]> gcc.gnu.org Git - gcc.git/blob - gcc/reload1.c
gcse.c (fis_get_condition): Make it a global function.
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47
48 /* This file contains the reload pass of the compiler, which is
49 run after register allocation has been done. It checks that
50 each insn is valid (operands required to be in registers really
51 are in registers of the proper class) and fixes up invalid ones
52 by copying values temporarily into registers for the insns
53 that need them.
54
55 The results of register allocation are described by the vector
56 reg_renumber; the insns still contain pseudo regs, but reg_renumber
57 can be used to find which hard reg, if any, a pseudo reg is in.
58
59 The technique we always use is to free up a few hard regs that are
60 called ``reload regs'', and for each place where a pseudo reg
61 must be in a hard reg, copy it temporarily into one of the reload regs.
62
63 Reload regs are allocated locally for every instruction that needs
64 reloads. When there are pseudos which are allocated to a register that
65 has been chosen as a reload reg, such pseudos must be ``spilled''.
66 This means that they go to other hard regs, or to stack slots if no other
67 available hard regs can be found. Spilling can invalidate more
68 insns, requiring additional need for reloads, so we must keep checking
69 until the process stabilizes.
70
71 For machines with different classes of registers, we must keep track
72 of the register class needed for each reload, and make sure that
73 we allocate enough reload registers of each class.
74
75 The file reload.c contains the code that checks one insn for
76 validity and reports the reloads that it needs. This file
77 is in charge of scanning the entire rtl code, accumulating the
78 reload needs, spilling, assigning reload registers to use for
79 fixing up each insn, and generating the new insns to copy values
80 into the reload registers. */
81
82 #ifndef REGISTER_MOVE_COST
83 #define REGISTER_MOVE_COST(m, x, y) 2
84 #endif
85
86 #ifndef LOCAL_REGNO
87 #define LOCAL_REGNO(REGNO) 0
88 #endif
89 \f
90 /* During reload_as_needed, element N contains a REG rtx for the hard reg
91 into which reg N has been reloaded (perhaps for a previous insn). */
92 static rtx *reg_last_reload_reg;
93
94 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
95 for an output reload that stores into reg N. */
96 static char *reg_has_output_reload;
97
98 /* Indicates which hard regs are reload-registers for an output reload
99 in the current insn. */
100 static HARD_REG_SET reg_is_output_reload;
101
102 /* Element N is the constant value to which pseudo reg N is equivalent,
103 or zero if pseudo reg N is not equivalent to a constant.
104 find_reloads looks at this in order to replace pseudo reg N
105 with the constant it stands for. */
106 rtx *reg_equiv_constant;
107
108 /* Element N is a memory location to which pseudo reg N is equivalent,
109 prior to any register elimination (such as frame pointer to stack
110 pointer). Depending on whether or not it is a valid address, this value
111 is transferred to either reg_equiv_address or reg_equiv_mem. */
112 rtx *reg_equiv_memory_loc;
113
114 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
115 This is used when the address is not valid as a memory address
116 (because its displacement is too big for the machine.) */
117 rtx *reg_equiv_address;
118
119 /* Element N is the memory slot to which pseudo reg N is equivalent,
120 or zero if pseudo reg N is not equivalent to a memory slot. */
121 rtx *reg_equiv_mem;
122
123 /* Widest width in which each pseudo reg is referred to (via subreg). */
124 static unsigned int *reg_max_ref_width;
125
126 /* Element N is the list of insns that initialized reg N from its equivalent
127 constant or memory slot. */
128 static rtx *reg_equiv_init;
129
130 /* Vector to remember old contents of reg_renumber before spilling. */
131 static short *reg_old_renumber;
132
133 /* During reload_as_needed, element N contains the last pseudo regno reloaded
134 into hard register N. If that pseudo reg occupied more than one register,
135 reg_reloaded_contents points to that pseudo for each spill register in
136 use; all of these must remain set for an inheritance to occur. */
137 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
138
139 /* During reload_as_needed, element N contains the insn for which
140 hard register N was last used. Its contents are significant only
141 when reg_reloaded_valid is set for this register. */
142 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
143
144 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
145 static HARD_REG_SET reg_reloaded_valid;
146 /* Indicate if the register was dead at the end of the reload.
147 This is only valid if reg_reloaded_contents is set and valid. */
148 static HARD_REG_SET reg_reloaded_dead;
149
150 /* Number of spill-regs so far; number of valid elements of spill_regs. */
151 static int n_spills;
152
153 /* In parallel with spill_regs, contains REG rtx's for those regs.
154 Holds the last rtx used for any given reg, or 0 if it has never
155 been used for spilling yet. This rtx is reused, provided it has
156 the proper mode. */
157 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
158
159 /* In parallel with spill_regs, contains nonzero for a spill reg
160 that was stored after the last time it was used.
161 The precise value is the insn generated to do the store. */
162 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
163
164 /* This is the register that was stored with spill_reg_store. This is a
165 copy of reload_out / reload_out_reg when the value was stored; if
166 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
167 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
168
169 /* This table is the inverse mapping of spill_regs:
170 indexed by hard reg number,
171 it contains the position of that reg in spill_regs,
172 or -1 for something that is not in spill_regs.
173
174 ?!? This is no longer accurate. */
175 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
176
177 /* This reg set indicates registers that can't be used as spill registers for
178 the currently processed insn. These are the hard registers which are live
179 during the insn, but not allocated to pseudos, as well as fixed
180 registers. */
181 static HARD_REG_SET bad_spill_regs;
182
183 /* These are the hard registers that can't be used as spill register for any
184 insn. This includes registers used for user variables and registers that
185 we can't eliminate. A register that appears in this set also can't be used
186 to retry register allocation. */
187 static HARD_REG_SET bad_spill_regs_global;
188
189 /* Describes order of use of registers for reloading
190 of spilled pseudo-registers. `n_spills' is the number of
191 elements that are actually valid; new ones are added at the end.
192
193 Both spill_regs and spill_reg_order are used on two occasions:
194 once during find_reload_regs, where they keep track of the spill registers
195 for a single insn, but also during reload_as_needed where they show all
196 the registers ever used by reload. For the latter case, the information
197 is calculated during finish_spills. */
198 static short spill_regs[FIRST_PSEUDO_REGISTER];
199
200 /* This vector of reg sets indicates, for each pseudo, which hard registers
201 may not be used for retrying global allocation because the register was
202 formerly spilled from one of them. If we allowed reallocating a pseudo to
203 a register that it was already allocated to, reload might not
204 terminate. */
205 static HARD_REG_SET *pseudo_previous_regs;
206
207 /* This vector of reg sets indicates, for each pseudo, which hard
208 registers may not be used for retrying global allocation because they
209 are used as spill registers during one of the insns in which the
210 pseudo is live. */
211 static HARD_REG_SET *pseudo_forbidden_regs;
212
213 /* All hard regs that have been used as spill registers for any insn are
214 marked in this set. */
215 static HARD_REG_SET used_spill_regs;
216
217 /* Index of last register assigned as a spill register. We allocate in
218 a round-robin fashion. */
219 static int last_spill_reg;
220
221 /* Nonzero if indirect addressing is supported on the machine; this means
222 that spilling (REG n) does not require reloading it into a register in
223 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
224 value indicates the level of indirect addressing supported, e.g., two
225 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
226 a hard register. */
227 static char spill_indirect_levels;
228
229 /* Nonzero if indirect addressing is supported when the innermost MEM is
230 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
231 which these are valid is the same as spill_indirect_levels, above. */
232 char indirect_symref_ok;
233
234 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
235 char double_reg_address_ok;
236
237 /* Record the stack slot for each spilled hard register. */
238 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
239
240 /* Width allocated so far for that stack slot. */
241 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
242
243 /* Record which pseudos needed to be spilled. */
244 static regset_head spilled_pseudos;
245
246 /* Used for communication between order_regs_for_reload and count_pseudo.
247 Used to avoid counting one pseudo twice. */
248 static regset_head pseudos_counted;
249
250 /* First uid used by insns created by reload in this function.
251 Used in find_equiv_reg. */
252 int reload_first_uid;
253
254 /* Flag set by local-alloc or global-alloc if anything is live in
255 a call-clobbered reg across calls. */
256 int caller_save_needed;
257
258 /* Set to 1 while reload_as_needed is operating.
259 Required by some machines to handle any generated moves differently. */
260 int reload_in_progress = 0;
261
262 /* These arrays record the insn_code of insns that may be needed to
263 perform input and output reloads of special objects. They provide a
264 place to pass a scratch register. */
265 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
266 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
267
268 /* This obstack is used for allocation of rtl during register elimination.
269 The allocated storage can be freed once find_reloads has processed the
270 insn. */
271 struct obstack reload_obstack;
272
273 /* Points to the beginning of the reload_obstack. All insn_chain structures
274 are allocated first. */
275 char *reload_startobj;
276
277 /* The point after all insn_chain structures. Used to quickly deallocate
278 memory allocated in copy_reloads during calculate_needs_all_insns. */
279 char *reload_firstobj;
280
281 /* This points before all local rtl generated by register elimination.
282 Used to quickly free all memory after processing one insn. */
283 static char *reload_insn_firstobj;
284
285 /* List of insn_chain instructions, one for every insn that reload needs to
286 examine. */
287 struct insn_chain *reload_insn_chain;
288
289 #ifdef TREE_CODE
290 extern tree current_function_decl;
291 #else
292 extern union tree_node *current_function_decl;
293 #endif
294
295 /* List of all insns needing reloads. */
296 static struct insn_chain *insns_need_reload;
297 \f
298 /* This structure is used to record information about register eliminations.
299 Each array entry describes one possible way of eliminating a register
300 in favor of another. If there is more than one way of eliminating a
301 particular register, the most preferred should be specified first. */
302
303 struct elim_table
304 {
305 int from; /* Register number to be eliminated. */
306 int to; /* Register number used as replacement. */
307 int initial_offset; /* Initial difference between values. */
308 int can_eliminate; /* Nonzero if this elimination can be done. */
309 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
310 insns made by reload. */
311 int offset; /* Current offset between the two regs. */
312 int previous_offset; /* Offset at end of previous insn. */
313 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
314 rtx from_rtx; /* REG rtx for the register to be eliminated.
315 We cannot simply compare the number since
316 we might then spuriously replace a hard
317 register corresponding to a pseudo
318 assigned to the reg to be eliminated. */
319 rtx to_rtx; /* REG rtx for the replacement. */
320 };
321
322 static struct elim_table *reg_eliminate = 0;
323
324 /* This is an intermediate structure to initialize the table. It has
325 exactly the members provided by ELIMINABLE_REGS. */
326 static const struct elim_table_1
327 {
328 const int from;
329 const int to;
330 } reg_eliminate_1[] =
331
332 /* If a set of eliminable registers was specified, define the table from it.
333 Otherwise, default to the normal case of the frame pointer being
334 replaced by the stack pointer. */
335
336 #ifdef ELIMINABLE_REGS
337 ELIMINABLE_REGS;
338 #else
339 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
340 #endif
341
342 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
343
344 /* Record the number of pending eliminations that have an offset not equal
345 to their initial offset. If nonzero, we use a new copy of each
346 replacement result in any insns encountered. */
347 int num_not_at_initial_offset;
348
349 /* Count the number of registers that we may be able to eliminate. */
350 static int num_eliminable;
351 /* And the number of registers that are equivalent to a constant that
352 can be eliminated to frame_pointer / arg_pointer + constant. */
353 static int num_eliminable_invariants;
354
355 /* For each label, we record the offset of each elimination. If we reach
356 a label by more than one path and an offset differs, we cannot do the
357 elimination. This information is indexed by the difference of the
358 number of the label and the first label number. We can't offset the
359 pointer itself as this can cause problems on machines with segmented
360 memory. The first table is an array of flags that records whether we
361 have yet encountered a label and the second table is an array of arrays,
362 one entry in the latter array for each elimination. */
363
364 static int first_label_num;
365 static char *offsets_known_at;
366 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
367
368 /* Number of labels in the current function. */
369
370 static int num_labels;
371 \f
372 static void replace_pseudos_in PARAMS ((rtx *, enum machine_mode, rtx));
373 static void maybe_fix_stack_asms PARAMS ((void));
374 static void copy_reloads PARAMS ((struct insn_chain *));
375 static void calculate_needs_all_insns PARAMS ((int));
376 static int find_reg PARAMS ((struct insn_chain *, int));
377 static void find_reload_regs PARAMS ((struct insn_chain *));
378 static void select_reload_regs PARAMS ((void));
379 static void delete_caller_save_insns PARAMS ((void));
380
381 static void spill_failure PARAMS ((rtx, enum reg_class));
382 static void count_spilled_pseudo PARAMS ((int, int, int));
383 static void delete_dead_insn PARAMS ((rtx));
384 static void alter_reg PARAMS ((int, int));
385 static void set_label_offsets PARAMS ((rtx, rtx, int));
386 static void check_eliminable_occurrences PARAMS ((rtx));
387 static void elimination_effects PARAMS ((rtx, enum machine_mode));
388 static int eliminate_regs_in_insn PARAMS ((rtx, int));
389 static void update_eliminable_offsets PARAMS ((void));
390 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
391 static void set_initial_elim_offsets PARAMS ((void));
392 static void verify_initial_elim_offsets PARAMS ((void));
393 static void set_initial_label_offsets PARAMS ((void));
394 static void set_offsets_for_label PARAMS ((rtx));
395 static void init_elim_table PARAMS ((void));
396 static void update_eliminables PARAMS ((HARD_REG_SET *));
397 static void spill_hard_reg PARAMS ((unsigned int, int));
398 static int finish_spills PARAMS ((int));
399 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
400 static void scan_paradoxical_subregs PARAMS ((rtx));
401 static void count_pseudo PARAMS ((int));
402 static void order_regs_for_reload PARAMS ((struct insn_chain *));
403 static void reload_as_needed PARAMS ((int));
404 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
405 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
406 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
407 enum reload_type,
408 enum machine_mode));
409 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
410 enum reload_type,
411 enum machine_mode));
412 static int reload_reg_free_p PARAMS ((unsigned int, int,
413 enum reload_type));
414 static int reload_reg_free_for_value_p PARAMS ((int, int, int,
415 enum reload_type,
416 rtx, rtx, int, int));
417 static int free_for_value_p PARAMS ((int, enum machine_mode, int,
418 enum reload_type, rtx, rtx,
419 int, int));
420 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
421 enum reload_type));
422 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
423 int));
424 static int conflicts_with_override PARAMS ((rtx));
425 static void failed_reload PARAMS ((rtx, int));
426 static int set_reload_reg PARAMS ((int, int));
427 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
428 static void choose_reload_regs PARAMS ((struct insn_chain *));
429 static void merge_assigned_reloads PARAMS ((rtx));
430 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
431 struct reload *, rtx, int));
432 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
433 struct reload *, int));
434 static void do_input_reload PARAMS ((struct insn_chain *,
435 struct reload *, int));
436 static void do_output_reload PARAMS ((struct insn_chain *,
437 struct reload *, int));
438 static void emit_reload_insns PARAMS ((struct insn_chain *));
439 static void delete_output_reload PARAMS ((rtx, int, int));
440 static void delete_address_reloads PARAMS ((rtx, rtx));
441 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
442 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
443 static void reload_cse_regs_1 PARAMS ((rtx));
444 static int reload_cse_noop_set_p PARAMS ((rtx));
445 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
446 static int reload_cse_simplify_operands PARAMS ((rtx, rtx));
447 static void reload_combine PARAMS ((void));
448 static void reload_combine_note_use PARAMS ((rtx *, rtx));
449 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
450 static void reload_cse_move2add PARAMS ((rtx));
451 static void move2add_note_store PARAMS ((rtx, rtx, void *));
452 #ifdef AUTO_INC_DEC
453 static void add_auto_inc_notes PARAMS ((rtx, rtx));
454 #endif
455 static void copy_eh_notes PARAMS ((rtx, rtx));
456 static void failed_reload PARAMS ((rtx, int));
457 static int set_reload_reg PARAMS ((int, int));
458 static void reload_cse_simplify PARAMS ((rtx, rtx));
459 void fixup_abnormal_edges PARAMS ((void));
460 extern void dump_needs PARAMS ((struct insn_chain *));
461 \f
462 /* Initialize the reload pass once per compilation. */
463
464 void
465 init_reload ()
466 {
467 int i;
468
469 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
470 Set spill_indirect_levels to the number of levels such addressing is
471 permitted, zero if it is not permitted at all. */
472
473 rtx tem
474 = gen_rtx_MEM (Pmode,
475 gen_rtx_PLUS (Pmode,
476 gen_rtx_REG (Pmode,
477 LAST_VIRTUAL_REGISTER + 1),
478 GEN_INT (4)));
479 spill_indirect_levels = 0;
480
481 while (memory_address_p (QImode, tem))
482 {
483 spill_indirect_levels++;
484 tem = gen_rtx_MEM (Pmode, tem);
485 }
486
487 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
488
489 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
490 indirect_symref_ok = memory_address_p (QImode, tem);
491
492 /* See if reg+reg is a valid (and offsettable) address. */
493
494 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
495 {
496 tem = gen_rtx_PLUS (Pmode,
497 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
498 gen_rtx_REG (Pmode, i));
499
500 /* This way, we make sure that reg+reg is an offsettable address. */
501 tem = plus_constant (tem, 4);
502
503 if (memory_address_p (QImode, tem))
504 {
505 double_reg_address_ok = 1;
506 break;
507 }
508 }
509
510 /* Initialize obstack for our rtl allocation. */
511 gcc_obstack_init (&reload_obstack);
512 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
513
514 INIT_REG_SET (&spilled_pseudos);
515 INIT_REG_SET (&pseudos_counted);
516 }
517
518 /* List of insn chains that are currently unused. */
519 static struct insn_chain *unused_insn_chains = 0;
520
521 /* Allocate an empty insn_chain structure. */
522 struct insn_chain *
523 new_insn_chain ()
524 {
525 struct insn_chain *c;
526
527 if (unused_insn_chains == 0)
528 {
529 c = (struct insn_chain *)
530 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
531 INIT_REG_SET (&c->live_throughout);
532 INIT_REG_SET (&c->dead_or_set);
533 }
534 else
535 {
536 c = unused_insn_chains;
537 unused_insn_chains = c->next;
538 }
539 c->is_caller_save_insn = 0;
540 c->need_operand_change = 0;
541 c->need_reload = 0;
542 c->need_elim = 0;
543 return c;
544 }
545
546 /* Small utility function to set all regs in hard reg set TO which are
547 allocated to pseudos in regset FROM. */
548
549 void
550 compute_use_by_pseudos (to, from)
551 HARD_REG_SET *to;
552 regset from;
553 {
554 unsigned int regno;
555
556 EXECUTE_IF_SET_IN_REG_SET
557 (from, FIRST_PSEUDO_REGISTER, regno,
558 {
559 int r = reg_renumber[regno];
560 int nregs;
561
562 if (r < 0)
563 {
564 /* reload_combine uses the information from
565 BASIC_BLOCK->global_live_at_start, which might still
566 contain registers that have not actually been allocated
567 since they have an equivalence. */
568 if (! reload_completed)
569 abort ();
570 }
571 else
572 {
573 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
574 while (nregs-- > 0)
575 SET_HARD_REG_BIT (*to, r + nregs);
576 }
577 });
578 }
579
580 /* Replace all pseudos found in LOC with their corresponding
581 equivalences. */
582
583 static void
584 replace_pseudos_in (loc, mem_mode, usage)
585 rtx *loc;
586 enum machine_mode mem_mode;
587 rtx usage;
588 {
589 rtx x = *loc;
590 enum rtx_code code;
591 const char *fmt;
592 int i, j;
593
594 if (! x)
595 return;
596
597 code = GET_CODE (x);
598 if (code == REG)
599 {
600 unsigned int regno = REGNO (x);
601
602 if (regno < FIRST_PSEUDO_REGISTER)
603 return;
604
605 x = eliminate_regs (x, mem_mode, usage);
606 if (x != *loc)
607 {
608 *loc = x;
609 replace_pseudos_in (loc, mem_mode, usage);
610 return;
611 }
612
613 if (reg_equiv_constant[regno])
614 *loc = reg_equiv_constant[regno];
615 else if (reg_equiv_mem[regno])
616 *loc = reg_equiv_mem[regno];
617 else if (reg_equiv_address[regno])
618 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
619 else if (GET_CODE (regno_reg_rtx[regno]) != REG
620 || REGNO (regno_reg_rtx[regno]) != regno)
621 *loc = regno_reg_rtx[regno];
622 else
623 abort ();
624
625 return;
626 }
627 else if (code == MEM)
628 {
629 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
630 return;
631 }
632
633 /* Process each of our operands recursively. */
634 fmt = GET_RTX_FORMAT (code);
635 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
636 if (*fmt == 'e')
637 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
638 else if (*fmt == 'E')
639 for (j = 0; j < XVECLEN (x, i); j++)
640 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
641 }
642
643 \f
644 /* Global variables used by reload and its subroutines. */
645
646 /* Set during calculate_needs if an insn needs register elimination. */
647 static int something_needs_elimination;
648 /* Set during calculate_needs if an insn needs an operand changed. */
649 int something_needs_operands_changed;
650
651 /* Nonzero means we couldn't get enough spill regs. */
652 static int failure;
653
654 /* Main entry point for the reload pass.
655
656 FIRST is the first insn of the function being compiled.
657
658 GLOBAL nonzero means we were called from global_alloc
659 and should attempt to reallocate any pseudoregs that we
660 displace from hard regs we will use for reloads.
661 If GLOBAL is zero, we do not have enough information to do that,
662 so any pseudo reg that is spilled must go to the stack.
663
664 Return value is nonzero if reload failed
665 and we must not do any more for this function. */
666
667 int
668 reload (first, global)
669 rtx first;
670 int global;
671 {
672 int i;
673 rtx insn;
674 struct elim_table *ep;
675 basic_block bb;
676
677 /* Make sure even insns with volatile mem refs are recognizable. */
678 init_recog ();
679
680 failure = 0;
681
682 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
683
684 /* Make sure that the last insn in the chain
685 is not something that needs reloading. */
686 emit_note (NULL, NOTE_INSN_DELETED);
687
688 /* Enable find_equiv_reg to distinguish insns made by reload. */
689 reload_first_uid = get_max_uid ();
690
691 #ifdef SECONDARY_MEMORY_NEEDED
692 /* Initialize the secondary memory table. */
693 clear_secondary_mem ();
694 #endif
695
696 /* We don't have a stack slot for any spill reg yet. */
697 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
698 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
699
700 /* Initialize the save area information for caller-save, in case some
701 are needed. */
702 init_save_areas ();
703
704 /* Compute which hard registers are now in use
705 as homes for pseudo registers.
706 This is done here rather than (eg) in global_alloc
707 because this point is reached even if not optimizing. */
708 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
709 mark_home_live (i);
710
711 /* A function that receives a nonlocal goto must save all call-saved
712 registers. */
713 if (current_function_has_nonlocal_label)
714 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
715 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
716 regs_ever_live[i] = 1;
717
718 /* Find all the pseudo registers that didn't get hard regs
719 but do have known equivalent constants or memory slots.
720 These include parameters (known equivalent to parameter slots)
721 and cse'd or loop-moved constant memory addresses.
722
723 Record constant equivalents in reg_equiv_constant
724 so they will be substituted by find_reloads.
725 Record memory equivalents in reg_mem_equiv so they can
726 be substituted eventually by altering the REG-rtx's. */
727
728 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
729 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
730 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
731 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
732 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
733 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
734 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
735 pseudo_forbidden_regs
736 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
737 pseudo_previous_regs
738 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
739
740 CLEAR_HARD_REG_SET (bad_spill_regs_global);
741
742 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
743 Also find all paradoxical subregs and find largest such for each pseudo.
744 On machines with small register classes, record hard registers that
745 are used for user variables. These can never be used for spills.
746 Also look for a "constant" REG_SETJMP. This means that all
747 caller-saved registers must be marked live. */
748
749 num_eliminable_invariants = 0;
750 for (insn = first; insn; insn = NEXT_INSN (insn))
751 {
752 rtx set = single_set (insn);
753
754 /* We may introduce USEs that we want to remove at the end, so
755 we'll mark them with QImode. Make sure there are no
756 previously-marked insns left by say regmove. */
757 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
758 && GET_MODE (insn) != VOIDmode)
759 PUT_MODE (insn, VOIDmode);
760
761 if (GET_CODE (insn) == CALL_INSN
762 && find_reg_note (insn, REG_SETJMP, NULL))
763 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
764 if (! call_used_regs[i])
765 regs_ever_live[i] = 1;
766
767 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
768 {
769 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
770 if (note
771 #ifdef LEGITIMATE_PIC_OPERAND_P
772 && (! function_invariant_p (XEXP (note, 0))
773 || ! flag_pic
774 /* A function invariant is often CONSTANT_P but may
775 include a register. We promise to only pass
776 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
777 || (CONSTANT_P (XEXP (note, 0))
778 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
779 #endif
780 )
781 {
782 rtx x = XEXP (note, 0);
783 i = REGNO (SET_DEST (set));
784 if (i > LAST_VIRTUAL_REGISTER)
785 {
786 /* It can happen that a REG_EQUIV note contains a MEM
787 that is not a legitimate memory operand. As later
788 stages of reload assume that all addresses found
789 in the reg_equiv_* arrays were originally legitimate,
790 we ignore such REG_EQUIV notes. */
791 if (memory_operand (x, VOIDmode))
792 {
793 /* Always unshare the equivalence, so we can
794 substitute into this insn without touching the
795 equivalence. */
796 reg_equiv_memory_loc[i] = copy_rtx (x);
797 }
798 else if (function_invariant_p (x))
799 {
800 if (GET_CODE (x) == PLUS)
801 {
802 /* This is PLUS of frame pointer and a constant,
803 and might be shared. Unshare it. */
804 reg_equiv_constant[i] = copy_rtx (x);
805 num_eliminable_invariants++;
806 }
807 else if (x == frame_pointer_rtx
808 || x == arg_pointer_rtx)
809 {
810 reg_equiv_constant[i] = x;
811 num_eliminable_invariants++;
812 }
813 else if (LEGITIMATE_CONSTANT_P (x))
814 reg_equiv_constant[i] = x;
815 else
816 {
817 reg_equiv_memory_loc[i]
818 = force_const_mem (GET_MODE (SET_DEST (set)), x);
819 if (!reg_equiv_memory_loc[i])
820 continue;
821 }
822 }
823 else
824 continue;
825
826 /* If this register is being made equivalent to a MEM
827 and the MEM is not SET_SRC, the equivalencing insn
828 is one with the MEM as a SET_DEST and it occurs later.
829 So don't mark this insn now. */
830 if (GET_CODE (x) != MEM
831 || rtx_equal_p (SET_SRC (set), x))
832 reg_equiv_init[i]
833 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
834 }
835 }
836 }
837
838 /* If this insn is setting a MEM from a register equivalent to it,
839 this is the equivalencing insn. */
840 else if (set && GET_CODE (SET_DEST (set)) == MEM
841 && GET_CODE (SET_SRC (set)) == REG
842 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
843 && rtx_equal_p (SET_DEST (set),
844 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
845 reg_equiv_init[REGNO (SET_SRC (set))]
846 = gen_rtx_INSN_LIST (VOIDmode, insn,
847 reg_equiv_init[REGNO (SET_SRC (set))]);
848
849 if (INSN_P (insn))
850 scan_paradoxical_subregs (PATTERN (insn));
851 }
852
853 init_elim_table ();
854
855 first_label_num = get_first_label_num ();
856 num_labels = max_label_num () - first_label_num;
857
858 /* Allocate the tables used to store offset information at labels. */
859 /* We used to use alloca here, but the size of what it would try to
860 allocate would occasionally cause it to exceed the stack limit and
861 cause a core dump. */
862 offsets_known_at = xmalloc (num_labels);
863 offsets_at
864 = (int (*)[NUM_ELIMINABLE_REGS])
865 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
866
867 /* Alter each pseudo-reg rtx to contain its hard reg number.
868 Assign stack slots to the pseudos that lack hard regs or equivalents.
869 Do not touch virtual registers. */
870
871 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
872 alter_reg (i, -1);
873
874 /* If we have some registers we think can be eliminated, scan all insns to
875 see if there is an insn that sets one of these registers to something
876 other than itself plus a constant. If so, the register cannot be
877 eliminated. Doing this scan here eliminates an extra pass through the
878 main reload loop in the most common case where register elimination
879 cannot be done. */
880 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
881 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
882 || GET_CODE (insn) == CALL_INSN)
883 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
884
885 maybe_fix_stack_asms ();
886
887 insns_need_reload = 0;
888 something_needs_elimination = 0;
889
890 /* Initialize to -1, which means take the first spill register. */
891 last_spill_reg = -1;
892
893 /* Spill any hard regs that we know we can't eliminate. */
894 CLEAR_HARD_REG_SET (used_spill_regs);
895 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
896 if (! ep->can_eliminate)
897 spill_hard_reg (ep->from, 1);
898
899 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
900 if (frame_pointer_needed)
901 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
902 #endif
903 finish_spills (global);
904
905 /* From now on, we may need to generate moves differently. We may also
906 allow modifications of insns which cause them to not be recognized.
907 Any such modifications will be cleaned up during reload itself. */
908 reload_in_progress = 1;
909
910 /* This loop scans the entire function each go-round
911 and repeats until one repetition spills no additional hard regs. */
912 for (;;)
913 {
914 int something_changed;
915 int did_spill;
916
917 HOST_WIDE_INT starting_frame_size;
918
919 /* Round size of stack frame to stack_alignment_needed. This must be done
920 here because the stack size may be a part of the offset computation
921 for register elimination, and there might have been new stack slots
922 created in the last iteration of this loop. */
923 if (cfun->stack_alignment_needed)
924 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
925
926 starting_frame_size = get_frame_size ();
927
928 set_initial_elim_offsets ();
929 set_initial_label_offsets ();
930
931 /* For each pseudo register that has an equivalent location defined,
932 try to eliminate any eliminable registers (such as the frame pointer)
933 assuming initial offsets for the replacement register, which
934 is the normal case.
935
936 If the resulting location is directly addressable, substitute
937 the MEM we just got directly for the old REG.
938
939 If it is not addressable but is a constant or the sum of a hard reg
940 and constant, it is probably not addressable because the constant is
941 out of range, in that case record the address; we will generate
942 hairy code to compute the address in a register each time it is
943 needed. Similarly if it is a hard register, but one that is not
944 valid as an address register.
945
946 If the location is not addressable, but does not have one of the
947 above forms, assign a stack slot. We have to do this to avoid the
948 potential of producing lots of reloads if, e.g., a location involves
949 a pseudo that didn't get a hard register and has an equivalent memory
950 location that also involves a pseudo that didn't get a hard register.
951
952 Perhaps at some point we will improve reload_when_needed handling
953 so this problem goes away. But that's very hairy. */
954
955 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
956 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
957 {
958 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
959
960 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
961 XEXP (x, 0)))
962 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
963 else if (CONSTANT_P (XEXP (x, 0))
964 || (GET_CODE (XEXP (x, 0)) == REG
965 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
966 || (GET_CODE (XEXP (x, 0)) == PLUS
967 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
968 && (REGNO (XEXP (XEXP (x, 0), 0))
969 < FIRST_PSEUDO_REGISTER)
970 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
971 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
972 else
973 {
974 /* Make a new stack slot. Then indicate that something
975 changed so we go back and recompute offsets for
976 eliminable registers because the allocation of memory
977 below might change some offset. reg_equiv_{mem,address}
978 will be set up for this pseudo on the next pass around
979 the loop. */
980 reg_equiv_memory_loc[i] = 0;
981 reg_equiv_init[i] = 0;
982 alter_reg (i, -1);
983 }
984 }
985
986 if (caller_save_needed)
987 setup_save_areas ();
988
989 /* If we allocated another stack slot, redo elimination bookkeeping. */
990 if (starting_frame_size != get_frame_size ())
991 continue;
992
993 if (caller_save_needed)
994 {
995 save_call_clobbered_regs ();
996 /* That might have allocated new insn_chain structures. */
997 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
998 }
999
1000 calculate_needs_all_insns (global);
1001
1002 CLEAR_REG_SET (&spilled_pseudos);
1003 did_spill = 0;
1004
1005 something_changed = 0;
1006
1007 /* If we allocated any new memory locations, make another pass
1008 since it might have changed elimination offsets. */
1009 if (starting_frame_size != get_frame_size ())
1010 something_changed = 1;
1011
1012 {
1013 HARD_REG_SET to_spill;
1014 CLEAR_HARD_REG_SET (to_spill);
1015 update_eliminables (&to_spill);
1016 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1017 if (TEST_HARD_REG_BIT (to_spill, i))
1018 {
1019 spill_hard_reg (i, 1);
1020 did_spill = 1;
1021
1022 /* Regardless of the state of spills, if we previously had
1023 a register that we thought we could eliminate, but now can
1024 not eliminate, we must run another pass.
1025
1026 Consider pseudos which have an entry in reg_equiv_* which
1027 reference an eliminable register. We must make another pass
1028 to update reg_equiv_* so that we do not substitute in the
1029 old value from when we thought the elimination could be
1030 performed. */
1031 something_changed = 1;
1032 }
1033 }
1034
1035 select_reload_regs ();
1036 if (failure)
1037 goto failed;
1038
1039 if (insns_need_reload != 0 || did_spill)
1040 something_changed |= finish_spills (global);
1041
1042 if (! something_changed)
1043 break;
1044
1045 if (caller_save_needed)
1046 delete_caller_save_insns ();
1047
1048 obstack_free (&reload_obstack, reload_firstobj);
1049 }
1050
1051 /* If global-alloc was run, notify it of any register eliminations we have
1052 done. */
1053 if (global)
1054 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1055 if (ep->can_eliminate)
1056 mark_elimination (ep->from, ep->to);
1057
1058 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1059 If that insn didn't set the register (i.e., it copied the register to
1060 memory), just delete that insn instead of the equivalencing insn plus
1061 anything now dead. If we call delete_dead_insn on that insn, we may
1062 delete the insn that actually sets the register if the register dies
1063 there and that is incorrect. */
1064
1065 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1066 {
1067 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1068 {
1069 rtx list;
1070 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1071 {
1072 rtx equiv_insn = XEXP (list, 0);
1073
1074 /* If we already deleted the insn or if it may trap, we can't
1075 delete it. The latter case shouldn't happen, but can
1076 if an insn has a variable address, gets a REG_EH_REGION
1077 note added to it, and then gets converted into an load
1078 from a constant address. */
1079 if (GET_CODE (equiv_insn) == NOTE
1080 || can_throw_internal (equiv_insn))
1081 ;
1082 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1083 delete_dead_insn (equiv_insn);
1084 else
1085 {
1086 PUT_CODE (equiv_insn, NOTE);
1087 NOTE_SOURCE_FILE (equiv_insn) = 0;
1088 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1089 }
1090 }
1091 }
1092 }
1093
1094 /* Use the reload registers where necessary
1095 by generating move instructions to move the must-be-register
1096 values into or out of the reload registers. */
1097
1098 if (insns_need_reload != 0 || something_needs_elimination
1099 || something_needs_operands_changed)
1100 {
1101 HOST_WIDE_INT old_frame_size = get_frame_size ();
1102
1103 reload_as_needed (global);
1104
1105 if (old_frame_size != get_frame_size ())
1106 abort ();
1107
1108 if (num_eliminable)
1109 verify_initial_elim_offsets ();
1110 }
1111
1112 /* If we were able to eliminate the frame pointer, show that it is no
1113 longer live at the start of any basic block. If it ls live by
1114 virtue of being in a pseudo, that pseudo will be marked live
1115 and hence the frame pointer will be known to be live via that
1116 pseudo. */
1117
1118 if (! frame_pointer_needed)
1119 FOR_EACH_BB (bb)
1120 CLEAR_REGNO_REG_SET (bb->global_live_at_start,
1121 HARD_FRAME_POINTER_REGNUM);
1122
1123 /* Come here (with failure set nonzero) if we can't get enough spill regs
1124 and we decide not to abort about it. */
1125 failed:
1126
1127 CLEAR_REG_SET (&spilled_pseudos);
1128 reload_in_progress = 0;
1129
1130 /* Now eliminate all pseudo regs by modifying them into
1131 their equivalent memory references.
1132 The REG-rtx's for the pseudos are modified in place,
1133 so all insns that used to refer to them now refer to memory.
1134
1135 For a reg that has a reg_equiv_address, all those insns
1136 were changed by reloading so that no insns refer to it any longer;
1137 but the DECL_RTL of a variable decl may refer to it,
1138 and if so this causes the debugging info to mention the variable. */
1139
1140 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1141 {
1142 rtx addr = 0;
1143
1144 if (reg_equiv_mem[i])
1145 addr = XEXP (reg_equiv_mem[i], 0);
1146
1147 if (reg_equiv_address[i])
1148 addr = reg_equiv_address[i];
1149
1150 if (addr)
1151 {
1152 if (reg_renumber[i] < 0)
1153 {
1154 rtx reg = regno_reg_rtx[i];
1155
1156 REG_USERVAR_P (reg) = 0;
1157 PUT_CODE (reg, MEM);
1158 XEXP (reg, 0) = addr;
1159 if (reg_equiv_memory_loc[i])
1160 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1161 else
1162 {
1163 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1164 = MEM_SCALAR_P (reg) = 0;
1165 MEM_ATTRS (reg) = 0;
1166 }
1167 }
1168 else if (reg_equiv_mem[i])
1169 XEXP (reg_equiv_mem[i], 0) = addr;
1170 }
1171 }
1172
1173 /* We must set reload_completed now since the cleanup_subreg_operands call
1174 below will re-recognize each insn and reload may have generated insns
1175 which are only valid during and after reload. */
1176 reload_completed = 1;
1177
1178 /* Make a pass over all the insns and delete all USEs which we inserted
1179 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1180 notes. Delete all CLOBBER insns, except those that refer to the return
1181 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1182 from misarranging variable-array code, and simplify (subreg (reg))
1183 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1184 are no longer useful or accurate. Strip and regenerate REG_INC notes
1185 that may have been moved around. */
1186
1187 for (insn = first; insn; insn = NEXT_INSN (insn))
1188 if (INSN_P (insn))
1189 {
1190 rtx *pnote;
1191
1192 if (GET_CODE (insn) == CALL_INSN)
1193 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1194 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1195
1196 if ((GET_CODE (PATTERN (insn)) == USE
1197 /* We mark with QImode USEs introduced by reload itself. */
1198 && (GET_MODE (insn) == QImode
1199 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1200 || (GET_CODE (PATTERN (insn)) == CLOBBER
1201 && (GET_CODE (XEXP (PATTERN (insn), 0)) != MEM
1202 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1203 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1204 && XEXP (XEXP (PATTERN (insn), 0), 0)
1205 != stack_pointer_rtx))
1206 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1207 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1208 {
1209 delete_insn (insn);
1210 continue;
1211 }
1212
1213 /* Some CLOBBERs may survive until here and still reference unassigned
1214 pseudos with const equivalent, which may in turn cause ICE in later
1215 passes if the reference remains in place. */
1216 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1217 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1218 VOIDmode, PATTERN (insn));
1219
1220 pnote = &REG_NOTES (insn);
1221 while (*pnote != 0)
1222 {
1223 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1224 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1225 || REG_NOTE_KIND (*pnote) == REG_INC
1226 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1227 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1228 *pnote = XEXP (*pnote, 1);
1229 else
1230 pnote = &XEXP (*pnote, 1);
1231 }
1232
1233 #ifdef AUTO_INC_DEC
1234 add_auto_inc_notes (insn, PATTERN (insn));
1235 #endif
1236
1237 /* And simplify (subreg (reg)) if it appears as an operand. */
1238 cleanup_subreg_operands (insn);
1239 }
1240
1241 /* If we are doing stack checking, give a warning if this function's
1242 frame size is larger than we expect. */
1243 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1244 {
1245 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1246 static int verbose_warned = 0;
1247
1248 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1249 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1250 size += UNITS_PER_WORD;
1251
1252 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1253 {
1254 warning ("frame size too large for reliable stack checking");
1255 if (! verbose_warned)
1256 {
1257 warning ("try reducing the number of local variables");
1258 verbose_warned = 1;
1259 }
1260 }
1261 }
1262
1263 /* Indicate that we no longer have known memory locations or constants. */
1264 if (reg_equiv_constant)
1265 free (reg_equiv_constant);
1266 reg_equiv_constant = 0;
1267 if (reg_equiv_memory_loc)
1268 free (reg_equiv_memory_loc);
1269 reg_equiv_memory_loc = 0;
1270
1271 if (offsets_known_at)
1272 free (offsets_known_at);
1273 if (offsets_at)
1274 free (offsets_at);
1275
1276 free (reg_equiv_mem);
1277 free (reg_equiv_init);
1278 free (reg_equiv_address);
1279 free (reg_max_ref_width);
1280 free (reg_old_renumber);
1281 free (pseudo_previous_regs);
1282 free (pseudo_forbidden_regs);
1283
1284 CLEAR_HARD_REG_SET (used_spill_regs);
1285 for (i = 0; i < n_spills; i++)
1286 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1287
1288 /* Free all the insn_chain structures at once. */
1289 obstack_free (&reload_obstack, reload_startobj);
1290 unused_insn_chains = 0;
1291 fixup_abnormal_edges ();
1292
1293 /* Replacing pseudos with their memory equivalents might have
1294 created shared rtx. Subsequent passes would get confused
1295 by this, so unshare everything here. */
1296 unshare_all_rtl_again (first);
1297
1298 return failure;
1299 }
1300
1301 /* Yet another special case. Unfortunately, reg-stack forces people to
1302 write incorrect clobbers in asm statements. These clobbers must not
1303 cause the register to appear in bad_spill_regs, otherwise we'll call
1304 fatal_insn later. We clear the corresponding regnos in the live
1305 register sets to avoid this.
1306 The whole thing is rather sick, I'm afraid. */
1307
1308 static void
1309 maybe_fix_stack_asms ()
1310 {
1311 #ifdef STACK_REGS
1312 const char *constraints[MAX_RECOG_OPERANDS];
1313 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1314 struct insn_chain *chain;
1315
1316 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1317 {
1318 int i, noperands;
1319 HARD_REG_SET clobbered, allowed;
1320 rtx pat;
1321
1322 if (! INSN_P (chain->insn)
1323 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1324 continue;
1325 pat = PATTERN (chain->insn);
1326 if (GET_CODE (pat) != PARALLEL)
1327 continue;
1328
1329 CLEAR_HARD_REG_SET (clobbered);
1330 CLEAR_HARD_REG_SET (allowed);
1331
1332 /* First, make a mask of all stack regs that are clobbered. */
1333 for (i = 0; i < XVECLEN (pat, 0); i++)
1334 {
1335 rtx t = XVECEXP (pat, 0, i);
1336 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1337 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1338 }
1339
1340 /* Get the operand values and constraints out of the insn. */
1341 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1342 constraints, operand_mode);
1343
1344 /* For every operand, see what registers are allowed. */
1345 for (i = 0; i < noperands; i++)
1346 {
1347 const char *p = constraints[i];
1348 /* For every alternative, we compute the class of registers allowed
1349 for reloading in CLS, and merge its contents into the reg set
1350 ALLOWED. */
1351 int cls = (int) NO_REGS;
1352
1353 for (;;)
1354 {
1355 char c = *p;
1356
1357 if (c == '\0' || c == ',' || c == '#')
1358 {
1359 /* End of one alternative - mark the regs in the current
1360 class, and reset the class. */
1361 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1362 cls = NO_REGS;
1363 p++;
1364 if (c == '#')
1365 do {
1366 c = *p++;
1367 } while (c != '\0' && c != ',');
1368 if (c == '\0')
1369 break;
1370 continue;
1371 }
1372
1373 switch (c)
1374 {
1375 case '=': case '+': case '*': case '%': case '?': case '!':
1376 case '0': case '1': case '2': case '3': case '4': case 'm':
1377 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1378 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1379 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1380 case 'P':
1381 break;
1382
1383 case 'p':
1384 cls = (int) reg_class_subunion[cls]
1385 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1386 break;
1387
1388 case 'g':
1389 case 'r':
1390 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1391 break;
1392
1393 default:
1394 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1395 cls = (int) reg_class_subunion[cls]
1396 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1397 else
1398 cls = (int) reg_class_subunion[cls]
1399 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1400 }
1401 p += CONSTRAINT_LEN (c, p);
1402 }
1403 }
1404 /* Those of the registers which are clobbered, but allowed by the
1405 constraints, must be usable as reload registers. So clear them
1406 out of the life information. */
1407 AND_HARD_REG_SET (allowed, clobbered);
1408 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1409 if (TEST_HARD_REG_BIT (allowed, i))
1410 {
1411 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1412 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1413 }
1414 }
1415
1416 #endif
1417 }
1418 \f
1419 /* Copy the global variables n_reloads and rld into the corresponding elts
1420 of CHAIN. */
1421 static void
1422 copy_reloads (chain)
1423 struct insn_chain *chain;
1424 {
1425 chain->n_reloads = n_reloads;
1426 chain->rld
1427 = (struct reload *) obstack_alloc (&reload_obstack,
1428 n_reloads * sizeof (struct reload));
1429 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1430 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1431 }
1432
1433 /* Walk the chain of insns, and determine for each whether it needs reloads
1434 and/or eliminations. Build the corresponding insns_need_reload list, and
1435 set something_needs_elimination as appropriate. */
1436 static void
1437 calculate_needs_all_insns (global)
1438 int global;
1439 {
1440 struct insn_chain **pprev_reload = &insns_need_reload;
1441 struct insn_chain *chain, *next = 0;
1442
1443 something_needs_elimination = 0;
1444
1445 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1446 for (chain = reload_insn_chain; chain != 0; chain = next)
1447 {
1448 rtx insn = chain->insn;
1449
1450 next = chain->next;
1451
1452 /* Clear out the shortcuts. */
1453 chain->n_reloads = 0;
1454 chain->need_elim = 0;
1455 chain->need_reload = 0;
1456 chain->need_operand_change = 0;
1457
1458 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1459 include REG_LABEL), we need to see what effects this has on the
1460 known offsets at labels. */
1461
1462 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1463 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1464 set_label_offsets (insn, insn, 0);
1465
1466 if (INSN_P (insn))
1467 {
1468 rtx old_body = PATTERN (insn);
1469 int old_code = INSN_CODE (insn);
1470 rtx old_notes = REG_NOTES (insn);
1471 int did_elimination = 0;
1472 int operands_changed = 0;
1473 rtx set = single_set (insn);
1474
1475 /* Skip insns that only set an equivalence. */
1476 if (set && GET_CODE (SET_DEST (set)) == REG
1477 && reg_renumber[REGNO (SET_DEST (set))] < 0
1478 && reg_equiv_constant[REGNO (SET_DEST (set))])
1479 continue;
1480
1481 /* If needed, eliminate any eliminable registers. */
1482 if (num_eliminable || num_eliminable_invariants)
1483 did_elimination = eliminate_regs_in_insn (insn, 0);
1484
1485 /* Analyze the instruction. */
1486 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1487 global, spill_reg_order);
1488
1489 /* If a no-op set needs more than one reload, this is likely
1490 to be something that needs input address reloads. We
1491 can't get rid of this cleanly later, and it is of no use
1492 anyway, so discard it now.
1493 We only do this when expensive_optimizations is enabled,
1494 since this complements reload inheritance / output
1495 reload deletion, and it can make debugging harder. */
1496 if (flag_expensive_optimizations && n_reloads > 1)
1497 {
1498 rtx set = single_set (insn);
1499 if (set
1500 && SET_SRC (set) == SET_DEST (set)
1501 && GET_CODE (SET_SRC (set)) == REG
1502 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1503 {
1504 delete_insn (insn);
1505 /* Delete it from the reload chain. */
1506 if (chain->prev)
1507 chain->prev->next = next;
1508 else
1509 reload_insn_chain = next;
1510 if (next)
1511 next->prev = chain->prev;
1512 chain->next = unused_insn_chains;
1513 unused_insn_chains = chain;
1514 continue;
1515 }
1516 }
1517 if (num_eliminable)
1518 update_eliminable_offsets ();
1519
1520 /* Remember for later shortcuts which insns had any reloads or
1521 register eliminations. */
1522 chain->need_elim = did_elimination;
1523 chain->need_reload = n_reloads > 0;
1524 chain->need_operand_change = operands_changed;
1525
1526 /* Discard any register replacements done. */
1527 if (did_elimination)
1528 {
1529 obstack_free (&reload_obstack, reload_insn_firstobj);
1530 PATTERN (insn) = old_body;
1531 INSN_CODE (insn) = old_code;
1532 REG_NOTES (insn) = old_notes;
1533 something_needs_elimination = 1;
1534 }
1535
1536 something_needs_operands_changed |= operands_changed;
1537
1538 if (n_reloads != 0)
1539 {
1540 copy_reloads (chain);
1541 *pprev_reload = chain;
1542 pprev_reload = &chain->next_need_reload;
1543 }
1544 }
1545 }
1546 *pprev_reload = 0;
1547 }
1548 \f
1549 /* Comparison function for qsort to decide which of two reloads
1550 should be handled first. *P1 and *P2 are the reload numbers. */
1551
1552 static int
1553 reload_reg_class_lower (r1p, r2p)
1554 const PTR r1p;
1555 const PTR r2p;
1556 {
1557 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1558 int t;
1559
1560 /* Consider required reloads before optional ones. */
1561 t = rld[r1].optional - rld[r2].optional;
1562 if (t != 0)
1563 return t;
1564
1565 /* Count all solitary classes before non-solitary ones. */
1566 t = ((reg_class_size[(int) rld[r2].class] == 1)
1567 - (reg_class_size[(int) rld[r1].class] == 1));
1568 if (t != 0)
1569 return t;
1570
1571 /* Aside from solitaires, consider all multi-reg groups first. */
1572 t = rld[r2].nregs - rld[r1].nregs;
1573 if (t != 0)
1574 return t;
1575
1576 /* Consider reloads in order of increasing reg-class number. */
1577 t = (int) rld[r1].class - (int) rld[r2].class;
1578 if (t != 0)
1579 return t;
1580
1581 /* If reloads are equally urgent, sort by reload number,
1582 so that the results of qsort leave nothing to chance. */
1583 return r1 - r2;
1584 }
1585 \f
1586 /* The cost of spilling each hard reg. */
1587 static int spill_cost[FIRST_PSEUDO_REGISTER];
1588
1589 /* When spilling multiple hard registers, we use SPILL_COST for the first
1590 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1591 only the first hard reg for a multi-reg pseudo. */
1592 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1593
1594 /* Update the spill cost arrays, considering that pseudo REG is live. */
1595
1596 static void
1597 count_pseudo (reg)
1598 int reg;
1599 {
1600 int freq = REG_FREQ (reg);
1601 int r = reg_renumber[reg];
1602 int nregs;
1603
1604 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1605 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1606 return;
1607
1608 SET_REGNO_REG_SET (&pseudos_counted, reg);
1609
1610 if (r < 0)
1611 abort ();
1612
1613 spill_add_cost[r] += freq;
1614
1615 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1616 while (nregs-- > 0)
1617 spill_cost[r + nregs] += freq;
1618 }
1619
1620 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1621 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1622
1623 static void
1624 order_regs_for_reload (chain)
1625 struct insn_chain *chain;
1626 {
1627 int i;
1628 HARD_REG_SET used_by_pseudos;
1629 HARD_REG_SET used_by_pseudos2;
1630
1631 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1632
1633 memset (spill_cost, 0, sizeof spill_cost);
1634 memset (spill_add_cost, 0, sizeof spill_add_cost);
1635
1636 /* Count number of uses of each hard reg by pseudo regs allocated to it
1637 and then order them by decreasing use. First exclude hard registers
1638 that are live in or across this insn. */
1639
1640 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1641 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1642 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1643 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1644
1645 /* Now find out which pseudos are allocated to it, and update
1646 hard_reg_n_uses. */
1647 CLEAR_REG_SET (&pseudos_counted);
1648
1649 EXECUTE_IF_SET_IN_REG_SET
1650 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1651 {
1652 count_pseudo (i);
1653 });
1654 EXECUTE_IF_SET_IN_REG_SET
1655 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1656 {
1657 count_pseudo (i);
1658 });
1659 CLEAR_REG_SET (&pseudos_counted);
1660 }
1661 \f
1662 /* Vector of reload-numbers showing the order in which the reloads should
1663 be processed. */
1664 static short reload_order[MAX_RELOADS];
1665
1666 /* This is used to keep track of the spill regs used in one insn. */
1667 static HARD_REG_SET used_spill_regs_local;
1668
1669 /* We decided to spill hard register SPILLED, which has a size of
1670 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1671 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1672 update SPILL_COST/SPILL_ADD_COST. */
1673
1674 static void
1675 count_spilled_pseudo (spilled, spilled_nregs, reg)
1676 int spilled, spilled_nregs, reg;
1677 {
1678 int r = reg_renumber[reg];
1679 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1680
1681 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1682 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1683 return;
1684
1685 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1686
1687 spill_add_cost[r] -= REG_FREQ (reg);
1688 while (nregs-- > 0)
1689 spill_cost[r + nregs] -= REG_FREQ (reg);
1690 }
1691
1692 /* Find reload register to use for reload number ORDER. */
1693
1694 static int
1695 find_reg (chain, order)
1696 struct insn_chain *chain;
1697 int order;
1698 {
1699 int rnum = reload_order[order];
1700 struct reload *rl = rld + rnum;
1701 int best_cost = INT_MAX;
1702 int best_reg = -1;
1703 unsigned int i, j;
1704 int k;
1705 HARD_REG_SET not_usable;
1706 HARD_REG_SET used_by_other_reload;
1707
1708 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1709 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1710 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1711
1712 CLEAR_HARD_REG_SET (used_by_other_reload);
1713 for (k = 0; k < order; k++)
1714 {
1715 int other = reload_order[k];
1716
1717 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1718 for (j = 0; j < rld[other].nregs; j++)
1719 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1720 }
1721
1722 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1723 {
1724 unsigned int regno = i;
1725
1726 if (! TEST_HARD_REG_BIT (not_usable, regno)
1727 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1728 && HARD_REGNO_MODE_OK (regno, rl->mode))
1729 {
1730 int this_cost = spill_cost[regno];
1731 int ok = 1;
1732 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1733
1734 for (j = 1; j < this_nregs; j++)
1735 {
1736 this_cost += spill_add_cost[regno + j];
1737 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1738 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1739 ok = 0;
1740 }
1741 if (! ok)
1742 continue;
1743 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1744 this_cost--;
1745 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1746 this_cost--;
1747 if (this_cost < best_cost
1748 /* Among registers with equal cost, prefer caller-saved ones, or
1749 use REG_ALLOC_ORDER if it is defined. */
1750 || (this_cost == best_cost
1751 #ifdef REG_ALLOC_ORDER
1752 && (inv_reg_alloc_order[regno]
1753 < inv_reg_alloc_order[best_reg])
1754 #else
1755 && call_used_regs[regno]
1756 && ! call_used_regs[best_reg]
1757 #endif
1758 ))
1759 {
1760 best_reg = regno;
1761 best_cost = this_cost;
1762 }
1763 }
1764 }
1765 if (best_reg == -1)
1766 return 0;
1767
1768 if (rtl_dump_file)
1769 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1770
1771 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1772 rl->regno = best_reg;
1773
1774 EXECUTE_IF_SET_IN_REG_SET
1775 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1776 {
1777 count_spilled_pseudo (best_reg, rl->nregs, j);
1778 });
1779
1780 EXECUTE_IF_SET_IN_REG_SET
1781 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1782 {
1783 count_spilled_pseudo (best_reg, rl->nregs, j);
1784 });
1785
1786 for (i = 0; i < rl->nregs; i++)
1787 {
1788 if (spill_cost[best_reg + i] != 0
1789 || spill_add_cost[best_reg + i] != 0)
1790 abort ();
1791 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1792 }
1793 return 1;
1794 }
1795
1796 /* Find more reload regs to satisfy the remaining need of an insn, which
1797 is given by CHAIN.
1798 Do it by ascending class number, since otherwise a reg
1799 might be spilled for a big class and might fail to count
1800 for a smaller class even though it belongs to that class. */
1801
1802 static void
1803 find_reload_regs (chain)
1804 struct insn_chain *chain;
1805 {
1806 int i;
1807
1808 /* In order to be certain of getting the registers we need,
1809 we must sort the reloads into order of increasing register class.
1810 Then our grabbing of reload registers will parallel the process
1811 that provided the reload registers. */
1812 for (i = 0; i < chain->n_reloads; i++)
1813 {
1814 /* Show whether this reload already has a hard reg. */
1815 if (chain->rld[i].reg_rtx)
1816 {
1817 int regno = REGNO (chain->rld[i].reg_rtx);
1818 chain->rld[i].regno = regno;
1819 chain->rld[i].nregs
1820 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1821 }
1822 else
1823 chain->rld[i].regno = -1;
1824 reload_order[i] = i;
1825 }
1826
1827 n_reloads = chain->n_reloads;
1828 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1829
1830 CLEAR_HARD_REG_SET (used_spill_regs_local);
1831
1832 if (rtl_dump_file)
1833 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1834
1835 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1836
1837 /* Compute the order of preference for hard registers to spill. */
1838
1839 order_regs_for_reload (chain);
1840
1841 for (i = 0; i < n_reloads; i++)
1842 {
1843 int r = reload_order[i];
1844
1845 /* Ignore reloads that got marked inoperative. */
1846 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1847 && ! rld[r].optional
1848 && rld[r].regno == -1)
1849 if (! find_reg (chain, i))
1850 {
1851 spill_failure (chain->insn, rld[r].class);
1852 failure = 1;
1853 return;
1854 }
1855 }
1856
1857 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1858 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1859
1860 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1861 }
1862
1863 static void
1864 select_reload_regs ()
1865 {
1866 struct insn_chain *chain;
1867
1868 /* Try to satisfy the needs for each insn. */
1869 for (chain = insns_need_reload; chain != 0;
1870 chain = chain->next_need_reload)
1871 find_reload_regs (chain);
1872 }
1873 \f
1874 /* Delete all insns that were inserted by emit_caller_save_insns during
1875 this iteration. */
1876 static void
1877 delete_caller_save_insns ()
1878 {
1879 struct insn_chain *c = reload_insn_chain;
1880
1881 while (c != 0)
1882 {
1883 while (c != 0 && c->is_caller_save_insn)
1884 {
1885 struct insn_chain *next = c->next;
1886 rtx insn = c->insn;
1887
1888 if (c == reload_insn_chain)
1889 reload_insn_chain = next;
1890 delete_insn (insn);
1891
1892 if (next)
1893 next->prev = c->prev;
1894 if (c->prev)
1895 c->prev->next = next;
1896 c->next = unused_insn_chains;
1897 unused_insn_chains = c;
1898 c = next;
1899 }
1900 if (c != 0)
1901 c = c->next;
1902 }
1903 }
1904 \f
1905 /* Handle the failure to find a register to spill.
1906 INSN should be one of the insns which needed this particular spill reg. */
1907
1908 static void
1909 spill_failure (insn, class)
1910 rtx insn;
1911 enum reg_class class;
1912 {
1913 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1914 if (asm_noperands (PATTERN (insn)) >= 0)
1915 error_for_asm (insn, "can't find a register in class `%s' while reloading `asm'",
1916 reg_class_names[class]);
1917 else
1918 {
1919 error ("unable to find a register to spill in class `%s'",
1920 reg_class_names[class]);
1921 fatal_insn ("this is the insn:", insn);
1922 }
1923 }
1924 \f
1925 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1926 data that is dead in INSN. */
1927
1928 static void
1929 delete_dead_insn (insn)
1930 rtx insn;
1931 {
1932 rtx prev = prev_real_insn (insn);
1933 rtx prev_dest;
1934
1935 /* If the previous insn sets a register that dies in our insn, delete it
1936 too. */
1937 if (prev && GET_CODE (PATTERN (prev)) == SET
1938 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1939 && reg_mentioned_p (prev_dest, PATTERN (insn))
1940 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1941 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1942 delete_dead_insn (prev);
1943
1944 PUT_CODE (insn, NOTE);
1945 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1946 NOTE_SOURCE_FILE (insn) = 0;
1947 }
1948
1949 /* Modify the home of pseudo-reg I.
1950 The new home is present in reg_renumber[I].
1951
1952 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1953 or it may be -1, meaning there is none or it is not relevant.
1954 This is used so that all pseudos spilled from a given hard reg
1955 can share one stack slot. */
1956
1957 static void
1958 alter_reg (i, from_reg)
1959 int i;
1960 int from_reg;
1961 {
1962 /* When outputting an inline function, this can happen
1963 for a reg that isn't actually used. */
1964 if (regno_reg_rtx[i] == 0)
1965 return;
1966
1967 /* If the reg got changed to a MEM at rtl-generation time,
1968 ignore it. */
1969 if (GET_CODE (regno_reg_rtx[i]) != REG)
1970 return;
1971
1972 /* Modify the reg-rtx to contain the new hard reg
1973 number or else to contain its pseudo reg number. */
1974 REGNO (regno_reg_rtx[i])
1975 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1976
1977 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1978 allocate a stack slot for it. */
1979
1980 if (reg_renumber[i] < 0
1981 && REG_N_REFS (i) > 0
1982 && reg_equiv_constant[i] == 0
1983 && reg_equiv_memory_loc[i] == 0)
1984 {
1985 rtx x;
1986 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1987 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1988 int adjust = 0;
1989
1990 /* Each pseudo reg has an inherent size which comes from its own mode,
1991 and a total size which provides room for paradoxical subregs
1992 which refer to the pseudo reg in wider modes.
1993
1994 We can use a slot already allocated if it provides both
1995 enough inherent space and enough total space.
1996 Otherwise, we allocate a new slot, making sure that it has no less
1997 inherent space, and no less total space, then the previous slot. */
1998 if (from_reg == -1)
1999 {
2000 /* No known place to spill from => no slot to reuse. */
2001 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
2002 inherent_size == total_size ? 0 : -1);
2003 if (BYTES_BIG_ENDIAN)
2004 /* Cancel the big-endian correction done in assign_stack_local.
2005 Get the address of the beginning of the slot.
2006 This is so we can do a big-endian correction unconditionally
2007 below. */
2008 adjust = inherent_size - total_size;
2009
2010 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
2011
2012 /* Nothing can alias this slot except this pseudo. */
2013 set_mem_alias_set (x, new_alias_set ());
2014 }
2015
2016 /* Reuse a stack slot if possible. */
2017 else if (spill_stack_slot[from_reg] != 0
2018 && spill_stack_slot_width[from_reg] >= total_size
2019 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2020 >= inherent_size))
2021 x = spill_stack_slot[from_reg];
2022
2023 /* Allocate a bigger slot. */
2024 else
2025 {
2026 /* Compute maximum size needed, both for inherent size
2027 and for total size. */
2028 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2029 rtx stack_slot;
2030
2031 if (spill_stack_slot[from_reg])
2032 {
2033 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2034 > inherent_size)
2035 mode = GET_MODE (spill_stack_slot[from_reg]);
2036 if (spill_stack_slot_width[from_reg] > total_size)
2037 total_size = spill_stack_slot_width[from_reg];
2038 }
2039
2040 /* Make a slot with that size. */
2041 x = assign_stack_local (mode, total_size,
2042 inherent_size == total_size ? 0 : -1);
2043 stack_slot = x;
2044
2045 /* All pseudos mapped to this slot can alias each other. */
2046 if (spill_stack_slot[from_reg])
2047 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2048 else
2049 set_mem_alias_set (x, new_alias_set ());
2050
2051 if (BYTES_BIG_ENDIAN)
2052 {
2053 /* Cancel the big-endian correction done in assign_stack_local.
2054 Get the address of the beginning of the slot.
2055 This is so we can do a big-endian correction unconditionally
2056 below. */
2057 adjust = GET_MODE_SIZE (mode) - total_size;
2058 if (adjust)
2059 stack_slot
2060 = adjust_address_nv (x, mode_for_size (total_size
2061 * BITS_PER_UNIT,
2062 MODE_INT, 1),
2063 adjust);
2064 }
2065
2066 spill_stack_slot[from_reg] = stack_slot;
2067 spill_stack_slot_width[from_reg] = total_size;
2068 }
2069
2070 /* On a big endian machine, the "address" of the slot
2071 is the address of the low part that fits its inherent mode. */
2072 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2073 adjust += (total_size - inherent_size);
2074
2075 /* If we have any adjustment to make, or if the stack slot is the
2076 wrong mode, make a new stack slot. */
2077 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2078
2079 /* If we have a decl for the original register, set it for the
2080 memory. If this is a shared MEM, make a copy. */
2081 if (REG_EXPR (regno_reg_rtx[i])
2082 && TREE_CODE_CLASS (TREE_CODE (REG_EXPR (regno_reg_rtx[i]))) == 'd')
2083 {
2084 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2085
2086 /* We can do this only for the DECLs home pseudo, not for
2087 any copies of it, since otherwise when the stack slot
2088 is reused, nonoverlapping_memrefs_p might think they
2089 cannot overlap. */
2090 if (decl && GET_CODE (decl) == REG && REGNO (decl) == (unsigned) i)
2091 {
2092 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2093 x = copy_rtx (x);
2094
2095 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2096 }
2097 }
2098
2099 /* Save the stack slot for later. */
2100 reg_equiv_memory_loc[i] = x;
2101 }
2102 }
2103
2104 /* Mark the slots in regs_ever_live for the hard regs
2105 used by pseudo-reg number REGNO. */
2106
2107 void
2108 mark_home_live (regno)
2109 int regno;
2110 {
2111 int i, lim;
2112
2113 i = reg_renumber[regno];
2114 if (i < 0)
2115 return;
2116 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2117 while (i < lim)
2118 regs_ever_live[i++] = 1;
2119 }
2120 \f
2121 /* This function handles the tracking of elimination offsets around branches.
2122
2123 X is a piece of RTL being scanned.
2124
2125 INSN is the insn that it came from, if any.
2126
2127 INITIAL_P is nonzero if we are to set the offset to be the initial
2128 offset and zero if we are setting the offset of the label to be the
2129 current offset. */
2130
2131 static void
2132 set_label_offsets (x, insn, initial_p)
2133 rtx x;
2134 rtx insn;
2135 int initial_p;
2136 {
2137 enum rtx_code code = GET_CODE (x);
2138 rtx tem;
2139 unsigned int i;
2140 struct elim_table *p;
2141
2142 switch (code)
2143 {
2144 case LABEL_REF:
2145 if (LABEL_REF_NONLOCAL_P (x))
2146 return;
2147
2148 x = XEXP (x, 0);
2149
2150 /* ... fall through ... */
2151
2152 case CODE_LABEL:
2153 /* If we know nothing about this label, set the desired offsets. Note
2154 that this sets the offset at a label to be the offset before a label
2155 if we don't know anything about the label. This is not correct for
2156 the label after a BARRIER, but is the best guess we can make. If
2157 we guessed wrong, we will suppress an elimination that might have
2158 been possible had we been able to guess correctly. */
2159
2160 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2161 {
2162 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2163 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2164 = (initial_p ? reg_eliminate[i].initial_offset
2165 : reg_eliminate[i].offset);
2166 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2167 }
2168
2169 /* Otherwise, if this is the definition of a label and it is
2170 preceded by a BARRIER, set our offsets to the known offset of
2171 that label. */
2172
2173 else if (x == insn
2174 && (tem = prev_nonnote_insn (insn)) != 0
2175 && GET_CODE (tem) == BARRIER)
2176 set_offsets_for_label (insn);
2177 else
2178 /* If neither of the above cases is true, compare each offset
2179 with those previously recorded and suppress any eliminations
2180 where the offsets disagree. */
2181
2182 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2183 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2184 != (initial_p ? reg_eliminate[i].initial_offset
2185 : reg_eliminate[i].offset))
2186 reg_eliminate[i].can_eliminate = 0;
2187
2188 return;
2189
2190 case JUMP_INSN:
2191 set_label_offsets (PATTERN (insn), insn, initial_p);
2192
2193 /* ... fall through ... */
2194
2195 case INSN:
2196 case CALL_INSN:
2197 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2198 and hence must have all eliminations at their initial offsets. */
2199 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2200 if (REG_NOTE_KIND (tem) == REG_LABEL)
2201 set_label_offsets (XEXP (tem, 0), insn, 1);
2202 return;
2203
2204 case PARALLEL:
2205 case ADDR_VEC:
2206 case ADDR_DIFF_VEC:
2207 /* Each of the labels in the parallel or address vector must be
2208 at their initial offsets. We want the first field for PARALLEL
2209 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2210
2211 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2212 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2213 insn, initial_p);
2214 return;
2215
2216 case SET:
2217 /* We only care about setting PC. If the source is not RETURN,
2218 IF_THEN_ELSE, or a label, disable any eliminations not at
2219 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2220 isn't one of those possibilities. For branches to a label,
2221 call ourselves recursively.
2222
2223 Note that this can disable elimination unnecessarily when we have
2224 a non-local goto since it will look like a non-constant jump to
2225 someplace in the current function. This isn't a significant
2226 problem since such jumps will normally be when all elimination
2227 pairs are back to their initial offsets. */
2228
2229 if (SET_DEST (x) != pc_rtx)
2230 return;
2231
2232 switch (GET_CODE (SET_SRC (x)))
2233 {
2234 case PC:
2235 case RETURN:
2236 return;
2237
2238 case LABEL_REF:
2239 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2240 return;
2241
2242 case IF_THEN_ELSE:
2243 tem = XEXP (SET_SRC (x), 1);
2244 if (GET_CODE (tem) == LABEL_REF)
2245 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2246 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2247 break;
2248
2249 tem = XEXP (SET_SRC (x), 2);
2250 if (GET_CODE (tem) == LABEL_REF)
2251 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2252 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2253 break;
2254 return;
2255
2256 default:
2257 break;
2258 }
2259
2260 /* If we reach here, all eliminations must be at their initial
2261 offset because we are doing a jump to a variable address. */
2262 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2263 if (p->offset != p->initial_offset)
2264 p->can_eliminate = 0;
2265 break;
2266
2267 default:
2268 break;
2269 }
2270 }
2271 \f
2272 /* Scan X and replace any eliminable registers (such as fp) with a
2273 replacement (such as sp), plus an offset.
2274
2275 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2276 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2277 MEM, we are allowed to replace a sum of a register and the constant zero
2278 with the register, which we cannot do outside a MEM. In addition, we need
2279 to record the fact that a register is referenced outside a MEM.
2280
2281 If INSN is an insn, it is the insn containing X. If we replace a REG
2282 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2283 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2284 the REG is being modified.
2285
2286 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2287 That's used when we eliminate in expressions stored in notes.
2288 This means, do not set ref_outside_mem even if the reference
2289 is outside of MEMs.
2290
2291 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2292 replacements done assuming all offsets are at their initial values. If
2293 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2294 encounter, return the actual location so that find_reloads will do
2295 the proper thing. */
2296
2297 rtx
2298 eliminate_regs (x, mem_mode, insn)
2299 rtx x;
2300 enum machine_mode mem_mode;
2301 rtx insn;
2302 {
2303 enum rtx_code code = GET_CODE (x);
2304 struct elim_table *ep;
2305 int regno;
2306 rtx new;
2307 int i, j;
2308 const char *fmt;
2309 int copied = 0;
2310
2311 if (! current_function_decl)
2312 return x;
2313
2314 switch (code)
2315 {
2316 case CONST_INT:
2317 case CONST_DOUBLE:
2318 case CONST_VECTOR:
2319 case CONST:
2320 case SYMBOL_REF:
2321 case CODE_LABEL:
2322 case PC:
2323 case CC0:
2324 case ASM_INPUT:
2325 case ADDR_VEC:
2326 case ADDR_DIFF_VEC:
2327 case RETURN:
2328 return x;
2329
2330 case ADDRESSOF:
2331 /* This is only for the benefit of the debugging backends, which call
2332 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2333 removed after CSE. */
2334 new = eliminate_regs (XEXP (x, 0), 0, insn);
2335 if (GET_CODE (new) == MEM)
2336 return XEXP (new, 0);
2337 return x;
2338
2339 case REG:
2340 regno = REGNO (x);
2341
2342 /* First handle the case where we encounter a bare register that
2343 is eliminable. Replace it with a PLUS. */
2344 if (regno < FIRST_PSEUDO_REGISTER)
2345 {
2346 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2347 ep++)
2348 if (ep->from_rtx == x && ep->can_eliminate)
2349 return plus_constant (ep->to_rtx, ep->previous_offset);
2350
2351 }
2352 else if (reg_renumber && reg_renumber[regno] < 0
2353 && reg_equiv_constant && reg_equiv_constant[regno]
2354 && ! CONSTANT_P (reg_equiv_constant[regno]))
2355 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2356 mem_mode, insn);
2357 return x;
2358
2359 /* You might think handling MINUS in a manner similar to PLUS is a
2360 good idea. It is not. It has been tried multiple times and every
2361 time the change has had to have been reverted.
2362
2363 Other parts of reload know a PLUS is special (gen_reload for example)
2364 and require special code to handle code a reloaded PLUS operand.
2365
2366 Also consider backends where the flags register is clobbered by a
2367 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2368 lea instruction comes to mind). If we try to reload a MINUS, we
2369 may kill the flags register that was holding a useful value.
2370
2371 So, please before trying to handle MINUS, consider reload as a
2372 whole instead of this little section as well as the backend issues. */
2373 case PLUS:
2374 /* If this is the sum of an eliminable register and a constant, rework
2375 the sum. */
2376 if (GET_CODE (XEXP (x, 0)) == REG
2377 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2378 && CONSTANT_P (XEXP (x, 1)))
2379 {
2380 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2381 ep++)
2382 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2383 {
2384 /* The only time we want to replace a PLUS with a REG (this
2385 occurs when the constant operand of the PLUS is the negative
2386 of the offset) is when we are inside a MEM. We won't want
2387 to do so at other times because that would change the
2388 structure of the insn in a way that reload can't handle.
2389 We special-case the commonest situation in
2390 eliminate_regs_in_insn, so just replace a PLUS with a
2391 PLUS here, unless inside a MEM. */
2392 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2393 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2394 return ep->to_rtx;
2395 else
2396 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2397 plus_constant (XEXP (x, 1),
2398 ep->previous_offset));
2399 }
2400
2401 /* If the register is not eliminable, we are done since the other
2402 operand is a constant. */
2403 return x;
2404 }
2405
2406 /* If this is part of an address, we want to bring any constant to the
2407 outermost PLUS. We will do this by doing register replacement in
2408 our operands and seeing if a constant shows up in one of them.
2409
2410 Note that there is no risk of modifying the structure of the insn,
2411 since we only get called for its operands, thus we are either
2412 modifying the address inside a MEM, or something like an address
2413 operand of a load-address insn. */
2414
2415 {
2416 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2417 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2418
2419 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2420 {
2421 /* If one side is a PLUS and the other side is a pseudo that
2422 didn't get a hard register but has a reg_equiv_constant,
2423 we must replace the constant here since it may no longer
2424 be in the position of any operand. */
2425 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2426 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2427 && reg_renumber[REGNO (new1)] < 0
2428 && reg_equiv_constant != 0
2429 && reg_equiv_constant[REGNO (new1)] != 0)
2430 new1 = reg_equiv_constant[REGNO (new1)];
2431 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2432 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2433 && reg_renumber[REGNO (new0)] < 0
2434 && reg_equiv_constant[REGNO (new0)] != 0)
2435 new0 = reg_equiv_constant[REGNO (new0)];
2436
2437 new = form_sum (new0, new1);
2438
2439 /* As above, if we are not inside a MEM we do not want to
2440 turn a PLUS into something else. We might try to do so here
2441 for an addition of 0 if we aren't optimizing. */
2442 if (! mem_mode && GET_CODE (new) != PLUS)
2443 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2444 else
2445 return new;
2446 }
2447 }
2448 return x;
2449
2450 case MULT:
2451 /* If this is the product of an eliminable register and a
2452 constant, apply the distribute law and move the constant out
2453 so that we have (plus (mult ..) ..). This is needed in order
2454 to keep load-address insns valid. This case is pathological.
2455 We ignore the possibility of overflow here. */
2456 if (GET_CODE (XEXP (x, 0)) == REG
2457 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2458 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2459 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2460 ep++)
2461 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2462 {
2463 if (! mem_mode
2464 /* Refs inside notes don't count for this purpose. */
2465 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2466 || GET_CODE (insn) == INSN_LIST)))
2467 ep->ref_outside_mem = 1;
2468
2469 return
2470 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2471 ep->previous_offset * INTVAL (XEXP (x, 1)));
2472 }
2473
2474 /* ... fall through ... */
2475
2476 case CALL:
2477 case COMPARE:
2478 /* See comments before PLUS about handling MINUS. */
2479 case MINUS:
2480 case DIV: case UDIV:
2481 case MOD: case UMOD:
2482 case AND: case IOR: case XOR:
2483 case ROTATERT: case ROTATE:
2484 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2485 case NE: case EQ:
2486 case GE: case GT: case GEU: case GTU:
2487 case LE: case LT: case LEU: case LTU:
2488 {
2489 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2490 rtx new1
2491 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2492
2493 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2494 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2495 }
2496 return x;
2497
2498 case EXPR_LIST:
2499 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2500 if (XEXP (x, 0))
2501 {
2502 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2503 if (new != XEXP (x, 0))
2504 {
2505 /* If this is a REG_DEAD note, it is not valid anymore.
2506 Using the eliminated version could result in creating a
2507 REG_DEAD note for the stack or frame pointer. */
2508 if (GET_MODE (x) == REG_DEAD)
2509 return (XEXP (x, 1)
2510 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2511 : NULL_RTX);
2512
2513 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2514 }
2515 }
2516
2517 /* ... fall through ... */
2518
2519 case INSN_LIST:
2520 /* Now do eliminations in the rest of the chain. If this was
2521 an EXPR_LIST, this might result in allocating more memory than is
2522 strictly needed, but it simplifies the code. */
2523 if (XEXP (x, 1))
2524 {
2525 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2526 if (new != XEXP (x, 1))
2527 return
2528 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2529 }
2530 return x;
2531
2532 case PRE_INC:
2533 case POST_INC:
2534 case PRE_DEC:
2535 case POST_DEC:
2536 case STRICT_LOW_PART:
2537 case NEG: case NOT:
2538 case SIGN_EXTEND: case ZERO_EXTEND:
2539 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2540 case FLOAT: case FIX:
2541 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2542 case ABS:
2543 case SQRT:
2544 case FFS:
2545 case CLZ:
2546 case CTZ:
2547 case POPCOUNT:
2548 case PARITY:
2549 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2550 if (new != XEXP (x, 0))
2551 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2552 return x;
2553
2554 case SUBREG:
2555 /* Similar to above processing, but preserve SUBREG_BYTE.
2556 Convert (subreg (mem)) to (mem) if not paradoxical.
2557 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2558 pseudo didn't get a hard reg, we must replace this with the
2559 eliminated version of the memory location because push_reloads
2560 may do the replacement in certain circumstances. */
2561 if (GET_CODE (SUBREG_REG (x)) == REG
2562 && (GET_MODE_SIZE (GET_MODE (x))
2563 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2564 && reg_equiv_memory_loc != 0
2565 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2566 {
2567 new = SUBREG_REG (x);
2568 }
2569 else
2570 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2571
2572 if (new != SUBREG_REG (x))
2573 {
2574 int x_size = GET_MODE_SIZE (GET_MODE (x));
2575 int new_size = GET_MODE_SIZE (GET_MODE (new));
2576
2577 if (GET_CODE (new) == MEM
2578 && ((x_size < new_size
2579 #ifdef WORD_REGISTER_OPERATIONS
2580 /* On these machines, combine can create rtl of the form
2581 (set (subreg:m1 (reg:m2 R) 0) ...)
2582 where m1 < m2, and expects something interesting to
2583 happen to the entire word. Moreover, it will use the
2584 (reg:m2 R) later, expecting all bits to be preserved.
2585 So if the number of words is the same, preserve the
2586 subreg so that push_reloads can see it. */
2587 && ! ((x_size - 1) / UNITS_PER_WORD
2588 == (new_size -1 ) / UNITS_PER_WORD)
2589 #endif
2590 )
2591 || x_size == new_size)
2592 )
2593 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2594 else
2595 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2596 }
2597
2598 return x;
2599
2600 case MEM:
2601 /* This is only for the benefit of the debugging backends, which call
2602 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2603 removed after CSE. */
2604 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2605 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2606
2607 /* Our only special processing is to pass the mode of the MEM to our
2608 recursive call and copy the flags. While we are here, handle this
2609 case more efficiently. */
2610 return
2611 replace_equiv_address_nv (x,
2612 eliminate_regs (XEXP (x, 0),
2613 GET_MODE (x), insn));
2614
2615 case USE:
2616 /* Handle insn_list USE that a call to a pure function may generate. */
2617 new = eliminate_regs (XEXP (x, 0), 0, insn);
2618 if (new != XEXP (x, 0))
2619 return gen_rtx_USE (GET_MODE (x), new);
2620 return x;
2621
2622 case CLOBBER:
2623 case ASM_OPERANDS:
2624 case SET:
2625 abort ();
2626
2627 default:
2628 break;
2629 }
2630
2631 /* Process each of our operands recursively. If any have changed, make a
2632 copy of the rtx. */
2633 fmt = GET_RTX_FORMAT (code);
2634 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2635 {
2636 if (*fmt == 'e')
2637 {
2638 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2639 if (new != XEXP (x, i) && ! copied)
2640 {
2641 rtx new_x = rtx_alloc (code);
2642 memcpy (new_x, x,
2643 (sizeof (*new_x) - sizeof (new_x->fld)
2644 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2645 x = new_x;
2646 copied = 1;
2647 }
2648 XEXP (x, i) = new;
2649 }
2650 else if (*fmt == 'E')
2651 {
2652 int copied_vec = 0;
2653 for (j = 0; j < XVECLEN (x, i); j++)
2654 {
2655 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2656 if (new != XVECEXP (x, i, j) && ! copied_vec)
2657 {
2658 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2659 XVEC (x, i)->elem);
2660 if (! copied)
2661 {
2662 rtx new_x = rtx_alloc (code);
2663 memcpy (new_x, x,
2664 (sizeof (*new_x) - sizeof (new_x->fld)
2665 + (sizeof (new_x->fld[0])
2666 * GET_RTX_LENGTH (code))));
2667 x = new_x;
2668 copied = 1;
2669 }
2670 XVEC (x, i) = new_v;
2671 copied_vec = 1;
2672 }
2673 XVECEXP (x, i, j) = new;
2674 }
2675 }
2676 }
2677
2678 return x;
2679 }
2680
2681 /* Scan rtx X for modifications of elimination target registers. Update
2682 the table of eliminables to reflect the changed state. MEM_MODE is
2683 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2684
2685 static void
2686 elimination_effects (x, mem_mode)
2687 rtx x;
2688 enum machine_mode mem_mode;
2689
2690 {
2691 enum rtx_code code = GET_CODE (x);
2692 struct elim_table *ep;
2693 int regno;
2694 int i, j;
2695 const char *fmt;
2696
2697 switch (code)
2698 {
2699 case CONST_INT:
2700 case CONST_DOUBLE:
2701 case CONST_VECTOR:
2702 case CONST:
2703 case SYMBOL_REF:
2704 case CODE_LABEL:
2705 case PC:
2706 case CC0:
2707 case ASM_INPUT:
2708 case ADDR_VEC:
2709 case ADDR_DIFF_VEC:
2710 case RETURN:
2711 return;
2712
2713 case ADDRESSOF:
2714 abort ();
2715
2716 case REG:
2717 regno = REGNO (x);
2718
2719 /* First handle the case where we encounter a bare register that
2720 is eliminable. Replace it with a PLUS. */
2721 if (regno < FIRST_PSEUDO_REGISTER)
2722 {
2723 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2724 ep++)
2725 if (ep->from_rtx == x && ep->can_eliminate)
2726 {
2727 if (! mem_mode)
2728 ep->ref_outside_mem = 1;
2729 return;
2730 }
2731
2732 }
2733 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2734 && reg_equiv_constant[regno]
2735 && ! function_invariant_p (reg_equiv_constant[regno]))
2736 elimination_effects (reg_equiv_constant[regno], mem_mode);
2737 return;
2738
2739 case PRE_INC:
2740 case POST_INC:
2741 case PRE_DEC:
2742 case POST_DEC:
2743 case POST_MODIFY:
2744 case PRE_MODIFY:
2745 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2746 if (ep->to_rtx == XEXP (x, 0))
2747 {
2748 int size = GET_MODE_SIZE (mem_mode);
2749
2750 /* If more bytes than MEM_MODE are pushed, account for them. */
2751 #ifdef PUSH_ROUNDING
2752 if (ep->to_rtx == stack_pointer_rtx)
2753 size = PUSH_ROUNDING (size);
2754 #endif
2755 if (code == PRE_DEC || code == POST_DEC)
2756 ep->offset += size;
2757 else if (code == PRE_INC || code == POST_INC)
2758 ep->offset -= size;
2759 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2760 && GET_CODE (XEXP (x, 1)) == PLUS
2761 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2762 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2763 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2764 }
2765
2766 /* These two aren't unary operators. */
2767 if (code == POST_MODIFY || code == PRE_MODIFY)
2768 break;
2769
2770 /* Fall through to generic unary operation case. */
2771 case STRICT_LOW_PART:
2772 case NEG: case NOT:
2773 case SIGN_EXTEND: case ZERO_EXTEND:
2774 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2775 case FLOAT: case FIX:
2776 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2777 case ABS:
2778 case SQRT:
2779 case FFS:
2780 case CLZ:
2781 case CTZ:
2782 case POPCOUNT:
2783 case PARITY:
2784 elimination_effects (XEXP (x, 0), mem_mode);
2785 return;
2786
2787 case SUBREG:
2788 if (GET_CODE (SUBREG_REG (x)) == REG
2789 && (GET_MODE_SIZE (GET_MODE (x))
2790 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2791 && reg_equiv_memory_loc != 0
2792 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2793 return;
2794
2795 elimination_effects (SUBREG_REG (x), mem_mode);
2796 return;
2797
2798 case USE:
2799 /* If using a register that is the source of an eliminate we still
2800 think can be performed, note it cannot be performed since we don't
2801 know how this register is used. */
2802 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2803 if (ep->from_rtx == XEXP (x, 0))
2804 ep->can_eliminate = 0;
2805
2806 elimination_effects (XEXP (x, 0), mem_mode);
2807 return;
2808
2809 case CLOBBER:
2810 /* If clobbering a register that is the replacement register for an
2811 elimination we still think can be performed, note that it cannot
2812 be performed. Otherwise, we need not be concerned about it. */
2813 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2814 if (ep->to_rtx == XEXP (x, 0))
2815 ep->can_eliminate = 0;
2816
2817 elimination_effects (XEXP (x, 0), mem_mode);
2818 return;
2819
2820 case SET:
2821 /* Check for setting a register that we know about. */
2822 if (GET_CODE (SET_DEST (x)) == REG)
2823 {
2824 /* See if this is setting the replacement register for an
2825 elimination.
2826
2827 If DEST is the hard frame pointer, we do nothing because we
2828 assume that all assignments to the frame pointer are for
2829 non-local gotos and are being done at a time when they are valid
2830 and do not disturb anything else. Some machines want to
2831 eliminate a fake argument pointer (or even a fake frame pointer)
2832 with either the real frame or the stack pointer. Assignments to
2833 the hard frame pointer must not prevent this elimination. */
2834
2835 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2836 ep++)
2837 if (ep->to_rtx == SET_DEST (x)
2838 && SET_DEST (x) != hard_frame_pointer_rtx)
2839 {
2840 /* If it is being incremented, adjust the offset. Otherwise,
2841 this elimination can't be done. */
2842 rtx src = SET_SRC (x);
2843
2844 if (GET_CODE (src) == PLUS
2845 && XEXP (src, 0) == SET_DEST (x)
2846 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2847 ep->offset -= INTVAL (XEXP (src, 1));
2848 else
2849 ep->can_eliminate = 0;
2850 }
2851 }
2852
2853 elimination_effects (SET_DEST (x), 0);
2854 elimination_effects (SET_SRC (x), 0);
2855 return;
2856
2857 case MEM:
2858 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2859 abort ();
2860
2861 /* Our only special processing is to pass the mode of the MEM to our
2862 recursive call. */
2863 elimination_effects (XEXP (x, 0), GET_MODE (x));
2864 return;
2865
2866 default:
2867 break;
2868 }
2869
2870 fmt = GET_RTX_FORMAT (code);
2871 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2872 {
2873 if (*fmt == 'e')
2874 elimination_effects (XEXP (x, i), mem_mode);
2875 else if (*fmt == 'E')
2876 for (j = 0; j < XVECLEN (x, i); j++)
2877 elimination_effects (XVECEXP (x, i, j), mem_mode);
2878 }
2879 }
2880
2881 /* Descend through rtx X and verify that no references to eliminable registers
2882 remain. If any do remain, mark the involved register as not
2883 eliminable. */
2884
2885 static void
2886 check_eliminable_occurrences (x)
2887 rtx x;
2888 {
2889 const char *fmt;
2890 int i;
2891 enum rtx_code code;
2892
2893 if (x == 0)
2894 return;
2895
2896 code = GET_CODE (x);
2897
2898 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2899 {
2900 struct elim_table *ep;
2901
2902 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2903 if (ep->from_rtx == x && ep->can_eliminate)
2904 ep->can_eliminate = 0;
2905 return;
2906 }
2907
2908 fmt = GET_RTX_FORMAT (code);
2909 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2910 {
2911 if (*fmt == 'e')
2912 check_eliminable_occurrences (XEXP (x, i));
2913 else if (*fmt == 'E')
2914 {
2915 int j;
2916 for (j = 0; j < XVECLEN (x, i); j++)
2917 check_eliminable_occurrences (XVECEXP (x, i, j));
2918 }
2919 }
2920 }
2921 \f
2922 /* Scan INSN and eliminate all eliminable registers in it.
2923
2924 If REPLACE is nonzero, do the replacement destructively. Also
2925 delete the insn as dead it if it is setting an eliminable register.
2926
2927 If REPLACE is zero, do all our allocations in reload_obstack.
2928
2929 If no eliminations were done and this insn doesn't require any elimination
2930 processing (these are not identical conditions: it might be updating sp,
2931 but not referencing fp; this needs to be seen during reload_as_needed so
2932 that the offset between fp and sp can be taken into consideration), zero
2933 is returned. Otherwise, 1 is returned. */
2934
2935 static int
2936 eliminate_regs_in_insn (insn, replace)
2937 rtx insn;
2938 int replace;
2939 {
2940 int icode = recog_memoized (insn);
2941 rtx old_body = PATTERN (insn);
2942 int insn_is_asm = asm_noperands (old_body) >= 0;
2943 rtx old_set = single_set (insn);
2944 rtx new_body;
2945 int val = 0;
2946 int i;
2947 rtx substed_operand[MAX_RECOG_OPERANDS];
2948 rtx orig_operand[MAX_RECOG_OPERANDS];
2949 struct elim_table *ep;
2950
2951 if (! insn_is_asm && icode < 0)
2952 {
2953 if (GET_CODE (PATTERN (insn)) == USE
2954 || GET_CODE (PATTERN (insn)) == CLOBBER
2955 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2956 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2957 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2958 return 0;
2959 abort ();
2960 }
2961
2962 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2963 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2964 {
2965 /* Check for setting an eliminable register. */
2966 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2967 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2968 {
2969 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2970 /* If this is setting the frame pointer register to the
2971 hardware frame pointer register and this is an elimination
2972 that will be done (tested above), this insn is really
2973 adjusting the frame pointer downward to compensate for
2974 the adjustment done before a nonlocal goto. */
2975 if (ep->from == FRAME_POINTER_REGNUM
2976 && ep->to == HARD_FRAME_POINTER_REGNUM)
2977 {
2978 rtx base = SET_SRC (old_set);
2979 rtx base_insn = insn;
2980 int offset = 0;
2981
2982 while (base != ep->to_rtx)
2983 {
2984 rtx prev_insn, prev_set;
2985
2986 if (GET_CODE (base) == PLUS
2987 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2988 {
2989 offset += INTVAL (XEXP (base, 1));
2990 base = XEXP (base, 0);
2991 }
2992 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2993 && (prev_set = single_set (prev_insn)) != 0
2994 && rtx_equal_p (SET_DEST (prev_set), base))
2995 {
2996 base = SET_SRC (prev_set);
2997 base_insn = prev_insn;
2998 }
2999 else
3000 break;
3001 }
3002
3003 if (base == ep->to_rtx)
3004 {
3005 rtx src
3006 = plus_constant (ep->to_rtx, offset - ep->offset);
3007
3008 new_body = old_body;
3009 if (! replace)
3010 {
3011 new_body = copy_insn (old_body);
3012 if (REG_NOTES (insn))
3013 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3014 }
3015 PATTERN (insn) = new_body;
3016 old_set = single_set (insn);
3017
3018 /* First see if this insn remains valid when we
3019 make the change. If not, keep the INSN_CODE
3020 the same and let reload fit it up. */
3021 validate_change (insn, &SET_SRC (old_set), src, 1);
3022 validate_change (insn, &SET_DEST (old_set),
3023 ep->to_rtx, 1);
3024 if (! apply_change_group ())
3025 {
3026 SET_SRC (old_set) = src;
3027 SET_DEST (old_set) = ep->to_rtx;
3028 }
3029
3030 val = 1;
3031 goto done;
3032 }
3033 }
3034 #endif
3035
3036 /* In this case this insn isn't serving a useful purpose. We
3037 will delete it in reload_as_needed once we know that this
3038 elimination is, in fact, being done.
3039
3040 If REPLACE isn't set, we can't delete this insn, but needn't
3041 process it since it won't be used unless something changes. */
3042 if (replace)
3043 {
3044 delete_dead_insn (insn);
3045 return 1;
3046 }
3047 val = 1;
3048 goto done;
3049 }
3050 }
3051
3052 /* We allow one special case which happens to work on all machines we
3053 currently support: a single set with the source being a PLUS of an
3054 eliminable register and a constant. */
3055 if (old_set
3056 && GET_CODE (SET_DEST (old_set)) == REG
3057 && GET_CODE (SET_SRC (old_set)) == PLUS
3058 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3059 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3060 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3061 {
3062 rtx reg = XEXP (SET_SRC (old_set), 0);
3063 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
3064
3065 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3066 if (ep->from_rtx == reg && ep->can_eliminate)
3067 {
3068 offset += ep->offset;
3069
3070 if (offset == 0)
3071 {
3072 int num_clobbers;
3073 /* We assume here that if we need a PARALLEL with
3074 CLOBBERs for this assignment, we can do with the
3075 MATCH_SCRATCHes that add_clobbers allocates.
3076 There's not much we can do if that doesn't work. */
3077 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3078 SET_DEST (old_set),
3079 ep->to_rtx);
3080 num_clobbers = 0;
3081 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3082 if (num_clobbers)
3083 {
3084 rtvec vec = rtvec_alloc (num_clobbers + 1);
3085
3086 vec->elem[0] = PATTERN (insn);
3087 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3088 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3089 }
3090 if (INSN_CODE (insn) < 0)
3091 abort ();
3092 }
3093 else
3094 {
3095 new_body = old_body;
3096 if (! replace)
3097 {
3098 new_body = copy_insn (old_body);
3099 if (REG_NOTES (insn))
3100 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3101 }
3102 PATTERN (insn) = new_body;
3103 old_set = single_set (insn);
3104
3105 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3106 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3107 }
3108 val = 1;
3109 /* This can't have an effect on elimination offsets, so skip right
3110 to the end. */
3111 goto done;
3112 }
3113 }
3114
3115 /* Determine the effects of this insn on elimination offsets. */
3116 elimination_effects (old_body, 0);
3117
3118 /* Eliminate all eliminable registers occurring in operands that
3119 can be handled by reload. */
3120 extract_insn (insn);
3121 for (i = 0; i < recog_data.n_operands; i++)
3122 {
3123 orig_operand[i] = recog_data.operand[i];
3124 substed_operand[i] = recog_data.operand[i];
3125
3126 /* For an asm statement, every operand is eliminable. */
3127 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3128 {
3129 /* Check for setting a register that we know about. */
3130 if (recog_data.operand_type[i] != OP_IN
3131 && GET_CODE (orig_operand[i]) == REG)
3132 {
3133 /* If we are assigning to a register that can be eliminated, it
3134 must be as part of a PARALLEL, since the code above handles
3135 single SETs. We must indicate that we can no longer
3136 eliminate this reg. */
3137 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3138 ep++)
3139 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3140 ep->can_eliminate = 0;
3141 }
3142
3143 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3144 replace ? insn : NULL_RTX);
3145 if (substed_operand[i] != orig_operand[i])
3146 val = 1;
3147 /* Terminate the search in check_eliminable_occurrences at
3148 this point. */
3149 *recog_data.operand_loc[i] = 0;
3150
3151 /* If an output operand changed from a REG to a MEM and INSN is an
3152 insn, write a CLOBBER insn. */
3153 if (recog_data.operand_type[i] != OP_IN
3154 && GET_CODE (orig_operand[i]) == REG
3155 && GET_CODE (substed_operand[i]) == MEM
3156 && replace)
3157 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3158 insn);
3159 }
3160 }
3161
3162 for (i = 0; i < recog_data.n_dups; i++)
3163 *recog_data.dup_loc[i]
3164 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3165
3166 /* If any eliminable remain, they aren't eliminable anymore. */
3167 check_eliminable_occurrences (old_body);
3168
3169 /* Substitute the operands; the new values are in the substed_operand
3170 array. */
3171 for (i = 0; i < recog_data.n_operands; i++)
3172 *recog_data.operand_loc[i] = substed_operand[i];
3173 for (i = 0; i < recog_data.n_dups; i++)
3174 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3175
3176 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3177 re-recognize the insn. We do this in case we had a simple addition
3178 but now can do this as a load-address. This saves an insn in this
3179 common case.
3180 If re-recognition fails, the old insn code number will still be used,
3181 and some register operands may have changed into PLUS expressions.
3182 These will be handled by find_reloads by loading them into a register
3183 again. */
3184
3185 if (val)
3186 {
3187 /* If we aren't replacing things permanently and we changed something,
3188 make another copy to ensure that all the RTL is new. Otherwise
3189 things can go wrong if find_reload swaps commutative operands
3190 and one is inside RTL that has been copied while the other is not. */
3191 new_body = old_body;
3192 if (! replace)
3193 {
3194 new_body = copy_insn (old_body);
3195 if (REG_NOTES (insn))
3196 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3197 }
3198 PATTERN (insn) = new_body;
3199
3200 /* If we had a move insn but now we don't, rerecognize it. This will
3201 cause spurious re-recognition if the old move had a PARALLEL since
3202 the new one still will, but we can't call single_set without
3203 having put NEW_BODY into the insn and the re-recognition won't
3204 hurt in this rare case. */
3205 /* ??? Why this huge if statement - why don't we just rerecognize the
3206 thing always? */
3207 if (! insn_is_asm
3208 && old_set != 0
3209 && ((GET_CODE (SET_SRC (old_set)) == REG
3210 && (GET_CODE (new_body) != SET
3211 || GET_CODE (SET_SRC (new_body)) != REG))
3212 /* If this was a load from or store to memory, compare
3213 the MEM in recog_data.operand to the one in the insn.
3214 If they are not equal, then rerecognize the insn. */
3215 || (old_set != 0
3216 && ((GET_CODE (SET_SRC (old_set)) == MEM
3217 && SET_SRC (old_set) != recog_data.operand[1])
3218 || (GET_CODE (SET_DEST (old_set)) == MEM
3219 && SET_DEST (old_set) != recog_data.operand[0])))
3220 /* If this was an add insn before, rerecognize. */
3221 || GET_CODE (SET_SRC (old_set)) == PLUS))
3222 {
3223 int new_icode = recog (PATTERN (insn), insn, 0);
3224 if (new_icode < 0)
3225 INSN_CODE (insn) = icode;
3226 }
3227 }
3228
3229 /* Restore the old body. If there were any changes to it, we made a copy
3230 of it while the changes were still in place, so we'll correctly return
3231 a modified insn below. */
3232 if (! replace)
3233 {
3234 /* Restore the old body. */
3235 for (i = 0; i < recog_data.n_operands; i++)
3236 *recog_data.operand_loc[i] = orig_operand[i];
3237 for (i = 0; i < recog_data.n_dups; i++)
3238 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3239 }
3240
3241 /* Update all elimination pairs to reflect the status after the current
3242 insn. The changes we make were determined by the earlier call to
3243 elimination_effects.
3244
3245 We also detect cases where register elimination cannot be done,
3246 namely, if a register would be both changed and referenced outside a MEM
3247 in the resulting insn since such an insn is often undefined and, even if
3248 not, we cannot know what meaning will be given to it. Note that it is
3249 valid to have a register used in an address in an insn that changes it
3250 (presumably with a pre- or post-increment or decrement).
3251
3252 If anything changes, return nonzero. */
3253
3254 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3255 {
3256 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3257 ep->can_eliminate = 0;
3258
3259 ep->ref_outside_mem = 0;
3260
3261 if (ep->previous_offset != ep->offset)
3262 val = 1;
3263 }
3264
3265 done:
3266 /* If we changed something, perform elimination in REG_NOTES. This is
3267 needed even when REPLACE is zero because a REG_DEAD note might refer
3268 to a register that we eliminate and could cause a different number
3269 of spill registers to be needed in the final reload pass than in
3270 the pre-passes. */
3271 if (val && REG_NOTES (insn) != 0)
3272 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3273
3274 return val;
3275 }
3276
3277 /* Loop through all elimination pairs.
3278 Recalculate the number not at initial offset.
3279
3280 Compute the maximum offset (minimum offset if the stack does not
3281 grow downward) for each elimination pair. */
3282
3283 static void
3284 update_eliminable_offsets ()
3285 {
3286 struct elim_table *ep;
3287
3288 num_not_at_initial_offset = 0;
3289 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3290 {
3291 ep->previous_offset = ep->offset;
3292 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3293 num_not_at_initial_offset++;
3294 }
3295 }
3296
3297 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3298 replacement we currently believe is valid, mark it as not eliminable if X
3299 modifies DEST in any way other than by adding a constant integer to it.
3300
3301 If DEST is the frame pointer, we do nothing because we assume that
3302 all assignments to the hard frame pointer are nonlocal gotos and are being
3303 done at a time when they are valid and do not disturb anything else.
3304 Some machines want to eliminate a fake argument pointer with either the
3305 frame or stack pointer. Assignments to the hard frame pointer must not
3306 prevent this elimination.
3307
3308 Called via note_stores from reload before starting its passes to scan
3309 the insns of the function. */
3310
3311 static void
3312 mark_not_eliminable (dest, x, data)
3313 rtx dest;
3314 rtx x;
3315 void *data ATTRIBUTE_UNUSED;
3316 {
3317 unsigned int i;
3318
3319 /* A SUBREG of a hard register here is just changing its mode. We should
3320 not see a SUBREG of an eliminable hard register, but check just in
3321 case. */
3322 if (GET_CODE (dest) == SUBREG)
3323 dest = SUBREG_REG (dest);
3324
3325 if (dest == hard_frame_pointer_rtx)
3326 return;
3327
3328 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3329 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3330 && (GET_CODE (x) != SET
3331 || GET_CODE (SET_SRC (x)) != PLUS
3332 || XEXP (SET_SRC (x), 0) != dest
3333 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3334 {
3335 reg_eliminate[i].can_eliminate_previous
3336 = reg_eliminate[i].can_eliminate = 0;
3337 num_eliminable--;
3338 }
3339 }
3340
3341 /* Verify that the initial elimination offsets did not change since the
3342 last call to set_initial_elim_offsets. This is used to catch cases
3343 where something illegal happened during reload_as_needed that could
3344 cause incorrect code to be generated if we did not check for it. */
3345
3346 static void
3347 verify_initial_elim_offsets ()
3348 {
3349 int t;
3350
3351 #ifdef ELIMINABLE_REGS
3352 struct elim_table *ep;
3353
3354 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3355 {
3356 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3357 if (t != ep->initial_offset)
3358 abort ();
3359 }
3360 #else
3361 INITIAL_FRAME_POINTER_OFFSET (t);
3362 if (t != reg_eliminate[0].initial_offset)
3363 abort ();
3364 #endif
3365 }
3366
3367 /* Reset all offsets on eliminable registers to their initial values. */
3368
3369 static void
3370 set_initial_elim_offsets ()
3371 {
3372 struct elim_table *ep = reg_eliminate;
3373
3374 #ifdef ELIMINABLE_REGS
3375 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3376 {
3377 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3378 ep->previous_offset = ep->offset = ep->initial_offset;
3379 }
3380 #else
3381 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3382 ep->previous_offset = ep->offset = ep->initial_offset;
3383 #endif
3384
3385 num_not_at_initial_offset = 0;
3386 }
3387
3388 /* Initialize the known label offsets.
3389 Set a known offset for each forced label to be at the initial offset
3390 of each elimination. We do this because we assume that all
3391 computed jumps occur from a location where each elimination is
3392 at its initial offset.
3393 For all other labels, show that we don't know the offsets. */
3394
3395 static void
3396 set_initial_label_offsets ()
3397 {
3398 rtx x;
3399 memset (offsets_known_at, 0, num_labels);
3400
3401 for (x = forced_labels; x; x = XEXP (x, 1))
3402 if (XEXP (x, 0))
3403 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3404 }
3405
3406 /* Set all elimination offsets to the known values for the code label given
3407 by INSN. */
3408
3409 static void
3410 set_offsets_for_label (insn)
3411 rtx insn;
3412 {
3413 unsigned int i;
3414 int label_nr = CODE_LABEL_NUMBER (insn);
3415 struct elim_table *ep;
3416
3417 num_not_at_initial_offset = 0;
3418 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3419 {
3420 ep->offset = ep->previous_offset
3421 = offsets_at[label_nr - first_label_num][i];
3422 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3423 num_not_at_initial_offset++;
3424 }
3425 }
3426
3427 /* See if anything that happened changes which eliminations are valid.
3428 For example, on the SPARC, whether or not the frame pointer can
3429 be eliminated can depend on what registers have been used. We need
3430 not check some conditions again (such as flag_omit_frame_pointer)
3431 since they can't have changed. */
3432
3433 static void
3434 update_eliminables (pset)
3435 HARD_REG_SET *pset;
3436 {
3437 int previous_frame_pointer_needed = frame_pointer_needed;
3438 struct elim_table *ep;
3439
3440 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3441 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3442 #ifdef ELIMINABLE_REGS
3443 || ! CAN_ELIMINATE (ep->from, ep->to)
3444 #endif
3445 )
3446 ep->can_eliminate = 0;
3447
3448 /* Look for the case where we have discovered that we can't replace
3449 register A with register B and that means that we will now be
3450 trying to replace register A with register C. This means we can
3451 no longer replace register C with register B and we need to disable
3452 such an elimination, if it exists. This occurs often with A == ap,
3453 B == sp, and C == fp. */
3454
3455 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3456 {
3457 struct elim_table *op;
3458 int new_to = -1;
3459
3460 if (! ep->can_eliminate && ep->can_eliminate_previous)
3461 {
3462 /* Find the current elimination for ep->from, if there is a
3463 new one. */
3464 for (op = reg_eliminate;
3465 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3466 if (op->from == ep->from && op->can_eliminate)
3467 {
3468 new_to = op->to;
3469 break;
3470 }
3471
3472 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3473 disable it. */
3474 for (op = reg_eliminate;
3475 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3476 if (op->from == new_to && op->to == ep->to)
3477 op->can_eliminate = 0;
3478 }
3479 }
3480
3481 /* See if any registers that we thought we could eliminate the previous
3482 time are no longer eliminable. If so, something has changed and we
3483 must spill the register. Also, recompute the number of eliminable
3484 registers and see if the frame pointer is needed; it is if there is
3485 no elimination of the frame pointer that we can perform. */
3486
3487 frame_pointer_needed = 1;
3488 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3489 {
3490 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3491 && ep->to != HARD_FRAME_POINTER_REGNUM)
3492 frame_pointer_needed = 0;
3493
3494 if (! ep->can_eliminate && ep->can_eliminate_previous)
3495 {
3496 ep->can_eliminate_previous = 0;
3497 SET_HARD_REG_BIT (*pset, ep->from);
3498 num_eliminable--;
3499 }
3500 }
3501
3502 /* If we didn't need a frame pointer last time, but we do now, spill
3503 the hard frame pointer. */
3504 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3505 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3506 }
3507
3508 /* Initialize the table of registers to eliminate. */
3509
3510 static void
3511 init_elim_table ()
3512 {
3513 struct elim_table *ep;
3514 #ifdef ELIMINABLE_REGS
3515 const struct elim_table_1 *ep1;
3516 #endif
3517
3518 if (!reg_eliminate)
3519 reg_eliminate = (struct elim_table *)
3520 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3521
3522 /* Does this function require a frame pointer? */
3523
3524 frame_pointer_needed = (! flag_omit_frame_pointer
3525 #ifdef EXIT_IGNORE_STACK
3526 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3527 and restore sp for alloca. So we can't eliminate
3528 the frame pointer in that case. At some point,
3529 we should improve this by emitting the
3530 sp-adjusting insns for this case. */
3531 || (current_function_calls_alloca
3532 && EXIT_IGNORE_STACK)
3533 #endif
3534 || FRAME_POINTER_REQUIRED);
3535
3536 num_eliminable = 0;
3537
3538 #ifdef ELIMINABLE_REGS
3539 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3540 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3541 {
3542 ep->from = ep1->from;
3543 ep->to = ep1->to;
3544 ep->can_eliminate = ep->can_eliminate_previous
3545 = (CAN_ELIMINATE (ep->from, ep->to)
3546 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3547 }
3548 #else
3549 reg_eliminate[0].from = reg_eliminate_1[0].from;
3550 reg_eliminate[0].to = reg_eliminate_1[0].to;
3551 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3552 = ! frame_pointer_needed;
3553 #endif
3554
3555 /* Count the number of eliminable registers and build the FROM and TO
3556 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3557 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3558 We depend on this. */
3559 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3560 {
3561 num_eliminable += ep->can_eliminate;
3562 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3563 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3564 }
3565 }
3566 \f
3567 /* Kick all pseudos out of hard register REGNO.
3568
3569 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3570 because we found we can't eliminate some register. In the case, no pseudos
3571 are allowed to be in the register, even if they are only in a block that
3572 doesn't require spill registers, unlike the case when we are spilling this
3573 hard reg to produce another spill register.
3574
3575 Return nonzero if any pseudos needed to be kicked out. */
3576
3577 static void
3578 spill_hard_reg (regno, cant_eliminate)
3579 unsigned int regno;
3580 int cant_eliminate;
3581 {
3582 int i;
3583
3584 if (cant_eliminate)
3585 {
3586 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3587 regs_ever_live[regno] = 1;
3588 }
3589
3590 /* Spill every pseudo reg that was allocated to this reg
3591 or to something that overlaps this reg. */
3592
3593 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3594 if (reg_renumber[i] >= 0
3595 && (unsigned int) reg_renumber[i] <= regno
3596 && ((unsigned int) reg_renumber[i]
3597 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3598 PSEUDO_REGNO_MODE (i))
3599 > regno))
3600 SET_REGNO_REG_SET (&spilled_pseudos, i);
3601 }
3602
3603 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3604 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3605
3606 static void
3607 ior_hard_reg_set (set1, set2)
3608 HARD_REG_SET *set1, *set2;
3609 {
3610 IOR_HARD_REG_SET (*set1, *set2);
3611 }
3612
3613 /* After find_reload_regs has been run for all insn that need reloads,
3614 and/or spill_hard_regs was called, this function is used to actually
3615 spill pseudo registers and try to reallocate them. It also sets up the
3616 spill_regs array for use by choose_reload_regs. */
3617
3618 static int
3619 finish_spills (global)
3620 int global;
3621 {
3622 struct insn_chain *chain;
3623 int something_changed = 0;
3624 int i;
3625
3626 /* Build the spill_regs array for the function. */
3627 /* If there are some registers still to eliminate and one of the spill regs
3628 wasn't ever used before, additional stack space may have to be
3629 allocated to store this register. Thus, we may have changed the offset
3630 between the stack and frame pointers, so mark that something has changed.
3631
3632 One might think that we need only set VAL to 1 if this is a call-used
3633 register. However, the set of registers that must be saved by the
3634 prologue is not identical to the call-used set. For example, the
3635 register used by the call insn for the return PC is a call-used register,
3636 but must be saved by the prologue. */
3637
3638 n_spills = 0;
3639 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3640 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3641 {
3642 spill_reg_order[i] = n_spills;
3643 spill_regs[n_spills++] = i;
3644 if (num_eliminable && ! regs_ever_live[i])
3645 something_changed = 1;
3646 regs_ever_live[i] = 1;
3647 }
3648 else
3649 spill_reg_order[i] = -1;
3650
3651 EXECUTE_IF_SET_IN_REG_SET
3652 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3653 {
3654 /* Record the current hard register the pseudo is allocated to in
3655 pseudo_previous_regs so we avoid reallocating it to the same
3656 hard reg in a later pass. */
3657 if (reg_renumber[i] < 0)
3658 abort ();
3659
3660 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3661 /* Mark it as no longer having a hard register home. */
3662 reg_renumber[i] = -1;
3663 /* We will need to scan everything again. */
3664 something_changed = 1;
3665 });
3666
3667 /* Retry global register allocation if possible. */
3668 if (global)
3669 {
3670 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3671 /* For every insn that needs reloads, set the registers used as spill
3672 regs in pseudo_forbidden_regs for every pseudo live across the
3673 insn. */
3674 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3675 {
3676 EXECUTE_IF_SET_IN_REG_SET
3677 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3678 {
3679 ior_hard_reg_set (pseudo_forbidden_regs + i,
3680 &chain->used_spill_regs);
3681 });
3682 EXECUTE_IF_SET_IN_REG_SET
3683 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3684 {
3685 ior_hard_reg_set (pseudo_forbidden_regs + i,
3686 &chain->used_spill_regs);
3687 });
3688 }
3689
3690 /* Retry allocating the spilled pseudos. For each reg, merge the
3691 various reg sets that indicate which hard regs can't be used,
3692 and call retry_global_alloc.
3693 We change spill_pseudos here to only contain pseudos that did not
3694 get a new hard register. */
3695 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3696 if (reg_old_renumber[i] != reg_renumber[i])
3697 {
3698 HARD_REG_SET forbidden;
3699 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3700 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3701 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3702 retry_global_alloc (i, forbidden);
3703 if (reg_renumber[i] >= 0)
3704 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3705 }
3706 }
3707
3708 /* Fix up the register information in the insn chain.
3709 This involves deleting those of the spilled pseudos which did not get
3710 a new hard register home from the live_{before,after} sets. */
3711 for (chain = reload_insn_chain; chain; chain = chain->next)
3712 {
3713 HARD_REG_SET used_by_pseudos;
3714 HARD_REG_SET used_by_pseudos2;
3715
3716 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3717 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3718
3719 /* Mark any unallocated hard regs as available for spills. That
3720 makes inheritance work somewhat better. */
3721 if (chain->need_reload)
3722 {
3723 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3724 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3725 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3726
3727 /* Save the old value for the sanity test below. */
3728 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3729
3730 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3731 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3732 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3733 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3734
3735 /* Make sure we only enlarge the set. */
3736 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3737 abort ();
3738 ok:;
3739 }
3740 }
3741
3742 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3743 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3744 {
3745 int regno = reg_renumber[i];
3746 if (reg_old_renumber[i] == regno)
3747 continue;
3748
3749 alter_reg (i, reg_old_renumber[i]);
3750 reg_old_renumber[i] = regno;
3751 if (rtl_dump_file)
3752 {
3753 if (regno == -1)
3754 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3755 else
3756 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3757 i, reg_renumber[i]);
3758 }
3759 }
3760
3761 return something_changed;
3762 }
3763 \f
3764 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3765 Also mark any hard registers used to store user variables as
3766 forbidden from being used for spill registers. */
3767
3768 static void
3769 scan_paradoxical_subregs (x)
3770 rtx x;
3771 {
3772 int i;
3773 const char *fmt;
3774 enum rtx_code code = GET_CODE (x);
3775
3776 switch (code)
3777 {
3778 case REG:
3779 #if 0
3780 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3781 && REG_USERVAR_P (x))
3782 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3783 #endif
3784 return;
3785
3786 case CONST_INT:
3787 case CONST:
3788 case SYMBOL_REF:
3789 case LABEL_REF:
3790 case CONST_DOUBLE:
3791 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3792 case CC0:
3793 case PC:
3794 case USE:
3795 case CLOBBER:
3796 return;
3797
3798 case SUBREG:
3799 if (GET_CODE (SUBREG_REG (x)) == REG
3800 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3801 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3802 = GET_MODE_SIZE (GET_MODE (x));
3803 return;
3804
3805 default:
3806 break;
3807 }
3808
3809 fmt = GET_RTX_FORMAT (code);
3810 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3811 {
3812 if (fmt[i] == 'e')
3813 scan_paradoxical_subregs (XEXP (x, i));
3814 else if (fmt[i] == 'E')
3815 {
3816 int j;
3817 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3818 scan_paradoxical_subregs (XVECEXP (x, i, j));
3819 }
3820 }
3821 }
3822 \f
3823 /* Reload pseudo-registers into hard regs around each insn as needed.
3824 Additional register load insns are output before the insn that needs it
3825 and perhaps store insns after insns that modify the reloaded pseudo reg.
3826
3827 reg_last_reload_reg and reg_reloaded_contents keep track of
3828 which registers are already available in reload registers.
3829 We update these for the reloads that we perform,
3830 as the insns are scanned. */
3831
3832 static void
3833 reload_as_needed (live_known)
3834 int live_known;
3835 {
3836 struct insn_chain *chain;
3837 #if defined (AUTO_INC_DEC)
3838 int i;
3839 #endif
3840 rtx x;
3841
3842 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3843 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
3844 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3845 reg_has_output_reload = (char *) xmalloc (max_regno);
3846 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3847
3848 set_initial_elim_offsets ();
3849
3850 for (chain = reload_insn_chain; chain; chain = chain->next)
3851 {
3852 rtx prev = 0;
3853 rtx insn = chain->insn;
3854 rtx old_next = NEXT_INSN (insn);
3855
3856 /* If we pass a label, copy the offsets from the label information
3857 into the current offsets of each elimination. */
3858 if (GET_CODE (insn) == CODE_LABEL)
3859 set_offsets_for_label (insn);
3860
3861 else if (INSN_P (insn))
3862 {
3863 rtx oldpat = copy_rtx (PATTERN (insn));
3864
3865 /* If this is a USE and CLOBBER of a MEM, ensure that any
3866 references to eliminable registers have been removed. */
3867
3868 if ((GET_CODE (PATTERN (insn)) == USE
3869 || GET_CODE (PATTERN (insn)) == CLOBBER)
3870 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3871 XEXP (XEXP (PATTERN (insn), 0), 0)
3872 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3873 GET_MODE (XEXP (PATTERN (insn), 0)),
3874 NULL_RTX);
3875
3876 /* If we need to do register elimination processing, do so.
3877 This might delete the insn, in which case we are done. */
3878 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3879 {
3880 eliminate_regs_in_insn (insn, 1);
3881 if (GET_CODE (insn) == NOTE)
3882 {
3883 update_eliminable_offsets ();
3884 continue;
3885 }
3886 }
3887
3888 /* If need_elim is nonzero but need_reload is zero, one might think
3889 that we could simply set n_reloads to 0. However, find_reloads
3890 could have done some manipulation of the insn (such as swapping
3891 commutative operands), and these manipulations are lost during
3892 the first pass for every insn that needs register elimination.
3893 So the actions of find_reloads must be redone here. */
3894
3895 if (! chain->need_elim && ! chain->need_reload
3896 && ! chain->need_operand_change)
3897 n_reloads = 0;
3898 /* First find the pseudo regs that must be reloaded for this insn.
3899 This info is returned in the tables reload_... (see reload.h).
3900 Also modify the body of INSN by substituting RELOAD
3901 rtx's for those pseudo regs. */
3902 else
3903 {
3904 memset (reg_has_output_reload, 0, max_regno);
3905 CLEAR_HARD_REG_SET (reg_is_output_reload);
3906
3907 find_reloads (insn, 1, spill_indirect_levels, live_known,
3908 spill_reg_order);
3909 }
3910
3911 if (n_reloads > 0)
3912 {
3913 rtx next = NEXT_INSN (insn);
3914 rtx p;
3915
3916 prev = PREV_INSN (insn);
3917
3918 /* Now compute which reload regs to reload them into. Perhaps
3919 reusing reload regs from previous insns, or else output
3920 load insns to reload them. Maybe output store insns too.
3921 Record the choices of reload reg in reload_reg_rtx. */
3922 choose_reload_regs (chain);
3923
3924 /* Merge any reloads that we didn't combine for fear of
3925 increasing the number of spill registers needed but now
3926 discover can be safely merged. */
3927 if (SMALL_REGISTER_CLASSES)
3928 merge_assigned_reloads (insn);
3929
3930 /* Generate the insns to reload operands into or out of
3931 their reload regs. */
3932 emit_reload_insns (chain);
3933
3934 /* Substitute the chosen reload regs from reload_reg_rtx
3935 into the insn's body (or perhaps into the bodies of other
3936 load and store insn that we just made for reloading
3937 and that we moved the structure into). */
3938 subst_reloads (insn);
3939
3940 /* If this was an ASM, make sure that all the reload insns
3941 we have generated are valid. If not, give an error
3942 and delete them. */
3943
3944 if (asm_noperands (PATTERN (insn)) >= 0)
3945 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3946 if (p != insn && INSN_P (p)
3947 && GET_CODE (PATTERN (p)) != USE
3948 && (recog_memoized (p) < 0
3949 || (extract_insn (p), ! constrain_operands (1))))
3950 {
3951 error_for_asm (insn,
3952 "`asm' operand requires impossible reload");
3953 delete_insn (p);
3954 }
3955 }
3956
3957 if (num_eliminable && chain->need_elim)
3958 update_eliminable_offsets ();
3959
3960 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3961 is no longer validly lying around to save a future reload.
3962 Note that this does not detect pseudos that were reloaded
3963 for this insn in order to be stored in
3964 (obeying register constraints). That is correct; such reload
3965 registers ARE still valid. */
3966 note_stores (oldpat, forget_old_reloads_1, NULL);
3967
3968 /* There may have been CLOBBER insns placed after INSN. So scan
3969 between INSN and NEXT and use them to forget old reloads. */
3970 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3971 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3972 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3973
3974 #ifdef AUTO_INC_DEC
3975 /* Likewise for regs altered by auto-increment in this insn.
3976 REG_INC notes have been changed by reloading:
3977 find_reloads_address_1 records substitutions for them,
3978 which have been performed by subst_reloads above. */
3979 for (i = n_reloads - 1; i >= 0; i--)
3980 {
3981 rtx in_reg = rld[i].in_reg;
3982 if (in_reg)
3983 {
3984 enum rtx_code code = GET_CODE (in_reg);
3985 /* PRE_INC / PRE_DEC will have the reload register ending up
3986 with the same value as the stack slot, but that doesn't
3987 hold true for POST_INC / POST_DEC. Either we have to
3988 convert the memory access to a true POST_INC / POST_DEC,
3989 or we can't use the reload register for inheritance. */
3990 if ((code == POST_INC || code == POST_DEC)
3991 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3992 REGNO (rld[i].reg_rtx))
3993 /* Make sure it is the inc/dec pseudo, and not
3994 some other (e.g. output operand) pseudo. */
3995 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3996 == REGNO (XEXP (in_reg, 0))))
3997
3998 {
3999 rtx reload_reg = rld[i].reg_rtx;
4000 enum machine_mode mode = GET_MODE (reload_reg);
4001 int n = 0;
4002 rtx p;
4003
4004 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4005 {
4006 /* We really want to ignore REG_INC notes here, so
4007 use PATTERN (p) as argument to reg_set_p . */
4008 if (reg_set_p (reload_reg, PATTERN (p)))
4009 break;
4010 n = count_occurrences (PATTERN (p), reload_reg, 0);
4011 if (! n)
4012 continue;
4013 if (n == 1)
4014 {
4015 n = validate_replace_rtx (reload_reg,
4016 gen_rtx (code, mode,
4017 reload_reg),
4018 p);
4019
4020 /* We must also verify that the constraints
4021 are met after the replacement. */
4022 extract_insn (p);
4023 if (n)
4024 n = constrain_operands (1);
4025 else
4026 break;
4027
4028 /* If the constraints were not met, then
4029 undo the replacement. */
4030 if (!n)
4031 {
4032 validate_replace_rtx (gen_rtx (code, mode,
4033 reload_reg),
4034 reload_reg, p);
4035 break;
4036 }
4037
4038 }
4039 break;
4040 }
4041 if (n == 1)
4042 {
4043 REG_NOTES (p)
4044 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4045 REG_NOTES (p));
4046 /* Mark this as having an output reload so that the
4047 REG_INC processing code below won't invalidate
4048 the reload for inheritance. */
4049 SET_HARD_REG_BIT (reg_is_output_reload,
4050 REGNO (reload_reg));
4051 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4052 }
4053 else
4054 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4055 NULL);
4056 }
4057 else if ((code == PRE_INC || code == PRE_DEC)
4058 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4059 REGNO (rld[i].reg_rtx))
4060 /* Make sure it is the inc/dec pseudo, and not
4061 some other (e.g. output operand) pseudo. */
4062 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4063 == REGNO (XEXP (in_reg, 0))))
4064 {
4065 SET_HARD_REG_BIT (reg_is_output_reload,
4066 REGNO (rld[i].reg_rtx));
4067 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4068 }
4069 }
4070 }
4071 /* If a pseudo that got a hard register is auto-incremented,
4072 we must purge records of copying it into pseudos without
4073 hard registers. */
4074 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4075 if (REG_NOTE_KIND (x) == REG_INC)
4076 {
4077 /* See if this pseudo reg was reloaded in this insn.
4078 If so, its last-reload info is still valid
4079 because it is based on this insn's reload. */
4080 for (i = 0; i < n_reloads; i++)
4081 if (rld[i].out == XEXP (x, 0))
4082 break;
4083
4084 if (i == n_reloads)
4085 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4086 }
4087 #endif
4088 }
4089 /* A reload reg's contents are unknown after a label. */
4090 if (GET_CODE (insn) == CODE_LABEL)
4091 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4092
4093 /* Don't assume a reload reg is still good after a call insn
4094 if it is a call-used reg. */
4095 else if (GET_CODE (insn) == CALL_INSN)
4096 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4097 }
4098
4099 /* Clean up. */
4100 free (reg_last_reload_reg);
4101 free (reg_has_output_reload);
4102 }
4103
4104 /* Discard all record of any value reloaded from X,
4105 or reloaded in X from someplace else;
4106 unless X is an output reload reg of the current insn.
4107
4108 X may be a hard reg (the reload reg)
4109 or it may be a pseudo reg that was reloaded from. */
4110
4111 static void
4112 forget_old_reloads_1 (x, ignored, data)
4113 rtx x;
4114 rtx ignored ATTRIBUTE_UNUSED;
4115 void *data ATTRIBUTE_UNUSED;
4116 {
4117 unsigned int regno;
4118 unsigned int nr;
4119
4120 /* note_stores does give us subregs of hard regs,
4121 subreg_regno_offset will abort if it is not a hard reg. */
4122 while (GET_CODE (x) == SUBREG)
4123 {
4124 /* We ignore the subreg offset when calculating the regno,
4125 because we are using the entire underlying hard register
4126 below. */
4127 x = SUBREG_REG (x);
4128 }
4129
4130 if (GET_CODE (x) != REG)
4131 return;
4132
4133 regno = REGNO (x);
4134
4135 if (regno >= FIRST_PSEUDO_REGISTER)
4136 nr = 1;
4137 else
4138 {
4139 unsigned int i;
4140
4141 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4142 /* Storing into a spilled-reg invalidates its contents.
4143 This can happen if a block-local pseudo is allocated to that reg
4144 and it wasn't spilled because this block's total need is 0.
4145 Then some insn might have an optional reload and use this reg. */
4146 for (i = 0; i < nr; i++)
4147 /* But don't do this if the reg actually serves as an output
4148 reload reg in the current instruction. */
4149 if (n_reloads == 0
4150 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4151 {
4152 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4153 spill_reg_store[regno + i] = 0;
4154 }
4155 }
4156
4157 /* Since value of X has changed,
4158 forget any value previously copied from it. */
4159
4160 while (nr-- > 0)
4161 /* But don't forget a copy if this is the output reload
4162 that establishes the copy's validity. */
4163 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4164 reg_last_reload_reg[regno + nr] = 0;
4165 }
4166 \f
4167 /* The following HARD_REG_SETs indicate when each hard register is
4168 used for a reload of various parts of the current insn. */
4169
4170 /* If reg is unavailable for all reloads. */
4171 static HARD_REG_SET reload_reg_unavailable;
4172 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4173 static HARD_REG_SET reload_reg_used;
4174 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4175 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4176 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4177 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4178 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4179 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4180 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4181 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4182 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4183 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4184 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4185 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4186 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4187 static HARD_REG_SET reload_reg_used_in_op_addr;
4188 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4189 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4190 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4191 static HARD_REG_SET reload_reg_used_in_insn;
4192 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4193 static HARD_REG_SET reload_reg_used_in_other_addr;
4194
4195 /* If reg is in use as a reload reg for any sort of reload. */
4196 static HARD_REG_SET reload_reg_used_at_all;
4197
4198 /* If reg is use as an inherited reload. We just mark the first register
4199 in the group. */
4200 static HARD_REG_SET reload_reg_used_for_inherit;
4201
4202 /* Records which hard regs are used in any way, either as explicit use or
4203 by being allocated to a pseudo during any point of the current insn. */
4204 static HARD_REG_SET reg_used_in_insn;
4205
4206 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4207 TYPE. MODE is used to indicate how many consecutive regs are
4208 actually used. */
4209
4210 static void
4211 mark_reload_reg_in_use (regno, opnum, type, mode)
4212 unsigned int regno;
4213 int opnum;
4214 enum reload_type type;
4215 enum machine_mode mode;
4216 {
4217 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4218 unsigned int i;
4219
4220 for (i = regno; i < nregs + regno; i++)
4221 {
4222 switch (type)
4223 {
4224 case RELOAD_OTHER:
4225 SET_HARD_REG_BIT (reload_reg_used, i);
4226 break;
4227
4228 case RELOAD_FOR_INPUT_ADDRESS:
4229 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4230 break;
4231
4232 case RELOAD_FOR_INPADDR_ADDRESS:
4233 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4234 break;
4235
4236 case RELOAD_FOR_OUTPUT_ADDRESS:
4237 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4238 break;
4239
4240 case RELOAD_FOR_OUTADDR_ADDRESS:
4241 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4242 break;
4243
4244 case RELOAD_FOR_OPERAND_ADDRESS:
4245 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4246 break;
4247
4248 case RELOAD_FOR_OPADDR_ADDR:
4249 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4250 break;
4251
4252 case RELOAD_FOR_OTHER_ADDRESS:
4253 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4254 break;
4255
4256 case RELOAD_FOR_INPUT:
4257 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4258 break;
4259
4260 case RELOAD_FOR_OUTPUT:
4261 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4262 break;
4263
4264 case RELOAD_FOR_INSN:
4265 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4266 break;
4267 }
4268
4269 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4270 }
4271 }
4272
4273 /* Similarly, but show REGNO is no longer in use for a reload. */
4274
4275 static void
4276 clear_reload_reg_in_use (regno, opnum, type, mode)
4277 unsigned int regno;
4278 int opnum;
4279 enum reload_type type;
4280 enum machine_mode mode;
4281 {
4282 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4283 unsigned int start_regno, end_regno, r;
4284 int i;
4285 /* A complication is that for some reload types, inheritance might
4286 allow multiple reloads of the same types to share a reload register.
4287 We set check_opnum if we have to check only reloads with the same
4288 operand number, and check_any if we have to check all reloads. */
4289 int check_opnum = 0;
4290 int check_any = 0;
4291 HARD_REG_SET *used_in_set;
4292
4293 switch (type)
4294 {
4295 case RELOAD_OTHER:
4296 used_in_set = &reload_reg_used;
4297 break;
4298
4299 case RELOAD_FOR_INPUT_ADDRESS:
4300 used_in_set = &reload_reg_used_in_input_addr[opnum];
4301 break;
4302
4303 case RELOAD_FOR_INPADDR_ADDRESS:
4304 check_opnum = 1;
4305 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4306 break;
4307
4308 case RELOAD_FOR_OUTPUT_ADDRESS:
4309 used_in_set = &reload_reg_used_in_output_addr[opnum];
4310 break;
4311
4312 case RELOAD_FOR_OUTADDR_ADDRESS:
4313 check_opnum = 1;
4314 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4315 break;
4316
4317 case RELOAD_FOR_OPERAND_ADDRESS:
4318 used_in_set = &reload_reg_used_in_op_addr;
4319 break;
4320
4321 case RELOAD_FOR_OPADDR_ADDR:
4322 check_any = 1;
4323 used_in_set = &reload_reg_used_in_op_addr_reload;
4324 break;
4325
4326 case RELOAD_FOR_OTHER_ADDRESS:
4327 used_in_set = &reload_reg_used_in_other_addr;
4328 check_any = 1;
4329 break;
4330
4331 case RELOAD_FOR_INPUT:
4332 used_in_set = &reload_reg_used_in_input[opnum];
4333 break;
4334
4335 case RELOAD_FOR_OUTPUT:
4336 used_in_set = &reload_reg_used_in_output[opnum];
4337 break;
4338
4339 case RELOAD_FOR_INSN:
4340 used_in_set = &reload_reg_used_in_insn;
4341 break;
4342 default:
4343 abort ();
4344 }
4345 /* We resolve conflicts with remaining reloads of the same type by
4346 excluding the intervals of reload registers by them from the
4347 interval of freed reload registers. Since we only keep track of
4348 one set of interval bounds, we might have to exclude somewhat
4349 more than what would be necessary if we used a HARD_REG_SET here.
4350 But this should only happen very infrequently, so there should
4351 be no reason to worry about it. */
4352
4353 start_regno = regno;
4354 end_regno = regno + nregs;
4355 if (check_opnum || check_any)
4356 {
4357 for (i = n_reloads - 1; i >= 0; i--)
4358 {
4359 if (rld[i].when_needed == type
4360 && (check_any || rld[i].opnum == opnum)
4361 && rld[i].reg_rtx)
4362 {
4363 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4364 unsigned int conflict_end
4365 = (conflict_start
4366 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4367
4368 /* If there is an overlap with the first to-be-freed register,
4369 adjust the interval start. */
4370 if (conflict_start <= start_regno && conflict_end > start_regno)
4371 start_regno = conflict_end;
4372 /* Otherwise, if there is a conflict with one of the other
4373 to-be-freed registers, adjust the interval end. */
4374 if (conflict_start > start_regno && conflict_start < end_regno)
4375 end_regno = conflict_start;
4376 }
4377 }
4378 }
4379
4380 for (r = start_regno; r < end_regno; r++)
4381 CLEAR_HARD_REG_BIT (*used_in_set, r);
4382 }
4383
4384 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4385 specified by OPNUM and TYPE. */
4386
4387 static int
4388 reload_reg_free_p (regno, opnum, type)
4389 unsigned int regno;
4390 int opnum;
4391 enum reload_type type;
4392 {
4393 int i;
4394
4395 /* In use for a RELOAD_OTHER means it's not available for anything. */
4396 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4397 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4398 return 0;
4399
4400 switch (type)
4401 {
4402 case RELOAD_OTHER:
4403 /* In use for anything means we can't use it for RELOAD_OTHER. */
4404 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4405 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4406 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4407 return 0;
4408
4409 for (i = 0; i < reload_n_operands; i++)
4410 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4411 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4412 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4413 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4414 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4415 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4416 return 0;
4417
4418 return 1;
4419
4420 case RELOAD_FOR_INPUT:
4421 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4422 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4423 return 0;
4424
4425 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4426 return 0;
4427
4428 /* If it is used for some other input, can't use it. */
4429 for (i = 0; i < reload_n_operands; i++)
4430 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4431 return 0;
4432
4433 /* If it is used in a later operand's address, can't use it. */
4434 for (i = opnum + 1; i < reload_n_operands; i++)
4435 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4436 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4437 return 0;
4438
4439 return 1;
4440
4441 case RELOAD_FOR_INPUT_ADDRESS:
4442 /* Can't use a register if it is used for an input address for this
4443 operand or used as an input in an earlier one. */
4444 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4445 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4446 return 0;
4447
4448 for (i = 0; i < opnum; i++)
4449 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4450 return 0;
4451
4452 return 1;
4453
4454 case RELOAD_FOR_INPADDR_ADDRESS:
4455 /* Can't use a register if it is used for an input address
4456 for this operand or used as an input in an earlier
4457 one. */
4458 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4459 return 0;
4460
4461 for (i = 0; i < opnum; i++)
4462 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4463 return 0;
4464
4465 return 1;
4466
4467 case RELOAD_FOR_OUTPUT_ADDRESS:
4468 /* Can't use a register if it is used for an output address for this
4469 operand or used as an output in this or a later operand. Note
4470 that multiple output operands are emitted in reverse order, so
4471 the conflicting ones are those with lower indices. */
4472 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4473 return 0;
4474
4475 for (i = 0; i <= opnum; i++)
4476 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4477 return 0;
4478
4479 return 1;
4480
4481 case RELOAD_FOR_OUTADDR_ADDRESS:
4482 /* Can't use a register if it is used for an output address
4483 for this operand or used as an output in this or a
4484 later operand. Note that multiple output operands are
4485 emitted in reverse order, so the conflicting ones are
4486 those with lower indices. */
4487 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4488 return 0;
4489
4490 for (i = 0; i <= opnum; i++)
4491 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4492 return 0;
4493
4494 return 1;
4495
4496 case RELOAD_FOR_OPERAND_ADDRESS:
4497 for (i = 0; i < reload_n_operands; i++)
4498 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4499 return 0;
4500
4501 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4502 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4503
4504 case RELOAD_FOR_OPADDR_ADDR:
4505 for (i = 0; i < reload_n_operands; i++)
4506 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4507 return 0;
4508
4509 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4510
4511 case RELOAD_FOR_OUTPUT:
4512 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4513 outputs, or an operand address for this or an earlier output.
4514 Note that multiple output operands are emitted in reverse order,
4515 so the conflicting ones are those with higher indices. */
4516 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4517 return 0;
4518
4519 for (i = 0; i < reload_n_operands; i++)
4520 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4521 return 0;
4522
4523 for (i = opnum; i < reload_n_operands; i++)
4524 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4525 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4526 return 0;
4527
4528 return 1;
4529
4530 case RELOAD_FOR_INSN:
4531 for (i = 0; i < reload_n_operands; i++)
4532 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4533 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4534 return 0;
4535
4536 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4537 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4538
4539 case RELOAD_FOR_OTHER_ADDRESS:
4540 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4541 }
4542 abort ();
4543 }
4544
4545 /* Return 1 if the value in reload reg REGNO, as used by a reload
4546 needed for the part of the insn specified by OPNUM and TYPE,
4547 is still available in REGNO at the end of the insn.
4548
4549 We can assume that the reload reg was already tested for availability
4550 at the time it is needed, and we should not check this again,
4551 in case the reg has already been marked in use. */
4552
4553 static int
4554 reload_reg_reaches_end_p (regno, opnum, type)
4555 unsigned int regno;
4556 int opnum;
4557 enum reload_type type;
4558 {
4559 int i;
4560
4561 switch (type)
4562 {
4563 case RELOAD_OTHER:
4564 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4565 its value must reach the end. */
4566 return 1;
4567
4568 /* If this use is for part of the insn,
4569 its value reaches if no subsequent part uses the same register.
4570 Just like the above function, don't try to do this with lots
4571 of fallthroughs. */
4572
4573 case RELOAD_FOR_OTHER_ADDRESS:
4574 /* Here we check for everything else, since these don't conflict
4575 with anything else and everything comes later. */
4576
4577 for (i = 0; i < reload_n_operands; i++)
4578 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4579 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4580 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4581 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4582 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4583 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4584 return 0;
4585
4586 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4587 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4588 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4589
4590 case RELOAD_FOR_INPUT_ADDRESS:
4591 case RELOAD_FOR_INPADDR_ADDRESS:
4592 /* Similar, except that we check only for this and subsequent inputs
4593 and the address of only subsequent inputs and we do not need
4594 to check for RELOAD_OTHER objects since they are known not to
4595 conflict. */
4596
4597 for (i = opnum; i < reload_n_operands; i++)
4598 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4599 return 0;
4600
4601 for (i = opnum + 1; i < reload_n_operands; i++)
4602 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4603 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4604 return 0;
4605
4606 for (i = 0; i < reload_n_operands; i++)
4607 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4608 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4609 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4610 return 0;
4611
4612 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4613 return 0;
4614
4615 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4616 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4617 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4618
4619 case RELOAD_FOR_INPUT:
4620 /* Similar to input address, except we start at the next operand for
4621 both input and input address and we do not check for
4622 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4623 would conflict. */
4624
4625 for (i = opnum + 1; i < reload_n_operands; i++)
4626 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4627 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4628 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4629 return 0;
4630
4631 /* ... fall through ... */
4632
4633 case RELOAD_FOR_OPERAND_ADDRESS:
4634 /* Check outputs and their addresses. */
4635
4636 for (i = 0; i < reload_n_operands; i++)
4637 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4638 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4639 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4640 return 0;
4641
4642 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4643
4644 case RELOAD_FOR_OPADDR_ADDR:
4645 for (i = 0; i < reload_n_operands; i++)
4646 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4647 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4648 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4649 return 0;
4650
4651 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4652 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4653 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4654
4655 case RELOAD_FOR_INSN:
4656 /* These conflict with other outputs with RELOAD_OTHER. So
4657 we need only check for output addresses. */
4658
4659 opnum = reload_n_operands;
4660
4661 /* ... fall through ... */
4662
4663 case RELOAD_FOR_OUTPUT:
4664 case RELOAD_FOR_OUTPUT_ADDRESS:
4665 case RELOAD_FOR_OUTADDR_ADDRESS:
4666 /* We already know these can't conflict with a later output. So the
4667 only thing to check are later output addresses.
4668 Note that multiple output operands are emitted in reverse order,
4669 so the conflicting ones are those with lower indices. */
4670 for (i = 0; i < opnum; i++)
4671 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4672 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4673 return 0;
4674
4675 return 1;
4676 }
4677
4678 abort ();
4679 }
4680 \f
4681 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4682 Return 0 otherwise.
4683
4684 This function uses the same algorithm as reload_reg_free_p above. */
4685
4686 int
4687 reloads_conflict (r1, r2)
4688 int r1, r2;
4689 {
4690 enum reload_type r1_type = rld[r1].when_needed;
4691 enum reload_type r2_type = rld[r2].when_needed;
4692 int r1_opnum = rld[r1].opnum;
4693 int r2_opnum = rld[r2].opnum;
4694
4695 /* RELOAD_OTHER conflicts with everything. */
4696 if (r2_type == RELOAD_OTHER)
4697 return 1;
4698
4699 /* Otherwise, check conflicts differently for each type. */
4700
4701 switch (r1_type)
4702 {
4703 case RELOAD_FOR_INPUT:
4704 return (r2_type == RELOAD_FOR_INSN
4705 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4706 || r2_type == RELOAD_FOR_OPADDR_ADDR
4707 || r2_type == RELOAD_FOR_INPUT
4708 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4709 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4710 && r2_opnum > r1_opnum));
4711
4712 case RELOAD_FOR_INPUT_ADDRESS:
4713 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4714 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4715
4716 case RELOAD_FOR_INPADDR_ADDRESS:
4717 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4718 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4719
4720 case RELOAD_FOR_OUTPUT_ADDRESS:
4721 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4722 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4723
4724 case RELOAD_FOR_OUTADDR_ADDRESS:
4725 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4726 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4727
4728 case RELOAD_FOR_OPERAND_ADDRESS:
4729 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4730 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4731
4732 case RELOAD_FOR_OPADDR_ADDR:
4733 return (r2_type == RELOAD_FOR_INPUT
4734 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4735
4736 case RELOAD_FOR_OUTPUT:
4737 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4738 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4739 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4740 && r2_opnum >= r1_opnum));
4741
4742 case RELOAD_FOR_INSN:
4743 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4744 || r2_type == RELOAD_FOR_INSN
4745 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4746
4747 case RELOAD_FOR_OTHER_ADDRESS:
4748 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4749
4750 case RELOAD_OTHER:
4751 return 1;
4752
4753 default:
4754 abort ();
4755 }
4756 }
4757 \f
4758 /* Indexed by reload number, 1 if incoming value
4759 inherited from previous insns. */
4760 char reload_inherited[MAX_RELOADS];
4761
4762 /* For an inherited reload, this is the insn the reload was inherited from,
4763 if we know it. Otherwise, this is 0. */
4764 rtx reload_inheritance_insn[MAX_RELOADS];
4765
4766 /* If nonzero, this is a place to get the value of the reload,
4767 rather than using reload_in. */
4768 rtx reload_override_in[MAX_RELOADS];
4769
4770 /* For each reload, the hard register number of the register used,
4771 or -1 if we did not need a register for this reload. */
4772 int reload_spill_index[MAX_RELOADS];
4773
4774 /* Subroutine of free_for_value_p, used to check a single register.
4775 START_REGNO is the starting regno of the full reload register
4776 (possibly comprising multiple hard registers) that we are considering. */
4777
4778 static int
4779 reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4780 reloadnum, ignore_address_reloads)
4781 int start_regno, regno;
4782 int opnum;
4783 enum reload_type type;
4784 rtx value, out;
4785 int reloadnum;
4786 int ignore_address_reloads;
4787 {
4788 int time1;
4789 /* Set if we see an input reload that must not share its reload register
4790 with any new earlyclobber, but might otherwise share the reload
4791 register with an output or input-output reload. */
4792 int check_earlyclobber = 0;
4793 int i;
4794 int copy = 0;
4795
4796 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4797 return 0;
4798
4799 if (out == const0_rtx)
4800 {
4801 copy = 1;
4802 out = NULL_RTX;
4803 }
4804
4805 /* We use some pseudo 'time' value to check if the lifetimes of the
4806 new register use would overlap with the one of a previous reload
4807 that is not read-only or uses a different value.
4808 The 'time' used doesn't have to be linear in any shape or form, just
4809 monotonic.
4810 Some reload types use different 'buckets' for each operand.
4811 So there are MAX_RECOG_OPERANDS different time values for each
4812 such reload type.
4813 We compute TIME1 as the time when the register for the prospective
4814 new reload ceases to be live, and TIME2 for each existing
4815 reload as the time when that the reload register of that reload
4816 becomes live.
4817 Where there is little to be gained by exact lifetime calculations,
4818 we just make conservative assumptions, i.e. a longer lifetime;
4819 this is done in the 'default:' cases. */
4820 switch (type)
4821 {
4822 case RELOAD_FOR_OTHER_ADDRESS:
4823 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4824 time1 = copy ? 0 : 1;
4825 break;
4826 case RELOAD_OTHER:
4827 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4828 break;
4829 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4830 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4831 respectively, to the time values for these, we get distinct time
4832 values. To get distinct time values for each operand, we have to
4833 multiply opnum by at least three. We round that up to four because
4834 multiply by four is often cheaper. */
4835 case RELOAD_FOR_INPADDR_ADDRESS:
4836 time1 = opnum * 4 + 2;
4837 break;
4838 case RELOAD_FOR_INPUT_ADDRESS:
4839 time1 = opnum * 4 + 3;
4840 break;
4841 case RELOAD_FOR_INPUT:
4842 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4843 executes (inclusive). */
4844 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4845 break;
4846 case RELOAD_FOR_OPADDR_ADDR:
4847 /* opnum * 4 + 4
4848 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4849 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4850 break;
4851 case RELOAD_FOR_OPERAND_ADDRESS:
4852 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4853 is executed. */
4854 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4855 break;
4856 case RELOAD_FOR_OUTADDR_ADDRESS:
4857 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4858 break;
4859 case RELOAD_FOR_OUTPUT_ADDRESS:
4860 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4861 break;
4862 default:
4863 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4864 }
4865
4866 for (i = 0; i < n_reloads; i++)
4867 {
4868 rtx reg = rld[i].reg_rtx;
4869 if (reg && GET_CODE (reg) == REG
4870 && ((unsigned) regno - true_regnum (reg)
4871 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned) 1)
4872 && i != reloadnum)
4873 {
4874 rtx other_input = rld[i].in;
4875
4876 /* If the other reload loads the same input value, that
4877 will not cause a conflict only if it's loading it into
4878 the same register. */
4879 if (true_regnum (reg) != start_regno)
4880 other_input = NULL_RTX;
4881 if (! other_input || ! rtx_equal_p (other_input, value)
4882 || rld[i].out || out)
4883 {
4884 int time2;
4885 switch (rld[i].when_needed)
4886 {
4887 case RELOAD_FOR_OTHER_ADDRESS:
4888 time2 = 0;
4889 break;
4890 case RELOAD_FOR_INPADDR_ADDRESS:
4891 /* find_reloads makes sure that a
4892 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4893 by at most one - the first -
4894 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4895 address reload is inherited, the address address reload
4896 goes away, so we can ignore this conflict. */
4897 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4898 && ignore_address_reloads
4899 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4900 Then the address address is still needed to store
4901 back the new address. */
4902 && ! rld[reloadnum].out)
4903 continue;
4904 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4905 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4906 reloads go away. */
4907 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4908 && ignore_address_reloads
4909 /* Unless we are reloading an auto_inc expression. */
4910 && ! rld[reloadnum].out)
4911 continue;
4912 time2 = rld[i].opnum * 4 + 2;
4913 break;
4914 case RELOAD_FOR_INPUT_ADDRESS:
4915 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4916 && ignore_address_reloads
4917 && ! rld[reloadnum].out)
4918 continue;
4919 time2 = rld[i].opnum * 4 + 3;
4920 break;
4921 case RELOAD_FOR_INPUT:
4922 time2 = rld[i].opnum * 4 + 4;
4923 check_earlyclobber = 1;
4924 break;
4925 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4926 == MAX_RECOG_OPERAND * 4 */
4927 case RELOAD_FOR_OPADDR_ADDR:
4928 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4929 && ignore_address_reloads
4930 && ! rld[reloadnum].out)
4931 continue;
4932 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4933 break;
4934 case RELOAD_FOR_OPERAND_ADDRESS:
4935 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4936 check_earlyclobber = 1;
4937 break;
4938 case RELOAD_FOR_INSN:
4939 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4940 break;
4941 case RELOAD_FOR_OUTPUT:
4942 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4943 instruction is executed. */
4944 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4945 break;
4946 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4947 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4948 value. */
4949 case RELOAD_FOR_OUTADDR_ADDRESS:
4950 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4951 && ignore_address_reloads
4952 && ! rld[reloadnum].out)
4953 continue;
4954 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4955 break;
4956 case RELOAD_FOR_OUTPUT_ADDRESS:
4957 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4958 break;
4959 case RELOAD_OTHER:
4960 /* If there is no conflict in the input part, handle this
4961 like an output reload. */
4962 if (! rld[i].in || rtx_equal_p (other_input, value))
4963 {
4964 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4965 /* Earlyclobbered outputs must conflict with inputs. */
4966 if (earlyclobber_operand_p (rld[i].out))
4967 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4968
4969 break;
4970 }
4971 time2 = 1;
4972 /* RELOAD_OTHER might be live beyond instruction execution,
4973 but this is not obvious when we set time2 = 1. So check
4974 here if there might be a problem with the new reload
4975 clobbering the register used by the RELOAD_OTHER. */
4976 if (out)
4977 return 0;
4978 break;
4979 default:
4980 return 0;
4981 }
4982 if ((time1 >= time2
4983 && (! rld[i].in || rld[i].out
4984 || ! rtx_equal_p (other_input, value)))
4985 || (out && rld[reloadnum].out_reg
4986 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4987 return 0;
4988 }
4989 }
4990 }
4991
4992 /* Earlyclobbered outputs must conflict with inputs. */
4993 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4994 return 0;
4995
4996 return 1;
4997 }
4998
4999 /* Return 1 if the value in reload reg REGNO, as used by a reload
5000 needed for the part of the insn specified by OPNUM and TYPE,
5001 may be used to load VALUE into it.
5002
5003 MODE is the mode in which the register is used, this is needed to
5004 determine how many hard regs to test.
5005
5006 Other read-only reloads with the same value do not conflict
5007 unless OUT is nonzero and these other reloads have to live while
5008 output reloads live.
5009 If OUT is CONST0_RTX, this is a special case: it means that the
5010 test should not be for using register REGNO as reload register, but
5011 for copying from register REGNO into the reload register.
5012
5013 RELOADNUM is the number of the reload we want to load this value for;
5014 a reload does not conflict with itself.
5015
5016 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5017 reloads that load an address for the very reload we are considering.
5018
5019 The caller has to make sure that there is no conflict with the return
5020 register. */
5021
5022 static int
5023 free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
5024 ignore_address_reloads)
5025 int regno;
5026 enum machine_mode mode;
5027 int opnum;
5028 enum reload_type type;
5029 rtx value, out;
5030 int reloadnum;
5031 int ignore_address_reloads;
5032 {
5033 int nregs = HARD_REGNO_NREGS (regno, mode);
5034 while (nregs-- > 0)
5035 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5036 value, out, reloadnum,
5037 ignore_address_reloads))
5038 return 0;
5039 return 1;
5040 }
5041
5042 /* Determine whether the reload reg X overlaps any rtx'es used for
5043 overriding inheritance. Return nonzero if so. */
5044
5045 static int
5046 conflicts_with_override (x)
5047 rtx x;
5048 {
5049 int i;
5050 for (i = 0; i < n_reloads; i++)
5051 if (reload_override_in[i]
5052 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5053 return 1;
5054 return 0;
5055 }
5056 \f
5057 /* Give an error message saying we failed to find a reload for INSN,
5058 and clear out reload R. */
5059 static void
5060 failed_reload (insn, r)
5061 rtx insn;
5062 int r;
5063 {
5064 if (asm_noperands (PATTERN (insn)) < 0)
5065 /* It's the compiler's fault. */
5066 fatal_insn ("could not find a spill register", insn);
5067
5068 /* It's the user's fault; the operand's mode and constraint
5069 don't match. Disable this reload so we don't crash in final. */
5070 error_for_asm (insn,
5071 "`asm' operand constraint incompatible with operand size");
5072 rld[r].in = 0;
5073 rld[r].out = 0;
5074 rld[r].reg_rtx = 0;
5075 rld[r].optional = 1;
5076 rld[r].secondary_p = 1;
5077 }
5078
5079 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5080 for reload R. If it's valid, get an rtx for it. Return nonzero if
5081 successful. */
5082 static int
5083 set_reload_reg (i, r)
5084 int i, r;
5085 {
5086 int regno;
5087 rtx reg = spill_reg_rtx[i];
5088
5089 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5090 spill_reg_rtx[i] = reg
5091 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5092
5093 regno = true_regnum (reg);
5094
5095 /* Detect when the reload reg can't hold the reload mode.
5096 This used to be one `if', but Sequent compiler can't handle that. */
5097 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5098 {
5099 enum machine_mode test_mode = VOIDmode;
5100 if (rld[r].in)
5101 test_mode = GET_MODE (rld[r].in);
5102 /* If rld[r].in has VOIDmode, it means we will load it
5103 in whatever mode the reload reg has: to wit, rld[r].mode.
5104 We have already tested that for validity. */
5105 /* Aside from that, we need to test that the expressions
5106 to reload from or into have modes which are valid for this
5107 reload register. Otherwise the reload insns would be invalid. */
5108 if (! (rld[r].in != 0 && test_mode != VOIDmode
5109 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5110 if (! (rld[r].out != 0
5111 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5112 {
5113 /* The reg is OK. */
5114 last_spill_reg = i;
5115
5116 /* Mark as in use for this insn the reload regs we use
5117 for this. */
5118 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5119 rld[r].when_needed, rld[r].mode);
5120
5121 rld[r].reg_rtx = reg;
5122 reload_spill_index[r] = spill_regs[i];
5123 return 1;
5124 }
5125 }
5126 return 0;
5127 }
5128
5129 /* Find a spill register to use as a reload register for reload R.
5130 LAST_RELOAD is nonzero if this is the last reload for the insn being
5131 processed.
5132
5133 Set rld[R].reg_rtx to the register allocated.
5134
5135 We return 1 if successful, or 0 if we couldn't find a spill reg and
5136 we didn't change anything. */
5137
5138 static int
5139 allocate_reload_reg (chain, r, last_reload)
5140 struct insn_chain *chain ATTRIBUTE_UNUSED;
5141 int r;
5142 int last_reload;
5143 {
5144 int i, pass, count;
5145
5146 /* If we put this reload ahead, thinking it is a group,
5147 then insist on finding a group. Otherwise we can grab a
5148 reg that some other reload needs.
5149 (That can happen when we have a 68000 DATA_OR_FP_REG
5150 which is a group of data regs or one fp reg.)
5151 We need not be so restrictive if there are no more reloads
5152 for this insn.
5153
5154 ??? Really it would be nicer to have smarter handling
5155 for that kind of reg class, where a problem like this is normal.
5156 Perhaps those classes should be avoided for reloading
5157 by use of more alternatives. */
5158
5159 int force_group = rld[r].nregs > 1 && ! last_reload;
5160
5161 /* If we want a single register and haven't yet found one,
5162 take any reg in the right class and not in use.
5163 If we want a consecutive group, here is where we look for it.
5164
5165 We use two passes so we can first look for reload regs to
5166 reuse, which are already in use for other reloads in this insn,
5167 and only then use additional registers.
5168 I think that maximizing reuse is needed to make sure we don't
5169 run out of reload regs. Suppose we have three reloads, and
5170 reloads A and B can share regs. These need two regs.
5171 Suppose A and B are given different regs.
5172 That leaves none for C. */
5173 for (pass = 0; pass < 2; pass++)
5174 {
5175 /* I is the index in spill_regs.
5176 We advance it round-robin between insns to use all spill regs
5177 equally, so that inherited reloads have a chance
5178 of leapfrogging each other. */
5179
5180 i = last_spill_reg;
5181
5182 for (count = 0; count < n_spills; count++)
5183 {
5184 int class = (int) rld[r].class;
5185 int regnum;
5186
5187 i++;
5188 if (i >= n_spills)
5189 i -= n_spills;
5190 regnum = spill_regs[i];
5191
5192 if ((reload_reg_free_p (regnum, rld[r].opnum,
5193 rld[r].when_needed)
5194 || (rld[r].in
5195 /* We check reload_reg_used to make sure we
5196 don't clobber the return register. */
5197 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5198 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5199 rld[r].when_needed, rld[r].in,
5200 rld[r].out, r, 1)))
5201 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5202 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5203 /* Look first for regs to share, then for unshared. But
5204 don't share regs used for inherited reloads; they are
5205 the ones we want to preserve. */
5206 && (pass
5207 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5208 regnum)
5209 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5210 regnum))))
5211 {
5212 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5213 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5214 (on 68000) got us two FP regs. If NR is 1,
5215 we would reject both of them. */
5216 if (force_group)
5217 nr = rld[r].nregs;
5218 /* If we need only one reg, we have already won. */
5219 if (nr == 1)
5220 {
5221 /* But reject a single reg if we demand a group. */
5222 if (force_group)
5223 continue;
5224 break;
5225 }
5226 /* Otherwise check that as many consecutive regs as we need
5227 are available here. */
5228 while (nr > 1)
5229 {
5230 int regno = regnum + nr - 1;
5231 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5232 && spill_reg_order[regno] >= 0
5233 && reload_reg_free_p (regno, rld[r].opnum,
5234 rld[r].when_needed)))
5235 break;
5236 nr--;
5237 }
5238 if (nr == 1)
5239 break;
5240 }
5241 }
5242
5243 /* If we found something on pass 1, omit pass 2. */
5244 if (count < n_spills)
5245 break;
5246 }
5247
5248 /* We should have found a spill register by now. */
5249 if (count >= n_spills)
5250 return 0;
5251
5252 /* I is the index in SPILL_REG_RTX of the reload register we are to
5253 allocate. Get an rtx for it and find its register number. */
5254
5255 return set_reload_reg (i, r);
5256 }
5257 \f
5258 /* Initialize all the tables needed to allocate reload registers.
5259 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5260 is the array we use to restore the reg_rtx field for every reload. */
5261
5262 static void
5263 choose_reload_regs_init (chain, save_reload_reg_rtx)
5264 struct insn_chain *chain;
5265 rtx *save_reload_reg_rtx;
5266 {
5267 int i;
5268
5269 for (i = 0; i < n_reloads; i++)
5270 rld[i].reg_rtx = save_reload_reg_rtx[i];
5271
5272 memset (reload_inherited, 0, MAX_RELOADS);
5273 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5274 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5275
5276 CLEAR_HARD_REG_SET (reload_reg_used);
5277 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5278 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5279 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5280 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5281 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5282
5283 CLEAR_HARD_REG_SET (reg_used_in_insn);
5284 {
5285 HARD_REG_SET tmp;
5286 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5287 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5288 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5289 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5290 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5291 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5292 }
5293
5294 for (i = 0; i < reload_n_operands; i++)
5295 {
5296 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5297 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5298 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5299 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5300 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5301 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5302 }
5303
5304 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5305
5306 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5307
5308 for (i = 0; i < n_reloads; i++)
5309 /* If we have already decided to use a certain register,
5310 don't use it in another way. */
5311 if (rld[i].reg_rtx)
5312 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5313 rld[i].when_needed, rld[i].mode);
5314 }
5315
5316 /* Assign hard reg targets for the pseudo-registers we must reload
5317 into hard regs for this insn.
5318 Also output the instructions to copy them in and out of the hard regs.
5319
5320 For machines with register classes, we are responsible for
5321 finding a reload reg in the proper class. */
5322
5323 static void
5324 choose_reload_regs (chain)
5325 struct insn_chain *chain;
5326 {
5327 rtx insn = chain->insn;
5328 int i, j;
5329 unsigned int max_group_size = 1;
5330 enum reg_class group_class = NO_REGS;
5331 int pass, win, inheritance;
5332
5333 rtx save_reload_reg_rtx[MAX_RELOADS];
5334
5335 /* In order to be certain of getting the registers we need,
5336 we must sort the reloads into order of increasing register class.
5337 Then our grabbing of reload registers will parallel the process
5338 that provided the reload registers.
5339
5340 Also note whether any of the reloads wants a consecutive group of regs.
5341 If so, record the maximum size of the group desired and what
5342 register class contains all the groups needed by this insn. */
5343
5344 for (j = 0; j < n_reloads; j++)
5345 {
5346 reload_order[j] = j;
5347 reload_spill_index[j] = -1;
5348
5349 if (rld[j].nregs > 1)
5350 {
5351 max_group_size = MAX (rld[j].nregs, max_group_size);
5352 group_class
5353 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5354 }
5355
5356 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5357 }
5358
5359 if (n_reloads > 1)
5360 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5361
5362 /* If -O, try first with inheritance, then turning it off.
5363 If not -O, don't do inheritance.
5364 Using inheritance when not optimizing leads to paradoxes
5365 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5366 because one side of the comparison might be inherited. */
5367 win = 0;
5368 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5369 {
5370 choose_reload_regs_init (chain, save_reload_reg_rtx);
5371
5372 /* Process the reloads in order of preference just found.
5373 Beyond this point, subregs can be found in reload_reg_rtx.
5374
5375 This used to look for an existing reloaded home for all of the
5376 reloads, and only then perform any new reloads. But that could lose
5377 if the reloads were done out of reg-class order because a later
5378 reload with a looser constraint might have an old home in a register
5379 needed by an earlier reload with a tighter constraint.
5380
5381 To solve this, we make two passes over the reloads, in the order
5382 described above. In the first pass we try to inherit a reload
5383 from a previous insn. If there is a later reload that needs a
5384 class that is a proper subset of the class being processed, we must
5385 also allocate a spill register during the first pass.
5386
5387 Then make a second pass over the reloads to allocate any reloads
5388 that haven't been given registers yet. */
5389
5390 for (j = 0; j < n_reloads; j++)
5391 {
5392 int r = reload_order[j];
5393 rtx search_equiv = NULL_RTX;
5394
5395 /* Ignore reloads that got marked inoperative. */
5396 if (rld[r].out == 0 && rld[r].in == 0
5397 && ! rld[r].secondary_p)
5398 continue;
5399
5400 /* If find_reloads chose to use reload_in or reload_out as a reload
5401 register, we don't need to chose one. Otherwise, try even if it
5402 found one since we might save an insn if we find the value lying
5403 around.
5404 Try also when reload_in is a pseudo without a hard reg. */
5405 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5406 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5407 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5408 && GET_CODE (rld[r].in) != MEM
5409 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5410 continue;
5411
5412 #if 0 /* No longer needed for correct operation.
5413 It might give better code, or might not; worth an experiment? */
5414 /* If this is an optional reload, we can't inherit from earlier insns
5415 until we are sure that any non-optional reloads have been allocated.
5416 The following code takes advantage of the fact that optional reloads
5417 are at the end of reload_order. */
5418 if (rld[r].optional != 0)
5419 for (i = 0; i < j; i++)
5420 if ((rld[reload_order[i]].out != 0
5421 || rld[reload_order[i]].in != 0
5422 || rld[reload_order[i]].secondary_p)
5423 && ! rld[reload_order[i]].optional
5424 && rld[reload_order[i]].reg_rtx == 0)
5425 allocate_reload_reg (chain, reload_order[i], 0);
5426 #endif
5427
5428 /* First see if this pseudo is already available as reloaded
5429 for a previous insn. We cannot try to inherit for reloads
5430 that are smaller than the maximum number of registers needed
5431 for groups unless the register we would allocate cannot be used
5432 for the groups.
5433
5434 We could check here to see if this is a secondary reload for
5435 an object that is already in a register of the desired class.
5436 This would avoid the need for the secondary reload register.
5437 But this is complex because we can't easily determine what
5438 objects might want to be loaded via this reload. So let a
5439 register be allocated here. In `emit_reload_insns' we suppress
5440 one of the loads in the case described above. */
5441
5442 if (inheritance)
5443 {
5444 int byte = 0;
5445 int regno = -1;
5446 enum machine_mode mode = VOIDmode;
5447
5448 if (rld[r].in == 0)
5449 ;
5450 else if (GET_CODE (rld[r].in) == REG)
5451 {
5452 regno = REGNO (rld[r].in);
5453 mode = GET_MODE (rld[r].in);
5454 }
5455 else if (GET_CODE (rld[r].in_reg) == REG)
5456 {
5457 regno = REGNO (rld[r].in_reg);
5458 mode = GET_MODE (rld[r].in_reg);
5459 }
5460 else if (GET_CODE (rld[r].in_reg) == SUBREG
5461 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5462 {
5463 byte = SUBREG_BYTE (rld[r].in_reg);
5464 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5465 if (regno < FIRST_PSEUDO_REGISTER)
5466 regno = subreg_regno (rld[r].in_reg);
5467 mode = GET_MODE (rld[r].in_reg);
5468 }
5469 #ifdef AUTO_INC_DEC
5470 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5471 || GET_CODE (rld[r].in_reg) == PRE_DEC
5472 || GET_CODE (rld[r].in_reg) == POST_INC
5473 || GET_CODE (rld[r].in_reg) == POST_DEC)
5474 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5475 {
5476 regno = REGNO (XEXP (rld[r].in_reg, 0));
5477 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5478 rld[r].out = rld[r].in;
5479 }
5480 #endif
5481 #if 0
5482 /* This won't work, since REGNO can be a pseudo reg number.
5483 Also, it takes much more hair to keep track of all the things
5484 that can invalidate an inherited reload of part of a pseudoreg. */
5485 else if (GET_CODE (rld[r].in) == SUBREG
5486 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5487 regno = subreg_regno (rld[r].in);
5488 #endif
5489
5490 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5491 {
5492 enum reg_class class = rld[r].class, last_class;
5493 rtx last_reg = reg_last_reload_reg[regno];
5494 enum machine_mode need_mode;
5495
5496 i = REGNO (last_reg);
5497 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5498 last_class = REGNO_REG_CLASS (i);
5499
5500 if (byte == 0)
5501 need_mode = mode;
5502 else
5503 need_mode
5504 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5505 GET_MODE_CLASS (mode));
5506
5507 if (
5508 #ifdef CANNOT_CHANGE_MODE_CLASS
5509 (!REG_CANNOT_CHANGE_MODE_P (i, GET_MODE (last_reg),
5510 need_mode)
5511 &&
5512 #endif
5513 (GET_MODE_SIZE (GET_MODE (last_reg))
5514 >= GET_MODE_SIZE (need_mode))
5515 #ifdef CANNOT_CHANGE_MODE_CLASS
5516 )
5517 #endif
5518 && reg_reloaded_contents[i] == regno
5519 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5520 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5521 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5522 /* Even if we can't use this register as a reload
5523 register, we might use it for reload_override_in,
5524 if copying it to the desired class is cheap
5525 enough. */
5526 || ((REGISTER_MOVE_COST (mode, last_class, class)
5527 < MEMORY_MOVE_COST (mode, class, 1))
5528 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5529 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5530 last_reg)
5531 == NO_REGS)
5532 #endif
5533 #ifdef SECONDARY_MEMORY_NEEDED
5534 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5535 mode)
5536 #endif
5537 ))
5538
5539 && (rld[r].nregs == max_group_size
5540 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5541 i))
5542 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5543 rld[r].when_needed, rld[r].in,
5544 const0_rtx, r, 1))
5545 {
5546 /* If a group is needed, verify that all the subsequent
5547 registers still have their values intact. */
5548 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5549 int k;
5550
5551 for (k = 1; k < nr; k++)
5552 if (reg_reloaded_contents[i + k] != regno
5553 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5554 break;
5555
5556 if (k == nr)
5557 {
5558 int i1;
5559 int bad_for_class;
5560
5561 last_reg = (GET_MODE (last_reg) == mode
5562 ? last_reg : gen_rtx_REG (mode, i));
5563
5564 bad_for_class = 0;
5565 for (k = 0; k < nr; k++)
5566 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5567 i+k);
5568
5569 /* We found a register that contains the
5570 value we need. If this register is the
5571 same as an `earlyclobber' operand of the
5572 current insn, just mark it as a place to
5573 reload from since we can't use it as the
5574 reload register itself. */
5575
5576 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5577 if (reg_overlap_mentioned_for_reload_p
5578 (reg_last_reload_reg[regno],
5579 reload_earlyclobbers[i1]))
5580 break;
5581
5582 if (i1 != n_earlyclobbers
5583 || ! (free_for_value_p (i, rld[r].mode,
5584 rld[r].opnum,
5585 rld[r].when_needed, rld[r].in,
5586 rld[r].out, r, 1))
5587 /* Don't use it if we'd clobber a pseudo reg. */
5588 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5589 && rld[r].out
5590 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5591 /* Don't clobber the frame pointer. */
5592 || (i == HARD_FRAME_POINTER_REGNUM
5593 && frame_pointer_needed
5594 && rld[r].out)
5595 /* Don't really use the inherited spill reg
5596 if we need it wider than we've got it. */
5597 || (GET_MODE_SIZE (rld[r].mode)
5598 > GET_MODE_SIZE (mode))
5599 || bad_for_class
5600
5601 /* If find_reloads chose reload_out as reload
5602 register, stay with it - that leaves the
5603 inherited register for subsequent reloads. */
5604 || (rld[r].out && rld[r].reg_rtx
5605 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5606 {
5607 if (! rld[r].optional)
5608 {
5609 reload_override_in[r] = last_reg;
5610 reload_inheritance_insn[r]
5611 = reg_reloaded_insn[i];
5612 }
5613 }
5614 else
5615 {
5616 int k;
5617 /* We can use this as a reload reg. */
5618 /* Mark the register as in use for this part of
5619 the insn. */
5620 mark_reload_reg_in_use (i,
5621 rld[r].opnum,
5622 rld[r].when_needed,
5623 rld[r].mode);
5624 rld[r].reg_rtx = last_reg;
5625 reload_inherited[r] = 1;
5626 reload_inheritance_insn[r]
5627 = reg_reloaded_insn[i];
5628 reload_spill_index[r] = i;
5629 for (k = 0; k < nr; k++)
5630 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5631 i + k);
5632 }
5633 }
5634 }
5635 }
5636 }
5637
5638 /* Here's another way to see if the value is already lying around. */
5639 if (inheritance
5640 && rld[r].in != 0
5641 && ! reload_inherited[r]
5642 && rld[r].out == 0
5643 && (CONSTANT_P (rld[r].in)
5644 || GET_CODE (rld[r].in) == PLUS
5645 || GET_CODE (rld[r].in) == REG
5646 || GET_CODE (rld[r].in) == MEM)
5647 && (rld[r].nregs == max_group_size
5648 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5649 search_equiv = rld[r].in;
5650 /* If this is an output reload from a simple move insn, look
5651 if an equivalence for the input is available. */
5652 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5653 {
5654 rtx set = single_set (insn);
5655
5656 if (set
5657 && rtx_equal_p (rld[r].out, SET_DEST (set))
5658 && CONSTANT_P (SET_SRC (set)))
5659 search_equiv = SET_SRC (set);
5660 }
5661
5662 if (search_equiv)
5663 {
5664 rtx equiv
5665 = find_equiv_reg (search_equiv, insn, rld[r].class,
5666 -1, NULL, 0, rld[r].mode);
5667 int regno = 0;
5668
5669 if (equiv != 0)
5670 {
5671 if (GET_CODE (equiv) == REG)
5672 regno = REGNO (equiv);
5673 else if (GET_CODE (equiv) == SUBREG)
5674 {
5675 /* This must be a SUBREG of a hard register.
5676 Make a new REG since this might be used in an
5677 address and not all machines support SUBREGs
5678 there. */
5679 regno = subreg_regno (equiv);
5680 equiv = gen_rtx_REG (rld[r].mode, regno);
5681 }
5682 else
5683 abort ();
5684 }
5685
5686 /* If we found a spill reg, reject it unless it is free
5687 and of the desired class. */
5688 if (equiv != 0)
5689 {
5690 int regs_used = 0;
5691 int bad_for_class = 0;
5692 int max_regno = regno + rld[r].nregs;
5693
5694 for (i = regno; i < max_regno; i++)
5695 {
5696 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5697 i);
5698 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5699 i);
5700 }
5701
5702 if ((regs_used
5703 && ! free_for_value_p (regno, rld[r].mode,
5704 rld[r].opnum, rld[r].when_needed,
5705 rld[r].in, rld[r].out, r, 1))
5706 || bad_for_class)
5707 equiv = 0;
5708 }
5709
5710 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5711 equiv = 0;
5712
5713 /* We found a register that contains the value we need.
5714 If this register is the same as an `earlyclobber' operand
5715 of the current insn, just mark it as a place to reload from
5716 since we can't use it as the reload register itself. */
5717
5718 if (equiv != 0)
5719 for (i = 0; i < n_earlyclobbers; i++)
5720 if (reg_overlap_mentioned_for_reload_p (equiv,
5721 reload_earlyclobbers[i]))
5722 {
5723 if (! rld[r].optional)
5724 reload_override_in[r] = equiv;
5725 equiv = 0;
5726 break;
5727 }
5728
5729 /* If the equiv register we have found is explicitly clobbered
5730 in the current insn, it depends on the reload type if we
5731 can use it, use it for reload_override_in, or not at all.
5732 In particular, we then can't use EQUIV for a
5733 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5734
5735 if (equiv != 0)
5736 {
5737 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5738 switch (rld[r].when_needed)
5739 {
5740 case RELOAD_FOR_OTHER_ADDRESS:
5741 case RELOAD_FOR_INPADDR_ADDRESS:
5742 case RELOAD_FOR_INPUT_ADDRESS:
5743 case RELOAD_FOR_OPADDR_ADDR:
5744 break;
5745 case RELOAD_OTHER:
5746 case RELOAD_FOR_INPUT:
5747 case RELOAD_FOR_OPERAND_ADDRESS:
5748 if (! rld[r].optional)
5749 reload_override_in[r] = equiv;
5750 /* Fall through. */
5751 default:
5752 equiv = 0;
5753 break;
5754 }
5755 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5756 switch (rld[r].when_needed)
5757 {
5758 case RELOAD_FOR_OTHER_ADDRESS:
5759 case RELOAD_FOR_INPADDR_ADDRESS:
5760 case RELOAD_FOR_INPUT_ADDRESS:
5761 case RELOAD_FOR_OPADDR_ADDR:
5762 case RELOAD_FOR_OPERAND_ADDRESS:
5763 case RELOAD_FOR_INPUT:
5764 break;
5765 case RELOAD_OTHER:
5766 if (! rld[r].optional)
5767 reload_override_in[r] = equiv;
5768 /* Fall through. */
5769 default:
5770 equiv = 0;
5771 break;
5772 }
5773 }
5774
5775 /* If we found an equivalent reg, say no code need be generated
5776 to load it, and use it as our reload reg. */
5777 if (equiv != 0
5778 && (regno != HARD_FRAME_POINTER_REGNUM
5779 || !frame_pointer_needed))
5780 {
5781 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5782 int k;
5783 rld[r].reg_rtx = equiv;
5784 reload_inherited[r] = 1;
5785
5786 /* If reg_reloaded_valid is not set for this register,
5787 there might be a stale spill_reg_store lying around.
5788 We must clear it, since otherwise emit_reload_insns
5789 might delete the store. */
5790 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5791 spill_reg_store[regno] = NULL_RTX;
5792 /* If any of the hard registers in EQUIV are spill
5793 registers, mark them as in use for this insn. */
5794 for (k = 0; k < nr; k++)
5795 {
5796 i = spill_reg_order[regno + k];
5797 if (i >= 0)
5798 {
5799 mark_reload_reg_in_use (regno, rld[r].opnum,
5800 rld[r].when_needed,
5801 rld[r].mode);
5802 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5803 regno + k);
5804 }
5805 }
5806 }
5807 }
5808
5809 /* If we found a register to use already, or if this is an optional
5810 reload, we are done. */
5811 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5812 continue;
5813
5814 #if 0
5815 /* No longer needed for correct operation. Might or might
5816 not give better code on the average. Want to experiment? */
5817
5818 /* See if there is a later reload that has a class different from our
5819 class that intersects our class or that requires less register
5820 than our reload. If so, we must allocate a register to this
5821 reload now, since that reload might inherit a previous reload
5822 and take the only available register in our class. Don't do this
5823 for optional reloads since they will force all previous reloads
5824 to be allocated. Also don't do this for reloads that have been
5825 turned off. */
5826
5827 for (i = j + 1; i < n_reloads; i++)
5828 {
5829 int s = reload_order[i];
5830
5831 if ((rld[s].in == 0 && rld[s].out == 0
5832 && ! rld[s].secondary_p)
5833 || rld[s].optional)
5834 continue;
5835
5836 if ((rld[s].class != rld[r].class
5837 && reg_classes_intersect_p (rld[r].class,
5838 rld[s].class))
5839 || rld[s].nregs < rld[r].nregs)
5840 break;
5841 }
5842
5843 if (i == n_reloads)
5844 continue;
5845
5846 allocate_reload_reg (chain, r, j == n_reloads - 1);
5847 #endif
5848 }
5849
5850 /* Now allocate reload registers for anything non-optional that
5851 didn't get one yet. */
5852 for (j = 0; j < n_reloads; j++)
5853 {
5854 int r = reload_order[j];
5855
5856 /* Ignore reloads that got marked inoperative. */
5857 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5858 continue;
5859
5860 /* Skip reloads that already have a register allocated or are
5861 optional. */
5862 if (rld[r].reg_rtx != 0 || rld[r].optional)
5863 continue;
5864
5865 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5866 break;
5867 }
5868
5869 /* If that loop got all the way, we have won. */
5870 if (j == n_reloads)
5871 {
5872 win = 1;
5873 break;
5874 }
5875
5876 /* Loop around and try without any inheritance. */
5877 }
5878
5879 if (! win)
5880 {
5881 /* First undo everything done by the failed attempt
5882 to allocate with inheritance. */
5883 choose_reload_regs_init (chain, save_reload_reg_rtx);
5884
5885 /* Some sanity tests to verify that the reloads found in the first
5886 pass are identical to the ones we have now. */
5887 if (chain->n_reloads != n_reloads)
5888 abort ();
5889
5890 for (i = 0; i < n_reloads; i++)
5891 {
5892 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5893 continue;
5894 if (chain->rld[i].when_needed != rld[i].when_needed)
5895 abort ();
5896 for (j = 0; j < n_spills; j++)
5897 if (spill_regs[j] == chain->rld[i].regno)
5898 if (! set_reload_reg (j, i))
5899 failed_reload (chain->insn, i);
5900 }
5901 }
5902
5903 /* If we thought we could inherit a reload, because it seemed that
5904 nothing else wanted the same reload register earlier in the insn,
5905 verify that assumption, now that all reloads have been assigned.
5906 Likewise for reloads where reload_override_in has been set. */
5907
5908 /* If doing expensive optimizations, do one preliminary pass that doesn't
5909 cancel any inheritance, but removes reloads that have been needed only
5910 for reloads that we know can be inherited. */
5911 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5912 {
5913 for (j = 0; j < n_reloads; j++)
5914 {
5915 int r = reload_order[j];
5916 rtx check_reg;
5917 if (reload_inherited[r] && rld[r].reg_rtx)
5918 check_reg = rld[r].reg_rtx;
5919 else if (reload_override_in[r]
5920 && (GET_CODE (reload_override_in[r]) == REG
5921 || GET_CODE (reload_override_in[r]) == SUBREG))
5922 check_reg = reload_override_in[r];
5923 else
5924 continue;
5925 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5926 rld[r].opnum, rld[r].when_needed, rld[r].in,
5927 (reload_inherited[r]
5928 ? rld[r].out : const0_rtx),
5929 r, 1))
5930 {
5931 if (pass)
5932 continue;
5933 reload_inherited[r] = 0;
5934 reload_override_in[r] = 0;
5935 }
5936 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5937 reload_override_in, then we do not need its related
5938 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5939 likewise for other reload types.
5940 We handle this by removing a reload when its only replacement
5941 is mentioned in reload_in of the reload we are going to inherit.
5942 A special case are auto_inc expressions; even if the input is
5943 inherited, we still need the address for the output. We can
5944 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5945 If we succeeded removing some reload and we are doing a preliminary
5946 pass just to remove such reloads, make another pass, since the
5947 removal of one reload might allow us to inherit another one. */
5948 else if (rld[r].in
5949 && rld[r].out != rld[r].in
5950 && remove_address_replacements (rld[r].in) && pass)
5951 pass = 2;
5952 }
5953 }
5954
5955 /* Now that reload_override_in is known valid,
5956 actually override reload_in. */
5957 for (j = 0; j < n_reloads; j++)
5958 if (reload_override_in[j])
5959 rld[j].in = reload_override_in[j];
5960
5961 /* If this reload won't be done because it has been canceled or is
5962 optional and not inherited, clear reload_reg_rtx so other
5963 routines (such as subst_reloads) don't get confused. */
5964 for (j = 0; j < n_reloads; j++)
5965 if (rld[j].reg_rtx != 0
5966 && ((rld[j].optional && ! reload_inherited[j])
5967 || (rld[j].in == 0 && rld[j].out == 0
5968 && ! rld[j].secondary_p)))
5969 {
5970 int regno = true_regnum (rld[j].reg_rtx);
5971
5972 if (spill_reg_order[regno] >= 0)
5973 clear_reload_reg_in_use (regno, rld[j].opnum,
5974 rld[j].when_needed, rld[j].mode);
5975 rld[j].reg_rtx = 0;
5976 reload_spill_index[j] = -1;
5977 }
5978
5979 /* Record which pseudos and which spill regs have output reloads. */
5980 for (j = 0; j < n_reloads; j++)
5981 {
5982 int r = reload_order[j];
5983
5984 i = reload_spill_index[r];
5985
5986 /* I is nonneg if this reload uses a register.
5987 If rld[r].reg_rtx is 0, this is an optional reload
5988 that we opted to ignore. */
5989 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5990 && rld[r].reg_rtx != 0)
5991 {
5992 int nregno = REGNO (rld[r].out_reg);
5993 int nr = 1;
5994
5995 if (nregno < FIRST_PSEUDO_REGISTER)
5996 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5997
5998 while (--nr >= 0)
5999 reg_has_output_reload[nregno + nr] = 1;
6000
6001 if (i >= 0)
6002 {
6003 nr = HARD_REGNO_NREGS (i, rld[r].mode);
6004 while (--nr >= 0)
6005 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6006 }
6007
6008 if (rld[r].when_needed != RELOAD_OTHER
6009 && rld[r].when_needed != RELOAD_FOR_OUTPUT
6010 && rld[r].when_needed != RELOAD_FOR_INSN)
6011 abort ();
6012 }
6013 }
6014 }
6015
6016 /* Deallocate the reload register for reload R. This is called from
6017 remove_address_replacements. */
6018
6019 void
6020 deallocate_reload_reg (r)
6021 int r;
6022 {
6023 int regno;
6024
6025 if (! rld[r].reg_rtx)
6026 return;
6027 regno = true_regnum (rld[r].reg_rtx);
6028 rld[r].reg_rtx = 0;
6029 if (spill_reg_order[regno] >= 0)
6030 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6031 rld[r].mode);
6032 reload_spill_index[r] = -1;
6033 }
6034 \f
6035 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6036 reloads of the same item for fear that we might not have enough reload
6037 registers. However, normally they will get the same reload register
6038 and hence actually need not be loaded twice.
6039
6040 Here we check for the most common case of this phenomenon: when we have
6041 a number of reloads for the same object, each of which were allocated
6042 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6043 reload, and is not modified in the insn itself. If we find such,
6044 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6045 This will not increase the number of spill registers needed and will
6046 prevent redundant code. */
6047
6048 static void
6049 merge_assigned_reloads (insn)
6050 rtx insn;
6051 {
6052 int i, j;
6053
6054 /* Scan all the reloads looking for ones that only load values and
6055 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6056 assigned and not modified by INSN. */
6057
6058 for (i = 0; i < n_reloads; i++)
6059 {
6060 int conflicting_input = 0;
6061 int max_input_address_opnum = -1;
6062 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6063
6064 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6065 || rld[i].out != 0 || rld[i].reg_rtx == 0
6066 || reg_set_p (rld[i].reg_rtx, insn))
6067 continue;
6068
6069 /* Look at all other reloads. Ensure that the only use of this
6070 reload_reg_rtx is in a reload that just loads the same value
6071 as we do. Note that any secondary reloads must be of the identical
6072 class since the values, modes, and result registers are the
6073 same, so we need not do anything with any secondary reloads. */
6074
6075 for (j = 0; j < n_reloads; j++)
6076 {
6077 if (i == j || rld[j].reg_rtx == 0
6078 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6079 rld[i].reg_rtx))
6080 continue;
6081
6082 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6083 && rld[j].opnum > max_input_address_opnum)
6084 max_input_address_opnum = rld[j].opnum;
6085
6086 /* If the reload regs aren't exactly the same (e.g, different modes)
6087 or if the values are different, we can't merge this reload.
6088 But if it is an input reload, we might still merge
6089 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6090
6091 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6092 || rld[j].out != 0 || rld[j].in == 0
6093 || ! rtx_equal_p (rld[i].in, rld[j].in))
6094 {
6095 if (rld[j].when_needed != RELOAD_FOR_INPUT
6096 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6097 || rld[i].opnum > rld[j].opnum)
6098 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6099 break;
6100 conflicting_input = 1;
6101 if (min_conflicting_input_opnum > rld[j].opnum)
6102 min_conflicting_input_opnum = rld[j].opnum;
6103 }
6104 }
6105
6106 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6107 we, in fact, found any matching reloads. */
6108
6109 if (j == n_reloads
6110 && max_input_address_opnum <= min_conflicting_input_opnum)
6111 {
6112 for (j = 0; j < n_reloads; j++)
6113 if (i != j && rld[j].reg_rtx != 0
6114 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6115 && (! conflicting_input
6116 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6117 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6118 {
6119 rld[i].when_needed = RELOAD_OTHER;
6120 rld[j].in = 0;
6121 reload_spill_index[j] = -1;
6122 transfer_replacements (i, j);
6123 }
6124
6125 /* If this is now RELOAD_OTHER, look for any reloads that load
6126 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6127 if they were for inputs, RELOAD_OTHER for outputs. Note that
6128 this test is equivalent to looking for reloads for this operand
6129 number. */
6130 /* We must take special care when there are two or more reloads to
6131 be merged and a RELOAD_FOR_OUTPUT_ADDRESS reload that loads the
6132 same value or a part of it; we must not change its type if there
6133 is a conflicting input. */
6134
6135 if (rld[i].when_needed == RELOAD_OTHER)
6136 for (j = 0; j < n_reloads; j++)
6137 if (rld[j].in != 0
6138 && rld[j].when_needed != RELOAD_OTHER
6139 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6140 && (! conflicting_input
6141 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6142 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6143 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6144 rld[i].in))
6145 {
6146 int k;
6147
6148 rld[j].when_needed
6149 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6150 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6151 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6152
6153 /* Check to see if we accidentally converted two reloads
6154 that use the same reload register with different inputs
6155 to the same type. If so, the resulting code won't work,
6156 so abort. */
6157 if (rld[j].reg_rtx)
6158 for (k = 0; k < j; k++)
6159 if (rld[k].in != 0 && rld[k].reg_rtx != 0
6160 && rld[k].when_needed == rld[j].when_needed
6161 && rtx_equal_p (rld[k].reg_rtx, rld[j].reg_rtx)
6162 && ! rtx_equal_p (rld[k].in, rld[j].in))
6163 abort ();
6164 }
6165 }
6166 }
6167 }
6168 \f
6169 /* These arrays are filled by emit_reload_insns and its subroutines. */
6170 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6171 static rtx other_input_address_reload_insns = 0;
6172 static rtx other_input_reload_insns = 0;
6173 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6174 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6175 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6176 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6177 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6178 static rtx operand_reload_insns = 0;
6179 static rtx other_operand_reload_insns = 0;
6180 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6181
6182 /* Values to be put in spill_reg_store are put here first. */
6183 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6184 static HARD_REG_SET reg_reloaded_died;
6185
6186 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6187 has the number J. OLD contains the value to be used as input. */
6188
6189 static void
6190 emit_input_reload_insns (chain, rl, old, j)
6191 struct insn_chain *chain;
6192 struct reload *rl;
6193 rtx old;
6194 int j;
6195 {
6196 rtx insn = chain->insn;
6197 rtx reloadreg = rl->reg_rtx;
6198 rtx oldequiv_reg = 0;
6199 rtx oldequiv = 0;
6200 int special = 0;
6201 enum machine_mode mode;
6202 rtx *where;
6203
6204 /* Determine the mode to reload in.
6205 This is very tricky because we have three to choose from.
6206 There is the mode the insn operand wants (rl->inmode).
6207 There is the mode of the reload register RELOADREG.
6208 There is the intrinsic mode of the operand, which we could find
6209 by stripping some SUBREGs.
6210 It turns out that RELOADREG's mode is irrelevant:
6211 we can change that arbitrarily.
6212
6213 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6214 then the reload reg may not support QImode moves, so use SImode.
6215 If foo is in memory due to spilling a pseudo reg, this is safe,
6216 because the QImode value is in the least significant part of a
6217 slot big enough for a SImode. If foo is some other sort of
6218 memory reference, then it is impossible to reload this case,
6219 so previous passes had better make sure this never happens.
6220
6221 Then consider a one-word union which has SImode and one of its
6222 members is a float, being fetched as (SUBREG:SF union:SI).
6223 We must fetch that as SFmode because we could be loading into
6224 a float-only register. In this case OLD's mode is correct.
6225
6226 Consider an immediate integer: it has VOIDmode. Here we need
6227 to get a mode from something else.
6228
6229 In some cases, there is a fourth mode, the operand's
6230 containing mode. If the insn specifies a containing mode for
6231 this operand, it overrides all others.
6232
6233 I am not sure whether the algorithm here is always right,
6234 but it does the right things in those cases. */
6235
6236 mode = GET_MODE (old);
6237 if (mode == VOIDmode)
6238 mode = rl->inmode;
6239
6240 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6241 /* If we need a secondary register for this operation, see if
6242 the value is already in a register in that class. Don't
6243 do this if the secondary register will be used as a scratch
6244 register. */
6245
6246 if (rl->secondary_in_reload >= 0
6247 && rl->secondary_in_icode == CODE_FOR_nothing
6248 && optimize)
6249 oldequiv
6250 = find_equiv_reg (old, insn,
6251 rld[rl->secondary_in_reload].class,
6252 -1, NULL, 0, mode);
6253 #endif
6254
6255 /* If reloading from memory, see if there is a register
6256 that already holds the same value. If so, reload from there.
6257 We can pass 0 as the reload_reg_p argument because
6258 any other reload has either already been emitted,
6259 in which case find_equiv_reg will see the reload-insn,
6260 or has yet to be emitted, in which case it doesn't matter
6261 because we will use this equiv reg right away. */
6262
6263 if (oldequiv == 0 && optimize
6264 && (GET_CODE (old) == MEM
6265 || (GET_CODE (old) == REG
6266 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6267 && reg_renumber[REGNO (old)] < 0)))
6268 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6269
6270 if (oldequiv)
6271 {
6272 unsigned int regno = true_regnum (oldequiv);
6273
6274 /* Don't use OLDEQUIV if any other reload changes it at an
6275 earlier stage of this insn or at this stage. */
6276 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6277 rl->in, const0_rtx, j, 0))
6278 oldequiv = 0;
6279
6280 /* If it is no cheaper to copy from OLDEQUIV into the
6281 reload register than it would be to move from memory,
6282 don't use it. Likewise, if we need a secondary register
6283 or memory. */
6284
6285 if (oldequiv != 0
6286 && (((enum reg_class) REGNO_REG_CLASS (regno) != rl->class
6287 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6288 rl->class)
6289 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6290 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6291 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6292 mode, oldequiv)
6293 != NO_REGS)
6294 #endif
6295 #ifdef SECONDARY_MEMORY_NEEDED
6296 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6297 rl->class,
6298 mode)
6299 #endif
6300 ))
6301 oldequiv = 0;
6302 }
6303
6304 /* delete_output_reload is only invoked properly if old contains
6305 the original pseudo register. Since this is replaced with a
6306 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6307 find the pseudo in RELOAD_IN_REG. */
6308 if (oldequiv == 0
6309 && reload_override_in[j]
6310 && GET_CODE (rl->in_reg) == REG)
6311 {
6312 oldequiv = old;
6313 old = rl->in_reg;
6314 }
6315 if (oldequiv == 0)
6316 oldequiv = old;
6317 else if (GET_CODE (oldequiv) == REG)
6318 oldequiv_reg = oldequiv;
6319 else if (GET_CODE (oldequiv) == SUBREG)
6320 oldequiv_reg = SUBREG_REG (oldequiv);
6321
6322 /* If we are reloading from a register that was recently stored in
6323 with an output-reload, see if we can prove there was
6324 actually no need to store the old value in it. */
6325
6326 if (optimize && GET_CODE (oldequiv) == REG
6327 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6328 && spill_reg_store[REGNO (oldequiv)]
6329 && GET_CODE (old) == REG
6330 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6331 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6332 rl->out_reg)))
6333 delete_output_reload (insn, j, REGNO (oldequiv));
6334
6335 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6336 then load RELOADREG from OLDEQUIV. Note that we cannot use
6337 gen_lowpart_common since it can do the wrong thing when
6338 RELOADREG has a multi-word mode. Note that RELOADREG
6339 must always be a REG here. */
6340
6341 if (GET_MODE (reloadreg) != mode)
6342 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6343 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6344 oldequiv = SUBREG_REG (oldequiv);
6345 if (GET_MODE (oldequiv) != VOIDmode
6346 && mode != GET_MODE (oldequiv))
6347 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6348
6349 /* Switch to the right place to emit the reload insns. */
6350 switch (rl->when_needed)
6351 {
6352 case RELOAD_OTHER:
6353 where = &other_input_reload_insns;
6354 break;
6355 case RELOAD_FOR_INPUT:
6356 where = &input_reload_insns[rl->opnum];
6357 break;
6358 case RELOAD_FOR_INPUT_ADDRESS:
6359 where = &input_address_reload_insns[rl->opnum];
6360 break;
6361 case RELOAD_FOR_INPADDR_ADDRESS:
6362 where = &inpaddr_address_reload_insns[rl->opnum];
6363 break;
6364 case RELOAD_FOR_OUTPUT_ADDRESS:
6365 where = &output_address_reload_insns[rl->opnum];
6366 break;
6367 case RELOAD_FOR_OUTADDR_ADDRESS:
6368 where = &outaddr_address_reload_insns[rl->opnum];
6369 break;
6370 case RELOAD_FOR_OPERAND_ADDRESS:
6371 where = &operand_reload_insns;
6372 break;
6373 case RELOAD_FOR_OPADDR_ADDR:
6374 where = &other_operand_reload_insns;
6375 break;
6376 case RELOAD_FOR_OTHER_ADDRESS:
6377 where = &other_input_address_reload_insns;
6378 break;
6379 default:
6380 abort ();
6381 }
6382
6383 push_to_sequence (*where);
6384
6385 /* Auto-increment addresses must be reloaded in a special way. */
6386 if (rl->out && ! rl->out_reg)
6387 {
6388 /* We are not going to bother supporting the case where a
6389 incremented register can't be copied directly from
6390 OLDEQUIV since this seems highly unlikely. */
6391 if (rl->secondary_in_reload >= 0)
6392 abort ();
6393
6394 if (reload_inherited[j])
6395 oldequiv = reloadreg;
6396
6397 old = XEXP (rl->in_reg, 0);
6398
6399 if (optimize && GET_CODE (oldequiv) == REG
6400 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6401 && spill_reg_store[REGNO (oldequiv)]
6402 && GET_CODE (old) == REG
6403 && (dead_or_set_p (insn,
6404 spill_reg_stored_to[REGNO (oldequiv)])
6405 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6406 old)))
6407 delete_output_reload (insn, j, REGNO (oldequiv));
6408
6409 /* Prevent normal processing of this reload. */
6410 special = 1;
6411 /* Output a special code sequence for this case. */
6412 new_spill_reg_store[REGNO (reloadreg)]
6413 = inc_for_reload (reloadreg, oldequiv, rl->out,
6414 rl->inc);
6415 }
6416
6417 /* If we are reloading a pseudo-register that was set by the previous
6418 insn, see if we can get rid of that pseudo-register entirely
6419 by redirecting the previous insn into our reload register. */
6420
6421 else if (optimize && GET_CODE (old) == REG
6422 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6423 && dead_or_set_p (insn, old)
6424 /* This is unsafe if some other reload
6425 uses the same reg first. */
6426 && ! conflicts_with_override (reloadreg)
6427 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6428 rl->when_needed, old, rl->out, j, 0))
6429 {
6430 rtx temp = PREV_INSN (insn);
6431 while (temp && GET_CODE (temp) == NOTE)
6432 temp = PREV_INSN (temp);
6433 if (temp
6434 && GET_CODE (temp) == INSN
6435 && GET_CODE (PATTERN (temp)) == SET
6436 && SET_DEST (PATTERN (temp)) == old
6437 /* Make sure we can access insn_operand_constraint. */
6438 && asm_noperands (PATTERN (temp)) < 0
6439 /* This is unsafe if operand occurs more than once in current
6440 insn. Perhaps some occurrences aren't reloaded. */
6441 && count_occurrences (PATTERN (insn), old, 0) == 1)
6442 {
6443 rtx old = SET_DEST (PATTERN (temp));
6444 /* Store into the reload register instead of the pseudo. */
6445 SET_DEST (PATTERN (temp)) = reloadreg;
6446
6447 /* Verify that resulting insn is valid. */
6448 extract_insn (temp);
6449 if (constrain_operands (1))
6450 {
6451 /* If the previous insn is an output reload, the source is
6452 a reload register, and its spill_reg_store entry will
6453 contain the previous destination. This is now
6454 invalid. */
6455 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6456 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6457 {
6458 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6459 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6460 }
6461
6462 /* If these are the only uses of the pseudo reg,
6463 pretend for GDB it lives in the reload reg we used. */
6464 if (REG_N_DEATHS (REGNO (old)) == 1
6465 && REG_N_SETS (REGNO (old)) == 1)
6466 {
6467 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6468 alter_reg (REGNO (old), -1);
6469 }
6470 special = 1;
6471 }
6472 else
6473 {
6474 SET_DEST (PATTERN (temp)) = old;
6475 }
6476 }
6477 }
6478
6479 /* We can't do that, so output an insn to load RELOADREG. */
6480
6481 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6482 /* If we have a secondary reload, pick up the secondary register
6483 and icode, if any. If OLDEQUIV and OLD are different or
6484 if this is an in-out reload, recompute whether or not we
6485 still need a secondary register and what the icode should
6486 be. If we still need a secondary register and the class or
6487 icode is different, go back to reloading from OLD if using
6488 OLDEQUIV means that we got the wrong type of register. We
6489 cannot have different class or icode due to an in-out reload
6490 because we don't make such reloads when both the input and
6491 output need secondary reload registers. */
6492
6493 if (! special && rl->secondary_in_reload >= 0)
6494 {
6495 rtx second_reload_reg = 0;
6496 int secondary_reload = rl->secondary_in_reload;
6497 rtx real_oldequiv = oldequiv;
6498 rtx real_old = old;
6499 rtx tmp;
6500 enum insn_code icode;
6501
6502 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6503 and similarly for OLD.
6504 See comments in get_secondary_reload in reload.c. */
6505 /* If it is a pseudo that cannot be replaced with its
6506 equivalent MEM, we must fall back to reload_in, which
6507 will have all the necessary substitutions registered.
6508 Likewise for a pseudo that can't be replaced with its
6509 equivalent constant.
6510
6511 Take extra care for subregs of such pseudos. Note that
6512 we cannot use reg_equiv_mem in this case because it is
6513 not in the right mode. */
6514
6515 tmp = oldequiv;
6516 if (GET_CODE (tmp) == SUBREG)
6517 tmp = SUBREG_REG (tmp);
6518 if (GET_CODE (tmp) == REG
6519 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6520 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6521 || reg_equiv_constant[REGNO (tmp)] != 0))
6522 {
6523 if (! reg_equiv_mem[REGNO (tmp)]
6524 || num_not_at_initial_offset
6525 || GET_CODE (oldequiv) == SUBREG)
6526 real_oldequiv = rl->in;
6527 else
6528 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6529 }
6530
6531 tmp = old;
6532 if (GET_CODE (tmp) == SUBREG)
6533 tmp = SUBREG_REG (tmp);
6534 if (GET_CODE (tmp) == REG
6535 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6536 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6537 || reg_equiv_constant[REGNO (tmp)] != 0))
6538 {
6539 if (! reg_equiv_mem[REGNO (tmp)]
6540 || num_not_at_initial_offset
6541 || GET_CODE (old) == SUBREG)
6542 real_old = rl->in;
6543 else
6544 real_old = reg_equiv_mem[REGNO (tmp)];
6545 }
6546
6547 second_reload_reg = rld[secondary_reload].reg_rtx;
6548 icode = rl->secondary_in_icode;
6549
6550 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6551 || (rl->in != 0 && rl->out != 0))
6552 {
6553 enum reg_class new_class
6554 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6555 mode, real_oldequiv);
6556
6557 if (new_class == NO_REGS)
6558 second_reload_reg = 0;
6559 else
6560 {
6561 enum insn_code new_icode;
6562 enum machine_mode new_mode;
6563
6564 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6565 REGNO (second_reload_reg)))
6566 oldequiv = old, real_oldequiv = real_old;
6567 else
6568 {
6569 new_icode = reload_in_optab[(int) mode];
6570 if (new_icode != CODE_FOR_nothing
6571 && ((insn_data[(int) new_icode].operand[0].predicate
6572 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6573 (reloadreg, mode)))
6574 || (insn_data[(int) new_icode].operand[1].predicate
6575 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6576 (real_oldequiv, mode)))))
6577 new_icode = CODE_FOR_nothing;
6578
6579 if (new_icode == CODE_FOR_nothing)
6580 new_mode = mode;
6581 else
6582 new_mode = insn_data[(int) new_icode].operand[2].mode;
6583
6584 if (GET_MODE (second_reload_reg) != new_mode)
6585 {
6586 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6587 new_mode))
6588 oldequiv = old, real_oldequiv = real_old;
6589 else
6590 second_reload_reg
6591 = reload_adjust_reg_for_mode (second_reload_reg,
6592 new_mode);
6593 }
6594 }
6595 }
6596 }
6597
6598 /* If we still need a secondary reload register, check
6599 to see if it is being used as a scratch or intermediate
6600 register and generate code appropriately. If we need
6601 a scratch register, use REAL_OLDEQUIV since the form of
6602 the insn may depend on the actual address if it is
6603 a MEM. */
6604
6605 if (second_reload_reg)
6606 {
6607 if (icode != CODE_FOR_nothing)
6608 {
6609 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6610 second_reload_reg));
6611 special = 1;
6612 }
6613 else
6614 {
6615 /* See if we need a scratch register to load the
6616 intermediate register (a tertiary reload). */
6617 enum insn_code tertiary_icode
6618 = rld[secondary_reload].secondary_in_icode;
6619
6620 if (tertiary_icode != CODE_FOR_nothing)
6621 {
6622 rtx third_reload_reg
6623 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6624
6625 emit_insn ((GEN_FCN (tertiary_icode)
6626 (second_reload_reg, real_oldequiv,
6627 third_reload_reg)));
6628 }
6629 else
6630 gen_reload (second_reload_reg, real_oldequiv,
6631 rl->opnum,
6632 rl->when_needed);
6633
6634 oldequiv = second_reload_reg;
6635 }
6636 }
6637 }
6638 #endif
6639
6640 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6641 {
6642 rtx real_oldequiv = oldequiv;
6643
6644 if ((GET_CODE (oldequiv) == REG
6645 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6646 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6647 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6648 || (GET_CODE (oldequiv) == SUBREG
6649 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6650 && (REGNO (SUBREG_REG (oldequiv))
6651 >= FIRST_PSEUDO_REGISTER)
6652 && ((reg_equiv_memory_loc
6653 [REGNO (SUBREG_REG (oldequiv))] != 0)
6654 || (reg_equiv_constant
6655 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6656 || (CONSTANT_P (oldequiv)
6657 && (PREFERRED_RELOAD_CLASS (oldequiv,
6658 REGNO_REG_CLASS (REGNO (reloadreg)))
6659 == NO_REGS)))
6660 real_oldequiv = rl->in;
6661 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6662 rl->when_needed);
6663 }
6664
6665 if (flag_non_call_exceptions)
6666 copy_eh_notes (insn, get_insns ());
6667
6668 /* End this sequence. */
6669 *where = get_insns ();
6670 end_sequence ();
6671
6672 /* Update reload_override_in so that delete_address_reloads_1
6673 can see the actual register usage. */
6674 if (oldequiv_reg)
6675 reload_override_in[j] = oldequiv;
6676 }
6677
6678 /* Generate insns to for the output reload RL, which is for the insn described
6679 by CHAIN and has the number J. */
6680 static void
6681 emit_output_reload_insns (chain, rl, j)
6682 struct insn_chain *chain;
6683 struct reload *rl;
6684 int j;
6685 {
6686 rtx reloadreg = rl->reg_rtx;
6687 rtx insn = chain->insn;
6688 int special = 0;
6689 rtx old = rl->out;
6690 enum machine_mode mode = GET_MODE (old);
6691 rtx p;
6692
6693 if (rl->when_needed == RELOAD_OTHER)
6694 start_sequence ();
6695 else
6696 push_to_sequence (output_reload_insns[rl->opnum]);
6697
6698 /* Determine the mode to reload in.
6699 See comments above (for input reloading). */
6700
6701 if (mode == VOIDmode)
6702 {
6703 /* VOIDmode should never happen for an output. */
6704 if (asm_noperands (PATTERN (insn)) < 0)
6705 /* It's the compiler's fault. */
6706 fatal_insn ("VOIDmode on an output", insn);
6707 error_for_asm (insn, "output operand is constant in `asm'");
6708 /* Prevent crash--use something we know is valid. */
6709 mode = word_mode;
6710 old = gen_rtx_REG (mode, REGNO (reloadreg));
6711 }
6712
6713 if (GET_MODE (reloadreg) != mode)
6714 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6715
6716 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6717
6718 /* If we need two reload regs, set RELOADREG to the intermediate
6719 one, since it will be stored into OLD. We might need a secondary
6720 register only for an input reload, so check again here. */
6721
6722 if (rl->secondary_out_reload >= 0)
6723 {
6724 rtx real_old = old;
6725
6726 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6727 && reg_equiv_mem[REGNO (old)] != 0)
6728 real_old = reg_equiv_mem[REGNO (old)];
6729
6730 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6731 mode, real_old)
6732 != NO_REGS))
6733 {
6734 rtx second_reloadreg = reloadreg;
6735 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6736
6737 /* See if RELOADREG is to be used as a scratch register
6738 or as an intermediate register. */
6739 if (rl->secondary_out_icode != CODE_FOR_nothing)
6740 {
6741 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6742 (real_old, second_reloadreg, reloadreg)));
6743 special = 1;
6744 }
6745 else
6746 {
6747 /* See if we need both a scratch and intermediate reload
6748 register. */
6749
6750 int secondary_reload = rl->secondary_out_reload;
6751 enum insn_code tertiary_icode
6752 = rld[secondary_reload].secondary_out_icode;
6753
6754 if (GET_MODE (reloadreg) != mode)
6755 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6756
6757 if (tertiary_icode != CODE_FOR_nothing)
6758 {
6759 rtx third_reloadreg
6760 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6761 rtx tem;
6762
6763 /* Copy primary reload reg to secondary reload reg.
6764 (Note that these have been swapped above, then
6765 secondary reload reg to OLD using our insn.) */
6766
6767 /* If REAL_OLD is a paradoxical SUBREG, remove it
6768 and try to put the opposite SUBREG on
6769 RELOADREG. */
6770 if (GET_CODE (real_old) == SUBREG
6771 && (GET_MODE_SIZE (GET_MODE (real_old))
6772 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6773 && 0 != (tem = gen_lowpart_common
6774 (GET_MODE (SUBREG_REG (real_old)),
6775 reloadreg)))
6776 real_old = SUBREG_REG (real_old), reloadreg = tem;
6777
6778 gen_reload (reloadreg, second_reloadreg,
6779 rl->opnum, rl->when_needed);
6780 emit_insn ((GEN_FCN (tertiary_icode)
6781 (real_old, reloadreg, third_reloadreg)));
6782 special = 1;
6783 }
6784
6785 else
6786 /* Copy between the reload regs here and then to
6787 OUT later. */
6788
6789 gen_reload (reloadreg, second_reloadreg,
6790 rl->opnum, rl->when_needed);
6791 }
6792 }
6793 }
6794 #endif
6795
6796 /* Output the last reload insn. */
6797 if (! special)
6798 {
6799 rtx set;
6800
6801 /* Don't output the last reload if OLD is not the dest of
6802 INSN and is in the src and is clobbered by INSN. */
6803 if (! flag_expensive_optimizations
6804 || GET_CODE (old) != REG
6805 || !(set = single_set (insn))
6806 || rtx_equal_p (old, SET_DEST (set))
6807 || !reg_mentioned_p (old, SET_SRC (set))
6808 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6809 gen_reload (old, reloadreg, rl->opnum,
6810 rl->when_needed);
6811 }
6812
6813 /* Look at all insns we emitted, just to be safe. */
6814 for (p = get_insns (); p; p = NEXT_INSN (p))
6815 if (INSN_P (p))
6816 {
6817 rtx pat = PATTERN (p);
6818
6819 /* If this output reload doesn't come from a spill reg,
6820 clear any memory of reloaded copies of the pseudo reg.
6821 If this output reload comes from a spill reg,
6822 reg_has_output_reload will make this do nothing. */
6823 note_stores (pat, forget_old_reloads_1, NULL);
6824
6825 if (reg_mentioned_p (rl->reg_rtx, pat))
6826 {
6827 rtx set = single_set (insn);
6828 if (reload_spill_index[j] < 0
6829 && set
6830 && SET_SRC (set) == rl->reg_rtx)
6831 {
6832 int src = REGNO (SET_SRC (set));
6833
6834 reload_spill_index[j] = src;
6835 SET_HARD_REG_BIT (reg_is_output_reload, src);
6836 if (find_regno_note (insn, REG_DEAD, src))
6837 SET_HARD_REG_BIT (reg_reloaded_died, src);
6838 }
6839 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6840 {
6841 int s = rl->secondary_out_reload;
6842 set = single_set (p);
6843 /* If this reload copies only to the secondary reload
6844 register, the secondary reload does the actual
6845 store. */
6846 if (s >= 0 && set == NULL_RTX)
6847 /* We can't tell what function the secondary reload
6848 has and where the actual store to the pseudo is
6849 made; leave new_spill_reg_store alone. */
6850 ;
6851 else if (s >= 0
6852 && SET_SRC (set) == rl->reg_rtx
6853 && SET_DEST (set) == rld[s].reg_rtx)
6854 {
6855 /* Usually the next instruction will be the
6856 secondary reload insn; if we can confirm
6857 that it is, setting new_spill_reg_store to
6858 that insn will allow an extra optimization. */
6859 rtx s_reg = rld[s].reg_rtx;
6860 rtx next = NEXT_INSN (p);
6861 rld[s].out = rl->out;
6862 rld[s].out_reg = rl->out_reg;
6863 set = single_set (next);
6864 if (set && SET_SRC (set) == s_reg
6865 && ! new_spill_reg_store[REGNO (s_reg)])
6866 {
6867 SET_HARD_REG_BIT (reg_is_output_reload,
6868 REGNO (s_reg));
6869 new_spill_reg_store[REGNO (s_reg)] = next;
6870 }
6871 }
6872 else
6873 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6874 }
6875 }
6876 }
6877
6878 if (rl->when_needed == RELOAD_OTHER)
6879 {
6880 emit_insn (other_output_reload_insns[rl->opnum]);
6881 other_output_reload_insns[rl->opnum] = get_insns ();
6882 }
6883 else
6884 output_reload_insns[rl->opnum] = get_insns ();
6885
6886 if (flag_non_call_exceptions)
6887 copy_eh_notes (insn, get_insns ());
6888
6889 end_sequence ();
6890 }
6891
6892 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6893 and has the number J. */
6894 static void
6895 do_input_reload (chain, rl, j)
6896 struct insn_chain *chain;
6897 struct reload *rl;
6898 int j;
6899 {
6900 rtx insn = chain->insn;
6901 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6902 ? rl->in_reg : rl->in);
6903
6904 if (old != 0
6905 /* AUTO_INC reloads need to be handled even if inherited. We got an
6906 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6907 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6908 && ! rtx_equal_p (rl->reg_rtx, old)
6909 && rl->reg_rtx != 0)
6910 emit_input_reload_insns (chain, rld + j, old, j);
6911
6912 /* When inheriting a wider reload, we have a MEM in rl->in,
6913 e.g. inheriting a SImode output reload for
6914 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6915 if (optimize && reload_inherited[j] && rl->in
6916 && GET_CODE (rl->in) == MEM
6917 && GET_CODE (rl->in_reg) == MEM
6918 && reload_spill_index[j] >= 0
6919 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6920 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6921
6922 /* If we are reloading a register that was recently stored in with an
6923 output-reload, see if we can prove there was
6924 actually no need to store the old value in it. */
6925
6926 if (optimize
6927 && (reload_inherited[j] || reload_override_in[j])
6928 && rl->reg_rtx
6929 && GET_CODE (rl->reg_rtx) == REG
6930 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6931 #if 0
6932 /* There doesn't seem to be any reason to restrict this to pseudos
6933 and doing so loses in the case where we are copying from a
6934 register of the wrong class. */
6935 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6936 >= FIRST_PSEUDO_REGISTER)
6937 #endif
6938 /* The insn might have already some references to stackslots
6939 replaced by MEMs, while reload_out_reg still names the
6940 original pseudo. */
6941 && (dead_or_set_p (insn,
6942 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6943 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6944 rl->out_reg)))
6945 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6946 }
6947
6948 /* Do output reloading for reload RL, which is for the insn described by
6949 CHAIN and has the number J.
6950 ??? At some point we need to support handling output reloads of
6951 JUMP_INSNs or insns that set cc0. */
6952 static void
6953 do_output_reload (chain, rl, j)
6954 struct insn_chain *chain;
6955 struct reload *rl;
6956 int j;
6957 {
6958 rtx note, old;
6959 rtx insn = chain->insn;
6960 /* If this is an output reload that stores something that is
6961 not loaded in this same reload, see if we can eliminate a previous
6962 store. */
6963 rtx pseudo = rl->out_reg;
6964
6965 if (pseudo
6966 && optimize
6967 && GET_CODE (pseudo) == REG
6968 && ! rtx_equal_p (rl->in_reg, pseudo)
6969 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6970 && reg_last_reload_reg[REGNO (pseudo)])
6971 {
6972 int pseudo_no = REGNO (pseudo);
6973 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6974
6975 /* We don't need to test full validity of last_regno for
6976 inherit here; we only want to know if the store actually
6977 matches the pseudo. */
6978 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6979 && reg_reloaded_contents[last_regno] == pseudo_no
6980 && spill_reg_store[last_regno]
6981 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6982 delete_output_reload (insn, j, last_regno);
6983 }
6984
6985 old = rl->out_reg;
6986 if (old == 0
6987 || rl->reg_rtx == old
6988 || rl->reg_rtx == 0)
6989 return;
6990
6991 /* An output operand that dies right away does need a reload,
6992 but need not be copied from it. Show the new location in the
6993 REG_UNUSED note. */
6994 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6995 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6996 {
6997 XEXP (note, 0) = rl->reg_rtx;
6998 return;
6999 }
7000 /* Likewise for a SUBREG of an operand that dies. */
7001 else if (GET_CODE (old) == SUBREG
7002 && GET_CODE (SUBREG_REG (old)) == REG
7003 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7004 SUBREG_REG (old))))
7005 {
7006 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
7007 rl->reg_rtx);
7008 return;
7009 }
7010 else if (GET_CODE (old) == SCRATCH)
7011 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7012 but we don't want to make an output reload. */
7013 return;
7014
7015 /* If is a JUMP_INSN, we can't support output reloads yet. */
7016 if (GET_CODE (insn) == JUMP_INSN)
7017 abort ();
7018
7019 emit_output_reload_insns (chain, rld + j, j);
7020 }
7021
7022 /* Output insns to reload values in and out of the chosen reload regs. */
7023
7024 static void
7025 emit_reload_insns (chain)
7026 struct insn_chain *chain;
7027 {
7028 rtx insn = chain->insn;
7029
7030 int j;
7031
7032 CLEAR_HARD_REG_SET (reg_reloaded_died);
7033
7034 for (j = 0; j < reload_n_operands; j++)
7035 input_reload_insns[j] = input_address_reload_insns[j]
7036 = inpaddr_address_reload_insns[j]
7037 = output_reload_insns[j] = output_address_reload_insns[j]
7038 = outaddr_address_reload_insns[j]
7039 = other_output_reload_insns[j] = 0;
7040 other_input_address_reload_insns = 0;
7041 other_input_reload_insns = 0;
7042 operand_reload_insns = 0;
7043 other_operand_reload_insns = 0;
7044
7045 /* Dump reloads into the dump file. */
7046 if (rtl_dump_file)
7047 {
7048 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7049 debug_reload_to_stream (rtl_dump_file);
7050 }
7051
7052 /* Now output the instructions to copy the data into and out of the
7053 reload registers. Do these in the order that the reloads were reported,
7054 since reloads of base and index registers precede reloads of operands
7055 and the operands may need the base and index registers reloaded. */
7056
7057 for (j = 0; j < n_reloads; j++)
7058 {
7059 if (rld[j].reg_rtx
7060 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7061 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7062
7063 do_input_reload (chain, rld + j, j);
7064 do_output_reload (chain, rld + j, j);
7065 }
7066
7067 /* Now write all the insns we made for reloads in the order expected by
7068 the allocation functions. Prior to the insn being reloaded, we write
7069 the following reloads:
7070
7071 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7072
7073 RELOAD_OTHER reloads.
7074
7075 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7076 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7077 RELOAD_FOR_INPUT reload for the operand.
7078
7079 RELOAD_FOR_OPADDR_ADDRS reloads.
7080
7081 RELOAD_FOR_OPERAND_ADDRESS reloads.
7082
7083 After the insn being reloaded, we write the following:
7084
7085 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7086 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7087 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7088 reloads for the operand. The RELOAD_OTHER output reloads are
7089 output in descending order by reload number. */
7090
7091 emit_insn_before (other_input_address_reload_insns, insn);
7092 emit_insn_before (other_input_reload_insns, insn);
7093
7094 for (j = 0; j < reload_n_operands; j++)
7095 {
7096 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7097 emit_insn_before (input_address_reload_insns[j], insn);
7098 emit_insn_before (input_reload_insns[j], insn);
7099 }
7100
7101 emit_insn_before (other_operand_reload_insns, insn);
7102 emit_insn_before (operand_reload_insns, insn);
7103
7104 for (j = 0; j < reload_n_operands; j++)
7105 {
7106 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7107 x = emit_insn_after (output_address_reload_insns[j], x);
7108 x = emit_insn_after (output_reload_insns[j], x);
7109 emit_insn_after (other_output_reload_insns[j], x);
7110 }
7111
7112 /* For all the spill regs newly reloaded in this instruction,
7113 record what they were reloaded from, so subsequent instructions
7114 can inherit the reloads.
7115
7116 Update spill_reg_store for the reloads of this insn.
7117 Copy the elements that were updated in the loop above. */
7118
7119 for (j = 0; j < n_reloads; j++)
7120 {
7121 int r = reload_order[j];
7122 int i = reload_spill_index[r];
7123
7124 /* If this is a non-inherited input reload from a pseudo, we must
7125 clear any memory of a previous store to the same pseudo. Only do
7126 something if there will not be an output reload for the pseudo
7127 being reloaded. */
7128 if (rld[r].in_reg != 0
7129 && ! (reload_inherited[r] || reload_override_in[r]))
7130 {
7131 rtx reg = rld[r].in_reg;
7132
7133 if (GET_CODE (reg) == SUBREG)
7134 reg = SUBREG_REG (reg);
7135
7136 if (GET_CODE (reg) == REG
7137 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7138 && ! reg_has_output_reload[REGNO (reg)])
7139 {
7140 int nregno = REGNO (reg);
7141
7142 if (reg_last_reload_reg[nregno])
7143 {
7144 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7145
7146 if (reg_reloaded_contents[last_regno] == nregno)
7147 spill_reg_store[last_regno] = 0;
7148 }
7149 }
7150 }
7151
7152 /* I is nonneg if this reload used a register.
7153 If rld[r].reg_rtx is 0, this is an optional reload
7154 that we opted to ignore. */
7155
7156 if (i >= 0 && rld[r].reg_rtx != 0)
7157 {
7158 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7159 int k;
7160 int part_reaches_end = 0;
7161 int all_reaches_end = 1;
7162
7163 /* For a multi register reload, we need to check if all or part
7164 of the value lives to the end. */
7165 for (k = 0; k < nr; k++)
7166 {
7167 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7168 rld[r].when_needed))
7169 part_reaches_end = 1;
7170 else
7171 all_reaches_end = 0;
7172 }
7173
7174 /* Ignore reloads that don't reach the end of the insn in
7175 entirety. */
7176 if (all_reaches_end)
7177 {
7178 /* First, clear out memory of what used to be in this spill reg.
7179 If consecutive registers are used, clear them all. */
7180
7181 for (k = 0; k < nr; k++)
7182 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7183
7184 /* Maybe the spill reg contains a copy of reload_out. */
7185 if (rld[r].out != 0
7186 && (GET_CODE (rld[r].out) == REG
7187 #ifdef AUTO_INC_DEC
7188 || ! rld[r].out_reg
7189 #endif
7190 || GET_CODE (rld[r].out_reg) == REG))
7191 {
7192 rtx out = (GET_CODE (rld[r].out) == REG
7193 ? rld[r].out
7194 : rld[r].out_reg
7195 ? rld[r].out_reg
7196 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7197 int nregno = REGNO (out);
7198 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7199 : HARD_REGNO_NREGS (nregno,
7200 GET_MODE (rld[r].reg_rtx)));
7201
7202 spill_reg_store[i] = new_spill_reg_store[i];
7203 spill_reg_stored_to[i] = out;
7204 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7205
7206 /* If NREGNO is a hard register, it may occupy more than
7207 one register. If it does, say what is in the
7208 rest of the registers assuming that both registers
7209 agree on how many words the object takes. If not,
7210 invalidate the subsequent registers. */
7211
7212 if (nregno < FIRST_PSEUDO_REGISTER)
7213 for (k = 1; k < nnr; k++)
7214 reg_last_reload_reg[nregno + k]
7215 = (nr == nnr
7216 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7217 : 0);
7218
7219 /* Now do the inverse operation. */
7220 for (k = 0; k < nr; k++)
7221 {
7222 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7223 reg_reloaded_contents[i + k]
7224 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7225 ? nregno
7226 : nregno + k);
7227 reg_reloaded_insn[i + k] = insn;
7228 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7229 }
7230 }
7231
7232 /* Maybe the spill reg contains a copy of reload_in. Only do
7233 something if there will not be an output reload for
7234 the register being reloaded. */
7235 else if (rld[r].out_reg == 0
7236 && rld[r].in != 0
7237 && ((GET_CODE (rld[r].in) == REG
7238 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7239 && ! reg_has_output_reload[REGNO (rld[r].in)])
7240 || (GET_CODE (rld[r].in_reg) == REG
7241 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7242 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7243 {
7244 int nregno;
7245 int nnr;
7246
7247 if (GET_CODE (rld[r].in) == REG
7248 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7249 nregno = REGNO (rld[r].in);
7250 else if (GET_CODE (rld[r].in_reg) == REG)
7251 nregno = REGNO (rld[r].in_reg);
7252 else
7253 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7254
7255 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7256 : HARD_REGNO_NREGS (nregno,
7257 GET_MODE (rld[r].reg_rtx)));
7258
7259 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7260
7261 if (nregno < FIRST_PSEUDO_REGISTER)
7262 for (k = 1; k < nnr; k++)
7263 reg_last_reload_reg[nregno + k]
7264 = (nr == nnr
7265 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7266 : 0);
7267
7268 /* Unless we inherited this reload, show we haven't
7269 recently done a store.
7270 Previous stores of inherited auto_inc expressions
7271 also have to be discarded. */
7272 if (! reload_inherited[r]
7273 || (rld[r].out && ! rld[r].out_reg))
7274 spill_reg_store[i] = 0;
7275
7276 for (k = 0; k < nr; k++)
7277 {
7278 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7279 reg_reloaded_contents[i + k]
7280 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7281 ? nregno
7282 : nregno + k);
7283 reg_reloaded_insn[i + k] = insn;
7284 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7285 }
7286 }
7287 }
7288
7289 /* However, if part of the reload reaches the end, then we must
7290 invalidate the old info for the part that survives to the end. */
7291 else if (part_reaches_end)
7292 {
7293 for (k = 0; k < nr; k++)
7294 if (reload_reg_reaches_end_p (i + k,
7295 rld[r].opnum,
7296 rld[r].when_needed))
7297 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7298 }
7299 }
7300
7301 /* The following if-statement was #if 0'd in 1.34 (or before...).
7302 It's reenabled in 1.35 because supposedly nothing else
7303 deals with this problem. */
7304
7305 /* If a register gets output-reloaded from a non-spill register,
7306 that invalidates any previous reloaded copy of it.
7307 But forget_old_reloads_1 won't get to see it, because
7308 it thinks only about the original insn. So invalidate it here. */
7309 if (i < 0 && rld[r].out != 0
7310 && (GET_CODE (rld[r].out) == REG
7311 || (GET_CODE (rld[r].out) == MEM
7312 && GET_CODE (rld[r].out_reg) == REG)))
7313 {
7314 rtx out = (GET_CODE (rld[r].out) == REG
7315 ? rld[r].out : rld[r].out_reg);
7316 int nregno = REGNO (out);
7317 if (nregno >= FIRST_PSEUDO_REGISTER)
7318 {
7319 rtx src_reg, store_insn = NULL_RTX;
7320
7321 reg_last_reload_reg[nregno] = 0;
7322
7323 /* If we can find a hard register that is stored, record
7324 the storing insn so that we may delete this insn with
7325 delete_output_reload. */
7326 src_reg = rld[r].reg_rtx;
7327
7328 /* If this is an optional reload, try to find the source reg
7329 from an input reload. */
7330 if (! src_reg)
7331 {
7332 rtx set = single_set (insn);
7333 if (set && SET_DEST (set) == rld[r].out)
7334 {
7335 int k;
7336
7337 src_reg = SET_SRC (set);
7338 store_insn = insn;
7339 for (k = 0; k < n_reloads; k++)
7340 {
7341 if (rld[k].in == src_reg)
7342 {
7343 src_reg = rld[k].reg_rtx;
7344 break;
7345 }
7346 }
7347 }
7348 }
7349 else
7350 store_insn = new_spill_reg_store[REGNO (src_reg)];
7351 if (src_reg && GET_CODE (src_reg) == REG
7352 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7353 {
7354 int src_regno = REGNO (src_reg);
7355 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7356 /* The place where to find a death note varies with
7357 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7358 necessarily checked exactly in the code that moves
7359 notes, so just check both locations. */
7360 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7361 if (! note && store_insn)
7362 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7363 while (nr-- > 0)
7364 {
7365 spill_reg_store[src_regno + nr] = store_insn;
7366 spill_reg_stored_to[src_regno + nr] = out;
7367 reg_reloaded_contents[src_regno + nr] = nregno;
7368 reg_reloaded_insn[src_regno + nr] = store_insn;
7369 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7370 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7371 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7372 if (note)
7373 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7374 else
7375 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7376 }
7377 reg_last_reload_reg[nregno] = src_reg;
7378 }
7379 }
7380 else
7381 {
7382 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7383
7384 while (num_regs-- > 0)
7385 reg_last_reload_reg[nregno + num_regs] = 0;
7386 }
7387 }
7388 }
7389 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7390 }
7391 \f
7392 /* Emit code to perform a reload from IN (which may be a reload register) to
7393 OUT (which may also be a reload register). IN or OUT is from operand
7394 OPNUM with reload type TYPE.
7395
7396 Returns first insn emitted. */
7397
7398 rtx
7399 gen_reload (out, in, opnum, type)
7400 rtx out;
7401 rtx in;
7402 int opnum;
7403 enum reload_type type;
7404 {
7405 rtx last = get_last_insn ();
7406 rtx tem;
7407
7408 /* If IN is a paradoxical SUBREG, remove it and try to put the
7409 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7410 if (GET_CODE (in) == SUBREG
7411 && (GET_MODE_SIZE (GET_MODE (in))
7412 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7413 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7414 in = SUBREG_REG (in), out = tem;
7415 else if (GET_CODE (out) == SUBREG
7416 && (GET_MODE_SIZE (GET_MODE (out))
7417 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7418 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7419 out = SUBREG_REG (out), in = tem;
7420
7421 /* How to do this reload can get quite tricky. Normally, we are being
7422 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7423 register that didn't get a hard register. In that case we can just
7424 call emit_move_insn.
7425
7426 We can also be asked to reload a PLUS that adds a register or a MEM to
7427 another register, constant or MEM. This can occur during frame pointer
7428 elimination and while reloading addresses. This case is handled by
7429 trying to emit a single insn to perform the add. If it is not valid,
7430 we use a two insn sequence.
7431
7432 Finally, we could be called to handle an 'o' constraint by putting
7433 an address into a register. In that case, we first try to do this
7434 with a named pattern of "reload_load_address". If no such pattern
7435 exists, we just emit a SET insn and hope for the best (it will normally
7436 be valid on machines that use 'o').
7437
7438 This entire process is made complex because reload will never
7439 process the insns we generate here and so we must ensure that
7440 they will fit their constraints and also by the fact that parts of
7441 IN might be being reloaded separately and replaced with spill registers.
7442 Because of this, we are, in some sense, just guessing the right approach
7443 here. The one listed above seems to work.
7444
7445 ??? At some point, this whole thing needs to be rethought. */
7446
7447 if (GET_CODE (in) == PLUS
7448 && (GET_CODE (XEXP (in, 0)) == REG
7449 || GET_CODE (XEXP (in, 0)) == SUBREG
7450 || GET_CODE (XEXP (in, 0)) == MEM)
7451 && (GET_CODE (XEXP (in, 1)) == REG
7452 || GET_CODE (XEXP (in, 1)) == SUBREG
7453 || CONSTANT_P (XEXP (in, 1))
7454 || GET_CODE (XEXP (in, 1)) == MEM))
7455 {
7456 /* We need to compute the sum of a register or a MEM and another
7457 register, constant, or MEM, and put it into the reload
7458 register. The best possible way of doing this is if the machine
7459 has a three-operand ADD insn that accepts the required operands.
7460
7461 The simplest approach is to try to generate such an insn and see if it
7462 is recognized and matches its constraints. If so, it can be used.
7463
7464 It might be better not to actually emit the insn unless it is valid,
7465 but we need to pass the insn as an operand to `recog' and
7466 `extract_insn' and it is simpler to emit and then delete the insn if
7467 not valid than to dummy things up. */
7468
7469 rtx op0, op1, tem, insn;
7470 int code;
7471
7472 op0 = find_replacement (&XEXP (in, 0));
7473 op1 = find_replacement (&XEXP (in, 1));
7474
7475 /* Since constraint checking is strict, commutativity won't be
7476 checked, so we need to do that here to avoid spurious failure
7477 if the add instruction is two-address and the second operand
7478 of the add is the same as the reload reg, which is frequently
7479 the case. If the insn would be A = B + A, rearrange it so
7480 it will be A = A + B as constrain_operands expects. */
7481
7482 if (GET_CODE (XEXP (in, 1)) == REG
7483 && REGNO (out) == REGNO (XEXP (in, 1)))
7484 tem = op0, op0 = op1, op1 = tem;
7485
7486 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7487 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7488
7489 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7490 code = recog_memoized (insn);
7491
7492 if (code >= 0)
7493 {
7494 extract_insn (insn);
7495 /* We want constrain operands to treat this insn strictly in
7496 its validity determination, i.e., the way it would after reload
7497 has completed. */
7498 if (constrain_operands (1))
7499 return insn;
7500 }
7501
7502 delete_insns_since (last);
7503
7504 /* If that failed, we must use a conservative two-insn sequence.
7505
7506 Use a move to copy one operand into the reload register. Prefer
7507 to reload a constant, MEM or pseudo since the move patterns can
7508 handle an arbitrary operand. If OP1 is not a constant, MEM or
7509 pseudo and OP1 is not a valid operand for an add instruction, then
7510 reload OP1.
7511
7512 After reloading one of the operands into the reload register, add
7513 the reload register to the output register.
7514
7515 If there is another way to do this for a specific machine, a
7516 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7517 we emit below. */
7518
7519 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7520
7521 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7522 || (GET_CODE (op1) == REG
7523 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7524 || (code != CODE_FOR_nothing
7525 && ! ((*insn_data[code].operand[2].predicate)
7526 (op1, insn_data[code].operand[2].mode))))
7527 tem = op0, op0 = op1, op1 = tem;
7528
7529 gen_reload (out, op0, opnum, type);
7530
7531 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7532 This fixes a problem on the 32K where the stack pointer cannot
7533 be used as an operand of an add insn. */
7534
7535 if (rtx_equal_p (op0, op1))
7536 op1 = out;
7537
7538 insn = emit_insn (gen_add2_insn (out, op1));
7539
7540 /* If that failed, copy the address register to the reload register.
7541 Then add the constant to the reload register. */
7542
7543 code = recog_memoized (insn);
7544
7545 if (code >= 0)
7546 {
7547 extract_insn (insn);
7548 /* We want constrain operands to treat this insn strictly in
7549 its validity determination, i.e., the way it would after reload
7550 has completed. */
7551 if (constrain_operands (1))
7552 {
7553 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7554 REG_NOTES (insn)
7555 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7556 return insn;
7557 }
7558 }
7559
7560 delete_insns_since (last);
7561
7562 gen_reload (out, op1, opnum, type);
7563 insn = emit_insn (gen_add2_insn (out, op0));
7564 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7565 }
7566
7567 #ifdef SECONDARY_MEMORY_NEEDED
7568 /* If we need a memory location to do the move, do it that way. */
7569 else if ((GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
7570 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7571 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
7572 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7573 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7574 REGNO_REG_CLASS (reg_or_subregno (out)),
7575 GET_MODE (out)))
7576 {
7577 /* Get the memory to use and rewrite both registers to its mode. */
7578 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7579
7580 if (GET_MODE (loc) != GET_MODE (out))
7581 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7582
7583 if (GET_MODE (loc) != GET_MODE (in))
7584 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7585
7586 gen_reload (loc, in, opnum, type);
7587 gen_reload (out, loc, opnum, type);
7588 }
7589 #endif
7590
7591 /* If IN is a simple operand, use gen_move_insn. */
7592 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7593 emit_insn (gen_move_insn (out, in));
7594
7595 #ifdef HAVE_reload_load_address
7596 else if (HAVE_reload_load_address)
7597 emit_insn (gen_reload_load_address (out, in));
7598 #endif
7599
7600 /* Otherwise, just write (set OUT IN) and hope for the best. */
7601 else
7602 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7603
7604 /* Return the first insn emitted.
7605 We can not just return get_last_insn, because there may have
7606 been multiple instructions emitted. Also note that gen_move_insn may
7607 emit more than one insn itself, so we can not assume that there is one
7608 insn emitted per emit_insn_before call. */
7609
7610 return last ? NEXT_INSN (last) : get_insns ();
7611 }
7612 \f
7613 /* Delete a previously made output-reload whose result we now believe
7614 is not needed. First we double-check.
7615
7616 INSN is the insn now being processed.
7617 LAST_RELOAD_REG is the hard register number for which we want to delete
7618 the last output reload.
7619 J is the reload-number that originally used REG. The caller has made
7620 certain that reload J doesn't use REG any longer for input. */
7621
7622 static void
7623 delete_output_reload (insn, j, last_reload_reg)
7624 rtx insn;
7625 int j;
7626 int last_reload_reg;
7627 {
7628 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7629 rtx reg = spill_reg_stored_to[last_reload_reg];
7630 int k;
7631 int n_occurrences;
7632 int n_inherited = 0;
7633 rtx i1;
7634 rtx substed;
7635
7636 /* It is possible that this reload has been only used to set another reload
7637 we eliminated earlier and thus deleted this instruction too. */
7638 if (INSN_DELETED_P (output_reload_insn))
7639 return;
7640
7641 /* Get the raw pseudo-register referred to. */
7642
7643 while (GET_CODE (reg) == SUBREG)
7644 reg = SUBREG_REG (reg);
7645 substed = reg_equiv_memory_loc[REGNO (reg)];
7646
7647 /* This is unsafe if the operand occurs more often in the current
7648 insn than it is inherited. */
7649 for (k = n_reloads - 1; k >= 0; k--)
7650 {
7651 rtx reg2 = rld[k].in;
7652 if (! reg2)
7653 continue;
7654 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7655 reg2 = rld[k].in_reg;
7656 #ifdef AUTO_INC_DEC
7657 if (rld[k].out && ! rld[k].out_reg)
7658 reg2 = XEXP (rld[k].in_reg, 0);
7659 #endif
7660 while (GET_CODE (reg2) == SUBREG)
7661 reg2 = SUBREG_REG (reg2);
7662 if (rtx_equal_p (reg2, reg))
7663 {
7664 if (reload_inherited[k] || reload_override_in[k] || k == j)
7665 {
7666 n_inherited++;
7667 reg2 = rld[k].out_reg;
7668 if (! reg2)
7669 continue;
7670 while (GET_CODE (reg2) == SUBREG)
7671 reg2 = XEXP (reg2, 0);
7672 if (rtx_equal_p (reg2, reg))
7673 n_inherited++;
7674 }
7675 else
7676 return;
7677 }
7678 }
7679 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7680 if (substed)
7681 n_occurrences += count_occurrences (PATTERN (insn),
7682 eliminate_regs (substed, 0,
7683 NULL_RTX), 0);
7684 if (n_occurrences > n_inherited)
7685 return;
7686
7687 /* If the pseudo-reg we are reloading is no longer referenced
7688 anywhere between the store into it and here,
7689 and no jumps or labels intervene, then the value can get
7690 here through the reload reg alone.
7691 Otherwise, give up--return. */
7692 for (i1 = NEXT_INSN (output_reload_insn);
7693 i1 != insn; i1 = NEXT_INSN (i1))
7694 {
7695 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7696 return;
7697 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7698 && reg_mentioned_p (reg, PATTERN (i1)))
7699 {
7700 /* If this is USE in front of INSN, we only have to check that
7701 there are no more references than accounted for by inheritance. */
7702 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7703 {
7704 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7705 i1 = NEXT_INSN (i1);
7706 }
7707 if (n_occurrences <= n_inherited && i1 == insn)
7708 break;
7709 return;
7710 }
7711 }
7712
7713 /* We will be deleting the insn. Remove the spill reg information. */
7714 for (k = HARD_REGNO_NREGS (last_reload_reg, GET_MODE (reg)); k-- > 0; )
7715 {
7716 spill_reg_store[last_reload_reg + k] = 0;
7717 spill_reg_stored_to[last_reload_reg + k] = 0;
7718 }
7719
7720 /* The caller has already checked that REG dies or is set in INSN.
7721 It has also checked that we are optimizing, and thus some
7722 inaccuracies in the debugging information are acceptable.
7723 So we could just delete output_reload_insn. But in some cases
7724 we can improve the debugging information without sacrificing
7725 optimization - maybe even improving the code: See if the pseudo
7726 reg has been completely replaced with reload regs. If so, delete
7727 the store insn and forget we had a stack slot for the pseudo. */
7728 if (rld[j].out != rld[j].in
7729 && REG_N_DEATHS (REGNO (reg)) == 1
7730 && REG_N_SETS (REGNO (reg)) == 1
7731 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7732 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7733 {
7734 rtx i2;
7735
7736 /* We know that it was used only between here and the beginning of
7737 the current basic block. (We also know that the last use before
7738 INSN was the output reload we are thinking of deleting, but never
7739 mind that.) Search that range; see if any ref remains. */
7740 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7741 {
7742 rtx set = single_set (i2);
7743
7744 /* Uses which just store in the pseudo don't count,
7745 since if they are the only uses, they are dead. */
7746 if (set != 0 && SET_DEST (set) == reg)
7747 continue;
7748 if (GET_CODE (i2) == CODE_LABEL
7749 || GET_CODE (i2) == JUMP_INSN)
7750 break;
7751 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7752 && reg_mentioned_p (reg, PATTERN (i2)))
7753 {
7754 /* Some other ref remains; just delete the output reload we
7755 know to be dead. */
7756 delete_address_reloads (output_reload_insn, insn);
7757 delete_insn (output_reload_insn);
7758 return;
7759 }
7760 }
7761
7762 /* Delete the now-dead stores into this pseudo. Note that this
7763 loop also takes care of deleting output_reload_insn. */
7764 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7765 {
7766 rtx set = single_set (i2);
7767
7768 if (set != 0 && SET_DEST (set) == reg)
7769 {
7770 delete_address_reloads (i2, insn);
7771 delete_insn (i2);
7772 }
7773 if (GET_CODE (i2) == CODE_LABEL
7774 || GET_CODE (i2) == JUMP_INSN)
7775 break;
7776 }
7777
7778 /* For the debugging info, say the pseudo lives in this reload reg. */
7779 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7780 alter_reg (REGNO (reg), -1);
7781 }
7782 else
7783 {
7784 delete_address_reloads (output_reload_insn, insn);
7785 delete_insn (output_reload_insn);
7786 }
7787 }
7788
7789 /* We are going to delete DEAD_INSN. Recursively delete loads of
7790 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7791 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7792 static void
7793 delete_address_reloads (dead_insn, current_insn)
7794 rtx dead_insn, current_insn;
7795 {
7796 rtx set = single_set (dead_insn);
7797 rtx set2, dst, prev, next;
7798 if (set)
7799 {
7800 rtx dst = SET_DEST (set);
7801 if (GET_CODE (dst) == MEM)
7802 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7803 }
7804 /* If we deleted the store from a reloaded post_{in,de}c expression,
7805 we can delete the matching adds. */
7806 prev = PREV_INSN (dead_insn);
7807 next = NEXT_INSN (dead_insn);
7808 if (! prev || ! next)
7809 return;
7810 set = single_set (next);
7811 set2 = single_set (prev);
7812 if (! set || ! set2
7813 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7814 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7815 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7816 return;
7817 dst = SET_DEST (set);
7818 if (! rtx_equal_p (dst, SET_DEST (set2))
7819 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7820 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7821 || (INTVAL (XEXP (SET_SRC (set), 1))
7822 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7823 return;
7824 delete_related_insns (prev);
7825 delete_related_insns (next);
7826 }
7827
7828 /* Subfunction of delete_address_reloads: process registers found in X. */
7829 static void
7830 delete_address_reloads_1 (dead_insn, x, current_insn)
7831 rtx dead_insn, x, current_insn;
7832 {
7833 rtx prev, set, dst, i2;
7834 int i, j;
7835 enum rtx_code code = GET_CODE (x);
7836
7837 if (code != REG)
7838 {
7839 const char *fmt = GET_RTX_FORMAT (code);
7840 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7841 {
7842 if (fmt[i] == 'e')
7843 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7844 else if (fmt[i] == 'E')
7845 {
7846 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7847 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7848 current_insn);
7849 }
7850 }
7851 return;
7852 }
7853
7854 if (spill_reg_order[REGNO (x)] < 0)
7855 return;
7856
7857 /* Scan backwards for the insn that sets x. This might be a way back due
7858 to inheritance. */
7859 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7860 {
7861 code = GET_CODE (prev);
7862 if (code == CODE_LABEL || code == JUMP_INSN)
7863 return;
7864 if (GET_RTX_CLASS (code) != 'i')
7865 continue;
7866 if (reg_set_p (x, PATTERN (prev)))
7867 break;
7868 if (reg_referenced_p (x, PATTERN (prev)))
7869 return;
7870 }
7871 if (! prev || INSN_UID (prev) < reload_first_uid)
7872 return;
7873 /* Check that PREV only sets the reload register. */
7874 set = single_set (prev);
7875 if (! set)
7876 return;
7877 dst = SET_DEST (set);
7878 if (GET_CODE (dst) != REG
7879 || ! rtx_equal_p (dst, x))
7880 return;
7881 if (! reg_set_p (dst, PATTERN (dead_insn)))
7882 {
7883 /* Check if DST was used in a later insn -
7884 it might have been inherited. */
7885 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7886 {
7887 if (GET_CODE (i2) == CODE_LABEL)
7888 break;
7889 if (! INSN_P (i2))
7890 continue;
7891 if (reg_referenced_p (dst, PATTERN (i2)))
7892 {
7893 /* If there is a reference to the register in the current insn,
7894 it might be loaded in a non-inherited reload. If no other
7895 reload uses it, that means the register is set before
7896 referenced. */
7897 if (i2 == current_insn)
7898 {
7899 for (j = n_reloads - 1; j >= 0; j--)
7900 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7901 || reload_override_in[j] == dst)
7902 return;
7903 for (j = n_reloads - 1; j >= 0; j--)
7904 if (rld[j].in && rld[j].reg_rtx == dst)
7905 break;
7906 if (j >= 0)
7907 break;
7908 }
7909 return;
7910 }
7911 if (GET_CODE (i2) == JUMP_INSN)
7912 break;
7913 /* If DST is still live at CURRENT_INSN, check if it is used for
7914 any reload. Note that even if CURRENT_INSN sets DST, we still
7915 have to check the reloads. */
7916 if (i2 == current_insn)
7917 {
7918 for (j = n_reloads - 1; j >= 0; j--)
7919 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7920 || reload_override_in[j] == dst)
7921 return;
7922 /* ??? We can't finish the loop here, because dst might be
7923 allocated to a pseudo in this block if no reload in this
7924 block needs any of the classes containing DST - see
7925 spill_hard_reg. There is no easy way to tell this, so we
7926 have to scan till the end of the basic block. */
7927 }
7928 if (reg_set_p (dst, PATTERN (i2)))
7929 break;
7930 }
7931 }
7932 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7933 reg_reloaded_contents[REGNO (dst)] = -1;
7934 delete_insn (prev);
7935 }
7936 \f
7937 /* Output reload-insns to reload VALUE into RELOADREG.
7938 VALUE is an autoincrement or autodecrement RTX whose operand
7939 is a register or memory location;
7940 so reloading involves incrementing that location.
7941 IN is either identical to VALUE, or some cheaper place to reload from.
7942
7943 INC_AMOUNT is the number to increment or decrement by (always positive).
7944 This cannot be deduced from VALUE.
7945
7946 Return the instruction that stores into RELOADREG. */
7947
7948 static rtx
7949 inc_for_reload (reloadreg, in, value, inc_amount)
7950 rtx reloadreg;
7951 rtx in, value;
7952 int inc_amount;
7953 {
7954 /* REG or MEM to be copied and incremented. */
7955 rtx incloc = XEXP (value, 0);
7956 /* Nonzero if increment after copying. */
7957 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7958 rtx last;
7959 rtx inc;
7960 rtx add_insn;
7961 int code;
7962 rtx store;
7963 rtx real_in = in == value ? XEXP (in, 0) : in;
7964
7965 /* No hard register is equivalent to this register after
7966 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
7967 we could inc/dec that register as well (maybe even using it for
7968 the source), but I'm not sure it's worth worrying about. */
7969 if (GET_CODE (incloc) == REG)
7970 reg_last_reload_reg[REGNO (incloc)] = 0;
7971
7972 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7973 inc_amount = -inc_amount;
7974
7975 inc = GEN_INT (inc_amount);
7976
7977 /* If this is post-increment, first copy the location to the reload reg. */
7978 if (post && real_in != reloadreg)
7979 emit_insn (gen_move_insn (reloadreg, real_in));
7980
7981 if (in == value)
7982 {
7983 /* See if we can directly increment INCLOC. Use a method similar to
7984 that in gen_reload. */
7985
7986 last = get_last_insn ();
7987 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7988 gen_rtx_PLUS (GET_MODE (incloc),
7989 incloc, inc)));
7990
7991 code = recog_memoized (add_insn);
7992 if (code >= 0)
7993 {
7994 extract_insn (add_insn);
7995 if (constrain_operands (1))
7996 {
7997 /* If this is a pre-increment and we have incremented the value
7998 where it lives, copy the incremented value to RELOADREG to
7999 be used as an address. */
8000
8001 if (! post)
8002 emit_insn (gen_move_insn (reloadreg, incloc));
8003
8004 return add_insn;
8005 }
8006 }
8007 delete_insns_since (last);
8008 }
8009
8010 /* If couldn't do the increment directly, must increment in RELOADREG.
8011 The way we do this depends on whether this is pre- or post-increment.
8012 For pre-increment, copy INCLOC to the reload register, increment it
8013 there, then save back. */
8014
8015 if (! post)
8016 {
8017 if (in != reloadreg)
8018 emit_insn (gen_move_insn (reloadreg, real_in));
8019 emit_insn (gen_add2_insn (reloadreg, inc));
8020 store = emit_insn (gen_move_insn (incloc, reloadreg));
8021 }
8022 else
8023 {
8024 /* Postincrement.
8025 Because this might be a jump insn or a compare, and because RELOADREG
8026 may not be available after the insn in an input reload, we must do
8027 the incrementation before the insn being reloaded for.
8028
8029 We have already copied IN to RELOADREG. Increment the copy in
8030 RELOADREG, save that back, then decrement RELOADREG so it has
8031 the original value. */
8032
8033 emit_insn (gen_add2_insn (reloadreg, inc));
8034 store = emit_insn (gen_move_insn (incloc, reloadreg));
8035 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
8036 }
8037
8038 return store;
8039 }
8040 \f
8041
8042 /* See whether a single set SET is a noop. */
8043 static int
8044 reload_cse_noop_set_p (set)
8045 rtx set;
8046 {
8047 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
8048 return 0;
8049
8050 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8051 }
8052
8053 /* Try to simplify INSN. */
8054 static void
8055 reload_cse_simplify (insn, testreg)
8056 rtx insn;
8057 rtx testreg;
8058 {
8059 rtx body = PATTERN (insn);
8060
8061 if (GET_CODE (body) == SET)
8062 {
8063 int count = 0;
8064
8065 /* Simplify even if we may think it is a no-op.
8066 We may think a memory load of a value smaller than WORD_SIZE
8067 is redundant because we haven't taken into account possible
8068 implicit extension. reload_cse_simplify_set() will bring
8069 this out, so it's safer to simplify before we delete. */
8070 count += reload_cse_simplify_set (body, insn);
8071
8072 if (!count && reload_cse_noop_set_p (body))
8073 {
8074 rtx value = SET_DEST (body);
8075 if (REG_P (value)
8076 && ! REG_FUNCTION_VALUE_P (value))
8077 value = 0;
8078 delete_insn_and_edges (insn);
8079 return;
8080 }
8081
8082 if (count > 0)
8083 apply_change_group ();
8084 else
8085 reload_cse_simplify_operands (insn, testreg);
8086 }
8087 else if (GET_CODE (body) == PARALLEL)
8088 {
8089 int i;
8090 int count = 0;
8091 rtx value = NULL_RTX;
8092
8093 /* If every action in a PARALLEL is a noop, we can delete
8094 the entire PARALLEL. */
8095 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8096 {
8097 rtx part = XVECEXP (body, 0, i);
8098 if (GET_CODE (part) == SET)
8099 {
8100 if (! reload_cse_noop_set_p (part))
8101 break;
8102 if (REG_P (SET_DEST (part))
8103 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
8104 {
8105 if (value)
8106 break;
8107 value = SET_DEST (part);
8108 }
8109 }
8110 else if (GET_CODE (part) != CLOBBER)
8111 break;
8112 }
8113
8114 if (i < 0)
8115 {
8116 delete_insn_and_edges (insn);
8117 /* We're done with this insn. */
8118 return;
8119 }
8120
8121 /* It's not a no-op, but we can try to simplify it. */
8122 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8123 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8124 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8125
8126 if (count > 0)
8127 apply_change_group ();
8128 else
8129 reload_cse_simplify_operands (insn, testreg);
8130 }
8131 }
8132
8133 /* Do a very simple CSE pass over the hard registers.
8134
8135 This function detects no-op moves where we happened to assign two
8136 different pseudo-registers to the same hard register, and then
8137 copied one to the other. Reload will generate a useless
8138 instruction copying a register to itself.
8139
8140 This function also detects cases where we load a value from memory
8141 into two different registers, and (if memory is more expensive than
8142 registers) changes it to simply copy the first register into the
8143 second register.
8144
8145 Another optimization is performed that scans the operands of each
8146 instruction to see whether the value is already available in a
8147 hard register. It then replaces the operand with the hard register
8148 if possible, much like an optional reload would. */
8149
8150 static void
8151 reload_cse_regs_1 (first)
8152 rtx first;
8153 {
8154 rtx insn;
8155 rtx testreg = gen_rtx_REG (VOIDmode, -1);
8156
8157 cselib_init ();
8158 init_alias_analysis ();
8159
8160 for (insn = first; insn; insn = NEXT_INSN (insn))
8161 {
8162 if (INSN_P (insn))
8163 reload_cse_simplify (insn, testreg);
8164
8165 cselib_process_insn (insn);
8166 }
8167
8168 /* Clean up. */
8169 end_alias_analysis ();
8170 cselib_finish ();
8171 }
8172
8173 /* Call cse / combine like post-reload optimization phases.
8174 FIRST is the first instruction. */
8175 void
8176 reload_cse_regs (first)
8177 rtx first;
8178 {
8179 reload_cse_regs_1 (first);
8180 reload_combine ();
8181 reload_cse_move2add (first);
8182 if (flag_expensive_optimizations)
8183 reload_cse_regs_1 (first);
8184 }
8185
8186 /* Try to simplify a single SET instruction. SET is the set pattern.
8187 INSN is the instruction it came from.
8188 This function only handles one case: if we set a register to a value
8189 which is not a register, we try to find that value in some other register
8190 and change the set into a register copy. */
8191
8192 static int
8193 reload_cse_simplify_set (set, insn)
8194 rtx set;
8195 rtx insn;
8196 {
8197 int did_change = 0;
8198 int dreg;
8199 rtx src;
8200 enum reg_class dclass;
8201 int old_cost;
8202 cselib_val *val;
8203 struct elt_loc_list *l;
8204 #ifdef LOAD_EXTEND_OP
8205 enum rtx_code extend_op = NIL;
8206 #endif
8207
8208 dreg = true_regnum (SET_DEST (set));
8209 if (dreg < 0)
8210 return 0;
8211
8212 src = SET_SRC (set);
8213 if (side_effects_p (src) || true_regnum (src) >= 0)
8214 return 0;
8215
8216 dclass = REGNO_REG_CLASS (dreg);
8217
8218 #ifdef LOAD_EXTEND_OP
8219 /* When replacing a memory with a register, we need to honor assumptions
8220 that combine made wrt the contents of sign bits. We'll do this by
8221 generating an extend instruction instead of a reg->reg copy. Thus
8222 the destination must be a register that we can widen. */
8223 if (GET_CODE (src) == MEM
8224 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8225 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8226 && GET_CODE (SET_DEST (set)) != REG)
8227 return 0;
8228 #endif
8229
8230 /* If memory loads are cheaper than register copies, don't change them. */
8231 if (GET_CODE (src) == MEM)
8232 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8233 else if (CONSTANT_P (src))
8234 old_cost = rtx_cost (src, SET);
8235 else if (GET_CODE (src) == REG)
8236 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8237 REGNO_REG_CLASS (REGNO (src)), dclass);
8238 else
8239 /* ??? */
8240 old_cost = rtx_cost (src, SET);
8241
8242 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
8243 if (! val)
8244 return 0;
8245 for (l = val->locs; l; l = l->next)
8246 {
8247 rtx this_rtx = l->loc;
8248 int this_cost;
8249
8250 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8251 {
8252 #ifdef LOAD_EXTEND_OP
8253 if (extend_op != NIL)
8254 {
8255 HOST_WIDE_INT this_val;
8256
8257 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8258 constants, such as SYMBOL_REF, cannot be extended. */
8259 if (GET_CODE (this_rtx) != CONST_INT)
8260 continue;
8261
8262 this_val = INTVAL (this_rtx);
8263 switch (extend_op)
8264 {
8265 case ZERO_EXTEND:
8266 this_val &= GET_MODE_MASK (GET_MODE (src));
8267 break;
8268 case SIGN_EXTEND:
8269 /* ??? In theory we're already extended. */
8270 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8271 break;
8272 default:
8273 abort ();
8274 }
8275 this_rtx = GEN_INT (this_val);
8276 }
8277 #endif
8278 this_cost = rtx_cost (this_rtx, SET);
8279 }
8280 else if (GET_CODE (this_rtx) == REG)
8281 {
8282 #ifdef LOAD_EXTEND_OP
8283 if (extend_op != NIL)
8284 {
8285 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8286 this_cost = rtx_cost (this_rtx, SET);
8287 }
8288 else
8289 #endif
8290 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8291 REGNO_REG_CLASS (REGNO (this_rtx)),
8292 dclass);
8293 }
8294 else
8295 continue;
8296
8297 /* If equal costs, prefer registers over anything else. That
8298 tends to lead to smaller instructions on some machines. */
8299 if (this_cost < old_cost
8300 || (this_cost == old_cost
8301 && GET_CODE (this_rtx) == REG
8302 && GET_CODE (SET_SRC (set)) != REG))
8303 {
8304 #ifdef LOAD_EXTEND_OP
8305 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8306 && extend_op != NIL
8307 #ifdef CANNOT_CHANGE_MODE_CLASS
8308 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
8309 word_mode,
8310 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
8311 #endif
8312 )
8313 {
8314 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8315 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8316 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8317 }
8318 #endif
8319
8320 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8321 old_cost = this_cost, did_change = 1;
8322 }
8323 }
8324
8325 return did_change;
8326 }
8327
8328 /* Try to replace operands in INSN with equivalent values that are already
8329 in registers. This can be viewed as optional reloading.
8330
8331 For each non-register operand in the insn, see if any hard regs are
8332 known to be equivalent to that operand. Record the alternatives which
8333 can accept these hard registers. Among all alternatives, select the
8334 ones which are better or equal to the one currently matching, where
8335 "better" is in terms of '?' and '!' constraints. Among the remaining
8336 alternatives, select the one which replaces most operands with
8337 hard registers. */
8338
8339 static int
8340 reload_cse_simplify_operands (insn, testreg)
8341 rtx insn;
8342 rtx testreg;
8343 {
8344 int i, j;
8345
8346 /* For each operand, all registers that are equivalent to it. */
8347 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8348
8349 const char *constraints[MAX_RECOG_OPERANDS];
8350
8351 /* Vector recording how bad an alternative is. */
8352 int *alternative_reject;
8353 /* Vector recording how many registers can be introduced by choosing
8354 this alternative. */
8355 int *alternative_nregs;
8356 /* Array of vectors recording, for each operand and each alternative,
8357 which hard register to substitute, or -1 if the operand should be
8358 left as it is. */
8359 int *op_alt_regno[MAX_RECOG_OPERANDS];
8360 /* Array of alternatives, sorted in order of decreasing desirability. */
8361 int *alternative_order;
8362
8363 extract_insn (insn);
8364
8365 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8366 return 0;
8367
8368 /* Figure out which alternative currently matches. */
8369 if (! constrain_operands (1))
8370 fatal_insn_not_found (insn);
8371
8372 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8373 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8374 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8375 memset ((char *) alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8376 memset ((char *) alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8377
8378 /* For each operand, find out which regs are equivalent. */
8379 for (i = 0; i < recog_data.n_operands; i++)
8380 {
8381 cselib_val *v;
8382 struct elt_loc_list *l;
8383
8384 CLEAR_HARD_REG_SET (equiv_regs[i]);
8385
8386 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8387 right, so avoid the problem here. Likewise if we have a constant
8388 and the insn pattern doesn't tell us the mode we need. */
8389 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8390 || (CONSTANT_P (recog_data.operand[i])
8391 && recog_data.operand_mode[i] == VOIDmode))
8392 continue;
8393
8394 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8395 if (! v)
8396 continue;
8397
8398 for (l = v->locs; l; l = l->next)
8399 if (GET_CODE (l->loc) == REG)
8400 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8401 }
8402
8403 for (i = 0; i < recog_data.n_operands; i++)
8404 {
8405 enum machine_mode mode;
8406 int regno;
8407 const char *p;
8408
8409 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8410 for (j = 0; j < recog_data.n_alternatives; j++)
8411 op_alt_regno[i][j] = -1;
8412
8413 p = constraints[i] = recog_data.constraints[i];
8414 mode = recog_data.operand_mode[i];
8415
8416 /* Add the reject values for each alternative given by the constraints
8417 for this operand. */
8418 j = 0;
8419 while (*p != '\0')
8420 {
8421 char c = *p++;
8422 if (c == ',')
8423 j++;
8424 else if (c == '?')
8425 alternative_reject[j] += 3;
8426 else if (c == '!')
8427 alternative_reject[j] += 300;
8428 }
8429
8430 /* We won't change operands which are already registers. We
8431 also don't want to modify output operands. */
8432 regno = true_regnum (recog_data.operand[i]);
8433 if (regno >= 0
8434 || constraints[i][0] == '='
8435 || constraints[i][0] == '+')
8436 continue;
8437
8438 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8439 {
8440 int class = (int) NO_REGS;
8441
8442 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8443 continue;
8444
8445 REGNO (testreg) = regno;
8446 PUT_MODE (testreg, mode);
8447
8448 /* We found a register equal to this operand. Now look for all
8449 alternatives that can accept this register and have not been
8450 assigned a register they can use yet. */
8451 j = 0;
8452 p = constraints[i];
8453 for (;;)
8454 {
8455 char c = *p;
8456
8457 switch (c)
8458 {
8459 case '=': case '+': case '?':
8460 case '#': case '&': case '!':
8461 case '*': case '%':
8462 case '0': case '1': case '2': case '3': case '4':
8463 case '5': case '6': case '7': case '8': case '9':
8464 case 'm': case '<': case '>': case 'V': case 'o':
8465 case 'E': case 'F': case 'G': case 'H':
8466 case 's': case 'i': case 'n':
8467 case 'I': case 'J': case 'K': case 'L':
8468 case 'M': case 'N': case 'O': case 'P':
8469 case 'p': case 'X':
8470 /* These don't say anything we care about. */
8471 break;
8472
8473 case 'g': case 'r':
8474 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8475 break;
8476
8477 default:
8478 class
8479 = (reg_class_subunion
8480 [(int) class]
8481 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
8482 break;
8483
8484 case ',': case '\0':
8485 /* See if REGNO fits this alternative, and set it up as the
8486 replacement register if we don't have one for this
8487 alternative yet and the operand being replaced is not
8488 a cheap CONST_INT. */
8489 if (op_alt_regno[i][j] == -1
8490 && reg_fits_class_p (testreg, class, 0, mode)
8491 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8492 || (rtx_cost (recog_data.operand[i], SET)
8493 > rtx_cost (testreg, SET))))
8494 {
8495 alternative_nregs[j]++;
8496 op_alt_regno[i][j] = regno;
8497 }
8498 j++;
8499 break;
8500 }
8501 p += CONSTRAINT_LEN (c, p);
8502
8503 if (c == '\0')
8504 break;
8505 }
8506 }
8507 }
8508
8509 /* Record all alternatives which are better or equal to the currently
8510 matching one in the alternative_order array. */
8511 for (i = j = 0; i < recog_data.n_alternatives; i++)
8512 if (alternative_reject[i] <= alternative_reject[which_alternative])
8513 alternative_order[j++] = i;
8514 recog_data.n_alternatives = j;
8515
8516 /* Sort it. Given a small number of alternatives, a dumb algorithm
8517 won't hurt too much. */
8518 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8519 {
8520 int best = i;
8521 int best_reject = alternative_reject[alternative_order[i]];
8522 int best_nregs = alternative_nregs[alternative_order[i]];
8523 int tmp;
8524
8525 for (j = i + 1; j < recog_data.n_alternatives; j++)
8526 {
8527 int this_reject = alternative_reject[alternative_order[j]];
8528 int this_nregs = alternative_nregs[alternative_order[j]];
8529
8530 if (this_reject < best_reject
8531 || (this_reject == best_reject && this_nregs < best_nregs))
8532 {
8533 best = j;
8534 best_reject = this_reject;
8535 best_nregs = this_nregs;
8536 }
8537 }
8538
8539 tmp = alternative_order[best];
8540 alternative_order[best] = alternative_order[i];
8541 alternative_order[i] = tmp;
8542 }
8543
8544 /* Substitute the operands as determined by op_alt_regno for the best
8545 alternative. */
8546 j = alternative_order[0];
8547
8548 for (i = 0; i < recog_data.n_operands; i++)
8549 {
8550 enum machine_mode mode = recog_data.operand_mode[i];
8551 if (op_alt_regno[i][j] == -1)
8552 continue;
8553
8554 validate_change (insn, recog_data.operand_loc[i],
8555 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8556 }
8557
8558 for (i = recog_data.n_dups - 1; i >= 0; i--)
8559 {
8560 int op = recog_data.dup_num[i];
8561 enum machine_mode mode = recog_data.operand_mode[op];
8562
8563 if (op_alt_regno[op][j] == -1)
8564 continue;
8565
8566 validate_change (insn, recog_data.dup_loc[i],
8567 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8568 }
8569
8570 return apply_change_group ();
8571 }
8572 \f
8573 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8574 addressing now.
8575 This code might also be useful when reload gave up on reg+reg addressing
8576 because of clashes between the return register and INDEX_REG_CLASS. */
8577
8578 /* The maximum number of uses of a register we can keep track of to
8579 replace them with reg+reg addressing. */
8580 #define RELOAD_COMBINE_MAX_USES 6
8581
8582 /* INSN is the insn where a register has ben used, and USEP points to the
8583 location of the register within the rtl. */
8584 struct reg_use { rtx insn, *usep; };
8585
8586 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8587 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8588 indicates where it becomes live again.
8589 Otherwise, USE_INDEX is the index of the last encountered use of the
8590 register (which is first among these we have seen since we scan backwards),
8591 OFFSET contains the constant offset that is added to the register in
8592 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8593 last, of these uses.
8594 STORE_RUID is always meaningful if we only want to use a value in a
8595 register in a different place: it denotes the next insn in the insn
8596 stream (i.e. the last encountered) that sets or clobbers the register. */
8597 static struct
8598 {
8599 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8600 int use_index;
8601 rtx offset;
8602 int store_ruid;
8603 int use_ruid;
8604 } reg_state[FIRST_PSEUDO_REGISTER];
8605
8606 /* Reverse linear uid. This is increased in reload_combine while scanning
8607 the instructions from last to first. It is used to set last_label_ruid
8608 and the store_ruid / use_ruid fields in reg_state. */
8609 static int reload_combine_ruid;
8610
8611 #define LABEL_LIVE(LABEL) \
8612 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8613
8614 static void
8615 reload_combine ()
8616 {
8617 rtx insn, set;
8618 int first_index_reg = -1;
8619 int last_index_reg = 0;
8620 int i;
8621 basic_block bb;
8622 unsigned int r;
8623 int last_label_ruid;
8624 int min_labelno, n_labels;
8625 HARD_REG_SET ever_live_at_start, *label_live;
8626
8627 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
8628 reload has already used it where appropriate, so there is no use in
8629 trying to generate it now. */
8630 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8631 return;
8632
8633 /* To avoid wasting too much time later searching for an index register,
8634 determine the minimum and maximum index register numbers. */
8635 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8636 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8637 {
8638 if (first_index_reg == -1)
8639 first_index_reg = r;
8640
8641 last_index_reg = r;
8642 }
8643
8644 /* If no index register is available, we can quit now. */
8645 if (first_index_reg == -1)
8646 return;
8647
8648 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8649 information is a bit fuzzy immediately after reload, but it's
8650 still good enough to determine which registers are live at a jump
8651 destination. */
8652 min_labelno = get_first_label_num ();
8653 n_labels = max_label_num () - min_labelno;
8654 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8655 CLEAR_HARD_REG_SET (ever_live_at_start);
8656
8657 FOR_EACH_BB_REVERSE (bb)
8658 {
8659 insn = bb->head;
8660 if (GET_CODE (insn) == CODE_LABEL)
8661 {
8662 HARD_REG_SET live;
8663
8664 REG_SET_TO_HARD_REG_SET (live,
8665 bb->global_live_at_start);
8666 compute_use_by_pseudos (&live,
8667 bb->global_live_at_start);
8668 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8669 IOR_HARD_REG_SET (ever_live_at_start, live);
8670 }
8671 }
8672
8673 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8674 last_label_ruid = reload_combine_ruid = 0;
8675 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8676 {
8677 reg_state[r].store_ruid = reload_combine_ruid;
8678 if (fixed_regs[r])
8679 reg_state[r].use_index = -1;
8680 else
8681 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8682 }
8683
8684 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8685 {
8686 rtx note;
8687
8688 /* We cannot do our optimization across labels. Invalidating all the use
8689 information we have would be costly, so we just note where the label
8690 is and then later disable any optimization that would cross it. */
8691 if (GET_CODE (insn) == CODE_LABEL)
8692 last_label_ruid = reload_combine_ruid;
8693 else if (GET_CODE (insn) == BARRIER)
8694 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8695 if (! fixed_regs[r])
8696 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8697
8698 if (! INSN_P (insn))
8699 continue;
8700
8701 reload_combine_ruid++;
8702
8703 /* Look for (set (REGX) (CONST_INT))
8704 (set (REGX) (PLUS (REGX) (REGY)))
8705 ...
8706 ... (MEM (REGX)) ...
8707 and convert it to
8708 (set (REGZ) (CONST_INT))
8709 ...
8710 ... (MEM (PLUS (REGZ) (REGY)))... .
8711
8712 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8713 and that we know all uses of REGX before it dies. */
8714 set = single_set (insn);
8715 if (set != NULL_RTX
8716 && GET_CODE (SET_DEST (set)) == REG
8717 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8718 GET_MODE (SET_DEST (set)))
8719 == 1)
8720 && GET_CODE (SET_SRC (set)) == PLUS
8721 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8722 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8723 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8724 {
8725 rtx reg = SET_DEST (set);
8726 rtx plus = SET_SRC (set);
8727 rtx base = XEXP (plus, 1);
8728 rtx prev = prev_nonnote_insn (insn);
8729 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8730 unsigned int regno = REGNO (reg);
8731 rtx const_reg = NULL_RTX;
8732 rtx reg_sum = NULL_RTX;
8733
8734 /* Now, we need an index register.
8735 We'll set index_reg to this index register, const_reg to the
8736 register that is to be loaded with the constant
8737 (denoted as REGZ in the substitution illustration above),
8738 and reg_sum to the register-register that we want to use to
8739 substitute uses of REG (typically in MEMs) with.
8740 First check REG and BASE for being index registers;
8741 we can use them even if they are not dead. */
8742 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8743 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8744 REGNO (base)))
8745 {
8746 const_reg = reg;
8747 reg_sum = plus;
8748 }
8749 else
8750 {
8751 /* Otherwise, look for a free index register. Since we have
8752 checked above that neiter REG nor BASE are index registers,
8753 if we find anything at all, it will be different from these
8754 two registers. */
8755 for (i = first_index_reg; i <= last_index_reg; i++)
8756 {
8757 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8758 i)
8759 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8760 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8761 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8762 {
8763 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8764
8765 const_reg = index_reg;
8766 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8767 break;
8768 }
8769 }
8770 }
8771
8772 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8773 (REGY), i.e. BASE, is not clobbered before the last use we'll
8774 create. */
8775 if (prev_set != 0
8776 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8777 && rtx_equal_p (SET_DEST (prev_set), reg)
8778 && reg_state[regno].use_index >= 0
8779 && (reg_state[REGNO (base)].store_ruid
8780 <= reg_state[regno].use_ruid)
8781 && reg_sum != 0)
8782 {
8783 int i;
8784
8785 /* Change destination register and, if necessary, the
8786 constant value in PREV, the constant loading instruction. */
8787 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8788 if (reg_state[regno].offset != const0_rtx)
8789 validate_change (prev,
8790 &SET_SRC (prev_set),
8791 GEN_INT (INTVAL (SET_SRC (prev_set))
8792 + INTVAL (reg_state[regno].offset)),
8793 1);
8794
8795 /* Now for every use of REG that we have recorded, replace REG
8796 with REG_SUM. */
8797 for (i = reg_state[regno].use_index;
8798 i < RELOAD_COMBINE_MAX_USES; i++)
8799 validate_change (reg_state[regno].reg_use[i].insn,
8800 reg_state[regno].reg_use[i].usep,
8801 /* Each change must have its own
8802 replacement. */
8803 copy_rtx (reg_sum), 1);
8804
8805 if (apply_change_group ())
8806 {
8807 rtx *np;
8808
8809 /* Delete the reg-reg addition. */
8810 delete_insn (insn);
8811
8812 if (reg_state[regno].offset != const0_rtx)
8813 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8814 are now invalid. */
8815 for (np = &REG_NOTES (prev); *np;)
8816 {
8817 if (REG_NOTE_KIND (*np) == REG_EQUAL
8818 || REG_NOTE_KIND (*np) == REG_EQUIV)
8819 *np = XEXP (*np, 1);
8820 else
8821 np = &XEXP (*np, 1);
8822 }
8823
8824 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8825 reg_state[REGNO (const_reg)].store_ruid
8826 = reload_combine_ruid;
8827 continue;
8828 }
8829 }
8830 }
8831
8832 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8833
8834 if (GET_CODE (insn) == CALL_INSN)
8835 {
8836 rtx link;
8837
8838 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8839 if (call_used_regs[r])
8840 {
8841 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8842 reg_state[r].store_ruid = reload_combine_ruid;
8843 }
8844
8845 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8846 link = XEXP (link, 1))
8847 {
8848 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8849 if (GET_CODE (usage_rtx) == REG)
8850 {
8851 unsigned int i;
8852 unsigned int start_reg = REGNO (usage_rtx);
8853 unsigned int num_regs =
8854 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8855 unsigned int end_reg = start_reg + num_regs - 1;
8856 for (i = start_reg; i <= end_reg; i++)
8857 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8858 {
8859 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8860 reg_state[i].store_ruid = reload_combine_ruid;
8861 }
8862 else
8863 reg_state[i].use_index = -1;
8864 }
8865 }
8866
8867 }
8868 else if (GET_CODE (insn) == JUMP_INSN
8869 && GET_CODE (PATTERN (insn)) != RETURN)
8870 {
8871 /* Non-spill registers might be used at the call destination in
8872 some unknown fashion, so we have to mark the unknown use. */
8873 HARD_REG_SET *live;
8874
8875 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8876 && JUMP_LABEL (insn))
8877 live = &LABEL_LIVE (JUMP_LABEL (insn));
8878 else
8879 live = &ever_live_at_start;
8880
8881 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8882 if (TEST_HARD_REG_BIT (*live, i))
8883 reg_state[i].use_index = -1;
8884 }
8885
8886 reload_combine_note_use (&PATTERN (insn), insn);
8887 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8888 {
8889 if (REG_NOTE_KIND (note) == REG_INC
8890 && GET_CODE (XEXP (note, 0)) == REG)
8891 {
8892 int regno = REGNO (XEXP (note, 0));
8893
8894 reg_state[regno].store_ruid = reload_combine_ruid;
8895 reg_state[regno].use_index = -1;
8896 }
8897 }
8898 }
8899
8900 free (label_live);
8901 }
8902
8903 /* Check if DST is a register or a subreg of a register; if it is,
8904 update reg_state[regno].store_ruid and reg_state[regno].use_index
8905 accordingly. Called via note_stores from reload_combine. */
8906
8907 static void
8908 reload_combine_note_store (dst, set, data)
8909 rtx dst, set;
8910 void *data ATTRIBUTE_UNUSED;
8911 {
8912 int regno = 0;
8913 int i;
8914 enum machine_mode mode = GET_MODE (dst);
8915
8916 if (GET_CODE (dst) == SUBREG)
8917 {
8918 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8919 GET_MODE (SUBREG_REG (dst)),
8920 SUBREG_BYTE (dst),
8921 GET_MODE (dst));
8922 dst = SUBREG_REG (dst);
8923 }
8924 if (GET_CODE (dst) != REG)
8925 return;
8926 regno += REGNO (dst);
8927
8928 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8929 careful with registers / register parts that are not full words.
8930
8931 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8932 if (GET_CODE (set) != SET
8933 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8934 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8935 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8936 {
8937 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8938 {
8939 reg_state[i].use_index = -1;
8940 reg_state[i].store_ruid = reload_combine_ruid;
8941 }
8942 }
8943 else
8944 {
8945 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8946 {
8947 reg_state[i].store_ruid = reload_combine_ruid;
8948 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8949 }
8950 }
8951 }
8952
8953 /* XP points to a piece of rtl that has to be checked for any uses of
8954 registers.
8955 *XP is the pattern of INSN, or a part of it.
8956 Called from reload_combine, and recursively by itself. */
8957 static void
8958 reload_combine_note_use (xp, insn)
8959 rtx *xp, insn;
8960 {
8961 rtx x = *xp;
8962 enum rtx_code code = x->code;
8963 const char *fmt;
8964 int i, j;
8965 rtx offset = const0_rtx; /* For the REG case below. */
8966
8967 switch (code)
8968 {
8969 case SET:
8970 if (GET_CODE (SET_DEST (x)) == REG)
8971 {
8972 reload_combine_note_use (&SET_SRC (x), insn);
8973 return;
8974 }
8975 break;
8976
8977 case USE:
8978 /* If this is the USE of a return value, we can't change it. */
8979 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8980 {
8981 /* Mark the return register as used in an unknown fashion. */
8982 rtx reg = XEXP (x, 0);
8983 int regno = REGNO (reg);
8984 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8985
8986 while (--nregs >= 0)
8987 reg_state[regno + nregs].use_index = -1;
8988 return;
8989 }
8990 break;
8991
8992 case CLOBBER:
8993 if (GET_CODE (SET_DEST (x)) == REG)
8994 {
8995 /* No spurious CLOBBERs of pseudo registers may remain. */
8996 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
8997 abort ();
8998 return;
8999 }
9000 break;
9001
9002 case PLUS:
9003 /* We are interested in (plus (reg) (const_int)) . */
9004 if (GET_CODE (XEXP (x, 0)) != REG
9005 || GET_CODE (XEXP (x, 1)) != CONST_INT)
9006 break;
9007 offset = XEXP (x, 1);
9008 x = XEXP (x, 0);
9009 /* Fall through. */
9010 case REG:
9011 {
9012 int regno = REGNO (x);
9013 int use_index;
9014 int nregs;
9015
9016 /* No spurious USEs of pseudo registers may remain. */
9017 if (regno >= FIRST_PSEUDO_REGISTER)
9018 abort ();
9019
9020 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
9021
9022 /* We can't substitute into multi-hard-reg uses. */
9023 if (nregs > 1)
9024 {
9025 while (--nregs >= 0)
9026 reg_state[regno + nregs].use_index = -1;
9027 return;
9028 }
9029
9030 /* If this register is already used in some unknown fashion, we
9031 can't do anything.
9032 If we decrement the index from zero to -1, we can't store more
9033 uses, so this register becomes used in an unknown fashion. */
9034 use_index = --reg_state[regno].use_index;
9035 if (use_index < 0)
9036 return;
9037
9038 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
9039 {
9040 /* We have found another use for a register that is already
9041 used later. Check if the offsets match; if not, mark the
9042 register as used in an unknown fashion. */
9043 if (! rtx_equal_p (offset, reg_state[regno].offset))
9044 {
9045 reg_state[regno].use_index = -1;
9046 return;
9047 }
9048 }
9049 else
9050 {
9051 /* This is the first use of this register we have seen since we
9052 marked it as dead. */
9053 reg_state[regno].offset = offset;
9054 reg_state[regno].use_ruid = reload_combine_ruid;
9055 }
9056 reg_state[regno].reg_use[use_index].insn = insn;
9057 reg_state[regno].reg_use[use_index].usep = xp;
9058 return;
9059 }
9060
9061 default:
9062 break;
9063 }
9064
9065 /* Recursively process the components of X. */
9066 fmt = GET_RTX_FORMAT (code);
9067 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9068 {
9069 if (fmt[i] == 'e')
9070 reload_combine_note_use (&XEXP (x, i), insn);
9071 else if (fmt[i] == 'E')
9072 {
9073 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9074 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9075 }
9076 }
9077 }
9078 \f
9079 /* See if we can reduce the cost of a constant by replacing a move
9080 with an add. We track situations in which a register is set to a
9081 constant or to a register plus a constant. */
9082 /* We cannot do our optimization across labels. Invalidating all the
9083 information about register contents we have would be costly, so we
9084 use move2add_last_label_luid to note where the label is and then
9085 later disable any optimization that would cross it.
9086 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9087 reg_set_luid[n] is greater than move2add_last_label_luid. */
9088 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
9089
9090 /* If reg_base_reg[n] is negative, register n has been set to
9091 reg_offset[n] in mode reg_mode[n] .
9092 If reg_base_reg[n] is non-negative, register n has been set to the
9093 sum of reg_offset[n] and the value of register reg_base_reg[n]
9094 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9095 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
9096 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9097 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
9098
9099 /* move2add_luid is linearly increased while scanning the instructions
9100 from first to last. It is used to set reg_set_luid in
9101 reload_cse_move2add and move2add_note_store. */
9102 static int move2add_luid;
9103
9104 /* move2add_last_label_luid is set whenever a label is found. Labels
9105 invalidate all previously collected reg_offset data. */
9106 static int move2add_last_label_luid;
9107
9108 /* ??? We don't know how zero / sign extension is handled, hence we
9109 can't go from a narrower to a wider mode. */
9110 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9111 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9112 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9113 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9114 GET_MODE_BITSIZE (INMODE))))
9115
9116 static void
9117 reload_cse_move2add (first)
9118 rtx first;
9119 {
9120 int i;
9121 rtx insn;
9122
9123 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9124 reg_set_luid[i] = 0;
9125
9126 move2add_last_label_luid = 0;
9127 move2add_luid = 2;
9128 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9129 {
9130 rtx pat, note;
9131
9132 if (GET_CODE (insn) == CODE_LABEL)
9133 {
9134 move2add_last_label_luid = move2add_luid;
9135 /* We're going to increment move2add_luid twice after a
9136 label, so that we can use move2add_last_label_luid + 1 as
9137 the luid for constants. */
9138 move2add_luid++;
9139 continue;
9140 }
9141 if (! INSN_P (insn))
9142 continue;
9143 pat = PATTERN (insn);
9144 /* For simplicity, we only perform this optimization on
9145 straightforward SETs. */
9146 if (GET_CODE (pat) == SET
9147 && GET_CODE (SET_DEST (pat)) == REG)
9148 {
9149 rtx reg = SET_DEST (pat);
9150 int regno = REGNO (reg);
9151 rtx src = SET_SRC (pat);
9152
9153 /* Check if we have valid information on the contents of this
9154 register in the mode of REG. */
9155 if (reg_set_luid[regno] > move2add_last_label_luid
9156 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
9157 {
9158 /* Try to transform (set (REGX) (CONST_INT A))
9159 ...
9160 (set (REGX) (CONST_INT B))
9161 to
9162 (set (REGX) (CONST_INT A))
9163 ...
9164 (set (REGX) (plus (REGX) (CONST_INT B-A)))
9165 or
9166 (set (REGX) (CONST_INT A))
9167 ...
9168 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
9169 */
9170
9171 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9172 {
9173 rtx new_src =
9174 GEN_INT (trunc_int_for_mode (INTVAL (src)
9175 - reg_offset[regno],
9176 GET_MODE (reg)));
9177 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9178 use (set (reg) (reg)) instead.
9179 We don't delete this insn, nor do we convert it into a
9180 note, to avoid losing register notes or the return
9181 value flag. jump2 already knows how to get rid of
9182 no-op moves. */
9183 if (new_src == const0_rtx)
9184 {
9185 /* If the constants are different, this is a
9186 truncation, that, if turned into (set (reg)
9187 (reg)), would be discarded. Maybe we should
9188 try a truncMN pattern? */
9189 if (INTVAL (src) == reg_offset [regno])
9190 validate_change (insn, &SET_SRC (pat), reg, 0);
9191 }
9192 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
9193 && have_add2_insn (reg, new_src))
9194 {
9195 rtx newpat = gen_add2_insn (reg, new_src);
9196 if (INSN_P (newpat) && NEXT_INSN (newpat) == NULL_RTX)
9197 newpat = PATTERN (newpat);
9198 /* If it was the first insn of a sequence or
9199 some other emitted insn, validate_change will
9200 reject it. */
9201 validate_change (insn, &PATTERN (insn),
9202 newpat, 0);
9203 }
9204 else
9205 {
9206 enum machine_mode narrow_mode;
9207 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9208 narrow_mode != GET_MODE (reg);
9209 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
9210 {
9211 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
9212 && ((reg_offset[regno]
9213 & ~GET_MODE_MASK (narrow_mode))
9214 == (INTVAL (src)
9215 & ~GET_MODE_MASK (narrow_mode))))
9216 {
9217 rtx narrow_reg = gen_rtx_REG (narrow_mode,
9218 REGNO (reg));
9219 rtx narrow_src =
9220 GEN_INT (trunc_int_for_mode (INTVAL (src),
9221 narrow_mode));
9222 rtx new_set =
9223 gen_rtx_SET (VOIDmode,
9224 gen_rtx_STRICT_LOW_PART (VOIDmode,
9225 narrow_reg),
9226 narrow_src);
9227 if (validate_change (insn, &PATTERN (insn),
9228 new_set, 0))
9229 break;
9230 }
9231 }
9232 }
9233 reg_set_luid[regno] = move2add_luid;
9234 reg_mode[regno] = GET_MODE (reg);
9235 reg_offset[regno] = INTVAL (src);
9236 continue;
9237 }
9238
9239 /* Try to transform (set (REGX) (REGY))
9240 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9241 ...
9242 (set (REGX) (REGY))
9243 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9244 to
9245 (set (REGX) (REGY))
9246 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9247 ...
9248 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9249 else if (GET_CODE (src) == REG
9250 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9251 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9252 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9253 reg_mode[REGNO (src)]))
9254 {
9255 rtx next = next_nonnote_insn (insn);
9256 rtx set = NULL_RTX;
9257 if (next)
9258 set = single_set (next);
9259 if (set
9260 && SET_DEST (set) == reg
9261 && GET_CODE (SET_SRC (set)) == PLUS
9262 && XEXP (SET_SRC (set), 0) == reg
9263 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9264 {
9265 rtx src3 = XEXP (SET_SRC (set), 1);
9266 HOST_WIDE_INT added_offset = INTVAL (src3);
9267 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9268 HOST_WIDE_INT regno_offset = reg_offset[regno];
9269 rtx new_src =
9270 GEN_INT (trunc_int_for_mode (added_offset
9271 + base_offset
9272 - regno_offset,
9273 GET_MODE (reg)));
9274 int success = 0;
9275
9276 if (new_src == const0_rtx)
9277 /* See above why we create (set (reg) (reg)) here. */
9278 success
9279 = validate_change (next, &SET_SRC (set), reg, 0);
9280 else if ((rtx_cost (new_src, PLUS)
9281 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
9282 && have_add2_insn (reg, new_src))
9283 {
9284 rtx newpat = gen_add2_insn (reg, new_src);
9285 if (INSN_P (newpat)
9286 && NEXT_INSN (newpat) == NULL_RTX)
9287 newpat = PATTERN (newpat);
9288 success
9289 = validate_change (next, &PATTERN (next),
9290 newpat, 0);
9291 }
9292 if (success)
9293 delete_insn (insn);
9294 insn = next;
9295 reg_mode[regno] = GET_MODE (reg);
9296 reg_offset[regno] =
9297 trunc_int_for_mode (added_offset + base_offset,
9298 GET_MODE (reg));
9299 continue;
9300 }
9301 }
9302 }
9303 }
9304
9305 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9306 {
9307 if (REG_NOTE_KIND (note) == REG_INC
9308 && GET_CODE (XEXP (note, 0)) == REG)
9309 {
9310 /* Reset the information about this register. */
9311 int regno = REGNO (XEXP (note, 0));
9312 if (regno < FIRST_PSEUDO_REGISTER)
9313 reg_set_luid[regno] = 0;
9314 }
9315 }
9316 note_stores (PATTERN (insn), move2add_note_store, NULL);
9317
9318 /* If INSN is a conditional branch, we try to extract an
9319 implicit set out of it. */
9320 if (any_condjump_p (insn) && onlyjump_p (insn))
9321 {
9322 rtx cnd = fis_get_condition (insn);
9323
9324 if (cnd != NULL_RTX
9325 && GET_CODE (cnd) == NE
9326 && GET_CODE (XEXP (cnd, 0)) == REG
9327 /* The following two checks, which are also in
9328 move2add_note_store, are intended to reduce the
9329 number of calls to gen_rtx_SET to avoid memory
9330 allocation if possible. */
9331 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
9332 && HARD_REGNO_NREGS (REGNO (XEXP (cnd, 0)), GET_MODE (XEXP (cnd, 0))) == 1
9333 && GET_CODE (XEXP (cnd, 1)) == CONST_INT)
9334 {
9335 rtx implicit_set =
9336 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
9337 move2add_note_store (SET_DEST (implicit_set), implicit_set, 0);
9338 }
9339 }
9340
9341 /* If this is a CALL_INSN, all call used registers are stored with
9342 unknown values. */
9343 if (GET_CODE (insn) == CALL_INSN)
9344 {
9345 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9346 {
9347 if (call_used_regs[i])
9348 /* Reset the information about this register. */
9349 reg_set_luid[i] = 0;
9350 }
9351 }
9352 }
9353 }
9354
9355 /* SET is a SET or CLOBBER that sets DST.
9356 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9357 Called from reload_cse_move2add via note_stores. */
9358
9359 static void
9360 move2add_note_store (dst, set, data)
9361 rtx dst, set;
9362 void *data ATTRIBUTE_UNUSED;
9363 {
9364 unsigned int regno = 0;
9365 unsigned int i;
9366 enum machine_mode mode = GET_MODE (dst);
9367
9368 if (GET_CODE (dst) == SUBREG)
9369 {
9370 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9371 GET_MODE (SUBREG_REG (dst)),
9372 SUBREG_BYTE (dst),
9373 GET_MODE (dst));
9374 dst = SUBREG_REG (dst);
9375 }
9376
9377 /* Some targets do argument pushes without adding REG_INC notes. */
9378
9379 if (GET_CODE (dst) == MEM)
9380 {
9381 dst = XEXP (dst, 0);
9382 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
9383 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
9384 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
9385 return;
9386 }
9387 if (GET_CODE (dst) != REG)
9388 return;
9389
9390 regno += REGNO (dst);
9391
9392 if (SCALAR_INT_MODE_P (mode)
9393 && HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9394 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9395 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9396 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9397 {
9398 rtx src = SET_SRC (set);
9399 rtx base_reg;
9400 HOST_WIDE_INT offset;
9401 int base_regno;
9402 /* This may be different from mode, if SET_DEST (set) is a
9403 SUBREG. */
9404 enum machine_mode dst_mode = GET_MODE (dst);
9405
9406 switch (GET_CODE (src))
9407 {
9408 case PLUS:
9409 if (GET_CODE (XEXP (src, 0)) == REG)
9410 {
9411 base_reg = XEXP (src, 0);
9412
9413 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9414 offset = INTVAL (XEXP (src, 1));
9415 else if (GET_CODE (XEXP (src, 1)) == REG
9416 && (reg_set_luid[REGNO (XEXP (src, 1))]
9417 > move2add_last_label_luid)
9418 && (MODES_OK_FOR_MOVE2ADD
9419 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9420 {
9421 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9422 offset = reg_offset[REGNO (XEXP (src, 1))];
9423 /* Maybe the first register is known to be a
9424 constant. */
9425 else if (reg_set_luid[REGNO (base_reg)]
9426 > move2add_last_label_luid
9427 && (MODES_OK_FOR_MOVE2ADD
9428 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9429 && reg_base_reg[REGNO (base_reg)] < 0)
9430 {
9431 offset = reg_offset[REGNO (base_reg)];
9432 base_reg = XEXP (src, 1);
9433 }
9434 else
9435 goto invalidate;
9436 }
9437 else
9438 goto invalidate;
9439
9440 break;
9441 }
9442
9443 goto invalidate;
9444
9445 case REG:
9446 base_reg = src;
9447 offset = 0;
9448 break;
9449
9450 case CONST_INT:
9451 /* Start tracking the register as a constant. */
9452 reg_base_reg[regno] = -1;
9453 reg_offset[regno] = INTVAL (SET_SRC (set));
9454 /* We assign the same luid to all registers set to constants. */
9455 reg_set_luid[regno] = move2add_last_label_luid + 1;
9456 reg_mode[regno] = mode;
9457 return;
9458
9459 default:
9460 invalidate:
9461 /* Invalidate the contents of the register. */
9462 reg_set_luid[regno] = 0;
9463 return;
9464 }
9465
9466 base_regno = REGNO (base_reg);
9467 /* If information about the base register is not valid, set it
9468 up as a new base register, pretending its value is known
9469 starting from the current insn. */
9470 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9471 {
9472 reg_base_reg[base_regno] = base_regno;
9473 reg_offset[base_regno] = 0;
9474 reg_set_luid[base_regno] = move2add_luid;
9475 reg_mode[base_regno] = mode;
9476 }
9477 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9478 reg_mode[base_regno]))
9479 goto invalidate;
9480
9481 reg_mode[regno] = mode;
9482
9483 /* Copy base information from our base register. */
9484 reg_set_luid[regno] = reg_set_luid[base_regno];
9485 reg_base_reg[regno] = reg_base_reg[base_regno];
9486
9487 /* Compute the sum of the offsets or constants. */
9488 reg_offset[regno] = trunc_int_for_mode (offset
9489 + reg_offset[base_regno],
9490 dst_mode);
9491 }
9492 else
9493 {
9494 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9495
9496 for (i = regno; i < endregno; i++)
9497 /* Reset the information about this register. */
9498 reg_set_luid[i] = 0;
9499 }
9500 }
9501
9502 #ifdef AUTO_INC_DEC
9503 static void
9504 add_auto_inc_notes (insn, x)
9505 rtx insn;
9506 rtx x;
9507 {
9508 enum rtx_code code = GET_CODE (x);
9509 const char *fmt;
9510 int i, j;
9511
9512 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9513 {
9514 REG_NOTES (insn)
9515 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9516 return;
9517 }
9518
9519 /* Scan all the operand sub-expressions. */
9520 fmt = GET_RTX_FORMAT (code);
9521 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9522 {
9523 if (fmt[i] == 'e')
9524 add_auto_inc_notes (insn, XEXP (x, i));
9525 else if (fmt[i] == 'E')
9526 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9527 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9528 }
9529 }
9530 #endif
9531
9532 /* Copy EH notes from an insn to its reloads. */
9533 static void
9534 copy_eh_notes (insn, x)
9535 rtx insn;
9536 rtx x;
9537 {
9538 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9539 if (eh_note)
9540 {
9541 for (; x != 0; x = NEXT_INSN (x))
9542 {
9543 if (may_trap_p (PATTERN (x)))
9544 REG_NOTES (x)
9545 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9546 REG_NOTES (x));
9547 }
9548 }
9549 }
9550
9551 /* This is used by reload pass, that does emit some instructions after
9552 abnormal calls moving basic block end, but in fact it wants to emit
9553 them on the edge. Looks for abnormal call edges, find backward the
9554 proper call and fix the damage.
9555
9556 Similar handle instructions throwing exceptions internally. */
9557 void
9558 fixup_abnormal_edges ()
9559 {
9560 bool inserted = false;
9561 basic_block bb;
9562
9563 FOR_EACH_BB (bb)
9564 {
9565 edge e;
9566
9567 /* Look for cases we are interested in - calls or instructions causing
9568 exceptions. */
9569 for (e = bb->succ; e; e = e->succ_next)
9570 {
9571 if (e->flags & EDGE_ABNORMAL_CALL)
9572 break;
9573 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
9574 == (EDGE_ABNORMAL | EDGE_EH))
9575 break;
9576 }
9577 if (e && GET_CODE (bb->end) != CALL_INSN && !can_throw_internal (bb->end))
9578 {
9579 rtx insn = bb->end, stop = NEXT_INSN (bb->end);
9580 rtx next;
9581 for (e = bb->succ; e; e = e->succ_next)
9582 if (e->flags & EDGE_FALLTHRU)
9583 break;
9584 /* Get past the new insns generated. Allow notes, as the insns may
9585 be already deleted. */
9586 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
9587 && !can_throw_internal (insn)
9588 && insn != bb->head)
9589 insn = PREV_INSN (insn);
9590 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
9591 abort ();
9592 bb->end = insn;
9593 inserted = true;
9594 insn = NEXT_INSN (insn);
9595 while (insn && insn != stop)
9596 {
9597 next = NEXT_INSN (insn);
9598 if (INSN_P (insn))
9599 {
9600 delete_insn (insn);
9601
9602 /* Sometimes there's still the return value USE.
9603 If it's placed after a trapping call (i.e. that
9604 call is the last insn anyway), we have no fallthru
9605 edge. Simply delete this use and don't try to insert
9606 on the non-existent edge. */
9607 if (GET_CODE (PATTERN (insn)) != USE)
9608 {
9609 /* We're not deleting it, we're moving it. */
9610 INSN_DELETED_P (insn) = 0;
9611 PREV_INSN (insn) = NULL_RTX;
9612 NEXT_INSN (insn) = NULL_RTX;
9613
9614 insert_insn_on_edge (insn, e);
9615 }
9616 }
9617 insn = next;
9618 }
9619 }
9620 }
9621 /* We've possibly turned single trapping insn into multiple ones. */
9622 if (flag_non_call_exceptions)
9623 {
9624 sbitmap blocks;
9625 blocks = sbitmap_alloc (last_basic_block);
9626 sbitmap_ones (blocks);
9627 find_many_sub_basic_blocks (blocks);
9628 }
9629 if (inserted)
9630 commit_edge_insertions ();
9631 }
This page took 0.54226 seconds and 6 git commands to generate.