can do the wrong thing when
6285 RELOADREG has a multi-word mode. Note that RELOADREG
6286 must always be a REG here. */
6287
6288 if (GET_MODE (reloadreg) != mode)
6289 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6290 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6291 oldequiv = SUBREG_REG (oldequiv);
6292 if (GET_MODE (oldequiv) != VOIDmode
6293 && mode != GET_MODE (oldequiv))
6294 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6295
6296 /* Switch to the right place to emit the reload insns. */
6297 switch (rl->when_needed)
6298 {
6299 case RELOAD_OTHER:
6300 where = &other_input_reload_insns;
6301 break;
6302 case RELOAD_FOR_INPUT:
6303 where = &input_reload_insns[rl->opnum];
6304 break;
6305 case RELOAD_FOR_INPUT_ADDRESS:
6306 where = &input_address_reload_insns[rl->opnum];
6307 break;
6308 case RELOAD_FOR_INPADDR_ADDRESS:
6309 where = &inpaddr_address_reload_insns[rl->opnum];
6310 break;
6311 case RELOAD_FOR_OUTPUT_ADDRESS:
6312 where = &output_address_reload_insns[rl->opnum];
6313 break;
6314 case RELOAD_FOR_OUTADDR_ADDRESS:
6315 where = &outaddr_address_reload_insns[rl->opnum];
6316 break;
6317 case RELOAD_FOR_OPERAND_ADDRESS:
6318 where = &operand_reload_insns;
6319 break;
6320 case RELOAD_FOR_OPADDR_ADDR:
6321 where = &other_operand_reload_insns;
6322 break;
6323 case RELOAD_FOR_OTHER_ADDRESS:
6324 where = &other_input_address_reload_insns;
6325 break;
6326 default:
6327 abort ();
6328 }
6329
6330 push_to_sequence (*where);
6331
6332 /* Auto-increment addresses must be reloaded in a special way. */
6333 if (rl->out && ! rl->out_reg)
6334 {
6335 /* We are not going to bother supporting the case where a
6336 incremented register can't be copied directly from
6337 OLDEQUIV since this seems highly unlikely. */
6338 if (rl->secondary_in_reload >= 0)
6339 abort ();
6340
6341 if (reload_inherited[j])
6342 oldequiv = reloadreg;
6343
6344 old = XEXP (rl->in_reg, 0);
6345
6346 if (optimize && GET_CODE (oldequiv) == REG
6347 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6348 && spill_reg_store[REGNO (oldequiv)]
6349 && GET_CODE (old) == REG
6350 && (dead_or_set_p (insn,
6351 spill_reg_stored_to[REGNO (oldequiv)])
6352 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6353 old)))
6354 delete_output_reload (insn, j, REGNO (oldequiv));
6355
6356 /* Prevent normal processing of this reload. */
6357 special = 1;
6358 /* Output a special code sequence for this case. */
6359 new_spill_reg_store[REGNO (reloadreg)]
6360 = inc_for_reload (reloadreg, oldequiv, rl->out,
6361 rl->inc);
6362 }
6363
6364 /* If we are reloading a pseudo-register that was set by the previous
6365 insn, see if we can get rid of that pseudo-register entirely
6366 by redirecting the previous insn into our reload register. */
6367
6368 else if (optimize && GET_CODE (old) == REG
6369 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6370 && dead_or_set_p (insn, old)
6371 /* This is unsafe if some other reload
6372 uses the same reg first. */
6373 && ! conflicts_with_override (reloadreg)
6374 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6375 rl->when_needed, old, rl->out, j, 0))
6376 {
6377 rtx temp = PREV_INSN (insn);
6378 while (temp && GET_CODE (temp) == NOTE)
6379 temp = PREV_INSN (temp);
6380 if (temp
6381 && GET_CODE (temp) == INSN
6382 && GET_CODE (PATTERN (temp)) == SET
6383 && SET_DEST (PATTERN (temp)) == old
6384 /* Make sure we can access insn_operand_constraint. */
6385 && asm_noperands (PATTERN (temp)) < 0
6386 /* This is unsafe if prev insn rejects our reload reg. */
6387 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6388 reloadreg)
6389 /* This is unsafe if operand occurs more than once in current
6390 insn. Perhaps some occurrences aren't reloaded. */
6391 && count_occurrences (PATTERN (insn), old, 0) == 1
6392 /* Don't risk splitting a matching pair of operands. */
6393 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6394 {
6395 /* Store into the reload register instead of the pseudo. */
6396 SET_DEST (PATTERN (temp)) = reloadreg;
6397
6398 /* If the previous insn is an output reload, the source is
6399 a reload register, and its spill_reg_store entry will
6400 contain the previous destination. This is now
6401 invalid. */
6402 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6403 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6404 {
6405 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6406 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6407 }
6408
6409 /* If these are the only uses of the pseudo reg,
6410 pretend for GDB it lives in the reload reg we used. */
6411 if (REG_N_DEATHS (REGNO (old)) == 1
6412 && REG_N_SETS (REGNO (old)) == 1)
6413 {
6414 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6415 alter_reg (REGNO (old), -1);
6416 }
6417 special = 1;
6418 }
6419 }
6420
6421 /* We can't do that, so output an insn to load RELOADREG. */
6422
6423 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6424 /* If we have a secondary reload, pick up the secondary register
6425 and icode, if any. If OLDEQUIV and OLD are different or
6426 if this is an in-out reload, recompute whether or not we
6427 still need a secondary register and what the icode should
6428 be. If we still need a secondary register and the class or
6429 icode is different, go back to reloading from OLD if using
6430 OLDEQUIV means that we got the wrong type of register. We
6431 cannot have different class or icode due to an in-out reload
6432 because we don't make such reloads when both the input and
6433 output need secondary reload registers. */
6434
6435 if (! special && rl->secondary_in_reload >= 0)
6436 {
6437 rtx second_reload_reg = 0;
6438 int secondary_reload = rl->secondary_in_reload;
6439 rtx real_oldequiv = oldequiv;
6440 rtx real_old = old;
6441 rtx tmp;
6442 enum insn_code icode;
6443
6444 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6445 and similarly for OLD.
6446 See comments in get_secondary_reload in reload.c. */
6447 /* If it is a pseudo that cannot be replaced with its
6448 equivalent MEM, we must fall back to reload_in, which
6449 will have all the necessary substitutions registered.
6450 Likewise for a pseudo that can't be replaced with its
6451 equivalent constant.
6452
6453 Take extra care for subregs of such pseudos. Note that
6454 we cannot use reg_equiv_mem in this case because it is
6455 not in the right mode. */
6456
6457 tmp = oldequiv;
6458 if (GET_CODE (tmp) == SUBREG)
6459 tmp = SUBREG_REG (tmp);
6460 if (GET_CODE (tmp) == REG
6461 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6462 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6463 || reg_equiv_constant[REGNO (tmp)] != 0))
6464 {
6465 if (! reg_equiv_mem[REGNO (tmp)]
6466 || num_not_at_initial_offset
6467 || GET_CODE (oldequiv) == SUBREG)
6468 real_oldequiv = rl->in;
6469 else
6470 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6471 }
6472
6473 tmp = old;
6474 if (GET_CODE (tmp) == SUBREG)
6475 tmp = SUBREG_REG (tmp);
6476 if (GET_CODE (tmp) == REG
6477 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6478 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6479 || reg_equiv_constant[REGNO (tmp)] != 0))
6480 {
6481 if (! reg_equiv_mem[REGNO (tmp)]
6482 || num_not_at_initial_offset
6483 || GET_CODE (old) == SUBREG)
6484 real_old = rl->in;
6485 else
6486 real_old = reg_equiv_mem[REGNO (tmp)];
6487 }
6488
6489 second_reload_reg = rld[secondary_reload].reg_rtx;
6490 icode = rl->secondary_in_icode;
6491
6492 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6493 || (rl->in != 0 && rl->out != 0))
6494 {
6495 enum reg_class new_class
6496 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6497 mode, real_oldequiv);
6498
6499 if (new_class == NO_REGS)
6500 second_reload_reg = 0;
6501 else
6502 {
6503 enum insn_code new_icode;
6504 enum machine_mode new_mode;
6505
6506 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6507 REGNO (second_reload_reg)))
6508 oldequiv = old, real_oldequiv = real_old;
6509 else
6510 {
6511 new_icode = reload_in_optab[(int) mode];
6512 if (new_icode != CODE_FOR_nothing
6513 && ((insn_data[(int) new_icode].operand[0].predicate
6514 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6515 (reloadreg, mode)))
6516 || (insn_data[(int) new_icode].operand[1].predicate
6517 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6518 (real_oldequiv, mode)))))
6519 new_icode = CODE_FOR_nothing;
6520
6521 if (new_icode == CODE_FOR_nothing)
6522 new_mode = mode;
6523 else
6524 new_mode = insn_data[(int) new_icode].operand[2].mode;
6525
6526 if (GET_MODE (second_reload_reg) != new_mode)
6527 {
6528 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6529 new_mode))
6530 oldequiv = old, real_oldequiv = real_old;
6531 else
6532 second_reload_reg
6533 = gen_rtx_REG (new_mode,
6534 REGNO (second_reload_reg));
6535 }
6536 }
6537 }
6538 }
6539
6540 /* If we still need a secondary reload register, check
6541 to see if it is being used as a scratch or intermediate
6542 register and generate code appropriately. If we need
6543 a scratch register, use REAL_OLDEQUIV since the form of
6544 the insn may depend on the actual address if it is
6545 a MEM. */
6546
6547 if (second_reload_reg)
6548 {
6549 if (icode != CODE_FOR_nothing)
6550 {
6551 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6552 second_reload_reg));
6553 special = 1;
6554 }
6555 else
6556 {
6557 /* See if we need a scratch register to load the
6558 intermediate register (a tertiary reload). */
6559 enum insn_code tertiary_icode
6560 = rld[secondary_reload].secondary_in_icode;
6561
6562 if (tertiary_icode != CODE_FOR_nothing)
6563 {
6564 rtx third_reload_reg
6565 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6566
6567 emit_insn ((GEN_FCN (tertiary_icode)
6568 (second_reload_reg, real_oldequiv,
6569 third_reload_reg)));
6570 }
6571 else
6572 gen_reload (second_reload_reg, real_oldequiv,
6573 rl->opnum,
6574 rl->when_needed);
6575
6576 oldequiv = second_reload_reg;
6577 }
6578 }
6579 }
6580 #endif
6581
6582 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6583 {
6584 rtx real_oldequiv = oldequiv;
6585
6586 if ((GET_CODE (oldequiv) == REG
6587 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6588 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6589 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6590 || (GET_CODE (oldequiv) == SUBREG
6591 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6592 && (REGNO (SUBREG_REG (oldequiv))
6593 >= FIRST_PSEUDO_REGISTER)
6594 && ((reg_equiv_memory_loc
6595 [REGNO (SUBREG_REG (oldequiv))] != 0)
6596 || (reg_equiv_constant
6597 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6598 || (CONSTANT_P (oldequiv)
6599 && (PREFERRED_RELOAD_CLASS (oldequiv,
6600 REGNO_REG_CLASS (REGNO (reloadreg)))
6601 == NO_REGS)))
6602 real_oldequiv = rl->in;
6603 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6604 rl->when_needed);
6605 }
6606
6607 if (flag_non_call_exceptions)
6608 copy_eh_notes (insn, get_insns ());
6609
6610 /* End this sequence. */
6611 *where = get_insns ();
6612 end_sequence ();
6613
6614 /* Update reload_override_in so that delete_address_reloads_1
6615 can see the actual register usage. */
6616 if (oldequiv_reg)
6617 reload_override_in[j] = oldequiv;
6618 }
6619
6620 /* Generate insns to for the output reload RL, which is for the insn described
6621 by CHAIN and has the number J. */
6622 static void
6623 emit_output_reload_insns (chain, rl, j)
6624 struct insn_chain *chain;
6625 struct reload *rl;
6626 int j;
6627 {
6628 rtx reloadreg = rl->reg_rtx;
6629 rtx insn = chain->insn;
6630 int special = 0;
6631 rtx old = rl->out;
6632 enum machine_mode mode = GET_MODE (old);
6633 rtx p;
6634
6635 if (rl->when_needed == RELOAD_OTHER)
6636 start_sequence ();
6637 else
6638 push_to_sequence (output_reload_insns[rl->opnum]);
6639
6640 /* Determine the mode to reload in.
6641 See comments above (for input reloading). */
6642
6643 if (mode == VOIDmode)
6644 {
6645 /* VOIDmode should never happen for an output. */
6646 if (asm_noperands (PATTERN (insn)) < 0)
6647 /* It's the compiler's fault. */
6648 fatal_insn ("VOIDmode on an output", insn);
6649 error_for_asm (insn, "output operand is constant in `asm'");
6650 /* Prevent crash--use something we know is valid. */
6651 mode = word_mode;
6652 old = gen_rtx_REG (mode, REGNO (reloadreg));
6653 }
6654
6655 if (GET_MODE (reloadreg) != mode)
6656 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6657
6658 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6659
6660 /* If we need two reload regs, set RELOADREG to the intermediate
6661 one, since it will be stored into OLD. We might need a secondary
6662 register only for an input reload, so check again here. */
6663
6664 if (rl->secondary_out_reload >= 0)
6665 {
6666 rtx real_old = old;
6667
6668 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6669 && reg_equiv_mem[REGNO (old)] != 0)
6670 real_old = reg_equiv_mem[REGNO (old)];
6671
6672 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6673 mode, real_old)
6674 != NO_REGS))
6675 {
6676 rtx second_reloadreg = reloadreg;
6677 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6678
6679 /* See if RELOADREG is to be used as a scratch register
6680 or as an intermediate register. */
6681 if (rl->secondary_out_icode != CODE_FOR_nothing)
6682 {
6683 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6684 (real_old, second_reloadreg, reloadreg)));
6685 special = 1;
6686 }
6687 else
6688 {
6689 /* See if we need both a scratch and intermediate reload
6690 register. */
6691
6692 int secondary_reload = rl->secondary_out_reload;
6693 enum insn_code tertiary_icode
6694 = rld[secondary_reload].secondary_out_icode;
6695
6696 if (GET_MODE (reloadreg) != mode)
6697 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6698
6699 if (tertiary_icode != CODE_FOR_nothing)
6700 {
6701 rtx third_reloadreg
6702 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6703 rtx tem;
6704
6705 /* Copy primary reload reg to secondary reload reg.
6706 (Note that these have been swapped above, then
6707 secondary reload reg to OLD using our insn.) */
6708
6709 /* If REAL_OLD is a paradoxical SUBREG, remove it
6710 and try to put the opposite SUBREG on
6711 RELOADREG. */
6712 if (GET_CODE (real_old) == SUBREG
6713 && (GET_MODE_SIZE (GET_MODE (real_old))
6714 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6715 && 0 != (tem = gen_lowpart_common
6716 (GET_MODE (SUBREG_REG (real_old)),
6717 reloadreg)))
6718 real_old = SUBREG_REG (real_old), reloadreg = tem;
6719
6720 gen_reload (reloadreg, second_reloadreg,
6721 rl->opnum, rl->when_needed);
6722 emit_insn ((GEN_FCN (tertiary_icode)
6723 (real_old, reloadreg, third_reloadreg)));
6724 special = 1;
6725 }
6726
6727 else
6728 /* Copy between the reload regs here and then to
6729 OUT later. */
6730
6731 gen_reload (reloadreg, second_reloadreg,
6732 rl->opnum, rl->when_needed);
6733 }
6734 }
6735 }
6736 #endif
6737
6738 /* Output the last reload insn. */
6739 if (! special)
6740 {
6741 rtx set;
6742
6743 /* Don't output the last reload if OLD is not the dest of
6744 INSN and is in the src and is clobbered by INSN. */
6745 if (! flag_expensive_optimizations
6746 || GET_CODE (old) != REG
6747 || !(set = single_set (insn))
6748 || rtx_equal_p (old, SET_DEST (set))
6749 || !reg_mentioned_p (old, SET_SRC (set))
6750 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6751 gen_reload (old, reloadreg, rl->opnum,
6752 rl->when_needed);
6753 }
6754
6755 /* Look at all insns we emitted, just to be safe. */
6756 for (p = get_insns (); p; p = NEXT_INSN (p))
6757 if (INSN_P (p))
6758 {
6759 rtx pat = PATTERN (p);
6760
6761 /* If this output reload doesn't come from a spill reg,
6762 clear any memory of reloaded copies of the pseudo reg.
6763 If this output reload comes from a spill reg,
6764 reg_has_output_reload will make this do nothing. */
6765 note_stores (pat, forget_old_reloads_1, NULL);
6766
6767 if (reg_mentioned_p (rl->reg_rtx, pat))
6768 {
6769 rtx set = single_set (insn);
6770 if (reload_spill_index[j] < 0
6771 && set
6772 && SET_SRC (set) == rl->reg_rtx)
6773 {
6774 int src = REGNO (SET_SRC (set));
6775
6776 reload_spill_index[j] = src;
6777 SET_HARD_REG_BIT (reg_is_output_reload, src);
6778 if (find_regno_note (insn, REG_DEAD, src))
6779 SET_HARD_REG_BIT (reg_reloaded_died, src);
6780 }
6781 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6782 {
6783 int s = rl->secondary_out_reload;
6784 set = single_set (p);
6785 /* If this reload copies only to the secondary reload
6786 register, the secondary reload does the actual
6787 store. */
6788 if (s >= 0 && set == NULL_RTX)
6789 /* We can't tell what function the secondary reload
6790 has and where the actual store to the pseudo is
6791 made; leave new_spill_reg_store alone. */
6792 ;
6793 else if (s >= 0
6794 && SET_SRC (set) == rl->reg_rtx
6795 && SET_DEST (set) == rld[s].reg_rtx)
6796 {
6797 /* Usually the next instruction will be the
6798 secondary reload insn; if we can confirm
6799 that it is, setting new_spill_reg_store to
6800 that insn will allow an extra optimization. */
6801 rtx s_reg = rld[s].reg_rtx;
6802 rtx next = NEXT_INSN (p);
6803 rld[s].out = rl->out;
6804 rld[s].out_reg = rl->out_reg;
6805 set = single_set (next);
6806 if (set && SET_SRC (set) == s_reg
6807 && ! new_spill_reg_store[REGNO (s_reg)])
6808 {
6809 SET_HARD_REG_BIT (reg_is_output_reload,
6810 REGNO (s_reg));
6811 new_spill_reg_store[REGNO (s_reg)] = next;
6812 }
6813 }
6814 else
6815 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6816 }
6817 }
6818 }
6819
6820 if (rl->when_needed == RELOAD_OTHER)
6821 {
6822 emit_insns (other_output_reload_insns[rl->opnum]);
6823 other_output_reload_insns[rl->opnum] = get_insns ();
6824 }
6825 else
6826 output_reload_insns[rl->opnum] = get_insns ();
6827
6828 if (flag_non_call_exceptions)
6829 copy_eh_notes (insn, get_insns ());
6830
6831 end_sequence ();
6832 }
6833
6834 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6835 and has the number J. */
6836 static void
6837 do_input_reload (chain, rl, j)
6838 struct insn_chain *chain;
6839 struct reload *rl;
6840 int j;
6841 {
6842 int expect_occurrences = 1;
6843 rtx insn = chain->insn;
6844 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6845 ? rl->in_reg : rl->in);
6846
6847 if (old != 0
6848 /* AUTO_INC reloads need to be handled even if inherited. We got an
6849 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6850 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6851 && ! rtx_equal_p (rl->reg_rtx, old)
6852 && rl->reg_rtx != 0)
6853 emit_input_reload_insns (chain, rld + j, old, j);
6854
6855 /* When inheriting a wider reload, we have a MEM in rl->in,
6856 e.g. inheriting a SImode output reload for
6857 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6858 if (optimize && reload_inherited[j] && rl->in
6859 && GET_CODE (rl->in) == MEM
6860 && GET_CODE (rl->in_reg) == MEM
6861 && reload_spill_index[j] >= 0
6862 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6863 {
6864 expect_occurrences
6865 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
6866 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6867 }
6868
6869 /* If we are reloading a register that was recently stored in with an
6870 output-reload, see if we can prove there was
6871 actually no need to store the old value in it. */
6872
6873 if (optimize
6874 && (reload_inherited[j] || reload_override_in[j])
6875 && rl->reg_rtx
6876 && GET_CODE (rl->reg_rtx) == REG
6877 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6878 #if 0
6879 /* There doesn't seem to be any reason to restrict this to pseudos
6880 and doing so loses in the case where we are copying from a
6881 register of the wrong class. */
6882 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6883 >= FIRST_PSEUDO_REGISTER)
6884 #endif
6885 /* The insn might have already some references to stackslots
6886 replaced by MEMs, while reload_out_reg still names the
6887 original pseudo. */
6888 && (dead_or_set_p (insn,
6889 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6890 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6891 rl->out_reg)))
6892 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6893 }
6894
6895 /* Do output reloading for reload RL, which is for the insn described by
6896 CHAIN and has the number J.
6897 ??? At some point we need to support handling output reloads of
6898 JUMP_INSNs or insns that set cc0. */
6899 static void
6900 do_output_reload (chain, rl, j)
6901 struct insn_chain *chain;
6902 struct reload *rl;
6903 int j;
6904 {
6905 rtx note, old;
6906 rtx insn = chain->insn;
6907 /* If this is an output reload that stores something that is
6908 not loaded in this same reload, see if we can eliminate a previous
6909 store. */
6910 rtx pseudo = rl->out_reg;
6911
6912 if (pseudo
6913 && optimize
6914 && GET_CODE (pseudo) == REG
6915 && ! rtx_equal_p (rl->in_reg, pseudo)
6916 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6917 && reg_last_reload_reg[REGNO (pseudo)])
6918 {
6919 int pseudo_no = REGNO (pseudo);
6920 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6921
6922 /* We don't need to test full validity of last_regno for
6923 inherit here; we only want to know if the store actually
6924 matches the pseudo. */
6925 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6926 && reg_reloaded_contents[last_regno] == pseudo_no
6927 && spill_reg_store[last_regno]
6928 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6929 delete_output_reload (insn, j, last_regno);
6930 }
6931
6932 old = rl->out_reg;
6933 if (old == 0
6934 || rl->reg_rtx == old
6935 || rl->reg_rtx == 0)
6936 return;
6937
6938 /* An output operand that dies right away does need a reload,
6939 but need not be copied from it. Show the new location in the
6940 REG_UNUSED note. */
6941 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6942 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6943 {
6944 XEXP (note, 0) = rl->reg_rtx;
6945 return;
6946 }
6947 /* Likewise for a SUBREG of an operand that dies. */
6948 else if (GET_CODE (old) == SUBREG
6949 && GET_CODE (SUBREG_REG (old)) == REG
6950 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6951 SUBREG_REG (old))))
6952 {
6953 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6954 rl->reg_rtx);
6955 return;
6956 }
6957 else if (GET_CODE (old) == SCRATCH)
6958 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6959 but we don't want to make an output reload. */
6960 return;
6961
6962 /* If is a JUMP_INSN, we can't support output reloads yet. */
6963 if (GET_CODE (insn) == JUMP_INSN)
6964 abort ();
6965
6966 emit_output_reload_insns (chain, rld + j, j);
6967 }
6968
6969 /* Output insns to reload values in and out of the chosen reload regs. */
6970
6971 static void
6972 emit_reload_insns (chain)
6973 struct insn_chain *chain;
6974 {
6975 rtx insn = chain->insn;
6976
6977 int j;
6978
6979 CLEAR_HARD_REG_SET (reg_reloaded_died);
6980
6981 for (j = 0; j < reload_n_operands; j++)
6982 input_reload_insns[j] = input_address_reload_insns[j]
6983 = inpaddr_address_reload_insns[j]
6984 = output_reload_insns[j] = output_address_reload_insns[j]
6985 = outaddr_address_reload_insns[j]
6986 = other_output_reload_insns[j] = 0;
6987 other_input_address_reload_insns = 0;
6988 other_input_reload_insns = 0;
6989 operand_reload_insns = 0;
6990 other_operand_reload_insns = 0;
6991
6992 /* Dump reloads into the dump file. */
6993 if (rtl_dump_file)
6994 {
6995 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6996 debug_reload_to_stream (rtl_dump_file);
6997 }
6998
6999 /* Now output the instructions to copy the data into and out of the
7000 reload registers. Do these in the order that the reloads were reported,
7001 since reloads of base and index registers precede reloads of operands
7002 and the operands may need the base and index registers reloaded. */
7003
7004 for (j = 0; j < n_reloads; j++)
7005 {
7006 if (rld[j].reg_rtx
7007 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7008 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7009
7010 do_input_reload (chain, rld + j, j);
7011 do_output_reload (chain, rld + j, j);
7012 }
7013
7014 /* Now write all the insns we made for reloads in the order expected by
7015 the allocation functions. Prior to the insn being reloaded, we write
7016 the following reloads:
7017
7018 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7019
7020 RELOAD_OTHER reloads.
7021
7022 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7023 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7024 RELOAD_FOR_INPUT reload for the operand.
7025
7026 RELOAD_FOR_OPADDR_ADDRS reloads.
7027
7028 RELOAD_FOR_OPERAND_ADDRESS reloads.
7029
7030 After the insn being reloaded, we write the following:
7031
7032 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7033 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7034 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7035 reloads for the operand. The RELOAD_OTHER output reloads are
7036 output in descending order by reload number. */
7037
7038 emit_insns_before (other_input_address_reload_insns, insn);
7039 emit_insns_before (other_input_reload_insns, insn);
7040
7041 for (j = 0; j < reload_n_operands; j++)
7042 {
7043 emit_insns_before (inpaddr_address_reload_insns[j], insn);
7044 emit_insns_before (input_address_reload_insns[j], insn);
7045 emit_insns_before (input_reload_insns[j], insn);
7046 }
7047
7048 emit_insns_before (other_operand_reload_insns, insn);
7049 emit_insns_before (operand_reload_insns, insn);
7050
7051 for (j = 0; j < reload_n_operands; j++)
7052 {
7053 rtx x = emit_insns_after (outaddr_address_reload_insns[j], insn);
7054 x = emit_insns_after (output_address_reload_insns[j], x);
7055 x = emit_insns_after (output_reload_insns[j], x);
7056 emit_insns_after (other_output_reload_insns[j], x);
7057 }
7058
7059 /* For all the spill regs newly reloaded in this instruction,
7060 record what they were reloaded from, so subsequent instructions
7061 can inherit the reloads.
7062
7063 Update spill_reg_store for the reloads of this insn.
7064 Copy the elements that were updated in the loop above. */
7065
7066 for (j = 0; j < n_reloads; j++)
7067 {
7068 int r = reload_order[j];
7069 int i = reload_spill_index[r];
7070
7071 /* If this is a non-inherited input reload from a pseudo, we must
7072 clear any memory of a previous store to the same pseudo. Only do
7073 something if there will not be an output reload for the pseudo
7074 being reloaded. */
7075 if (rld[r].in_reg != 0
7076 && ! (reload_inherited[r] || reload_override_in[r]))
7077 {
7078 rtx reg = rld[r].in_reg;
7079
7080 if (GET_CODE (reg) == SUBREG)
7081 reg = SUBREG_REG (reg);
7082
7083 if (GET_CODE (reg) == REG
7084 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7085 && ! reg_has_output_reload[REGNO (reg)])
7086 {
7087 int nregno = REGNO (reg);
7088
7089 if (reg_last_reload_reg[nregno])
7090 {
7091 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7092
7093 if (reg_reloaded_contents[last_regno] == nregno)
7094 spill_reg_store[last_regno] = 0;
7095 }
7096 }
7097 }
7098
7099 /* I is nonneg if this reload used a register.
7100 If rld[r].reg_rtx is 0, this is an optional reload
7101 that we opted to ignore. */
7102
7103 if (i >= 0 && rld[r].reg_rtx != 0)
7104 {
7105 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7106 int k;
7107 int part_reaches_end = 0;
7108 int all_reaches_end = 1;
7109
7110 /* For a multi register reload, we need to check if all or part
7111 of the value lives to the end. */
7112 for (k = 0; k < nr; k++)
7113 {
7114 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7115 rld[r].when_needed))
7116 part_reaches_end = 1;
7117 else
7118 all_reaches_end = 0;
7119 }
7120
7121 /* Ignore reloads that don't reach the end of the insn in
7122 entirety. */
7123 if (all_reaches_end)
7124 {
7125 /* First, clear out memory of what used to be in this spill reg.
7126 If consecutive registers are used, clear them all. */
7127
7128 for (k = 0; k < nr; k++)
7129 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7130
7131 /* Maybe the spill reg contains a copy of reload_out. */
7132 if (rld[r].out != 0
7133 && (GET_CODE (rld[r].out) == REG
7134 #ifdef AUTO_INC_DEC
7135 || ! rld[r].out_reg
7136 #endif
7137 || GET_CODE (rld[r].out_reg) == REG))
7138 {
7139 rtx out = (GET_CODE (rld[r].out) == REG
7140 ? rld[r].out
7141 : rld[r].out_reg
7142 ? rld[r].out_reg
7143 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7144 int nregno = REGNO (out);
7145 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7146 : HARD_REGNO_NREGS (nregno,
7147 GET_MODE (rld[r].reg_rtx)));
7148
7149 spill_reg_store[i] = new_spill_reg_store[i];
7150 spill_reg_stored_to[i] = out;
7151 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7152
7153 /* If NREGNO is a hard register, it may occupy more than
7154 one register. If it does, say what is in the
7155 rest of the registers assuming that both registers
7156 agree on how many words the object takes. If not,
7157 invalidate the subsequent registers. */
7158
7159 if (nregno < FIRST_PSEUDO_REGISTER)
7160 for (k = 1; k < nnr; k++)
7161 reg_last_reload_reg[nregno + k]
7162 = (nr == nnr
7163 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7164 REGNO (rld[r].reg_rtx) + k)
7165 : 0);
7166
7167 /* Now do the inverse operation. */
7168 for (k = 0; k < nr; k++)
7169 {
7170 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7171 reg_reloaded_contents[i + k]
7172 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7173 ? nregno
7174 : nregno + k);
7175 reg_reloaded_insn[i + k] = insn;
7176 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7177 }
7178 }
7179
7180 /* Maybe the spill reg contains a copy of reload_in. Only do
7181 something if there will not be an output reload for
7182 the register being reloaded. */
7183 else if (rld[r].out_reg == 0
7184 && rld[r].in != 0
7185 && ((GET_CODE (rld[r].in) == REG
7186 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7187 && ! reg_has_output_reload[REGNO (rld[r].in)])
7188 || (GET_CODE (rld[r].in_reg) == REG
7189 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7190 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7191 {
7192 int nregno;
7193 int nnr;
7194
7195 if (GET_CODE (rld[r].in) == REG
7196 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7197 nregno = REGNO (rld[r].in);
7198 else if (GET_CODE (rld[r].in_reg) == REG)
7199 nregno = REGNO (rld[r].in_reg);
7200 else
7201 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7202
7203 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7204 : HARD_REGNO_NREGS (nregno,
7205 GET_MODE (rld[r].reg_rtx)));
7206
7207 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7208
7209 if (nregno < FIRST_PSEUDO_REGISTER)
7210 for (k = 1; k < nnr; k++)
7211 reg_last_reload_reg[nregno + k]
7212 = (nr == nnr
7213 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7214 REGNO (rld[r].reg_rtx) + k)
7215 : 0);
7216
7217 /* Unless we inherited this reload, show we haven't
7218 recently done a store.
7219 Previous stores of inherited auto_inc expressions
7220 also have to be discarded. */
7221 if (! reload_inherited[r]
7222 || (rld[r].out && ! rld[r].out_reg))
7223 spill_reg_store[i] = 0;
7224
7225 for (k = 0; k < nr; k++)
7226 {
7227 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7228 reg_reloaded_contents[i + k]
7229 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7230 ? nregno
7231 : nregno + k);
7232 reg_reloaded_insn[i + k] = insn;
7233 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7234 }
7235 }
7236 }
7237
7238 /* However, if part of the reload reaches the end, then we must
7239 invalidate the old info for the part that survives to the end. */
7240 else if (part_reaches_end)
7241 {
7242 for (k = 0; k < nr; k++)
7243 if (reload_reg_reaches_end_p (i + k,
7244 rld[r].opnum,
7245 rld[r].when_needed))
7246 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7247 }
7248 }
7249
7250 /* The following if-statement was #if 0'd in 1.34 (or before...).
7251 It's reenabled in 1.35 because supposedly nothing else
7252 deals with this problem. */
7253
7254 /* If a register gets output-reloaded from a non-spill register,
7255 that invalidates any previous reloaded copy of it.
7256 But forget_old_reloads_1 won't get to see it, because
7257 it thinks only about the original insn. So invalidate it here. */
7258 if (i < 0 && rld[r].out != 0
7259 && (GET_CODE (rld[r].out) == REG
7260 || (GET_CODE (rld[r].out) == MEM
7261 && GET_CODE (rld[r].out_reg) == REG)))
7262 {
7263 rtx out = (GET_CODE (rld[r].out) == REG
7264 ? rld[r].out : rld[r].out_reg);
7265 int nregno = REGNO (out);
7266 if (nregno >= FIRST_PSEUDO_REGISTER)
7267 {
7268 rtx src_reg, store_insn = NULL_RTX;
7269
7270 reg_last_reload_reg[nregno] = 0;
7271
7272 /* If we can find a hard register that is stored, record
7273 the storing insn so that we may delete this insn with
7274 delete_output_reload. */
7275 src_reg = rld[r].reg_rtx;
7276
7277 /* If this is an optional reload, try to find the source reg
7278 from an input reload. */
7279 if (! src_reg)
7280 {
7281 rtx set = single_set (insn);
7282 if (set && SET_DEST (set) == rld[r].out)
7283 {
7284 int k;
7285
7286 src_reg = SET_SRC (set);
7287 store_insn = insn;
7288 for (k = 0; k < n_reloads; k++)
7289 {
7290 if (rld[k].in == src_reg)
7291 {
7292 src_reg = rld[k].reg_rtx;
7293 break;
7294 }
7295 }
7296 }
7297 }
7298 else
7299 store_insn = new_spill_reg_store[REGNO (src_reg)];
7300 if (src_reg && GET_CODE (src_reg) == REG
7301 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7302 {
7303 int src_regno = REGNO (src_reg);
7304 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7305 /* The place where to find a death note varies with
7306 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7307 necessarily checked exactly in the code that moves
7308 notes, so just check both locations. */
7309 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7310 if (! note && store_insn)
7311 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7312 while (nr-- > 0)
7313 {
7314 spill_reg_store[src_regno + nr] = store_insn;
7315 spill_reg_stored_to[src_regno + nr] = out;
7316 reg_reloaded_contents[src_regno + nr] = nregno;
7317 reg_reloaded_insn[src_regno + nr] = store_insn;
7318 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7319 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7320 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7321 if (note)
7322 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7323 else
7324 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7325 }
7326 reg_last_reload_reg[nregno] = src_reg;
7327 }
7328 }
7329 else
7330 {
7331 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7332
7333 while (num_regs-- > 0)
7334 reg_last_reload_reg[nregno + num_regs] = 0;
7335 }
7336 }
7337 }
7338 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7339 }
7340 \f
7341 /* Emit code to perform a reload from IN (which may be a reload register) to
7342 OUT (which may also be a reload register). IN or OUT is from operand
7343 OPNUM with reload type TYPE.
7344
7345 Returns first insn emitted. */
7346
7347 rtx
7348 gen_reload (out, in, opnum, type)
7349 rtx out;
7350 rtx in;
7351 int opnum;
7352 enum reload_type type;
7353 {
7354 rtx last = get_last_insn ();
7355 rtx tem;
7356
7357 /* If IN is a paradoxical SUBREG, remove it and try to put the
7358 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7359 if (GET_CODE (in) == SUBREG
7360 && (GET_MODE_SIZE (GET_MODE (in))
7361 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7362 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7363 in = SUBREG_REG (in), out = tem;
7364 else if (GET_CODE (out) == SUBREG
7365 && (GET_MODE_SIZE (GET_MODE (out))
7366 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7367 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7368 out = SUBREG_REG (out), in = tem;
7369
7370 /* How to do this reload can get quite tricky. Normally, we are being
7371 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7372 register that didn't get a hard register. In that case we can just
7373 call emit_move_insn.
7374
7375 We can also be asked to reload a PLUS that adds a register or a MEM to
7376 another register, constant or MEM. This can occur during frame pointer
7377 elimination and while reloading addresses. This case is handled by
7378 trying to emit a single insn to perform the add. If it is not valid,
7379 we use a two insn sequence.
7380
7381 Finally, we could be called to handle an 'o' constraint by putting
7382 an address into a register. In that case, we first try to do this
7383 with a named pattern of "reload_load_address". If no such pattern
7384 exists, we just emit a SET insn and hope for the best (it will normally
7385 be valid on machines that use 'o').
7386
7387 This entire process is made complex because reload will never
7388 process the insns we generate here and so we must ensure that
7389 they will fit their constraints and also by the fact that parts of
7390 IN might be being reloaded separately and replaced with spill registers.
7391 Because of this, we are, in some sense, just guessing the right approach
7392 here. The one listed above seems to work.
7393
7394 ??? At some point, this whole thing needs to be rethought. */
7395
7396 if (GET_CODE (in) == PLUS
7397 && (GET_CODE (XEXP (in, 0)) == REG
7398 || GET_CODE (XEXP (in, 0)) == SUBREG
7399 || GET_CODE (XEXP (in, 0)) == MEM)
7400 && (GET_CODE (XEXP (in, 1)) == REG
7401 || GET_CODE (XEXP (in, 1)) == SUBREG
7402 || CONSTANT_P (XEXP (in, 1))
7403 || GET_CODE (XEXP (in, 1)) == MEM))
7404 {
7405 /* We need to compute the sum of a register or a MEM and another
7406 register, constant, or MEM, and put it into the reload
7407 register. The best possible way of doing this is if the machine
7408 has a three-operand ADD insn that accepts the required operands.
7409
7410 The simplest approach is to try to generate such an insn and see if it
7411 is recognized and matches its constraints. If so, it can be used.
7412
7413 It might be better not to actually emit the insn unless it is valid,
7414 but we need to pass the insn as an operand to `recog' and
7415 `extract_insn' and it is simpler to emit and then delete the insn if
7416 not valid than to dummy things up. */
7417
7418 rtx op0, op1, tem, insn;
7419 int code;
7420
7421 op0 = find_replacement (&XEXP (in, 0));
7422 op1 = find_replacement (&XEXP (in, 1));
7423
7424 /* Since constraint checking is strict, commutativity won't be
7425 checked, so we need to do that here to avoid spurious failure
7426 if the add instruction is two-address and the second operand
7427 of the add is the same as the reload reg, which is frequently
7428 the case. If the insn would be A = B + A, rearrange it so
7429 it will be A = A + B as constrain_operands expects. */
7430
7431 if (GET_CODE (XEXP (in, 1)) == REG
7432 && REGNO (out) == REGNO (XEXP (in, 1)))
7433 tem = op0, op0 = op1, op1 = tem;
7434
7435 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7436 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7437
7438 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7439 code = recog_memoized (insn);
7440
7441 if (code >= 0)
7442 {
7443 extract_insn (insn);
7444 /* We want constrain operands to treat this insn strictly in
7445 its validity determination, i.e., the way it would after reload
7446 has completed. */
7447 if (constrain_operands (1))
7448 return insn;
7449 }
7450
7451 delete_insns_since (last);
7452
7453 /* If that failed, we must use a conservative two-insn sequence.
7454
7455 Use a move to copy one operand into the reload register. Prefer
7456 to reload a constant, MEM or pseudo since the move patterns can
7457 handle an arbitrary operand. If OP1 is not a constant, MEM or
7458 pseudo and OP1 is not a valid operand for an add instruction, then
7459 reload OP1.
7460
7461 After reloading one of the operands into the reload register, add
7462 the reload register to the output register.
7463
7464 If there is another way to do this for a specific machine, a
7465 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7466 we emit below. */
7467
7468 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7469
7470 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7471 || (GET_CODE (op1) == REG
7472 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7473 || (code != CODE_FOR_nothing
7474 && ! ((*insn_data[code].operand[2].predicate)
7475 (op1, insn_data[code].operand[2].mode))))
7476 tem = op0, op0 = op1, op1 = tem;
7477
7478 gen_reload (out, op0, opnum, type);
7479
7480 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7481 This fixes a problem on the 32K where the stack pointer cannot
7482 be used as an operand of an add insn. */
7483
7484 if (rtx_equal_p (op0, op1))
7485 op1 = out;
7486
7487 insn = emit_insn (gen_add2_insn (out, op1));
7488
7489 /* If that failed, copy the address register to the reload register.
7490 Then add the constant to the reload register. */
7491
7492 code = recog_memoized (insn);
7493
7494 if (code >= 0)
7495 {
7496 extract_insn (insn);
7497 /* We want constrain operands to treat this insn strictly in
7498 its validity determination, i.e., the way it would after reload
7499 has completed. */
7500 if (constrain_operands (1))
7501 {
7502 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7503 REG_NOTES (insn)
7504 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7505 return insn;
7506 }
7507 }
7508
7509 delete_insns_since (last);
7510
7511 gen_reload (out, op1, opnum, type);
7512 insn = emit_insn (gen_add2_insn (out, op0));
7513 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7514 }
7515
7516 #ifdef SECONDARY_MEMORY_NEEDED
7517 /* If we need a memory location to do the move, do it that way. */
7518 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
7519 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
7520 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
7521 REGNO_REG_CLASS (REGNO (out)),
7522 GET_MODE (out)))
7523 {
7524 /* Get the memory to use and rewrite both registers to its mode. */
7525 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7526
7527 if (GET_MODE (loc) != GET_MODE (out))
7528 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7529
7530 if (GET_MODE (loc) != GET_MODE (in))
7531 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7532
7533 gen_reload (loc, in, opnum, type);
7534 gen_reload (out, loc, opnum, type);
7535 }
7536 #endif
7537
7538 /* If IN is a simple operand, use gen_move_insn. */
7539 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7540 emit_insn (gen_move_insn (out, in));
7541
7542 #ifdef HAVE_reload_load_address
7543 else if (HAVE_reload_load_address)
7544 emit_insn (gen_reload_load_address (out, in));
7545 #endif
7546
7547 /* Otherwise, just write (set OUT IN) and hope for the best. */
7548 else
7549 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7550
7551 /* Return the first insn emitted.
7552 We can not just return get_last_insn, because there may have
7553 been multiple instructions emitted. Also note that gen_move_insn may
7554 emit more than one insn itself, so we can not assume that there is one
7555 insn emitted per emit_insn_before call. */
7556
7557 return last ? NEXT_INSN (last) : get_insns ();
7558 }
7559 \f
7560 /* Delete a previously made output-reload whose result we now believe
7561 is not needed. First we double-check.
7562
7563 INSN is the insn now being processed.
7564 LAST_RELOAD_REG is the hard register number for which we want to delete
7565 the last output reload.
7566 J is the reload-number that originally used REG. The caller has made
7567 certain that reload J doesn't use REG any longer for input. */
7568
7569 static void
7570 delete_output_reload (insn, j, last_reload_reg)
7571 rtx insn;
7572 int j;
7573 int last_reload_reg;
7574 {
7575 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7576 rtx reg = spill_reg_stored_to[last_reload_reg];
7577 int k;
7578 int n_occurrences;
7579 int n_inherited = 0;
7580 rtx i1;
7581 rtx substed;
7582
7583 /* Get the raw pseudo-register referred to. */
7584
7585 while (GET_CODE (reg) == SUBREG)
7586 reg = SUBREG_REG (reg);
7587 substed = reg_equiv_memory_loc[REGNO (reg)];
7588
7589 /* This is unsafe if the operand occurs more often in the current
7590 insn than it is inherited. */
7591 for (k = n_reloads - 1; k >= 0; k--)
7592 {
7593 rtx reg2 = rld[k].in;
7594 if (! reg2)
7595 continue;
7596 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7597 reg2 = rld[k].in_reg;
7598 #ifdef AUTO_INC_DEC
7599 if (rld[k].out && ! rld[k].out_reg)
7600 reg2 = XEXP (rld[k].in_reg, 0);
7601 #endif
7602 while (GET_CODE (reg2) == SUBREG)
7603 reg2 = SUBREG_REG (reg2);
7604 if (rtx_equal_p (reg2, reg))
7605 {
7606 if (reload_inherited[k] || reload_override_in[k] || k == j)
7607 {
7608 n_inherited++;
7609 reg2 = rld[k].out_reg;
7610 if (! reg2)
7611 continue;
7612 while (GET_CODE (reg2) == SUBREG)
7613 reg2 = XEXP (reg2, 0);
7614 if (rtx_equal_p (reg2, reg))
7615 n_inherited++;
7616 }
7617 else
7618 return;
7619 }
7620 }
7621 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7622 if (substed)
7623 n_occurrences += count_occurrences (PATTERN (insn),
7624 eliminate_regs (substed, 0,
7625 NULL_RTX), 0);
7626 if (n_occurrences > n_inherited)
7627 return;
7628
7629 /* If the pseudo-reg we are reloading is no longer referenced
7630 anywhere between the store into it and here,
7631 and no jumps or labels intervene, then the value can get
7632 here through the reload reg alone.
7633 Otherwise, give up--return. */
7634 for (i1 = NEXT_INSN (output_reload_insn);
7635 i1 != insn; i1 = NEXT_INSN (i1))
7636 {
7637 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7638 return;
7639 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7640 && reg_mentioned_p (reg, PATTERN (i1)))
7641 {
7642 /* If this is USE in front of INSN, we only have to check that
7643 there are no more references than accounted for by inheritance. */
7644 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7645 {
7646 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7647 i1 = NEXT_INSN (i1);
7648 }
7649 if (n_occurrences <= n_inherited && i1 == insn)
7650 break;
7651 return;
7652 }
7653 }
7654
7655 /* We will be deleting the insn. Remove the spill reg information. */
7656 for (k = HARD_REGNO_NREGS (last_reload_reg, GET_MODE (reg)); k-- > 0; )
7657 {
7658 spill_reg_store[last_reload_reg + k] = 0;
7659 spill_reg_stored_to[last_reload_reg + k] = 0;
7660 }
7661
7662 /* The caller has already checked that REG dies or is set in INSN.
7663 It has also checked that we are optimizing, and thus some
7664 inaccurancies in the debugging information are acceptable.
7665 So we could just delete output_reload_insn. But in some cases
7666 we can improve the debugging information without sacrificing
7667 optimization - maybe even improving the code: See if the pseudo
7668 reg has been completely replaced with reload regs. If so, delete
7669 the store insn and forget we had a stack slot for the pseudo. */
7670 if (rld[j].out != rld[j].in
7671 && REG_N_DEATHS (REGNO (reg)) == 1
7672 && REG_N_SETS (REGNO (reg)) == 1
7673 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7674 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7675 {
7676 rtx i2;
7677
7678 /* We know that it was used only between here and the beginning of
7679 the current basic block. (We also know that the last use before
7680 INSN was the output reload we are thinking of deleting, but never
7681 mind that.) Search that range; see if any ref remains. */
7682 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7683 {
7684 rtx set = single_set (i2);
7685
7686 /* Uses which just store in the pseudo don't count,
7687 since if they are the only uses, they are dead. */
7688 if (set != 0 && SET_DEST (set) == reg)
7689 continue;
7690 if (GET_CODE (i2) == CODE_LABEL
7691 || GET_CODE (i2) == JUMP_INSN)
7692 break;
7693 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7694 && reg_mentioned_p (reg, PATTERN (i2)))
7695 {
7696 /* Some other ref remains; just delete the output reload we
7697 know to be dead. */
7698 delete_address_reloads (output_reload_insn, insn);
7699 delete_insn (output_reload_insn);
7700 return;
7701 }
7702 }
7703
7704 /* Delete the now-dead stores into this pseudo. Note that this
7705 loop also takes care of deleting output_reload_insn. */
7706 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7707 {
7708 rtx set = single_set (i2);
7709
7710 if (set != 0 && SET_DEST (set) == reg)
7711 {
7712 delete_address_reloads (i2, insn);
7713 delete_insn (i2);
7714 }
7715 if (GET_CODE (i2) == CODE_LABEL
7716 || GET_CODE (i2) == JUMP_INSN)
7717 break;
7718 }
7719
7720 /* For the debugging info, say the pseudo lives in this reload reg. */
7721 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7722 alter_reg (REGNO (reg), -1);
7723 }
7724 else
7725 {
7726 delete_address_reloads (output_reload_insn, insn);
7727 delete_insn (output_reload_insn);
7728 }
7729 }
7730
7731 /* We are going to delete DEAD_INSN. Recursively delete loads of
7732 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7733 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7734 static void
7735 delete_address_reloads (dead_insn, current_insn)
7736 rtx dead_insn, current_insn;
7737 {
7738 rtx set = single_set (dead_insn);
7739 rtx set2, dst, prev, next;
7740 if (set)
7741 {
7742 rtx dst = SET_DEST (set);
7743 if (GET_CODE (dst) == MEM)
7744 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7745 }
7746 /* If we deleted the store from a reloaded post_{in,de}c expression,
7747 we can delete the matching adds. */
7748 prev = PREV_INSN (dead_insn);
7749 next = NEXT_INSN (dead_insn);
7750 if (! prev || ! next)
7751 return;
7752 set = single_set (next);
7753 set2 = single_set (prev);
7754 if (! set || ! set2
7755 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7756 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7757 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7758 return;
7759 dst = SET_DEST (set);
7760 if (! rtx_equal_p (dst, SET_DEST (set2))
7761 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7762 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7763 || (INTVAL (XEXP (SET_SRC (set), 1))
7764 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7765 return;
7766 delete_related_insns (prev);
7767 delete_related_insns (next);
7768 }
7769
7770 /* Subfunction of delete_address_reloads: process registers found in X. */
7771 static void
7772 delete_address_reloads_1 (dead_insn, x, current_insn)
7773 rtx dead_insn, x, current_insn;
7774 {
7775 rtx prev, set, dst, i2;
7776 int i, j;
7777 enum rtx_code code = GET_CODE (x);
7778
7779 if (code != REG)
7780 {
7781 const char *fmt = GET_RTX_FORMAT (code);
7782 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7783 {
7784 if (fmt[i] == 'e')
7785 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7786 else if (fmt[i] == 'E')
7787 {
7788 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7789 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7790 current_insn);
7791 }
7792 }
7793 return;
7794 }
7795
7796 if (spill_reg_order[REGNO (x)] < 0)
7797 return;
7798
7799 /* Scan backwards for the insn that sets x. This might be a way back due
7800 to inheritance. */
7801 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7802 {
7803 code = GET_CODE (prev);
7804 if (code == CODE_LABEL || code == JUMP_INSN)
7805 return;
7806 if (GET_RTX_CLASS (code) != 'i')
7807 continue;
7808 if (reg_set_p (x, PATTERN (prev)))
7809 break;
7810 if (reg_referenced_p (x, PATTERN (prev)))
7811 return;
7812 }
7813 if (! prev || INSN_UID (prev) < reload_first_uid)
7814 return;
7815 /* Check that PREV only sets the reload register. */
7816 set = single_set (prev);
7817 if (! set)
7818 return;
7819 dst = SET_DEST (set);
7820 if (GET_CODE (dst) != REG
7821 || ! rtx_equal_p (dst, x))
7822 return;
7823 if (! reg_set_p (dst, PATTERN (dead_insn)))
7824 {
7825 /* Check if DST was used in a later insn -
7826 it might have been inherited. */
7827 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7828 {
7829 if (GET_CODE (i2) == CODE_LABEL)
7830 break;
7831 if (! INSN_P (i2))
7832 continue;
7833 if (reg_referenced_p (dst, PATTERN (i2)))
7834 {
7835 /* If there is a reference to the register in the current insn,
7836 it might be loaded in a non-inherited reload. If no other
7837 reload uses it, that means the register is set before
7838 referenced. */
7839 if (i2 == current_insn)
7840 {
7841 for (j = n_reloads - 1; j >= 0; j--)
7842 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7843 || reload_override_in[j] == dst)
7844 return;
7845 for (j = n_reloads - 1; j >= 0; j--)
7846 if (rld[j].in && rld[j].reg_rtx == dst)
7847 break;
7848 if (j >= 0)
7849 break;
7850 }
7851 return;
7852 }
7853 if (GET_CODE (i2) == JUMP_INSN)
7854 break;
7855 /* If DST is still live at CURRENT_INSN, check if it is used for
7856 any reload. Note that even if CURRENT_INSN sets DST, we still
7857 have to check the reloads. */
7858 if (i2 == current_insn)
7859 {
7860 for (j = n_reloads - 1; j >= 0; j--)
7861 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7862 || reload_override_in[j] == dst)
7863 return;
7864 /* ??? We can't finish the loop here, because dst might be
7865 allocated to a pseudo in this block if no reload in this
7866 block needs any of the clsses containing DST - see
7867 spill_hard_reg. There is no easy way to tell this, so we
7868 have to scan till the end of the basic block. */
7869 }
7870 if (reg_set_p (dst, PATTERN (i2)))
7871 break;
7872 }
7873 }
7874 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7875 reg_reloaded_contents[REGNO (dst)] = -1;
7876 delete_insn (prev);
7877 }
7878 \f
7879 /* Output reload-insns to reload VALUE into RELOADREG.
7880 VALUE is an autoincrement or autodecrement RTX whose operand
7881 is a register or memory location;
7882 so reloading involves incrementing that location.
7883 IN is either identical to VALUE, or some cheaper place to reload from.
7884
7885 INC_AMOUNT is the number to increment or decrement by (always positive).
7886 This cannot be deduced from VALUE.
7887
7888 Return the instruction that stores into RELOADREG. */
7889
7890 static rtx
7891 inc_for_reload (reloadreg, in, value, inc_amount)
7892 rtx reloadreg;
7893 rtx in, value;
7894 int inc_amount;
7895 {
7896 /* REG or MEM to be copied and incremented. */
7897 rtx incloc = XEXP (value, 0);
7898 /* Nonzero if increment after copying. */
7899 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7900 rtx last;
7901 rtx inc;
7902 rtx add_insn;
7903 int code;
7904 rtx store;
7905 rtx real_in = in == value ? XEXP (in, 0) : in;
7906
7907 /* No hard register is equivalent to this register after
7908 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7909 we could inc/dec that register as well (maybe even using it for
7910 the source), but I'm not sure it's worth worrying about. */
7911 if (GET_CODE (incloc) == REG)
7912 reg_last_reload_reg[REGNO (incloc)] = 0;
7913
7914 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7915 inc_amount = -inc_amount;
7916
7917 inc = GEN_INT (inc_amount);
7918
7919 /* If this is post-increment, first copy the location to the reload reg. */
7920 if (post && real_in != reloadreg)
7921 emit_insn (gen_move_insn (reloadreg, real_in));
7922
7923 if (in == value)
7924 {
7925 /* See if we can directly increment INCLOC. Use a method similar to
7926 that in gen_reload. */
7927
7928 last = get_last_insn ();
7929 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7930 gen_rtx_PLUS (GET_MODE (incloc),
7931 incloc, inc)));
7932
7933 code = recog_memoized (add_insn);
7934 if (code >= 0)
7935 {
7936 extract_insn (add_insn);
7937 if (constrain_operands (1))
7938 {
7939 /* If this is a pre-increment and we have incremented the value
7940 where it lives, copy the incremented value to RELOADREG to
7941 be used as an address. */
7942
7943 if (! post)
7944 emit_insn (gen_move_insn (reloadreg, incloc));
7945
7946 return add_insn;
7947 }
7948 }
7949 delete_insns_since (last);
7950 }
7951
7952 /* If couldn't do the increment directly, must increment in RELOADREG.
7953 The way we do this depends on whether this is pre- or post-increment.
7954 For pre-increment, copy INCLOC to the reload register, increment it
7955 there, then save back. */
7956
7957 if (! post)
7958 {
7959 if (in != reloadreg)
7960 emit_insn (gen_move_insn (reloadreg, real_in));
7961 emit_insn (gen_add2_insn (reloadreg, inc));
7962 store = emit_insn (gen_move_insn (incloc, reloadreg));
7963 }
7964 else
7965 {
7966 /* Postincrement.
7967 Because this might be a jump insn or a compare, and because RELOADREG
7968 may not be available after the insn in an input reload, we must do
7969 the incrementation before the insn being reloaded for.
7970
7971 We have already copied IN to RELOADREG. Increment the copy in
7972 RELOADREG, save that back, then decrement RELOADREG so it has
7973 the original value. */
7974
7975 emit_insn (gen_add2_insn (reloadreg, inc));
7976 store = emit_insn (gen_move_insn (incloc, reloadreg));
7977 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7978 }
7979
7980 return store;
7981 }
7982 \f
7983 /* Return 1 if we are certain that the constraint-string STRING allows
7984 the hard register REG. Return 0 if we can't be sure of this. */
7985
7986 static int
7987 constraint_accepts_reg_p (string, reg)
7988 const char *string;
7989 rtx reg;
7990 {
7991 int value = 0;
7992 int regno = true_regnum (reg);
7993 int c;
7994
7995 /* Initialize for first alternative. */
7996 value = 0;
7997 /* Check that each alternative contains `g' or `r'. */
7998 while (1)
7999 switch (c = *string++)
8000 {
8001 case 0:
8002 /* If an alternative lacks `g' or `r', we lose. */
8003 return value;
8004 case ',':
8005 /* If an alternative lacks `g' or `r', we lose. */
8006 if (value == 0)
8007 return 0;
8008 /* Initialize for next alternative. */
8009 value = 0;
8010 break;
8011 case 'g':
8012 case 'r':
8013 /* Any general reg wins for this alternative. */
8014 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
8015 value = 1;
8016 break;
8017 default:
8018 /* Any reg in specified class wins for this alternative. */
8019 {
8020 enum reg_class class = REG_CLASS_FROM_LETTER (c);
8021
8022 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
8023 value = 1;
8024 }
8025 }
8026 }
8027 \f
8028 /* INSN is a no-op; delete it.
8029 If this sets the return value of the function, we must keep a USE around,
8030 in case this is in a different basic block than the final USE. Otherwise,
8031 we could loose important register lifeness information on
8032 SMALL_REGISTER_CLASSES machines, where return registers might be used as
8033 spills: subsequent passes assume that spill registers are dead at the end
8034 of a basic block.
8035 VALUE must be the return value in such a case, NULL otherwise. */
8036 static void
8037 reload_cse_delete_noop_set (insn, value)
8038 rtx insn, value;
8039 {
8040 bool purge = BLOCK_FOR_INSN (insn)->end == insn;
8041 if (value)
8042 {
8043 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
8044 INSN_CODE (insn) = -1;
8045 REG_NOTES (insn) = NULL_RTX;
8046 }
8047 else
8048 delete_insn (insn);
8049 if (purge)
8050 purge_dead_edges (BLOCK_FOR_INSN (insn));
8051 }
8052
8053 /* See whether a single set SET is a noop. */
8054 static int
8055 reload_cse_noop_set_p (set)
8056 rtx set;
8057 {
8058 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8059 }
8060
8061 /* Try to simplify INSN. */
8062 static void
8063 reload_cse_simplify (insn)
8064 rtx insn;
8065 {
8066 rtx body = PATTERN (insn);
8067
8068 if (GET_CODE (body) == SET)
8069 {
8070 int count = 0;
8071
8072 /* Simplify even if we may think it is a no-op.
8073 We may think a memory load of a value smaller than WORD_SIZE
8074 is redundant because we haven't taken into account possible
8075 implicit extension. reload_cse_simplify_set() will bring
8076 this out, so it's safer to simplify before we delete. */
8077 count += reload_cse_simplify_set (body, insn);
8078
8079 if (!count && reload_cse_noop_set_p (body))
8080 {
8081 rtx value = SET_DEST (body);
8082 if (REG_P (value)
8083 && ! REG_FUNCTION_VALUE_P (value))
8084 value = 0;
8085 reload_cse_delete_noop_set (insn, value);
8086 return;
8087 }
8088
8089 if (count > 0)
8090 apply_change_group ();
8091 else
8092 reload_cse_simplify_operands (insn);
8093 }
8094 else if (GET_CODE (body) == PARALLEL)
8095 {
8096 int i;
8097 int count = 0;
8098 rtx value = NULL_RTX;
8099
8100 /* If every action in a PARALLEL is a noop, we can delete
8101 the entire PARALLEL. */
8102 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8103 {
8104 rtx part = XVECEXP (body, 0, i);
8105 if (GET_CODE (part) == SET)
8106 {
8107 if (! reload_cse_noop_set_p (part))
8108 break;
8109 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
8110 {
8111 if (value)
8112 break;
8113 value = SET_DEST (part);
8114 }
8115 }
8116 else if (GET_CODE (part) != CLOBBER)
8117 break;
8118 }
8119
8120 if (i < 0)
8121 {
8122 reload_cse_delete_noop_set (insn, value);
8123 /* We're done with this insn. */
8124 return;
8125 }
8126
8127 /* It's not a no-op, but we can try to simplify it. */
8128 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8129 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8130 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8131
8132 if (count > 0)
8133 apply_change_group ();
8134 else
8135 reload_cse_simplify_operands (insn);
8136 }
8137 }
8138
8139 /* Do a very simple CSE pass over the hard registers.
8140
8141 This function detects no-op moves where we happened to assign two
8142 different pseudo-registers to the same hard register, and then
8143 copied one to the other. Reload will generate a useless
8144 instruction copying a register to itself.
8145
8146 This function also detects cases where we load a value from memory
8147 into two different registers, and (if memory is more expensive than
8148 registers) changes it to simply copy the first register into the
8149 second register.
8150
8151 Another optimization is performed that scans the operands of each
8152 instruction to see whether the value is already available in a
8153 hard register. It then replaces the operand with the hard register
8154 if possible, much like an optional reload would. */
8155
8156 static void
8157 reload_cse_regs_1 (first)
8158 rtx first;
8159 {
8160 rtx insn;
8161
8162 cselib_init ();
8163 init_alias_analysis ();
8164
8165 for (insn = first; insn; insn = NEXT_INSN (insn))
8166 {
8167 if (INSN_P (insn))
8168 reload_cse_simplify (insn);
8169
8170 cselib_process_insn (insn);
8171 }
8172
8173 /* Clean up. */
8174 end_alias_analysis ();
8175 cselib_finish ();
8176 }
8177
8178 /* Call cse / combine like post-reload optimization phases.
8179 FIRST is the first instruction. */
8180 void
8181 reload_cse_regs (first)
8182 rtx first;
8183 {
8184 reload_cse_regs_1 (first);
8185 reload_combine ();
8186 reload_cse_move2add (first);
8187 if (flag_expensive_optimizations)
8188 reload_cse_regs_1 (first);
8189 }
8190
8191 /* Try to simplify a single SET instruction. SET is the set pattern.
8192 INSN is the instruction it came from.
8193 This function only handles one case: if we set a register to a value
8194 which is not a register, we try to find that value in some other register
8195 and change the set into a register copy. */
8196
8197 static int
8198 reload_cse_simplify_set (set, insn)
8199 rtx set;
8200 rtx insn;
8201 {
8202 int did_change = 0;
8203 int dreg;
8204 rtx src;
8205 enum reg_class dclass;
8206 int old_cost;
8207 cselib_val *val;
8208 struct elt_loc_list *l;
8209 #ifdef LOAD_EXTEND_OP
8210 enum rtx_code extend_op = NIL;
8211 #endif
8212
8213 dreg = true_regnum (SET_DEST (set));
8214 if (dreg < 0)
8215 return 0;
8216
8217 src = SET_SRC (set);
8218 if (side_effects_p (src) || true_regnum (src) >= 0)
8219 return 0;
8220
8221 dclass = REGNO_REG_CLASS (dreg);
8222
8223 #ifdef LOAD_EXTEND_OP
8224 /* When replacing a memory with a register, we need to honor assumptions
8225 that combine made wrt the contents of sign bits. We'll do this by
8226 generating an extend instruction instead of a reg->reg copy. Thus
8227 the destination must be a register that we can widen. */
8228 if (GET_CODE (src) == MEM
8229 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8230 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8231 && GET_CODE (SET_DEST (set)) != REG)
8232 return 0;
8233 #endif
8234
8235 /* If memory loads are cheaper than register copies, don't change them. */
8236 if (GET_CODE (src) == MEM)
8237 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8238 else if (CONSTANT_P (src))
8239 old_cost = rtx_cost (src, SET);
8240 else if (GET_CODE (src) == REG)
8241 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8242 REGNO_REG_CLASS (REGNO (src)), dclass);
8243 else
8244 /* ??? */
8245 old_cost = rtx_cost (src, SET);
8246
8247 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
8248 if (! val)
8249 return 0;
8250 for (l = val->locs; l; l = l->next)
8251 {
8252 rtx this_rtx = l->loc;
8253 int this_cost;
8254
8255 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8256 {
8257 #ifdef LOAD_EXTEND_OP
8258 if (extend_op != NIL)
8259 {
8260 HOST_WIDE_INT this_val;
8261
8262 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8263 constants, such as SYMBOL_REF, cannot be extended. */
8264 if (GET_CODE (this_rtx) != CONST_INT)
8265 continue;
8266
8267 this_val = INTVAL (this_rtx);
8268 switch (extend_op)
8269 {
8270 case ZERO_EXTEND:
8271 this_val &= GET_MODE_MASK (GET_MODE (src));
8272 break;
8273 case SIGN_EXTEND:
8274 /* ??? In theory we're already extended. */
8275 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8276 break;
8277 default:
8278 abort ();
8279 }
8280 this_rtx = GEN_INT (this_val);
8281 }
8282 #endif
8283 this_cost = rtx_cost (this_rtx, SET);
8284 }
8285 else if (GET_CODE (this_rtx) == REG)
8286 {
8287 #ifdef LOAD_EXTEND_OP
8288 if (extend_op != NIL)
8289 {
8290 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8291 this_cost = rtx_cost (this_rtx, SET);
8292 }
8293 else
8294 #endif
8295 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8296 REGNO_REG_CLASS (REGNO (this_rtx)),
8297 dclass);
8298 }
8299 else
8300 continue;
8301
8302 /* If equal costs, prefer registers over anything else. That
8303 tends to lead to smaller instructions on some machines. */
8304 if (this_cost < old_cost
8305 || (this_cost == old_cost
8306 && GET_CODE (this_rtx) == REG
8307 && GET_CODE (SET_SRC (set)) != REG))
8308 {
8309 #ifdef LOAD_EXTEND_OP
8310 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8311 && extend_op != NIL)
8312 {
8313 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8314 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8315 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8316 }
8317 #endif
8318
8319 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8320 old_cost = this_cost, did_change = 1;
8321 }
8322 }
8323
8324 return did_change;
8325 }
8326
8327 /* Try to replace operands in INSN with equivalent values that are already
8328 in registers. This can be viewed as optional reloading.
8329
8330 For each non-register operand in the insn, see if any hard regs are
8331 known to be equivalent to that operand. Record the alternatives which
8332 can accept these hard registers. Among all alternatives, select the
8333 ones which are better or equal to the one currently matching, where
8334 "better" is in terms of '?' and '!' constraints. Among the remaining
8335 alternatives, select the one which replaces most operands with
8336 hard registers. */
8337
8338 static int
8339 reload_cse_simplify_operands (insn)
8340 rtx insn;
8341 {
8342 int i, j;
8343
8344 /* For each operand, all registers that are equivalent to it. */
8345 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8346
8347 const char *constraints[MAX_RECOG_OPERANDS];
8348
8349 /* Vector recording how bad an alternative is. */
8350 int *alternative_reject;
8351 /* Vector recording how many registers can be introduced by choosing
8352 this alternative. */
8353 int *alternative_nregs;
8354 /* Array of vectors recording, for each operand and each alternative,
8355 which hard register to substitute, or -1 if the operand should be
8356 left as it is. */
8357 int *op_alt_regno[MAX_RECOG_OPERANDS];
8358 /* Array of alternatives, sorted in order of decreasing desirability. */
8359 int *alternative_order;
8360 rtx reg = gen_rtx_REG (VOIDmode, -1);
8361
8362 extract_insn (insn);
8363
8364 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8365 return 0;
8366
8367 /* Figure out which alternative currently matches. */
8368 if (! constrain_operands (1))
8369 fatal_insn_not_found (insn);
8370
8371 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8372 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8373 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8374 memset ((char *) alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8375 memset ((char *) alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8376
8377 /* For each operand, find out which regs are equivalent. */
8378 for (i = 0; i < recog_data.n_operands; i++)
8379 {
8380 cselib_val *v;
8381 struct elt_loc_list *l;
8382
8383 CLEAR_HARD_REG_SET (equiv_regs[i]);
8384
8385 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8386 right, so avoid the problem here. Likewise if we have a constant
8387 and the insn pattern doesn't tell us the mode we need. */
8388 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8389 || (CONSTANT_P (recog_data.operand[i])
8390 && recog_data.operand_mode[i] == VOIDmode))
8391 continue;
8392
8393 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8394 if (! v)
8395 continue;
8396
8397 for (l = v->locs; l; l = l->next)
8398 if (GET_CODE (l->loc) == REG)
8399 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8400 }
8401
8402 for (i = 0; i < recog_data.n_operands; i++)
8403 {
8404 enum machine_mode mode;
8405 int regno;
8406 const char *p;
8407
8408 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8409 for (j = 0; j < recog_data.n_alternatives; j++)
8410 op_alt_regno[i][j] = -1;
8411
8412 p = constraints[i] = recog_data.constraints[i];
8413 mode = recog_data.operand_mode[i];
8414
8415 /* Add the reject values for each alternative given by the constraints
8416 for this operand. */
8417 j = 0;
8418 while (*p != '\0')
8419 {
8420 char c = *p++;
8421 if (c == ',')
8422 j++;
8423 else if (c == '?')
8424 alternative_reject[j] += 3;
8425 else if (c == '!')
8426 alternative_reject[j] += 300;
8427 }
8428
8429 /* We won't change operands which are already registers. We
8430 also don't want to modify output operands. */
8431 regno = true_regnum (recog_data.operand[i]);
8432 if (regno >= 0
8433 || constraints[i][0] == '='
8434 || constraints[i][0] == '+')
8435 continue;
8436
8437 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8438 {
8439 int class = (int) NO_REGS;
8440
8441 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8442 continue;
8443
8444 REGNO (reg) = regno;
8445 PUT_MODE (reg, mode);
8446
8447 /* We found a register equal to this operand. Now look for all
8448 alternatives that can accept this register and have not been
8449 assigned a register they can use yet. */
8450 j = 0;
8451 p = constraints[i];
8452 for (;;)
8453 {
8454 char c = *p++;
8455
8456 switch (c)
8457 {
8458 case '=': case '+': case '?':
8459 case '#': case '&': case '!':
8460 case '*': case '%':
8461 case '0': case '1': case '2': case '3': case '4':
8462 case '5': case '6': case '7': case '8': case '9':
8463 case 'm': case '<': case '>': case 'V': case 'o':
8464 case 'E': case 'F': case 'G': case 'H':
8465 case 's': case 'i': case 'n':
8466 case 'I': case 'J': case 'K': case 'L':
8467 case 'M': case 'N': case 'O': case 'P':
8468 case 'p': case 'X':
8469 /* These don't say anything we care about. */
8470 break;
8471
8472 case 'g': case 'r':
8473 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8474 break;
8475
8476 default:
8477 class
8478 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char) c)];
8479 break;
8480
8481 case ',': case '\0':
8482 /* See if REGNO fits this alternative, and set it up as the
8483 replacement register if we don't have one for this
8484 alternative yet and the operand being replaced is not
8485 a cheap CONST_INT. */
8486 if (op_alt_regno[i][j] == -1
8487 && reg_fits_class_p (reg, class, 0, mode)
8488 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8489 || (rtx_cost (recog_data.operand[i], SET)
8490 > rtx_cost (reg, SET))))
8491 {
8492 alternative_nregs[j]++;
8493 op_alt_regno[i][j] = regno;
8494 }
8495 j++;
8496 break;
8497 }
8498
8499 if (c == '\0')
8500 break;
8501 }
8502 }
8503 }
8504
8505 /* Record all alternatives which are better or equal to the currently
8506 matching one in the alternative_order array. */
8507 for (i = j = 0; i < recog_data.n_alternatives; i++)
8508 if (alternative_reject[i] <= alternative_reject[which_alternative])
8509 alternative_order[j++] = i;
8510 recog_data.n_alternatives = j;
8511
8512 /* Sort it. Given a small number of alternatives, a dumb algorithm
8513 won't hurt too much. */
8514 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8515 {
8516 int best = i;
8517 int best_reject = alternative_reject[alternative_order[i]];
8518 int best_nregs = alternative_nregs[alternative_order[i]];
8519 int tmp;
8520
8521 for (j = i + 1; j < recog_data.n_alternatives; j++)
8522 {
8523 int this_reject = alternative_reject[alternative_order[j]];
8524 int this_nregs = alternative_nregs[alternative_order[j]];
8525
8526 if (this_reject < best_reject
8527 || (this_reject == best_reject && this_nregs < best_nregs))
8528 {
8529 best = j;
8530 best_reject = this_reject;
8531 best_nregs = this_nregs;
8532 }
8533 }
8534
8535 tmp = alternative_order[best];
8536 alternative_order[best] = alternative_order[i];
8537 alternative_order[i] = tmp;
8538 }
8539
8540 /* Substitute the operands as determined by op_alt_regno for the best
8541 alternative. */
8542 j = alternative_order[0];
8543
8544 for (i = 0; i < recog_data.n_operands; i++)
8545 {
8546 enum machine_mode mode = recog_data.operand_mode[i];
8547 if (op_alt_regno[i][j] == -1)
8548 continue;
8549
8550 validate_change (insn, recog_data.operand_loc[i],
8551 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8552 }
8553
8554 for (i = recog_data.n_dups - 1; i >= 0; i--)
8555 {
8556 int op = recog_data.dup_num[i];
8557 enum machine_mode mode = recog_data.operand_mode[op];
8558
8559 if (op_alt_regno[op][j] == -1)
8560 continue;
8561
8562 validate_change (insn, recog_data.dup_loc[i],
8563 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8564 }
8565
8566 return apply_change_group ();
8567 }
8568 \f
8569 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8570 addressing now.
8571 This code might also be useful when reload gave up on reg+reg addresssing
8572 because of clashes between the return register and INDEX_REG_CLASS. */
8573
8574 /* The maximum number of uses of a register we can keep track of to
8575 replace them with reg+reg addressing. */
8576 #define RELOAD_COMBINE_MAX_USES 6
8577
8578 /* INSN is the insn where a register has ben used, and USEP points to the
8579 location of the register within the rtl. */
8580 struct reg_use { rtx insn, *usep; };
8581
8582 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8583 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8584 indicates where it becomes live again.
8585 Otherwise, USE_INDEX is the index of the last encountered use of the
8586 register (which is first among these we have seen since we scan backwards),
8587 OFFSET contains the constant offset that is added to the register in
8588 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8589 last, of these uses.
8590 STORE_RUID is always meaningful if we only want to use a value in a
8591 register in a different place: it denotes the next insn in the insn
8592 stream (i.e. the last ecountered) that sets or clobbers the register. */
8593 static struct
8594 {
8595 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8596 int use_index;
8597 rtx offset;
8598 int store_ruid;
8599 int use_ruid;
8600 } reg_state[FIRST_PSEUDO_REGISTER];
8601
8602 /* Reverse linear uid. This is increased in reload_combine while scanning
8603 the instructions from last to first. It is used to set last_label_ruid
8604 and the store_ruid / use_ruid fields in reg_state. */
8605 static int reload_combine_ruid;
8606
8607 #define LABEL_LIVE(LABEL) \
8608 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8609
8610 static void
8611 reload_combine ()
8612 {
8613 rtx insn, set;
8614 int first_index_reg = -1;
8615 int last_index_reg = 0;
8616 int i;
8617 basic_block bb;
8618 unsigned int r;
8619 int last_label_ruid;
8620 int min_labelno, n_labels;
8621 HARD_REG_SET ever_live_at_start, *label_live;
8622
8623 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
8624 reload has already used it where appropriate, so there is no use in
8625 trying to generate it now. */
8626 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8627 return;
8628
8629 /* To avoid wasting too much time later searching for an index register,
8630 determine the minimum and maximum index register numbers. */
8631 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8632 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8633 {
8634 if (first_index_reg == -1)
8635 first_index_reg = r;
8636
8637 last_index_reg = r;
8638 }
8639
8640 /* If no index register is available, we can quit now. */
8641 if (first_index_reg == -1)
8642 return;
8643
8644 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8645 information is a bit fuzzy immediately after reload, but it's
8646 still good enough to determine which registers are live at a jump
8647 destination. */
8648 min_labelno = get_first_label_num ();
8649 n_labels = max_label_num () - min_labelno;
8650 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8651 CLEAR_HARD_REG_SET (ever_live_at_start);
8652
8653 FOR_EACH_BB_REVERSE (bb)
8654 {
8655 insn = bb->head;
8656 if (GET_CODE (insn) == CODE_LABEL)
8657 {
8658 HARD_REG_SET live;
8659
8660 REG_SET_TO_HARD_REG_SET (live,
8661 bb->global_live_at_start);
8662 compute_use_by_pseudos (&live,
8663 bb->global_live_at_start);
8664 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8665 IOR_HARD_REG_SET (ever_live_at_start, live);
8666 }
8667 }
8668
8669 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8670 last_label_ruid = reload_combine_ruid = 0;
8671 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8672 {
8673 reg_state[r].store_ruid = reload_combine_ruid;
8674 if (fixed_regs[r])
8675 reg_state[r].use_index = -1;
8676 else
8677 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8678 }
8679
8680 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8681 {
8682 rtx note;
8683
8684 /* We cannot do our optimization across labels. Invalidating all the use
8685 information we have would be costly, so we just note where the label
8686 is and then later disable any optimization that would cross it. */
8687 if (GET_CODE (insn) == CODE_LABEL)
8688 last_label_ruid = reload_combine_ruid;
8689 else if (GET_CODE (insn) == BARRIER)
8690 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8691 if (! fixed_regs[r])
8692 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8693
8694 if (! INSN_P (insn))
8695 continue;
8696
8697 reload_combine_ruid++;
8698
8699 /* Look for (set (REGX) (CONST_INT))
8700 (set (REGX) (PLUS (REGX) (REGY)))
8701 ...
8702 ... (MEM (REGX)) ...
8703 and convert it to
8704 (set (REGZ) (CONST_INT))
8705 ...
8706 ... (MEM (PLUS (REGZ) (REGY)))... .
8707
8708 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8709 and that we know all uses of REGX before it dies. */
8710 set = single_set (insn);
8711 if (set != NULL_RTX
8712 && GET_CODE (SET_DEST (set)) == REG
8713 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8714 GET_MODE (SET_DEST (set)))
8715 == 1)
8716 && GET_CODE (SET_SRC (set)) == PLUS
8717 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8718 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8719 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8720 {
8721 rtx reg = SET_DEST (set);
8722 rtx plus = SET_SRC (set);
8723 rtx base = XEXP (plus, 1);
8724 rtx prev = prev_nonnote_insn (insn);
8725 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8726 unsigned int regno = REGNO (reg);
8727 rtx const_reg = NULL_RTX;
8728 rtx reg_sum = NULL_RTX;
8729
8730 /* Now, we need an index register.
8731 We'll set index_reg to this index register, const_reg to the
8732 register that is to be loaded with the constant
8733 (denoted as REGZ in the substitution illustration above),
8734 and reg_sum to the register-register that we want to use to
8735 substitute uses of REG (typically in MEMs) with.
8736 First check REG and BASE for being index registers;
8737 we can use them even if they are not dead. */
8738 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8739 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8740 REGNO (base)))
8741 {
8742 const_reg = reg;
8743 reg_sum = plus;
8744 }
8745 else
8746 {
8747 /* Otherwise, look for a free index register. Since we have
8748 checked above that neiter REG nor BASE are index registers,
8749 if we find anything at all, it will be different from these
8750 two registers. */
8751 for (i = first_index_reg; i <= last_index_reg; i++)
8752 {
8753 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8754 i)
8755 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8756 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8757 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8758 {
8759 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8760
8761 const_reg = index_reg;
8762 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8763 break;
8764 }
8765 }
8766 }
8767
8768 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8769 (REGY), i.e. BASE, is not clobbered before the last use we'll
8770 create. */
8771 if (prev_set != 0
8772 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8773 && rtx_equal_p (SET_DEST (prev_set), reg)
8774 && reg_state[regno].use_index >= 0
8775 && (reg_state[REGNO (base)].store_ruid
8776 <= reg_state[regno].use_ruid)
8777 && reg_sum != 0)
8778 {
8779 int i;
8780
8781 /* Change destination register and, if necessary, the
8782 constant value in PREV, the constant loading instruction. */
8783 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8784 if (reg_state[regno].offset != const0_rtx)
8785 validate_change (prev,
8786 &SET_SRC (prev_set),
8787 GEN_INT (INTVAL (SET_SRC (prev_set))
8788 + INTVAL (reg_state[regno].offset)),
8789 1);
8790
8791 /* Now for every use of REG that we have recorded, replace REG
8792 with REG_SUM. */
8793 for (i = reg_state[regno].use_index;
8794 i < RELOAD_COMBINE_MAX_USES; i++)
8795 validate_change (reg_state[regno].reg_use[i].insn,
8796 reg_state[regno].reg_use[i].usep,
8797 /* Each change must have its own
8798 replacement. */
8799 copy_rtx (reg_sum), 1);
8800
8801 if (apply_change_group ())
8802 {
8803 rtx *np;
8804
8805 /* Delete the reg-reg addition. */
8806 delete_insn (insn);
8807
8808 if (reg_state[regno].offset != const0_rtx)
8809 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8810 are now invalid. */
8811 for (np = &REG_NOTES (prev); *np;)
8812 {
8813 if (REG_NOTE_KIND (*np) == REG_EQUAL
8814 || REG_NOTE_KIND (*np) == REG_EQUIV)
8815 *np = XEXP (*np, 1);
8816 else
8817 np = &XEXP (*np, 1);
8818 }
8819
8820 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8821 reg_state[REGNO (const_reg)].store_ruid
8822 = reload_combine_ruid;
8823 continue;
8824 }
8825 }
8826 }
8827
8828 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8829
8830 if (GET_CODE (insn) == CALL_INSN)
8831 {
8832 rtx link;
8833
8834 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8835 if (call_used_regs[r])
8836 {
8837 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8838 reg_state[r].store_ruid = reload_combine_ruid;
8839 }
8840
8841 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8842 link = XEXP (link, 1))
8843 {
8844 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8845 if (GET_CODE (usage_rtx) == REG)
8846 {
8847 unsigned int i;
8848 unsigned int start_reg = REGNO (usage_rtx);
8849 unsigned int num_regs =
8850 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8851 unsigned int end_reg = start_reg + num_regs - 1;
8852 for (i = start_reg; i <= end_reg; i++)
8853 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8854 {
8855 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8856 reg_state[i].store_ruid = reload_combine_ruid;
8857 }
8858 else
8859 reg_state[i].use_index = -1;
8860 }
8861 }
8862
8863 }
8864 else if (GET_CODE (insn) == JUMP_INSN
8865 && GET_CODE (PATTERN (insn)) != RETURN)
8866 {
8867 /* Non-spill registers might be used at the call destination in
8868 some unknown fashion, so we have to mark the unknown use. */
8869 HARD_REG_SET *live;
8870
8871 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8872 && JUMP_LABEL (insn))
8873 live = &LABEL_LIVE (JUMP_LABEL (insn));
8874 else
8875 live = &ever_live_at_start;
8876
8877 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8878 if (TEST_HARD_REG_BIT (*live, i))
8879 reg_state[i].use_index = -1;
8880 }
8881
8882 reload_combine_note_use (&PATTERN (insn), insn);
8883 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8884 {
8885 if (REG_NOTE_KIND (note) == REG_INC
8886 && GET_CODE (XEXP (note, 0)) == REG)
8887 {
8888 int regno = REGNO (XEXP (note, 0));
8889
8890 reg_state[regno].store_ruid = reload_combine_ruid;
8891 reg_state[regno].use_index = -1;
8892 }
8893 }
8894 }
8895
8896 free (label_live);
8897 }
8898
8899 /* Check if DST is a register or a subreg of a register; if it is,
8900 update reg_state[regno].store_ruid and reg_state[regno].use_index
8901 accordingly. Called via note_stores from reload_combine. */
8902
8903 static void
8904 reload_combine_note_store (dst, set, data)
8905 rtx dst, set;
8906 void *data ATTRIBUTE_UNUSED;
8907 {
8908 int regno = 0;
8909 int i;
8910 enum machine_mode mode = GET_MODE (dst);
8911
8912 if (GET_CODE (dst) == SUBREG)
8913 {
8914 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8915 GET_MODE (SUBREG_REG (dst)),
8916 SUBREG_BYTE (dst),
8917 GET_MODE (dst));
8918 dst = SUBREG_REG (dst);
8919 }
8920 if (GET_CODE (dst) != REG)
8921 return;
8922 regno += REGNO (dst);
8923
8924 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8925 careful with registers / register parts that are not full words.
8926
8927 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8928 if (GET_CODE (set) != SET
8929 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8930 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8931 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8932 {
8933 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8934 {
8935 reg_state[i].use_index = -1;
8936 reg_state[i].store_ruid = reload_combine_ruid;
8937 }
8938 }
8939 else
8940 {
8941 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8942 {
8943 reg_state[i].store_ruid = reload_combine_ruid;
8944 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8945 }
8946 }
8947 }
8948
8949 /* XP points to a piece of rtl that has to be checked for any uses of
8950 registers.
8951 *XP is the pattern of INSN, or a part of it.
8952 Called from reload_combine, and recursively by itself. */
8953 static void
8954 reload_combine_note_use (xp, insn)
8955 rtx *xp, insn;
8956 {
8957 rtx x = *xp;
8958 enum rtx_code code = x->code;
8959 const char *fmt;
8960 int i, j;
8961 rtx offset = const0_rtx; /* For the REG case below. */
8962
8963 switch (code)
8964 {
8965 case SET:
8966 if (GET_CODE (SET_DEST (x)) == REG)
8967 {
8968 reload_combine_note_use (&SET_SRC (x), insn);
8969 return;
8970 }
8971 break;
8972
8973 case USE:
8974 /* If this is the USE of a return value, we can't change it. */
8975 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8976 {
8977 /* Mark the return register as used in an unknown fashion. */
8978 rtx reg = XEXP (x, 0);
8979 int regno = REGNO (reg);
8980 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8981
8982 while (--nregs >= 0)
8983 reg_state[regno + nregs].use_index = -1;
8984 return;
8985 }
8986 break;
8987
8988 case CLOBBER:
8989 if (GET_CODE (SET_DEST (x)) == REG)
8990 {
8991 /* No spurious CLOBBERs of pseudo registers may remain. */
8992 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
8993 abort ();
8994 return;
8995 }
8996 break;
8997
8998 case PLUS:
8999 /* We are interested in (plus (reg) (const_int)) . */
9000 if (GET_CODE (XEXP (x, 0)) != REG
9001 || GET_CODE (XEXP (x, 1)) != CONST_INT)
9002 break;
9003 offset = XEXP (x, 1);
9004 x = XEXP (x, 0);
9005 /* Fall through. */
9006 case REG:
9007 {
9008 int regno = REGNO (x);
9009 int use_index;
9010 int nregs;
9011
9012 /* No spurious USEs of pseudo registers may remain. */
9013 if (regno >= FIRST_PSEUDO_REGISTER)
9014 abort ();
9015
9016 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
9017
9018 /* We can't substitute into multi-hard-reg uses. */
9019 if (nregs > 1)
9020 {
9021 while (--nregs >= 0)
9022 reg_state[regno + nregs].use_index = -1;
9023 return;
9024 }
9025
9026 /* If this register is already used in some unknown fashion, we
9027 can't do anything.
9028 If we decrement the index from zero to -1, we can't store more
9029 uses, so this register becomes used in an unknown fashion. */
9030 use_index = --reg_state[regno].use_index;
9031 if (use_index < 0)
9032 return;
9033
9034 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
9035 {
9036 /* We have found another use for a register that is already
9037 used later. Check if the offsets match; if not, mark the
9038 register as used in an unknown fashion. */
9039 if (! rtx_equal_p (offset, reg_state[regno].offset))
9040 {
9041 reg_state[regno].use_index = -1;
9042 return;
9043 }
9044 }
9045 else
9046 {
9047 /* This is the first use of this register we have seen since we
9048 marked it as dead. */
9049 reg_state[regno].offset = offset;
9050 reg_state[regno].use_ruid = reload_combine_ruid;
9051 }
9052 reg_state[regno].reg_use[use_index].insn = insn;
9053 reg_state[regno].reg_use[use_index].usep = xp;
9054 return;
9055 }
9056
9057 default:
9058 break;
9059 }
9060
9061 /* Recursively process the components of X. */
9062 fmt = GET_RTX_FORMAT (code);
9063 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9064 {
9065 if (fmt[i] == 'e')
9066 reload_combine_note_use (&XEXP (x, i), insn);
9067 else if (fmt[i] == 'E')
9068 {
9069 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9070 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9071 }
9072 }
9073 }
9074 \f
9075 /* See if we can reduce the cost of a constant by replacing a move
9076 with an add. We track situations in which a register is set to a
9077 constant or to a register plus a constant. */
9078 /* We cannot do our optimization across labels. Invalidating all the
9079 information about register contents we have would be costly, so we
9080 use move2add_last_label_luid to note where the label is and then
9081 later disable any optimization that would cross it.
9082 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9083 reg_set_luid[n] is greater than last_label_luid[n] . */
9084 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
9085
9086 /* If reg_base_reg[n] is negative, register n has been set to
9087 reg_offset[n] in mode reg_mode[n] .
9088 If reg_base_reg[n] is non-negative, register n has been set to the
9089 sum of reg_offset[n] and the value of register reg_base_reg[n]
9090 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9091 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
9092 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9093 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
9094
9095 /* move2add_luid is linearily increased while scanning the instructions
9096 from first to last. It is used to set reg_set_luid in
9097 reload_cse_move2add and move2add_note_store. */
9098 static int move2add_luid;
9099
9100 /* move2add_last_label_luid is set whenever a label is found. Labels
9101 invalidate all previously collected reg_offset data. */
9102 static int move2add_last_label_luid;
9103
9104 /* Generate a CONST_INT and force it in the range of MODE. */
9105
9106 static HOST_WIDE_INT
9107 sext_for_mode (mode, value)
9108 enum machine_mode mode;
9109 HOST_WIDE_INT value;
9110 {
9111 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9112 int width = GET_MODE_BITSIZE (mode);
9113
9114 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9115 sign extend it. */
9116 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9117 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9118 cval |= (HOST_WIDE_INT) -1 << width;
9119
9120 return cval;
9121 }
9122
9123 /* ??? We don't know how zero / sign extension is handled, hence we
9124 can't go from a narrower to a wider mode. */
9125 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9126 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9127 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9128 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9129 GET_MODE_BITSIZE (INMODE))))
9130
9131 static void
9132 reload_cse_move2add (first)
9133 rtx first;
9134 {
9135 int i;
9136 rtx insn;
9137
9138 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9139 reg_set_luid[i] = 0;
9140
9141 move2add_last_label_luid = 0;
9142 move2add_luid = 2;
9143 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9144 {
9145 rtx pat, note;
9146
9147 if (GET_CODE (insn) == CODE_LABEL)
9148 {
9149 move2add_last_label_luid = move2add_luid;
9150 /* We're going to increment move2add_luid twice after a
9151 label, so that we can use move2add_last_label_luid + 1 as
9152 the luid for constants. */
9153 move2add_luid++;
9154 continue;
9155 }
9156 if (! INSN_P (insn))
9157 continue;
9158 pat = PATTERN (insn);
9159 /* For simplicity, we only perform this optimization on
9160 straightforward SETs. */
9161 if (GET_CODE (pat) == SET
9162 && GET_CODE (SET_DEST (pat)) == REG)
9163 {
9164 rtx reg = SET_DEST (pat);
9165 int regno = REGNO (reg);
9166 rtx src = SET_SRC (pat);
9167
9168 /* Check if we have valid information on the contents of this
9169 register in the mode of REG. */
9170 if (reg_set_luid[regno] > move2add_last_label_luid
9171 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
9172 {
9173 /* Try to transform (set (REGX) (CONST_INT A))
9174 ...
9175 (set (REGX) (CONST_INT B))
9176 to
9177 (set (REGX) (CONST_INT A))
9178 ...
9179 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9180
9181 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9182 {
9183 int success = 0;
9184 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9185 INTVAL (src)
9186 - reg_offset[regno]));
9187 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9188 use (set (reg) (reg)) instead.
9189 We don't delete this insn, nor do we convert it into a
9190 note, to avoid losing register notes or the return
9191 value flag. jump2 already knowns how to get rid of
9192 no-op moves. */
9193 if (new_src == const0_rtx)
9194 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9195 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
9196 && have_add2_insn (reg, new_src))
9197 success = validate_change (insn, &PATTERN (insn),
9198 gen_add2_insn (reg, new_src), 0);
9199 reg_set_luid[regno] = move2add_luid;
9200 reg_mode[regno] = GET_MODE (reg);
9201 reg_offset[regno] = INTVAL (src);
9202 continue;
9203 }
9204
9205 /* Try to transform (set (REGX) (REGY))
9206 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9207 ...
9208 (set (REGX) (REGY))
9209 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9210 to
9211 (REGX) (REGY))
9212 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9213 ...
9214 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9215 else if (GET_CODE (src) == REG
9216 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9217 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9218 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9219 reg_mode[REGNO (src)]))
9220 {
9221 rtx next = next_nonnote_insn (insn);
9222 rtx set = NULL_RTX;
9223 if (next)
9224 set = single_set (next);
9225 if (set
9226 && SET_DEST (set) == reg
9227 && GET_CODE (SET_SRC (set)) == PLUS
9228 && XEXP (SET_SRC (set), 0) == reg
9229 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9230 {
9231 rtx src3 = XEXP (SET_SRC (set), 1);
9232 HOST_WIDE_INT added_offset = INTVAL (src3);
9233 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9234 HOST_WIDE_INT regno_offset = reg_offset[regno];
9235 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9236 added_offset
9237 + base_offset
9238 - regno_offset));
9239 int success = 0;
9240
9241 if (new_src == const0_rtx)
9242 /* See above why we create (set (reg) (reg)) here. */
9243 success
9244 = validate_change (next, &SET_SRC (set), reg, 0);
9245 else if ((rtx_cost (new_src, PLUS)
9246 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
9247 && have_add2_insn (reg, new_src))
9248 success
9249 = validate_change (next, &PATTERN (next),
9250 gen_add2_insn (reg, new_src), 0);
9251 if (success)
9252 delete_insn (insn);
9253 insn = next;
9254 reg_mode[regno] = GET_MODE (reg);
9255 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9256 added_offset
9257 + base_offset);
9258 continue;
9259 }
9260 }
9261 }
9262 }
9263
9264 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9265 {
9266 if (REG_NOTE_KIND (note) == REG_INC
9267 && GET_CODE (XEXP (note, 0)) == REG)
9268 {
9269 /* Reset the information about this register. */
9270 int regno = REGNO (XEXP (note, 0));
9271 if (regno < FIRST_PSEUDO_REGISTER)
9272 reg_set_luid[regno] = 0;
9273 }
9274 }
9275 note_stores (PATTERN (insn), move2add_note_store, NULL);
9276 /* If this is a CALL_INSN, all call used registers are stored with
9277 unknown values. */
9278 if (GET_CODE (insn) == CALL_INSN)
9279 {
9280 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9281 {
9282 if (call_used_regs[i])
9283 /* Reset the information about this register. */
9284 reg_set_luid[i] = 0;
9285 }
9286 }
9287 }
9288 }
9289
9290 /* SET is a SET or CLOBBER that sets DST.
9291 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9292 Called from reload_cse_move2add via note_stores. */
9293
9294 static void
9295 move2add_note_store (dst, set, data)
9296 rtx dst, set;
9297 void *data ATTRIBUTE_UNUSED;
9298 {
9299 unsigned int regno = 0;
9300 unsigned int i;
9301 enum machine_mode mode = GET_MODE (dst);
9302
9303 if (GET_CODE (dst) == SUBREG)
9304 {
9305 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9306 GET_MODE (SUBREG_REG (dst)),
9307 SUBREG_BYTE (dst),
9308 GET_MODE (dst));
9309 dst = SUBREG_REG (dst);
9310 }
9311
9312 /* Some targets do argument pushes without adding REG_INC notes. */
9313
9314 if (GET_CODE (dst) == MEM)
9315 {
9316 dst = XEXP (dst, 0);
9317 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
9318 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
9319 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
9320 return;
9321 }
9322 if (GET_CODE (dst) != REG)
9323 return;
9324
9325 regno += REGNO (dst);
9326
9327 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9328 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9329 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9330 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9331 {
9332 rtx src = SET_SRC (set);
9333 rtx base_reg;
9334 HOST_WIDE_INT offset;
9335 int base_regno;
9336 /* This may be different from mode, if SET_DEST (set) is a
9337 SUBREG. */
9338 enum machine_mode dst_mode = GET_MODE (dst);
9339
9340 switch (GET_CODE (src))
9341 {
9342 case PLUS:
9343 if (GET_CODE (XEXP (src, 0)) == REG)
9344 {
9345 base_reg = XEXP (src, 0);
9346
9347 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9348 offset = INTVAL (XEXP (src, 1));
9349 else if (GET_CODE (XEXP (src, 1)) == REG
9350 && (reg_set_luid[REGNO (XEXP (src, 1))]
9351 > move2add_last_label_luid)
9352 && (MODES_OK_FOR_MOVE2ADD
9353 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9354 {
9355 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9356 offset = reg_offset[REGNO (XEXP (src, 1))];
9357 /* Maybe the first register is known to be a
9358 constant. */
9359 else if (reg_set_luid[REGNO (base_reg)]
9360 > move2add_last_label_luid
9361 && (MODES_OK_FOR_MOVE2ADD
9362 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9363 && reg_base_reg[REGNO (base_reg)] < 0)
9364 {
9365 offset = reg_offset[REGNO (base_reg)];
9366 base_reg = XEXP (src, 1);
9367 }
9368 else
9369 goto invalidate;
9370 }
9371 else
9372 goto invalidate;
9373
9374 break;
9375 }
9376
9377 goto invalidate;
9378
9379 case REG:
9380 base_reg = src;
9381 offset = 0;
9382 break;
9383
9384 case CONST_INT:
9385 /* Start tracking the register as a constant. */
9386 reg_base_reg[regno] = -1;
9387 reg_offset[regno] = INTVAL (SET_SRC (set));
9388 /* We assign the same luid to all registers set to constants. */
9389 reg_set_luid[regno] = move2add_last_label_luid + 1;
9390 reg_mode[regno] = mode;
9391 return;
9392
9393 default:
9394 invalidate:
9395 /* Invalidate the contents of the register. */
9396 reg_set_luid[regno] = 0;
9397 return;
9398 }
9399
9400 base_regno = REGNO (base_reg);
9401 /* If information about the base register is not valid, set it
9402 up as a new base register, pretending its value is known
9403 starting from the current insn. */
9404 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9405 {
9406 reg_base_reg[base_regno] = base_regno;
9407 reg_offset[base_regno] = 0;
9408 reg_set_luid[base_regno] = move2add_luid;
9409 reg_mode[base_regno] = mode;
9410 }
9411 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9412 reg_mode[base_regno]))
9413 goto invalidate;
9414
9415 reg_mode[regno] = mode;
9416
9417 /* Copy base information from our base register. */
9418 reg_set_luid[regno] = reg_set_luid[base_regno];
9419 reg_base_reg[regno] = reg_base_reg[base_regno];
9420
9421 /* Compute the sum of the offsets or constants. */
9422 reg_offset[regno] = sext_for_mode (dst_mode,
9423 offset
9424 + reg_offset[base_regno]);
9425 }
9426 else
9427 {
9428 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9429
9430 for (i = regno; i < endregno; i++)
9431 /* Reset the information about this register. */
9432 reg_set_luid[i] = 0;
9433 }
9434 }
9435
9436 #ifdef AUTO_INC_DEC
9437 static void
9438 add_auto_inc_notes (insn, x)
9439 rtx insn;
9440 rtx x;
9441 {
9442 enum rtx_code code = GET_CODE (x);
9443 const char *fmt;
9444 int i, j;
9445
9446 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9447 {
9448 REG_NOTES (insn)
9449 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9450 return;
9451 }
9452
9453 /* Scan all the operand sub-expressions. */
9454 fmt = GET_RTX_FORMAT (code);
9455 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9456 {
9457 if (fmt[i] == 'e')
9458 add_auto_inc_notes (insn, XEXP (x, i));
9459 else if (fmt[i] == 'E')
9460 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9461 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9462 }
9463 }
9464 #endif
9465
9466 /* Copy EH notes from an insn to its reloads. */
9467 static void
9468 copy_eh_notes (insn, x)
9469 rtx insn;
9470 rtx x;
9471 {
9472 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9473 if (eh_note)
9474 {
9475 for (; x != 0; x = NEXT_INSN (x))
9476 {
9477 if (may_trap_p (PATTERN (x)))
9478 REG_NOTES (x)
9479 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9480 REG_NOTES (x));
9481 }
9482 }
9483 }
9484
9485 /* This is used by reload pass, that does emit some instructions after
9486 abnormal calls moving basic block end, but in fact it wants to emit
9487 them on the edge. Looks for abnormal call edges, find backward the
9488 proper call and fix the damage.
9489
9490 Similar handle instructions throwing exceptions internally. */
9491 void
9492 fixup_abnormal_edges ()
9493 {
9494 bool inserted = false;
9495 basic_block bb;
9496
9497 FOR_EACH_BB (bb)
9498 {
9499 edge e;
9500
9501 /* Look for cases we are interested in - an calls or instructions causing
9502 exceptions. */
9503 for (e = bb->succ; e; e = e->succ_next)
9504 {
9505 if (e->flags & EDGE_ABNORMAL_CALL)
9506 break;
9507 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
9508 == (EDGE_ABNORMAL | EDGE_EH))
9509 break;
9510 }
9511 if (e && GET_CODE (bb->end) != CALL_INSN && !can_throw_internal (bb->end))
9512 {
9513 rtx insn = bb->end, stop = NEXT_INSN (bb->end);
9514 rtx next;
9515 for (e = bb->succ; e; e = e->succ_next)
9516 if (e->flags & EDGE_FALLTHRU)
9517 break;
9518 /* Get past the new insns generated. Allow notes, as the insns may
9519 be already deleted. */
9520 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
9521 && !can_throw_internal (insn)
9522 && insn != bb->head)
9523 insn = PREV_INSN (insn);
9524 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
9525 abort ();
9526 bb->end = insn;
9527 inserted = true;
9528 insn = NEXT_INSN (insn);
9529 while (insn && insn != stop)
9530 {
9531 next = NEXT_INSN (insn);
9532 if (INSN_P (insn))
9533 {
9534 rtx seq;
9535
9536 delete_insn (insn);
9537
9538 /* We're not deleting it, we're moving it. */
9539 INSN_DELETED_P (insn) = 0;
9540
9541 /* Emit a sequence, rather than scarfing the pattern, so
9542 that we don't lose REG_NOTES etc. */
9543 /* ??? Could copy the test from gen_sequence, but don't
9544 think it's worth the bother. */
9545 seq = gen_rtx_SEQUENCE (VOIDmode, gen_rtvec (1, insn));
9546 insert_insn_on_edge (seq, e);
9547 }
9548 insn = next;
9549 }
9550 }
9551 }
9552 if (inserted)
9553 commit_edge_insertions ();
9554 }
This page took 0.491697 seconds and 6 git commands to generate.