]> gcc.gnu.org Git - gcc.git/blob - gcc/reload1.c
c-common.h: Fix comment formatting.
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "regs.h"
36 #include "basic-block.h"
37 #include "reload.h"
38 #include "recog.h"
39 #include "output.h"
40 #include "cselib.h"
41 #include "real.h"
42 #include "toplev.h"
43 #include "except.h"
44
45 /* This file contains the reload pass of the compiler, which is
46 run after register allocation has been done. It checks that
47 each insn is valid (operands required to be in registers really
48 are in registers of the proper class) and fixes up invalid ones
49 by copying values temporarily into registers for the insns
50 that need them.
51
52 The results of register allocation are described by the vector
53 reg_renumber; the insns still contain pseudo regs, but reg_renumber
54 can be used to find which hard reg, if any, a pseudo reg is in.
55
56 The technique we always use is to free up a few hard regs that are
57 called ``reload regs'', and for each place where a pseudo reg
58 must be in a hard reg, copy it temporarily into one of the reload regs.
59
60 Reload regs are allocated locally for every instruction that needs
61 reloads. When there are pseudos which are allocated to a register that
62 has been chosen as a reload reg, such pseudos must be ``spilled''.
63 This means that they go to other hard regs, or to stack slots if no other
64 available hard regs can be found. Spilling can invalidate more
65 insns, requiring additional need for reloads, so we must keep checking
66 until the process stabilizes.
67
68 For machines with different classes of registers, we must keep track
69 of the register class needed for each reload, and make sure that
70 we allocate enough reload registers of each class.
71
72 The file reload.c contains the code that checks one insn for
73 validity and reports the reloads that it needs. This file
74 is in charge of scanning the entire rtl code, accumulating the
75 reload needs, spilling, assigning reload registers to use for
76 fixing up each insn, and generating the new insns to copy values
77 into the reload registers. */
78
79 #ifndef REGISTER_MOVE_COST
80 #define REGISTER_MOVE_COST(m, x, y) 2
81 #endif
82
83 #ifndef LOCAL_REGNO
84 #define LOCAL_REGNO(REGNO) 0
85 #endif
86 \f
87 /* During reload_as_needed, element N contains a REG rtx for the hard reg
88 into which reg N has been reloaded (perhaps for a previous insn). */
89 static rtx *reg_last_reload_reg;
90
91 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
92 for an output reload that stores into reg N. */
93 static char *reg_has_output_reload;
94
95 /* Indicates which hard regs are reload-registers for an output reload
96 in the current insn. */
97 static HARD_REG_SET reg_is_output_reload;
98
99 /* Element N is the constant value to which pseudo reg N is equivalent,
100 or zero if pseudo reg N is not equivalent to a constant.
101 find_reloads looks at this in order to replace pseudo reg N
102 with the constant it stands for. */
103 rtx *reg_equiv_constant;
104
105 /* Element N is a memory location to which pseudo reg N is equivalent,
106 prior to any register elimination (such as frame pointer to stack
107 pointer). Depending on whether or not it is a valid address, this value
108 is transferred to either reg_equiv_address or reg_equiv_mem. */
109 rtx *reg_equiv_memory_loc;
110
111 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
112 This is used when the address is not valid as a memory address
113 (because its displacement is too big for the machine.) */
114 rtx *reg_equiv_address;
115
116 /* Element N is the memory slot to which pseudo reg N is equivalent,
117 or zero if pseudo reg N is not equivalent to a memory slot. */
118 rtx *reg_equiv_mem;
119
120 /* Widest width in which each pseudo reg is referred to (via subreg). */
121 static unsigned int *reg_max_ref_width;
122
123 /* Element N is the list of insns that initialized reg N from its equivalent
124 constant or memory slot. */
125 static rtx *reg_equiv_init;
126
127 /* Vector to remember old contents of reg_renumber before spilling. */
128 static short *reg_old_renumber;
129
130 /* During reload_as_needed, element N contains the last pseudo regno reloaded
131 into hard register N. If that pseudo reg occupied more than one register,
132 reg_reloaded_contents points to that pseudo for each spill register in
133 use; all of these must remain set for an inheritance to occur. */
134 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
135
136 /* During reload_as_needed, element N contains the insn for which
137 hard register N was last used. Its contents are significant only
138 when reg_reloaded_valid is set for this register. */
139 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
140
141 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
142 static HARD_REG_SET reg_reloaded_valid;
143 /* Indicate if the register was dead at the end of the reload.
144 This is only valid if reg_reloaded_contents is set and valid. */
145 static HARD_REG_SET reg_reloaded_dead;
146
147 /* Number of spill-regs so far; number of valid elements of spill_regs. */
148 static int n_spills;
149
150 /* In parallel with spill_regs, contains REG rtx's for those regs.
151 Holds the last rtx used for any given reg, or 0 if it has never
152 been used for spilling yet. This rtx is reused, provided it has
153 the proper mode. */
154 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
155
156 /* In parallel with spill_regs, contains nonzero for a spill reg
157 that was stored after the last time it was used.
158 The precise value is the insn generated to do the store. */
159 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
160
161 /* This is the register that was stored with spill_reg_store. This is a
162 copy of reload_out / reload_out_reg when the value was stored; if
163 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
164 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
165
166 /* This table is the inverse mapping of spill_regs:
167 indexed by hard reg number,
168 it contains the position of that reg in spill_regs,
169 or -1 for something that is not in spill_regs.
170
171 ?!? This is no longer accurate. */
172 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
173
174 /* This reg set indicates registers that can't be used as spill registers for
175 the currently processed insn. These are the hard registers which are live
176 during the insn, but not allocated to pseudos, as well as fixed
177 registers. */
178 static HARD_REG_SET bad_spill_regs;
179
180 /* These are the hard registers that can't be used as spill register for any
181 insn. This includes registers used for user variables and registers that
182 we can't eliminate. A register that appears in this set also can't be used
183 to retry register allocation. */
184 static HARD_REG_SET bad_spill_regs_global;
185
186 /* Describes order of use of registers for reloading
187 of spilled pseudo-registers. `n_spills' is the number of
188 elements that are actually valid; new ones are added at the end.
189
190 Both spill_regs and spill_reg_order are used on two occasions:
191 once during find_reload_regs, where they keep track of the spill registers
192 for a single insn, but also during reload_as_needed where they show all
193 the registers ever used by reload. For the latter case, the information
194 is calculated during finish_spills. */
195 static short spill_regs[FIRST_PSEUDO_REGISTER];
196
197 /* This vector of reg sets indicates, for each pseudo, which hard registers
198 may not be used for retrying global allocation because the register was
199 formerly spilled from one of them. If we allowed reallocating a pseudo to
200 a register that it was already allocated to, reload might not
201 terminate. */
202 static HARD_REG_SET *pseudo_previous_regs;
203
204 /* This vector of reg sets indicates, for each pseudo, which hard
205 registers may not be used for retrying global allocation because they
206 are used as spill registers during one of the insns in which the
207 pseudo is live. */
208 static HARD_REG_SET *pseudo_forbidden_regs;
209
210 /* All hard regs that have been used as spill registers for any insn are
211 marked in this set. */
212 static HARD_REG_SET used_spill_regs;
213
214 /* Index of last register assigned as a spill register. We allocate in
215 a round-robin fashion. */
216 static int last_spill_reg;
217
218 /* Nonzero if indirect addressing is supported on the machine; this means
219 that spilling (REG n) does not require reloading it into a register in
220 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
221 value indicates the level of indirect addressing supported, e.g., two
222 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
223 a hard register. */
224 static char spill_indirect_levels;
225
226 /* Nonzero if indirect addressing is supported when the innermost MEM is
227 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
228 which these are valid is the same as spill_indirect_levels, above. */
229 char indirect_symref_ok;
230
231 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
232 char double_reg_address_ok;
233
234 /* Record the stack slot for each spilled hard register. */
235 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
236
237 /* Width allocated so far for that stack slot. */
238 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
239
240 /* Record which pseudos needed to be spilled. */
241 static regset_head spilled_pseudos;
242
243 /* Used for communication between order_regs_for_reload and count_pseudo.
244 Used to avoid counting one pseudo twice. */
245 static regset_head pseudos_counted;
246
247 /* First uid used by insns created by reload in this function.
248 Used in find_equiv_reg. */
249 int reload_first_uid;
250
251 /* Flag set by local-alloc or global-alloc if anything is live in
252 a call-clobbered reg across calls. */
253 int caller_save_needed;
254
255 /* Set to 1 while reload_as_needed is operating.
256 Required by some machines to handle any generated moves differently. */
257 int reload_in_progress = 0;
258
259 /* These arrays record the insn_code of insns that may be needed to
260 perform input and output reloads of special objects. They provide a
261 place to pass a scratch register. */
262 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
263 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
264
265 /* This obstack is used for allocation of rtl during register elimination.
266 The allocated storage can be freed once find_reloads has processed the
267 insn. */
268 struct obstack reload_obstack;
269
270 /* Points to the beginning of the reload_obstack. All insn_chain structures
271 are allocated first. */
272 char *reload_startobj;
273
274 /* The point after all insn_chain structures. Used to quickly deallocate
275 memory allocated in copy_reloads during calculate_needs_all_insns. */
276 char *reload_firstobj;
277
278 /* This points before all local rtl generated by register elimination.
279 Used to quickly free all memory after processing one insn. */
280 static char *reload_insn_firstobj;
281
282 #define obstack_chunk_alloc xmalloc
283 #define obstack_chunk_free free
284
285 /* List of insn_chain instructions, one for every insn that reload needs to
286 examine. */
287 struct insn_chain *reload_insn_chain;
288
289 #ifdef TREE_CODE
290 extern tree current_function_decl;
291 #else
292 extern union tree_node *current_function_decl;
293 #endif
294
295 /* List of all insns needing reloads. */
296 static struct insn_chain *insns_need_reload;
297 \f
298 /* This structure is used to record information about register eliminations.
299 Each array entry describes one possible way of eliminating a register
300 in favor of another. If there is more than one way of eliminating a
301 particular register, the most preferred should be specified first. */
302
303 struct elim_table
304 {
305 int from; /* Register number to be eliminated. */
306 int to; /* Register number used as replacement. */
307 int initial_offset; /* Initial difference between values. */
308 int can_eliminate; /* Non-zero if this elimination can be done. */
309 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
310 insns made by reload. */
311 int offset; /* Current offset between the two regs. */
312 int previous_offset; /* Offset at end of previous insn. */
313 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
314 rtx from_rtx; /* REG rtx for the register to be eliminated.
315 We cannot simply compare the number since
316 we might then spuriously replace a hard
317 register corresponding to a pseudo
318 assigned to the reg to be eliminated. */
319 rtx to_rtx; /* REG rtx for the replacement. */
320 };
321
322 static struct elim_table *reg_eliminate = 0;
323
324 /* This is an intermediate structure to initialize the table. It has
325 exactly the members provided by ELIMINABLE_REGS. */
326 static struct elim_table_1
327 {
328 int from;
329 int to;
330 } reg_eliminate_1[] =
331
332 /* If a set of eliminable registers was specified, define the table from it.
333 Otherwise, default to the normal case of the frame pointer being
334 replaced by the stack pointer. */
335
336 #ifdef ELIMINABLE_REGS
337 ELIMINABLE_REGS;
338 #else
339 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
340 #endif
341
342 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
343
344 /* Record the number of pending eliminations that have an offset not equal
345 to their initial offset. If non-zero, we use a new copy of each
346 replacement result in any insns encountered. */
347 int num_not_at_initial_offset;
348
349 /* Count the number of registers that we may be able to eliminate. */
350 static int num_eliminable;
351 /* And the number of registers that are equivalent to a constant that
352 can be eliminated to frame_pointer / arg_pointer + constant. */
353 static int num_eliminable_invariants;
354
355 /* For each label, we record the offset of each elimination. If we reach
356 a label by more than one path and an offset differs, we cannot do the
357 elimination. This information is indexed by the number of the label.
358 The first table is an array of flags that records whether we have yet
359 encountered a label and the second table is an array of arrays, one
360 entry in the latter array for each elimination. */
361
362 static char *offsets_known_at;
363 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
364
365 /* Number of labels in the current function. */
366
367 static int num_labels;
368 \f
369 static void replace_pseudos_in_call_usage PARAMS((rtx *,
370 enum machine_mode,
371 rtx));
372 static void maybe_fix_stack_asms PARAMS ((void));
373 static void copy_reloads PARAMS ((struct insn_chain *));
374 static void calculate_needs_all_insns PARAMS ((int));
375 static int find_reg PARAMS ((struct insn_chain *, int));
376 static void find_reload_regs PARAMS ((struct insn_chain *));
377 static void select_reload_regs PARAMS ((void));
378 static void delete_caller_save_insns PARAMS ((void));
379
380 static void spill_failure PARAMS ((rtx, enum reg_class));
381 static void count_spilled_pseudo PARAMS ((int, int, int));
382 static void delete_dead_insn PARAMS ((rtx));
383 static void alter_reg PARAMS ((int, int));
384 static void set_label_offsets PARAMS ((rtx, rtx, int));
385 static void check_eliminable_occurrences PARAMS ((rtx));
386 static void elimination_effects PARAMS ((rtx, enum machine_mode));
387 static int eliminate_regs_in_insn PARAMS ((rtx, int));
388 static void update_eliminable_offsets PARAMS ((void));
389 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
390 static void set_initial_elim_offsets PARAMS ((void));
391 static void verify_initial_elim_offsets PARAMS ((void));
392 static void set_initial_label_offsets PARAMS ((void));
393 static void set_offsets_for_label PARAMS ((rtx));
394 static void init_elim_table PARAMS ((void));
395 static void update_eliminables PARAMS ((HARD_REG_SET *));
396 static void spill_hard_reg PARAMS ((unsigned int, int));
397 static int finish_spills PARAMS ((int));
398 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
399 static void scan_paradoxical_subregs PARAMS ((rtx));
400 static void count_pseudo PARAMS ((int));
401 static void order_regs_for_reload PARAMS ((struct insn_chain *));
402 static void reload_as_needed PARAMS ((int));
403 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
404 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
405 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
406 enum reload_type,
407 enum machine_mode));
408 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
409 enum reload_type,
410 enum machine_mode));
411 static int reload_reg_free_p PARAMS ((unsigned int, int,
412 enum reload_type));
413 static int reload_reg_free_for_value_p PARAMS ((int, int, int,
414 enum reload_type,
415 rtx, rtx, int, int));
416 static int free_for_value_p PARAMS ((int, enum machine_mode, int,
417 enum reload_type, rtx, rtx,
418 int, int));
419 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
420 enum reload_type));
421 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
422 int));
423 static int conflicts_with_override PARAMS ((rtx));
424 static void failed_reload PARAMS ((rtx, int));
425 static int set_reload_reg PARAMS ((int, int));
426 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
427 static void choose_reload_regs PARAMS ((struct insn_chain *));
428 static void merge_assigned_reloads PARAMS ((rtx));
429 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
430 struct reload *, rtx, int));
431 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
432 struct reload *, int));
433 static void do_input_reload PARAMS ((struct insn_chain *,
434 struct reload *, int));
435 static void do_output_reload PARAMS ((struct insn_chain *,
436 struct reload *, int));
437 static void emit_reload_insns PARAMS ((struct insn_chain *));
438 static void delete_output_reload PARAMS ((rtx, int, int));
439 static void delete_address_reloads PARAMS ((rtx, rtx));
440 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
441 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
442 static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
443 static void reload_cse_regs_1 PARAMS ((rtx));
444 static int reload_cse_noop_set_p PARAMS ((rtx));
445 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
446 static int reload_cse_simplify_operands PARAMS ((rtx));
447 static void reload_combine PARAMS ((void));
448 static void reload_combine_note_use PARAMS ((rtx *, rtx));
449 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
450 static void reload_cse_move2add PARAMS ((rtx));
451 static void move2add_note_store PARAMS ((rtx, rtx, void *));
452 #ifdef AUTO_INC_DEC
453 static void add_auto_inc_notes PARAMS ((rtx, rtx));
454 #endif
455 static void copy_eh_notes PARAMS ((rtx, rtx));
456 static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
457 HOST_WIDE_INT));
458 static void failed_reload PARAMS ((rtx, int));
459 static int set_reload_reg PARAMS ((int, int));
460 static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
461 static void reload_cse_simplify PARAMS ((rtx));
462 static void fixup_abnormal_edges PARAMS ((void));
463 extern void dump_needs PARAMS ((struct insn_chain *));
464 \f
465 /* Initialize the reload pass once per compilation. */
466
467 void
468 init_reload ()
469 {
470 register int i;
471
472 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
473 Set spill_indirect_levels to the number of levels such addressing is
474 permitted, zero if it is not permitted at all. */
475
476 register rtx tem
477 = gen_rtx_MEM (Pmode,
478 gen_rtx_PLUS (Pmode,
479 gen_rtx_REG (Pmode,
480 LAST_VIRTUAL_REGISTER + 1),
481 GEN_INT (4)));
482 spill_indirect_levels = 0;
483
484 while (memory_address_p (QImode, tem))
485 {
486 spill_indirect_levels++;
487 tem = gen_rtx_MEM (Pmode, tem);
488 }
489
490 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
491
492 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
493 indirect_symref_ok = memory_address_p (QImode, tem);
494
495 /* See if reg+reg is a valid (and offsettable) address. */
496
497 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
498 {
499 tem = gen_rtx_PLUS (Pmode,
500 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
501 gen_rtx_REG (Pmode, i));
502
503 /* This way, we make sure that reg+reg is an offsettable address. */
504 tem = plus_constant (tem, 4);
505
506 if (memory_address_p (QImode, tem))
507 {
508 double_reg_address_ok = 1;
509 break;
510 }
511 }
512
513 /* Initialize obstack for our rtl allocation. */
514 gcc_obstack_init (&reload_obstack);
515 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
516
517 INIT_REG_SET (&spilled_pseudos);
518 INIT_REG_SET (&pseudos_counted);
519 }
520
521 /* List of insn chains that are currently unused. */
522 static struct insn_chain *unused_insn_chains = 0;
523
524 /* Allocate an empty insn_chain structure. */
525 struct insn_chain *
526 new_insn_chain ()
527 {
528 struct insn_chain *c;
529
530 if (unused_insn_chains == 0)
531 {
532 c = (struct insn_chain *)
533 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
534 INIT_REG_SET (&c->live_throughout);
535 INIT_REG_SET (&c->dead_or_set);
536 }
537 else
538 {
539 c = unused_insn_chains;
540 unused_insn_chains = c->next;
541 }
542 c->is_caller_save_insn = 0;
543 c->need_operand_change = 0;
544 c->need_reload = 0;
545 c->need_elim = 0;
546 return c;
547 }
548
549 /* Small utility function to set all regs in hard reg set TO which are
550 allocated to pseudos in regset FROM. */
551
552 void
553 compute_use_by_pseudos (to, from)
554 HARD_REG_SET *to;
555 regset from;
556 {
557 unsigned int regno;
558
559 EXECUTE_IF_SET_IN_REG_SET
560 (from, FIRST_PSEUDO_REGISTER, regno,
561 {
562 int r = reg_renumber[regno];
563 int nregs;
564
565 if (r < 0)
566 {
567 /* reload_combine uses the information from
568 BASIC_BLOCK->global_live_at_start, which might still
569 contain registers that have not actually been allocated
570 since they have an equivalence. */
571 if (! reload_completed)
572 abort ();
573 }
574 else
575 {
576 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
577 while (nregs-- > 0)
578 SET_HARD_REG_BIT (*to, r + nregs);
579 }
580 });
581 }
582
583 /* Replace all pseudos found in LOC with their corresponding
584 equivalences. */
585
586 static void
587 replace_pseudos_in_call_usage (loc, mem_mode, usage)
588 rtx *loc;
589 enum machine_mode mem_mode;
590 rtx usage;
591 {
592 rtx x = *loc;
593 enum rtx_code code;
594 const char *fmt;
595 int i, j;
596
597 if (! x)
598 return;
599
600 code = GET_CODE (x);
601 if (code == REG)
602 {
603 unsigned int regno = REGNO (x);
604
605 if (regno < FIRST_PSEUDO_REGISTER)
606 return;
607
608 x = eliminate_regs (x, mem_mode, usage);
609 if (x != *loc)
610 {
611 *loc = x;
612 replace_pseudos_in_call_usage (loc, mem_mode, usage);
613 return;
614 }
615
616 if (reg_equiv_constant[regno])
617 *loc = reg_equiv_constant[regno];
618 else if (reg_equiv_mem[regno])
619 *loc = reg_equiv_mem[regno];
620 else if (reg_equiv_address[regno])
621 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
622 else if (GET_CODE (regno_reg_rtx[regno]) != REG
623 || REGNO (regno_reg_rtx[regno]) != regno)
624 *loc = regno_reg_rtx[regno];
625 else
626 abort ();
627
628 return;
629 }
630 else if (code == MEM)
631 {
632 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
633 return;
634 }
635
636 /* Process each of our operands recursively. */
637 fmt = GET_RTX_FORMAT (code);
638 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
639 if (*fmt == 'e')
640 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
641 else if (*fmt == 'E')
642 for (j = 0; j < XVECLEN (x, i); j++)
643 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
644 }
645
646 \f
647 /* Global variables used by reload and its subroutines. */
648
649 /* Set during calculate_needs if an insn needs register elimination. */
650 static int something_needs_elimination;
651 /* Set during calculate_needs if an insn needs an operand changed. */
652 int something_needs_operands_changed;
653
654 /* Nonzero means we couldn't get enough spill regs. */
655 static int failure;
656
657 /* Main entry point for the reload pass.
658
659 FIRST is the first insn of the function being compiled.
660
661 GLOBAL nonzero means we were called from global_alloc
662 and should attempt to reallocate any pseudoregs that we
663 displace from hard regs we will use for reloads.
664 If GLOBAL is zero, we do not have enough information to do that,
665 so any pseudo reg that is spilled must go to the stack.
666
667 Return value is nonzero if reload failed
668 and we must not do any more for this function. */
669
670 int
671 reload (first, global)
672 rtx first;
673 int global;
674 {
675 register int i;
676 register rtx insn;
677 register struct elim_table *ep;
678
679 /* The two pointers used to track the true location of the memory used
680 for label offsets. */
681 char *real_known_ptr = NULL;
682 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
683
684 /* Make sure even insns with volatile mem refs are recognizable. */
685 init_recog ();
686
687 failure = 0;
688
689 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
690
691 /* Make sure that the last insn in the chain
692 is not something that needs reloading. */
693 emit_note (NULL, NOTE_INSN_DELETED);
694
695 /* Enable find_equiv_reg to distinguish insns made by reload. */
696 reload_first_uid = get_max_uid ();
697
698 #ifdef SECONDARY_MEMORY_NEEDED
699 /* Initialize the secondary memory table. */
700 clear_secondary_mem ();
701 #endif
702
703 /* We don't have a stack slot for any spill reg yet. */
704 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
705 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
706
707 /* Initialize the save area information for caller-save, in case some
708 are needed. */
709 init_save_areas ();
710
711 /* Compute which hard registers are now in use
712 as homes for pseudo registers.
713 This is done here rather than (eg) in global_alloc
714 because this point is reached even if not optimizing. */
715 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
716 mark_home_live (i);
717
718 /* A function that receives a nonlocal goto must save all call-saved
719 registers. */
720 if (current_function_has_nonlocal_label)
721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
722 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
723 regs_ever_live[i] = 1;
724
725 /* Find all the pseudo registers that didn't get hard regs
726 but do have known equivalent constants or memory slots.
727 These include parameters (known equivalent to parameter slots)
728 and cse'd or loop-moved constant memory addresses.
729
730 Record constant equivalents in reg_equiv_constant
731 so they will be substituted by find_reloads.
732 Record memory equivalents in reg_mem_equiv so they can
733 be substituted eventually by altering the REG-rtx's. */
734
735 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
736 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
737 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
738 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
739 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
740 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
741 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
742 pseudo_forbidden_regs
743 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
744 pseudo_previous_regs
745 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
746
747 CLEAR_HARD_REG_SET (bad_spill_regs_global);
748
749 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
750 Also find all paradoxical subregs and find largest such for each pseudo.
751 On machines with small register classes, record hard registers that
752 are used for user variables. These can never be used for spills.
753 Also look for a "constant" REG_SETJMP. This means that all
754 caller-saved registers must be marked live. */
755
756 num_eliminable_invariants = 0;
757 for (insn = first; insn; insn = NEXT_INSN (insn))
758 {
759 rtx set = single_set (insn);
760
761 /* We may introduce USEs that we want to remove at the end, so
762 we'll mark them with QImode. Make sure there are no
763 previously-marked insns left by say regmove. */
764 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
765 && GET_MODE (insn) != VOIDmode)
766 PUT_MODE (insn, VOIDmode);
767
768 if (GET_CODE (insn) == CALL_INSN
769 && find_reg_note (insn, REG_SETJMP, NULL))
770 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
771 if (! call_used_regs[i])
772 regs_ever_live[i] = 1;
773
774 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
775 {
776 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
777 if (note
778 #ifdef LEGITIMATE_PIC_OPERAND_P
779 && (! function_invariant_p (XEXP (note, 0))
780 || ! flag_pic
781 || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
782 #endif
783 )
784 {
785 rtx x = XEXP (note, 0);
786 i = REGNO (SET_DEST (set));
787 if (i > LAST_VIRTUAL_REGISTER)
788 {
789 if (GET_CODE (x) == MEM)
790 {
791 /* Always unshare the equivalence, so we can
792 substitute into this insn without touching the
793 equivalence. */
794 reg_equiv_memory_loc[i] = copy_rtx (x);
795 }
796 else if (function_invariant_p (x))
797 {
798 if (GET_CODE (x) == PLUS)
799 {
800 /* This is PLUS of frame pointer and a constant,
801 and might be shared. Unshare it. */
802 reg_equiv_constant[i] = copy_rtx (x);
803 num_eliminable_invariants++;
804 }
805 else if (x == frame_pointer_rtx
806 || x == arg_pointer_rtx)
807 {
808 reg_equiv_constant[i] = x;
809 num_eliminable_invariants++;
810 }
811 else if (LEGITIMATE_CONSTANT_P (x))
812 reg_equiv_constant[i] = x;
813 else
814 reg_equiv_memory_loc[i]
815 = force_const_mem (GET_MODE (SET_DEST (set)), x);
816 }
817 else
818 continue;
819
820 /* If this register is being made equivalent to a MEM
821 and the MEM is not SET_SRC, the equivalencing insn
822 is one with the MEM as a SET_DEST and it occurs later.
823 So don't mark this insn now. */
824 if (GET_CODE (x) != MEM
825 || rtx_equal_p (SET_SRC (set), x))
826 reg_equiv_init[i]
827 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
828 }
829 }
830 }
831
832 /* If this insn is setting a MEM from a register equivalent to it,
833 this is the equivalencing insn. */
834 else if (set && GET_CODE (SET_DEST (set)) == MEM
835 && GET_CODE (SET_SRC (set)) == REG
836 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
837 && rtx_equal_p (SET_DEST (set),
838 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
839 reg_equiv_init[REGNO (SET_SRC (set))]
840 = gen_rtx_INSN_LIST (VOIDmode, insn,
841 reg_equiv_init[REGNO (SET_SRC (set))]);
842
843 if (INSN_P (insn))
844 scan_paradoxical_subregs (PATTERN (insn));
845 }
846
847 init_elim_table ();
848
849 num_labels = max_label_num () - get_first_label_num ();
850
851 /* Allocate the tables used to store offset information at labels. */
852 /* We used to use alloca here, but the size of what it would try to
853 allocate would occasionally cause it to exceed the stack limit and
854 cause a core dump. */
855 real_known_ptr = xmalloc (num_labels);
856 real_at_ptr
857 = (int (*)[NUM_ELIMINABLE_REGS])
858 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
859
860 offsets_known_at = real_known_ptr - get_first_label_num ();
861 offsets_at
862 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
863
864 /* Alter each pseudo-reg rtx to contain its hard reg number.
865 Assign stack slots to the pseudos that lack hard regs or equivalents.
866 Do not touch virtual registers. */
867
868 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
869 alter_reg (i, -1);
870
871 /* If we have some registers we think can be eliminated, scan all insns to
872 see if there is an insn that sets one of these registers to something
873 other than itself plus a constant. If so, the register cannot be
874 eliminated. Doing this scan here eliminates an extra pass through the
875 main reload loop in the most common case where register elimination
876 cannot be done. */
877 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
878 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
879 || GET_CODE (insn) == CALL_INSN)
880 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
881
882 maybe_fix_stack_asms ();
883
884 insns_need_reload = 0;
885 something_needs_elimination = 0;
886
887 /* Initialize to -1, which means take the first spill register. */
888 last_spill_reg = -1;
889
890 /* Spill any hard regs that we know we can't eliminate. */
891 CLEAR_HARD_REG_SET (used_spill_regs);
892 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
893 if (! ep->can_eliminate)
894 spill_hard_reg (ep->from, 1);
895
896 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
897 if (frame_pointer_needed)
898 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
899 #endif
900 finish_spills (global);
901
902 /* From now on, we may need to generate moves differently. We may also
903 allow modifications of insns which cause them to not be recognized.
904 Any such modifications will be cleaned up during reload itself. */
905 reload_in_progress = 1;
906
907 /* This loop scans the entire function each go-round
908 and repeats until one repetition spills no additional hard regs. */
909 for (;;)
910 {
911 int something_changed;
912 int did_spill;
913
914 HOST_WIDE_INT starting_frame_size;
915
916 /* Round size of stack frame to stack_alignment_needed. This must be done
917 here because the stack size may be a part of the offset computation
918 for register elimination, and there might have been new stack slots
919 created in the last iteration of this loop. */
920 if (cfun->stack_alignment_needed)
921 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
922
923 starting_frame_size = get_frame_size ();
924
925 set_initial_elim_offsets ();
926 set_initial_label_offsets ();
927
928 /* For each pseudo register that has an equivalent location defined,
929 try to eliminate any eliminable registers (such as the frame pointer)
930 assuming initial offsets for the replacement register, which
931 is the normal case.
932
933 If the resulting location is directly addressable, substitute
934 the MEM we just got directly for the old REG.
935
936 If it is not addressable but is a constant or the sum of a hard reg
937 and constant, it is probably not addressable because the constant is
938 out of range, in that case record the address; we will generate
939 hairy code to compute the address in a register each time it is
940 needed. Similarly if it is a hard register, but one that is not
941 valid as an address register.
942
943 If the location is not addressable, but does not have one of the
944 above forms, assign a stack slot. We have to do this to avoid the
945 potential of producing lots of reloads if, e.g., a location involves
946 a pseudo that didn't get a hard register and has an equivalent memory
947 location that also involves a pseudo that didn't get a hard register.
948
949 Perhaps at some point we will improve reload_when_needed handling
950 so this problem goes away. But that's very hairy. */
951
952 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
953 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
954 {
955 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
956
957 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
958 XEXP (x, 0)))
959 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
960 else if (CONSTANT_P (XEXP (x, 0))
961 || (GET_CODE (XEXP (x, 0)) == REG
962 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
963 || (GET_CODE (XEXP (x, 0)) == PLUS
964 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
965 && (REGNO (XEXP (XEXP (x, 0), 0))
966 < FIRST_PSEUDO_REGISTER)
967 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
968 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
969 else
970 {
971 /* Make a new stack slot. Then indicate that something
972 changed so we go back and recompute offsets for
973 eliminable registers because the allocation of memory
974 below might change some offset. reg_equiv_{mem,address}
975 will be set up for this pseudo on the next pass around
976 the loop. */
977 reg_equiv_memory_loc[i] = 0;
978 reg_equiv_init[i] = 0;
979 alter_reg (i, -1);
980 }
981 }
982
983 if (caller_save_needed)
984 setup_save_areas ();
985
986 /* If we allocated another stack slot, redo elimination bookkeeping. */
987 if (starting_frame_size != get_frame_size ())
988 continue;
989
990 if (caller_save_needed)
991 {
992 save_call_clobbered_regs ();
993 /* That might have allocated new insn_chain structures. */
994 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
995 }
996
997 calculate_needs_all_insns (global);
998
999 CLEAR_REG_SET (&spilled_pseudos);
1000 did_spill = 0;
1001
1002 something_changed = 0;
1003
1004 /* If we allocated any new memory locations, make another pass
1005 since it might have changed elimination offsets. */
1006 if (starting_frame_size != get_frame_size ())
1007 something_changed = 1;
1008
1009 {
1010 HARD_REG_SET to_spill;
1011 CLEAR_HARD_REG_SET (to_spill);
1012 update_eliminables (&to_spill);
1013 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1014 if (TEST_HARD_REG_BIT (to_spill, i))
1015 {
1016 spill_hard_reg (i, 1);
1017 did_spill = 1;
1018
1019 /* Regardless of the state of spills, if we previously had
1020 a register that we thought we could eliminate, but no can
1021 not eliminate, we must run another pass.
1022
1023 Consider pseudos which have an entry in reg_equiv_* which
1024 reference an eliminable register. We must make another pass
1025 to update reg_equiv_* so that we do not substitute in the
1026 old value from when we thought the elimination could be
1027 performed. */
1028 something_changed = 1;
1029 }
1030 }
1031
1032 select_reload_regs ();
1033 if (failure)
1034 goto failed;
1035
1036 if (insns_need_reload != 0 || did_spill)
1037 something_changed |= finish_spills (global);
1038
1039 if (! something_changed)
1040 break;
1041
1042 if (caller_save_needed)
1043 delete_caller_save_insns ();
1044
1045 obstack_free (&reload_obstack, reload_firstobj);
1046 }
1047
1048 /* If global-alloc was run, notify it of any register eliminations we have
1049 done. */
1050 if (global)
1051 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1052 if (ep->can_eliminate)
1053 mark_elimination (ep->from, ep->to);
1054
1055 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1056 If that insn didn't set the register (i.e., it copied the register to
1057 memory), just delete that insn instead of the equivalencing insn plus
1058 anything now dead. If we call delete_dead_insn on that insn, we may
1059 delete the insn that actually sets the register if the register dies
1060 there and that is incorrect. */
1061
1062 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1063 {
1064 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1065 {
1066 rtx list;
1067 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1068 {
1069 rtx equiv_insn = XEXP (list, 0);
1070 if (GET_CODE (equiv_insn) == NOTE)
1071 continue;
1072 if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1073 delete_dead_insn (equiv_insn);
1074 else
1075 {
1076 PUT_CODE (equiv_insn, NOTE);
1077 NOTE_SOURCE_FILE (equiv_insn) = 0;
1078 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1079 }
1080 }
1081 }
1082 }
1083
1084 /* Use the reload registers where necessary
1085 by generating move instructions to move the must-be-register
1086 values into or out of the reload registers. */
1087
1088 if (insns_need_reload != 0 || something_needs_elimination
1089 || something_needs_operands_changed)
1090 {
1091 HOST_WIDE_INT old_frame_size = get_frame_size ();
1092
1093 reload_as_needed (global);
1094
1095 if (old_frame_size != get_frame_size ())
1096 abort ();
1097
1098 if (num_eliminable)
1099 verify_initial_elim_offsets ();
1100 }
1101
1102 /* If we were able to eliminate the frame pointer, show that it is no
1103 longer live at the start of any basic block. If it ls live by
1104 virtue of being in a pseudo, that pseudo will be marked live
1105 and hence the frame pointer will be known to be live via that
1106 pseudo. */
1107
1108 if (! frame_pointer_needed)
1109 for (i = 0; i < n_basic_blocks; i++)
1110 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
1111 HARD_FRAME_POINTER_REGNUM);
1112
1113 /* Come here (with failure set nonzero) if we can't get enough spill regs
1114 and we decide not to abort about it. */
1115 failed:
1116
1117 CLEAR_REG_SET (&spilled_pseudos);
1118 reload_in_progress = 0;
1119
1120 /* Now eliminate all pseudo regs by modifying them into
1121 their equivalent memory references.
1122 The REG-rtx's for the pseudos are modified in place,
1123 so all insns that used to refer to them now refer to memory.
1124
1125 For a reg that has a reg_equiv_address, all those insns
1126 were changed by reloading so that no insns refer to it any longer;
1127 but the DECL_RTL of a variable decl may refer to it,
1128 and if so this causes the debugging info to mention the variable. */
1129
1130 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1131 {
1132 rtx addr = 0;
1133
1134 if (reg_equiv_mem[i])
1135 addr = XEXP (reg_equiv_mem[i], 0);
1136
1137 if (reg_equiv_address[i])
1138 addr = reg_equiv_address[i];
1139
1140 if (addr)
1141 {
1142 if (reg_renumber[i] < 0)
1143 {
1144 rtx reg = regno_reg_rtx[i];
1145
1146 PUT_CODE (reg, MEM);
1147 XEXP (reg, 0) = addr;
1148 REG_USERVAR_P (reg) = 0;
1149 if (reg_equiv_memory_loc[i])
1150 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1151 else
1152 {
1153 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1154 = MEM_SCALAR_P (reg) = 0;
1155 MEM_ATTRS (reg) = 0;
1156 }
1157 }
1158 else if (reg_equiv_mem[i])
1159 XEXP (reg_equiv_mem[i], 0) = addr;
1160 }
1161 }
1162
1163 /* We must set reload_completed now since the cleanup_subreg_operands call
1164 below will re-recognize each insn and reload may have generated insns
1165 which are only valid during and after reload. */
1166 reload_completed = 1;
1167
1168 /* Make a pass over all the insns and delete all USEs which we inserted
1169 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1170 notes. Delete all CLOBBER insns that don't refer to the return value
1171 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1172 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1173 and regenerate REG_INC notes that may have been moved around. */
1174
1175 for (insn = first; insn; insn = NEXT_INSN (insn))
1176 if (INSN_P (insn))
1177 {
1178 rtx *pnote;
1179
1180 if (GET_CODE (insn) == CALL_INSN)
1181 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1182 VOIDmode,
1183 CALL_INSN_FUNCTION_USAGE (insn));
1184
1185 if ((GET_CODE (PATTERN (insn)) == USE
1186 /* We mark with QImode USEs introduced by reload itself. */
1187 && (GET_MODE (insn) == QImode
1188 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1189 || (GET_CODE (PATTERN (insn)) == CLOBBER
1190 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1191 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1192 {
1193 delete_insn (insn);
1194 continue;
1195 }
1196
1197 pnote = &REG_NOTES (insn);
1198 while (*pnote != 0)
1199 {
1200 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1201 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1202 || REG_NOTE_KIND (*pnote) == REG_INC
1203 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1204 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1205 *pnote = XEXP (*pnote, 1);
1206 else
1207 pnote = &XEXP (*pnote, 1);
1208 }
1209
1210 #ifdef AUTO_INC_DEC
1211 add_auto_inc_notes (insn, PATTERN (insn));
1212 #endif
1213
1214 /* And simplify (subreg (reg)) if it appears as an operand. */
1215 cleanup_subreg_operands (insn);
1216 }
1217
1218 /* If we are doing stack checking, give a warning if this function's
1219 frame size is larger than we expect. */
1220 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1221 {
1222 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1223 static int verbose_warned = 0;
1224
1225 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1226 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1227 size += UNITS_PER_WORD;
1228
1229 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1230 {
1231 warning ("frame size too large for reliable stack checking");
1232 if (! verbose_warned)
1233 {
1234 warning ("try reducing the number of local variables");
1235 verbose_warned = 1;
1236 }
1237 }
1238 }
1239
1240 /* Indicate that we no longer have known memory locations or constants. */
1241 if (reg_equiv_constant)
1242 free (reg_equiv_constant);
1243 reg_equiv_constant = 0;
1244 if (reg_equiv_memory_loc)
1245 free (reg_equiv_memory_loc);
1246 reg_equiv_memory_loc = 0;
1247
1248 if (real_known_ptr)
1249 free (real_known_ptr);
1250 if (real_at_ptr)
1251 free (real_at_ptr);
1252
1253 free (reg_equiv_mem);
1254 free (reg_equiv_init);
1255 free (reg_equiv_address);
1256 free (reg_max_ref_width);
1257 free (reg_old_renumber);
1258 free (pseudo_previous_regs);
1259 free (pseudo_forbidden_regs);
1260
1261 CLEAR_HARD_REG_SET (used_spill_regs);
1262 for (i = 0; i < n_spills; i++)
1263 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1264
1265 /* Free all the insn_chain structures at once. */
1266 obstack_free (&reload_obstack, reload_startobj);
1267 unused_insn_chains = 0;
1268 fixup_abnormal_edges ();
1269
1270 return failure;
1271 }
1272
1273 /* Yet another special case. Unfortunately, reg-stack forces people to
1274 write incorrect clobbers in asm statements. These clobbers must not
1275 cause the register to appear in bad_spill_regs, otherwise we'll call
1276 fatal_insn later. We clear the corresponding regnos in the live
1277 register sets to avoid this.
1278 The whole thing is rather sick, I'm afraid. */
1279
1280 static void
1281 maybe_fix_stack_asms ()
1282 {
1283 #ifdef STACK_REGS
1284 const char *constraints[MAX_RECOG_OPERANDS];
1285 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1286 struct insn_chain *chain;
1287
1288 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1289 {
1290 int i, noperands;
1291 HARD_REG_SET clobbered, allowed;
1292 rtx pat;
1293
1294 if (! INSN_P (chain->insn)
1295 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1296 continue;
1297 pat = PATTERN (chain->insn);
1298 if (GET_CODE (pat) != PARALLEL)
1299 continue;
1300
1301 CLEAR_HARD_REG_SET (clobbered);
1302 CLEAR_HARD_REG_SET (allowed);
1303
1304 /* First, make a mask of all stack regs that are clobbered. */
1305 for (i = 0; i < XVECLEN (pat, 0); i++)
1306 {
1307 rtx t = XVECEXP (pat, 0, i);
1308 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1309 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1310 }
1311
1312 /* Get the operand values and constraints out of the insn. */
1313 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1314 constraints, operand_mode);
1315
1316 /* For every operand, see what registers are allowed. */
1317 for (i = 0; i < noperands; i++)
1318 {
1319 const char *p = constraints[i];
1320 /* For every alternative, we compute the class of registers allowed
1321 for reloading in CLS, and merge its contents into the reg set
1322 ALLOWED. */
1323 int cls = (int) NO_REGS;
1324
1325 for (;;)
1326 {
1327 char c = *p++;
1328
1329 if (c == '\0' || c == ',' || c == '#')
1330 {
1331 /* End of one alternative - mark the regs in the current
1332 class, and reset the class. */
1333 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1334 cls = NO_REGS;
1335 if (c == '#')
1336 do {
1337 c = *p++;
1338 } while (c != '\0' && c != ',');
1339 if (c == '\0')
1340 break;
1341 continue;
1342 }
1343
1344 switch (c)
1345 {
1346 case '=': case '+': case '*': case '%': case '?': case '!':
1347 case '0': case '1': case '2': case '3': case '4': case 'm':
1348 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1349 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1350 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1351 case 'P':
1352 break;
1353
1354 case 'p':
1355 cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
1356 break;
1357
1358 case 'g':
1359 case 'r':
1360 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1361 break;
1362
1363 default:
1364 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
1365
1366 }
1367 }
1368 }
1369 /* Those of the registers which are clobbered, but allowed by the
1370 constraints, must be usable as reload registers. So clear them
1371 out of the life information. */
1372 AND_HARD_REG_SET (allowed, clobbered);
1373 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1374 if (TEST_HARD_REG_BIT (allowed, i))
1375 {
1376 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1377 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1378 }
1379 }
1380
1381 #endif
1382 }
1383 \f
1384 /* Copy the global variables n_reloads and rld into the corresponding elts
1385 of CHAIN. */
1386 static void
1387 copy_reloads (chain)
1388 struct insn_chain *chain;
1389 {
1390 chain->n_reloads = n_reloads;
1391 chain->rld
1392 = (struct reload *) obstack_alloc (&reload_obstack,
1393 n_reloads * sizeof (struct reload));
1394 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1395 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1396 }
1397
1398 /* Walk the chain of insns, and determine for each whether it needs reloads
1399 and/or eliminations. Build the corresponding insns_need_reload list, and
1400 set something_needs_elimination as appropriate. */
1401 static void
1402 calculate_needs_all_insns (global)
1403 int global;
1404 {
1405 struct insn_chain **pprev_reload = &insns_need_reload;
1406 struct insn_chain *chain, *next = 0;
1407
1408 something_needs_elimination = 0;
1409
1410 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1411 for (chain = reload_insn_chain; chain != 0; chain = next)
1412 {
1413 rtx insn = chain->insn;
1414
1415 next = chain->next;
1416
1417 /* Clear out the shortcuts. */
1418 chain->n_reloads = 0;
1419 chain->need_elim = 0;
1420 chain->need_reload = 0;
1421 chain->need_operand_change = 0;
1422
1423 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1424 include REG_LABEL), we need to see what effects this has on the
1425 known offsets at labels. */
1426
1427 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1428 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1429 set_label_offsets (insn, insn, 0);
1430
1431 if (INSN_P (insn))
1432 {
1433 rtx old_body = PATTERN (insn);
1434 int old_code = INSN_CODE (insn);
1435 rtx old_notes = REG_NOTES (insn);
1436 int did_elimination = 0;
1437 int operands_changed = 0;
1438 rtx set = single_set (insn);
1439
1440 /* Skip insns that only set an equivalence. */
1441 if (set && GET_CODE (SET_DEST (set)) == REG
1442 && reg_renumber[REGNO (SET_DEST (set))] < 0
1443 && reg_equiv_constant[REGNO (SET_DEST (set))])
1444 continue;
1445
1446 /* If needed, eliminate any eliminable registers. */
1447 if (num_eliminable || num_eliminable_invariants)
1448 did_elimination = eliminate_regs_in_insn (insn, 0);
1449
1450 /* Analyze the instruction. */
1451 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1452 global, spill_reg_order);
1453
1454 /* If a no-op set needs more than one reload, this is likely
1455 to be something that needs input address reloads. We
1456 can't get rid of this cleanly later, and it is of no use
1457 anyway, so discard it now.
1458 We only do this when expensive_optimizations is enabled,
1459 since this complements reload inheritance / output
1460 reload deletion, and it can make debugging harder. */
1461 if (flag_expensive_optimizations && n_reloads > 1)
1462 {
1463 rtx set = single_set (insn);
1464 if (set
1465 && SET_SRC (set) == SET_DEST (set)
1466 && GET_CODE (SET_SRC (set)) == REG
1467 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1468 {
1469 delete_insn (insn);
1470 /* Delete it from the reload chain */
1471 if (chain->prev)
1472 chain->prev->next = next;
1473 else
1474 reload_insn_chain = next;
1475 if (next)
1476 next->prev = chain->prev;
1477 chain->next = unused_insn_chains;
1478 unused_insn_chains = chain;
1479 continue;
1480 }
1481 }
1482 if (num_eliminable)
1483 update_eliminable_offsets ();
1484
1485 /* Remember for later shortcuts which insns had any reloads or
1486 register eliminations. */
1487 chain->need_elim = did_elimination;
1488 chain->need_reload = n_reloads > 0;
1489 chain->need_operand_change = operands_changed;
1490
1491 /* Discard any register replacements done. */
1492 if (did_elimination)
1493 {
1494 obstack_free (&reload_obstack, reload_insn_firstobj);
1495 PATTERN (insn) = old_body;
1496 INSN_CODE (insn) = old_code;
1497 REG_NOTES (insn) = old_notes;
1498 something_needs_elimination = 1;
1499 }
1500
1501 something_needs_operands_changed |= operands_changed;
1502
1503 if (n_reloads != 0)
1504 {
1505 copy_reloads (chain);
1506 *pprev_reload = chain;
1507 pprev_reload = &chain->next_need_reload;
1508 }
1509 }
1510 }
1511 *pprev_reload = 0;
1512 }
1513 \f
1514 /* Comparison function for qsort to decide which of two reloads
1515 should be handled first. *P1 and *P2 are the reload numbers. */
1516
1517 static int
1518 reload_reg_class_lower (r1p, r2p)
1519 const PTR r1p;
1520 const PTR r2p;
1521 {
1522 register int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1523 register int t;
1524
1525 /* Consider required reloads before optional ones. */
1526 t = rld[r1].optional - rld[r2].optional;
1527 if (t != 0)
1528 return t;
1529
1530 /* Count all solitary classes before non-solitary ones. */
1531 t = ((reg_class_size[(int) rld[r2].class] == 1)
1532 - (reg_class_size[(int) rld[r1].class] == 1));
1533 if (t != 0)
1534 return t;
1535
1536 /* Aside from solitaires, consider all multi-reg groups first. */
1537 t = rld[r2].nregs - rld[r1].nregs;
1538 if (t != 0)
1539 return t;
1540
1541 /* Consider reloads in order of increasing reg-class number. */
1542 t = (int) rld[r1].class - (int) rld[r2].class;
1543 if (t != 0)
1544 return t;
1545
1546 /* If reloads are equally urgent, sort by reload number,
1547 so that the results of qsort leave nothing to chance. */
1548 return r1 - r2;
1549 }
1550 \f
1551 /* The cost of spilling each hard reg. */
1552 static int spill_cost[FIRST_PSEUDO_REGISTER];
1553
1554 /* When spilling multiple hard registers, we use SPILL_COST for the first
1555 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1556 only the first hard reg for a multi-reg pseudo. */
1557 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1558
1559 /* Update the spill cost arrays, considering that pseudo REG is live. */
1560
1561 static void
1562 count_pseudo (reg)
1563 int reg;
1564 {
1565 int freq = REG_FREQ (reg);
1566 int r = reg_renumber[reg];
1567 int nregs;
1568
1569 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1570 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1571 return;
1572
1573 SET_REGNO_REG_SET (&pseudos_counted, reg);
1574
1575 if (r < 0)
1576 abort ();
1577
1578 spill_add_cost[r] += freq;
1579
1580 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1581 while (nregs-- > 0)
1582 spill_cost[r + nregs] += freq;
1583 }
1584
1585 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1586 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1587
1588 static void
1589 order_regs_for_reload (chain)
1590 struct insn_chain *chain;
1591 {
1592 int i;
1593 HARD_REG_SET used_by_pseudos;
1594 HARD_REG_SET used_by_pseudos2;
1595
1596 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1597
1598 memset (spill_cost, 0, sizeof spill_cost);
1599 memset (spill_add_cost, 0, sizeof spill_add_cost);
1600
1601 /* Count number of uses of each hard reg by pseudo regs allocated to it
1602 and then order them by decreasing use. First exclude hard registers
1603 that are live in or across this insn. */
1604
1605 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1606 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1607 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1608 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1609
1610 /* Now find out which pseudos are allocated to it, and update
1611 hard_reg_n_uses. */
1612 CLEAR_REG_SET (&pseudos_counted);
1613
1614 EXECUTE_IF_SET_IN_REG_SET
1615 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1616 {
1617 count_pseudo (i);
1618 });
1619 EXECUTE_IF_SET_IN_REG_SET
1620 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1621 {
1622 count_pseudo (i);
1623 });
1624 CLEAR_REG_SET (&pseudos_counted);
1625 }
1626 \f
1627 /* Vector of reload-numbers showing the order in which the reloads should
1628 be processed. */
1629 static short reload_order[MAX_RELOADS];
1630
1631 /* This is used to keep track of the spill regs used in one insn. */
1632 static HARD_REG_SET used_spill_regs_local;
1633
1634 /* We decided to spill hard register SPILLED, which has a size of
1635 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1636 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1637 update SPILL_COST/SPILL_ADD_COST. */
1638
1639 static void
1640 count_spilled_pseudo (spilled, spilled_nregs, reg)
1641 int spilled, spilled_nregs, reg;
1642 {
1643 int r = reg_renumber[reg];
1644 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1645
1646 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1647 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1648 return;
1649
1650 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1651
1652 spill_add_cost[r] -= REG_FREQ (reg);
1653 while (nregs-- > 0)
1654 spill_cost[r + nregs] -= REG_FREQ (reg);
1655 }
1656
1657 /* Find reload register to use for reload number ORDER. */
1658
1659 static int
1660 find_reg (chain, order)
1661 struct insn_chain *chain;
1662 int order;
1663 {
1664 int rnum = reload_order[order];
1665 struct reload *rl = rld + rnum;
1666 int best_cost = INT_MAX;
1667 int best_reg = -1;
1668 unsigned int i, j;
1669 int k;
1670 HARD_REG_SET not_usable;
1671 HARD_REG_SET used_by_other_reload;
1672
1673 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1674 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1675 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1676
1677 CLEAR_HARD_REG_SET (used_by_other_reload);
1678 for (k = 0; k < order; k++)
1679 {
1680 int other = reload_order[k];
1681
1682 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1683 for (j = 0; j < rld[other].nregs; j++)
1684 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1685 }
1686
1687 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1688 {
1689 unsigned int regno = i;
1690
1691 if (! TEST_HARD_REG_BIT (not_usable, regno)
1692 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1693 && HARD_REGNO_MODE_OK (regno, rl->mode))
1694 {
1695 int this_cost = spill_cost[regno];
1696 int ok = 1;
1697 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1698
1699 for (j = 1; j < this_nregs; j++)
1700 {
1701 this_cost += spill_add_cost[regno + j];
1702 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1703 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1704 ok = 0;
1705 }
1706 if (! ok)
1707 continue;
1708 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1709 this_cost--;
1710 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1711 this_cost--;
1712 if (this_cost < best_cost
1713 /* Among registers with equal cost, prefer caller-saved ones, or
1714 use REG_ALLOC_ORDER if it is defined. */
1715 || (this_cost == best_cost
1716 #ifdef REG_ALLOC_ORDER
1717 && (inv_reg_alloc_order[regno]
1718 < inv_reg_alloc_order[best_reg])
1719 #else
1720 && call_used_regs[regno]
1721 && ! call_used_regs[best_reg]
1722 #endif
1723 ))
1724 {
1725 best_reg = regno;
1726 best_cost = this_cost;
1727 }
1728 }
1729 }
1730 if (best_reg == -1)
1731 return 0;
1732
1733 if (rtl_dump_file)
1734 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1735
1736 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1737 rl->regno = best_reg;
1738
1739 EXECUTE_IF_SET_IN_REG_SET
1740 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1741 {
1742 count_spilled_pseudo (best_reg, rl->nregs, j);
1743 });
1744
1745 EXECUTE_IF_SET_IN_REG_SET
1746 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1747 {
1748 count_spilled_pseudo (best_reg, rl->nregs, j);
1749 });
1750
1751 for (i = 0; i < rl->nregs; i++)
1752 {
1753 if (spill_cost[best_reg + i] != 0
1754 || spill_add_cost[best_reg + i] != 0)
1755 abort ();
1756 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1757 }
1758 return 1;
1759 }
1760
1761 /* Find more reload regs to satisfy the remaining need of an insn, which
1762 is given by CHAIN.
1763 Do it by ascending class number, since otherwise a reg
1764 might be spilled for a big class and might fail to count
1765 for a smaller class even though it belongs to that class. */
1766
1767 static void
1768 find_reload_regs (chain)
1769 struct insn_chain *chain;
1770 {
1771 int i;
1772
1773 /* In order to be certain of getting the registers we need,
1774 we must sort the reloads into order of increasing register class.
1775 Then our grabbing of reload registers will parallel the process
1776 that provided the reload registers. */
1777 for (i = 0; i < chain->n_reloads; i++)
1778 {
1779 /* Show whether this reload already has a hard reg. */
1780 if (chain->rld[i].reg_rtx)
1781 {
1782 int regno = REGNO (chain->rld[i].reg_rtx);
1783 chain->rld[i].regno = regno;
1784 chain->rld[i].nregs
1785 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1786 }
1787 else
1788 chain->rld[i].regno = -1;
1789 reload_order[i] = i;
1790 }
1791
1792 n_reloads = chain->n_reloads;
1793 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1794
1795 CLEAR_HARD_REG_SET (used_spill_regs_local);
1796
1797 if (rtl_dump_file)
1798 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1799
1800 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1801
1802 /* Compute the order of preference for hard registers to spill. */
1803
1804 order_regs_for_reload (chain);
1805
1806 for (i = 0; i < n_reloads; i++)
1807 {
1808 int r = reload_order[i];
1809
1810 /* Ignore reloads that got marked inoperative. */
1811 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1812 && ! rld[r].optional
1813 && rld[r].regno == -1)
1814 if (! find_reg (chain, i))
1815 {
1816 spill_failure (chain->insn, rld[r].class);
1817 failure = 1;
1818 return;
1819 }
1820 }
1821
1822 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1823 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1824
1825 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1826 }
1827
1828 static void
1829 select_reload_regs ()
1830 {
1831 struct insn_chain *chain;
1832
1833 /* Try to satisfy the needs for each insn. */
1834 for (chain = insns_need_reload; chain != 0;
1835 chain = chain->next_need_reload)
1836 find_reload_regs (chain);
1837 }
1838 \f
1839 /* Delete all insns that were inserted by emit_caller_save_insns during
1840 this iteration. */
1841 static void
1842 delete_caller_save_insns ()
1843 {
1844 struct insn_chain *c = reload_insn_chain;
1845
1846 while (c != 0)
1847 {
1848 while (c != 0 && c->is_caller_save_insn)
1849 {
1850 struct insn_chain *next = c->next;
1851 rtx insn = c->insn;
1852
1853 if (c == reload_insn_chain)
1854 reload_insn_chain = next;
1855 delete_insn (insn);
1856
1857 if (next)
1858 next->prev = c->prev;
1859 if (c->prev)
1860 c->prev->next = next;
1861 c->next = unused_insn_chains;
1862 unused_insn_chains = c;
1863 c = next;
1864 }
1865 if (c != 0)
1866 c = c->next;
1867 }
1868 }
1869 \f
1870 /* Handle the failure to find a register to spill.
1871 INSN should be one of the insns which needed this particular spill reg. */
1872
1873 static void
1874 spill_failure (insn, class)
1875 rtx insn;
1876 enum reg_class class;
1877 {
1878 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1879 if (asm_noperands (PATTERN (insn)) >= 0)
1880 error_for_asm (insn, "Can't find a register in class `%s' while reloading `asm'.",
1881 reg_class_names[class]);
1882 else
1883 {
1884 error ("Unable to find a register to spill in class `%s'.",
1885 reg_class_names[class]);
1886 fatal_insn ("This is the insn:", insn);
1887 }
1888 }
1889 \f
1890 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1891 data that is dead in INSN. */
1892
1893 static void
1894 delete_dead_insn (insn)
1895 rtx insn;
1896 {
1897 rtx prev = prev_real_insn (insn);
1898 rtx prev_dest;
1899
1900 /* If the previous insn sets a register that dies in our insn, delete it
1901 too. */
1902 if (prev && GET_CODE (PATTERN (prev)) == SET
1903 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1904 && reg_mentioned_p (prev_dest, PATTERN (insn))
1905 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1906 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1907 delete_dead_insn (prev);
1908
1909 PUT_CODE (insn, NOTE);
1910 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1911 NOTE_SOURCE_FILE (insn) = 0;
1912 }
1913
1914 /* Modify the home of pseudo-reg I.
1915 The new home is present in reg_renumber[I].
1916
1917 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1918 or it may be -1, meaning there is none or it is not relevant.
1919 This is used so that all pseudos spilled from a given hard reg
1920 can share one stack slot. */
1921
1922 static void
1923 alter_reg (i, from_reg)
1924 register int i;
1925 int from_reg;
1926 {
1927 /* When outputting an inline function, this can happen
1928 for a reg that isn't actually used. */
1929 if (regno_reg_rtx[i] == 0)
1930 return;
1931
1932 /* If the reg got changed to a MEM at rtl-generation time,
1933 ignore it. */
1934 if (GET_CODE (regno_reg_rtx[i]) != REG)
1935 return;
1936
1937 /* Modify the reg-rtx to contain the new hard reg
1938 number or else to contain its pseudo reg number. */
1939 REGNO (regno_reg_rtx[i])
1940 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1941
1942 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1943 allocate a stack slot for it. */
1944
1945 if (reg_renumber[i] < 0
1946 && REG_N_REFS (i) > 0
1947 && reg_equiv_constant[i] == 0
1948 && reg_equiv_memory_loc[i] == 0)
1949 {
1950 register rtx x;
1951 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1952 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1953 int adjust = 0;
1954
1955 /* Each pseudo reg has an inherent size which comes from its own mode,
1956 and a total size which provides room for paradoxical subregs
1957 which refer to the pseudo reg in wider modes.
1958
1959 We can use a slot already allocated if it provides both
1960 enough inherent space and enough total space.
1961 Otherwise, we allocate a new slot, making sure that it has no less
1962 inherent space, and no less total space, then the previous slot. */
1963 if (from_reg == -1)
1964 {
1965 /* No known place to spill from => no slot to reuse. */
1966 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1967 inherent_size == total_size ? 0 : -1);
1968 if (BYTES_BIG_ENDIAN)
1969 /* Cancel the big-endian correction done in assign_stack_local.
1970 Get the address of the beginning of the slot.
1971 This is so we can do a big-endian correction unconditionally
1972 below. */
1973 adjust = inherent_size - total_size;
1974
1975 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
1976
1977 /* Nothing can alias this slot except this pseudo. */
1978 set_mem_alias_set (x, new_alias_set ());
1979 }
1980
1981 /* Reuse a stack slot if possible. */
1982 else if (spill_stack_slot[from_reg] != 0
1983 && spill_stack_slot_width[from_reg] >= total_size
1984 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1985 >= inherent_size))
1986 x = spill_stack_slot[from_reg];
1987
1988 /* Allocate a bigger slot. */
1989 else
1990 {
1991 /* Compute maximum size needed, both for inherent size
1992 and for total size. */
1993 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1994 rtx stack_slot;
1995
1996 if (spill_stack_slot[from_reg])
1997 {
1998 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1999 > inherent_size)
2000 mode = GET_MODE (spill_stack_slot[from_reg]);
2001 if (spill_stack_slot_width[from_reg] > total_size)
2002 total_size = spill_stack_slot_width[from_reg];
2003 }
2004
2005 /* Make a slot with that size. */
2006 x = assign_stack_local (mode, total_size,
2007 inherent_size == total_size ? 0 : -1);
2008 stack_slot = x;
2009
2010 /* All pseudos mapped to this slot can alias each other. */
2011 if (spill_stack_slot[from_reg])
2012 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2013 else
2014 set_mem_alias_set (x, new_alias_set ());
2015
2016 if (BYTES_BIG_ENDIAN)
2017 {
2018 /* Cancel the big-endian correction done in assign_stack_local.
2019 Get the address of the beginning of the slot.
2020 This is so we can do a big-endian correction unconditionally
2021 below. */
2022 adjust = GET_MODE_SIZE (mode) - total_size;
2023 if (adjust)
2024 stack_slot = gen_rtx_MEM (mode_for_size (total_size
2025 * BITS_PER_UNIT,
2026 MODE_INT, 1),
2027 plus_constant (XEXP (x, 0), adjust));
2028 }
2029
2030 spill_stack_slot[from_reg] = stack_slot;
2031 spill_stack_slot_width[from_reg] = total_size;
2032 }
2033
2034 /* On a big endian machine, the "address" of the slot
2035 is the address of the low part that fits its inherent mode. */
2036 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2037 adjust += (total_size - inherent_size);
2038
2039 /* If we have any adjustment to make, or if the stack slot is the
2040 wrong mode, make a new stack slot. */
2041 if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
2042 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2043
2044 /* Save the stack slot for later. */
2045 reg_equiv_memory_loc[i] = x;
2046 }
2047 }
2048
2049 /* Mark the slots in regs_ever_live for the hard regs
2050 used by pseudo-reg number REGNO. */
2051
2052 void
2053 mark_home_live (regno)
2054 int regno;
2055 {
2056 register int i, lim;
2057
2058 i = reg_renumber[regno];
2059 if (i < 0)
2060 return;
2061 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2062 while (i < lim)
2063 regs_ever_live[i++] = 1;
2064 }
2065 \f
2066 /* This function handles the tracking of elimination offsets around branches.
2067
2068 X is a piece of RTL being scanned.
2069
2070 INSN is the insn that it came from, if any.
2071
2072 INITIAL_P is non-zero if we are to set the offset to be the initial
2073 offset and zero if we are setting the offset of the label to be the
2074 current offset. */
2075
2076 static void
2077 set_label_offsets (x, insn, initial_p)
2078 rtx x;
2079 rtx insn;
2080 int initial_p;
2081 {
2082 enum rtx_code code = GET_CODE (x);
2083 rtx tem;
2084 unsigned int i;
2085 struct elim_table *p;
2086
2087 switch (code)
2088 {
2089 case LABEL_REF:
2090 if (LABEL_REF_NONLOCAL_P (x))
2091 return;
2092
2093 x = XEXP (x, 0);
2094
2095 /* ... fall through ... */
2096
2097 case CODE_LABEL:
2098 /* If we know nothing about this label, set the desired offsets. Note
2099 that this sets the offset at a label to be the offset before a label
2100 if we don't know anything about the label. This is not correct for
2101 the label after a BARRIER, but is the best guess we can make. If
2102 we guessed wrong, we will suppress an elimination that might have
2103 been possible had we been able to guess correctly. */
2104
2105 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2106 {
2107 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2108 offsets_at[CODE_LABEL_NUMBER (x)][i]
2109 = (initial_p ? reg_eliminate[i].initial_offset
2110 : reg_eliminate[i].offset);
2111 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2112 }
2113
2114 /* Otherwise, if this is the definition of a label and it is
2115 preceded by a BARRIER, set our offsets to the known offset of
2116 that label. */
2117
2118 else if (x == insn
2119 && (tem = prev_nonnote_insn (insn)) != 0
2120 && GET_CODE (tem) == BARRIER)
2121 set_offsets_for_label (insn);
2122 else
2123 /* If neither of the above cases is true, compare each offset
2124 with those previously recorded and suppress any eliminations
2125 where the offsets disagree. */
2126
2127 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2128 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2129 != (initial_p ? reg_eliminate[i].initial_offset
2130 : reg_eliminate[i].offset))
2131 reg_eliminate[i].can_eliminate = 0;
2132
2133 return;
2134
2135 case JUMP_INSN:
2136 set_label_offsets (PATTERN (insn), insn, initial_p);
2137
2138 /* ... fall through ... */
2139
2140 case INSN:
2141 case CALL_INSN:
2142 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2143 and hence must have all eliminations at their initial offsets. */
2144 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2145 if (REG_NOTE_KIND (tem) == REG_LABEL)
2146 set_label_offsets (XEXP (tem, 0), insn, 1);
2147 return;
2148
2149 case PARALLEL:
2150 case ADDR_VEC:
2151 case ADDR_DIFF_VEC:
2152 /* Each of the labels in the parallel or address vector must be
2153 at their initial offsets. We want the first field for PARALLEL
2154 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2155
2156 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2157 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2158 insn, initial_p);
2159 return;
2160
2161 case SET:
2162 /* We only care about setting PC. If the source is not RETURN,
2163 IF_THEN_ELSE, or a label, disable any eliminations not at
2164 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2165 isn't one of those possibilities. For branches to a label,
2166 call ourselves recursively.
2167
2168 Note that this can disable elimination unnecessarily when we have
2169 a non-local goto since it will look like a non-constant jump to
2170 someplace in the current function. This isn't a significant
2171 problem since such jumps will normally be when all elimination
2172 pairs are back to their initial offsets. */
2173
2174 if (SET_DEST (x) != pc_rtx)
2175 return;
2176
2177 switch (GET_CODE (SET_SRC (x)))
2178 {
2179 case PC:
2180 case RETURN:
2181 return;
2182
2183 case LABEL_REF:
2184 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2185 return;
2186
2187 case IF_THEN_ELSE:
2188 tem = XEXP (SET_SRC (x), 1);
2189 if (GET_CODE (tem) == LABEL_REF)
2190 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2191 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2192 break;
2193
2194 tem = XEXP (SET_SRC (x), 2);
2195 if (GET_CODE (tem) == LABEL_REF)
2196 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2197 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2198 break;
2199 return;
2200
2201 default:
2202 break;
2203 }
2204
2205 /* If we reach here, all eliminations must be at their initial
2206 offset because we are doing a jump to a variable address. */
2207 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2208 if (p->offset != p->initial_offset)
2209 p->can_eliminate = 0;
2210 break;
2211
2212 default:
2213 break;
2214 }
2215 }
2216 \f
2217 /* Scan X and replace any eliminable registers (such as fp) with a
2218 replacement (such as sp), plus an offset.
2219
2220 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2221 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2222 MEM, we are allowed to replace a sum of a register and the constant zero
2223 with the register, which we cannot do outside a MEM. In addition, we need
2224 to record the fact that a register is referenced outside a MEM.
2225
2226 If INSN is an insn, it is the insn containing X. If we replace a REG
2227 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2228 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2229 the REG is being modified.
2230
2231 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2232 That's used when we eliminate in expressions stored in notes.
2233 This means, do not set ref_outside_mem even if the reference
2234 is outside of MEMs.
2235
2236 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2237 replacements done assuming all offsets are at their initial values. If
2238 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2239 encounter, return the actual location so that find_reloads will do
2240 the proper thing. */
2241
2242 rtx
2243 eliminate_regs (x, mem_mode, insn)
2244 rtx x;
2245 enum machine_mode mem_mode;
2246 rtx insn;
2247 {
2248 enum rtx_code code = GET_CODE (x);
2249 struct elim_table *ep;
2250 int regno;
2251 rtx new;
2252 int i, j;
2253 const char *fmt;
2254 int copied = 0;
2255
2256 if (! current_function_decl)
2257 return x;
2258
2259 switch (code)
2260 {
2261 case CONST_INT:
2262 case CONST_DOUBLE:
2263 case CONST:
2264 case SYMBOL_REF:
2265 case CODE_LABEL:
2266 case PC:
2267 case CC0:
2268 case ASM_INPUT:
2269 case ADDR_VEC:
2270 case ADDR_DIFF_VEC:
2271 case RETURN:
2272 return x;
2273
2274 case ADDRESSOF:
2275 /* This is only for the benefit of the debugging backends, which call
2276 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2277 removed after CSE. */
2278 new = eliminate_regs (XEXP (x, 0), 0, insn);
2279 if (GET_CODE (new) == MEM)
2280 return XEXP (new, 0);
2281 return x;
2282
2283 case REG:
2284 regno = REGNO (x);
2285
2286 /* First handle the case where we encounter a bare register that
2287 is eliminable. Replace it with a PLUS. */
2288 if (regno < FIRST_PSEUDO_REGISTER)
2289 {
2290 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2291 ep++)
2292 if (ep->from_rtx == x && ep->can_eliminate)
2293 return plus_constant (ep->to_rtx, ep->previous_offset);
2294
2295 }
2296 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2297 && reg_equiv_constant[regno]
2298 && ! CONSTANT_P (reg_equiv_constant[regno]))
2299 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2300 mem_mode, insn);
2301 return x;
2302
2303 /* You might think handling MINUS in a manner similar to PLUS is a
2304 good idea. It is not. It has been tried multiple times and every
2305 time the change has had to have been reverted.
2306
2307 Other parts of reload know a PLUS is special (gen_reload for example)
2308 and require special code to handle code a reloaded PLUS operand.
2309
2310 Also consider backends where the flags register is clobbered by a
2311 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2312 lea instruction comes to mind). If we try to reload a MINUS, we
2313 may kill the flags register that was holding a useful value.
2314
2315 So, please before trying to handle MINUS, consider reload as a
2316 whole instead of this little section as well as the backend issues. */
2317 case PLUS:
2318 /* If this is the sum of an eliminable register and a constant, rework
2319 the sum. */
2320 if (GET_CODE (XEXP (x, 0)) == REG
2321 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2322 && CONSTANT_P (XEXP (x, 1)))
2323 {
2324 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2325 ep++)
2326 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2327 {
2328 /* The only time we want to replace a PLUS with a REG (this
2329 occurs when the constant operand of the PLUS is the negative
2330 of the offset) is when we are inside a MEM. We won't want
2331 to do so at other times because that would change the
2332 structure of the insn in a way that reload can't handle.
2333 We special-case the commonest situation in
2334 eliminate_regs_in_insn, so just replace a PLUS with a
2335 PLUS here, unless inside a MEM. */
2336 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2337 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2338 return ep->to_rtx;
2339 else
2340 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2341 plus_constant (XEXP (x, 1),
2342 ep->previous_offset));
2343 }
2344
2345 /* If the register is not eliminable, we are done since the other
2346 operand is a constant. */
2347 return x;
2348 }
2349
2350 /* If this is part of an address, we want to bring any constant to the
2351 outermost PLUS. We will do this by doing register replacement in
2352 our operands and seeing if a constant shows up in one of them.
2353
2354 Note that there is no risk of modifying the structure of the insn,
2355 since we only get called for its operands, thus we are either
2356 modifying the address inside a MEM, or something like an address
2357 operand of a load-address insn. */
2358
2359 {
2360 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2361 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2362
2363 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2364 {
2365 /* If one side is a PLUS and the other side is a pseudo that
2366 didn't get a hard register but has a reg_equiv_constant,
2367 we must replace the constant here since it may no longer
2368 be in the position of any operand. */
2369 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2370 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2371 && reg_renumber[REGNO (new1)] < 0
2372 && reg_equiv_constant != 0
2373 && reg_equiv_constant[REGNO (new1)] != 0)
2374 new1 = reg_equiv_constant[REGNO (new1)];
2375 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2376 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2377 && reg_renumber[REGNO (new0)] < 0
2378 && reg_equiv_constant[REGNO (new0)] != 0)
2379 new0 = reg_equiv_constant[REGNO (new0)];
2380
2381 new = form_sum (new0, new1);
2382
2383 /* As above, if we are not inside a MEM we do not want to
2384 turn a PLUS into something else. We might try to do so here
2385 for an addition of 0 if we aren't optimizing. */
2386 if (! mem_mode && GET_CODE (new) != PLUS)
2387 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2388 else
2389 return new;
2390 }
2391 }
2392 return x;
2393
2394 case MULT:
2395 /* If this is the product of an eliminable register and a
2396 constant, apply the distribute law and move the constant out
2397 so that we have (plus (mult ..) ..). This is needed in order
2398 to keep load-address insns valid. This case is pathological.
2399 We ignore the possibility of overflow here. */
2400 if (GET_CODE (XEXP (x, 0)) == REG
2401 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2402 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2403 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2404 ep++)
2405 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2406 {
2407 if (! mem_mode
2408 /* Refs inside notes don't count for this purpose. */
2409 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2410 || GET_CODE (insn) == INSN_LIST)))
2411 ep->ref_outside_mem = 1;
2412
2413 return
2414 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2415 ep->previous_offset * INTVAL (XEXP (x, 1)));
2416 }
2417
2418 /* ... fall through ... */
2419
2420 case CALL:
2421 case COMPARE:
2422 /* See comments before PLUS about handling MINUS. */
2423 case MINUS:
2424 case DIV: case UDIV:
2425 case MOD: case UMOD:
2426 case AND: case IOR: case XOR:
2427 case ROTATERT: case ROTATE:
2428 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2429 case NE: case EQ:
2430 case GE: case GT: case GEU: case GTU:
2431 case LE: case LT: case LEU: case LTU:
2432 {
2433 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2434 rtx new1
2435 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2436
2437 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2438 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2439 }
2440 return x;
2441
2442 case EXPR_LIST:
2443 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2444 if (XEXP (x, 0))
2445 {
2446 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2447 if (new != XEXP (x, 0))
2448 {
2449 /* If this is a REG_DEAD note, it is not valid anymore.
2450 Using the eliminated version could result in creating a
2451 REG_DEAD note for the stack or frame pointer. */
2452 if (GET_MODE (x) == REG_DEAD)
2453 return (XEXP (x, 1)
2454 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2455 : NULL_RTX);
2456
2457 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2458 }
2459 }
2460
2461 /* ... fall through ... */
2462
2463 case INSN_LIST:
2464 /* Now do eliminations in the rest of the chain. If this was
2465 an EXPR_LIST, this might result in allocating more memory than is
2466 strictly needed, but it simplifies the code. */
2467 if (XEXP (x, 1))
2468 {
2469 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2470 if (new != XEXP (x, 1))
2471 return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2472 }
2473 return x;
2474
2475 case PRE_INC:
2476 case POST_INC:
2477 case PRE_DEC:
2478 case POST_DEC:
2479 case STRICT_LOW_PART:
2480 case NEG: case NOT:
2481 case SIGN_EXTEND: case ZERO_EXTEND:
2482 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2483 case FLOAT: case FIX:
2484 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2485 case ABS:
2486 case SQRT:
2487 case FFS:
2488 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2489 if (new != XEXP (x, 0))
2490 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2491 return x;
2492
2493 case SUBREG:
2494 /* Similar to above processing, but preserve SUBREG_BYTE.
2495 Convert (subreg (mem)) to (mem) if not paradoxical.
2496 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2497 pseudo didn't get a hard reg, we must replace this with the
2498 eliminated version of the memory location because push_reloads
2499 may do the replacement in certain circumstances. */
2500 if (GET_CODE (SUBREG_REG (x)) == REG
2501 && (GET_MODE_SIZE (GET_MODE (x))
2502 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2503 && reg_equiv_memory_loc != 0
2504 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2505 {
2506 new = SUBREG_REG (x);
2507 }
2508 else
2509 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2510
2511 if (new != SUBREG_REG (x))
2512 {
2513 int x_size = GET_MODE_SIZE (GET_MODE (x));
2514 int new_size = GET_MODE_SIZE (GET_MODE (new));
2515
2516 if (GET_CODE (new) == MEM
2517 && ((x_size < new_size
2518 #ifdef WORD_REGISTER_OPERATIONS
2519 /* On these machines, combine can create rtl of the form
2520 (set (subreg:m1 (reg:m2 R) 0) ...)
2521 where m1 < m2, and expects something interesting to
2522 happen to the entire word. Moreover, it will use the
2523 (reg:m2 R) later, expecting all bits to be preserved.
2524 So if the number of words is the same, preserve the
2525 subreg so that push_reloads can see it. */
2526 && ! ((x_size - 1) / UNITS_PER_WORD
2527 == (new_size -1 ) / UNITS_PER_WORD)
2528 #endif
2529 )
2530 || x_size == new_size)
2531 )
2532 {
2533 int offset = SUBREG_BYTE (x);
2534 enum machine_mode mode = GET_MODE (x);
2535
2536 PUT_MODE (new, mode);
2537 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
2538 return new;
2539 }
2540 else
2541 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2542 }
2543
2544 return x;
2545
2546 case MEM:
2547 /* This is only for the benefit of the debugging backends, which call
2548 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2549 removed after CSE. */
2550 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2551 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2552
2553 /* Our only special processing is to pass the mode of the MEM to our
2554 recursive call and copy the flags. While we are here, handle this
2555 case more efficiently. */
2556 return
2557 replace_equiv_address_nv (x,
2558 eliminate_regs (XEXP (x, 0),
2559 GET_MODE (x), insn));
2560
2561 case USE:
2562 /* Handle insn_list USE that a call to a pure function may generate. */
2563 new = eliminate_regs (XEXP (x, 0), 0, insn);
2564 if (new != XEXP (x, 0))
2565 return gen_rtx_USE (GET_MODE (x), new);
2566 return x;
2567
2568 case CLOBBER:
2569 case ASM_OPERANDS:
2570 case SET:
2571 abort ();
2572
2573 default:
2574 break;
2575 }
2576
2577 /* Process each of our operands recursively. If any have changed, make a
2578 copy of the rtx. */
2579 fmt = GET_RTX_FORMAT (code);
2580 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2581 {
2582 if (*fmt == 'e')
2583 {
2584 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2585 if (new != XEXP (x, i) && ! copied)
2586 {
2587 rtx new_x = rtx_alloc (code);
2588 memcpy (new_x, x,
2589 (sizeof (*new_x) - sizeof (new_x->fld)
2590 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2591 x = new_x;
2592 copied = 1;
2593 }
2594 XEXP (x, i) = new;
2595 }
2596 else if (*fmt == 'E')
2597 {
2598 int copied_vec = 0;
2599 for (j = 0; j < XVECLEN (x, i); j++)
2600 {
2601 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2602 if (new != XVECEXP (x, i, j) && ! copied_vec)
2603 {
2604 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2605 XVEC (x, i)->elem);
2606 if (! copied)
2607 {
2608 rtx new_x = rtx_alloc (code);
2609 memcpy (new_x, x,
2610 (sizeof (*new_x) - sizeof (new_x->fld)
2611 + (sizeof (new_x->fld[0])
2612 * GET_RTX_LENGTH (code))));
2613 x = new_x;
2614 copied = 1;
2615 }
2616 XVEC (x, i) = new_v;
2617 copied_vec = 1;
2618 }
2619 XVECEXP (x, i, j) = new;
2620 }
2621 }
2622 }
2623
2624 return x;
2625 }
2626
2627 /* Scan rtx X for modifications of elimination target registers. Update
2628 the table of eliminables to reflect the changed state. MEM_MODE is
2629 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2630
2631 static void
2632 elimination_effects (x, mem_mode)
2633 rtx x;
2634 enum machine_mode mem_mode;
2635
2636 {
2637 enum rtx_code code = GET_CODE (x);
2638 struct elim_table *ep;
2639 int regno;
2640 int i, j;
2641 const char *fmt;
2642
2643 switch (code)
2644 {
2645 case CONST_INT:
2646 case CONST_DOUBLE:
2647 case CONST:
2648 case SYMBOL_REF:
2649 case CODE_LABEL:
2650 case PC:
2651 case CC0:
2652 case ASM_INPUT:
2653 case ADDR_VEC:
2654 case ADDR_DIFF_VEC:
2655 case RETURN:
2656 return;
2657
2658 case ADDRESSOF:
2659 abort ();
2660
2661 case REG:
2662 regno = REGNO (x);
2663
2664 /* First handle the case where we encounter a bare register that
2665 is eliminable. Replace it with a PLUS. */
2666 if (regno < FIRST_PSEUDO_REGISTER)
2667 {
2668 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2669 ep++)
2670 if (ep->from_rtx == x && ep->can_eliminate)
2671 {
2672 if (! mem_mode)
2673 ep->ref_outside_mem = 1;
2674 return;
2675 }
2676
2677 }
2678 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2679 && reg_equiv_constant[regno]
2680 && ! CONSTANT_P (reg_equiv_constant[regno]))
2681 elimination_effects (reg_equiv_constant[regno], mem_mode);
2682 return;
2683
2684 case PRE_INC:
2685 case POST_INC:
2686 case PRE_DEC:
2687 case POST_DEC:
2688 case POST_MODIFY:
2689 case PRE_MODIFY:
2690 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2691 if (ep->to_rtx == XEXP (x, 0))
2692 {
2693 int size = GET_MODE_SIZE (mem_mode);
2694
2695 /* If more bytes than MEM_MODE are pushed, account for them. */
2696 #ifdef PUSH_ROUNDING
2697 if (ep->to_rtx == stack_pointer_rtx)
2698 size = PUSH_ROUNDING (size);
2699 #endif
2700 if (code == PRE_DEC || code == POST_DEC)
2701 ep->offset += size;
2702 else if (code == PRE_INC || code == POST_INC)
2703 ep->offset -= size;
2704 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2705 && GET_CODE (XEXP (x, 1)) == PLUS
2706 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2707 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2708 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2709 }
2710
2711 /* These two aren't unary operators. */
2712 if (code == POST_MODIFY || code == PRE_MODIFY)
2713 break;
2714
2715 /* Fall through to generic unary operation case. */
2716 case STRICT_LOW_PART:
2717 case NEG: case NOT:
2718 case SIGN_EXTEND: case ZERO_EXTEND:
2719 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2720 case FLOAT: case FIX:
2721 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2722 case ABS:
2723 case SQRT:
2724 case FFS:
2725 elimination_effects (XEXP (x, 0), mem_mode);
2726 return;
2727
2728 case SUBREG:
2729 if (GET_CODE (SUBREG_REG (x)) == REG
2730 && (GET_MODE_SIZE (GET_MODE (x))
2731 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2732 && reg_equiv_memory_loc != 0
2733 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2734 return;
2735
2736 elimination_effects (SUBREG_REG (x), mem_mode);
2737 return;
2738
2739 case USE:
2740 /* If using a register that is the source of an eliminate we still
2741 think can be performed, note it cannot be performed since we don't
2742 know how this register is used. */
2743 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2744 if (ep->from_rtx == XEXP (x, 0))
2745 ep->can_eliminate = 0;
2746
2747 elimination_effects (XEXP (x, 0), mem_mode);
2748 return;
2749
2750 case CLOBBER:
2751 /* If clobbering a register that is the replacement register for an
2752 elimination we still think can be performed, note that it cannot
2753 be performed. Otherwise, we need not be concerned about it. */
2754 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2755 if (ep->to_rtx == XEXP (x, 0))
2756 ep->can_eliminate = 0;
2757
2758 elimination_effects (XEXP (x, 0), mem_mode);
2759 return;
2760
2761 case SET:
2762 /* Check for setting a register that we know about. */
2763 if (GET_CODE (SET_DEST (x)) == REG)
2764 {
2765 /* See if this is setting the replacement register for an
2766 elimination.
2767
2768 If DEST is the hard frame pointer, we do nothing because we
2769 assume that all assignments to the frame pointer are for
2770 non-local gotos and are being done at a time when they are valid
2771 and do not disturb anything else. Some machines want to
2772 eliminate a fake argument pointer (or even a fake frame pointer)
2773 with either the real frame or the stack pointer. Assignments to
2774 the hard frame pointer must not prevent this elimination. */
2775
2776 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2777 ep++)
2778 if (ep->to_rtx == SET_DEST (x)
2779 && SET_DEST (x) != hard_frame_pointer_rtx)
2780 {
2781 /* If it is being incremented, adjust the offset. Otherwise,
2782 this elimination can't be done. */
2783 rtx src = SET_SRC (x);
2784
2785 if (GET_CODE (src) == PLUS
2786 && XEXP (src, 0) == SET_DEST (x)
2787 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2788 ep->offset -= INTVAL (XEXP (src, 1));
2789 else
2790 ep->can_eliminate = 0;
2791 }
2792 }
2793
2794 elimination_effects (SET_DEST (x), 0);
2795 elimination_effects (SET_SRC (x), 0);
2796 return;
2797
2798 case MEM:
2799 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2800 abort ();
2801
2802 /* Our only special processing is to pass the mode of the MEM to our
2803 recursive call. */
2804 elimination_effects (XEXP (x, 0), GET_MODE (x));
2805 return;
2806
2807 default:
2808 break;
2809 }
2810
2811 fmt = GET_RTX_FORMAT (code);
2812 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2813 {
2814 if (*fmt == 'e')
2815 elimination_effects (XEXP (x, i), mem_mode);
2816 else if (*fmt == 'E')
2817 for (j = 0; j < XVECLEN (x, i); j++)
2818 elimination_effects (XVECEXP (x, i, j), mem_mode);
2819 }
2820 }
2821
2822 /* Descend through rtx X and verify that no references to eliminable registers
2823 remain. If any do remain, mark the involved register as not
2824 eliminable. */
2825
2826 static void
2827 check_eliminable_occurrences (x)
2828 rtx x;
2829 {
2830 const char *fmt;
2831 int i;
2832 enum rtx_code code;
2833
2834 if (x == 0)
2835 return;
2836
2837 code = GET_CODE (x);
2838
2839 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2840 {
2841 struct elim_table *ep;
2842
2843 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2844 if (ep->from_rtx == x && ep->can_eliminate)
2845 ep->can_eliminate = 0;
2846 return;
2847 }
2848
2849 fmt = GET_RTX_FORMAT (code);
2850 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2851 {
2852 if (*fmt == 'e')
2853 check_eliminable_occurrences (XEXP (x, i));
2854 else if (*fmt == 'E')
2855 {
2856 int j;
2857 for (j = 0; j < XVECLEN (x, i); j++)
2858 check_eliminable_occurrences (XVECEXP (x, i, j));
2859 }
2860 }
2861 }
2862 \f
2863 /* Scan INSN and eliminate all eliminable registers in it.
2864
2865 If REPLACE is nonzero, do the replacement destructively. Also
2866 delete the insn as dead it if it is setting an eliminable register.
2867
2868 If REPLACE is zero, do all our allocations in reload_obstack.
2869
2870 If no eliminations were done and this insn doesn't require any elimination
2871 processing (these are not identical conditions: it might be updating sp,
2872 but not referencing fp; this needs to be seen during reload_as_needed so
2873 that the offset between fp and sp can be taken into consideration), zero
2874 is returned. Otherwise, 1 is returned. */
2875
2876 static int
2877 eliminate_regs_in_insn (insn, replace)
2878 rtx insn;
2879 int replace;
2880 {
2881 int icode = recog_memoized (insn);
2882 rtx old_body = PATTERN (insn);
2883 int insn_is_asm = asm_noperands (old_body) >= 0;
2884 rtx old_set = single_set (insn);
2885 rtx new_body;
2886 int val = 0;
2887 int i, any_changes;
2888 rtx substed_operand[MAX_RECOG_OPERANDS];
2889 rtx orig_operand[MAX_RECOG_OPERANDS];
2890 struct elim_table *ep;
2891
2892 if (! insn_is_asm && icode < 0)
2893 {
2894 if (GET_CODE (PATTERN (insn)) == USE
2895 || GET_CODE (PATTERN (insn)) == CLOBBER
2896 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2897 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2898 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2899 return 0;
2900 abort ();
2901 }
2902
2903 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2904 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2905 {
2906 /* Check for setting an eliminable register. */
2907 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2908 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2909 {
2910 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2911 /* If this is setting the frame pointer register to the
2912 hardware frame pointer register and this is an elimination
2913 that will be done (tested above), this insn is really
2914 adjusting the frame pointer downward to compensate for
2915 the adjustment done before a nonlocal goto. */
2916 if (ep->from == FRAME_POINTER_REGNUM
2917 && ep->to == HARD_FRAME_POINTER_REGNUM)
2918 {
2919 rtx src = SET_SRC (old_set);
2920 int offset = 0, ok = 0;
2921 rtx prev_insn, prev_set;
2922
2923 if (src == ep->to_rtx)
2924 offset = 0, ok = 1;
2925 else if (GET_CODE (src) == PLUS
2926 && GET_CODE (XEXP (src, 0)) == CONST_INT
2927 && XEXP (src, 1) == ep->to_rtx)
2928 offset = INTVAL (XEXP (src, 0)), ok = 1;
2929 else if (GET_CODE (src) == PLUS
2930 && GET_CODE (XEXP (src, 1)) == CONST_INT
2931 && XEXP (src, 0) == ep->to_rtx)
2932 offset = INTVAL (XEXP (src, 1)), ok = 1;
2933 else if ((prev_insn = prev_nonnote_insn (insn)) != 0
2934 && (prev_set = single_set (prev_insn)) != 0
2935 && rtx_equal_p (SET_DEST (prev_set), src))
2936 {
2937 src = SET_SRC (prev_set);
2938 if (src == ep->to_rtx)
2939 offset = 0, ok = 1;
2940 else if (GET_CODE (src) == PLUS
2941 && GET_CODE (XEXP (src, 0)) == CONST_INT
2942 && XEXP (src, 1) == ep->to_rtx)
2943 offset = INTVAL (XEXP (src, 0)), ok = 1;
2944 else if (GET_CODE (src) == PLUS
2945 && GET_CODE (XEXP (src, 1)) == CONST_INT
2946 && XEXP (src, 0) == ep->to_rtx)
2947 offset = INTVAL (XEXP (src, 1)), ok = 1;
2948 }
2949
2950 if (ok)
2951 {
2952 rtx src
2953 = plus_constant (ep->to_rtx, offset - ep->offset);
2954
2955 new_body = old_body;
2956 if (! replace)
2957 {
2958 new_body = copy_insn (old_body);
2959 if (REG_NOTES (insn))
2960 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2961 }
2962 PATTERN (insn) = new_body;
2963 old_set = single_set (insn);
2964
2965 /* First see if this insn remains valid when we
2966 make the change. If not, keep the INSN_CODE
2967 the same and let reload fit it up. */
2968 validate_change (insn, &SET_SRC (old_set), src, 1);
2969 validate_change (insn, &SET_DEST (old_set),
2970 ep->to_rtx, 1);
2971 if (! apply_change_group ())
2972 {
2973 SET_SRC (old_set) = src;
2974 SET_DEST (old_set) = ep->to_rtx;
2975 }
2976
2977 val = 1;
2978 goto done;
2979 }
2980 }
2981 #endif
2982
2983 /* In this case this insn isn't serving a useful purpose. We
2984 will delete it in reload_as_needed once we know that this
2985 elimination is, in fact, being done.
2986
2987 If REPLACE isn't set, we can't delete this insn, but needn't
2988 process it since it won't be used unless something changes. */
2989 if (replace)
2990 {
2991 delete_dead_insn (insn);
2992 return 1;
2993 }
2994 val = 1;
2995 goto done;
2996 }
2997 }
2998
2999 /* We allow one special case which happens to work on all machines we
3000 currently support: a single set with the source being a PLUS of an
3001 eliminable register and a constant. */
3002 if (old_set
3003 && GET_CODE (SET_DEST (old_set)) == REG
3004 && GET_CODE (SET_SRC (old_set)) == PLUS
3005 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3006 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3007 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3008 {
3009 rtx reg = XEXP (SET_SRC (old_set), 0);
3010 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
3011
3012 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3013 if (ep->from_rtx == reg && ep->can_eliminate)
3014 {
3015 offset += ep->offset;
3016
3017 if (offset == 0)
3018 {
3019 int num_clobbers;
3020 /* We assume here that if we need a PARALLEL with
3021 CLOBBERs for this assignment, we can do with the
3022 MATCH_SCRATCHes that add_clobbers allocates.
3023 There's not much we can do if that doesn't work. */
3024 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3025 SET_DEST (old_set),
3026 ep->to_rtx);
3027 num_clobbers = 0;
3028 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3029 if (num_clobbers)
3030 {
3031 rtvec vec = rtvec_alloc (num_clobbers + 1);
3032
3033 vec->elem[0] = PATTERN (insn);
3034 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3035 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3036 }
3037 if (INSN_CODE (insn) < 0)
3038 abort ();
3039 }
3040 else
3041 {
3042 new_body = old_body;
3043 if (! replace)
3044 {
3045 new_body = copy_insn (old_body);
3046 if (REG_NOTES (insn))
3047 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3048 }
3049 PATTERN (insn) = new_body;
3050 old_set = single_set (insn);
3051
3052 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3053 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3054 }
3055 val = 1;
3056 /* This can't have an effect on elimination offsets, so skip right
3057 to the end. */
3058 goto done;
3059 }
3060 }
3061
3062 /* Determine the effects of this insn on elimination offsets. */
3063 elimination_effects (old_body, 0);
3064
3065 /* Eliminate all eliminable registers occurring in operands that
3066 can be handled by reload. */
3067 extract_insn (insn);
3068 any_changes = 0;
3069 for (i = 0; i < recog_data.n_operands; i++)
3070 {
3071 orig_operand[i] = recog_data.operand[i];
3072 substed_operand[i] = recog_data.operand[i];
3073
3074 /* For an asm statement, every operand is eliminable. */
3075 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3076 {
3077 /* Check for setting a register that we know about. */
3078 if (recog_data.operand_type[i] != OP_IN
3079 && GET_CODE (orig_operand[i]) == REG)
3080 {
3081 /* If we are assigning to a register that can be eliminated, it
3082 must be as part of a PARALLEL, since the code above handles
3083 single SETs. We must indicate that we can no longer
3084 eliminate this reg. */
3085 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3086 ep++)
3087 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3088 ep->can_eliminate = 0;
3089 }
3090
3091 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3092 replace ? insn : NULL_RTX);
3093 if (substed_operand[i] != orig_operand[i])
3094 val = any_changes = 1;
3095 /* Terminate the search in check_eliminable_occurrences at
3096 this point. */
3097 *recog_data.operand_loc[i] = 0;
3098
3099 /* If an output operand changed from a REG to a MEM and INSN is an
3100 insn, write a CLOBBER insn. */
3101 if (recog_data.operand_type[i] != OP_IN
3102 && GET_CODE (orig_operand[i]) == REG
3103 && GET_CODE (substed_operand[i]) == MEM
3104 && replace)
3105 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3106 insn);
3107 }
3108 }
3109
3110 for (i = 0; i < recog_data.n_dups; i++)
3111 *recog_data.dup_loc[i]
3112 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3113
3114 /* If any eliminable remain, they aren't eliminable anymore. */
3115 check_eliminable_occurrences (old_body);
3116
3117 /* Substitute the operands; the new values are in the substed_operand
3118 array. */
3119 for (i = 0; i < recog_data.n_operands; i++)
3120 *recog_data.operand_loc[i] = substed_operand[i];
3121 for (i = 0; i < recog_data.n_dups; i++)
3122 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3123
3124 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3125 re-recognize the insn. We do this in case we had a simple addition
3126 but now can do this as a load-address. This saves an insn in this
3127 common case.
3128 If re-recognition fails, the old insn code number will still be used,
3129 and some register operands may have changed into PLUS expressions.
3130 These will be handled by find_reloads by loading them into a register
3131 again. */
3132
3133 if (val)
3134 {
3135 /* If we aren't replacing things permanently and we changed something,
3136 make another copy to ensure that all the RTL is new. Otherwise
3137 things can go wrong if find_reload swaps commutative operands
3138 and one is inside RTL that has been copied while the other is not. */
3139 new_body = old_body;
3140 if (! replace)
3141 {
3142 new_body = copy_insn (old_body);
3143 if (REG_NOTES (insn))
3144 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3145 }
3146 PATTERN (insn) = new_body;
3147
3148 /* If we had a move insn but now we don't, rerecognize it. This will
3149 cause spurious re-recognition if the old move had a PARALLEL since
3150 the new one still will, but we can't call single_set without
3151 having put NEW_BODY into the insn and the re-recognition won't
3152 hurt in this rare case. */
3153 /* ??? Why this huge if statement - why don't we just rerecognize the
3154 thing always? */
3155 if (! insn_is_asm
3156 && old_set != 0
3157 && ((GET_CODE (SET_SRC (old_set)) == REG
3158 && (GET_CODE (new_body) != SET
3159 || GET_CODE (SET_SRC (new_body)) != REG))
3160 /* If this was a load from or store to memory, compare
3161 the MEM in recog_data.operand to the one in the insn.
3162 If they are not equal, then rerecognize the insn. */
3163 || (old_set != 0
3164 && ((GET_CODE (SET_SRC (old_set)) == MEM
3165 && SET_SRC (old_set) != recog_data.operand[1])
3166 || (GET_CODE (SET_DEST (old_set)) == MEM
3167 && SET_DEST (old_set) != recog_data.operand[0])))
3168 /* If this was an add insn before, rerecognize. */
3169 || GET_CODE (SET_SRC (old_set)) == PLUS))
3170 {
3171 int new_icode = recog (PATTERN (insn), insn, 0);
3172 if (new_icode < 0)
3173 INSN_CODE (insn) = icode;
3174 }
3175 }
3176
3177 /* Restore the old body. If there were any changes to it, we made a copy
3178 of it while the changes were still in place, so we'll correctly return
3179 a modified insn below. */
3180 if (! replace)
3181 {
3182 /* Restore the old body. */
3183 for (i = 0; i < recog_data.n_operands; i++)
3184 *recog_data.operand_loc[i] = orig_operand[i];
3185 for (i = 0; i < recog_data.n_dups; i++)
3186 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3187 }
3188
3189 /* Update all elimination pairs to reflect the status after the current
3190 insn. The changes we make were determined by the earlier call to
3191 elimination_effects.
3192
3193 We also detect a cases where register elimination cannot be done,
3194 namely, if a register would be both changed and referenced outside a MEM
3195 in the resulting insn since such an insn is often undefined and, even if
3196 not, we cannot know what meaning will be given to it. Note that it is
3197 valid to have a register used in an address in an insn that changes it
3198 (presumably with a pre- or post-increment or decrement).
3199
3200 If anything changes, return nonzero. */
3201
3202 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3203 {
3204 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3205 ep->can_eliminate = 0;
3206
3207 ep->ref_outside_mem = 0;
3208
3209 if (ep->previous_offset != ep->offset)
3210 val = 1;
3211 }
3212
3213 done:
3214 /* If we changed something, perform elimination in REG_NOTES. This is
3215 needed even when REPLACE is zero because a REG_DEAD note might refer
3216 to a register that we eliminate and could cause a different number
3217 of spill registers to be needed in the final reload pass than in
3218 the pre-passes. */
3219 if (val && REG_NOTES (insn) != 0)
3220 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3221
3222 return val;
3223 }
3224
3225 /* Loop through all elimination pairs.
3226 Recalculate the number not at initial offset.
3227
3228 Compute the maximum offset (minimum offset if the stack does not
3229 grow downward) for each elimination pair. */
3230
3231 static void
3232 update_eliminable_offsets ()
3233 {
3234 struct elim_table *ep;
3235
3236 num_not_at_initial_offset = 0;
3237 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3238 {
3239 ep->previous_offset = ep->offset;
3240 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3241 num_not_at_initial_offset++;
3242 }
3243 }
3244
3245 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3246 replacement we currently believe is valid, mark it as not eliminable if X
3247 modifies DEST in any way other than by adding a constant integer to it.
3248
3249 If DEST is the frame pointer, we do nothing because we assume that
3250 all assignments to the hard frame pointer are nonlocal gotos and are being
3251 done at a time when they are valid and do not disturb anything else.
3252 Some machines want to eliminate a fake argument pointer with either the
3253 frame or stack pointer. Assignments to the hard frame pointer must not
3254 prevent this elimination.
3255
3256 Called via note_stores from reload before starting its passes to scan
3257 the insns of the function. */
3258
3259 static void
3260 mark_not_eliminable (dest, x, data)
3261 rtx dest;
3262 rtx x;
3263 void *data ATTRIBUTE_UNUSED;
3264 {
3265 register unsigned int i;
3266
3267 /* A SUBREG of a hard register here is just changing its mode. We should
3268 not see a SUBREG of an eliminable hard register, but check just in
3269 case. */
3270 if (GET_CODE (dest) == SUBREG)
3271 dest = SUBREG_REG (dest);
3272
3273 if (dest == hard_frame_pointer_rtx)
3274 return;
3275
3276 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3277 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3278 && (GET_CODE (x) != SET
3279 || GET_CODE (SET_SRC (x)) != PLUS
3280 || XEXP (SET_SRC (x), 0) != dest
3281 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3282 {
3283 reg_eliminate[i].can_eliminate_previous
3284 = reg_eliminate[i].can_eliminate = 0;
3285 num_eliminable--;
3286 }
3287 }
3288
3289 /* Verify that the initial elimination offsets did not change since the
3290 last call to set_initial_elim_offsets. This is used to catch cases
3291 where something illegal happened during reload_as_needed that could
3292 cause incorrect code to be generated if we did not check for it. */
3293
3294 static void
3295 verify_initial_elim_offsets ()
3296 {
3297 int t;
3298
3299 #ifdef ELIMINABLE_REGS
3300 struct elim_table *ep;
3301
3302 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3303 {
3304 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3305 if (t != ep->initial_offset)
3306 abort ();
3307 }
3308 #else
3309 INITIAL_FRAME_POINTER_OFFSET (t);
3310 if (t != reg_eliminate[0].initial_offset)
3311 abort ();
3312 #endif
3313 }
3314
3315 /* Reset all offsets on eliminable registers to their initial values. */
3316
3317 static void
3318 set_initial_elim_offsets ()
3319 {
3320 struct elim_table *ep = reg_eliminate;
3321
3322 #ifdef ELIMINABLE_REGS
3323 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3324 {
3325 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3326 ep->previous_offset = ep->offset = ep->initial_offset;
3327 }
3328 #else
3329 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3330 ep->previous_offset = ep->offset = ep->initial_offset;
3331 #endif
3332
3333 num_not_at_initial_offset = 0;
3334 }
3335
3336 /* Initialize the known label offsets.
3337 Set a known offset for each forced label to be at the initial offset
3338 of each elimination. We do this because we assume that all
3339 computed jumps occur from a location where each elimination is
3340 at its initial offset.
3341 For all other labels, show that we don't know the offsets. */
3342
3343 static void
3344 set_initial_label_offsets ()
3345 {
3346 rtx x;
3347 memset ((char *) &offsets_known_at[get_first_label_num ()], 0, num_labels);
3348
3349 for (x = forced_labels; x; x = XEXP (x, 1))
3350 if (XEXP (x, 0))
3351 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3352 }
3353
3354 /* Set all elimination offsets to the known values for the code label given
3355 by INSN. */
3356
3357 static void
3358 set_offsets_for_label (insn)
3359 rtx insn;
3360 {
3361 unsigned int i;
3362 int label_nr = CODE_LABEL_NUMBER (insn);
3363 struct elim_table *ep;
3364
3365 num_not_at_initial_offset = 0;
3366 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3367 {
3368 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3369 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3370 num_not_at_initial_offset++;
3371 }
3372 }
3373
3374 /* See if anything that happened changes which eliminations are valid.
3375 For example, on the Sparc, whether or not the frame pointer can
3376 be eliminated can depend on what registers have been used. We need
3377 not check some conditions again (such as flag_omit_frame_pointer)
3378 since they can't have changed. */
3379
3380 static void
3381 update_eliminables (pset)
3382 HARD_REG_SET *pset;
3383 {
3384 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3385 int previous_frame_pointer_needed = frame_pointer_needed;
3386 #endif
3387 struct elim_table *ep;
3388
3389 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3390 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3391 #ifdef ELIMINABLE_REGS
3392 || ! CAN_ELIMINATE (ep->from, ep->to)
3393 #endif
3394 )
3395 ep->can_eliminate = 0;
3396
3397 /* Look for the case where we have discovered that we can't replace
3398 register A with register B and that means that we will now be
3399 trying to replace register A with register C. This means we can
3400 no longer replace register C with register B and we need to disable
3401 such an elimination, if it exists. This occurs often with A == ap,
3402 B == sp, and C == fp. */
3403
3404 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3405 {
3406 struct elim_table *op;
3407 register int new_to = -1;
3408
3409 if (! ep->can_eliminate && ep->can_eliminate_previous)
3410 {
3411 /* Find the current elimination for ep->from, if there is a
3412 new one. */
3413 for (op = reg_eliminate;
3414 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3415 if (op->from == ep->from && op->can_eliminate)
3416 {
3417 new_to = op->to;
3418 break;
3419 }
3420
3421 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3422 disable it. */
3423 for (op = reg_eliminate;
3424 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3425 if (op->from == new_to && op->to == ep->to)
3426 op->can_eliminate = 0;
3427 }
3428 }
3429
3430 /* See if any registers that we thought we could eliminate the previous
3431 time are no longer eliminable. If so, something has changed and we
3432 must spill the register. Also, recompute the number of eliminable
3433 registers and see if the frame pointer is needed; it is if there is
3434 no elimination of the frame pointer that we can perform. */
3435
3436 frame_pointer_needed = 1;
3437 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3438 {
3439 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3440 && ep->to != HARD_FRAME_POINTER_REGNUM)
3441 frame_pointer_needed = 0;
3442
3443 if (! ep->can_eliminate && ep->can_eliminate_previous)
3444 {
3445 ep->can_eliminate_previous = 0;
3446 SET_HARD_REG_BIT (*pset, ep->from);
3447 num_eliminable--;
3448 }
3449 }
3450
3451 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3452 /* If we didn't need a frame pointer last time, but we do now, spill
3453 the hard frame pointer. */
3454 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3455 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3456 #endif
3457 }
3458
3459 /* Initialize the table of registers to eliminate. */
3460
3461 static void
3462 init_elim_table ()
3463 {
3464 struct elim_table *ep;
3465 #ifdef ELIMINABLE_REGS
3466 struct elim_table_1 *ep1;
3467 #endif
3468
3469 if (!reg_eliminate)
3470 reg_eliminate = (struct elim_table *)
3471 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3472
3473 /* Does this function require a frame pointer? */
3474
3475 frame_pointer_needed = (! flag_omit_frame_pointer
3476 #ifdef EXIT_IGNORE_STACK
3477 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3478 and restore sp for alloca. So we can't eliminate
3479 the frame pointer in that case. At some point,
3480 we should improve this by emitting the
3481 sp-adjusting insns for this case. */
3482 || (current_function_calls_alloca
3483 && EXIT_IGNORE_STACK)
3484 #endif
3485 || FRAME_POINTER_REQUIRED);
3486
3487 num_eliminable = 0;
3488
3489 #ifdef ELIMINABLE_REGS
3490 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3491 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3492 {
3493 ep->from = ep1->from;
3494 ep->to = ep1->to;
3495 ep->can_eliminate = ep->can_eliminate_previous
3496 = (CAN_ELIMINATE (ep->from, ep->to)
3497 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3498 }
3499 #else
3500 reg_eliminate[0].from = reg_eliminate_1[0].from;
3501 reg_eliminate[0].to = reg_eliminate_1[0].to;
3502 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3503 = ! frame_pointer_needed;
3504 #endif
3505
3506 /* Count the number of eliminable registers and build the FROM and TO
3507 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3508 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3509 We depend on this. */
3510 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3511 {
3512 num_eliminable += ep->can_eliminate;
3513 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3514 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3515 }
3516 }
3517 \f
3518 /* Kick all pseudos out of hard register REGNO.
3519
3520 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3521 because we found we can't eliminate some register. In the case, no pseudos
3522 are allowed to be in the register, even if they are only in a block that
3523 doesn't require spill registers, unlike the case when we are spilling this
3524 hard reg to produce another spill register.
3525
3526 Return nonzero if any pseudos needed to be kicked out. */
3527
3528 static void
3529 spill_hard_reg (regno, cant_eliminate)
3530 unsigned int regno;
3531 int cant_eliminate;
3532 {
3533 register int i;
3534
3535 if (cant_eliminate)
3536 {
3537 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3538 regs_ever_live[regno] = 1;
3539 }
3540
3541 /* Spill every pseudo reg that was allocated to this reg
3542 or to something that overlaps this reg. */
3543
3544 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3545 if (reg_renumber[i] >= 0
3546 && (unsigned int) reg_renumber[i] <= regno
3547 && ((unsigned int) reg_renumber[i]
3548 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3549 PSEUDO_REGNO_MODE (i))
3550 > regno))
3551 SET_REGNO_REG_SET (&spilled_pseudos, i);
3552 }
3553
3554 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3555 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3556
3557 static void
3558 ior_hard_reg_set (set1, set2)
3559 HARD_REG_SET *set1, *set2;
3560 {
3561 IOR_HARD_REG_SET (*set1, *set2);
3562 }
3563
3564 /* After find_reload_regs has been run for all insn that need reloads,
3565 and/or spill_hard_regs was called, this function is used to actually
3566 spill pseudo registers and try to reallocate them. It also sets up the
3567 spill_regs array for use by choose_reload_regs. */
3568
3569 static int
3570 finish_spills (global)
3571 int global;
3572 {
3573 struct insn_chain *chain;
3574 int something_changed = 0;
3575 int i;
3576
3577 /* Build the spill_regs array for the function. */
3578 /* If there are some registers still to eliminate and one of the spill regs
3579 wasn't ever used before, additional stack space may have to be
3580 allocated to store this register. Thus, we may have changed the offset
3581 between the stack and frame pointers, so mark that something has changed.
3582
3583 One might think that we need only set VAL to 1 if this is a call-used
3584 register. However, the set of registers that must be saved by the
3585 prologue is not identical to the call-used set. For example, the
3586 register used by the call insn for the return PC is a call-used register,
3587 but must be saved by the prologue. */
3588
3589 n_spills = 0;
3590 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3591 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3592 {
3593 spill_reg_order[i] = n_spills;
3594 spill_regs[n_spills++] = i;
3595 if (num_eliminable && ! regs_ever_live[i])
3596 something_changed = 1;
3597 regs_ever_live[i] = 1;
3598 }
3599 else
3600 spill_reg_order[i] = -1;
3601
3602 EXECUTE_IF_SET_IN_REG_SET
3603 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3604 {
3605 /* Record the current hard register the pseudo is allocated to in
3606 pseudo_previous_regs so we avoid reallocating it to the same
3607 hard reg in a later pass. */
3608 if (reg_renumber[i] < 0)
3609 abort ();
3610
3611 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3612 /* Mark it as no longer having a hard register home. */
3613 reg_renumber[i] = -1;
3614 /* We will need to scan everything again. */
3615 something_changed = 1;
3616 });
3617
3618 /* Retry global register allocation if possible. */
3619 if (global)
3620 {
3621 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3622 /* For every insn that needs reloads, set the registers used as spill
3623 regs in pseudo_forbidden_regs for every pseudo live across the
3624 insn. */
3625 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3626 {
3627 EXECUTE_IF_SET_IN_REG_SET
3628 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3629 {
3630 ior_hard_reg_set (pseudo_forbidden_regs + i,
3631 &chain->used_spill_regs);
3632 });
3633 EXECUTE_IF_SET_IN_REG_SET
3634 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3635 {
3636 ior_hard_reg_set (pseudo_forbidden_regs + i,
3637 &chain->used_spill_regs);
3638 });
3639 }
3640
3641 /* Retry allocating the spilled pseudos. For each reg, merge the
3642 various reg sets that indicate which hard regs can't be used,
3643 and call retry_global_alloc.
3644 We change spill_pseudos here to only contain pseudos that did not
3645 get a new hard register. */
3646 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3647 if (reg_old_renumber[i] != reg_renumber[i])
3648 {
3649 HARD_REG_SET forbidden;
3650 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3651 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3652 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3653 retry_global_alloc (i, forbidden);
3654 if (reg_renumber[i] >= 0)
3655 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3656 }
3657 }
3658
3659 /* Fix up the register information in the insn chain.
3660 This involves deleting those of the spilled pseudos which did not get
3661 a new hard register home from the live_{before,after} sets. */
3662 for (chain = reload_insn_chain; chain; chain = chain->next)
3663 {
3664 HARD_REG_SET used_by_pseudos;
3665 HARD_REG_SET used_by_pseudos2;
3666
3667 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3668 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3669
3670 /* Mark any unallocated hard regs as available for spills. That
3671 makes inheritance work somewhat better. */
3672 if (chain->need_reload)
3673 {
3674 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3675 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3676 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3677
3678 /* Save the old value for the sanity test below. */
3679 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3680
3681 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3682 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3683 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3684 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3685
3686 /* Make sure we only enlarge the set. */
3687 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3688 abort ();
3689 ok:;
3690 }
3691 }
3692
3693 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3694 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3695 {
3696 int regno = reg_renumber[i];
3697 if (reg_old_renumber[i] == regno)
3698 continue;
3699
3700 alter_reg (i, reg_old_renumber[i]);
3701 reg_old_renumber[i] = regno;
3702 if (rtl_dump_file)
3703 {
3704 if (regno == -1)
3705 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3706 else
3707 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3708 i, reg_renumber[i]);
3709 }
3710 }
3711
3712 return something_changed;
3713 }
3714 \f
3715 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3716 Also mark any hard registers used to store user variables as
3717 forbidden from being used for spill registers. */
3718
3719 static void
3720 scan_paradoxical_subregs (x)
3721 register rtx x;
3722 {
3723 register int i;
3724 register const char *fmt;
3725 register enum rtx_code code = GET_CODE (x);
3726
3727 switch (code)
3728 {
3729 case REG:
3730 #if 0
3731 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3732 && REG_USERVAR_P (x))
3733 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3734 #endif
3735 return;
3736
3737 case CONST_INT:
3738 case CONST:
3739 case SYMBOL_REF:
3740 case LABEL_REF:
3741 case CONST_DOUBLE:
3742 case CC0:
3743 case PC:
3744 case USE:
3745 case CLOBBER:
3746 return;
3747
3748 case SUBREG:
3749 if (GET_CODE (SUBREG_REG (x)) == REG
3750 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3751 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3752 = GET_MODE_SIZE (GET_MODE (x));
3753 return;
3754
3755 default:
3756 break;
3757 }
3758
3759 fmt = GET_RTX_FORMAT (code);
3760 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3761 {
3762 if (fmt[i] == 'e')
3763 scan_paradoxical_subregs (XEXP (x, i));
3764 else if (fmt[i] == 'E')
3765 {
3766 register int j;
3767 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3768 scan_paradoxical_subregs (XVECEXP (x, i, j));
3769 }
3770 }
3771 }
3772 \f
3773 /* Reload pseudo-registers into hard regs around each insn as needed.
3774 Additional register load insns are output before the insn that needs it
3775 and perhaps store insns after insns that modify the reloaded pseudo reg.
3776
3777 reg_last_reload_reg and reg_reloaded_contents keep track of
3778 which registers are already available in reload registers.
3779 We update these for the reloads that we perform,
3780 as the insns are scanned. */
3781
3782 static void
3783 reload_as_needed (live_known)
3784 int live_known;
3785 {
3786 struct insn_chain *chain;
3787 #if defined (AUTO_INC_DEC)
3788 register int i;
3789 #endif
3790 rtx x;
3791
3792 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3793 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
3794 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3795 reg_has_output_reload = (char *) xmalloc (max_regno);
3796 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3797
3798 set_initial_elim_offsets ();
3799
3800 for (chain = reload_insn_chain; chain; chain = chain->next)
3801 {
3802 rtx prev;
3803 rtx insn = chain->insn;
3804 rtx old_next = NEXT_INSN (insn);
3805
3806 /* If we pass a label, copy the offsets from the label information
3807 into the current offsets of each elimination. */
3808 if (GET_CODE (insn) == CODE_LABEL)
3809 set_offsets_for_label (insn);
3810
3811 else if (INSN_P (insn))
3812 {
3813 rtx oldpat = PATTERN (insn);
3814
3815 /* If this is a USE and CLOBBER of a MEM, ensure that any
3816 references to eliminable registers have been removed. */
3817
3818 if ((GET_CODE (PATTERN (insn)) == USE
3819 || GET_CODE (PATTERN (insn)) == CLOBBER)
3820 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3821 XEXP (XEXP (PATTERN (insn), 0), 0)
3822 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3823 GET_MODE (XEXP (PATTERN (insn), 0)),
3824 NULL_RTX);
3825
3826 /* If we need to do register elimination processing, do so.
3827 This might delete the insn, in which case we are done. */
3828 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3829 {
3830 eliminate_regs_in_insn (insn, 1);
3831 if (GET_CODE (insn) == NOTE)
3832 {
3833 update_eliminable_offsets ();
3834 continue;
3835 }
3836 }
3837
3838 /* If need_elim is nonzero but need_reload is zero, one might think
3839 that we could simply set n_reloads to 0. However, find_reloads
3840 could have done some manipulation of the insn (such as swapping
3841 commutative operands), and these manipulations are lost during
3842 the first pass for every insn that needs register elimination.
3843 So the actions of find_reloads must be redone here. */
3844
3845 if (! chain->need_elim && ! chain->need_reload
3846 && ! chain->need_operand_change)
3847 n_reloads = 0;
3848 /* First find the pseudo regs that must be reloaded for this insn.
3849 This info is returned in the tables reload_... (see reload.h).
3850 Also modify the body of INSN by substituting RELOAD
3851 rtx's for those pseudo regs. */
3852 else
3853 {
3854 memset (reg_has_output_reload, 0, max_regno);
3855 CLEAR_HARD_REG_SET (reg_is_output_reload);
3856
3857 find_reloads (insn, 1, spill_indirect_levels, live_known,
3858 spill_reg_order);
3859 }
3860
3861 if (n_reloads > 0)
3862 {
3863 rtx next = NEXT_INSN (insn);
3864 rtx p;
3865
3866 prev = PREV_INSN (insn);
3867
3868 /* Now compute which reload regs to reload them into. Perhaps
3869 reusing reload regs from previous insns, or else output
3870 load insns to reload them. Maybe output store insns too.
3871 Record the choices of reload reg in reload_reg_rtx. */
3872 choose_reload_regs (chain);
3873
3874 /* Merge any reloads that we didn't combine for fear of
3875 increasing the number of spill registers needed but now
3876 discover can be safely merged. */
3877 if (SMALL_REGISTER_CLASSES)
3878 merge_assigned_reloads (insn);
3879
3880 /* Generate the insns to reload operands into or out of
3881 their reload regs. */
3882 emit_reload_insns (chain);
3883
3884 /* Substitute the chosen reload regs from reload_reg_rtx
3885 into the insn's body (or perhaps into the bodies of other
3886 load and store insn that we just made for reloading
3887 and that we moved the structure into). */
3888 subst_reloads (insn);
3889
3890 /* If this was an ASM, make sure that all the reload insns
3891 we have generated are valid. If not, give an error
3892 and delete them. */
3893
3894 if (asm_noperands (PATTERN (insn)) >= 0)
3895 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3896 if (p != insn && INSN_P (p)
3897 && (recog_memoized (p) < 0
3898 || (extract_insn (p), ! constrain_operands (1))))
3899 {
3900 error_for_asm (insn,
3901 "`asm' operand requires impossible reload");
3902 delete_insn (p);
3903 }
3904 }
3905
3906 if (num_eliminable && chain->need_elim)
3907 update_eliminable_offsets ();
3908
3909 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3910 is no longer validly lying around to save a future reload.
3911 Note that this does not detect pseudos that were reloaded
3912 for this insn in order to be stored in
3913 (obeying register constraints). That is correct; such reload
3914 registers ARE still valid. */
3915 note_stores (oldpat, forget_old_reloads_1, NULL);
3916
3917 /* There may have been CLOBBER insns placed after INSN. So scan
3918 between INSN and NEXT and use them to forget old reloads. */
3919 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3920 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3921 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3922
3923 #ifdef AUTO_INC_DEC
3924 /* Likewise for regs altered by auto-increment in this insn.
3925 REG_INC notes have been changed by reloading:
3926 find_reloads_address_1 records substitutions for them,
3927 which have been performed by subst_reloads above. */
3928 for (i = n_reloads - 1; i >= 0; i--)
3929 {
3930 rtx in_reg = rld[i].in_reg;
3931 if (in_reg)
3932 {
3933 enum rtx_code code = GET_CODE (in_reg);
3934 /* PRE_INC / PRE_DEC will have the reload register ending up
3935 with the same value as the stack slot, but that doesn't
3936 hold true for POST_INC / POST_DEC. Either we have to
3937 convert the memory access to a true POST_INC / POST_DEC,
3938 or we can't use the reload register for inheritance. */
3939 if ((code == POST_INC || code == POST_DEC)
3940 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3941 REGNO (rld[i].reg_rtx))
3942 /* Make sure it is the inc/dec pseudo, and not
3943 some other (e.g. output operand) pseudo. */
3944 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3945 == REGNO (XEXP (in_reg, 0))))
3946
3947 {
3948 rtx reload_reg = rld[i].reg_rtx;
3949 enum machine_mode mode = GET_MODE (reload_reg);
3950 int n = 0;
3951 rtx p;
3952
3953 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3954 {
3955 /* We really want to ignore REG_INC notes here, so
3956 use PATTERN (p) as argument to reg_set_p . */
3957 if (reg_set_p (reload_reg, PATTERN (p)))
3958 break;
3959 n = count_occurrences (PATTERN (p), reload_reg, 0);
3960 if (! n)
3961 continue;
3962 if (n == 1)
3963 {
3964 n = validate_replace_rtx (reload_reg,
3965 gen_rtx (code, mode,
3966 reload_reg),
3967 p);
3968
3969 /* We must also verify that the constraints
3970 are met after the replacement. */
3971 extract_insn (p);
3972 if (n)
3973 n = constrain_operands (1);
3974 else
3975 break;
3976
3977 /* If the constraints were not met, then
3978 undo the replacement. */
3979 if (!n)
3980 {
3981 validate_replace_rtx (gen_rtx (code, mode,
3982 reload_reg),
3983 reload_reg, p);
3984 break;
3985 }
3986
3987 }
3988 break;
3989 }
3990 if (n == 1)
3991 {
3992 REG_NOTES (p)
3993 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
3994 REG_NOTES (p));
3995 /* Mark this as having an output reload so that the
3996 REG_INC processing code below won't invalidate
3997 the reload for inheritance. */
3998 SET_HARD_REG_BIT (reg_is_output_reload,
3999 REGNO (reload_reg));
4000 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4001 }
4002 else
4003 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4004 NULL);
4005 }
4006 else if ((code == PRE_INC || code == PRE_DEC)
4007 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4008 REGNO (rld[i].reg_rtx))
4009 /* Make sure it is the inc/dec pseudo, and not
4010 some other (e.g. output operand) pseudo. */
4011 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4012 == REGNO (XEXP (in_reg, 0))))
4013 {
4014 SET_HARD_REG_BIT (reg_is_output_reload,
4015 REGNO (rld[i].reg_rtx));
4016 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4017 }
4018 }
4019 }
4020 /* If a pseudo that got a hard register is auto-incremented,
4021 we must purge records of copying it into pseudos without
4022 hard registers. */
4023 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4024 if (REG_NOTE_KIND (x) == REG_INC)
4025 {
4026 /* See if this pseudo reg was reloaded in this insn.
4027 If so, its last-reload info is still valid
4028 because it is based on this insn's reload. */
4029 for (i = 0; i < n_reloads; i++)
4030 if (rld[i].out == XEXP (x, 0))
4031 break;
4032
4033 if (i == n_reloads)
4034 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4035 }
4036 #endif
4037 }
4038 /* A reload reg's contents are unknown after a label. */
4039 if (GET_CODE (insn) == CODE_LABEL)
4040 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4041
4042 /* Don't assume a reload reg is still good after a call insn
4043 if it is a call-used reg. */
4044 else if (GET_CODE (insn) == CALL_INSN)
4045 AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
4046 }
4047
4048 /* Clean up. */
4049 free (reg_last_reload_reg);
4050 free (reg_has_output_reload);
4051 }
4052
4053 /* Discard all record of any value reloaded from X,
4054 or reloaded in X from someplace else;
4055 unless X is an output reload reg of the current insn.
4056
4057 X may be a hard reg (the reload reg)
4058 or it may be a pseudo reg that was reloaded from. */
4059
4060 static void
4061 forget_old_reloads_1 (x, ignored, data)
4062 rtx x;
4063 rtx ignored ATTRIBUTE_UNUSED;
4064 void *data ATTRIBUTE_UNUSED;
4065 {
4066 unsigned int regno;
4067 unsigned int nr;
4068 int offset = 0;
4069
4070 /* note_stores does give us subregs of hard regs,
4071 subreg_regno_offset will abort if it is not a hard reg. */
4072 while (GET_CODE (x) == SUBREG)
4073 {
4074 offset += subreg_regno_offset (REGNO (SUBREG_REG (x)),
4075 GET_MODE (SUBREG_REG (x)),
4076 SUBREG_BYTE (x),
4077 GET_MODE (x));
4078 x = SUBREG_REG (x);
4079 }
4080
4081 if (GET_CODE (x) != REG)
4082 return;
4083
4084 regno = REGNO (x) + offset;
4085
4086 if (regno >= FIRST_PSEUDO_REGISTER)
4087 nr = 1;
4088 else
4089 {
4090 unsigned int i;
4091
4092 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4093 /* Storing into a spilled-reg invalidates its contents.
4094 This can happen if a block-local pseudo is allocated to that reg
4095 and it wasn't spilled because this block's total need is 0.
4096 Then some insn might have an optional reload and use this reg. */
4097 for (i = 0; i < nr; i++)
4098 /* But don't do this if the reg actually serves as an output
4099 reload reg in the current instruction. */
4100 if (n_reloads == 0
4101 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4102 {
4103 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4104 spill_reg_store[regno + i] = 0;
4105 }
4106 }
4107
4108 /* Since value of X has changed,
4109 forget any value previously copied from it. */
4110
4111 while (nr-- > 0)
4112 /* But don't forget a copy if this is the output reload
4113 that establishes the copy's validity. */
4114 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4115 reg_last_reload_reg[regno + nr] = 0;
4116 }
4117 \f
4118 /* The following HARD_REG_SETs indicate when each hard register is
4119 used for a reload of various parts of the current insn. */
4120
4121 /* If reg is unavailable for all reloads. */
4122 static HARD_REG_SET reload_reg_unavailable;
4123 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4124 static HARD_REG_SET reload_reg_used;
4125 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4126 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4127 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4128 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4129 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4130 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4131 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4132 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4133 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4134 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4135 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4136 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4137 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4138 static HARD_REG_SET reload_reg_used_in_op_addr;
4139 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4140 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4141 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4142 static HARD_REG_SET reload_reg_used_in_insn;
4143 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4144 static HARD_REG_SET reload_reg_used_in_other_addr;
4145
4146 /* If reg is in use as a reload reg for any sort of reload. */
4147 static HARD_REG_SET reload_reg_used_at_all;
4148
4149 /* If reg is use as an inherited reload. We just mark the first register
4150 in the group. */
4151 static HARD_REG_SET reload_reg_used_for_inherit;
4152
4153 /* Records which hard regs are used in any way, either as explicit use or
4154 by being allocated to a pseudo during any point of the current insn. */
4155 static HARD_REG_SET reg_used_in_insn;
4156
4157 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4158 TYPE. MODE is used to indicate how many consecutive regs are
4159 actually used. */
4160
4161 static void
4162 mark_reload_reg_in_use (regno, opnum, type, mode)
4163 unsigned int regno;
4164 int opnum;
4165 enum reload_type type;
4166 enum machine_mode mode;
4167 {
4168 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4169 unsigned int i;
4170
4171 for (i = regno; i < nregs + regno; i++)
4172 {
4173 switch (type)
4174 {
4175 case RELOAD_OTHER:
4176 SET_HARD_REG_BIT (reload_reg_used, i);
4177 break;
4178
4179 case RELOAD_FOR_INPUT_ADDRESS:
4180 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4181 break;
4182
4183 case RELOAD_FOR_INPADDR_ADDRESS:
4184 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4185 break;
4186
4187 case RELOAD_FOR_OUTPUT_ADDRESS:
4188 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4189 break;
4190
4191 case RELOAD_FOR_OUTADDR_ADDRESS:
4192 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4193 break;
4194
4195 case RELOAD_FOR_OPERAND_ADDRESS:
4196 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4197 break;
4198
4199 case RELOAD_FOR_OPADDR_ADDR:
4200 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4201 break;
4202
4203 case RELOAD_FOR_OTHER_ADDRESS:
4204 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4205 break;
4206
4207 case RELOAD_FOR_INPUT:
4208 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4209 break;
4210
4211 case RELOAD_FOR_OUTPUT:
4212 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4213 break;
4214
4215 case RELOAD_FOR_INSN:
4216 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4217 break;
4218 }
4219
4220 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4221 }
4222 }
4223
4224 /* Similarly, but show REGNO is no longer in use for a reload. */
4225
4226 static void
4227 clear_reload_reg_in_use (regno, opnum, type, mode)
4228 unsigned int regno;
4229 int opnum;
4230 enum reload_type type;
4231 enum machine_mode mode;
4232 {
4233 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4234 unsigned int start_regno, end_regno, r;
4235 int i;
4236 /* A complication is that for some reload types, inheritance might
4237 allow multiple reloads of the same types to share a reload register.
4238 We set check_opnum if we have to check only reloads with the same
4239 operand number, and check_any if we have to check all reloads. */
4240 int check_opnum = 0;
4241 int check_any = 0;
4242 HARD_REG_SET *used_in_set;
4243
4244 switch (type)
4245 {
4246 case RELOAD_OTHER:
4247 used_in_set = &reload_reg_used;
4248 break;
4249
4250 case RELOAD_FOR_INPUT_ADDRESS:
4251 used_in_set = &reload_reg_used_in_input_addr[opnum];
4252 break;
4253
4254 case RELOAD_FOR_INPADDR_ADDRESS:
4255 check_opnum = 1;
4256 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4257 break;
4258
4259 case RELOAD_FOR_OUTPUT_ADDRESS:
4260 used_in_set = &reload_reg_used_in_output_addr[opnum];
4261 break;
4262
4263 case RELOAD_FOR_OUTADDR_ADDRESS:
4264 check_opnum = 1;
4265 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4266 break;
4267
4268 case RELOAD_FOR_OPERAND_ADDRESS:
4269 used_in_set = &reload_reg_used_in_op_addr;
4270 break;
4271
4272 case RELOAD_FOR_OPADDR_ADDR:
4273 check_any = 1;
4274 used_in_set = &reload_reg_used_in_op_addr_reload;
4275 break;
4276
4277 case RELOAD_FOR_OTHER_ADDRESS:
4278 used_in_set = &reload_reg_used_in_other_addr;
4279 check_any = 1;
4280 break;
4281
4282 case RELOAD_FOR_INPUT:
4283 used_in_set = &reload_reg_used_in_input[opnum];
4284 break;
4285
4286 case RELOAD_FOR_OUTPUT:
4287 used_in_set = &reload_reg_used_in_output[opnum];
4288 break;
4289
4290 case RELOAD_FOR_INSN:
4291 used_in_set = &reload_reg_used_in_insn;
4292 break;
4293 default:
4294 abort ();
4295 }
4296 /* We resolve conflicts with remaining reloads of the same type by
4297 excluding the intervals of of reload registers by them from the
4298 interval of freed reload registers. Since we only keep track of
4299 one set of interval bounds, we might have to exclude somewhat
4300 more then what would be necessary if we used a HARD_REG_SET here.
4301 But this should only happen very infrequently, so there should
4302 be no reason to worry about it. */
4303
4304 start_regno = regno;
4305 end_regno = regno + nregs;
4306 if (check_opnum || check_any)
4307 {
4308 for (i = n_reloads - 1; i >= 0; i--)
4309 {
4310 if (rld[i].when_needed == type
4311 && (check_any || rld[i].opnum == opnum)
4312 && rld[i].reg_rtx)
4313 {
4314 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4315 unsigned int conflict_end
4316 = (conflict_start
4317 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4318
4319 /* If there is an overlap with the first to-be-freed register,
4320 adjust the interval start. */
4321 if (conflict_start <= start_regno && conflict_end > start_regno)
4322 start_regno = conflict_end;
4323 /* Otherwise, if there is a conflict with one of the other
4324 to-be-freed registers, adjust the interval end. */
4325 if (conflict_start > start_regno && conflict_start < end_regno)
4326 end_regno = conflict_start;
4327 }
4328 }
4329 }
4330
4331 for (r = start_regno; r < end_regno; r++)
4332 CLEAR_HARD_REG_BIT (*used_in_set, r);
4333 }
4334
4335 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4336 specified by OPNUM and TYPE. */
4337
4338 static int
4339 reload_reg_free_p (regno, opnum, type)
4340 unsigned int regno;
4341 int opnum;
4342 enum reload_type type;
4343 {
4344 int i;
4345
4346 /* In use for a RELOAD_OTHER means it's not available for anything. */
4347 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4348 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4349 return 0;
4350
4351 switch (type)
4352 {
4353 case RELOAD_OTHER:
4354 /* In use for anything means we can't use it for RELOAD_OTHER. */
4355 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4356 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4357 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4358 return 0;
4359
4360 for (i = 0; i < reload_n_operands; i++)
4361 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4362 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4363 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4364 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4365 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4366 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4367 return 0;
4368
4369 return 1;
4370
4371 case RELOAD_FOR_INPUT:
4372 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4373 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4374 return 0;
4375
4376 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4377 return 0;
4378
4379 /* If it is used for some other input, can't use it. */
4380 for (i = 0; i < reload_n_operands; i++)
4381 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4382 return 0;
4383
4384 /* If it is used in a later operand's address, can't use it. */
4385 for (i = opnum + 1; i < reload_n_operands; i++)
4386 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4387 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4388 return 0;
4389
4390 return 1;
4391
4392 case RELOAD_FOR_INPUT_ADDRESS:
4393 /* Can't use a register if it is used for an input address for this
4394 operand or used as an input in an earlier one. */
4395 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4396 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4397 return 0;
4398
4399 for (i = 0; i < opnum; i++)
4400 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4401 return 0;
4402
4403 return 1;
4404
4405 case RELOAD_FOR_INPADDR_ADDRESS:
4406 /* Can't use a register if it is used for an input address
4407 for this operand or used as an input in an earlier
4408 one. */
4409 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4410 return 0;
4411
4412 for (i = 0; i < opnum; i++)
4413 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4414 return 0;
4415
4416 return 1;
4417
4418 case RELOAD_FOR_OUTPUT_ADDRESS:
4419 /* Can't use a register if it is used for an output address for this
4420 operand or used as an output in this or a later operand. Note
4421 that multiple output operands are emitted in reverse order, so
4422 the conflicting ones are those with lower indices. */
4423 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4424 return 0;
4425
4426 for (i = 0; i <= opnum; i++)
4427 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4428 return 0;
4429
4430 return 1;
4431
4432 case RELOAD_FOR_OUTADDR_ADDRESS:
4433 /* Can't use a register if it is used for an output address
4434 for this operand or used as an output in this or a
4435 later operand. Note that multiple output operands are
4436 emitted in reverse order, so the conflicting ones are
4437 those with lower indices. */
4438 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4439 return 0;
4440
4441 for (i = 0; i <= opnum; i++)
4442 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4443 return 0;
4444
4445 return 1;
4446
4447 case RELOAD_FOR_OPERAND_ADDRESS:
4448 for (i = 0; i < reload_n_operands; i++)
4449 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4450 return 0;
4451
4452 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4453 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4454
4455 case RELOAD_FOR_OPADDR_ADDR:
4456 for (i = 0; i < reload_n_operands; i++)
4457 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4458 return 0;
4459
4460 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4461
4462 case RELOAD_FOR_OUTPUT:
4463 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4464 outputs, or an operand address for this or an earlier output.
4465 Note that multiple output operands are emitted in reverse order,
4466 so the conflicting ones are those with higher indices. */
4467 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4468 return 0;
4469
4470 for (i = 0; i < reload_n_operands; i++)
4471 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4472 return 0;
4473
4474 for (i = opnum; i < reload_n_operands; i++)
4475 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4476 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4477 return 0;
4478
4479 return 1;
4480
4481 case RELOAD_FOR_INSN:
4482 for (i = 0; i < reload_n_operands; i++)
4483 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4484 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4485 return 0;
4486
4487 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4488 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4489
4490 case RELOAD_FOR_OTHER_ADDRESS:
4491 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4492 }
4493 abort ();
4494 }
4495
4496 /* Return 1 if the value in reload reg REGNO, as used by a reload
4497 needed for the part of the insn specified by OPNUM and TYPE,
4498 is still available in REGNO at the end of the insn.
4499
4500 We can assume that the reload reg was already tested for availability
4501 at the time it is needed, and we should not check this again,
4502 in case the reg has already been marked in use. */
4503
4504 static int
4505 reload_reg_reaches_end_p (regno, opnum, type)
4506 unsigned int regno;
4507 int opnum;
4508 enum reload_type type;
4509 {
4510 int i;
4511
4512 switch (type)
4513 {
4514 case RELOAD_OTHER:
4515 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4516 its value must reach the end. */
4517 return 1;
4518
4519 /* If this use is for part of the insn,
4520 its value reaches if no subsequent part uses the same register.
4521 Just like the above function, don't try to do this with lots
4522 of fallthroughs. */
4523
4524 case RELOAD_FOR_OTHER_ADDRESS:
4525 /* Here we check for everything else, since these don't conflict
4526 with anything else and everything comes later. */
4527
4528 for (i = 0; i < reload_n_operands; i++)
4529 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4530 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4531 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4532 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4533 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4534 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4535 return 0;
4536
4537 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4538 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4539 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4540
4541 case RELOAD_FOR_INPUT_ADDRESS:
4542 case RELOAD_FOR_INPADDR_ADDRESS:
4543 /* Similar, except that we check only for this and subsequent inputs
4544 and the address of only subsequent inputs and we do not need
4545 to check for RELOAD_OTHER objects since they are known not to
4546 conflict. */
4547
4548 for (i = opnum; i < reload_n_operands; i++)
4549 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4550 return 0;
4551
4552 for (i = opnum + 1; i < reload_n_operands; i++)
4553 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4554 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4555 return 0;
4556
4557 for (i = 0; i < reload_n_operands; i++)
4558 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4559 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4560 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4561 return 0;
4562
4563 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4564 return 0;
4565
4566 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4567 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4568 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4569
4570 case RELOAD_FOR_INPUT:
4571 /* Similar to input address, except we start at the next operand for
4572 both input and input address and we do not check for
4573 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4574 would conflict. */
4575
4576 for (i = opnum + 1; i < reload_n_operands; i++)
4577 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4578 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4579 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4580 return 0;
4581
4582 /* ... fall through ... */
4583
4584 case RELOAD_FOR_OPERAND_ADDRESS:
4585 /* Check outputs and their addresses. */
4586
4587 for (i = 0; i < reload_n_operands; i++)
4588 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4589 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4590 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4591 return 0;
4592
4593 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4594
4595 case RELOAD_FOR_OPADDR_ADDR:
4596 for (i = 0; i < reload_n_operands; i++)
4597 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4598 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4599 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4600 return 0;
4601
4602 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4603 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4604 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4605
4606 case RELOAD_FOR_INSN:
4607 /* These conflict with other outputs with RELOAD_OTHER. So
4608 we need only check for output addresses. */
4609
4610 opnum = reload_n_operands;
4611
4612 /* ... fall through ... */
4613
4614 case RELOAD_FOR_OUTPUT:
4615 case RELOAD_FOR_OUTPUT_ADDRESS:
4616 case RELOAD_FOR_OUTADDR_ADDRESS:
4617 /* We already know these can't conflict with a later output. So the
4618 only thing to check are later output addresses.
4619 Note that multiple output operands are emitted in reverse order,
4620 so the conflicting ones are those with lower indices. */
4621 for (i = 0; i < opnum; i++)
4622 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4623 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4624 return 0;
4625
4626 return 1;
4627 }
4628
4629 abort ();
4630 }
4631 \f
4632 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4633 Return 0 otherwise.
4634
4635 This function uses the same algorithm as reload_reg_free_p above. */
4636
4637 int
4638 reloads_conflict (r1, r2)
4639 int r1, r2;
4640 {
4641 enum reload_type r1_type = rld[r1].when_needed;
4642 enum reload_type r2_type = rld[r2].when_needed;
4643 int r1_opnum = rld[r1].opnum;
4644 int r2_opnum = rld[r2].opnum;
4645
4646 /* RELOAD_OTHER conflicts with everything. */
4647 if (r2_type == RELOAD_OTHER)
4648 return 1;
4649
4650 /* Otherwise, check conflicts differently for each type. */
4651
4652 switch (r1_type)
4653 {
4654 case RELOAD_FOR_INPUT:
4655 return (r2_type == RELOAD_FOR_INSN
4656 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4657 || r2_type == RELOAD_FOR_OPADDR_ADDR
4658 || r2_type == RELOAD_FOR_INPUT
4659 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4660 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4661 && r2_opnum > r1_opnum));
4662
4663 case RELOAD_FOR_INPUT_ADDRESS:
4664 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4665 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4666
4667 case RELOAD_FOR_INPADDR_ADDRESS:
4668 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4669 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4670
4671 case RELOAD_FOR_OUTPUT_ADDRESS:
4672 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4673 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4674
4675 case RELOAD_FOR_OUTADDR_ADDRESS:
4676 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4677 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4678
4679 case RELOAD_FOR_OPERAND_ADDRESS:
4680 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4681 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4682
4683 case RELOAD_FOR_OPADDR_ADDR:
4684 return (r2_type == RELOAD_FOR_INPUT
4685 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4686
4687 case RELOAD_FOR_OUTPUT:
4688 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4689 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4690 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4691 && r2_opnum >= r1_opnum));
4692
4693 case RELOAD_FOR_INSN:
4694 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4695 || r2_type == RELOAD_FOR_INSN
4696 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4697
4698 case RELOAD_FOR_OTHER_ADDRESS:
4699 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4700
4701 case RELOAD_OTHER:
4702 return 1;
4703
4704 default:
4705 abort ();
4706 }
4707 }
4708 \f
4709 /* Indexed by reload number, 1 if incoming value
4710 inherited from previous insns. */
4711 char reload_inherited[MAX_RELOADS];
4712
4713 /* For an inherited reload, this is the insn the reload was inherited from,
4714 if we know it. Otherwise, this is 0. */
4715 rtx reload_inheritance_insn[MAX_RELOADS];
4716
4717 /* If non-zero, this is a place to get the value of the reload,
4718 rather than using reload_in. */
4719 rtx reload_override_in[MAX_RELOADS];
4720
4721 /* For each reload, the hard register number of the register used,
4722 or -1 if we did not need a register for this reload. */
4723 int reload_spill_index[MAX_RELOADS];
4724
4725 /* Subroutine of free_for_value_p, used to check a single register.
4726 START_REGNO is the starting regno of the full reload register
4727 (possibly comprising multiple hard registers) that we are considering. */
4728
4729 static int
4730 reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4731 reloadnum, ignore_address_reloads)
4732 int start_regno, regno;
4733 int opnum;
4734 enum reload_type type;
4735 rtx value, out;
4736 int reloadnum;
4737 int ignore_address_reloads;
4738 {
4739 int time1;
4740 /* Set if we see an input reload that must not share its reload register
4741 with any new earlyclobber, but might otherwise share the reload
4742 register with an output or input-output reload. */
4743 int check_earlyclobber = 0;
4744 int i;
4745 int copy = 0;
4746
4747 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4748 return 0;
4749
4750 if (out == const0_rtx)
4751 {
4752 copy = 1;
4753 out = NULL_RTX;
4754 }
4755
4756 /* We use some pseudo 'time' value to check if the lifetimes of the
4757 new register use would overlap with the one of a previous reload
4758 that is not read-only or uses a different value.
4759 The 'time' used doesn't have to be linear in any shape or form, just
4760 monotonic.
4761 Some reload types use different 'buckets' for each operand.
4762 So there are MAX_RECOG_OPERANDS different time values for each
4763 such reload type.
4764 We compute TIME1 as the time when the register for the prospective
4765 new reload ceases to be live, and TIME2 for each existing
4766 reload as the time when that the reload register of that reload
4767 becomes live.
4768 Where there is little to be gained by exact lifetime calculations,
4769 we just make conservative assumptions, i.e. a longer lifetime;
4770 this is done in the 'default:' cases. */
4771 switch (type)
4772 {
4773 case RELOAD_FOR_OTHER_ADDRESS:
4774 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4775 time1 = copy ? 0 : 1;
4776 break;
4777 case RELOAD_OTHER:
4778 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4779 break;
4780 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4781 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4782 respectively, to the time values for these, we get distinct time
4783 values. To get distinct time values for each operand, we have to
4784 multiply opnum by at least three. We round that up to four because
4785 multiply by four is often cheaper. */
4786 case RELOAD_FOR_INPADDR_ADDRESS:
4787 time1 = opnum * 4 + 2;
4788 break;
4789 case RELOAD_FOR_INPUT_ADDRESS:
4790 time1 = opnum * 4 + 3;
4791 break;
4792 case RELOAD_FOR_INPUT:
4793 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4794 executes (inclusive). */
4795 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4796 break;
4797 case RELOAD_FOR_OPADDR_ADDR:
4798 /* opnum * 4 + 4
4799 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4800 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4801 break;
4802 case RELOAD_FOR_OPERAND_ADDRESS:
4803 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4804 is executed. */
4805 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4806 break;
4807 case RELOAD_FOR_OUTADDR_ADDRESS:
4808 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4809 break;
4810 case RELOAD_FOR_OUTPUT_ADDRESS:
4811 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4812 break;
4813 default:
4814 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4815 }
4816
4817 for (i = 0; i < n_reloads; i++)
4818 {
4819 rtx reg = rld[i].reg_rtx;
4820 if (reg && GET_CODE (reg) == REG
4821 && ((unsigned) regno - true_regnum (reg)
4822 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
4823 && i != reloadnum)
4824 {
4825 rtx other_input = rld[i].in;
4826
4827 /* If the other reload loads the same input value, that
4828 will not cause a conflict only if it's loading it into
4829 the same register. */
4830 if (true_regnum (reg) != start_regno)
4831 other_input = NULL_RTX;
4832 if (! other_input || ! rtx_equal_p (other_input, value)
4833 || rld[i].out || out)
4834 {
4835 int time2;
4836 switch (rld[i].when_needed)
4837 {
4838 case RELOAD_FOR_OTHER_ADDRESS:
4839 time2 = 0;
4840 break;
4841 case RELOAD_FOR_INPADDR_ADDRESS:
4842 /* find_reloads makes sure that a
4843 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4844 by at most one - the first -
4845 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4846 address reload is inherited, the address address reload
4847 goes away, so we can ignore this conflict. */
4848 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4849 && ignore_address_reloads
4850 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4851 Then the address address is still needed to store
4852 back the new address. */
4853 && ! rld[reloadnum].out)
4854 continue;
4855 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4856 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4857 reloads go away. */
4858 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4859 && ignore_address_reloads
4860 /* Unless we are reloading an auto_inc expression. */
4861 && ! rld[reloadnum].out)
4862 continue;
4863 time2 = rld[i].opnum * 4 + 2;
4864 break;
4865 case RELOAD_FOR_INPUT_ADDRESS:
4866 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4867 && ignore_address_reloads
4868 && ! rld[reloadnum].out)
4869 continue;
4870 time2 = rld[i].opnum * 4 + 3;
4871 break;
4872 case RELOAD_FOR_INPUT:
4873 time2 = rld[i].opnum * 4 + 4;
4874 check_earlyclobber = 1;
4875 break;
4876 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4877 == MAX_RECOG_OPERAND * 4 */
4878 case RELOAD_FOR_OPADDR_ADDR:
4879 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4880 && ignore_address_reloads
4881 && ! rld[reloadnum].out)
4882 continue;
4883 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4884 break;
4885 case RELOAD_FOR_OPERAND_ADDRESS:
4886 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4887 check_earlyclobber = 1;
4888 break;
4889 case RELOAD_FOR_INSN:
4890 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4891 break;
4892 case RELOAD_FOR_OUTPUT:
4893 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4894 instruction is executed. */
4895 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4896 break;
4897 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4898 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4899 value. */
4900 case RELOAD_FOR_OUTADDR_ADDRESS:
4901 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4902 && ignore_address_reloads
4903 && ! rld[reloadnum].out)
4904 continue;
4905 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4906 break;
4907 case RELOAD_FOR_OUTPUT_ADDRESS:
4908 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4909 break;
4910 case RELOAD_OTHER:
4911 /* If there is no conflict in the input part, handle this
4912 like an output reload. */
4913 if (! rld[i].in || rtx_equal_p (other_input, value))
4914 {
4915 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4916 /* Earlyclobbered outputs must conflict with inputs. */
4917 if (earlyclobber_operand_p (rld[i].out))
4918 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4919
4920 break;
4921 }
4922 time2 = 1;
4923 /* RELOAD_OTHER might be live beyond instruction execution,
4924 but this is not obvious when we set time2 = 1. So check
4925 here if there might be a problem with the new reload
4926 clobbering the register used by the RELOAD_OTHER. */
4927 if (out)
4928 return 0;
4929 break;
4930 default:
4931 return 0;
4932 }
4933 if ((time1 >= time2
4934 && (! rld[i].in || rld[i].out
4935 || ! rtx_equal_p (other_input, value)))
4936 || (out && rld[reloadnum].out_reg
4937 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4938 return 0;
4939 }
4940 }
4941 }
4942
4943 /* Earlyclobbered outputs must conflict with inputs. */
4944 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4945 return 0;
4946
4947 return 1;
4948 }
4949
4950 /* Return 1 if the value in reload reg REGNO, as used by a reload
4951 needed for the part of the insn specified by OPNUM and TYPE,
4952 may be used to load VALUE into it.
4953
4954 MODE is the mode in which the register is used, this is needed to
4955 determine how many hard regs to test.
4956
4957 Other read-only reloads with the same value do not conflict
4958 unless OUT is non-zero and these other reloads have to live while
4959 output reloads live.
4960 If OUT is CONST0_RTX, this is a special case: it means that the
4961 test should not be for using register REGNO as reload register, but
4962 for copying from register REGNO into the reload register.
4963
4964 RELOADNUM is the number of the reload we want to load this value for;
4965 a reload does not conflict with itself.
4966
4967 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4968 reloads that load an address for the very reload we are considering.
4969
4970 The caller has to make sure that there is no conflict with the return
4971 register. */
4972
4973 static int
4974 free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
4975 ignore_address_reloads)
4976 int regno;
4977 enum machine_mode mode;
4978 int opnum;
4979 enum reload_type type;
4980 rtx value, out;
4981 int reloadnum;
4982 int ignore_address_reloads;
4983 {
4984 int nregs = HARD_REGNO_NREGS (regno, mode);
4985 while (nregs-- > 0)
4986 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
4987 value, out, reloadnum,
4988 ignore_address_reloads))
4989 return 0;
4990 return 1;
4991 }
4992
4993 /* Determine whether the reload reg X overlaps any rtx'es used for
4994 overriding inheritance. Return nonzero if so. */
4995
4996 static int
4997 conflicts_with_override (x)
4998 rtx x;
4999 {
5000 int i;
5001 for (i = 0; i < n_reloads; i++)
5002 if (reload_override_in[i]
5003 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5004 return 1;
5005 return 0;
5006 }
5007 \f
5008 /* Give an error message saying we failed to find a reload for INSN,
5009 and clear out reload R. */
5010 static void
5011 failed_reload (insn, r)
5012 rtx insn;
5013 int r;
5014 {
5015 if (asm_noperands (PATTERN (insn)) < 0)
5016 /* It's the compiler's fault. */
5017 fatal_insn ("Could not find a spill register", insn);
5018
5019 /* It's the user's fault; the operand's mode and constraint
5020 don't match. Disable this reload so we don't crash in final. */
5021 error_for_asm (insn,
5022 "`asm' operand constraint incompatible with operand size");
5023 rld[r].in = 0;
5024 rld[r].out = 0;
5025 rld[r].reg_rtx = 0;
5026 rld[r].optional = 1;
5027 rld[r].secondary_p = 1;
5028 }
5029
5030 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5031 for reload R. If it's valid, get an rtx for it. Return nonzero if
5032 successful. */
5033 static int
5034 set_reload_reg (i, r)
5035 int i, r;
5036 {
5037 int regno;
5038 rtx reg = spill_reg_rtx[i];
5039
5040 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5041 spill_reg_rtx[i] = reg
5042 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5043
5044 regno = true_regnum (reg);
5045
5046 /* Detect when the reload reg can't hold the reload mode.
5047 This used to be one `if', but Sequent compiler can't handle that. */
5048 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5049 {
5050 enum machine_mode test_mode = VOIDmode;
5051 if (rld[r].in)
5052 test_mode = GET_MODE (rld[r].in);
5053 /* If rld[r].in has VOIDmode, it means we will load it
5054 in whatever mode the reload reg has: to wit, rld[r].mode.
5055 We have already tested that for validity. */
5056 /* Aside from that, we need to test that the expressions
5057 to reload from or into have modes which are valid for this
5058 reload register. Otherwise the reload insns would be invalid. */
5059 if (! (rld[r].in != 0 && test_mode != VOIDmode
5060 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5061 if (! (rld[r].out != 0
5062 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5063 {
5064 /* The reg is OK. */
5065 last_spill_reg = i;
5066
5067 /* Mark as in use for this insn the reload regs we use
5068 for this. */
5069 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5070 rld[r].when_needed, rld[r].mode);
5071
5072 rld[r].reg_rtx = reg;
5073 reload_spill_index[r] = spill_regs[i];
5074 return 1;
5075 }
5076 }
5077 return 0;
5078 }
5079
5080 /* Find a spill register to use as a reload register for reload R.
5081 LAST_RELOAD is non-zero if this is the last reload for the insn being
5082 processed.
5083
5084 Set rld[R].reg_rtx to the register allocated.
5085
5086 We return 1 if successful, or 0 if we couldn't find a spill reg and
5087 we didn't change anything. */
5088
5089 static int
5090 allocate_reload_reg (chain, r, last_reload)
5091 struct insn_chain *chain ATTRIBUTE_UNUSED;
5092 int r;
5093 int last_reload;
5094 {
5095 int i, pass, count;
5096
5097 /* If we put this reload ahead, thinking it is a group,
5098 then insist on finding a group. Otherwise we can grab a
5099 reg that some other reload needs.
5100 (That can happen when we have a 68000 DATA_OR_FP_REG
5101 which is a group of data regs or one fp reg.)
5102 We need not be so restrictive if there are no more reloads
5103 for this insn.
5104
5105 ??? Really it would be nicer to have smarter handling
5106 for that kind of reg class, where a problem like this is normal.
5107 Perhaps those classes should be avoided for reloading
5108 by use of more alternatives. */
5109
5110 int force_group = rld[r].nregs > 1 && ! last_reload;
5111
5112 /* If we want a single register and haven't yet found one,
5113 take any reg in the right class and not in use.
5114 If we want a consecutive group, here is where we look for it.
5115
5116 We use two passes so we can first look for reload regs to
5117 reuse, which are already in use for other reloads in this insn,
5118 and only then use additional registers.
5119 I think that maximizing reuse is needed to make sure we don't
5120 run out of reload regs. Suppose we have three reloads, and
5121 reloads A and B can share regs. These need two regs.
5122 Suppose A and B are given different regs.
5123 That leaves none for C. */
5124 for (pass = 0; pass < 2; pass++)
5125 {
5126 /* I is the index in spill_regs.
5127 We advance it round-robin between insns to use all spill regs
5128 equally, so that inherited reloads have a chance
5129 of leapfrogging each other. */
5130
5131 i = last_spill_reg;
5132
5133 for (count = 0; count < n_spills; count++)
5134 {
5135 int class = (int) rld[r].class;
5136 int regnum;
5137
5138 i++;
5139 if (i >= n_spills)
5140 i -= n_spills;
5141 regnum = spill_regs[i];
5142
5143 if ((reload_reg_free_p (regnum, rld[r].opnum,
5144 rld[r].when_needed)
5145 || (rld[r].in
5146 /* We check reload_reg_used to make sure we
5147 don't clobber the return register. */
5148 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5149 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5150 rld[r].when_needed, rld[r].in,
5151 rld[r].out, r, 1)))
5152 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5153 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5154 /* Look first for regs to share, then for unshared. But
5155 don't share regs used for inherited reloads; they are
5156 the ones we want to preserve. */
5157 && (pass
5158 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5159 regnum)
5160 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5161 regnum))))
5162 {
5163 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5164 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5165 (on 68000) got us two FP regs. If NR is 1,
5166 we would reject both of them. */
5167 if (force_group)
5168 nr = rld[r].nregs;
5169 /* If we need only one reg, we have already won. */
5170 if (nr == 1)
5171 {
5172 /* But reject a single reg if we demand a group. */
5173 if (force_group)
5174 continue;
5175 break;
5176 }
5177 /* Otherwise check that as many consecutive regs as we need
5178 are available here. */
5179 while (nr > 1)
5180 {
5181 int regno = regnum + nr - 1;
5182 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5183 && spill_reg_order[regno] >= 0
5184 && reload_reg_free_p (regno, rld[r].opnum,
5185 rld[r].when_needed)))
5186 break;
5187 nr--;
5188 }
5189 if (nr == 1)
5190 break;
5191 }
5192 }
5193
5194 /* If we found something on pass 1, omit pass 2. */
5195 if (count < n_spills)
5196 break;
5197 }
5198
5199 /* We should have found a spill register by now. */
5200 if (count >= n_spills)
5201 return 0;
5202
5203 /* I is the index in SPILL_REG_RTX of the reload register we are to
5204 allocate. Get an rtx for it and find its register number. */
5205
5206 return set_reload_reg (i, r);
5207 }
5208 \f
5209 /* Initialize all the tables needed to allocate reload registers.
5210 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5211 is the array we use to restore the reg_rtx field for every reload. */
5212
5213 static void
5214 choose_reload_regs_init (chain, save_reload_reg_rtx)
5215 struct insn_chain *chain;
5216 rtx *save_reload_reg_rtx;
5217 {
5218 int i;
5219
5220 for (i = 0; i < n_reloads; i++)
5221 rld[i].reg_rtx = save_reload_reg_rtx[i];
5222
5223 memset (reload_inherited, 0, MAX_RELOADS);
5224 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5225 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5226
5227 CLEAR_HARD_REG_SET (reload_reg_used);
5228 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5229 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5230 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5231 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5232 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5233
5234 CLEAR_HARD_REG_SET (reg_used_in_insn);
5235 {
5236 HARD_REG_SET tmp;
5237 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5238 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5239 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5240 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5241 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5242 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5243 }
5244
5245 for (i = 0; i < reload_n_operands; i++)
5246 {
5247 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5248 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5249 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5250 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5251 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5252 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5253 }
5254
5255 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5256
5257 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5258
5259 for (i = 0; i < n_reloads; i++)
5260 /* If we have already decided to use a certain register,
5261 don't use it in another way. */
5262 if (rld[i].reg_rtx)
5263 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5264 rld[i].when_needed, rld[i].mode);
5265 }
5266
5267 /* Assign hard reg targets for the pseudo-registers we must reload
5268 into hard regs for this insn.
5269 Also output the instructions to copy them in and out of the hard regs.
5270
5271 For machines with register classes, we are responsible for
5272 finding a reload reg in the proper class. */
5273
5274 static void
5275 choose_reload_regs (chain)
5276 struct insn_chain *chain;
5277 {
5278 rtx insn = chain->insn;
5279 register int i, j;
5280 unsigned int max_group_size = 1;
5281 enum reg_class group_class = NO_REGS;
5282 int pass, win, inheritance;
5283
5284 rtx save_reload_reg_rtx[MAX_RELOADS];
5285
5286 /* In order to be certain of getting the registers we need,
5287 we must sort the reloads into order of increasing register class.
5288 Then our grabbing of reload registers will parallel the process
5289 that provided the reload registers.
5290
5291 Also note whether any of the reloads wants a consecutive group of regs.
5292 If so, record the maximum size of the group desired and what
5293 register class contains all the groups needed by this insn. */
5294
5295 for (j = 0; j < n_reloads; j++)
5296 {
5297 reload_order[j] = j;
5298 reload_spill_index[j] = -1;
5299
5300 if (rld[j].nregs > 1)
5301 {
5302 max_group_size = MAX (rld[j].nregs, max_group_size);
5303 group_class
5304 = reg_class_superunion[(int) rld[j].class][(int)group_class];
5305 }
5306
5307 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5308 }
5309
5310 if (n_reloads > 1)
5311 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5312
5313 /* If -O, try first with inheritance, then turning it off.
5314 If not -O, don't do inheritance.
5315 Using inheritance when not optimizing leads to paradoxes
5316 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5317 because one side of the comparison might be inherited. */
5318 win = 0;
5319 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5320 {
5321 choose_reload_regs_init (chain, save_reload_reg_rtx);
5322
5323 /* Process the reloads in order of preference just found.
5324 Beyond this point, subregs can be found in reload_reg_rtx.
5325
5326 This used to look for an existing reloaded home for all of the
5327 reloads, and only then perform any new reloads. But that could lose
5328 if the reloads were done out of reg-class order because a later
5329 reload with a looser constraint might have an old home in a register
5330 needed by an earlier reload with a tighter constraint.
5331
5332 To solve this, we make two passes over the reloads, in the order
5333 described above. In the first pass we try to inherit a reload
5334 from a previous insn. If there is a later reload that needs a
5335 class that is a proper subset of the class being processed, we must
5336 also allocate a spill register during the first pass.
5337
5338 Then make a second pass over the reloads to allocate any reloads
5339 that haven't been given registers yet. */
5340
5341 for (j = 0; j < n_reloads; j++)
5342 {
5343 register int r = reload_order[j];
5344 rtx search_equiv = NULL_RTX;
5345
5346 /* Ignore reloads that got marked inoperative. */
5347 if (rld[r].out == 0 && rld[r].in == 0
5348 && ! rld[r].secondary_p)
5349 continue;
5350
5351 /* If find_reloads chose to use reload_in or reload_out as a reload
5352 register, we don't need to chose one. Otherwise, try even if it
5353 found one since we might save an insn if we find the value lying
5354 around.
5355 Try also when reload_in is a pseudo without a hard reg. */
5356 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5357 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5358 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5359 && GET_CODE (rld[r].in) != MEM
5360 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5361 continue;
5362
5363 #if 0 /* No longer needed for correct operation.
5364 It might give better code, or might not; worth an experiment? */
5365 /* If this is an optional reload, we can't inherit from earlier insns
5366 until we are sure that any non-optional reloads have been allocated.
5367 The following code takes advantage of the fact that optional reloads
5368 are at the end of reload_order. */
5369 if (rld[r].optional != 0)
5370 for (i = 0; i < j; i++)
5371 if ((rld[reload_order[i]].out != 0
5372 || rld[reload_order[i]].in != 0
5373 || rld[reload_order[i]].secondary_p)
5374 && ! rld[reload_order[i]].optional
5375 && rld[reload_order[i]].reg_rtx == 0)
5376 allocate_reload_reg (chain, reload_order[i], 0);
5377 #endif
5378
5379 /* First see if this pseudo is already available as reloaded
5380 for a previous insn. We cannot try to inherit for reloads
5381 that are smaller than the maximum number of registers needed
5382 for groups unless the register we would allocate cannot be used
5383 for the groups.
5384
5385 We could check here to see if this is a secondary reload for
5386 an object that is already in a register of the desired class.
5387 This would avoid the need for the secondary reload register.
5388 But this is complex because we can't easily determine what
5389 objects might want to be loaded via this reload. So let a
5390 register be allocated here. In `emit_reload_insns' we suppress
5391 one of the loads in the case described above. */
5392
5393 if (inheritance)
5394 {
5395 int byte = 0;
5396 register int regno = -1;
5397 enum machine_mode mode = VOIDmode;
5398
5399 if (rld[r].in == 0)
5400 ;
5401 else if (GET_CODE (rld[r].in) == REG)
5402 {
5403 regno = REGNO (rld[r].in);
5404 mode = GET_MODE (rld[r].in);
5405 }
5406 else if (GET_CODE (rld[r].in_reg) == REG)
5407 {
5408 regno = REGNO (rld[r].in_reg);
5409 mode = GET_MODE (rld[r].in_reg);
5410 }
5411 else if (GET_CODE (rld[r].in_reg) == SUBREG
5412 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5413 {
5414 byte = SUBREG_BYTE (rld[r].in_reg);
5415 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5416 if (regno < FIRST_PSEUDO_REGISTER)
5417 regno = subreg_regno (rld[r].in_reg);
5418 mode = GET_MODE (rld[r].in_reg);
5419 }
5420 #ifdef AUTO_INC_DEC
5421 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5422 || GET_CODE (rld[r].in_reg) == PRE_DEC
5423 || GET_CODE (rld[r].in_reg) == POST_INC
5424 || GET_CODE (rld[r].in_reg) == POST_DEC)
5425 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5426 {
5427 regno = REGNO (XEXP (rld[r].in_reg, 0));
5428 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5429 rld[r].out = rld[r].in;
5430 }
5431 #endif
5432 #if 0
5433 /* This won't work, since REGNO can be a pseudo reg number.
5434 Also, it takes much more hair to keep track of all the things
5435 that can invalidate an inherited reload of part of a pseudoreg. */
5436 else if (GET_CODE (rld[r].in) == SUBREG
5437 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5438 regno = subreg_regno (rld[r].in);
5439 #endif
5440
5441 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5442 {
5443 enum reg_class class = rld[r].class, last_class;
5444 rtx last_reg = reg_last_reload_reg[regno];
5445 enum machine_mode need_mode;
5446
5447 i = REGNO (last_reg);
5448 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5449 last_class = REGNO_REG_CLASS (i);
5450
5451 if (byte == 0)
5452 need_mode = mode;
5453 else
5454 need_mode
5455 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5456 GET_MODE_CLASS (mode));
5457
5458 if (
5459 #ifdef CLASS_CANNOT_CHANGE_MODE
5460 (TEST_HARD_REG_BIT
5461 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
5462 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
5463 need_mode)
5464 : (GET_MODE_SIZE (GET_MODE (last_reg))
5465 >= GET_MODE_SIZE (need_mode)))
5466 #else
5467 (GET_MODE_SIZE (GET_MODE (last_reg))
5468 >= GET_MODE_SIZE (need_mode))
5469 #endif
5470 && reg_reloaded_contents[i] == regno
5471 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5472 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5473 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5474 /* Even if we can't use this register as a reload
5475 register, we might use it for reload_override_in,
5476 if copying it to the desired class is cheap
5477 enough. */
5478 || ((REGISTER_MOVE_COST (mode, last_class, class)
5479 < MEMORY_MOVE_COST (mode, class, 1))
5480 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5481 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5482 last_reg)
5483 == NO_REGS)
5484 #endif
5485 #ifdef SECONDARY_MEMORY_NEEDED
5486 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5487 mode)
5488 #endif
5489 ))
5490
5491 && (rld[r].nregs == max_group_size
5492 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5493 i))
5494 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5495 rld[r].when_needed, rld[r].in,
5496 const0_rtx, r, 1))
5497 {
5498 /* If a group is needed, verify that all the subsequent
5499 registers still have their values intact. */
5500 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5501 int k;
5502
5503 for (k = 1; k < nr; k++)
5504 if (reg_reloaded_contents[i + k] != regno
5505 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5506 break;
5507
5508 if (k == nr)
5509 {
5510 int i1;
5511 int bad_for_class;
5512
5513 last_reg = (GET_MODE (last_reg) == mode
5514 ? last_reg : gen_rtx_REG (mode, i));
5515
5516 bad_for_class = 0;
5517 for (k = 0; k < nr; k++)
5518 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5519 i+k);
5520
5521 /* We found a register that contains the
5522 value we need. If this register is the
5523 same as an `earlyclobber' operand of the
5524 current insn, just mark it as a place to
5525 reload from since we can't use it as the
5526 reload register itself. */
5527
5528 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5529 if (reg_overlap_mentioned_for_reload_p
5530 (reg_last_reload_reg[regno],
5531 reload_earlyclobbers[i1]))
5532 break;
5533
5534 if (i1 != n_earlyclobbers
5535 || ! (free_for_value_p (i, rld[r].mode,
5536 rld[r].opnum,
5537 rld[r].when_needed, rld[r].in,
5538 rld[r].out, r, 1))
5539 /* Don't use it if we'd clobber a pseudo reg. */
5540 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5541 && rld[r].out
5542 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5543 /* Don't clobber the frame pointer. */
5544 || (i == HARD_FRAME_POINTER_REGNUM
5545 && rld[r].out)
5546 /* Don't really use the inherited spill reg
5547 if we need it wider than we've got it. */
5548 || (GET_MODE_SIZE (rld[r].mode)
5549 > GET_MODE_SIZE (mode))
5550 || bad_for_class
5551
5552 /* If find_reloads chose reload_out as reload
5553 register, stay with it - that leaves the
5554 inherited register for subsequent reloads. */
5555 || (rld[r].out && rld[r].reg_rtx
5556 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5557 {
5558 if (! rld[r].optional)
5559 {
5560 reload_override_in[r] = last_reg;
5561 reload_inheritance_insn[r]
5562 = reg_reloaded_insn[i];
5563 }
5564 }
5565 else
5566 {
5567 int k;
5568 /* We can use this as a reload reg. */
5569 /* Mark the register as in use for this part of
5570 the insn. */
5571 mark_reload_reg_in_use (i,
5572 rld[r].opnum,
5573 rld[r].when_needed,
5574 rld[r].mode);
5575 rld[r].reg_rtx = last_reg;
5576 reload_inherited[r] = 1;
5577 reload_inheritance_insn[r]
5578 = reg_reloaded_insn[i];
5579 reload_spill_index[r] = i;
5580 for (k = 0; k < nr; k++)
5581 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5582 i + k);
5583 }
5584 }
5585 }
5586 }
5587 }
5588
5589 /* Here's another way to see if the value is already lying around. */
5590 if (inheritance
5591 && rld[r].in != 0
5592 && ! reload_inherited[r]
5593 && rld[r].out == 0
5594 && (CONSTANT_P (rld[r].in)
5595 || GET_CODE (rld[r].in) == PLUS
5596 || GET_CODE (rld[r].in) == REG
5597 || GET_CODE (rld[r].in) == MEM)
5598 && (rld[r].nregs == max_group_size
5599 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5600 search_equiv = rld[r].in;
5601 /* If this is an output reload from a simple move insn, look
5602 if an equivalence for the input is available. */
5603 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5604 {
5605 rtx set = single_set (insn);
5606
5607 if (set
5608 && rtx_equal_p (rld[r].out, SET_DEST (set))
5609 && CONSTANT_P (SET_SRC (set)))
5610 search_equiv = SET_SRC (set);
5611 }
5612
5613 if (search_equiv)
5614 {
5615 register rtx equiv
5616 = find_equiv_reg (search_equiv, insn, rld[r].class,
5617 -1, NULL, 0, rld[r].mode);
5618 int regno = 0;
5619
5620 if (equiv != 0)
5621 {
5622 if (GET_CODE (equiv) == REG)
5623 regno = REGNO (equiv);
5624 else if (GET_CODE (equiv) == SUBREG)
5625 {
5626 /* This must be a SUBREG of a hard register.
5627 Make a new REG since this might be used in an
5628 address and not all machines support SUBREGs
5629 there. */
5630 regno = subreg_regno (equiv);
5631 equiv = gen_rtx_REG (rld[r].mode, regno);
5632 }
5633 else
5634 abort ();
5635 }
5636
5637 /* If we found a spill reg, reject it unless it is free
5638 and of the desired class. */
5639 if (equiv != 0
5640 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5641 && ! free_for_value_p (regno, rld[r].mode,
5642 rld[r].opnum, rld[r].when_needed,
5643 rld[r].in, rld[r].out, r, 1))
5644 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5645 regno)))
5646 equiv = 0;
5647
5648 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5649 equiv = 0;
5650
5651 /* We found a register that contains the value we need.
5652 If this register is the same as an `earlyclobber' operand
5653 of the current insn, just mark it as a place to reload from
5654 since we can't use it as the reload register itself. */
5655
5656 if (equiv != 0)
5657 for (i = 0; i < n_earlyclobbers; i++)
5658 if (reg_overlap_mentioned_for_reload_p (equiv,
5659 reload_earlyclobbers[i]))
5660 {
5661 if (! rld[r].optional)
5662 reload_override_in[r] = equiv;
5663 equiv = 0;
5664 break;
5665 }
5666
5667 /* If the equiv register we have found is explicitly clobbered
5668 in the current insn, it depends on the reload type if we
5669 can use it, use it for reload_override_in, or not at all.
5670 In particular, we then can't use EQUIV for a
5671 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5672
5673 if (equiv != 0)
5674 {
5675 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5676 switch (rld[r].when_needed)
5677 {
5678 case RELOAD_FOR_OTHER_ADDRESS:
5679 case RELOAD_FOR_INPADDR_ADDRESS:
5680 case RELOAD_FOR_INPUT_ADDRESS:
5681 case RELOAD_FOR_OPADDR_ADDR:
5682 break;
5683 case RELOAD_OTHER:
5684 case RELOAD_FOR_INPUT:
5685 case RELOAD_FOR_OPERAND_ADDRESS:
5686 if (! rld[r].optional)
5687 reload_override_in[r] = equiv;
5688 /* Fall through. */
5689 default:
5690 equiv = 0;
5691 break;
5692 }
5693 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5694 switch (rld[r].when_needed)
5695 {
5696 case RELOAD_FOR_OTHER_ADDRESS:
5697 case RELOAD_FOR_INPADDR_ADDRESS:
5698 case RELOAD_FOR_INPUT_ADDRESS:
5699 case RELOAD_FOR_OPADDR_ADDR:
5700 case RELOAD_FOR_OPERAND_ADDRESS:
5701 case RELOAD_FOR_INPUT:
5702 break;
5703 case RELOAD_OTHER:
5704 if (! rld[r].optional)
5705 reload_override_in[r] = equiv;
5706 /* Fall through. */
5707 default:
5708 equiv = 0;
5709 break;
5710 }
5711 }
5712
5713 /* If we found an equivalent reg, say no code need be generated
5714 to load it, and use it as our reload reg. */
5715 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
5716 {
5717 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5718 int k;
5719 rld[r].reg_rtx = equiv;
5720 reload_inherited[r] = 1;
5721
5722 /* If reg_reloaded_valid is not set for this register,
5723 there might be a stale spill_reg_store lying around.
5724 We must clear it, since otherwise emit_reload_insns
5725 might delete the store. */
5726 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5727 spill_reg_store[regno] = NULL_RTX;
5728 /* If any of the hard registers in EQUIV are spill
5729 registers, mark them as in use for this insn. */
5730 for (k = 0; k < nr; k++)
5731 {
5732 i = spill_reg_order[regno + k];
5733 if (i >= 0)
5734 {
5735 mark_reload_reg_in_use (regno, rld[r].opnum,
5736 rld[r].when_needed,
5737 rld[r].mode);
5738 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5739 regno + k);
5740 }
5741 }
5742 }
5743 }
5744
5745 /* If we found a register to use already, or if this is an optional
5746 reload, we are done. */
5747 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5748 continue;
5749
5750 #if 0
5751 /* No longer needed for correct operation. Might or might
5752 not give better code on the average. Want to experiment? */
5753
5754 /* See if there is a later reload that has a class different from our
5755 class that intersects our class or that requires less register
5756 than our reload. If so, we must allocate a register to this
5757 reload now, since that reload might inherit a previous reload
5758 and take the only available register in our class. Don't do this
5759 for optional reloads since they will force all previous reloads
5760 to be allocated. Also don't do this for reloads that have been
5761 turned off. */
5762
5763 for (i = j + 1; i < n_reloads; i++)
5764 {
5765 int s = reload_order[i];
5766
5767 if ((rld[s].in == 0 && rld[s].out == 0
5768 && ! rld[s].secondary_p)
5769 || rld[s].optional)
5770 continue;
5771
5772 if ((rld[s].class != rld[r].class
5773 && reg_classes_intersect_p (rld[r].class,
5774 rld[s].class))
5775 || rld[s].nregs < rld[r].nregs)
5776 break;
5777 }
5778
5779 if (i == n_reloads)
5780 continue;
5781
5782 allocate_reload_reg (chain, r, j == n_reloads - 1);
5783 #endif
5784 }
5785
5786 /* Now allocate reload registers for anything non-optional that
5787 didn't get one yet. */
5788 for (j = 0; j < n_reloads; j++)
5789 {
5790 register int r = reload_order[j];
5791
5792 /* Ignore reloads that got marked inoperative. */
5793 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5794 continue;
5795
5796 /* Skip reloads that already have a register allocated or are
5797 optional. */
5798 if (rld[r].reg_rtx != 0 || rld[r].optional)
5799 continue;
5800
5801 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5802 break;
5803 }
5804
5805 /* If that loop got all the way, we have won. */
5806 if (j == n_reloads)
5807 {
5808 win = 1;
5809 break;
5810 }
5811
5812 /* Loop around and try without any inheritance. */
5813 }
5814
5815 if (! win)
5816 {
5817 /* First undo everything done by the failed attempt
5818 to allocate with inheritance. */
5819 choose_reload_regs_init (chain, save_reload_reg_rtx);
5820
5821 /* Some sanity tests to verify that the reloads found in the first
5822 pass are identical to the ones we have now. */
5823 if (chain->n_reloads != n_reloads)
5824 abort ();
5825
5826 for (i = 0; i < n_reloads; i++)
5827 {
5828 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5829 continue;
5830 if (chain->rld[i].when_needed != rld[i].when_needed)
5831 abort ();
5832 for (j = 0; j < n_spills; j++)
5833 if (spill_regs[j] == chain->rld[i].regno)
5834 if (! set_reload_reg (j, i))
5835 failed_reload (chain->insn, i);
5836 }
5837 }
5838
5839 /* If we thought we could inherit a reload, because it seemed that
5840 nothing else wanted the same reload register earlier in the insn,
5841 verify that assumption, now that all reloads have been assigned.
5842 Likewise for reloads where reload_override_in has been set. */
5843
5844 /* If doing expensive optimizations, do one preliminary pass that doesn't
5845 cancel any inheritance, but removes reloads that have been needed only
5846 for reloads that we know can be inherited. */
5847 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5848 {
5849 for (j = 0; j < n_reloads; j++)
5850 {
5851 register int r = reload_order[j];
5852 rtx check_reg;
5853 if (reload_inherited[r] && rld[r].reg_rtx)
5854 check_reg = rld[r].reg_rtx;
5855 else if (reload_override_in[r]
5856 && (GET_CODE (reload_override_in[r]) == REG
5857 || GET_CODE (reload_override_in[r]) == SUBREG))
5858 check_reg = reload_override_in[r];
5859 else
5860 continue;
5861 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5862 rld[r].opnum, rld[r].when_needed, rld[r].in,
5863 (reload_inherited[r]
5864 ? rld[r].out : const0_rtx),
5865 r, 1))
5866 {
5867 if (pass)
5868 continue;
5869 reload_inherited[r] = 0;
5870 reload_override_in[r] = 0;
5871 }
5872 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5873 reload_override_in, then we do not need its related
5874 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5875 likewise for other reload types.
5876 We handle this by removing a reload when its only replacement
5877 is mentioned in reload_in of the reload we are going to inherit.
5878 A special case are auto_inc expressions; even if the input is
5879 inherited, we still need the address for the output. We can
5880 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5881 If we suceeded removing some reload and we are doing a preliminary
5882 pass just to remove such reloads, make another pass, since the
5883 removal of one reload might allow us to inherit another one. */
5884 else if (rld[r].in
5885 && rld[r].out != rld[r].in
5886 && remove_address_replacements (rld[r].in) && pass)
5887 pass = 2;
5888 }
5889 }
5890
5891 /* Now that reload_override_in is known valid,
5892 actually override reload_in. */
5893 for (j = 0; j < n_reloads; j++)
5894 if (reload_override_in[j])
5895 rld[j].in = reload_override_in[j];
5896
5897 /* If this reload won't be done because it has been cancelled or is
5898 optional and not inherited, clear reload_reg_rtx so other
5899 routines (such as subst_reloads) don't get confused. */
5900 for (j = 0; j < n_reloads; j++)
5901 if (rld[j].reg_rtx != 0
5902 && ((rld[j].optional && ! reload_inherited[j])
5903 || (rld[j].in == 0 && rld[j].out == 0
5904 && ! rld[j].secondary_p)))
5905 {
5906 int regno = true_regnum (rld[j].reg_rtx);
5907
5908 if (spill_reg_order[regno] >= 0)
5909 clear_reload_reg_in_use (regno, rld[j].opnum,
5910 rld[j].when_needed, rld[j].mode);
5911 rld[j].reg_rtx = 0;
5912 reload_spill_index[j] = -1;
5913 }
5914
5915 /* Record which pseudos and which spill regs have output reloads. */
5916 for (j = 0; j < n_reloads; j++)
5917 {
5918 register int r = reload_order[j];
5919
5920 i = reload_spill_index[r];
5921
5922 /* I is nonneg if this reload uses a register.
5923 If rld[r].reg_rtx is 0, this is an optional reload
5924 that we opted to ignore. */
5925 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5926 && rld[r].reg_rtx != 0)
5927 {
5928 register int nregno = REGNO (rld[r].out_reg);
5929 int nr = 1;
5930
5931 if (nregno < FIRST_PSEUDO_REGISTER)
5932 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5933
5934 while (--nr >= 0)
5935 reg_has_output_reload[nregno + nr] = 1;
5936
5937 if (i >= 0)
5938 {
5939 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5940 while (--nr >= 0)
5941 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5942 }
5943
5944 if (rld[r].when_needed != RELOAD_OTHER
5945 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5946 && rld[r].when_needed != RELOAD_FOR_INSN)
5947 abort ();
5948 }
5949 }
5950 }
5951
5952 /* Deallocate the reload register for reload R. This is called from
5953 remove_address_replacements. */
5954
5955 void
5956 deallocate_reload_reg (r)
5957 int r;
5958 {
5959 int regno;
5960
5961 if (! rld[r].reg_rtx)
5962 return;
5963 regno = true_regnum (rld[r].reg_rtx);
5964 rld[r].reg_rtx = 0;
5965 if (spill_reg_order[regno] >= 0)
5966 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5967 rld[r].mode);
5968 reload_spill_index[r] = -1;
5969 }
5970 \f
5971 /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
5972 reloads of the same item for fear that we might not have enough reload
5973 registers. However, normally they will get the same reload register
5974 and hence actually need not be loaded twice.
5975
5976 Here we check for the most common case of this phenomenon: when we have
5977 a number of reloads for the same object, each of which were allocated
5978 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5979 reload, and is not modified in the insn itself. If we find such,
5980 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5981 This will not increase the number of spill registers needed and will
5982 prevent redundant code. */
5983
5984 static void
5985 merge_assigned_reloads (insn)
5986 rtx insn;
5987 {
5988 int i, j;
5989
5990 /* Scan all the reloads looking for ones that only load values and
5991 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5992 assigned and not modified by INSN. */
5993
5994 for (i = 0; i < n_reloads; i++)
5995 {
5996 int conflicting_input = 0;
5997 int max_input_address_opnum = -1;
5998 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
5999
6000 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6001 || rld[i].out != 0 || rld[i].reg_rtx == 0
6002 || reg_set_p (rld[i].reg_rtx, insn))
6003 continue;
6004
6005 /* Look at all other reloads. Ensure that the only use of this
6006 reload_reg_rtx is in a reload that just loads the same value
6007 as we do. Note that any secondary reloads must be of the identical
6008 class since the values, modes, and result registers are the
6009 same, so we need not do anything with any secondary reloads. */
6010
6011 for (j = 0; j < n_reloads; j++)
6012 {
6013 if (i == j || rld[j].reg_rtx == 0
6014 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6015 rld[i].reg_rtx))
6016 continue;
6017
6018 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6019 && rld[j].opnum > max_input_address_opnum)
6020 max_input_address_opnum = rld[j].opnum;
6021
6022 /* If the reload regs aren't exactly the same (e.g, different modes)
6023 or if the values are different, we can't merge this reload.
6024 But if it is an input reload, we might still merge
6025 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6026
6027 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6028 || rld[j].out != 0 || rld[j].in == 0
6029 || ! rtx_equal_p (rld[i].in, rld[j].in))
6030 {
6031 if (rld[j].when_needed != RELOAD_FOR_INPUT
6032 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6033 || rld[i].opnum > rld[j].opnum)
6034 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6035 break;
6036 conflicting_input = 1;
6037 if (min_conflicting_input_opnum > rld[j].opnum)
6038 min_conflicting_input_opnum = rld[j].opnum;
6039 }
6040 }
6041
6042 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6043 we, in fact, found any matching reloads. */
6044
6045 if (j == n_reloads
6046 && max_input_address_opnum <= min_conflicting_input_opnum)
6047 {
6048 for (j = 0; j < n_reloads; j++)
6049 if (i != j && rld[j].reg_rtx != 0
6050 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6051 && (! conflicting_input
6052 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6053 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6054 {
6055 rld[i].when_needed = RELOAD_OTHER;
6056 rld[j].in = 0;
6057 reload_spill_index[j] = -1;
6058 transfer_replacements (i, j);
6059 }
6060
6061 /* If this is now RELOAD_OTHER, look for any reloads that load
6062 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6063 if they were for inputs, RELOAD_OTHER for outputs. Note that
6064 this test is equivalent to looking for reloads for this operand
6065 number. */
6066
6067 if (rld[i].when_needed == RELOAD_OTHER)
6068 for (j = 0; j < n_reloads; j++)
6069 if (rld[j].in != 0
6070 && rld[j].when_needed != RELOAD_OTHER
6071 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6072 rld[i].in))
6073 rld[j].when_needed
6074 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6075 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6076 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6077 }
6078 }
6079 }
6080 \f
6081 /* These arrays are filled by emit_reload_insns and its subroutines. */
6082 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6083 static rtx other_input_address_reload_insns = 0;
6084 static rtx other_input_reload_insns = 0;
6085 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6086 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6087 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6088 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6089 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6090 static rtx operand_reload_insns = 0;
6091 static rtx other_operand_reload_insns = 0;
6092 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6093
6094 /* Values to be put in spill_reg_store are put here first. */
6095 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6096 static HARD_REG_SET reg_reloaded_died;
6097
6098 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6099 has the number J. OLD contains the value to be used as input. */
6100
6101 static void
6102 emit_input_reload_insns (chain, rl, old, j)
6103 struct insn_chain *chain;
6104 struct reload *rl;
6105 rtx old;
6106 int j;
6107 {
6108 rtx insn = chain->insn;
6109 register rtx reloadreg = rl->reg_rtx;
6110 rtx oldequiv_reg = 0;
6111 rtx oldequiv = 0;
6112 int special = 0;
6113 enum machine_mode mode;
6114 rtx *where;
6115
6116 /* Determine the mode to reload in.
6117 This is very tricky because we have three to choose from.
6118 There is the mode the insn operand wants (rl->inmode).
6119 There is the mode of the reload register RELOADREG.
6120 There is the intrinsic mode of the operand, which we could find
6121 by stripping some SUBREGs.
6122 It turns out that RELOADREG's mode is irrelevant:
6123 we can change that arbitrarily.
6124
6125 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6126 then the reload reg may not support QImode moves, so use SImode.
6127 If foo is in memory due to spilling a pseudo reg, this is safe,
6128 because the QImode value is in the least significant part of a
6129 slot big enough for a SImode. If foo is some other sort of
6130 memory reference, then it is impossible to reload this case,
6131 so previous passes had better make sure this never happens.
6132
6133 Then consider a one-word union which has SImode and one of its
6134 members is a float, being fetched as (SUBREG:SF union:SI).
6135 We must fetch that as SFmode because we could be loading into
6136 a float-only register. In this case OLD's mode is correct.
6137
6138 Consider an immediate integer: it has VOIDmode. Here we need
6139 to get a mode from something else.
6140
6141 In some cases, there is a fourth mode, the operand's
6142 containing mode. If the insn specifies a containing mode for
6143 this operand, it overrides all others.
6144
6145 I am not sure whether the algorithm here is always right,
6146 but it does the right things in those cases. */
6147
6148 mode = GET_MODE (old);
6149 if (mode == VOIDmode)
6150 mode = rl->inmode;
6151
6152 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6153 /* If we need a secondary register for this operation, see if
6154 the value is already in a register in that class. Don't
6155 do this if the secondary register will be used as a scratch
6156 register. */
6157
6158 if (rl->secondary_in_reload >= 0
6159 && rl->secondary_in_icode == CODE_FOR_nothing
6160 && optimize)
6161 oldequiv
6162 = find_equiv_reg (old, insn,
6163 rld[rl->secondary_in_reload].class,
6164 -1, NULL, 0, mode);
6165 #endif
6166
6167 /* If reloading from memory, see if there is a register
6168 that already holds the same value. If so, reload from there.
6169 We can pass 0 as the reload_reg_p argument because
6170 any other reload has either already been emitted,
6171 in which case find_equiv_reg will see the reload-insn,
6172 or has yet to be emitted, in which case it doesn't matter
6173 because we will use this equiv reg right away. */
6174
6175 if (oldequiv == 0 && optimize
6176 && (GET_CODE (old) == MEM
6177 || (GET_CODE (old) == REG
6178 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6179 && reg_renumber[REGNO (old)] < 0)))
6180 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6181
6182 if (oldequiv)
6183 {
6184 unsigned int regno = true_regnum (oldequiv);
6185
6186 /* Don't use OLDEQUIV if any other reload changes it at an
6187 earlier stage of this insn or at this stage. */
6188 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6189 rl->in, const0_rtx, j, 0))
6190 oldequiv = 0;
6191
6192 /* If it is no cheaper to copy from OLDEQUIV into the
6193 reload register than it would be to move from memory,
6194 don't use it. Likewise, if we need a secondary register
6195 or memory. */
6196
6197 if (oldequiv != 0
6198 && ((REGNO_REG_CLASS (regno) != rl->class
6199 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6200 rl->class)
6201 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6202 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6203 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6204 mode, oldequiv)
6205 != NO_REGS)
6206 #endif
6207 #ifdef SECONDARY_MEMORY_NEEDED
6208 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6209 rl->class,
6210 mode)
6211 #endif
6212 ))
6213 oldequiv = 0;
6214 }
6215
6216 /* delete_output_reload is only invoked properly if old contains
6217 the original pseudo register. Since this is replaced with a
6218 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6219 find the pseudo in RELOAD_IN_REG. */
6220 if (oldequiv == 0
6221 && reload_override_in[j]
6222 && GET_CODE (rl->in_reg) == REG)
6223 {
6224 oldequiv = old;
6225 old = rl->in_reg;
6226 }
6227 if (oldequiv == 0)
6228 oldequiv = old;
6229 else if (GET_CODE (oldequiv) == REG)
6230 oldequiv_reg = oldequiv;
6231 else if (GET_CODE (oldequiv) == SUBREG)
6232 oldequiv_reg = SUBREG_REG (oldequiv);
6233
6234 /* If we are reloading from a register that was recently stored in
6235 with an output-reload, see if we can prove there was
6236 actually no need to store the old value in it. */
6237
6238 if (optimize && GET_CODE (oldequiv) == REG
6239 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6240 && spill_reg_store[REGNO (oldequiv)]
6241 && GET_CODE (old) == REG
6242 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6243 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6244 rl->out_reg)))
6245 delete_output_reload (insn, j, REGNO (oldequiv));
6246
6247 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6248 then load RELOADREG from OLDEQUIV. Note that we cannot use
6249 gen_lowpart_common since it can do the wrong thing when
6250 RELOADREG has a multi-word mode. Note that RELOADREG
6251 must always be a REG here. */
6252
6253 if (GET_MODE (reloadreg) != mode)
6254 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6255 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6256 oldequiv = SUBREG_REG (oldequiv);
6257 if (GET_MODE (oldequiv) != VOIDmode
6258 && mode != GET_MODE (oldequiv))
6259 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6260
6261 /* Switch to the right place to emit the reload insns. */
6262 switch (rl->when_needed)
6263 {
6264 case RELOAD_OTHER:
6265 where = &other_input_reload_insns;
6266 break;
6267 case RELOAD_FOR_INPUT:
6268 where = &input_reload_insns[rl->opnum];
6269 break;
6270 case RELOAD_FOR_INPUT_ADDRESS:
6271 where = &input_address_reload_insns[rl->opnum];
6272 break;
6273 case RELOAD_FOR_INPADDR_ADDRESS:
6274 where = &inpaddr_address_reload_insns[rl->opnum];
6275 break;
6276 case RELOAD_FOR_OUTPUT_ADDRESS:
6277 where = &output_address_reload_insns[rl->opnum];
6278 break;
6279 case RELOAD_FOR_OUTADDR_ADDRESS:
6280 where = &outaddr_address_reload_insns[rl->opnum];
6281 break;
6282 case RELOAD_FOR_OPERAND_ADDRESS:
6283 where = &operand_reload_insns;
6284 break;
6285 case RELOAD_FOR_OPADDR_ADDR:
6286 where = &other_operand_reload_insns;
6287 break;
6288 case RELOAD_FOR_OTHER_ADDRESS:
6289 where = &other_input_address_reload_insns;
6290 break;
6291 default:
6292 abort ();
6293 }
6294
6295 push_to_sequence (*where);
6296
6297 /* Auto-increment addresses must be reloaded in a special way. */
6298 if (rl->out && ! rl->out_reg)
6299 {
6300 /* We are not going to bother supporting the case where a
6301 incremented register can't be copied directly from
6302 OLDEQUIV since this seems highly unlikely. */
6303 if (rl->secondary_in_reload >= 0)
6304 abort ();
6305
6306 if (reload_inherited[j])
6307 oldequiv = reloadreg;
6308
6309 old = XEXP (rl->in_reg, 0);
6310
6311 if (optimize && GET_CODE (oldequiv) == REG
6312 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6313 && spill_reg_store[REGNO (oldequiv)]
6314 && GET_CODE (old) == REG
6315 && (dead_or_set_p (insn,
6316 spill_reg_stored_to[REGNO (oldequiv)])
6317 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6318 old)))
6319 delete_output_reload (insn, j, REGNO (oldequiv));
6320
6321 /* Prevent normal processing of this reload. */
6322 special = 1;
6323 /* Output a special code sequence for this case. */
6324 new_spill_reg_store[REGNO (reloadreg)]
6325 = inc_for_reload (reloadreg, oldequiv, rl->out,
6326 rl->inc);
6327 }
6328
6329 /* If we are reloading a pseudo-register that was set by the previous
6330 insn, see if we can get rid of that pseudo-register entirely
6331 by redirecting the previous insn into our reload register. */
6332
6333 else if (optimize && GET_CODE (old) == REG
6334 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6335 && dead_or_set_p (insn, old)
6336 /* This is unsafe if some other reload
6337 uses the same reg first. */
6338 && ! conflicts_with_override (reloadreg)
6339 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6340 rl->when_needed, old, rl->out, j, 0))
6341 {
6342 rtx temp = PREV_INSN (insn);
6343 while (temp && GET_CODE (temp) == NOTE)
6344 temp = PREV_INSN (temp);
6345 if (temp
6346 && GET_CODE (temp) == INSN
6347 && GET_CODE (PATTERN (temp)) == SET
6348 && SET_DEST (PATTERN (temp)) == old
6349 /* Make sure we can access insn_operand_constraint. */
6350 && asm_noperands (PATTERN (temp)) < 0
6351 /* This is unsafe if prev insn rejects our reload reg. */
6352 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6353 reloadreg)
6354 /* This is unsafe if operand occurs more than once in current
6355 insn. Perhaps some occurrences aren't reloaded. */
6356 && count_occurrences (PATTERN (insn), old, 0) == 1
6357 /* Don't risk splitting a matching pair of operands. */
6358 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6359 {
6360 /* Store into the reload register instead of the pseudo. */
6361 SET_DEST (PATTERN (temp)) = reloadreg;
6362
6363 /* If the previous insn is an output reload, the source is
6364 a reload register, and its spill_reg_store entry will
6365 contain the previous destination. This is now
6366 invalid. */
6367 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6368 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6369 {
6370 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6371 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6372 }
6373
6374 /* If these are the only uses of the pseudo reg,
6375 pretend for GDB it lives in the reload reg we used. */
6376 if (REG_N_DEATHS (REGNO (old)) == 1
6377 && REG_N_SETS (REGNO (old)) == 1)
6378 {
6379 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6380 alter_reg (REGNO (old), -1);
6381 }
6382 special = 1;
6383 }
6384 }
6385
6386 /* We can't do that, so output an insn to load RELOADREG. */
6387
6388 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6389 /* If we have a secondary reload, pick up the secondary register
6390 and icode, if any. If OLDEQUIV and OLD are different or
6391 if this is an in-out reload, recompute whether or not we
6392 still need a secondary register and what the icode should
6393 be. If we still need a secondary register and the class or
6394 icode is different, go back to reloading from OLD if using
6395 OLDEQUIV means that we got the wrong type of register. We
6396 cannot have different class or icode due to an in-out reload
6397 because we don't make such reloads when both the input and
6398 output need secondary reload registers. */
6399
6400 if (! special && rl->secondary_in_reload >= 0)
6401 {
6402 rtx second_reload_reg = 0;
6403 int secondary_reload = rl->secondary_in_reload;
6404 rtx real_oldequiv = oldequiv;
6405 rtx real_old = old;
6406 rtx tmp;
6407 enum insn_code icode;
6408
6409 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6410 and similarly for OLD.
6411 See comments in get_secondary_reload in reload.c. */
6412 /* If it is a pseudo that cannot be replaced with its
6413 equivalent MEM, we must fall back to reload_in, which
6414 will have all the necessary substitutions registered.
6415 Likewise for a pseudo that can't be replaced with its
6416 equivalent constant.
6417
6418 Take extra care for subregs of such pseudos. Note that
6419 we cannot use reg_equiv_mem in this case because it is
6420 not in the right mode. */
6421
6422 tmp = oldequiv;
6423 if (GET_CODE (tmp) == SUBREG)
6424 tmp = SUBREG_REG (tmp);
6425 if (GET_CODE (tmp) == REG
6426 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6427 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6428 || reg_equiv_constant[REGNO (tmp)] != 0))
6429 {
6430 if (! reg_equiv_mem[REGNO (tmp)]
6431 || num_not_at_initial_offset
6432 || GET_CODE (oldequiv) == SUBREG)
6433 real_oldequiv = rl->in;
6434 else
6435 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6436 }
6437
6438 tmp = old;
6439 if (GET_CODE (tmp) == SUBREG)
6440 tmp = SUBREG_REG (tmp);
6441 if (GET_CODE (tmp) == REG
6442 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6443 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6444 || reg_equiv_constant[REGNO (tmp)] != 0))
6445 {
6446 if (! reg_equiv_mem[REGNO (tmp)]
6447 || num_not_at_initial_offset
6448 || GET_CODE (old) == SUBREG)
6449 real_old = rl->in;
6450 else
6451 real_old = reg_equiv_mem[REGNO (tmp)];
6452 }
6453
6454 second_reload_reg = rld[secondary_reload].reg_rtx;
6455 icode = rl->secondary_in_icode;
6456
6457 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6458 || (rl->in != 0 && rl->out != 0))
6459 {
6460 enum reg_class new_class
6461 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6462 mode, real_oldequiv);
6463
6464 if (new_class == NO_REGS)
6465 second_reload_reg = 0;
6466 else
6467 {
6468 enum insn_code new_icode;
6469 enum machine_mode new_mode;
6470
6471 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6472 REGNO (second_reload_reg)))
6473 oldequiv = old, real_oldequiv = real_old;
6474 else
6475 {
6476 new_icode = reload_in_optab[(int) mode];
6477 if (new_icode != CODE_FOR_nothing
6478 && ((insn_data[(int) new_icode].operand[0].predicate
6479 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6480 (reloadreg, mode)))
6481 || (insn_data[(int) new_icode].operand[1].predicate
6482 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6483 (real_oldequiv, mode)))))
6484 new_icode = CODE_FOR_nothing;
6485
6486 if (new_icode == CODE_FOR_nothing)
6487 new_mode = mode;
6488 else
6489 new_mode = insn_data[(int) new_icode].operand[2].mode;
6490
6491 if (GET_MODE (second_reload_reg) != new_mode)
6492 {
6493 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6494 new_mode))
6495 oldequiv = old, real_oldequiv = real_old;
6496 else
6497 second_reload_reg
6498 = gen_rtx_REG (new_mode,
6499 REGNO (second_reload_reg));
6500 }
6501 }
6502 }
6503 }
6504
6505 /* If we still need a secondary reload register, check
6506 to see if it is being used as a scratch or intermediate
6507 register and generate code appropriately. If we need
6508 a scratch register, use REAL_OLDEQUIV since the form of
6509 the insn may depend on the actual address if it is
6510 a MEM. */
6511
6512 if (second_reload_reg)
6513 {
6514 if (icode != CODE_FOR_nothing)
6515 {
6516 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6517 second_reload_reg));
6518 special = 1;
6519 }
6520 else
6521 {
6522 /* See if we need a scratch register to load the
6523 intermediate register (a tertiary reload). */
6524 enum insn_code tertiary_icode
6525 = rld[secondary_reload].secondary_in_icode;
6526
6527 if (tertiary_icode != CODE_FOR_nothing)
6528 {
6529 rtx third_reload_reg
6530 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6531
6532 emit_insn ((GEN_FCN (tertiary_icode)
6533 (second_reload_reg, real_oldequiv,
6534 third_reload_reg)));
6535 }
6536 else
6537 gen_reload (second_reload_reg, real_oldequiv,
6538 rl->opnum,
6539 rl->when_needed);
6540
6541 oldequiv = second_reload_reg;
6542 }
6543 }
6544 }
6545 #endif
6546
6547 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6548 {
6549 rtx real_oldequiv = oldequiv;
6550
6551 if ((GET_CODE (oldequiv) == REG
6552 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6553 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6554 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6555 || (GET_CODE (oldequiv) == SUBREG
6556 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6557 && (REGNO (SUBREG_REG (oldequiv))
6558 >= FIRST_PSEUDO_REGISTER)
6559 && ((reg_equiv_memory_loc
6560 [REGNO (SUBREG_REG (oldequiv))] != 0)
6561 || (reg_equiv_constant
6562 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6563 || (CONSTANT_P (oldequiv)
6564 && PREFERRED_RELOAD_CLASS (oldequiv,
6565 REGNO_REG_CLASS (REGNO (reloadreg))) == NO_REGS))
6566 real_oldequiv = rl->in;
6567 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6568 rl->when_needed);
6569 }
6570
6571 if (flag_non_call_exceptions)
6572 copy_eh_notes (insn, get_insns ());
6573
6574 /* End this sequence. */
6575 *where = get_insns ();
6576 end_sequence ();
6577
6578 /* Update reload_override_in so that delete_address_reloads_1
6579 can see the actual register usage. */
6580 if (oldequiv_reg)
6581 reload_override_in[j] = oldequiv;
6582 }
6583
6584 /* Generate insns to for the output reload RL, which is for the insn described
6585 by CHAIN and has the number J. */
6586 static void
6587 emit_output_reload_insns (chain, rl, j)
6588 struct insn_chain *chain;
6589 struct reload *rl;
6590 int j;
6591 {
6592 rtx reloadreg = rl->reg_rtx;
6593 rtx insn = chain->insn;
6594 int special = 0;
6595 rtx old = rl->out;
6596 enum machine_mode mode = GET_MODE (old);
6597 rtx p;
6598
6599 if (rl->when_needed == RELOAD_OTHER)
6600 start_sequence ();
6601 else
6602 push_to_sequence (output_reload_insns[rl->opnum]);
6603
6604 /* Determine the mode to reload in.
6605 See comments above (for input reloading). */
6606
6607 if (mode == VOIDmode)
6608 {
6609 /* VOIDmode should never happen for an output. */
6610 if (asm_noperands (PATTERN (insn)) < 0)
6611 /* It's the compiler's fault. */
6612 fatal_insn ("VOIDmode on an output", insn);
6613 error_for_asm (insn, "output operand is constant in `asm'");
6614 /* Prevent crash--use something we know is valid. */
6615 mode = word_mode;
6616 old = gen_rtx_REG (mode, REGNO (reloadreg));
6617 }
6618
6619 if (GET_MODE (reloadreg) != mode)
6620 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6621
6622 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6623
6624 /* If we need two reload regs, set RELOADREG to the intermediate
6625 one, since it will be stored into OLD. We might need a secondary
6626 register only for an input reload, so check again here. */
6627
6628 if (rl->secondary_out_reload >= 0)
6629 {
6630 rtx real_old = old;
6631
6632 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6633 && reg_equiv_mem[REGNO (old)] != 0)
6634 real_old = reg_equiv_mem[REGNO (old)];
6635
6636 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6637 mode, real_old)
6638 != NO_REGS))
6639 {
6640 rtx second_reloadreg = reloadreg;
6641 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6642
6643 /* See if RELOADREG is to be used as a scratch register
6644 or as an intermediate register. */
6645 if (rl->secondary_out_icode != CODE_FOR_nothing)
6646 {
6647 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6648 (real_old, second_reloadreg, reloadreg)));
6649 special = 1;
6650 }
6651 else
6652 {
6653 /* See if we need both a scratch and intermediate reload
6654 register. */
6655
6656 int secondary_reload = rl->secondary_out_reload;
6657 enum insn_code tertiary_icode
6658 = rld[secondary_reload].secondary_out_icode;
6659
6660 if (GET_MODE (reloadreg) != mode)
6661 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6662
6663 if (tertiary_icode != CODE_FOR_nothing)
6664 {
6665 rtx third_reloadreg
6666 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6667 rtx tem;
6668
6669 /* Copy primary reload reg to secondary reload reg.
6670 (Note that these have been swapped above, then
6671 secondary reload reg to OLD using our insn.) */
6672
6673 /* If REAL_OLD is a paradoxical SUBREG, remove it
6674 and try to put the opposite SUBREG on
6675 RELOADREG. */
6676 if (GET_CODE (real_old) == SUBREG
6677 && (GET_MODE_SIZE (GET_MODE (real_old))
6678 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6679 && 0 != (tem = gen_lowpart_common
6680 (GET_MODE (SUBREG_REG (real_old)),
6681 reloadreg)))
6682 real_old = SUBREG_REG (real_old), reloadreg = tem;
6683
6684 gen_reload (reloadreg, second_reloadreg,
6685 rl->opnum, rl->when_needed);
6686 emit_insn ((GEN_FCN (tertiary_icode)
6687 (real_old, reloadreg, third_reloadreg)));
6688 special = 1;
6689 }
6690
6691 else
6692 /* Copy between the reload regs here and then to
6693 OUT later. */
6694
6695 gen_reload (reloadreg, second_reloadreg,
6696 rl->opnum, rl->when_needed);
6697 }
6698 }
6699 }
6700 #endif
6701
6702 /* Output the last reload insn. */
6703 if (! special)
6704 {
6705 rtx set;
6706
6707 /* Don't output the last reload if OLD is not the dest of
6708 INSN and is in the src and is clobbered by INSN. */
6709 if (! flag_expensive_optimizations
6710 || GET_CODE (old) != REG
6711 || !(set = single_set (insn))
6712 || rtx_equal_p (old, SET_DEST (set))
6713 || !reg_mentioned_p (old, SET_SRC (set))
6714 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6715 gen_reload (old, reloadreg, rl->opnum,
6716 rl->when_needed);
6717 }
6718
6719 /* Look at all insns we emitted, just to be safe. */
6720 for (p = get_insns (); p; p = NEXT_INSN (p))
6721 if (INSN_P (p))
6722 {
6723 rtx pat = PATTERN (p);
6724
6725 /* If this output reload doesn't come from a spill reg,
6726 clear any memory of reloaded copies of the pseudo reg.
6727 If this output reload comes from a spill reg,
6728 reg_has_output_reload will make this do nothing. */
6729 note_stores (pat, forget_old_reloads_1, NULL);
6730
6731 if (reg_mentioned_p (rl->reg_rtx, pat))
6732 {
6733 rtx set = single_set (insn);
6734 if (reload_spill_index[j] < 0
6735 && set
6736 && SET_SRC (set) == rl->reg_rtx)
6737 {
6738 int src = REGNO (SET_SRC (set));
6739
6740 reload_spill_index[j] = src;
6741 SET_HARD_REG_BIT (reg_is_output_reload, src);
6742 if (find_regno_note (insn, REG_DEAD, src))
6743 SET_HARD_REG_BIT (reg_reloaded_died, src);
6744 }
6745 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6746 {
6747 int s = rl->secondary_out_reload;
6748 set = single_set (p);
6749 /* If this reload copies only to the secondary reload
6750 register, the secondary reload does the actual
6751 store. */
6752 if (s >= 0 && set == NULL_RTX)
6753 /* We can't tell what function the secondary reload
6754 has and where the actual store to the pseudo is
6755 made; leave new_spill_reg_store alone. */
6756 ;
6757 else if (s >= 0
6758 && SET_SRC (set) == rl->reg_rtx
6759 && SET_DEST (set) == rld[s].reg_rtx)
6760 {
6761 /* Usually the next instruction will be the
6762 secondary reload insn; if we can confirm
6763 that it is, setting new_spill_reg_store to
6764 that insn will allow an extra optimization. */
6765 rtx s_reg = rld[s].reg_rtx;
6766 rtx next = NEXT_INSN (p);
6767 rld[s].out = rl->out;
6768 rld[s].out_reg = rl->out_reg;
6769 set = single_set (next);
6770 if (set && SET_SRC (set) == s_reg
6771 && ! new_spill_reg_store[REGNO (s_reg)])
6772 {
6773 SET_HARD_REG_BIT (reg_is_output_reload,
6774 REGNO (s_reg));
6775 new_spill_reg_store[REGNO (s_reg)] = next;
6776 }
6777 }
6778 else
6779 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6780 }
6781 }
6782 }
6783
6784 if (rl->when_needed == RELOAD_OTHER)
6785 {
6786 emit_insns (other_output_reload_insns[rl->opnum]);
6787 other_output_reload_insns[rl->opnum] = get_insns ();
6788 }
6789 else
6790 output_reload_insns[rl->opnum] = get_insns ();
6791
6792 if (flag_non_call_exceptions)
6793 copy_eh_notes (insn, get_insns ());
6794
6795 end_sequence ();
6796 }
6797
6798 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6799 and has the number J. */
6800 static void
6801 do_input_reload (chain, rl, j)
6802 struct insn_chain *chain;
6803 struct reload *rl;
6804 int j;
6805 {
6806 int expect_occurrences = 1;
6807 rtx insn = chain->insn;
6808 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6809 ? rl->in_reg : rl->in);
6810
6811 if (old != 0
6812 /* AUTO_INC reloads need to be handled even if inherited. We got an
6813 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6814 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6815 && ! rtx_equal_p (rl->reg_rtx, old)
6816 && rl->reg_rtx != 0)
6817 emit_input_reload_insns (chain, rld + j, old, j);
6818
6819 /* When inheriting a wider reload, we have a MEM in rl->in,
6820 e.g. inheriting a SImode output reload for
6821 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6822 if (optimize && reload_inherited[j] && rl->in
6823 && GET_CODE (rl->in) == MEM
6824 && GET_CODE (rl->in_reg) == MEM
6825 && reload_spill_index[j] >= 0
6826 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6827 {
6828 expect_occurrences
6829 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
6830 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6831 }
6832
6833 /* If we are reloading a register that was recently stored in with an
6834 output-reload, see if we can prove there was
6835 actually no need to store the old value in it. */
6836
6837 if (optimize
6838 && (reload_inherited[j] || reload_override_in[j])
6839 && rl->reg_rtx
6840 && GET_CODE (rl->reg_rtx) == REG
6841 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6842 #if 0
6843 /* There doesn't seem to be any reason to restrict this to pseudos
6844 and doing so loses in the case where we are copying from a
6845 register of the wrong class. */
6846 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6847 >= FIRST_PSEUDO_REGISTER)
6848 #endif
6849 /* The insn might have already some references to stackslots
6850 replaced by MEMs, while reload_out_reg still names the
6851 original pseudo. */
6852 && (dead_or_set_p (insn,
6853 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6854 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6855 rl->out_reg)))
6856 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6857 }
6858
6859 /* Do output reloading for reload RL, which is for the insn described by
6860 CHAIN and has the number J.
6861 ??? At some point we need to support handling output reloads of
6862 JUMP_INSNs or insns that set cc0. */
6863 static void
6864 do_output_reload (chain, rl, j)
6865 struct insn_chain *chain;
6866 struct reload *rl;
6867 int j;
6868 {
6869 rtx note, old;
6870 rtx insn = chain->insn;
6871 /* If this is an output reload that stores something that is
6872 not loaded in this same reload, see if we can eliminate a previous
6873 store. */
6874 rtx pseudo = rl->out_reg;
6875
6876 if (pseudo
6877 && GET_CODE (pseudo) == REG
6878 && ! rtx_equal_p (rl->in_reg, pseudo)
6879 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6880 && reg_last_reload_reg[REGNO (pseudo)])
6881 {
6882 int pseudo_no = REGNO (pseudo);
6883 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6884
6885 /* We don't need to test full validity of last_regno for
6886 inherit here; we only want to know if the store actually
6887 matches the pseudo. */
6888 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6889 && reg_reloaded_contents[last_regno] == pseudo_no
6890 && spill_reg_store[last_regno]
6891 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6892 delete_output_reload (insn, j, last_regno);
6893 }
6894
6895 old = rl->out_reg;
6896 if (old == 0
6897 || rl->reg_rtx == old
6898 || rl->reg_rtx == 0)
6899 return;
6900
6901 /* An output operand that dies right away does need a reload,
6902 but need not be copied from it. Show the new location in the
6903 REG_UNUSED note. */
6904 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6905 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6906 {
6907 XEXP (note, 0) = rl->reg_rtx;
6908 return;
6909 }
6910 /* Likewise for a SUBREG of an operand that dies. */
6911 else if (GET_CODE (old) == SUBREG
6912 && GET_CODE (SUBREG_REG (old)) == REG
6913 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6914 SUBREG_REG (old))))
6915 {
6916 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6917 rl->reg_rtx);
6918 return;
6919 }
6920 else if (GET_CODE (old) == SCRATCH)
6921 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6922 but we don't want to make an output reload. */
6923 return;
6924
6925 /* If is a JUMP_INSN, we can't support output reloads yet. */
6926 if (GET_CODE (insn) == JUMP_INSN)
6927 abort ();
6928
6929 emit_output_reload_insns (chain, rld + j, j);
6930 }
6931
6932 /* Output insns to reload values in and out of the chosen reload regs. */
6933
6934 static void
6935 emit_reload_insns (chain)
6936 struct insn_chain *chain;
6937 {
6938 rtx insn = chain->insn;
6939
6940 register int j;
6941
6942 CLEAR_HARD_REG_SET (reg_reloaded_died);
6943
6944 for (j = 0; j < reload_n_operands; j++)
6945 input_reload_insns[j] = input_address_reload_insns[j]
6946 = inpaddr_address_reload_insns[j]
6947 = output_reload_insns[j] = output_address_reload_insns[j]
6948 = outaddr_address_reload_insns[j]
6949 = other_output_reload_insns[j] = 0;
6950 other_input_address_reload_insns = 0;
6951 other_input_reload_insns = 0;
6952 operand_reload_insns = 0;
6953 other_operand_reload_insns = 0;
6954
6955 /* Dump reloads into the dump file. */
6956 if (rtl_dump_file)
6957 {
6958 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6959 debug_reload_to_stream (rtl_dump_file);
6960 }
6961
6962 /* Now output the instructions to copy the data into and out of the
6963 reload registers. Do these in the order that the reloads were reported,
6964 since reloads of base and index registers precede reloads of operands
6965 and the operands may need the base and index registers reloaded. */
6966
6967 for (j = 0; j < n_reloads; j++)
6968 {
6969 if (rld[j].reg_rtx
6970 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6971 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6972
6973 do_input_reload (chain, rld + j, j);
6974 do_output_reload (chain, rld + j, j);
6975 }
6976
6977 /* Now write all the insns we made for reloads in the order expected by
6978 the allocation functions. Prior to the insn being reloaded, we write
6979 the following reloads:
6980
6981 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6982
6983 RELOAD_OTHER reloads.
6984
6985 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6986 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6987 RELOAD_FOR_INPUT reload for the operand.
6988
6989 RELOAD_FOR_OPADDR_ADDRS reloads.
6990
6991 RELOAD_FOR_OPERAND_ADDRESS reloads.
6992
6993 After the insn being reloaded, we write the following:
6994
6995 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
6996 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
6997 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
6998 reloads for the operand. The RELOAD_OTHER output reloads are
6999 output in descending order by reload number. */
7000
7001 emit_insns_before (other_input_address_reload_insns, insn);
7002 emit_insns_before (other_input_reload_insns, insn);
7003
7004 for (j = 0; j < reload_n_operands; j++)
7005 {
7006 emit_insns_before (inpaddr_address_reload_insns[j], insn);
7007 emit_insns_before (input_address_reload_insns[j], insn);
7008 emit_insns_before (input_reload_insns[j], insn);
7009 }
7010
7011 emit_insns_before (other_operand_reload_insns, insn);
7012 emit_insns_before (operand_reload_insns, insn);
7013
7014 for (j = 0; j < reload_n_operands; j++)
7015 {
7016 rtx x = emit_insns_after (outaddr_address_reload_insns[j], insn);
7017 x = emit_insns_after (output_address_reload_insns[j], x);
7018 x = emit_insns_after (output_reload_insns[j], x);
7019 emit_insns_after (other_output_reload_insns[j], x);
7020 }
7021
7022 /* For all the spill regs newly reloaded in this instruction,
7023 record what they were reloaded from, so subsequent instructions
7024 can inherit the reloads.
7025
7026 Update spill_reg_store for the reloads of this insn.
7027 Copy the elements that were updated in the loop above. */
7028
7029 for (j = 0; j < n_reloads; j++)
7030 {
7031 register int r = reload_order[j];
7032 register int i = reload_spill_index[r];
7033
7034 /* If this is a non-inherited input reload from a pseudo, we must
7035 clear any memory of a previous store to the same pseudo. Only do
7036 something if there will not be an output reload for the pseudo
7037 being reloaded. */
7038 if (rld[r].in_reg != 0
7039 && ! (reload_inherited[r] || reload_override_in[r]))
7040 {
7041 rtx reg = rld[r].in_reg;
7042
7043 if (GET_CODE (reg) == SUBREG)
7044 reg = SUBREG_REG (reg);
7045
7046 if (GET_CODE (reg) == REG
7047 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7048 && ! reg_has_output_reload[REGNO (reg)])
7049 {
7050 int nregno = REGNO (reg);
7051
7052 if (reg_last_reload_reg[nregno])
7053 {
7054 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7055
7056 if (reg_reloaded_contents[last_regno] == nregno)
7057 spill_reg_store[last_regno] = 0;
7058 }
7059 }
7060 }
7061
7062 /* I is nonneg if this reload used a register.
7063 If rld[r].reg_rtx is 0, this is an optional reload
7064 that we opted to ignore. */
7065
7066 if (i >= 0 && rld[r].reg_rtx != 0)
7067 {
7068 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7069 int k;
7070 int part_reaches_end = 0;
7071 int all_reaches_end = 1;
7072
7073 /* For a multi register reload, we need to check if all or part
7074 of the value lives to the end. */
7075 for (k = 0; k < nr; k++)
7076 {
7077 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7078 rld[r].when_needed))
7079 part_reaches_end = 1;
7080 else
7081 all_reaches_end = 0;
7082 }
7083
7084 /* Ignore reloads that don't reach the end of the insn in
7085 entirety. */
7086 if (all_reaches_end)
7087 {
7088 /* First, clear out memory of what used to be in this spill reg.
7089 If consecutive registers are used, clear them all. */
7090
7091 for (k = 0; k < nr; k++)
7092 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7093
7094 /* Maybe the spill reg contains a copy of reload_out. */
7095 if (rld[r].out != 0
7096 && (GET_CODE (rld[r].out) == REG
7097 #ifdef AUTO_INC_DEC
7098 || ! rld[r].out_reg
7099 #endif
7100 || GET_CODE (rld[r].out_reg) == REG))
7101 {
7102 rtx out = (GET_CODE (rld[r].out) == REG
7103 ? rld[r].out
7104 : rld[r].out_reg
7105 ? rld[r].out_reg
7106 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7107 register int nregno = REGNO (out);
7108 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7109 : HARD_REGNO_NREGS (nregno,
7110 GET_MODE (rld[r].reg_rtx)));
7111
7112 spill_reg_store[i] = new_spill_reg_store[i];
7113 spill_reg_stored_to[i] = out;
7114 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7115
7116 /* If NREGNO is a hard register, it may occupy more than
7117 one register. If it does, say what is in the
7118 rest of the registers assuming that both registers
7119 agree on how many words the object takes. If not,
7120 invalidate the subsequent registers. */
7121
7122 if (nregno < FIRST_PSEUDO_REGISTER)
7123 for (k = 1; k < nnr; k++)
7124 reg_last_reload_reg[nregno + k]
7125 = (nr == nnr
7126 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7127 REGNO (rld[r].reg_rtx) + k)
7128 : 0);
7129
7130 /* Now do the inverse operation. */
7131 for (k = 0; k < nr; k++)
7132 {
7133 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7134 reg_reloaded_contents[i + k]
7135 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7136 ? nregno
7137 : nregno + k);
7138 reg_reloaded_insn[i + k] = insn;
7139 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7140 }
7141 }
7142
7143 /* Maybe the spill reg contains a copy of reload_in. Only do
7144 something if there will not be an output reload for
7145 the register being reloaded. */
7146 else if (rld[r].out_reg == 0
7147 && rld[r].in != 0
7148 && ((GET_CODE (rld[r].in) == REG
7149 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7150 && ! reg_has_output_reload[REGNO (rld[r].in)])
7151 || (GET_CODE (rld[r].in_reg) == REG
7152 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7153 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7154 {
7155 register int nregno;
7156 int nnr;
7157
7158 if (GET_CODE (rld[r].in) == REG
7159 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7160 nregno = REGNO (rld[r].in);
7161 else if (GET_CODE (rld[r].in_reg) == REG)
7162 nregno = REGNO (rld[r].in_reg);
7163 else
7164 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7165
7166 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7167 : HARD_REGNO_NREGS (nregno,
7168 GET_MODE (rld[r].reg_rtx)));
7169
7170 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7171
7172 if (nregno < FIRST_PSEUDO_REGISTER)
7173 for (k = 1; k < nnr; k++)
7174 reg_last_reload_reg[nregno + k]
7175 = (nr == nnr
7176 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7177 REGNO (rld[r].reg_rtx) + k)
7178 : 0);
7179
7180 /* Unless we inherited this reload, show we haven't
7181 recently done a store.
7182 Previous stores of inherited auto_inc expressions
7183 also have to be discarded. */
7184 if (! reload_inherited[r]
7185 || (rld[r].out && ! rld[r].out_reg))
7186 spill_reg_store[i] = 0;
7187
7188 for (k = 0; k < nr; k++)
7189 {
7190 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7191 reg_reloaded_contents[i + k]
7192 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7193 ? nregno
7194 : nregno + k);
7195 reg_reloaded_insn[i + k] = insn;
7196 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7197 }
7198 }
7199 }
7200
7201 /* However, if part of the reload reaches the end, then we must
7202 invalidate the old info for the part that survives to the end. */
7203 else if (part_reaches_end)
7204 {
7205 for (k = 0; k < nr; k++)
7206 if (reload_reg_reaches_end_p (i + k,
7207 rld[r].opnum,
7208 rld[r].when_needed))
7209 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7210 }
7211 }
7212
7213 /* The following if-statement was #if 0'd in 1.34 (or before...).
7214 It's reenabled in 1.35 because supposedly nothing else
7215 deals with this problem. */
7216
7217 /* If a register gets output-reloaded from a non-spill register,
7218 that invalidates any previous reloaded copy of it.
7219 But forget_old_reloads_1 won't get to see it, because
7220 it thinks only about the original insn. So invalidate it here. */
7221 if (i < 0 && rld[r].out != 0
7222 && (GET_CODE (rld[r].out) == REG
7223 || (GET_CODE (rld[r].out) == MEM
7224 && GET_CODE (rld[r].out_reg) == REG)))
7225 {
7226 rtx out = (GET_CODE (rld[r].out) == REG
7227 ? rld[r].out : rld[r].out_reg);
7228 register int nregno = REGNO (out);
7229 if (nregno >= FIRST_PSEUDO_REGISTER)
7230 {
7231 rtx src_reg, store_insn = NULL_RTX;
7232
7233 reg_last_reload_reg[nregno] = 0;
7234
7235 /* If we can find a hard register that is stored, record
7236 the storing insn so that we may delete this insn with
7237 delete_output_reload. */
7238 src_reg = rld[r].reg_rtx;
7239
7240 /* If this is an optional reload, try to find the source reg
7241 from an input reload. */
7242 if (! src_reg)
7243 {
7244 rtx set = single_set (insn);
7245 if (set && SET_DEST (set) == rld[r].out)
7246 {
7247 int k;
7248
7249 src_reg = SET_SRC (set);
7250 store_insn = insn;
7251 for (k = 0; k < n_reloads; k++)
7252 {
7253 if (rld[k].in == src_reg)
7254 {
7255 src_reg = rld[k].reg_rtx;
7256 break;
7257 }
7258 }
7259 }
7260 }
7261 else
7262 store_insn = new_spill_reg_store[REGNO (src_reg)];
7263 if (src_reg && GET_CODE (src_reg) == REG
7264 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7265 {
7266 int src_regno = REGNO (src_reg);
7267 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7268 /* The place where to find a death note varies with
7269 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7270 necessarily checked exactly in the code that moves
7271 notes, so just check both locations. */
7272 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7273 if (! note && store_insn)
7274 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7275 while (nr-- > 0)
7276 {
7277 spill_reg_store[src_regno + nr] = store_insn;
7278 spill_reg_stored_to[src_regno + nr] = out;
7279 reg_reloaded_contents[src_regno + nr] = nregno;
7280 reg_reloaded_insn[src_regno + nr] = store_insn;
7281 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7282 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7283 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7284 if (note)
7285 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7286 else
7287 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7288 }
7289 reg_last_reload_reg[nregno] = src_reg;
7290 }
7291 }
7292 else
7293 {
7294 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7295
7296 while (num_regs-- > 0)
7297 reg_last_reload_reg[nregno + num_regs] = 0;
7298 }
7299 }
7300 }
7301 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7302 }
7303 \f
7304 /* Emit code to perform a reload from IN (which may be a reload register) to
7305 OUT (which may also be a reload register). IN or OUT is from operand
7306 OPNUM with reload type TYPE.
7307
7308 Returns first insn emitted. */
7309
7310 rtx
7311 gen_reload (out, in, opnum, type)
7312 rtx out;
7313 rtx in;
7314 int opnum;
7315 enum reload_type type;
7316 {
7317 rtx last = get_last_insn ();
7318 rtx tem;
7319
7320 /* If IN is a paradoxical SUBREG, remove it and try to put the
7321 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7322 if (GET_CODE (in) == SUBREG
7323 && (GET_MODE_SIZE (GET_MODE (in))
7324 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7325 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7326 in = SUBREG_REG (in), out = tem;
7327 else if (GET_CODE (out) == SUBREG
7328 && (GET_MODE_SIZE (GET_MODE (out))
7329 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7330 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7331 out = SUBREG_REG (out), in = tem;
7332
7333 /* How to do this reload can get quite tricky. Normally, we are being
7334 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7335 register that didn't get a hard register. In that case we can just
7336 call emit_move_insn.
7337
7338 We can also be asked to reload a PLUS that adds a register or a MEM to
7339 another register, constant or MEM. This can occur during frame pointer
7340 elimination and while reloading addresses. This case is handled by
7341 trying to emit a single insn to perform the add. If it is not valid,
7342 we use a two insn sequence.
7343
7344 Finally, we could be called to handle an 'o' constraint by putting
7345 an address into a register. In that case, we first try to do this
7346 with a named pattern of "reload_load_address". If no such pattern
7347 exists, we just emit a SET insn and hope for the best (it will normally
7348 be valid on machines that use 'o').
7349
7350 This entire process is made complex because reload will never
7351 process the insns we generate here and so we must ensure that
7352 they will fit their constraints and also by the fact that parts of
7353 IN might be being reloaded separately and replaced with spill registers.
7354 Because of this, we are, in some sense, just guessing the right approach
7355 here. The one listed above seems to work.
7356
7357 ??? At some point, this whole thing needs to be rethought. */
7358
7359 if (GET_CODE (in) == PLUS
7360 && (GET_CODE (XEXP (in, 0)) == REG
7361 || GET_CODE (XEXP (in, 0)) == SUBREG
7362 || GET_CODE (XEXP (in, 0)) == MEM)
7363 && (GET_CODE (XEXP (in, 1)) == REG
7364 || GET_CODE (XEXP (in, 1)) == SUBREG
7365 || CONSTANT_P (XEXP (in, 1))
7366 || GET_CODE (XEXP (in, 1)) == MEM))
7367 {
7368 /* We need to compute the sum of a register or a MEM and another
7369 register, constant, or MEM, and put it into the reload
7370 register. The best possible way of doing this is if the machine
7371 has a three-operand ADD insn that accepts the required operands.
7372
7373 The simplest approach is to try to generate such an insn and see if it
7374 is recognized and matches its constraints. If so, it can be used.
7375
7376 It might be better not to actually emit the insn unless it is valid,
7377 but we need to pass the insn as an operand to `recog' and
7378 `extract_insn' and it is simpler to emit and then delete the insn if
7379 not valid than to dummy things up. */
7380
7381 rtx op0, op1, tem, insn;
7382 int code;
7383
7384 op0 = find_replacement (&XEXP (in, 0));
7385 op1 = find_replacement (&XEXP (in, 1));
7386
7387 /* Since constraint checking is strict, commutativity won't be
7388 checked, so we need to do that here to avoid spurious failure
7389 if the add instruction is two-address and the second operand
7390 of the add is the same as the reload reg, which is frequently
7391 the case. If the insn would be A = B + A, rearrange it so
7392 it will be A = A + B as constrain_operands expects. */
7393
7394 if (GET_CODE (XEXP (in, 1)) == REG
7395 && REGNO (out) == REGNO (XEXP (in, 1)))
7396 tem = op0, op0 = op1, op1 = tem;
7397
7398 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7399 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7400
7401 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7402 code = recog_memoized (insn);
7403
7404 if (code >= 0)
7405 {
7406 extract_insn (insn);
7407 /* We want constrain operands to treat this insn strictly in
7408 its validity determination, i.e., the way it would after reload
7409 has completed. */
7410 if (constrain_operands (1))
7411 return insn;
7412 }
7413
7414 delete_insns_since (last);
7415
7416 /* If that failed, we must use a conservative two-insn sequence.
7417
7418 Use a move to copy one operand into the reload register. Prefer
7419 to reload a constant, MEM or pseudo since the move patterns can
7420 handle an arbitrary operand. If OP1 is not a constant, MEM or
7421 pseudo and OP1 is not a valid operand for an add instruction, then
7422 reload OP1.
7423
7424 After reloading one of the operands into the reload register, add
7425 the reload register to the output register.
7426
7427 If there is another way to do this for a specific machine, a
7428 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7429 we emit below. */
7430
7431 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7432
7433 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7434 || (GET_CODE (op1) == REG
7435 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7436 || (code != CODE_FOR_nothing
7437 && ! ((*insn_data[code].operand[2].predicate)
7438 (op1, insn_data[code].operand[2].mode))))
7439 tem = op0, op0 = op1, op1 = tem;
7440
7441 gen_reload (out, op0, opnum, type);
7442
7443 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7444 This fixes a problem on the 32K where the stack pointer cannot
7445 be used as an operand of an add insn. */
7446
7447 if (rtx_equal_p (op0, op1))
7448 op1 = out;
7449
7450 insn = emit_insn (gen_add2_insn (out, op1));
7451
7452 /* If that failed, copy the address register to the reload register.
7453 Then add the constant to the reload register. */
7454
7455 code = recog_memoized (insn);
7456
7457 if (code >= 0)
7458 {
7459 extract_insn (insn);
7460 /* We want constrain operands to treat this insn strictly in
7461 its validity determination, i.e., the way it would after reload
7462 has completed. */
7463 if (constrain_operands (1))
7464 {
7465 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7466 REG_NOTES (insn)
7467 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7468 return insn;
7469 }
7470 }
7471
7472 delete_insns_since (last);
7473
7474 gen_reload (out, op1, opnum, type);
7475 insn = emit_insn (gen_add2_insn (out, op0));
7476 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7477 }
7478
7479 #ifdef SECONDARY_MEMORY_NEEDED
7480 /* If we need a memory location to do the move, do it that way. */
7481 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
7482 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
7483 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
7484 REGNO_REG_CLASS (REGNO (out)),
7485 GET_MODE (out)))
7486 {
7487 /* Get the memory to use and rewrite both registers to its mode. */
7488 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7489
7490 if (GET_MODE (loc) != GET_MODE (out))
7491 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7492
7493 if (GET_MODE (loc) != GET_MODE (in))
7494 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7495
7496 gen_reload (loc, in, opnum, type);
7497 gen_reload (out, loc, opnum, type);
7498 }
7499 #endif
7500
7501 /* If IN is a simple operand, use gen_move_insn. */
7502 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7503 emit_insn (gen_move_insn (out, in));
7504
7505 #ifdef HAVE_reload_load_address
7506 else if (HAVE_reload_load_address)
7507 emit_insn (gen_reload_load_address (out, in));
7508 #endif
7509
7510 /* Otherwise, just write (set OUT IN) and hope for the best. */
7511 else
7512 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7513
7514 /* Return the first insn emitted.
7515 We can not just return get_last_insn, because there may have
7516 been multiple instructions emitted. Also note that gen_move_insn may
7517 emit more than one insn itself, so we can not assume that there is one
7518 insn emitted per emit_insn_before call. */
7519
7520 return last ? NEXT_INSN (last) : get_insns ();
7521 }
7522 \f
7523 /* Delete a previously made output-reload
7524 whose result we now believe is not needed.
7525 First we double-check.
7526
7527 INSN is the insn now being processed.
7528 LAST_RELOAD_REG is the hard register number for which we want to delete
7529 the last output reload.
7530 J is the reload-number that originally used REG. The caller has made
7531 certain that reload J doesn't use REG any longer for input. */
7532
7533 static void
7534 delete_output_reload (insn, j, last_reload_reg)
7535 rtx insn;
7536 int j;
7537 int last_reload_reg;
7538 {
7539 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7540 rtx reg = spill_reg_stored_to[last_reload_reg];
7541 int k;
7542 int n_occurrences;
7543 int n_inherited = 0;
7544 register rtx i1;
7545 rtx substed;
7546
7547 /* Get the raw pseudo-register referred to. */
7548
7549 while (GET_CODE (reg) == SUBREG)
7550 reg = SUBREG_REG (reg);
7551 substed = reg_equiv_memory_loc[REGNO (reg)];
7552
7553 /* This is unsafe if the operand occurs more often in the current
7554 insn than it is inherited. */
7555 for (k = n_reloads - 1; k >= 0; k--)
7556 {
7557 rtx reg2 = rld[k].in;
7558 if (! reg2)
7559 continue;
7560 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7561 reg2 = rld[k].in_reg;
7562 #ifdef AUTO_INC_DEC
7563 if (rld[k].out && ! rld[k].out_reg)
7564 reg2 = XEXP (rld[k].in_reg, 0);
7565 #endif
7566 while (GET_CODE (reg2) == SUBREG)
7567 reg2 = SUBREG_REG (reg2);
7568 if (rtx_equal_p (reg2, reg))
7569 {
7570 if (reload_inherited[k] || reload_override_in[k] || k == j)
7571 {
7572 n_inherited++;
7573 reg2 = rld[k].out_reg;
7574 if (! reg2)
7575 continue;
7576 while (GET_CODE (reg2) == SUBREG)
7577 reg2 = XEXP (reg2, 0);
7578 if (rtx_equal_p (reg2, reg))
7579 n_inherited++;
7580 }
7581 else
7582 return;
7583 }
7584 }
7585 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7586 if (substed)
7587 n_occurrences += count_occurrences (PATTERN (insn),
7588 eliminate_regs (substed, 0,
7589 NULL_RTX), 0);
7590 if (n_occurrences > n_inherited)
7591 return;
7592
7593 /* If the pseudo-reg we are reloading is no longer referenced
7594 anywhere between the store into it and here,
7595 and no jumps or labels intervene, then the value can get
7596 here through the reload reg alone.
7597 Otherwise, give up--return. */
7598 for (i1 = NEXT_INSN (output_reload_insn);
7599 i1 != insn; i1 = NEXT_INSN (i1))
7600 {
7601 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7602 return;
7603 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7604 && reg_mentioned_p (reg, PATTERN (i1)))
7605 {
7606 /* If this is USE in front of INSN, we only have to check that
7607 there are no more references than accounted for by inheritance. */
7608 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7609 {
7610 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7611 i1 = NEXT_INSN (i1);
7612 }
7613 if (n_occurrences <= n_inherited && i1 == insn)
7614 break;
7615 return;
7616 }
7617 }
7618
7619 /* The caller has already checked that REG dies or is set in INSN.
7620 It has also checked that we are optimizing, and thus some inaccurancies
7621 in the debugging information are acceptable.
7622 So we could just delete output_reload_insn.
7623 But in some cases we can improve the debugging information without
7624 sacrificing optimization - maybe even improving the code:
7625 See if the pseudo reg has been completely replaced
7626 with reload regs. If so, delete the store insn
7627 and forget we had a stack slot for the pseudo. */
7628 if (rld[j].out != rld[j].in
7629 && REG_N_DEATHS (REGNO (reg)) == 1
7630 && REG_N_SETS (REGNO (reg)) == 1
7631 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7632 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7633 {
7634 rtx i2;
7635
7636 /* We know that it was used only between here
7637 and the beginning of the current basic block.
7638 (We also know that the last use before INSN was
7639 the output reload we are thinking of deleting, but never mind that.)
7640 Search that range; see if any ref remains. */
7641 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7642 {
7643 rtx set = single_set (i2);
7644
7645 /* Uses which just store in the pseudo don't count,
7646 since if they are the only uses, they are dead. */
7647 if (set != 0 && SET_DEST (set) == reg)
7648 continue;
7649 if (GET_CODE (i2) == CODE_LABEL
7650 || GET_CODE (i2) == JUMP_INSN)
7651 break;
7652 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7653 && reg_mentioned_p (reg, PATTERN (i2)))
7654 {
7655 /* Some other ref remains; just delete the output reload we
7656 know to be dead. */
7657 delete_address_reloads (output_reload_insn, insn);
7658 delete_insn (output_reload_insn);
7659 return;
7660 }
7661 }
7662
7663 /* Delete the now-dead stores into this pseudo. */
7664 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7665 {
7666 rtx set = single_set (i2);
7667
7668 if (set != 0 && SET_DEST (set) == reg)
7669 {
7670 delete_address_reloads (i2, insn);
7671 /* This might be a basic block head,
7672 thus don't use delete_insn. */
7673 delete_insn (i2);
7674 }
7675 if (GET_CODE (i2) == CODE_LABEL
7676 || GET_CODE (i2) == JUMP_INSN)
7677 break;
7678 }
7679
7680 /* For the debugging info,
7681 say the pseudo lives in this reload reg. */
7682 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7683 alter_reg (REGNO (reg), -1);
7684 }
7685 delete_address_reloads (output_reload_insn, insn);
7686 delete_insn (output_reload_insn);
7687
7688 }
7689
7690 /* We are going to delete DEAD_INSN. Recursively delete loads of
7691 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7692 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7693 static void
7694 delete_address_reloads (dead_insn, current_insn)
7695 rtx dead_insn, current_insn;
7696 {
7697 rtx set = single_set (dead_insn);
7698 rtx set2, dst, prev, next;
7699 if (set)
7700 {
7701 rtx dst = SET_DEST (set);
7702 if (GET_CODE (dst) == MEM)
7703 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7704 }
7705 /* If we deleted the store from a reloaded post_{in,de}c expression,
7706 we can delete the matching adds. */
7707 prev = PREV_INSN (dead_insn);
7708 next = NEXT_INSN (dead_insn);
7709 if (! prev || ! next)
7710 return;
7711 set = single_set (next);
7712 set2 = single_set (prev);
7713 if (! set || ! set2
7714 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7715 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7716 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7717 return;
7718 dst = SET_DEST (set);
7719 if (! rtx_equal_p (dst, SET_DEST (set2))
7720 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7721 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7722 || (INTVAL (XEXP (SET_SRC (set), 1))
7723 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7724 return;
7725 delete_related_insns (prev);
7726 delete_related_insns (next);
7727 }
7728
7729 /* Subfunction of delete_address_reloads: process registers found in X. */
7730 static void
7731 delete_address_reloads_1 (dead_insn, x, current_insn)
7732 rtx dead_insn, x, current_insn;
7733 {
7734 rtx prev, set, dst, i2;
7735 int i, j;
7736 enum rtx_code code = GET_CODE (x);
7737
7738 if (code != REG)
7739 {
7740 const char *fmt = GET_RTX_FORMAT (code);
7741 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7742 {
7743 if (fmt[i] == 'e')
7744 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7745 else if (fmt[i] == 'E')
7746 {
7747 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7748 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7749 current_insn);
7750 }
7751 }
7752 return;
7753 }
7754
7755 if (spill_reg_order[REGNO (x)] < 0)
7756 return;
7757
7758 /* Scan backwards for the insn that sets x. This might be a way back due
7759 to inheritance. */
7760 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7761 {
7762 code = GET_CODE (prev);
7763 if (code == CODE_LABEL || code == JUMP_INSN)
7764 return;
7765 if (GET_RTX_CLASS (code) != 'i')
7766 continue;
7767 if (reg_set_p (x, PATTERN (prev)))
7768 break;
7769 if (reg_referenced_p (x, PATTERN (prev)))
7770 return;
7771 }
7772 if (! prev || INSN_UID (prev) < reload_first_uid)
7773 return;
7774 /* Check that PREV only sets the reload register. */
7775 set = single_set (prev);
7776 if (! set)
7777 return;
7778 dst = SET_DEST (set);
7779 if (GET_CODE (dst) != REG
7780 || ! rtx_equal_p (dst, x))
7781 return;
7782 if (! reg_set_p (dst, PATTERN (dead_insn)))
7783 {
7784 /* Check if DST was used in a later insn -
7785 it might have been inherited. */
7786 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7787 {
7788 if (GET_CODE (i2) == CODE_LABEL)
7789 break;
7790 if (! INSN_P (i2))
7791 continue;
7792 if (reg_referenced_p (dst, PATTERN (i2)))
7793 {
7794 /* If there is a reference to the register in the current insn,
7795 it might be loaded in a non-inherited reload. If no other
7796 reload uses it, that means the register is set before
7797 referenced. */
7798 if (i2 == current_insn)
7799 {
7800 for (j = n_reloads - 1; j >= 0; j--)
7801 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7802 || reload_override_in[j] == dst)
7803 return;
7804 for (j = n_reloads - 1; j >= 0; j--)
7805 if (rld[j].in && rld[j].reg_rtx == dst)
7806 break;
7807 if (j >= 0)
7808 break;
7809 }
7810 return;
7811 }
7812 if (GET_CODE (i2) == JUMP_INSN)
7813 break;
7814 /* If DST is still live at CURRENT_INSN, check if it is used for
7815 any reload. Note that even if CURRENT_INSN sets DST, we still
7816 have to check the reloads. */
7817 if (i2 == current_insn)
7818 {
7819 for (j = n_reloads - 1; j >= 0; j--)
7820 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7821 || reload_override_in[j] == dst)
7822 return;
7823 /* ??? We can't finish the loop here, because dst might be
7824 allocated to a pseudo in this block if no reload in this
7825 block needs any of the clsses containing DST - see
7826 spill_hard_reg. There is no easy way to tell this, so we
7827 have to scan till the end of the basic block. */
7828 }
7829 if (reg_set_p (dst, PATTERN (i2)))
7830 break;
7831 }
7832 }
7833 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7834 reg_reloaded_contents[REGNO (dst)] = -1;
7835 delete_insn (prev);
7836 }
7837 \f
7838 /* Output reload-insns to reload VALUE into RELOADREG.
7839 VALUE is an autoincrement or autodecrement RTX whose operand
7840 is a register or memory location;
7841 so reloading involves incrementing that location.
7842 IN is either identical to VALUE, or some cheaper place to reload from.
7843
7844 INC_AMOUNT is the number to increment or decrement by (always positive).
7845 This cannot be deduced from VALUE.
7846
7847 Return the instruction that stores into RELOADREG. */
7848
7849 static rtx
7850 inc_for_reload (reloadreg, in, value, inc_amount)
7851 rtx reloadreg;
7852 rtx in, value;
7853 int inc_amount;
7854 {
7855 /* REG or MEM to be copied and incremented. */
7856 rtx incloc = XEXP (value, 0);
7857 /* Nonzero if increment after copying. */
7858 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7859 rtx last;
7860 rtx inc;
7861 rtx add_insn;
7862 int code;
7863 rtx store;
7864 rtx real_in = in == value ? XEXP (in, 0) : in;
7865
7866 /* No hard register is equivalent to this register after
7867 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7868 we could inc/dec that register as well (maybe even using it for
7869 the source), but I'm not sure it's worth worrying about. */
7870 if (GET_CODE (incloc) == REG)
7871 reg_last_reload_reg[REGNO (incloc)] = 0;
7872
7873 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7874 inc_amount = -inc_amount;
7875
7876 inc = GEN_INT (inc_amount);
7877
7878 /* If this is post-increment, first copy the location to the reload reg. */
7879 if (post && real_in != reloadreg)
7880 emit_insn (gen_move_insn (reloadreg, real_in));
7881
7882 if (in == value)
7883 {
7884 /* See if we can directly increment INCLOC. Use a method similar to
7885 that in gen_reload. */
7886
7887 last = get_last_insn ();
7888 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7889 gen_rtx_PLUS (GET_MODE (incloc),
7890 incloc, inc)));
7891
7892 code = recog_memoized (add_insn);
7893 if (code >= 0)
7894 {
7895 extract_insn (add_insn);
7896 if (constrain_operands (1))
7897 {
7898 /* If this is a pre-increment and we have incremented the value
7899 where it lives, copy the incremented value to RELOADREG to
7900 be used as an address. */
7901
7902 if (! post)
7903 emit_insn (gen_move_insn (reloadreg, incloc));
7904
7905 return add_insn;
7906 }
7907 }
7908 delete_insns_since (last);
7909 }
7910
7911 /* If couldn't do the increment directly, must increment in RELOADREG.
7912 The way we do this depends on whether this is pre- or post-increment.
7913 For pre-increment, copy INCLOC to the reload register, increment it
7914 there, then save back. */
7915
7916 if (! post)
7917 {
7918 if (in != reloadreg)
7919 emit_insn (gen_move_insn (reloadreg, real_in));
7920 emit_insn (gen_add2_insn (reloadreg, inc));
7921 store = emit_insn (gen_move_insn (incloc, reloadreg));
7922 }
7923 else
7924 {
7925 /* Postincrement.
7926 Because this might be a jump insn or a compare, and because RELOADREG
7927 may not be available after the insn in an input reload, we must do
7928 the incrementation before the insn being reloaded for.
7929
7930 We have already copied IN to RELOADREG. Increment the copy in
7931 RELOADREG, save that back, then decrement RELOADREG so it has
7932 the original value. */
7933
7934 emit_insn (gen_add2_insn (reloadreg, inc));
7935 store = emit_insn (gen_move_insn (incloc, reloadreg));
7936 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7937 }
7938
7939 return store;
7940 }
7941 \f
7942 /* Return 1 if we are certain that the constraint-string STRING allows
7943 the hard register REG. Return 0 if we can't be sure of this. */
7944
7945 static int
7946 constraint_accepts_reg_p (string, reg)
7947 const char *string;
7948 rtx reg;
7949 {
7950 int value = 0;
7951 int regno = true_regnum (reg);
7952 int c;
7953
7954 /* Initialize for first alternative. */
7955 value = 0;
7956 /* Check that each alternative contains `g' or `r'. */
7957 while (1)
7958 switch (c = *string++)
7959 {
7960 case 0:
7961 /* If an alternative lacks `g' or `r', we lose. */
7962 return value;
7963 case ',':
7964 /* If an alternative lacks `g' or `r', we lose. */
7965 if (value == 0)
7966 return 0;
7967 /* Initialize for next alternative. */
7968 value = 0;
7969 break;
7970 case 'g':
7971 case 'r':
7972 /* Any general reg wins for this alternative. */
7973 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
7974 value = 1;
7975 break;
7976 default:
7977 /* Any reg in specified class wins for this alternative. */
7978 {
7979 enum reg_class class = REG_CLASS_FROM_LETTER (c);
7980
7981 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
7982 value = 1;
7983 }
7984 }
7985 }
7986 \f
7987 /* INSN is a no-op; delete it.
7988 If this sets the return value of the function, we must keep a USE around,
7989 in case this is in a different basic block than the final USE. Otherwise,
7990 we could loose important register lifeness information on
7991 SMALL_REGISTER_CLASSES machines, where return registers might be used as
7992 spills: subsequent passes assume that spill registers are dead at the end
7993 of a basic block.
7994 VALUE must be the return value in such a case, NULL otherwise. */
7995 static void
7996 reload_cse_delete_noop_set (insn, value)
7997 rtx insn, value;
7998 {
7999 if (value)
8000 {
8001 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
8002 INSN_CODE (insn) = -1;
8003 REG_NOTES (insn) = NULL_RTX;
8004 }
8005 else
8006 delete_insn (insn);
8007 }
8008
8009 /* See whether a single set SET is a noop. */
8010 static int
8011 reload_cse_noop_set_p (set)
8012 rtx set;
8013 {
8014 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8015 }
8016
8017 /* Try to simplify INSN. */
8018 static void
8019 reload_cse_simplify (insn)
8020 rtx insn;
8021 {
8022 rtx body = PATTERN (insn);
8023
8024 if (GET_CODE (body) == SET)
8025 {
8026 int count = 0;
8027
8028 /* Simplify even if we may think it is a no-op.
8029 We may think a memory load of a value smaller than WORD_SIZE
8030 is redundant because we haven't taken into account possible
8031 implicit extension. reload_cse_simplify_set() will bring
8032 this out, so it's safer to simplify before we delete. */
8033 count += reload_cse_simplify_set (body, insn);
8034
8035 if (!count && reload_cse_noop_set_p (body))
8036 {
8037 rtx value = SET_DEST (body);
8038 if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
8039 value = 0;
8040 reload_cse_delete_noop_set (insn, value);
8041 return;
8042 }
8043
8044 if (count > 0)
8045 apply_change_group ();
8046 else
8047 reload_cse_simplify_operands (insn);
8048 }
8049 else if (GET_CODE (body) == PARALLEL)
8050 {
8051 int i;
8052 int count = 0;
8053 rtx value = NULL_RTX;
8054
8055 /* If every action in a PARALLEL is a noop, we can delete
8056 the entire PARALLEL. */
8057 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8058 {
8059 rtx part = XVECEXP (body, 0, i);
8060 if (GET_CODE (part) == SET)
8061 {
8062 if (! reload_cse_noop_set_p (part))
8063 break;
8064 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
8065 {
8066 if (value)
8067 break;
8068 value = SET_DEST (part);
8069 }
8070 }
8071 else if (GET_CODE (part) != CLOBBER)
8072 break;
8073 }
8074
8075 if (i < 0)
8076 {
8077 reload_cse_delete_noop_set (insn, value);
8078 /* We're done with this insn. */
8079 return;
8080 }
8081
8082 /* It's not a no-op, but we can try to simplify it. */
8083 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8084 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8085 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8086
8087 if (count > 0)
8088 apply_change_group ();
8089 else
8090 reload_cse_simplify_operands (insn);
8091 }
8092 }
8093
8094 /* Do a very simple CSE pass over the hard registers.
8095
8096 This function detects no-op moves where we happened to assign two
8097 different pseudo-registers to the same hard register, and then
8098 copied one to the other. Reload will generate a useless
8099 instruction copying a register to itself.
8100
8101 This function also detects cases where we load a value from memory
8102 into two different registers, and (if memory is more expensive than
8103 registers) changes it to simply copy the first register into the
8104 second register.
8105
8106 Another optimization is performed that scans the operands of each
8107 instruction to see whether the value is already available in a
8108 hard register. It then replaces the operand with the hard register
8109 if possible, much like an optional reload would. */
8110
8111 static void
8112 reload_cse_regs_1 (first)
8113 rtx first;
8114 {
8115 rtx insn;
8116
8117 cselib_init ();
8118 init_alias_analysis ();
8119
8120 for (insn = first; insn; insn = NEXT_INSN (insn))
8121 {
8122 if (INSN_P (insn))
8123 reload_cse_simplify (insn);
8124
8125 cselib_process_insn (insn);
8126 }
8127
8128 /* Clean up. */
8129 end_alias_analysis ();
8130 cselib_finish ();
8131 }
8132
8133 /* Call cse / combine like post-reload optimization phases.
8134 FIRST is the first instruction. */
8135 void
8136 reload_cse_regs (first)
8137 rtx first;
8138 {
8139 reload_cse_regs_1 (first);
8140 reload_combine ();
8141 reload_cse_move2add (first);
8142 if (flag_expensive_optimizations)
8143 reload_cse_regs_1 (first);
8144 }
8145
8146 /* Try to simplify a single SET instruction. SET is the set pattern.
8147 INSN is the instruction it came from.
8148 This function only handles one case: if we set a register to a value
8149 which is not a register, we try to find that value in some other register
8150 and change the set into a register copy. */
8151
8152 static int
8153 reload_cse_simplify_set (set, insn)
8154 rtx set;
8155 rtx insn;
8156 {
8157 int did_change = 0;
8158 int dreg;
8159 rtx src;
8160 enum reg_class dclass;
8161 int old_cost;
8162 cselib_val *val;
8163 struct elt_loc_list *l;
8164 #ifdef LOAD_EXTEND_OP
8165 enum rtx_code extend_op = NIL;
8166 #endif
8167
8168 dreg = true_regnum (SET_DEST (set));
8169 if (dreg < 0)
8170 return 0;
8171
8172 src = SET_SRC (set);
8173 if (side_effects_p (src) || true_regnum (src) >= 0)
8174 return 0;
8175
8176 dclass = REGNO_REG_CLASS (dreg);
8177
8178 #ifdef LOAD_EXTEND_OP
8179 /* When replacing a memory with a register, we need to honor assumptions
8180 that combine made wrt the contents of sign bits. We'll do this by
8181 generating an extend instruction instead of a reg->reg copy. Thus
8182 the destination must be a register that we can widen. */
8183 if (GET_CODE (src) == MEM
8184 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8185 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8186 && GET_CODE (SET_DEST (set)) != REG)
8187 return 0;
8188 #endif
8189
8190 /* If memory loads are cheaper than register copies, don't change them. */
8191 if (GET_CODE (src) == MEM)
8192 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8193 else if (CONSTANT_P (src))
8194 old_cost = rtx_cost (src, SET);
8195 else if (GET_CODE (src) == REG)
8196 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8197 REGNO_REG_CLASS (REGNO (src)), dclass);
8198 else
8199 /* ??? */
8200 old_cost = rtx_cost (src, SET);
8201
8202 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
8203 if (! val)
8204 return 0;
8205 for (l = val->locs; l; l = l->next)
8206 {
8207 rtx this_rtx = l->loc;
8208 int this_cost;
8209
8210 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8211 {
8212 #ifdef LOAD_EXTEND_OP
8213 if (extend_op != NIL)
8214 {
8215 HOST_WIDE_INT this_val;
8216
8217 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8218 constants, such as SYMBOL_REF, cannot be extended. */
8219 if (GET_CODE (this_rtx) != CONST_INT)
8220 continue;
8221
8222 this_val = INTVAL (this_rtx);
8223 switch (extend_op)
8224 {
8225 case ZERO_EXTEND:
8226 this_val &= GET_MODE_MASK (GET_MODE (src));
8227 break;
8228 case SIGN_EXTEND:
8229 /* ??? In theory we're already extended. */
8230 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8231 break;
8232 default:
8233 abort ();
8234 }
8235 this_rtx = GEN_INT (this_val);
8236 }
8237 #endif
8238 this_cost = rtx_cost (this_rtx, SET);
8239 }
8240 else if (GET_CODE (this_rtx) == REG)
8241 {
8242 #ifdef LOAD_EXTEND_OP
8243 if (extend_op != NIL)
8244 {
8245 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8246 this_cost = rtx_cost (this_rtx, SET);
8247 }
8248 else
8249 #endif
8250 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8251 REGNO_REG_CLASS (REGNO (this_rtx)),
8252 dclass);
8253 }
8254 else
8255 continue;
8256
8257 /* If equal costs, prefer registers over anything else. That
8258 tends to lead to smaller instructions on some machines. */
8259 if (this_cost < old_cost
8260 || (this_cost == old_cost
8261 && GET_CODE (this_rtx) == REG
8262 && GET_CODE (SET_SRC (set)) != REG))
8263 {
8264 #ifdef LOAD_EXTEND_OP
8265 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8266 && extend_op != NIL)
8267 {
8268 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8269 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8270 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8271 }
8272 #endif
8273
8274 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8275 old_cost = this_cost, did_change = 1;
8276 }
8277 }
8278
8279 return did_change;
8280 }
8281
8282 /* Try to replace operands in INSN with equivalent values that are already
8283 in registers. This can be viewed as optional reloading.
8284
8285 For each non-register operand in the insn, see if any hard regs are
8286 known to be equivalent to that operand. Record the alternatives which
8287 can accept these hard registers. Among all alternatives, select the
8288 ones which are better or equal to the one currently matching, where
8289 "better" is in terms of '?' and '!' constraints. Among the remaining
8290 alternatives, select the one which replaces most operands with
8291 hard registers. */
8292
8293 static int
8294 reload_cse_simplify_operands (insn)
8295 rtx insn;
8296 {
8297 int i, j;
8298
8299 /* For each operand, all registers that are equivalent to it. */
8300 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8301
8302 const char *constraints[MAX_RECOG_OPERANDS];
8303
8304 /* Vector recording how bad an alternative is. */
8305 int *alternative_reject;
8306 /* Vector recording how many registers can be introduced by choosing
8307 this alternative. */
8308 int *alternative_nregs;
8309 /* Array of vectors recording, for each operand and each alternative,
8310 which hard register to substitute, or -1 if the operand should be
8311 left as it is. */
8312 int *op_alt_regno[MAX_RECOG_OPERANDS];
8313 /* Array of alternatives, sorted in order of decreasing desirability. */
8314 int *alternative_order;
8315 rtx reg = gen_rtx_REG (VOIDmode, -1);
8316
8317 extract_insn (insn);
8318
8319 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8320 return 0;
8321
8322 /* Figure out which alternative currently matches. */
8323 if (! constrain_operands (1))
8324 fatal_insn_not_found (insn);
8325
8326 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8327 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8328 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8329 memset ((char *)alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8330 memset ((char *)alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8331
8332 /* For each operand, find out which regs are equivalent. */
8333 for (i = 0; i < recog_data.n_operands; i++)
8334 {
8335 cselib_val *v;
8336 struct elt_loc_list *l;
8337
8338 CLEAR_HARD_REG_SET (equiv_regs[i]);
8339
8340 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8341 right, so avoid the problem here. Likewise if we have a constant
8342 and the insn pattern doesn't tell us the mode we need. */
8343 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8344 || (CONSTANT_P (recog_data.operand[i])
8345 && recog_data.operand_mode[i] == VOIDmode))
8346 continue;
8347
8348 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8349 if (! v)
8350 continue;
8351
8352 for (l = v->locs; l; l = l->next)
8353 if (GET_CODE (l->loc) == REG)
8354 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8355 }
8356
8357 for (i = 0; i < recog_data.n_operands; i++)
8358 {
8359 enum machine_mode mode;
8360 int regno;
8361 const char *p;
8362
8363 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8364 for (j = 0; j < recog_data.n_alternatives; j++)
8365 op_alt_regno[i][j] = -1;
8366
8367 p = constraints[i] = recog_data.constraints[i];
8368 mode = recog_data.operand_mode[i];
8369
8370 /* Add the reject values for each alternative given by the constraints
8371 for this operand. */
8372 j = 0;
8373 while (*p != '\0')
8374 {
8375 char c = *p++;
8376 if (c == ',')
8377 j++;
8378 else if (c == '?')
8379 alternative_reject[j] += 3;
8380 else if (c == '!')
8381 alternative_reject[j] += 300;
8382 }
8383
8384 /* We won't change operands which are already registers. We
8385 also don't want to modify output operands. */
8386 regno = true_regnum (recog_data.operand[i]);
8387 if (regno >= 0
8388 || constraints[i][0] == '='
8389 || constraints[i][0] == '+')
8390 continue;
8391
8392 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8393 {
8394 int class = (int) NO_REGS;
8395
8396 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8397 continue;
8398
8399 REGNO (reg) = regno;
8400 PUT_MODE (reg, mode);
8401
8402 /* We found a register equal to this operand. Now look for all
8403 alternatives that can accept this register and have not been
8404 assigned a register they can use yet. */
8405 j = 0;
8406 p = constraints[i];
8407 for (;;)
8408 {
8409 char c = *p++;
8410
8411 switch (c)
8412 {
8413 case '=': case '+': case '?':
8414 case '#': case '&': case '!':
8415 case '*': case '%':
8416 case '0': case '1': case '2': case '3': case '4':
8417 case '5': case '6': case '7': case '8': case '9':
8418 case 'm': case '<': case '>': case 'V': case 'o':
8419 case 'E': case 'F': case 'G': case 'H':
8420 case 's': case 'i': case 'n':
8421 case 'I': case 'J': case 'K': case 'L':
8422 case 'M': case 'N': case 'O': case 'P':
8423 case 'p': case 'X':
8424 /* These don't say anything we care about. */
8425 break;
8426
8427 case 'g': case 'r':
8428 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8429 break;
8430
8431 default:
8432 class
8433 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
8434 break;
8435
8436 case ',': case '\0':
8437 /* See if REGNO fits this alternative, and set it up as the
8438 replacement register if we don't have one for this
8439 alternative yet and the operand being replaced is not
8440 a cheap CONST_INT. */
8441 if (op_alt_regno[i][j] == -1
8442 && reg_fits_class_p (reg, class, 0, mode)
8443 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8444 || (rtx_cost (recog_data.operand[i], SET)
8445 > rtx_cost (reg, SET))))
8446 {
8447 alternative_nregs[j]++;
8448 op_alt_regno[i][j] = regno;
8449 }
8450 j++;
8451 break;
8452 }
8453
8454 if (c == '\0')
8455 break;
8456 }
8457 }
8458 }
8459
8460 /* Record all alternatives which are better or equal to the currently
8461 matching one in the alternative_order array. */
8462 for (i = j = 0; i < recog_data.n_alternatives; i++)
8463 if (alternative_reject[i] <= alternative_reject[which_alternative])
8464 alternative_order[j++] = i;
8465 recog_data.n_alternatives = j;
8466
8467 /* Sort it. Given a small number of alternatives, a dumb algorithm
8468 won't hurt too much. */
8469 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8470 {
8471 int best = i;
8472 int best_reject = alternative_reject[alternative_order[i]];
8473 int best_nregs = alternative_nregs[alternative_order[i]];
8474 int tmp;
8475
8476 for (j = i + 1; j < recog_data.n_alternatives; j++)
8477 {
8478 int this_reject = alternative_reject[alternative_order[j]];
8479 int this_nregs = alternative_nregs[alternative_order[j]];
8480
8481 if (this_reject < best_reject
8482 || (this_reject == best_reject && this_nregs < best_nregs))
8483 {
8484 best = j;
8485 best_reject = this_reject;
8486 best_nregs = this_nregs;
8487 }
8488 }
8489
8490 tmp = alternative_order[best];
8491 alternative_order[best] = alternative_order[i];
8492 alternative_order[i] = tmp;
8493 }
8494
8495 /* Substitute the operands as determined by op_alt_regno for the best
8496 alternative. */
8497 j = alternative_order[0];
8498
8499 for (i = 0; i < recog_data.n_operands; i++)
8500 {
8501 enum machine_mode mode = recog_data.operand_mode[i];
8502 if (op_alt_regno[i][j] == -1)
8503 continue;
8504
8505 validate_change (insn, recog_data.operand_loc[i],
8506 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8507 }
8508
8509 for (i = recog_data.n_dups - 1; i >= 0; i--)
8510 {
8511 int op = recog_data.dup_num[i];
8512 enum machine_mode mode = recog_data.operand_mode[op];
8513
8514 if (op_alt_regno[op][j] == -1)
8515 continue;
8516
8517 validate_change (insn, recog_data.dup_loc[i],
8518 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8519 }
8520
8521 return apply_change_group ();
8522 }
8523 \f
8524 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8525 addressing now.
8526 This code might also be useful when reload gave up on reg+reg addresssing
8527 because of clashes between the return register and INDEX_REG_CLASS. */
8528
8529 /* The maximum number of uses of a register we can keep track of to
8530 replace them with reg+reg addressing. */
8531 #define RELOAD_COMBINE_MAX_USES 6
8532
8533 /* INSN is the insn where a register has ben used, and USEP points to the
8534 location of the register within the rtl. */
8535 struct reg_use { rtx insn, *usep; };
8536
8537 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8538 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8539 indicates where it becomes live again.
8540 Otherwise, USE_INDEX is the index of the last encountered use of the
8541 register (which is first among these we have seen since we scan backwards),
8542 OFFSET contains the constant offset that is added to the register in
8543 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8544 last, of these uses.
8545 STORE_RUID is always meaningful if we only want to use a value in a
8546 register in a different place: it denotes the next insn in the insn
8547 stream (i.e. the last ecountered) that sets or clobbers the register. */
8548 static struct
8549 {
8550 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8551 int use_index;
8552 rtx offset;
8553 int store_ruid;
8554 int use_ruid;
8555 } reg_state[FIRST_PSEUDO_REGISTER];
8556
8557 /* Reverse linear uid. This is increased in reload_combine while scanning
8558 the instructions from last to first. It is used to set last_label_ruid
8559 and the store_ruid / use_ruid fields in reg_state. */
8560 static int reload_combine_ruid;
8561
8562 #define LABEL_LIVE(LABEL) \
8563 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8564
8565 static void
8566 reload_combine ()
8567 {
8568 rtx insn, set;
8569 int first_index_reg = -1;
8570 int last_index_reg = 0;
8571 int i;
8572 unsigned int r;
8573 int last_label_ruid;
8574 int min_labelno, n_labels;
8575 HARD_REG_SET ever_live_at_start, *label_live;
8576
8577 /* If reg+reg can be used in offsetable memory adresses, the main chunk of
8578 reload has already used it where appropriate, so there is no use in
8579 trying to generate it now. */
8580 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8581 return;
8582
8583 /* To avoid wasting too much time later searching for an index register,
8584 determine the minimum and maximum index register numbers. */
8585 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8586 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8587 {
8588 if (first_index_reg == -1)
8589 first_index_reg = r;
8590
8591 last_index_reg = r;
8592 }
8593
8594 /* If no index register is available, we can quit now. */
8595 if (first_index_reg == -1)
8596 return;
8597
8598 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8599 information is a bit fuzzy immediately after reload, but it's
8600 still good enough to determine which registers are live at a jump
8601 destination. */
8602 min_labelno = get_first_label_num ();
8603 n_labels = max_label_num () - min_labelno;
8604 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8605 CLEAR_HARD_REG_SET (ever_live_at_start);
8606
8607 for (i = n_basic_blocks - 1; i >= 0; i--)
8608 {
8609 insn = BLOCK_HEAD (i);
8610 if (GET_CODE (insn) == CODE_LABEL)
8611 {
8612 HARD_REG_SET live;
8613
8614 REG_SET_TO_HARD_REG_SET (live,
8615 BASIC_BLOCK (i)->global_live_at_start);
8616 compute_use_by_pseudos (&live,
8617 BASIC_BLOCK (i)->global_live_at_start);
8618 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8619 IOR_HARD_REG_SET (ever_live_at_start, live);
8620 }
8621 }
8622
8623 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8624 last_label_ruid = reload_combine_ruid = 0;
8625 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8626 {
8627 reg_state[r].store_ruid = reload_combine_ruid;
8628 if (fixed_regs[r])
8629 reg_state[r].use_index = -1;
8630 else
8631 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8632 }
8633
8634 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8635 {
8636 rtx note;
8637
8638 /* We cannot do our optimization across labels. Invalidating all the use
8639 information we have would be costly, so we just note where the label
8640 is and then later disable any optimization that would cross it. */
8641 if (GET_CODE (insn) == CODE_LABEL)
8642 last_label_ruid = reload_combine_ruid;
8643 else if (GET_CODE (insn) == BARRIER)
8644 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8645 if (! fixed_regs[r])
8646 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8647
8648 if (! INSN_P (insn))
8649 continue;
8650
8651 reload_combine_ruid++;
8652
8653 /* Look for (set (REGX) (CONST_INT))
8654 (set (REGX) (PLUS (REGX) (REGY)))
8655 ...
8656 ... (MEM (REGX)) ...
8657 and convert it to
8658 (set (REGZ) (CONST_INT))
8659 ...
8660 ... (MEM (PLUS (REGZ) (REGY)))... .
8661
8662 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8663 and that we know all uses of REGX before it dies. */
8664 set = single_set (insn);
8665 if (set != NULL_RTX
8666 && GET_CODE (SET_DEST (set)) == REG
8667 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8668 GET_MODE (SET_DEST (set)))
8669 == 1)
8670 && GET_CODE (SET_SRC (set)) == PLUS
8671 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8672 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8673 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8674 {
8675 rtx reg = SET_DEST (set);
8676 rtx plus = SET_SRC (set);
8677 rtx base = XEXP (plus, 1);
8678 rtx prev = prev_nonnote_insn (insn);
8679 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8680 unsigned int regno = REGNO (reg);
8681 rtx const_reg = NULL_RTX;
8682 rtx reg_sum = NULL_RTX;
8683
8684 /* Now, we need an index register.
8685 We'll set index_reg to this index register, const_reg to the
8686 register that is to be loaded with the constant
8687 (denoted as REGZ in the substitution illustration above),
8688 and reg_sum to the register-register that we want to use to
8689 substitute uses of REG (typically in MEMs) with.
8690 First check REG and BASE for being index registers;
8691 we can use them even if they are not dead. */
8692 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8693 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8694 REGNO (base)))
8695 {
8696 const_reg = reg;
8697 reg_sum = plus;
8698 }
8699 else
8700 {
8701 /* Otherwise, look for a free index register. Since we have
8702 checked above that neiter REG nor BASE are index registers,
8703 if we find anything at all, it will be different from these
8704 two registers. */
8705 for (i = first_index_reg; i <= last_index_reg; i++)
8706 {
8707 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8708 i)
8709 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8710 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8711 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8712 {
8713 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8714
8715 const_reg = index_reg;
8716 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8717 break;
8718 }
8719 }
8720 }
8721
8722 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8723 (REGY), i.e. BASE, is not clobbered before the last use we'll
8724 create. */
8725 if (prev_set != 0
8726 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8727 && rtx_equal_p (SET_DEST (prev_set), reg)
8728 && reg_state[regno].use_index >= 0
8729 && (reg_state[REGNO (base)].store_ruid
8730 <= reg_state[regno].use_ruid)
8731 && reg_sum != 0)
8732 {
8733 int i;
8734
8735 /* Change destination register and, if necessary, the
8736 constant value in PREV, the constant loading instruction. */
8737 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8738 if (reg_state[regno].offset != const0_rtx)
8739 validate_change (prev,
8740 &SET_SRC (prev_set),
8741 GEN_INT (INTVAL (SET_SRC (prev_set))
8742 + INTVAL (reg_state[regno].offset)),
8743 1);
8744
8745 /* Now for every use of REG that we have recorded, replace REG
8746 with REG_SUM. */
8747 for (i = reg_state[regno].use_index;
8748 i < RELOAD_COMBINE_MAX_USES; i++)
8749 validate_change (reg_state[regno].reg_use[i].insn,
8750 reg_state[regno].reg_use[i].usep,
8751 reg_sum, 1);
8752
8753 if (apply_change_group ())
8754 {
8755 rtx *np;
8756
8757 /* Delete the reg-reg addition. */
8758 delete_insn (insn);
8759
8760 if (reg_state[regno].offset != const0_rtx)
8761 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8762 are now invalid. */
8763 for (np = &REG_NOTES (prev); *np;)
8764 {
8765 if (REG_NOTE_KIND (*np) == REG_EQUAL
8766 || REG_NOTE_KIND (*np) == REG_EQUIV)
8767 *np = XEXP (*np, 1);
8768 else
8769 np = &XEXP (*np, 1);
8770 }
8771
8772 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8773 reg_state[REGNO (const_reg)].store_ruid
8774 = reload_combine_ruid;
8775 continue;
8776 }
8777 }
8778 }
8779
8780 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8781
8782 if (GET_CODE (insn) == CALL_INSN)
8783 {
8784 rtx link;
8785
8786 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8787 if (call_used_regs[r])
8788 {
8789 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8790 reg_state[r].store_ruid = reload_combine_ruid;
8791 }
8792
8793 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8794 link = XEXP (link, 1))
8795 {
8796 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8797 if (GET_CODE (usage_rtx) == REG)
8798 {
8799 unsigned int i;
8800 unsigned int start_reg = REGNO (usage_rtx);
8801 unsigned int num_regs =
8802 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8803 unsigned int end_reg = start_reg + num_regs - 1;
8804 for (i = start_reg; i <= end_reg; i++)
8805 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8806 {
8807 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8808 reg_state[i].store_ruid = reload_combine_ruid;
8809 }
8810 else
8811 reg_state[i].use_index = -1;
8812 }
8813 }
8814
8815 }
8816 else if (GET_CODE (insn) == JUMP_INSN
8817 && GET_CODE (PATTERN (insn)) != RETURN)
8818 {
8819 /* Non-spill registers might be used at the call destination in
8820 some unknown fashion, so we have to mark the unknown use. */
8821 HARD_REG_SET *live;
8822
8823 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8824 && JUMP_LABEL (insn))
8825 live = &LABEL_LIVE (JUMP_LABEL (insn));
8826 else
8827 live = &ever_live_at_start;
8828
8829 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8830 if (TEST_HARD_REG_BIT (*live, i))
8831 reg_state[i].use_index = -1;
8832 }
8833
8834 reload_combine_note_use (&PATTERN (insn), insn);
8835 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8836 {
8837 if (REG_NOTE_KIND (note) == REG_INC
8838 && GET_CODE (XEXP (note, 0)) == REG)
8839 {
8840 int regno = REGNO (XEXP (note, 0));
8841
8842 reg_state[regno].store_ruid = reload_combine_ruid;
8843 reg_state[regno].use_index = -1;
8844 }
8845 }
8846 }
8847
8848 free (label_live);
8849 }
8850
8851 /* Check if DST is a register or a subreg of a register; if it is,
8852 update reg_state[regno].store_ruid and reg_state[regno].use_index
8853 accordingly. Called via note_stores from reload_combine. */
8854
8855 static void
8856 reload_combine_note_store (dst, set, data)
8857 rtx dst, set;
8858 void *data ATTRIBUTE_UNUSED;
8859 {
8860 int regno = 0;
8861 int i;
8862 enum machine_mode mode = GET_MODE (dst);
8863
8864 if (GET_CODE (dst) == SUBREG)
8865 {
8866 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8867 GET_MODE (SUBREG_REG (dst)),
8868 SUBREG_BYTE (dst),
8869 GET_MODE (dst));
8870 dst = SUBREG_REG (dst);
8871 }
8872 if (GET_CODE (dst) != REG)
8873 return;
8874 regno += REGNO (dst);
8875
8876 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8877 careful with registers / register parts that are not full words.
8878
8879 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8880 if (GET_CODE (set) != SET
8881 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8882 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8883 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8884 {
8885 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8886 {
8887 reg_state[i].use_index = -1;
8888 reg_state[i].store_ruid = reload_combine_ruid;
8889 }
8890 }
8891 else
8892 {
8893 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8894 {
8895 reg_state[i].store_ruid = reload_combine_ruid;
8896 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8897 }
8898 }
8899 }
8900
8901 /* XP points to a piece of rtl that has to be checked for any uses of
8902 registers.
8903 *XP is the pattern of INSN, or a part of it.
8904 Called from reload_combine, and recursively by itself. */
8905 static void
8906 reload_combine_note_use (xp, insn)
8907 rtx *xp, insn;
8908 {
8909 rtx x = *xp;
8910 enum rtx_code code = x->code;
8911 const char *fmt;
8912 int i, j;
8913 rtx offset = const0_rtx; /* For the REG case below. */
8914
8915 switch (code)
8916 {
8917 case SET:
8918 if (GET_CODE (SET_DEST (x)) == REG)
8919 {
8920 reload_combine_note_use (&SET_SRC (x), insn);
8921 return;
8922 }
8923 break;
8924
8925 case USE:
8926 /* If this is the USE of a return value, we can't change it. */
8927 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8928 {
8929 /* Mark the return register as used in an unknown fashion. */
8930 rtx reg = XEXP (x, 0);
8931 int regno = REGNO (reg);
8932 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8933
8934 while (--nregs >= 0)
8935 reg_state[regno + nregs].use_index = -1;
8936 return;
8937 }
8938 break;
8939
8940 case CLOBBER:
8941 if (GET_CODE (SET_DEST (x)) == REG)
8942 {
8943 /* No spurious CLOBBERs of pseudo registers may remain. */
8944 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
8945 abort ();
8946 return;
8947 }
8948 break;
8949
8950 case PLUS:
8951 /* We are interested in (plus (reg) (const_int)) . */
8952 if (GET_CODE (XEXP (x, 0)) != REG
8953 || GET_CODE (XEXP (x, 1)) != CONST_INT)
8954 break;
8955 offset = XEXP (x, 1);
8956 x = XEXP (x, 0);
8957 /* Fall through. */
8958 case REG:
8959 {
8960 int regno = REGNO (x);
8961 int use_index;
8962 int nregs;
8963
8964 /* No spurious USEs of pseudo registers may remain. */
8965 if (regno >= FIRST_PSEUDO_REGISTER)
8966 abort ();
8967
8968 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8969
8970 /* We can't substitute into multi-hard-reg uses. */
8971 if (nregs > 1)
8972 {
8973 while (--nregs >= 0)
8974 reg_state[regno + nregs].use_index = -1;
8975 return;
8976 }
8977
8978 /* If this register is already used in some unknown fashion, we
8979 can't do anything.
8980 If we decrement the index from zero to -1, we can't store more
8981 uses, so this register becomes used in an unknown fashion. */
8982 use_index = --reg_state[regno].use_index;
8983 if (use_index < 0)
8984 return;
8985
8986 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
8987 {
8988 /* We have found another use for a register that is already
8989 used later. Check if the offsets match; if not, mark the
8990 register as used in an unknown fashion. */
8991 if (! rtx_equal_p (offset, reg_state[regno].offset))
8992 {
8993 reg_state[regno].use_index = -1;
8994 return;
8995 }
8996 }
8997 else
8998 {
8999 /* This is the first use of this register we have seen since we
9000 marked it as dead. */
9001 reg_state[regno].offset = offset;
9002 reg_state[regno].use_ruid = reload_combine_ruid;
9003 }
9004 reg_state[regno].reg_use[use_index].insn = insn;
9005 reg_state[regno].reg_use[use_index].usep = xp;
9006 return;
9007 }
9008
9009 default:
9010 break;
9011 }
9012
9013 /* Recursively process the components of X. */
9014 fmt = GET_RTX_FORMAT (code);
9015 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9016 {
9017 if (fmt[i] == 'e')
9018 reload_combine_note_use (&XEXP (x, i), insn);
9019 else if (fmt[i] == 'E')
9020 {
9021 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9022 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9023 }
9024 }
9025 }
9026 \f
9027 /* See if we can reduce the cost of a constant by replacing a move
9028 with an add. We track situations in which a register is set to a
9029 constant or to a register plus a constant. */
9030 /* We cannot do our optimization across labels. Invalidating all the
9031 information about register contents we have would be costly, so we
9032 use move2add_last_label_luid to note where the label is and then
9033 later disable any optimization that would cross it.
9034 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9035 reg_set_luid[n] is greater than last_label_luid[n] . */
9036 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
9037
9038 /* If reg_base_reg[n] is negative, register n has been set to
9039 reg_offset[n] in mode reg_mode[n] .
9040 If reg_base_reg[n] is non-negative, register n has been set to the
9041 sum of reg_offset[n] and the value of register reg_base_reg[n]
9042 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9043 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
9044 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9045 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
9046
9047 /* move2add_luid is linearily increased while scanning the instructions
9048 from first to last. It is used to set reg_set_luid in
9049 reload_cse_move2add and move2add_note_store. */
9050 static int move2add_luid;
9051
9052 /* move2add_last_label_luid is set whenever a label is found. Labels
9053 invalidate all previously collected reg_offset data. */
9054 static int move2add_last_label_luid;
9055
9056 /* Generate a CONST_INT and force it in the range of MODE. */
9057
9058 static HOST_WIDE_INT
9059 sext_for_mode (mode, value)
9060 enum machine_mode mode;
9061 HOST_WIDE_INT value;
9062 {
9063 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9064 int width = GET_MODE_BITSIZE (mode);
9065
9066 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9067 sign extend it. */
9068 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9069 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9070 cval |= (HOST_WIDE_INT) -1 << width;
9071
9072 return cval;
9073 }
9074
9075 /* ??? We don't know how zero / sign extension is handled, hence we
9076 can't go from a narrower to a wider mode. */
9077 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9078 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9079 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9080 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9081 GET_MODE_BITSIZE (INMODE))))
9082
9083 static void
9084 reload_cse_move2add (first)
9085 rtx first;
9086 {
9087 int i;
9088 rtx insn;
9089
9090 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9091 reg_set_luid[i] = 0;
9092
9093 move2add_last_label_luid = 0;
9094 move2add_luid = 2;
9095 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9096 {
9097 rtx pat, note;
9098
9099 if (GET_CODE (insn) == CODE_LABEL)
9100 {
9101 move2add_last_label_luid = move2add_luid;
9102 /* We're going to increment move2add_luid twice after a
9103 label, so that we can use move2add_last_label_luid + 1 as
9104 the luid for constants. */
9105 move2add_luid++;
9106 continue;
9107 }
9108 if (! INSN_P (insn))
9109 continue;
9110 pat = PATTERN (insn);
9111 /* For simplicity, we only perform this optimization on
9112 straightforward SETs. */
9113 if (GET_CODE (pat) == SET
9114 && GET_CODE (SET_DEST (pat)) == REG)
9115 {
9116 rtx reg = SET_DEST (pat);
9117 int regno = REGNO (reg);
9118 rtx src = SET_SRC (pat);
9119
9120 /* Check if we have valid information on the contents of this
9121 register in the mode of REG. */
9122 if (reg_set_luid[regno] > move2add_last_label_luid
9123 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
9124 {
9125 /* Try to transform (set (REGX) (CONST_INT A))
9126 ...
9127 (set (REGX) (CONST_INT B))
9128 to
9129 (set (REGX) (CONST_INT A))
9130 ...
9131 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9132
9133 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9134 {
9135 int success = 0;
9136 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9137 INTVAL (src)
9138 - reg_offset[regno]));
9139 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9140 use (set (reg) (reg)) instead.
9141 We don't delete this insn, nor do we convert it into a
9142 note, to avoid losing register notes or the return
9143 value flag. jump2 already knowns how to get rid of
9144 no-op moves. */
9145 if (new_src == const0_rtx)
9146 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9147 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
9148 && have_add2_insn (reg, new_src))
9149 success = validate_change (insn, &PATTERN (insn),
9150 gen_add2_insn (reg, new_src), 0);
9151 reg_set_luid[regno] = move2add_luid;
9152 reg_mode[regno] = GET_MODE (reg);
9153 reg_offset[regno] = INTVAL (src);
9154 continue;
9155 }
9156
9157 /* Try to transform (set (REGX) (REGY))
9158 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9159 ...
9160 (set (REGX) (REGY))
9161 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9162 to
9163 (REGX) (REGY))
9164 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9165 ...
9166 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9167 else if (GET_CODE (src) == REG
9168 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9169 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9170 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9171 reg_mode[REGNO (src)]))
9172 {
9173 rtx next = next_nonnote_insn (insn);
9174 rtx set = NULL_RTX;
9175 if (next)
9176 set = single_set (next);
9177 if (set
9178 && SET_DEST (set) == reg
9179 && GET_CODE (SET_SRC (set)) == PLUS
9180 && XEXP (SET_SRC (set), 0) == reg
9181 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9182 {
9183 rtx src3 = XEXP (SET_SRC (set), 1);
9184 HOST_WIDE_INT added_offset = INTVAL (src3);
9185 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9186 HOST_WIDE_INT regno_offset = reg_offset[regno];
9187 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9188 added_offset
9189 + base_offset
9190 - regno_offset));
9191 int success = 0;
9192
9193 if (new_src == const0_rtx)
9194 /* See above why we create (set (reg) (reg)) here. */
9195 success
9196 = validate_change (next, &SET_SRC (set), reg, 0);
9197 else if ((rtx_cost (new_src, PLUS)
9198 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
9199 && have_add2_insn (reg, new_src))
9200 success
9201 = validate_change (next, &PATTERN (next),
9202 gen_add2_insn (reg, new_src), 0);
9203 if (success)
9204 delete_insn (insn);
9205 insn = next;
9206 reg_mode[regno] = GET_MODE (reg);
9207 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9208 added_offset
9209 + base_offset);
9210 continue;
9211 }
9212 }
9213 }
9214 }
9215
9216 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9217 {
9218 if (REG_NOTE_KIND (note) == REG_INC
9219 && GET_CODE (XEXP (note, 0)) == REG)
9220 {
9221 /* Reset the information about this register. */
9222 int regno = REGNO (XEXP (note, 0));
9223 if (regno < FIRST_PSEUDO_REGISTER)
9224 reg_set_luid[regno] = 0;
9225 }
9226 }
9227 note_stores (PATTERN (insn), move2add_note_store, NULL);
9228 /* If this is a CALL_INSN, all call used registers are stored with
9229 unknown values. */
9230 if (GET_CODE (insn) == CALL_INSN)
9231 {
9232 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9233 {
9234 if (call_used_regs[i])
9235 /* Reset the information about this register. */
9236 reg_set_luid[i] = 0;
9237 }
9238 }
9239 }
9240 }
9241
9242 /* SET is a SET or CLOBBER that sets DST.
9243 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9244 Called from reload_cse_move2add via note_stores. */
9245
9246 static void
9247 move2add_note_store (dst, set, data)
9248 rtx dst, set;
9249 void *data ATTRIBUTE_UNUSED;
9250 {
9251 unsigned int regno = 0;
9252 unsigned int i;
9253 enum machine_mode mode = GET_MODE (dst);
9254
9255 if (GET_CODE (dst) == SUBREG)
9256 {
9257 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9258 GET_MODE (SUBREG_REG (dst)),
9259 SUBREG_BYTE (dst),
9260 GET_MODE (dst));
9261 dst = SUBREG_REG (dst);
9262 }
9263
9264 /* Some targets do argument pushes without adding REG_INC notes. */
9265
9266 if (GET_CODE (dst) == MEM)
9267 {
9268 dst = XEXP (dst, 0);
9269 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
9270 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
9271 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
9272 return;
9273 }
9274 if (GET_CODE (dst) != REG)
9275 return;
9276
9277 regno += REGNO (dst);
9278
9279 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9280 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9281 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9282 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9283 {
9284 rtx src = SET_SRC (set);
9285 rtx base_reg;
9286 HOST_WIDE_INT offset;
9287 int base_regno;
9288 /* This may be different from mode, if SET_DEST (set) is a
9289 SUBREG. */
9290 enum machine_mode dst_mode = GET_MODE (dst);
9291
9292 switch (GET_CODE (src))
9293 {
9294 case PLUS:
9295 if (GET_CODE (XEXP (src, 0)) == REG)
9296 {
9297 base_reg = XEXP (src, 0);
9298
9299 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9300 offset = INTVAL (XEXP (src, 1));
9301 else if (GET_CODE (XEXP (src, 1)) == REG
9302 && (reg_set_luid[REGNO (XEXP (src, 1))]
9303 > move2add_last_label_luid)
9304 && (MODES_OK_FOR_MOVE2ADD
9305 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9306 {
9307 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9308 offset = reg_offset[REGNO (XEXP (src, 1))];
9309 /* Maybe the first register is known to be a
9310 constant. */
9311 else if (reg_set_luid[REGNO (base_reg)]
9312 > move2add_last_label_luid
9313 && (MODES_OK_FOR_MOVE2ADD
9314 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9315 && reg_base_reg[REGNO (base_reg)] < 0)
9316 {
9317 offset = reg_offset[REGNO (base_reg)];
9318 base_reg = XEXP (src, 1);
9319 }
9320 else
9321 goto invalidate;
9322 }
9323 else
9324 goto invalidate;
9325
9326 break;
9327 }
9328
9329 goto invalidate;
9330
9331 case REG:
9332 base_reg = src;
9333 offset = 0;
9334 break;
9335
9336 case CONST_INT:
9337 /* Start tracking the register as a constant. */
9338 reg_base_reg[regno] = -1;
9339 reg_offset[regno] = INTVAL (SET_SRC (set));
9340 /* We assign the same luid to all registers set to constants. */
9341 reg_set_luid[regno] = move2add_last_label_luid + 1;
9342 reg_mode[regno] = mode;
9343 return;
9344
9345 default:
9346 invalidate:
9347 /* Invalidate the contents of the register. */
9348 reg_set_luid[regno] = 0;
9349 return;
9350 }
9351
9352 base_regno = REGNO (base_reg);
9353 /* If information about the base register is not valid, set it
9354 up as a new base register, pretending its value is known
9355 starting from the current insn. */
9356 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9357 {
9358 reg_base_reg[base_regno] = base_regno;
9359 reg_offset[base_regno] = 0;
9360 reg_set_luid[base_regno] = move2add_luid;
9361 reg_mode[base_regno] = mode;
9362 }
9363 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9364 reg_mode[base_regno]))
9365 goto invalidate;
9366
9367 reg_mode[regno] = mode;
9368
9369 /* Copy base information from our base register. */
9370 reg_set_luid[regno] = reg_set_luid[base_regno];
9371 reg_base_reg[regno] = reg_base_reg[base_regno];
9372
9373 /* Compute the sum of the offsets or constants. */
9374 reg_offset[regno] = sext_for_mode (dst_mode,
9375 offset
9376 + reg_offset[base_regno]);
9377 }
9378 else
9379 {
9380 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9381
9382 for (i = regno; i < endregno; i++)
9383 /* Reset the information about this register. */
9384 reg_set_luid[i] = 0;
9385 }
9386 }
9387
9388 #ifdef AUTO_INC_DEC
9389 static void
9390 add_auto_inc_notes (insn, x)
9391 rtx insn;
9392 rtx x;
9393 {
9394 enum rtx_code code = GET_CODE (x);
9395 const char *fmt;
9396 int i, j;
9397
9398 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9399 {
9400 REG_NOTES (insn)
9401 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9402 return;
9403 }
9404
9405 /* Scan all the operand sub-expressions. */
9406 fmt = GET_RTX_FORMAT (code);
9407 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9408 {
9409 if (fmt[i] == 'e')
9410 add_auto_inc_notes (insn, XEXP (x, i));
9411 else if (fmt[i] == 'E')
9412 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9413 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9414 }
9415 }
9416 #endif
9417
9418 /* Copy EH notes from an insn to its reloads. */
9419 static void
9420 copy_eh_notes (insn, x)
9421 rtx insn;
9422 rtx x;
9423 {
9424 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9425 if (eh_note)
9426 {
9427 for (; x != 0; x = NEXT_INSN (x))
9428 {
9429 if (may_trap_p (PATTERN (x)))
9430 REG_NOTES (x)
9431 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9432 REG_NOTES (x));
9433 }
9434 }
9435 }
9436
9437 /* This is used by reload pass, that does emit some instructions after
9438 abnormal calls moving basic block end, but in fact it wants to emit
9439 them on the edge. Looks for abnormal call edges, find backward the
9440 proper call and fix the damage.
9441
9442 Similar handle instructions throwing exceptions internally. */
9443 static void
9444 fixup_abnormal_edges ()
9445 {
9446 int i;
9447 bool inserted = false;
9448
9449 for (i = 0; i < n_basic_blocks; i++)
9450 {
9451 basic_block bb = BASIC_BLOCK (i);
9452 edge e;
9453
9454 /* Look for cases we are interested in - an calls or instructions causing
9455 exceptions. */
9456 for (e = bb->succ; e; e = e->succ_next)
9457 {
9458 if (e->flags & EDGE_ABNORMAL_CALL)
9459 break;
9460 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
9461 == (EDGE_ABNORMAL | EDGE_EH))
9462 break;
9463 }
9464 if (e && GET_CODE (bb->end) != CALL_INSN && !can_throw_internal (bb->end))
9465 {
9466 rtx insn = bb->end, stop = NEXT_INSN (bb->end);
9467 rtx next;
9468 for (e = bb->succ; e; e = e->succ_next)
9469 if (e->flags & EDGE_FALLTHRU)
9470 break;
9471 /* Get past the new insns generated. Allow notes, as the insns may
9472 be already deleted. */
9473 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
9474 && !can_throw_internal (insn)
9475 && insn != bb->head)
9476 insn = PREV_INSN (insn);
9477 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
9478 abort ();
9479 bb->end = insn;
9480 inserted = true;
9481 insn = NEXT_INSN (insn);
9482 while (insn && insn != stop)
9483 {
9484 next = NEXT_INSN (insn);
9485 if (INSN_P (insn))
9486 {
9487 insert_insn_on_edge (PATTERN (insn), e);
9488 delete_insn (insn);
9489 }
9490 insn = next;
9491 }
9492 }
9493 }
9494 if (inserted)
9495 commit_edge_insertions ();
9496 }
This page took 0.463302 seconds and 6 git commands to generate.