]> gcc.gnu.org Git - gcc.git/blob - gcc/reload1.c
more README clarifications
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "regs.h"
36 #include "basic-block.h"
37 #include "reload.h"
38 #include "recog.h"
39 #include "output.h"
40 #include "cselib.h"
41 #include "real.h"
42 #include "toplev.h"
43 #include "except.h"
44 #include "tree.h"
45
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
52
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
56
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
60
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
68
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
72
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
79
80 #ifndef REGISTER_MOVE_COST
81 #define REGISTER_MOVE_COST(m, x, y) 2
82 #endif
83
84 #ifndef LOCAL_REGNO
85 #define LOCAL_REGNO(REGNO) 0
86 #endif
87 \f
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
91
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static char *reg_has_output_reload;
95
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
99
100 /* Element N is the constant value to which pseudo reg N is equivalent,
101 or zero if pseudo reg N is not equivalent to a constant.
102 find_reloads looks at this in order to replace pseudo reg N
103 with the constant it stands for. */
104 rtx *reg_equiv_constant;
105
106 /* Element N is a memory location to which pseudo reg N is equivalent,
107 prior to any register elimination (such as frame pointer to stack
108 pointer). Depending on whether or not it is a valid address, this value
109 is transferred to either reg_equiv_address or reg_equiv_mem. */
110 rtx *reg_equiv_memory_loc;
111
112 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
113 This is used when the address is not valid as a memory address
114 (because its displacement is too big for the machine.) */
115 rtx *reg_equiv_address;
116
117 /* Element N is the memory slot to which pseudo reg N is equivalent,
118 or zero if pseudo reg N is not equivalent to a memory slot. */
119 rtx *reg_equiv_mem;
120
121 /* Widest width in which each pseudo reg is referred to (via subreg). */
122 static unsigned int *reg_max_ref_width;
123
124 /* Element N is the list of insns that initialized reg N from its equivalent
125 constant or memory slot. */
126 static rtx *reg_equiv_init;
127
128 /* Vector to remember old contents of reg_renumber before spilling. */
129 static short *reg_old_renumber;
130
131 /* During reload_as_needed, element N contains the last pseudo regno reloaded
132 into hard register N. If that pseudo reg occupied more than one register,
133 reg_reloaded_contents points to that pseudo for each spill register in
134 use; all of these must remain set for an inheritance to occur. */
135 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
136
137 /* During reload_as_needed, element N contains the insn for which
138 hard register N was last used. Its contents are significant only
139 when reg_reloaded_valid is set for this register. */
140 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
141
142 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
143 static HARD_REG_SET reg_reloaded_valid;
144 /* Indicate if the register was dead at the end of the reload.
145 This is only valid if reg_reloaded_contents is set and valid. */
146 static HARD_REG_SET reg_reloaded_dead;
147
148 /* Number of spill-regs so far; number of valid elements of spill_regs. */
149 static int n_spills;
150
151 /* In parallel with spill_regs, contains REG rtx's for those regs.
152 Holds the last rtx used for any given reg, or 0 if it has never
153 been used for spilling yet. This rtx is reused, provided it has
154 the proper mode. */
155 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
156
157 /* In parallel with spill_regs, contains nonzero for a spill reg
158 that was stored after the last time it was used.
159 The precise value is the insn generated to do the store. */
160 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
161
162 /* This is the register that was stored with spill_reg_store. This is a
163 copy of reload_out / reload_out_reg when the value was stored; if
164 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
165 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
166
167 /* This table is the inverse mapping of spill_regs:
168 indexed by hard reg number,
169 it contains the position of that reg in spill_regs,
170 or -1 for something that is not in spill_regs.
171
172 ?!? This is no longer accurate. */
173 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
174
175 /* This reg set indicates registers that can't be used as spill registers for
176 the currently processed insn. These are the hard registers which are live
177 during the insn, but not allocated to pseudos, as well as fixed
178 registers. */
179 static HARD_REG_SET bad_spill_regs;
180
181 /* These are the hard registers that can't be used as spill register for any
182 insn. This includes registers used for user variables and registers that
183 we can't eliminate. A register that appears in this set also can't be used
184 to retry register allocation. */
185 static HARD_REG_SET bad_spill_regs_global;
186
187 /* Describes order of use of registers for reloading
188 of spilled pseudo-registers. `n_spills' is the number of
189 elements that are actually valid; new ones are added at the end.
190
191 Both spill_regs and spill_reg_order are used on two occasions:
192 once during find_reload_regs, where they keep track of the spill registers
193 for a single insn, but also during reload_as_needed where they show all
194 the registers ever used by reload. For the latter case, the information
195 is calculated during finish_spills. */
196 static short spill_regs[FIRST_PSEUDO_REGISTER];
197
198 /* This vector of reg sets indicates, for each pseudo, which hard registers
199 may not be used for retrying global allocation because the register was
200 formerly spilled from one of them. If we allowed reallocating a pseudo to
201 a register that it was already allocated to, reload might not
202 terminate. */
203 static HARD_REG_SET *pseudo_previous_regs;
204
205 /* This vector of reg sets indicates, for each pseudo, which hard
206 registers may not be used for retrying global allocation because they
207 are used as spill registers during one of the insns in which the
208 pseudo is live. */
209 static HARD_REG_SET *pseudo_forbidden_regs;
210
211 /* All hard regs that have been used as spill registers for any insn are
212 marked in this set. */
213 static HARD_REG_SET used_spill_regs;
214
215 /* Index of last register assigned as a spill register. We allocate in
216 a round-robin fashion. */
217 static int last_spill_reg;
218
219 /* Nonzero if indirect addressing is supported on the machine; this means
220 that spilling (REG n) does not require reloading it into a register in
221 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
222 value indicates the level of indirect addressing supported, e.g., two
223 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
224 a hard register. */
225 static char spill_indirect_levels;
226
227 /* Nonzero if indirect addressing is supported when the innermost MEM is
228 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
229 which these are valid is the same as spill_indirect_levels, above. */
230 char indirect_symref_ok;
231
232 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
233 char double_reg_address_ok;
234
235 /* Record the stack slot for each spilled hard register. */
236 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
237
238 /* Width allocated so far for that stack slot. */
239 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
240
241 /* Record which pseudos needed to be spilled. */
242 static regset_head spilled_pseudos;
243
244 /* Used for communication between order_regs_for_reload and count_pseudo.
245 Used to avoid counting one pseudo twice. */
246 static regset_head pseudos_counted;
247
248 /* First uid used by insns created by reload in this function.
249 Used in find_equiv_reg. */
250 int reload_first_uid;
251
252 /* Flag set by local-alloc or global-alloc if anything is live in
253 a call-clobbered reg across calls. */
254 int caller_save_needed;
255
256 /* Set to 1 while reload_as_needed is operating.
257 Required by some machines to handle any generated moves differently. */
258 int reload_in_progress = 0;
259
260 /* These arrays record the insn_code of insns that may be needed to
261 perform input and output reloads of special objects. They provide a
262 place to pass a scratch register. */
263 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
264 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
265
266 /* This obstack is used for allocation of rtl during register elimination.
267 The allocated storage can be freed once find_reloads has processed the
268 insn. */
269 struct obstack reload_obstack;
270
271 /* Points to the beginning of the reload_obstack. All insn_chain structures
272 are allocated first. */
273 char *reload_startobj;
274
275 /* The point after all insn_chain structures. Used to quickly deallocate
276 memory allocated in copy_reloads during calculate_needs_all_insns. */
277 char *reload_firstobj;
278
279 /* This points before all local rtl generated by register elimination.
280 Used to quickly free all memory after processing one insn. */
281 static char *reload_insn_firstobj;
282
283 #define obstack_chunk_alloc xmalloc
284 #define obstack_chunk_free free
285
286 /* List of insn_chain instructions, one for every insn that reload needs to
287 examine. */
288 struct insn_chain *reload_insn_chain;
289
290 #ifdef TREE_CODE
291 extern tree current_function_decl;
292 #else
293 extern union tree_node *current_function_decl;
294 #endif
295
296 /* List of all insns needing reloads. */
297 static struct insn_chain *insns_need_reload;
298 \f
299 /* This structure is used to record information about register eliminations.
300 Each array entry describes one possible way of eliminating a register
301 in favor of another. If there is more than one way of eliminating a
302 particular register, the most preferred should be specified first. */
303
304 struct elim_table
305 {
306 int from; /* Register number to be eliminated. */
307 int to; /* Register number used as replacement. */
308 int initial_offset; /* Initial difference between values. */
309 int can_eliminate; /* Non-zero if this elimination can be done. */
310 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
311 insns made by reload. */
312 int offset; /* Current offset between the two regs. */
313 int previous_offset; /* Offset at end of previous insn. */
314 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
315 rtx from_rtx; /* REG rtx for the register to be eliminated.
316 We cannot simply compare the number since
317 we might then spuriously replace a hard
318 register corresponding to a pseudo
319 assigned to the reg to be eliminated. */
320 rtx to_rtx; /* REG rtx for the replacement. */
321 };
322
323 static struct elim_table *reg_eliminate = 0;
324
325 /* This is an intermediate structure to initialize the table. It has
326 exactly the members provided by ELIMINABLE_REGS. */
327 static const struct elim_table_1
328 {
329 const int from;
330 const int to;
331 } reg_eliminate_1[] =
332
333 /* If a set of eliminable registers was specified, define the table from it.
334 Otherwise, default to the normal case of the frame pointer being
335 replaced by the stack pointer. */
336
337 #ifdef ELIMINABLE_REGS
338 ELIMINABLE_REGS;
339 #else
340 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
341 #endif
342
343 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
344
345 /* Record the number of pending eliminations that have an offset not equal
346 to their initial offset. If non-zero, we use a new copy of each
347 replacement result in any insns encountered. */
348 int num_not_at_initial_offset;
349
350 /* Count the number of registers that we may be able to eliminate. */
351 static int num_eliminable;
352 /* And the number of registers that are equivalent to a constant that
353 can be eliminated to frame_pointer / arg_pointer + constant. */
354 static int num_eliminable_invariants;
355
356 /* For each label, we record the offset of each elimination. If we reach
357 a label by more than one path and an offset differs, we cannot do the
358 elimination. This information is indexed by the number of the label.
359 The first table is an array of flags that records whether we have yet
360 encountered a label and the second table is an array of arrays, one
361 entry in the latter array for each elimination. */
362
363 static char *offsets_known_at;
364 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
365
366 /* Number of labels in the current function. */
367
368 static int num_labels;
369 \f
370 static void replace_pseudos_in_call_usage PARAMS ((rtx *,
371 enum machine_mode,
372 rtx));
373 static void maybe_fix_stack_asms PARAMS ((void));
374 static void copy_reloads PARAMS ((struct insn_chain *));
375 static void calculate_needs_all_insns PARAMS ((int));
376 static int find_reg PARAMS ((struct insn_chain *, int));
377 static void find_reload_regs PARAMS ((struct insn_chain *));
378 static void select_reload_regs PARAMS ((void));
379 static void delete_caller_save_insns PARAMS ((void));
380
381 static void spill_failure PARAMS ((rtx, enum reg_class));
382 static void count_spilled_pseudo PARAMS ((int, int, int));
383 static void delete_dead_insn PARAMS ((rtx));
384 static void alter_reg PARAMS ((int, int));
385 static void set_label_offsets PARAMS ((rtx, rtx, int));
386 static void check_eliminable_occurrences PARAMS ((rtx));
387 static void elimination_effects PARAMS ((rtx, enum machine_mode));
388 static int eliminate_regs_in_insn PARAMS ((rtx, int));
389 static void update_eliminable_offsets PARAMS ((void));
390 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
391 static void set_initial_elim_offsets PARAMS ((void));
392 static void verify_initial_elim_offsets PARAMS ((void));
393 static void set_initial_label_offsets PARAMS ((void));
394 static void set_offsets_for_label PARAMS ((rtx));
395 static void init_elim_table PARAMS ((void));
396 static void update_eliminables PARAMS ((HARD_REG_SET *));
397 static void spill_hard_reg PARAMS ((unsigned int, int));
398 static int finish_spills PARAMS ((int));
399 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
400 static void scan_paradoxical_subregs PARAMS ((rtx));
401 static void count_pseudo PARAMS ((int));
402 static void order_regs_for_reload PARAMS ((struct insn_chain *));
403 static void reload_as_needed PARAMS ((int));
404 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
405 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
406 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
407 enum reload_type,
408 enum machine_mode));
409 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
410 enum reload_type,
411 enum machine_mode));
412 static int reload_reg_free_p PARAMS ((unsigned int, int,
413 enum reload_type));
414 static int reload_reg_free_for_value_p PARAMS ((int, int, int,
415 enum reload_type,
416 rtx, rtx, int, int));
417 static int free_for_value_p PARAMS ((int, enum machine_mode, int,
418 enum reload_type, rtx, rtx,
419 int, int));
420 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
421 enum reload_type));
422 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
423 int));
424 static int conflicts_with_override PARAMS ((rtx));
425 static void failed_reload PARAMS ((rtx, int));
426 static int set_reload_reg PARAMS ((int, int));
427 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
428 static void choose_reload_regs PARAMS ((struct insn_chain *));
429 static void merge_assigned_reloads PARAMS ((rtx));
430 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
431 struct reload *, rtx, int));
432 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
433 struct reload *, int));
434 static void do_input_reload PARAMS ((struct insn_chain *,
435 struct reload *, int));
436 static void do_output_reload PARAMS ((struct insn_chain *,
437 struct reload *, int));
438 static void emit_reload_insns PARAMS ((struct insn_chain *));
439 static void delete_output_reload PARAMS ((rtx, int, int));
440 static void delete_address_reloads PARAMS ((rtx, rtx));
441 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
442 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
443 static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
444 static void reload_cse_regs_1 PARAMS ((rtx));
445 static int reload_cse_noop_set_p PARAMS ((rtx));
446 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
447 static int reload_cse_simplify_operands PARAMS ((rtx));
448 static void reload_combine PARAMS ((void));
449 static void reload_combine_note_use PARAMS ((rtx *, rtx));
450 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
451 static void reload_cse_move2add PARAMS ((rtx));
452 static void move2add_note_store PARAMS ((rtx, rtx, void *));
453 #ifdef AUTO_INC_DEC
454 static void add_auto_inc_notes PARAMS ((rtx, rtx));
455 #endif
456 static void copy_eh_notes PARAMS ((rtx, rtx));
457 static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
458 HOST_WIDE_INT));
459 static void failed_reload PARAMS ((rtx, int));
460 static int set_reload_reg PARAMS ((int, int));
461 static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
462 static void reload_cse_simplify PARAMS ((rtx));
463 void fixup_abnormal_edges PARAMS ((void));
464 extern void dump_needs PARAMS ((struct insn_chain *));
465 \f
466 /* Initialize the reload pass once per compilation. */
467
468 void
469 init_reload ()
470 {
471 int i;
472
473 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
474 Set spill_indirect_levels to the number of levels such addressing is
475 permitted, zero if it is not permitted at all. */
476
477 rtx tem
478 = gen_rtx_MEM (Pmode,
479 gen_rtx_PLUS (Pmode,
480 gen_rtx_REG (Pmode,
481 LAST_VIRTUAL_REGISTER + 1),
482 GEN_INT (4)));
483 spill_indirect_levels = 0;
484
485 while (memory_address_p (QImode, tem))
486 {
487 spill_indirect_levels++;
488 tem = gen_rtx_MEM (Pmode, tem);
489 }
490
491 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
492
493 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
494 indirect_symref_ok = memory_address_p (QImode, tem);
495
496 /* See if reg+reg is a valid (and offsettable) address. */
497
498 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
499 {
500 tem = gen_rtx_PLUS (Pmode,
501 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
502 gen_rtx_REG (Pmode, i));
503
504 /* This way, we make sure that reg+reg is an offsettable address. */
505 tem = plus_constant (tem, 4);
506
507 if (memory_address_p (QImode, tem))
508 {
509 double_reg_address_ok = 1;
510 break;
511 }
512 }
513
514 /* Initialize obstack for our rtl allocation. */
515 gcc_obstack_init (&reload_obstack);
516 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
517
518 INIT_REG_SET (&spilled_pseudos);
519 INIT_REG_SET (&pseudos_counted);
520 }
521
522 /* List of insn chains that are currently unused. */
523 static struct insn_chain *unused_insn_chains = 0;
524
525 /* Allocate an empty insn_chain structure. */
526 struct insn_chain *
527 new_insn_chain ()
528 {
529 struct insn_chain *c;
530
531 if (unused_insn_chains == 0)
532 {
533 c = (struct insn_chain *)
534 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
535 INIT_REG_SET (&c->live_throughout);
536 INIT_REG_SET (&c->dead_or_set);
537 }
538 else
539 {
540 c = unused_insn_chains;
541 unused_insn_chains = c->next;
542 }
543 c->is_caller_save_insn = 0;
544 c->need_operand_change = 0;
545 c->need_reload = 0;
546 c->need_elim = 0;
547 return c;
548 }
549
550 /* Small utility function to set all regs in hard reg set TO which are
551 allocated to pseudos in regset FROM. */
552
553 void
554 compute_use_by_pseudos (to, from)
555 HARD_REG_SET *to;
556 regset from;
557 {
558 unsigned int regno;
559
560 EXECUTE_IF_SET_IN_REG_SET
561 (from, FIRST_PSEUDO_REGISTER, regno,
562 {
563 int r = reg_renumber[regno];
564 int nregs;
565
566 if (r < 0)
567 {
568 /* reload_combine uses the information from
569 BASIC_BLOCK->global_live_at_start, which might still
570 contain registers that have not actually been allocated
571 since they have an equivalence. */
572 if (! reload_completed)
573 abort ();
574 }
575 else
576 {
577 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
578 while (nregs-- > 0)
579 SET_HARD_REG_BIT (*to, r + nregs);
580 }
581 });
582 }
583
584 /* Replace all pseudos found in LOC with their corresponding
585 equivalences. */
586
587 static void
588 replace_pseudos_in_call_usage (loc, mem_mode, usage)
589 rtx *loc;
590 enum machine_mode mem_mode;
591 rtx usage;
592 {
593 rtx x = *loc;
594 enum rtx_code code;
595 const char *fmt;
596 int i, j;
597
598 if (! x)
599 return;
600
601 code = GET_CODE (x);
602 if (code == REG)
603 {
604 unsigned int regno = REGNO (x);
605
606 if (regno < FIRST_PSEUDO_REGISTER)
607 return;
608
609 x = eliminate_regs (x, mem_mode, usage);
610 if (x != *loc)
611 {
612 *loc = x;
613 replace_pseudos_in_call_usage (loc, mem_mode, usage);
614 return;
615 }
616
617 if (reg_equiv_constant[regno])
618 *loc = reg_equiv_constant[regno];
619 else if (reg_equiv_mem[regno])
620 *loc = reg_equiv_mem[regno];
621 else if (reg_equiv_address[regno])
622 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
623 else if (GET_CODE (regno_reg_rtx[regno]) != REG
624 || REGNO (regno_reg_rtx[regno]) != regno)
625 *loc = regno_reg_rtx[regno];
626 else
627 abort ();
628
629 return;
630 }
631 else if (code == MEM)
632 {
633 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
634 return;
635 }
636
637 /* Process each of our operands recursively. */
638 fmt = GET_RTX_FORMAT (code);
639 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
640 if (*fmt == 'e')
641 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
642 else if (*fmt == 'E')
643 for (j = 0; j < XVECLEN (x, i); j++)
644 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
645 }
646
647 \f
648 /* Global variables used by reload and its subroutines. */
649
650 /* Set during calculate_needs if an insn needs register elimination. */
651 static int something_needs_elimination;
652 /* Set during calculate_needs if an insn needs an operand changed. */
653 int something_needs_operands_changed;
654
655 /* Nonzero means we couldn't get enough spill regs. */
656 static int failure;
657
658 /* Main entry point for the reload pass.
659
660 FIRST is the first insn of the function being compiled.
661
662 GLOBAL nonzero means we were called from global_alloc
663 and should attempt to reallocate any pseudoregs that we
664 displace from hard regs we will use for reloads.
665 If GLOBAL is zero, we do not have enough information to do that,
666 so any pseudo reg that is spilled must go to the stack.
667
668 Return value is nonzero if reload failed
669 and we must not do any more for this function. */
670
671 int
672 reload (first, global)
673 rtx first;
674 int global;
675 {
676 int i;
677 rtx insn;
678 struct elim_table *ep;
679
680 /* The two pointers used to track the true location of the memory used
681 for label offsets. */
682 char *real_known_ptr = NULL;
683 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
684
685 /* Make sure even insns with volatile mem refs are recognizable. */
686 init_recog ();
687
688 failure = 0;
689
690 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
691
692 /* Make sure that the last insn in the chain
693 is not something that needs reloading. */
694 emit_note (NULL, NOTE_INSN_DELETED);
695
696 /* Enable find_equiv_reg to distinguish insns made by reload. */
697 reload_first_uid = get_max_uid ();
698
699 #ifdef SECONDARY_MEMORY_NEEDED
700 /* Initialize the secondary memory table. */
701 clear_secondary_mem ();
702 #endif
703
704 /* We don't have a stack slot for any spill reg yet. */
705 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
706 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
707
708 /* Initialize the save area information for caller-save, in case some
709 are needed. */
710 init_save_areas ();
711
712 /* Compute which hard registers are now in use
713 as homes for pseudo registers.
714 This is done here rather than (eg) in global_alloc
715 because this point is reached even if not optimizing. */
716 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
717 mark_home_live (i);
718
719 /* A function that receives a nonlocal goto must save all call-saved
720 registers. */
721 if (current_function_has_nonlocal_label)
722 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
723 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
724 regs_ever_live[i] = 1;
725
726 /* Find all the pseudo registers that didn't get hard regs
727 but do have known equivalent constants or memory slots.
728 These include parameters (known equivalent to parameter slots)
729 and cse'd or loop-moved constant memory addresses.
730
731 Record constant equivalents in reg_equiv_constant
732 so they will be substituted by find_reloads.
733 Record memory equivalents in reg_mem_equiv so they can
734 be substituted eventually by altering the REG-rtx's. */
735
736 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
737 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
738 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
739 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
740 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
741 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
742 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
743 pseudo_forbidden_regs
744 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
745 pseudo_previous_regs
746 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
747
748 CLEAR_HARD_REG_SET (bad_spill_regs_global);
749
750 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
751 Also find all paradoxical subregs and find largest such for each pseudo.
752 On machines with small register classes, record hard registers that
753 are used for user variables. These can never be used for spills.
754 Also look for a "constant" REG_SETJMP. This means that all
755 caller-saved registers must be marked live. */
756
757 num_eliminable_invariants = 0;
758 for (insn = first; insn; insn = NEXT_INSN (insn))
759 {
760 rtx set = single_set (insn);
761
762 /* We may introduce USEs that we want to remove at the end, so
763 we'll mark them with QImode. Make sure there are no
764 previously-marked insns left by say regmove. */
765 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
766 && GET_MODE (insn) != VOIDmode)
767 PUT_MODE (insn, VOIDmode);
768
769 if (GET_CODE (insn) == CALL_INSN
770 && find_reg_note (insn, REG_SETJMP, NULL))
771 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
772 if (! call_used_regs[i])
773 regs_ever_live[i] = 1;
774
775 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
776 {
777 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
778 if (note
779 #ifdef LEGITIMATE_PIC_OPERAND_P
780 && (! function_invariant_p (XEXP (note, 0))
781 || ! flag_pic
782 /* A function invariant is often CONSTANT_P but may
783 include a register. We promise to only pass
784 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
785 || (CONSTANT_P (XEXP (note, 0))
786 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
787 #endif
788 )
789 {
790 rtx x = XEXP (note, 0);
791 i = REGNO (SET_DEST (set));
792 if (i > LAST_VIRTUAL_REGISTER)
793 {
794 /* It can happen that a REG_EQUIV note contains a MEM
795 that is not a legitimate memory operand. As later
796 stages of reload assume that all addresses found
797 in the reg_equiv_* arrays were originally legitimate,
798 we ignore such REG_EQUIV notes. */
799 if (memory_operand (x, VOIDmode))
800 {
801 /* Always unshare the equivalence, so we can
802 substitute into this insn without touching the
803 equivalence. */
804 reg_equiv_memory_loc[i] = copy_rtx (x);
805 }
806 else if (function_invariant_p (x))
807 {
808 if (GET_CODE (x) == PLUS)
809 {
810 /* This is PLUS of frame pointer and a constant,
811 and might be shared. Unshare it. */
812 reg_equiv_constant[i] = copy_rtx (x);
813 num_eliminable_invariants++;
814 }
815 else if (x == frame_pointer_rtx
816 || x == arg_pointer_rtx)
817 {
818 reg_equiv_constant[i] = x;
819 num_eliminable_invariants++;
820 }
821 else if (LEGITIMATE_CONSTANT_P (x))
822 reg_equiv_constant[i] = x;
823 else
824 reg_equiv_memory_loc[i]
825 = force_const_mem (GET_MODE (SET_DEST (set)), x);
826 }
827 else
828 continue;
829
830 /* If this register is being made equivalent to a MEM
831 and the MEM is not SET_SRC, the equivalencing insn
832 is one with the MEM as a SET_DEST and it occurs later.
833 So don't mark this insn now. */
834 if (GET_CODE (x) != MEM
835 || rtx_equal_p (SET_SRC (set), x))
836 reg_equiv_init[i]
837 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
838 }
839 }
840 }
841
842 /* If this insn is setting a MEM from a register equivalent to it,
843 this is the equivalencing insn. */
844 else if (set && GET_CODE (SET_DEST (set)) == MEM
845 && GET_CODE (SET_SRC (set)) == REG
846 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
847 && rtx_equal_p (SET_DEST (set),
848 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
849 reg_equiv_init[REGNO (SET_SRC (set))]
850 = gen_rtx_INSN_LIST (VOIDmode, insn,
851 reg_equiv_init[REGNO (SET_SRC (set))]);
852
853 if (INSN_P (insn))
854 scan_paradoxical_subregs (PATTERN (insn));
855 }
856
857 init_elim_table ();
858
859 num_labels = max_label_num () - get_first_label_num ();
860
861 /* Allocate the tables used to store offset information at labels. */
862 /* We used to use alloca here, but the size of what it would try to
863 allocate would occasionally cause it to exceed the stack limit and
864 cause a core dump. */
865 real_known_ptr = xmalloc (num_labels);
866 real_at_ptr
867 = (int (*)[NUM_ELIMINABLE_REGS])
868 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
869
870 offsets_known_at = real_known_ptr - get_first_label_num ();
871 offsets_at
872 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
873
874 /* Alter each pseudo-reg rtx to contain its hard reg number.
875 Assign stack slots to the pseudos that lack hard regs or equivalents.
876 Do not touch virtual registers. */
877
878 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
879 alter_reg (i, -1);
880
881 /* If we have some registers we think can be eliminated, scan all insns to
882 see if there is an insn that sets one of these registers to something
883 other than itself plus a constant. If so, the register cannot be
884 eliminated. Doing this scan here eliminates an extra pass through the
885 main reload loop in the most common case where register elimination
886 cannot be done. */
887 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
888 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
889 || GET_CODE (insn) == CALL_INSN)
890 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
891
892 maybe_fix_stack_asms ();
893
894 insns_need_reload = 0;
895 something_needs_elimination = 0;
896
897 /* Initialize to -1, which means take the first spill register. */
898 last_spill_reg = -1;
899
900 /* Spill any hard regs that we know we can't eliminate. */
901 CLEAR_HARD_REG_SET (used_spill_regs);
902 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
903 if (! ep->can_eliminate)
904 spill_hard_reg (ep->from, 1);
905
906 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
907 if (frame_pointer_needed)
908 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
909 #endif
910 finish_spills (global);
911
912 /* From now on, we may need to generate moves differently. We may also
913 allow modifications of insns which cause them to not be recognized.
914 Any such modifications will be cleaned up during reload itself. */
915 reload_in_progress = 1;
916
917 /* This loop scans the entire function each go-round
918 and repeats until one repetition spills no additional hard regs. */
919 for (;;)
920 {
921 int something_changed;
922 int did_spill;
923
924 HOST_WIDE_INT starting_frame_size;
925
926 /* Round size of stack frame to stack_alignment_needed. This must be done
927 here because the stack size may be a part of the offset computation
928 for register elimination, and there might have been new stack slots
929 created in the last iteration of this loop. */
930 if (cfun->stack_alignment_needed)
931 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
932
933 starting_frame_size = get_frame_size ();
934
935 set_initial_elim_offsets ();
936 set_initial_label_offsets ();
937
938 /* For each pseudo register that has an equivalent location defined,
939 try to eliminate any eliminable registers (such as the frame pointer)
940 assuming initial offsets for the replacement register, which
941 is the normal case.
942
943 If the resulting location is directly addressable, substitute
944 the MEM we just got directly for the old REG.
945
946 If it is not addressable but is a constant or the sum of a hard reg
947 and constant, it is probably not addressable because the constant is
948 out of range, in that case record the address; we will generate
949 hairy code to compute the address in a register each time it is
950 needed. Similarly if it is a hard register, but one that is not
951 valid as an address register.
952
953 If the location is not addressable, but does not have one of the
954 above forms, assign a stack slot. We have to do this to avoid the
955 potential of producing lots of reloads if, e.g., a location involves
956 a pseudo that didn't get a hard register and has an equivalent memory
957 location that also involves a pseudo that didn't get a hard register.
958
959 Perhaps at some point we will improve reload_when_needed handling
960 so this problem goes away. But that's very hairy. */
961
962 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
963 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
964 {
965 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
966
967 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
968 XEXP (x, 0)))
969 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
970 else if (CONSTANT_P (XEXP (x, 0))
971 || (GET_CODE (XEXP (x, 0)) == REG
972 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
973 || (GET_CODE (XEXP (x, 0)) == PLUS
974 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
975 && (REGNO (XEXP (XEXP (x, 0), 0))
976 < FIRST_PSEUDO_REGISTER)
977 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
978 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
979 else
980 {
981 /* Make a new stack slot. Then indicate that something
982 changed so we go back and recompute offsets for
983 eliminable registers because the allocation of memory
984 below might change some offset. reg_equiv_{mem,address}
985 will be set up for this pseudo on the next pass around
986 the loop. */
987 reg_equiv_memory_loc[i] = 0;
988 reg_equiv_init[i] = 0;
989 alter_reg (i, -1);
990 }
991 }
992
993 if (caller_save_needed)
994 setup_save_areas ();
995
996 /* If we allocated another stack slot, redo elimination bookkeeping. */
997 if (starting_frame_size != get_frame_size ())
998 continue;
999
1000 if (caller_save_needed)
1001 {
1002 save_call_clobbered_regs ();
1003 /* That might have allocated new insn_chain structures. */
1004 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1005 }
1006
1007 calculate_needs_all_insns (global);
1008
1009 CLEAR_REG_SET (&spilled_pseudos);
1010 did_spill = 0;
1011
1012 something_changed = 0;
1013
1014 /* If we allocated any new memory locations, make another pass
1015 since it might have changed elimination offsets. */
1016 if (starting_frame_size != get_frame_size ())
1017 something_changed = 1;
1018
1019 {
1020 HARD_REG_SET to_spill;
1021 CLEAR_HARD_REG_SET (to_spill);
1022 update_eliminables (&to_spill);
1023 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1024 if (TEST_HARD_REG_BIT (to_spill, i))
1025 {
1026 spill_hard_reg (i, 1);
1027 did_spill = 1;
1028
1029 /* Regardless of the state of spills, if we previously had
1030 a register that we thought we could eliminate, but no can
1031 not eliminate, we must run another pass.
1032
1033 Consider pseudos which have an entry in reg_equiv_* which
1034 reference an eliminable register. We must make another pass
1035 to update reg_equiv_* so that we do not substitute in the
1036 old value from when we thought the elimination could be
1037 performed. */
1038 something_changed = 1;
1039 }
1040 }
1041
1042 select_reload_regs ();
1043 if (failure)
1044 goto failed;
1045
1046 if (insns_need_reload != 0 || did_spill)
1047 something_changed |= finish_spills (global);
1048
1049 if (! something_changed)
1050 break;
1051
1052 if (caller_save_needed)
1053 delete_caller_save_insns ();
1054
1055 obstack_free (&reload_obstack, reload_firstobj);
1056 }
1057
1058 /* If global-alloc was run, notify it of any register eliminations we have
1059 done. */
1060 if (global)
1061 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1062 if (ep->can_eliminate)
1063 mark_elimination (ep->from, ep->to);
1064
1065 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1066 If that insn didn't set the register (i.e., it copied the register to
1067 memory), just delete that insn instead of the equivalencing insn plus
1068 anything now dead. If we call delete_dead_insn on that insn, we may
1069 delete the insn that actually sets the register if the register dies
1070 there and that is incorrect. */
1071
1072 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1073 {
1074 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1075 {
1076 rtx list;
1077 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1078 {
1079 rtx equiv_insn = XEXP (list, 0);
1080
1081 /* If we already deleted the insn or if it may trap, we can't
1082 delete it. The latter case shouldn't happen, but can
1083 if an insn has a variable address, gets a REG_EH_REGION
1084 note added to it, and then gets converted into an load
1085 from a constant address. */
1086 if (GET_CODE (equiv_insn) == NOTE
1087 || can_throw_internal (equiv_insn))
1088 ;
1089 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1090 delete_dead_insn (equiv_insn);
1091 else
1092 {
1093 PUT_CODE (equiv_insn, NOTE);
1094 NOTE_SOURCE_FILE (equiv_insn) = 0;
1095 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1096 }
1097 }
1098 }
1099 }
1100
1101 /* Use the reload registers where necessary
1102 by generating move instructions to move the must-be-register
1103 values into or out of the reload registers. */
1104
1105 if (insns_need_reload != 0 || something_needs_elimination
1106 || something_needs_operands_changed)
1107 {
1108 HOST_WIDE_INT old_frame_size = get_frame_size ();
1109
1110 reload_as_needed (global);
1111
1112 if (old_frame_size != get_frame_size ())
1113 abort ();
1114
1115 if (num_eliminable)
1116 verify_initial_elim_offsets ();
1117 }
1118
1119 /* If we were able to eliminate the frame pointer, show that it is no
1120 longer live at the start of any basic block. If it ls live by
1121 virtue of being in a pseudo, that pseudo will be marked live
1122 and hence the frame pointer will be known to be live via that
1123 pseudo. */
1124
1125 if (! frame_pointer_needed)
1126 for (i = 0; i < n_basic_blocks; i++)
1127 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
1128 HARD_FRAME_POINTER_REGNUM);
1129
1130 /* Come here (with failure set nonzero) if we can't get enough spill regs
1131 and we decide not to abort about it. */
1132 failed:
1133
1134 CLEAR_REG_SET (&spilled_pseudos);
1135 reload_in_progress = 0;
1136
1137 /* Now eliminate all pseudo regs by modifying them into
1138 their equivalent memory references.
1139 The REG-rtx's for the pseudos are modified in place,
1140 so all insns that used to refer to them now refer to memory.
1141
1142 For a reg that has a reg_equiv_address, all those insns
1143 were changed by reloading so that no insns refer to it any longer;
1144 but the DECL_RTL of a variable decl may refer to it,
1145 and if so this causes the debugging info to mention the variable. */
1146
1147 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1148 {
1149 rtx addr = 0;
1150
1151 if (reg_equiv_mem[i])
1152 addr = XEXP (reg_equiv_mem[i], 0);
1153
1154 if (reg_equiv_address[i])
1155 addr = reg_equiv_address[i];
1156
1157 if (addr)
1158 {
1159 if (reg_renumber[i] < 0)
1160 {
1161 rtx reg = regno_reg_rtx[i];
1162
1163 REG_USERVAR_P (reg) = 0;
1164 PUT_CODE (reg, MEM);
1165 XEXP (reg, 0) = addr;
1166 if (reg_equiv_memory_loc[i])
1167 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1168 else
1169 {
1170 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1171 = MEM_SCALAR_P (reg) = 0;
1172 MEM_ATTRS (reg) = 0;
1173 }
1174 }
1175 else if (reg_equiv_mem[i])
1176 XEXP (reg_equiv_mem[i], 0) = addr;
1177 }
1178 }
1179
1180 /* We must set reload_completed now since the cleanup_subreg_operands call
1181 below will re-recognize each insn and reload may have generated insns
1182 which are only valid during and after reload. */
1183 reload_completed = 1;
1184
1185 /* Make a pass over all the insns and delete all USEs which we inserted
1186 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1187 notes. Delete all CLOBBER insns that don't refer to the return value
1188 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1189 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1190 and regenerate REG_INC notes that may have been moved around. */
1191
1192 for (insn = first; insn; insn = NEXT_INSN (insn))
1193 if (INSN_P (insn))
1194 {
1195 rtx *pnote;
1196
1197 if (GET_CODE (insn) == CALL_INSN)
1198 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1199 VOIDmode,
1200 CALL_INSN_FUNCTION_USAGE (insn));
1201
1202 if ((GET_CODE (PATTERN (insn)) == USE
1203 /* We mark with QImode USEs introduced by reload itself. */
1204 && (GET_MODE (insn) == QImode
1205 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1206 || (GET_CODE (PATTERN (insn)) == CLOBBER
1207 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1208 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1209 {
1210 delete_insn (insn);
1211 continue;
1212 }
1213
1214 pnote = &REG_NOTES (insn);
1215 while (*pnote != 0)
1216 {
1217 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1218 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1219 || REG_NOTE_KIND (*pnote) == REG_INC
1220 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1221 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1222 *pnote = XEXP (*pnote, 1);
1223 else
1224 pnote = &XEXP (*pnote, 1);
1225 }
1226
1227 #ifdef AUTO_INC_DEC
1228 add_auto_inc_notes (insn, PATTERN (insn));
1229 #endif
1230
1231 /* And simplify (subreg (reg)) if it appears as an operand. */
1232 cleanup_subreg_operands (insn);
1233 }
1234
1235 /* If we are doing stack checking, give a warning if this function's
1236 frame size is larger than we expect. */
1237 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1238 {
1239 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1240 static int verbose_warned = 0;
1241
1242 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1243 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1244 size += UNITS_PER_WORD;
1245
1246 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1247 {
1248 warning ("frame size too large for reliable stack checking");
1249 if (! verbose_warned)
1250 {
1251 warning ("try reducing the number of local variables");
1252 verbose_warned = 1;
1253 }
1254 }
1255 }
1256
1257 /* Indicate that we no longer have known memory locations or constants. */
1258 if (reg_equiv_constant)
1259 free (reg_equiv_constant);
1260 reg_equiv_constant = 0;
1261 if (reg_equiv_memory_loc)
1262 free (reg_equiv_memory_loc);
1263 reg_equiv_memory_loc = 0;
1264
1265 if (real_known_ptr)
1266 free (real_known_ptr);
1267 if (real_at_ptr)
1268 free (real_at_ptr);
1269
1270 free (reg_equiv_mem);
1271 free (reg_equiv_init);
1272 free (reg_equiv_address);
1273 free (reg_max_ref_width);
1274 free (reg_old_renumber);
1275 free (pseudo_previous_regs);
1276 free (pseudo_forbidden_regs);
1277
1278 CLEAR_HARD_REG_SET (used_spill_regs);
1279 for (i = 0; i < n_spills; i++)
1280 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1281
1282 /* Free all the insn_chain structures at once. */
1283 obstack_free (&reload_obstack, reload_startobj);
1284 unused_insn_chains = 0;
1285 fixup_abnormal_edges ();
1286
1287 /* Replacing pseudos with their memory equivalents might have
1288 created shared rtx. Subsequent passes would get confused
1289 by this, so unshare everything here. */
1290 unshare_all_rtl_again (first);
1291
1292 return failure;
1293 }
1294
1295 /* Yet another special case. Unfortunately, reg-stack forces people to
1296 write incorrect clobbers in asm statements. These clobbers must not
1297 cause the register to appear in bad_spill_regs, otherwise we'll call
1298 fatal_insn later. We clear the corresponding regnos in the live
1299 register sets to avoid this.
1300 The whole thing is rather sick, I'm afraid. */
1301
1302 static void
1303 maybe_fix_stack_asms ()
1304 {
1305 #ifdef STACK_REGS
1306 const char *constraints[MAX_RECOG_OPERANDS];
1307 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1308 struct insn_chain *chain;
1309
1310 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1311 {
1312 int i, noperands;
1313 HARD_REG_SET clobbered, allowed;
1314 rtx pat;
1315
1316 if (! INSN_P (chain->insn)
1317 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1318 continue;
1319 pat = PATTERN (chain->insn);
1320 if (GET_CODE (pat) != PARALLEL)
1321 continue;
1322
1323 CLEAR_HARD_REG_SET (clobbered);
1324 CLEAR_HARD_REG_SET (allowed);
1325
1326 /* First, make a mask of all stack regs that are clobbered. */
1327 for (i = 0; i < XVECLEN (pat, 0); i++)
1328 {
1329 rtx t = XVECEXP (pat, 0, i);
1330 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1331 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1332 }
1333
1334 /* Get the operand values and constraints out of the insn. */
1335 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1336 constraints, operand_mode);
1337
1338 /* For every operand, see what registers are allowed. */
1339 for (i = 0; i < noperands; i++)
1340 {
1341 const char *p = constraints[i];
1342 /* For every alternative, we compute the class of registers allowed
1343 for reloading in CLS, and merge its contents into the reg set
1344 ALLOWED. */
1345 int cls = (int) NO_REGS;
1346
1347 for (;;)
1348 {
1349 char c = *p++;
1350
1351 if (c == '\0' || c == ',' || c == '#')
1352 {
1353 /* End of one alternative - mark the regs in the current
1354 class, and reset the class. */
1355 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1356 cls = NO_REGS;
1357 if (c == '#')
1358 do {
1359 c = *p++;
1360 } while (c != '\0' && c != ',');
1361 if (c == '\0')
1362 break;
1363 continue;
1364 }
1365
1366 switch (c)
1367 {
1368 case '=': case '+': case '*': case '%': case '?': case '!':
1369 case '0': case '1': case '2': case '3': case '4': case 'm':
1370 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1371 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1372 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1373 case 'P':
1374 break;
1375
1376 case 'p':
1377 cls = (int) reg_class_subunion[cls]
1378 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1379 break;
1380
1381 case 'g':
1382 case 'r':
1383 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1384 break;
1385
1386 default:
1387 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
1388
1389 }
1390 }
1391 }
1392 /* Those of the registers which are clobbered, but allowed by the
1393 constraints, must be usable as reload registers. So clear them
1394 out of the life information. */
1395 AND_HARD_REG_SET (allowed, clobbered);
1396 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1397 if (TEST_HARD_REG_BIT (allowed, i))
1398 {
1399 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1400 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1401 }
1402 }
1403
1404 #endif
1405 }
1406 \f
1407 /* Copy the global variables n_reloads and rld into the corresponding elts
1408 of CHAIN. */
1409 static void
1410 copy_reloads (chain)
1411 struct insn_chain *chain;
1412 {
1413 chain->n_reloads = n_reloads;
1414 chain->rld
1415 = (struct reload *) obstack_alloc (&reload_obstack,
1416 n_reloads * sizeof (struct reload));
1417 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1418 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1419 }
1420
1421 /* Walk the chain of insns, and determine for each whether it needs reloads
1422 and/or eliminations. Build the corresponding insns_need_reload list, and
1423 set something_needs_elimination as appropriate. */
1424 static void
1425 calculate_needs_all_insns (global)
1426 int global;
1427 {
1428 struct insn_chain **pprev_reload = &insns_need_reload;
1429 struct insn_chain *chain, *next = 0;
1430
1431 something_needs_elimination = 0;
1432
1433 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1434 for (chain = reload_insn_chain; chain != 0; chain = next)
1435 {
1436 rtx insn = chain->insn;
1437
1438 next = chain->next;
1439
1440 /* Clear out the shortcuts. */
1441 chain->n_reloads = 0;
1442 chain->need_elim = 0;
1443 chain->need_reload = 0;
1444 chain->need_operand_change = 0;
1445
1446 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1447 include REG_LABEL), we need to see what effects this has on the
1448 known offsets at labels. */
1449
1450 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1451 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1452 set_label_offsets (insn, insn, 0);
1453
1454 if (INSN_P (insn))
1455 {
1456 rtx old_body = PATTERN (insn);
1457 int old_code = INSN_CODE (insn);
1458 rtx old_notes = REG_NOTES (insn);
1459 int did_elimination = 0;
1460 int operands_changed = 0;
1461 rtx set = single_set (insn);
1462
1463 /* Skip insns that only set an equivalence. */
1464 if (set && GET_CODE (SET_DEST (set)) == REG
1465 && reg_renumber[REGNO (SET_DEST (set))] < 0
1466 && reg_equiv_constant[REGNO (SET_DEST (set))])
1467 continue;
1468
1469 /* If needed, eliminate any eliminable registers. */
1470 if (num_eliminable || num_eliminable_invariants)
1471 did_elimination = eliminate_regs_in_insn (insn, 0);
1472
1473 /* Analyze the instruction. */
1474 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1475 global, spill_reg_order);
1476
1477 /* If a no-op set needs more than one reload, this is likely
1478 to be something that needs input address reloads. We
1479 can't get rid of this cleanly later, and it is of no use
1480 anyway, so discard it now.
1481 We only do this when expensive_optimizations is enabled,
1482 since this complements reload inheritance / output
1483 reload deletion, and it can make debugging harder. */
1484 if (flag_expensive_optimizations && n_reloads > 1)
1485 {
1486 rtx set = single_set (insn);
1487 if (set
1488 && SET_SRC (set) == SET_DEST (set)
1489 && GET_CODE (SET_SRC (set)) == REG
1490 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1491 {
1492 delete_insn (insn);
1493 /* Delete it from the reload chain */
1494 if (chain->prev)
1495 chain->prev->next = next;
1496 else
1497 reload_insn_chain = next;
1498 if (next)
1499 next->prev = chain->prev;
1500 chain->next = unused_insn_chains;
1501 unused_insn_chains = chain;
1502 continue;
1503 }
1504 }
1505 if (num_eliminable)
1506 update_eliminable_offsets ();
1507
1508 /* Remember for later shortcuts which insns had any reloads or
1509 register eliminations. */
1510 chain->need_elim = did_elimination;
1511 chain->need_reload = n_reloads > 0;
1512 chain->need_operand_change = operands_changed;
1513
1514 /* Discard any register replacements done. */
1515 if (did_elimination)
1516 {
1517 obstack_free (&reload_obstack, reload_insn_firstobj);
1518 PATTERN (insn) = old_body;
1519 INSN_CODE (insn) = old_code;
1520 REG_NOTES (insn) = old_notes;
1521 something_needs_elimination = 1;
1522 }
1523
1524 something_needs_operands_changed |= operands_changed;
1525
1526 if (n_reloads != 0)
1527 {
1528 copy_reloads (chain);
1529 *pprev_reload = chain;
1530 pprev_reload = &chain->next_need_reload;
1531 }
1532 }
1533 }
1534 *pprev_reload = 0;
1535 }
1536 \f
1537 /* Comparison function for qsort to decide which of two reloads
1538 should be handled first. *P1 and *P2 are the reload numbers. */
1539
1540 static int
1541 reload_reg_class_lower (r1p, r2p)
1542 const PTR r1p;
1543 const PTR r2p;
1544 {
1545 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1546 int t;
1547
1548 /* Consider required reloads before optional ones. */
1549 t = rld[r1].optional - rld[r2].optional;
1550 if (t != 0)
1551 return t;
1552
1553 /* Count all solitary classes before non-solitary ones. */
1554 t = ((reg_class_size[(int) rld[r2].class] == 1)
1555 - (reg_class_size[(int) rld[r1].class] == 1));
1556 if (t != 0)
1557 return t;
1558
1559 /* Aside from solitaires, consider all multi-reg groups first. */
1560 t = rld[r2].nregs - rld[r1].nregs;
1561 if (t != 0)
1562 return t;
1563
1564 /* Consider reloads in order of increasing reg-class number. */
1565 t = (int) rld[r1].class - (int) rld[r2].class;
1566 if (t != 0)
1567 return t;
1568
1569 /* If reloads are equally urgent, sort by reload number,
1570 so that the results of qsort leave nothing to chance. */
1571 return r1 - r2;
1572 }
1573 \f
1574 /* The cost of spilling each hard reg. */
1575 static int spill_cost[FIRST_PSEUDO_REGISTER];
1576
1577 /* When spilling multiple hard registers, we use SPILL_COST for the first
1578 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1579 only the first hard reg for a multi-reg pseudo. */
1580 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1581
1582 /* Update the spill cost arrays, considering that pseudo REG is live. */
1583
1584 static void
1585 count_pseudo (reg)
1586 int reg;
1587 {
1588 int freq = REG_FREQ (reg);
1589 int r = reg_renumber[reg];
1590 int nregs;
1591
1592 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1593 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1594 return;
1595
1596 SET_REGNO_REG_SET (&pseudos_counted, reg);
1597
1598 if (r < 0)
1599 abort ();
1600
1601 spill_add_cost[r] += freq;
1602
1603 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1604 while (nregs-- > 0)
1605 spill_cost[r + nregs] += freq;
1606 }
1607
1608 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1609 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1610
1611 static void
1612 order_regs_for_reload (chain)
1613 struct insn_chain *chain;
1614 {
1615 int i;
1616 HARD_REG_SET used_by_pseudos;
1617 HARD_REG_SET used_by_pseudos2;
1618
1619 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1620
1621 memset (spill_cost, 0, sizeof spill_cost);
1622 memset (spill_add_cost, 0, sizeof spill_add_cost);
1623
1624 /* Count number of uses of each hard reg by pseudo regs allocated to it
1625 and then order them by decreasing use. First exclude hard registers
1626 that are live in or across this insn. */
1627
1628 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1629 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1630 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1631 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1632
1633 /* Now find out which pseudos are allocated to it, and update
1634 hard_reg_n_uses. */
1635 CLEAR_REG_SET (&pseudos_counted);
1636
1637 EXECUTE_IF_SET_IN_REG_SET
1638 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1639 {
1640 count_pseudo (i);
1641 });
1642 EXECUTE_IF_SET_IN_REG_SET
1643 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1644 {
1645 count_pseudo (i);
1646 });
1647 CLEAR_REG_SET (&pseudos_counted);
1648 }
1649 \f
1650 /* Vector of reload-numbers showing the order in which the reloads should
1651 be processed. */
1652 static short reload_order[MAX_RELOADS];
1653
1654 /* This is used to keep track of the spill regs used in one insn. */
1655 static HARD_REG_SET used_spill_regs_local;
1656
1657 /* We decided to spill hard register SPILLED, which has a size of
1658 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1659 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1660 update SPILL_COST/SPILL_ADD_COST. */
1661
1662 static void
1663 count_spilled_pseudo (spilled, spilled_nregs, reg)
1664 int spilled, spilled_nregs, reg;
1665 {
1666 int r = reg_renumber[reg];
1667 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1668
1669 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1670 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1671 return;
1672
1673 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1674
1675 spill_add_cost[r] -= REG_FREQ (reg);
1676 while (nregs-- > 0)
1677 spill_cost[r + nregs] -= REG_FREQ (reg);
1678 }
1679
1680 /* Find reload register to use for reload number ORDER. */
1681
1682 static int
1683 find_reg (chain, order)
1684 struct insn_chain *chain;
1685 int order;
1686 {
1687 int rnum = reload_order[order];
1688 struct reload *rl = rld + rnum;
1689 int best_cost = INT_MAX;
1690 int best_reg = -1;
1691 unsigned int i, j;
1692 int k;
1693 HARD_REG_SET not_usable;
1694 HARD_REG_SET used_by_other_reload;
1695
1696 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1697 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1698 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1699
1700 CLEAR_HARD_REG_SET (used_by_other_reload);
1701 for (k = 0; k < order; k++)
1702 {
1703 int other = reload_order[k];
1704
1705 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1706 for (j = 0; j < rld[other].nregs; j++)
1707 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1708 }
1709
1710 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1711 {
1712 unsigned int regno = i;
1713
1714 if (! TEST_HARD_REG_BIT (not_usable, regno)
1715 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1716 && HARD_REGNO_MODE_OK (regno, rl->mode))
1717 {
1718 int this_cost = spill_cost[regno];
1719 int ok = 1;
1720 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1721
1722 for (j = 1; j < this_nregs; j++)
1723 {
1724 this_cost += spill_add_cost[regno + j];
1725 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1726 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1727 ok = 0;
1728 }
1729 if (! ok)
1730 continue;
1731 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1732 this_cost--;
1733 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1734 this_cost--;
1735 if (this_cost < best_cost
1736 /* Among registers with equal cost, prefer caller-saved ones, or
1737 use REG_ALLOC_ORDER if it is defined. */
1738 || (this_cost == best_cost
1739 #ifdef REG_ALLOC_ORDER
1740 && (inv_reg_alloc_order[regno]
1741 < inv_reg_alloc_order[best_reg])
1742 #else
1743 && call_used_regs[regno]
1744 && ! call_used_regs[best_reg]
1745 #endif
1746 ))
1747 {
1748 best_reg = regno;
1749 best_cost = this_cost;
1750 }
1751 }
1752 }
1753 if (best_reg == -1)
1754 return 0;
1755
1756 if (rtl_dump_file)
1757 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1758
1759 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1760 rl->regno = best_reg;
1761
1762 EXECUTE_IF_SET_IN_REG_SET
1763 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1764 {
1765 count_spilled_pseudo (best_reg, rl->nregs, j);
1766 });
1767
1768 EXECUTE_IF_SET_IN_REG_SET
1769 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1770 {
1771 count_spilled_pseudo (best_reg, rl->nregs, j);
1772 });
1773
1774 for (i = 0; i < rl->nregs; i++)
1775 {
1776 if (spill_cost[best_reg + i] != 0
1777 || spill_add_cost[best_reg + i] != 0)
1778 abort ();
1779 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1780 }
1781 return 1;
1782 }
1783
1784 /* Find more reload regs to satisfy the remaining need of an insn, which
1785 is given by CHAIN.
1786 Do it by ascending class number, since otherwise a reg
1787 might be spilled for a big class and might fail to count
1788 for a smaller class even though it belongs to that class. */
1789
1790 static void
1791 find_reload_regs (chain)
1792 struct insn_chain *chain;
1793 {
1794 int i;
1795
1796 /* In order to be certain of getting the registers we need,
1797 we must sort the reloads into order of increasing register class.
1798 Then our grabbing of reload registers will parallel the process
1799 that provided the reload registers. */
1800 for (i = 0; i < chain->n_reloads; i++)
1801 {
1802 /* Show whether this reload already has a hard reg. */
1803 if (chain->rld[i].reg_rtx)
1804 {
1805 int regno = REGNO (chain->rld[i].reg_rtx);
1806 chain->rld[i].regno = regno;
1807 chain->rld[i].nregs
1808 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1809 }
1810 else
1811 chain->rld[i].regno = -1;
1812 reload_order[i] = i;
1813 }
1814
1815 n_reloads = chain->n_reloads;
1816 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1817
1818 CLEAR_HARD_REG_SET (used_spill_regs_local);
1819
1820 if (rtl_dump_file)
1821 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1822
1823 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1824
1825 /* Compute the order of preference for hard registers to spill. */
1826
1827 order_regs_for_reload (chain);
1828
1829 for (i = 0; i < n_reloads; i++)
1830 {
1831 int r = reload_order[i];
1832
1833 /* Ignore reloads that got marked inoperative. */
1834 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1835 && ! rld[r].optional
1836 && rld[r].regno == -1)
1837 if (! find_reg (chain, i))
1838 {
1839 spill_failure (chain->insn, rld[r].class);
1840 failure = 1;
1841 return;
1842 }
1843 }
1844
1845 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1846 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1847
1848 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1849 }
1850
1851 static void
1852 select_reload_regs ()
1853 {
1854 struct insn_chain *chain;
1855
1856 /* Try to satisfy the needs for each insn. */
1857 for (chain = insns_need_reload; chain != 0;
1858 chain = chain->next_need_reload)
1859 find_reload_regs (chain);
1860 }
1861 \f
1862 /* Delete all insns that were inserted by emit_caller_save_insns during
1863 this iteration. */
1864 static void
1865 delete_caller_save_insns ()
1866 {
1867 struct insn_chain *c = reload_insn_chain;
1868
1869 while (c != 0)
1870 {
1871 while (c != 0 && c->is_caller_save_insn)
1872 {
1873 struct insn_chain *next = c->next;
1874 rtx insn = c->insn;
1875
1876 if (c == reload_insn_chain)
1877 reload_insn_chain = next;
1878 delete_insn (insn);
1879
1880 if (next)
1881 next->prev = c->prev;
1882 if (c->prev)
1883 c->prev->next = next;
1884 c->next = unused_insn_chains;
1885 unused_insn_chains = c;
1886 c = next;
1887 }
1888 if (c != 0)
1889 c = c->next;
1890 }
1891 }
1892 \f
1893 /* Handle the failure to find a register to spill.
1894 INSN should be one of the insns which needed this particular spill reg. */
1895
1896 static void
1897 spill_failure (insn, class)
1898 rtx insn;
1899 enum reg_class class;
1900 {
1901 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1902 if (asm_noperands (PATTERN (insn)) >= 0)
1903 error_for_asm (insn, "can't find a register in class `%s' while reloading `asm'",
1904 reg_class_names[class]);
1905 else
1906 {
1907 error ("unable to find a register to spill in class `%s'",
1908 reg_class_names[class]);
1909 fatal_insn ("this is the insn:", insn);
1910 }
1911 }
1912 \f
1913 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1914 data that is dead in INSN. */
1915
1916 static void
1917 delete_dead_insn (insn)
1918 rtx insn;
1919 {
1920 rtx prev = prev_real_insn (insn);
1921 rtx prev_dest;
1922
1923 /* If the previous insn sets a register that dies in our insn, delete it
1924 too. */
1925 if (prev && GET_CODE (PATTERN (prev)) == SET
1926 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1927 && reg_mentioned_p (prev_dest, PATTERN (insn))
1928 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1929 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1930 delete_dead_insn (prev);
1931
1932 PUT_CODE (insn, NOTE);
1933 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1934 NOTE_SOURCE_FILE (insn) = 0;
1935 }
1936
1937 /* Modify the home of pseudo-reg I.
1938 The new home is present in reg_renumber[I].
1939
1940 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1941 or it may be -1, meaning there is none or it is not relevant.
1942 This is used so that all pseudos spilled from a given hard reg
1943 can share one stack slot. */
1944
1945 static void
1946 alter_reg (i, from_reg)
1947 int i;
1948 int from_reg;
1949 {
1950 /* When outputting an inline function, this can happen
1951 for a reg that isn't actually used. */
1952 if (regno_reg_rtx[i] == 0)
1953 return;
1954
1955 /* If the reg got changed to a MEM at rtl-generation time,
1956 ignore it. */
1957 if (GET_CODE (regno_reg_rtx[i]) != REG)
1958 return;
1959
1960 /* Modify the reg-rtx to contain the new hard reg
1961 number or else to contain its pseudo reg number. */
1962 REGNO (regno_reg_rtx[i])
1963 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1964
1965 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1966 allocate a stack slot for it. */
1967
1968 if (reg_renumber[i] < 0
1969 && REG_N_REFS (i) > 0
1970 && reg_equiv_constant[i] == 0
1971 && reg_equiv_memory_loc[i] == 0)
1972 {
1973 rtx x;
1974 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1975 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1976 int adjust = 0;
1977
1978 /* Each pseudo reg has an inherent size which comes from its own mode,
1979 and a total size which provides room for paradoxical subregs
1980 which refer to the pseudo reg in wider modes.
1981
1982 We can use a slot already allocated if it provides both
1983 enough inherent space and enough total space.
1984 Otherwise, we allocate a new slot, making sure that it has no less
1985 inherent space, and no less total space, then the previous slot. */
1986 if (from_reg == -1)
1987 {
1988 /* No known place to spill from => no slot to reuse. */
1989 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1990 inherent_size == total_size ? 0 : -1);
1991 if (BYTES_BIG_ENDIAN)
1992 /* Cancel the big-endian correction done in assign_stack_local.
1993 Get the address of the beginning of the slot.
1994 This is so we can do a big-endian correction unconditionally
1995 below. */
1996 adjust = inherent_size - total_size;
1997
1998 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
1999
2000 /* Nothing can alias this slot except this pseudo. */
2001 set_mem_alias_set (x, new_alias_set ());
2002 }
2003
2004 /* Reuse a stack slot if possible. */
2005 else if (spill_stack_slot[from_reg] != 0
2006 && spill_stack_slot_width[from_reg] >= total_size
2007 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2008 >= inherent_size))
2009 x = spill_stack_slot[from_reg];
2010
2011 /* Allocate a bigger slot. */
2012 else
2013 {
2014 /* Compute maximum size needed, both for inherent size
2015 and for total size. */
2016 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2017 rtx stack_slot;
2018
2019 if (spill_stack_slot[from_reg])
2020 {
2021 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2022 > inherent_size)
2023 mode = GET_MODE (spill_stack_slot[from_reg]);
2024 if (spill_stack_slot_width[from_reg] > total_size)
2025 total_size = spill_stack_slot_width[from_reg];
2026 }
2027
2028 /* Make a slot with that size. */
2029 x = assign_stack_local (mode, total_size,
2030 inherent_size == total_size ? 0 : -1);
2031 stack_slot = x;
2032
2033 /* All pseudos mapped to this slot can alias each other. */
2034 if (spill_stack_slot[from_reg])
2035 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2036 else
2037 set_mem_alias_set (x, new_alias_set ());
2038
2039 if (BYTES_BIG_ENDIAN)
2040 {
2041 /* Cancel the big-endian correction done in assign_stack_local.
2042 Get the address of the beginning of the slot.
2043 This is so we can do a big-endian correction unconditionally
2044 below. */
2045 adjust = GET_MODE_SIZE (mode) - total_size;
2046 if (adjust)
2047 stack_slot
2048 = adjust_address_nv (x, mode_for_size (total_size
2049 * BITS_PER_UNIT,
2050 MODE_INT, 1),
2051 adjust);
2052 }
2053
2054 spill_stack_slot[from_reg] = stack_slot;
2055 spill_stack_slot_width[from_reg] = total_size;
2056 }
2057
2058 /* On a big endian machine, the "address" of the slot
2059 is the address of the low part that fits its inherent mode. */
2060 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2061 adjust += (total_size - inherent_size);
2062
2063 /* If we have any adjustment to make, or if the stack slot is the
2064 wrong mode, make a new stack slot. */
2065 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2066
2067 /* If we have a decl for the original register, set it for the
2068 memory. If this is a shared MEM, make a copy. */
2069 if (REGNO_DECL (i))
2070 {
2071 rtx decl = DECL_RTL_IF_SET (REGNO_DECL (i));
2072
2073 /* We can do this only for the DECLs home pseudo, not for
2074 any copies of it, since otherwise when the stack slot
2075 is reused, nonoverlapping_memrefs_p might think they
2076 cannot overlap. */
2077 if (decl && GET_CODE (decl) == REG && REGNO (decl) == (unsigned) i)
2078 {
2079 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2080 x = copy_rtx (x);
2081
2082 set_mem_expr (x, REGNO_DECL (i));
2083 }
2084 }
2085
2086 /* Save the stack slot for later. */
2087 reg_equiv_memory_loc[i] = x;
2088 }
2089 }
2090
2091 /* Mark the slots in regs_ever_live for the hard regs
2092 used by pseudo-reg number REGNO. */
2093
2094 void
2095 mark_home_live (regno)
2096 int regno;
2097 {
2098 int i, lim;
2099
2100 i = reg_renumber[regno];
2101 if (i < 0)
2102 return;
2103 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2104 while (i < lim)
2105 regs_ever_live[i++] = 1;
2106 }
2107 \f
2108 /* This function handles the tracking of elimination offsets around branches.
2109
2110 X is a piece of RTL being scanned.
2111
2112 INSN is the insn that it came from, if any.
2113
2114 INITIAL_P is non-zero if we are to set the offset to be the initial
2115 offset and zero if we are setting the offset of the label to be the
2116 current offset. */
2117
2118 static void
2119 set_label_offsets (x, insn, initial_p)
2120 rtx x;
2121 rtx insn;
2122 int initial_p;
2123 {
2124 enum rtx_code code = GET_CODE (x);
2125 rtx tem;
2126 unsigned int i;
2127 struct elim_table *p;
2128
2129 switch (code)
2130 {
2131 case LABEL_REF:
2132 if (LABEL_REF_NONLOCAL_P (x))
2133 return;
2134
2135 x = XEXP (x, 0);
2136
2137 /* ... fall through ... */
2138
2139 case CODE_LABEL:
2140 /* If we know nothing about this label, set the desired offsets. Note
2141 that this sets the offset at a label to be the offset before a label
2142 if we don't know anything about the label. This is not correct for
2143 the label after a BARRIER, but is the best guess we can make. If
2144 we guessed wrong, we will suppress an elimination that might have
2145 been possible had we been able to guess correctly. */
2146
2147 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2148 {
2149 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2150 offsets_at[CODE_LABEL_NUMBER (x)][i]
2151 = (initial_p ? reg_eliminate[i].initial_offset
2152 : reg_eliminate[i].offset);
2153 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2154 }
2155
2156 /* Otherwise, if this is the definition of a label and it is
2157 preceded by a BARRIER, set our offsets to the known offset of
2158 that label. */
2159
2160 else if (x == insn
2161 && (tem = prev_nonnote_insn (insn)) != 0
2162 && GET_CODE (tem) == BARRIER)
2163 set_offsets_for_label (insn);
2164 else
2165 /* If neither of the above cases is true, compare each offset
2166 with those previously recorded and suppress any eliminations
2167 where the offsets disagree. */
2168
2169 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2170 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2171 != (initial_p ? reg_eliminate[i].initial_offset
2172 : reg_eliminate[i].offset))
2173 reg_eliminate[i].can_eliminate = 0;
2174
2175 return;
2176
2177 case JUMP_INSN:
2178 set_label_offsets (PATTERN (insn), insn, initial_p);
2179
2180 /* ... fall through ... */
2181
2182 case INSN:
2183 case CALL_INSN:
2184 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2185 and hence must have all eliminations at their initial offsets. */
2186 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2187 if (REG_NOTE_KIND (tem) == REG_LABEL)
2188 set_label_offsets (XEXP (tem, 0), insn, 1);
2189 return;
2190
2191 case PARALLEL:
2192 case ADDR_VEC:
2193 case ADDR_DIFF_VEC:
2194 /* Each of the labels in the parallel or address vector must be
2195 at their initial offsets. We want the first field for PARALLEL
2196 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2197
2198 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2199 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2200 insn, initial_p);
2201 return;
2202
2203 case SET:
2204 /* We only care about setting PC. If the source is not RETURN,
2205 IF_THEN_ELSE, or a label, disable any eliminations not at
2206 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2207 isn't one of those possibilities. For branches to a label,
2208 call ourselves recursively.
2209
2210 Note that this can disable elimination unnecessarily when we have
2211 a non-local goto since it will look like a non-constant jump to
2212 someplace in the current function. This isn't a significant
2213 problem since such jumps will normally be when all elimination
2214 pairs are back to their initial offsets. */
2215
2216 if (SET_DEST (x) != pc_rtx)
2217 return;
2218
2219 switch (GET_CODE (SET_SRC (x)))
2220 {
2221 case PC:
2222 case RETURN:
2223 return;
2224
2225 case LABEL_REF:
2226 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2227 return;
2228
2229 case IF_THEN_ELSE:
2230 tem = XEXP (SET_SRC (x), 1);
2231 if (GET_CODE (tem) == LABEL_REF)
2232 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2233 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2234 break;
2235
2236 tem = XEXP (SET_SRC (x), 2);
2237 if (GET_CODE (tem) == LABEL_REF)
2238 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2239 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2240 break;
2241 return;
2242
2243 default:
2244 break;
2245 }
2246
2247 /* If we reach here, all eliminations must be at their initial
2248 offset because we are doing a jump to a variable address. */
2249 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2250 if (p->offset != p->initial_offset)
2251 p->can_eliminate = 0;
2252 break;
2253
2254 default:
2255 break;
2256 }
2257 }
2258 \f
2259 /* Scan X and replace any eliminable registers (such as fp) with a
2260 replacement (such as sp), plus an offset.
2261
2262 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2263 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2264 MEM, we are allowed to replace a sum of a register and the constant zero
2265 with the register, which we cannot do outside a MEM. In addition, we need
2266 to record the fact that a register is referenced outside a MEM.
2267
2268 If INSN is an insn, it is the insn containing X. If we replace a REG
2269 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2270 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2271 the REG is being modified.
2272
2273 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2274 That's used when we eliminate in expressions stored in notes.
2275 This means, do not set ref_outside_mem even if the reference
2276 is outside of MEMs.
2277
2278 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2279 replacements done assuming all offsets are at their initial values. If
2280 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2281 encounter, return the actual location so that find_reloads will do
2282 the proper thing. */
2283
2284 rtx
2285 eliminate_regs (x, mem_mode, insn)
2286 rtx x;
2287 enum machine_mode mem_mode;
2288 rtx insn;
2289 {
2290 enum rtx_code code = GET_CODE (x);
2291 struct elim_table *ep;
2292 int regno;
2293 rtx new;
2294 int i, j;
2295 const char *fmt;
2296 int copied = 0;
2297
2298 if (! current_function_decl)
2299 return x;
2300
2301 switch (code)
2302 {
2303 case CONST_INT:
2304 case CONST_DOUBLE:
2305 case CONST_VECTOR:
2306 case CONST:
2307 case SYMBOL_REF:
2308 case CODE_LABEL:
2309 case PC:
2310 case CC0:
2311 case ASM_INPUT:
2312 case ADDR_VEC:
2313 case ADDR_DIFF_VEC:
2314 case RETURN:
2315 return x;
2316
2317 case ADDRESSOF:
2318 /* This is only for the benefit of the debugging backends, which call
2319 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2320 removed after CSE. */
2321 new = eliminate_regs (XEXP (x, 0), 0, insn);
2322 if (GET_CODE (new) == MEM)
2323 return XEXP (new, 0);
2324 return x;
2325
2326 case REG:
2327 regno = REGNO (x);
2328
2329 /* First handle the case where we encounter a bare register that
2330 is eliminable. Replace it with a PLUS. */
2331 if (regno < FIRST_PSEUDO_REGISTER)
2332 {
2333 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2334 ep++)
2335 if (ep->from_rtx == x && ep->can_eliminate)
2336 return plus_constant (ep->to_rtx, ep->previous_offset);
2337
2338 }
2339 else if (reg_renumber && reg_renumber[regno] < 0
2340 && reg_equiv_constant && reg_equiv_constant[regno]
2341 && ! CONSTANT_P (reg_equiv_constant[regno]))
2342 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2343 mem_mode, insn);
2344 return x;
2345
2346 /* You might think handling MINUS in a manner similar to PLUS is a
2347 good idea. It is not. It has been tried multiple times and every
2348 time the change has had to have been reverted.
2349
2350 Other parts of reload know a PLUS is special (gen_reload for example)
2351 and require special code to handle code a reloaded PLUS operand.
2352
2353 Also consider backends where the flags register is clobbered by a
2354 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2355 lea instruction comes to mind). If we try to reload a MINUS, we
2356 may kill the flags register that was holding a useful value.
2357
2358 So, please before trying to handle MINUS, consider reload as a
2359 whole instead of this little section as well as the backend issues. */
2360 case PLUS:
2361 /* If this is the sum of an eliminable register and a constant, rework
2362 the sum. */
2363 if (GET_CODE (XEXP (x, 0)) == REG
2364 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2365 && CONSTANT_P (XEXP (x, 1)))
2366 {
2367 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2368 ep++)
2369 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2370 {
2371 /* The only time we want to replace a PLUS with a REG (this
2372 occurs when the constant operand of the PLUS is the negative
2373 of the offset) is when we are inside a MEM. We won't want
2374 to do so at other times because that would change the
2375 structure of the insn in a way that reload can't handle.
2376 We special-case the commonest situation in
2377 eliminate_regs_in_insn, so just replace a PLUS with a
2378 PLUS here, unless inside a MEM. */
2379 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2380 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2381 return ep->to_rtx;
2382 else
2383 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2384 plus_constant (XEXP (x, 1),
2385 ep->previous_offset));
2386 }
2387
2388 /* If the register is not eliminable, we are done since the other
2389 operand is a constant. */
2390 return x;
2391 }
2392
2393 /* If this is part of an address, we want to bring any constant to the
2394 outermost PLUS. We will do this by doing register replacement in
2395 our operands and seeing if a constant shows up in one of them.
2396
2397 Note that there is no risk of modifying the structure of the insn,
2398 since we only get called for its operands, thus we are either
2399 modifying the address inside a MEM, or something like an address
2400 operand of a load-address insn. */
2401
2402 {
2403 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2404 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2405
2406 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2407 {
2408 /* If one side is a PLUS and the other side is a pseudo that
2409 didn't get a hard register but has a reg_equiv_constant,
2410 we must replace the constant here since it may no longer
2411 be in the position of any operand. */
2412 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2413 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2414 && reg_renumber[REGNO (new1)] < 0
2415 && reg_equiv_constant != 0
2416 && reg_equiv_constant[REGNO (new1)] != 0)
2417 new1 = reg_equiv_constant[REGNO (new1)];
2418 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2419 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2420 && reg_renumber[REGNO (new0)] < 0
2421 && reg_equiv_constant[REGNO (new0)] != 0)
2422 new0 = reg_equiv_constant[REGNO (new0)];
2423
2424 new = form_sum (new0, new1);
2425
2426 /* As above, if we are not inside a MEM we do not want to
2427 turn a PLUS into something else. We might try to do so here
2428 for an addition of 0 if we aren't optimizing. */
2429 if (! mem_mode && GET_CODE (new) != PLUS)
2430 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2431 else
2432 return new;
2433 }
2434 }
2435 return x;
2436
2437 case MULT:
2438 /* If this is the product of an eliminable register and a
2439 constant, apply the distribute law and move the constant out
2440 so that we have (plus (mult ..) ..). This is needed in order
2441 to keep load-address insns valid. This case is pathological.
2442 We ignore the possibility of overflow here. */
2443 if (GET_CODE (XEXP (x, 0)) == REG
2444 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2445 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2446 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2447 ep++)
2448 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2449 {
2450 if (! mem_mode
2451 /* Refs inside notes don't count for this purpose. */
2452 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2453 || GET_CODE (insn) == INSN_LIST)))
2454 ep->ref_outside_mem = 1;
2455
2456 return
2457 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2458 ep->previous_offset * INTVAL (XEXP (x, 1)));
2459 }
2460
2461 /* ... fall through ... */
2462
2463 case CALL:
2464 case COMPARE:
2465 /* See comments before PLUS about handling MINUS. */
2466 case MINUS:
2467 case DIV: case UDIV:
2468 case MOD: case UMOD:
2469 case AND: case IOR: case XOR:
2470 case ROTATERT: case ROTATE:
2471 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2472 case NE: case EQ:
2473 case GE: case GT: case GEU: case GTU:
2474 case LE: case LT: case LEU: case LTU:
2475 {
2476 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2477 rtx new1
2478 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2479
2480 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2481 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2482 }
2483 return x;
2484
2485 case EXPR_LIST:
2486 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2487 if (XEXP (x, 0))
2488 {
2489 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2490 if (new != XEXP (x, 0))
2491 {
2492 /* If this is a REG_DEAD note, it is not valid anymore.
2493 Using the eliminated version could result in creating a
2494 REG_DEAD note for the stack or frame pointer. */
2495 if (GET_MODE (x) == REG_DEAD)
2496 return (XEXP (x, 1)
2497 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2498 : NULL_RTX);
2499
2500 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2501 }
2502 }
2503
2504 /* ... fall through ... */
2505
2506 case INSN_LIST:
2507 /* Now do eliminations in the rest of the chain. If this was
2508 an EXPR_LIST, this might result in allocating more memory than is
2509 strictly needed, but it simplifies the code. */
2510 if (XEXP (x, 1))
2511 {
2512 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2513 if (new != XEXP (x, 1))
2514 return
2515 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2516 }
2517 return x;
2518
2519 case PRE_INC:
2520 case POST_INC:
2521 case PRE_DEC:
2522 case POST_DEC:
2523 case STRICT_LOW_PART:
2524 case NEG: case NOT:
2525 case SIGN_EXTEND: case ZERO_EXTEND:
2526 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2527 case FLOAT: case FIX:
2528 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2529 case ABS:
2530 case SQRT:
2531 case FFS:
2532 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2533 if (new != XEXP (x, 0))
2534 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2535 return x;
2536
2537 case SUBREG:
2538 /* Similar to above processing, but preserve SUBREG_BYTE.
2539 Convert (subreg (mem)) to (mem) if not paradoxical.
2540 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2541 pseudo didn't get a hard reg, we must replace this with the
2542 eliminated version of the memory location because push_reloads
2543 may do the replacement in certain circumstances. */
2544 if (GET_CODE (SUBREG_REG (x)) == REG
2545 && (GET_MODE_SIZE (GET_MODE (x))
2546 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2547 && reg_equiv_memory_loc != 0
2548 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2549 {
2550 new = SUBREG_REG (x);
2551 }
2552 else
2553 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2554
2555 if (new != SUBREG_REG (x))
2556 {
2557 int x_size = GET_MODE_SIZE (GET_MODE (x));
2558 int new_size = GET_MODE_SIZE (GET_MODE (new));
2559
2560 if (GET_CODE (new) == MEM
2561 && ((x_size < new_size
2562 #ifdef WORD_REGISTER_OPERATIONS
2563 /* On these machines, combine can create rtl of the form
2564 (set (subreg:m1 (reg:m2 R) 0) ...)
2565 where m1 < m2, and expects something interesting to
2566 happen to the entire word. Moreover, it will use the
2567 (reg:m2 R) later, expecting all bits to be preserved.
2568 So if the number of words is the same, preserve the
2569 subreg so that push_reloads can see it. */
2570 && ! ((x_size - 1) / UNITS_PER_WORD
2571 == (new_size -1 ) / UNITS_PER_WORD)
2572 #endif
2573 )
2574 || x_size == new_size)
2575 )
2576 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2577 else
2578 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2579 }
2580
2581 return x;
2582
2583 case MEM:
2584 /* This is only for the benefit of the debugging backends, which call
2585 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2586 removed after CSE. */
2587 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2588 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2589
2590 /* Our only special processing is to pass the mode of the MEM to our
2591 recursive call and copy the flags. While we are here, handle this
2592 case more efficiently. */
2593 return
2594 replace_equiv_address_nv (x,
2595 eliminate_regs (XEXP (x, 0),
2596 GET_MODE (x), insn));
2597
2598 case USE:
2599 /* Handle insn_list USE that a call to a pure function may generate. */
2600 new = eliminate_regs (XEXP (x, 0), 0, insn);
2601 if (new != XEXP (x, 0))
2602 return gen_rtx_USE (GET_MODE (x), new);
2603 return x;
2604
2605 case CLOBBER:
2606 case ASM_OPERANDS:
2607 case SET:
2608 abort ();
2609
2610 default:
2611 break;
2612 }
2613
2614 /* Process each of our operands recursively. If any have changed, make a
2615 copy of the rtx. */
2616 fmt = GET_RTX_FORMAT (code);
2617 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2618 {
2619 if (*fmt == 'e')
2620 {
2621 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2622 if (new != XEXP (x, i) && ! copied)
2623 {
2624 rtx new_x = rtx_alloc (code);
2625 memcpy (new_x, x,
2626 (sizeof (*new_x) - sizeof (new_x->fld)
2627 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2628 x = new_x;
2629 copied = 1;
2630 }
2631 XEXP (x, i) = new;
2632 }
2633 else if (*fmt == 'E')
2634 {
2635 int copied_vec = 0;
2636 for (j = 0; j < XVECLEN (x, i); j++)
2637 {
2638 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2639 if (new != XVECEXP (x, i, j) && ! copied_vec)
2640 {
2641 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2642 XVEC (x, i)->elem);
2643 if (! copied)
2644 {
2645 rtx new_x = rtx_alloc (code);
2646 memcpy (new_x, x,
2647 (sizeof (*new_x) - sizeof (new_x->fld)
2648 + (sizeof (new_x->fld[0])
2649 * GET_RTX_LENGTH (code))));
2650 x = new_x;
2651 copied = 1;
2652 }
2653 XVEC (x, i) = new_v;
2654 copied_vec = 1;
2655 }
2656 XVECEXP (x, i, j) = new;
2657 }
2658 }
2659 }
2660
2661 return x;
2662 }
2663
2664 /* Scan rtx X for modifications of elimination target registers. Update
2665 the table of eliminables to reflect the changed state. MEM_MODE is
2666 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2667
2668 static void
2669 elimination_effects (x, mem_mode)
2670 rtx x;
2671 enum machine_mode mem_mode;
2672
2673 {
2674 enum rtx_code code = GET_CODE (x);
2675 struct elim_table *ep;
2676 int regno;
2677 int i, j;
2678 const char *fmt;
2679
2680 switch (code)
2681 {
2682 case CONST_INT:
2683 case CONST_DOUBLE:
2684 case CONST_VECTOR:
2685 case CONST:
2686 case SYMBOL_REF:
2687 case CODE_LABEL:
2688 case PC:
2689 case CC0:
2690 case ASM_INPUT:
2691 case ADDR_VEC:
2692 case ADDR_DIFF_VEC:
2693 case RETURN:
2694 return;
2695
2696 case ADDRESSOF:
2697 abort ();
2698
2699 case REG:
2700 regno = REGNO (x);
2701
2702 /* First handle the case where we encounter a bare register that
2703 is eliminable. Replace it with a PLUS. */
2704 if (regno < FIRST_PSEUDO_REGISTER)
2705 {
2706 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2707 ep++)
2708 if (ep->from_rtx == x && ep->can_eliminate)
2709 {
2710 if (! mem_mode)
2711 ep->ref_outside_mem = 1;
2712 return;
2713 }
2714
2715 }
2716 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2717 && reg_equiv_constant[regno]
2718 && ! function_invariant_p (reg_equiv_constant[regno]))
2719 elimination_effects (reg_equiv_constant[regno], mem_mode);
2720 return;
2721
2722 case PRE_INC:
2723 case POST_INC:
2724 case PRE_DEC:
2725 case POST_DEC:
2726 case POST_MODIFY:
2727 case PRE_MODIFY:
2728 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2729 if (ep->to_rtx == XEXP (x, 0))
2730 {
2731 int size = GET_MODE_SIZE (mem_mode);
2732
2733 /* If more bytes than MEM_MODE are pushed, account for them. */
2734 #ifdef PUSH_ROUNDING
2735 if (ep->to_rtx == stack_pointer_rtx)
2736 size = PUSH_ROUNDING (size);
2737 #endif
2738 if (code == PRE_DEC || code == POST_DEC)
2739 ep->offset += size;
2740 else if (code == PRE_INC || code == POST_INC)
2741 ep->offset -= size;
2742 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2743 && GET_CODE (XEXP (x, 1)) == PLUS
2744 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2745 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2746 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2747 }
2748
2749 /* These two aren't unary operators. */
2750 if (code == POST_MODIFY || code == PRE_MODIFY)
2751 break;
2752
2753 /* Fall through to generic unary operation case. */
2754 case STRICT_LOW_PART:
2755 case NEG: case NOT:
2756 case SIGN_EXTEND: case ZERO_EXTEND:
2757 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2758 case FLOAT: case FIX:
2759 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2760 case ABS:
2761 case SQRT:
2762 case FFS:
2763 elimination_effects (XEXP (x, 0), mem_mode);
2764 return;
2765
2766 case SUBREG:
2767 if (GET_CODE (SUBREG_REG (x)) == REG
2768 && (GET_MODE_SIZE (GET_MODE (x))
2769 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2770 && reg_equiv_memory_loc != 0
2771 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2772 return;
2773
2774 elimination_effects (SUBREG_REG (x), mem_mode);
2775 return;
2776
2777 case USE:
2778 /* If using a register that is the source of an eliminate we still
2779 think can be performed, note it cannot be performed since we don't
2780 know how this register is used. */
2781 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2782 if (ep->from_rtx == XEXP (x, 0))
2783 ep->can_eliminate = 0;
2784
2785 elimination_effects (XEXP (x, 0), mem_mode);
2786 return;
2787
2788 case CLOBBER:
2789 /* If clobbering a register that is the replacement register for an
2790 elimination we still think can be performed, note that it cannot
2791 be performed. Otherwise, we need not be concerned about it. */
2792 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2793 if (ep->to_rtx == XEXP (x, 0))
2794 ep->can_eliminate = 0;
2795
2796 elimination_effects (XEXP (x, 0), mem_mode);
2797 return;
2798
2799 case SET:
2800 /* Check for setting a register that we know about. */
2801 if (GET_CODE (SET_DEST (x)) == REG)
2802 {
2803 /* See if this is setting the replacement register for an
2804 elimination.
2805
2806 If DEST is the hard frame pointer, we do nothing because we
2807 assume that all assignments to the frame pointer are for
2808 non-local gotos and are being done at a time when they are valid
2809 and do not disturb anything else. Some machines want to
2810 eliminate a fake argument pointer (or even a fake frame pointer)
2811 with either the real frame or the stack pointer. Assignments to
2812 the hard frame pointer must not prevent this elimination. */
2813
2814 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2815 ep++)
2816 if (ep->to_rtx == SET_DEST (x)
2817 && SET_DEST (x) != hard_frame_pointer_rtx)
2818 {
2819 /* If it is being incremented, adjust the offset. Otherwise,
2820 this elimination can't be done. */
2821 rtx src = SET_SRC (x);
2822
2823 if (GET_CODE (src) == PLUS
2824 && XEXP (src, 0) == SET_DEST (x)
2825 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2826 ep->offset -= INTVAL (XEXP (src, 1));
2827 else
2828 ep->can_eliminate = 0;
2829 }
2830 }
2831
2832 elimination_effects (SET_DEST (x), 0);
2833 elimination_effects (SET_SRC (x), 0);
2834 return;
2835
2836 case MEM:
2837 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2838 abort ();
2839
2840 /* Our only special processing is to pass the mode of the MEM to our
2841 recursive call. */
2842 elimination_effects (XEXP (x, 0), GET_MODE (x));
2843 return;
2844
2845 default:
2846 break;
2847 }
2848
2849 fmt = GET_RTX_FORMAT (code);
2850 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2851 {
2852 if (*fmt == 'e')
2853 elimination_effects (XEXP (x, i), mem_mode);
2854 else if (*fmt == 'E')
2855 for (j = 0; j < XVECLEN (x, i); j++)
2856 elimination_effects (XVECEXP (x, i, j), mem_mode);
2857 }
2858 }
2859
2860 /* Descend through rtx X and verify that no references to eliminable registers
2861 remain. If any do remain, mark the involved register as not
2862 eliminable. */
2863
2864 static void
2865 check_eliminable_occurrences (x)
2866 rtx x;
2867 {
2868 const char *fmt;
2869 int i;
2870 enum rtx_code code;
2871
2872 if (x == 0)
2873 return;
2874
2875 code = GET_CODE (x);
2876
2877 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2878 {
2879 struct elim_table *ep;
2880
2881 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2882 if (ep->from_rtx == x && ep->can_eliminate)
2883 ep->can_eliminate = 0;
2884 return;
2885 }
2886
2887 fmt = GET_RTX_FORMAT (code);
2888 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2889 {
2890 if (*fmt == 'e')
2891 check_eliminable_occurrences (XEXP (x, i));
2892 else if (*fmt == 'E')
2893 {
2894 int j;
2895 for (j = 0; j < XVECLEN (x, i); j++)
2896 check_eliminable_occurrences (XVECEXP (x, i, j));
2897 }
2898 }
2899 }
2900 \f
2901 /* Scan INSN and eliminate all eliminable registers in it.
2902
2903 If REPLACE is nonzero, do the replacement destructively. Also
2904 delete the insn as dead it if it is setting an eliminable register.
2905
2906 If REPLACE is zero, do all our allocations in reload_obstack.
2907
2908 If no eliminations were done and this insn doesn't require any elimination
2909 processing (these are not identical conditions: it might be updating sp,
2910 but not referencing fp; this needs to be seen during reload_as_needed so
2911 that the offset between fp and sp can be taken into consideration), zero
2912 is returned. Otherwise, 1 is returned. */
2913
2914 static int
2915 eliminate_regs_in_insn (insn, replace)
2916 rtx insn;
2917 int replace;
2918 {
2919 int icode = recog_memoized (insn);
2920 rtx old_body = PATTERN (insn);
2921 int insn_is_asm = asm_noperands (old_body) >= 0;
2922 rtx old_set = single_set (insn);
2923 rtx new_body;
2924 int val = 0;
2925 int i, any_changes;
2926 rtx substed_operand[MAX_RECOG_OPERANDS];
2927 rtx orig_operand[MAX_RECOG_OPERANDS];
2928 struct elim_table *ep;
2929
2930 if (! insn_is_asm && icode < 0)
2931 {
2932 if (GET_CODE (PATTERN (insn)) == USE
2933 || GET_CODE (PATTERN (insn)) == CLOBBER
2934 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2935 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2936 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2937 return 0;
2938 abort ();
2939 }
2940
2941 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2942 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2943 {
2944 /* Check for setting an eliminable register. */
2945 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2946 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2947 {
2948 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2949 /* If this is setting the frame pointer register to the
2950 hardware frame pointer register and this is an elimination
2951 that will be done (tested above), this insn is really
2952 adjusting the frame pointer downward to compensate for
2953 the adjustment done before a nonlocal goto. */
2954 if (ep->from == FRAME_POINTER_REGNUM
2955 && ep->to == HARD_FRAME_POINTER_REGNUM)
2956 {
2957 rtx base = SET_SRC (old_set);
2958 rtx base_insn = insn;
2959 int offset = 0;
2960
2961 while (base != ep->to_rtx)
2962 {
2963 rtx prev_insn, prev_set;
2964
2965 if (GET_CODE (base) == PLUS
2966 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2967 {
2968 offset += INTVAL (XEXP (base, 1));
2969 base = XEXP (base, 0);
2970 }
2971 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2972 && (prev_set = single_set (prev_insn)) != 0
2973 && rtx_equal_p (SET_DEST (prev_set), base))
2974 {
2975 base = SET_SRC (prev_set);
2976 base_insn = prev_insn;
2977 }
2978 else
2979 break;
2980 }
2981
2982 if (base == ep->to_rtx)
2983 {
2984 rtx src
2985 = plus_constant (ep->to_rtx, offset - ep->offset);
2986
2987 new_body = old_body;
2988 if (! replace)
2989 {
2990 new_body = copy_insn (old_body);
2991 if (REG_NOTES (insn))
2992 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2993 }
2994 PATTERN (insn) = new_body;
2995 old_set = single_set (insn);
2996
2997 /* First see if this insn remains valid when we
2998 make the change. If not, keep the INSN_CODE
2999 the same and let reload fit it up. */
3000 validate_change (insn, &SET_SRC (old_set), src, 1);
3001 validate_change (insn, &SET_DEST (old_set),
3002 ep->to_rtx, 1);
3003 if (! apply_change_group ())
3004 {
3005 SET_SRC (old_set) = src;
3006 SET_DEST (old_set) = ep->to_rtx;
3007 }
3008
3009 val = 1;
3010 goto done;
3011 }
3012 }
3013 #endif
3014
3015 /* In this case this insn isn't serving a useful purpose. We
3016 will delete it in reload_as_needed once we know that this
3017 elimination is, in fact, being done.
3018
3019 If REPLACE isn't set, we can't delete this insn, but needn't
3020 process it since it won't be used unless something changes. */
3021 if (replace)
3022 {
3023 delete_dead_insn (insn);
3024 return 1;
3025 }
3026 val = 1;
3027 goto done;
3028 }
3029 }
3030
3031 /* We allow one special case which happens to work on all machines we
3032 currently support: a single set with the source being a PLUS of an
3033 eliminable register and a constant. */
3034 if (old_set
3035 && GET_CODE (SET_DEST (old_set)) == REG
3036 && GET_CODE (SET_SRC (old_set)) == PLUS
3037 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3038 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3039 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3040 {
3041 rtx reg = XEXP (SET_SRC (old_set), 0);
3042 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
3043
3044 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3045 if (ep->from_rtx == reg && ep->can_eliminate)
3046 {
3047 offset += ep->offset;
3048
3049 if (offset == 0)
3050 {
3051 int num_clobbers;
3052 /* We assume here that if we need a PARALLEL with
3053 CLOBBERs for this assignment, we can do with the
3054 MATCH_SCRATCHes that add_clobbers allocates.
3055 There's not much we can do if that doesn't work. */
3056 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3057 SET_DEST (old_set),
3058 ep->to_rtx);
3059 num_clobbers = 0;
3060 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3061 if (num_clobbers)
3062 {
3063 rtvec vec = rtvec_alloc (num_clobbers + 1);
3064
3065 vec->elem[0] = PATTERN (insn);
3066 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3067 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3068 }
3069 if (INSN_CODE (insn) < 0)
3070 abort ();
3071 }
3072 else
3073 {
3074 new_body = old_body;
3075 if (! replace)
3076 {
3077 new_body = copy_insn (old_body);
3078 if (REG_NOTES (insn))
3079 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3080 }
3081 PATTERN (insn) = new_body;
3082 old_set = single_set (insn);
3083
3084 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3085 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3086 }
3087 val = 1;
3088 /* This can't have an effect on elimination offsets, so skip right
3089 to the end. */
3090 goto done;
3091 }
3092 }
3093
3094 /* Determine the effects of this insn on elimination offsets. */
3095 elimination_effects (old_body, 0);
3096
3097 /* Eliminate all eliminable registers occurring in operands that
3098 can be handled by reload. */
3099 extract_insn (insn);
3100 any_changes = 0;
3101 for (i = 0; i < recog_data.n_operands; i++)
3102 {
3103 orig_operand[i] = recog_data.operand[i];
3104 substed_operand[i] = recog_data.operand[i];
3105
3106 /* For an asm statement, every operand is eliminable. */
3107 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3108 {
3109 /* Check for setting a register that we know about. */
3110 if (recog_data.operand_type[i] != OP_IN
3111 && GET_CODE (orig_operand[i]) == REG)
3112 {
3113 /* If we are assigning to a register that can be eliminated, it
3114 must be as part of a PARALLEL, since the code above handles
3115 single SETs. We must indicate that we can no longer
3116 eliminate this reg. */
3117 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3118 ep++)
3119 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3120 ep->can_eliminate = 0;
3121 }
3122
3123 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3124 replace ? insn : NULL_RTX);
3125 if (substed_operand[i] != orig_operand[i])
3126 val = any_changes = 1;
3127 /* Terminate the search in check_eliminable_occurrences at
3128 this point. */
3129 *recog_data.operand_loc[i] = 0;
3130
3131 /* If an output operand changed from a REG to a MEM and INSN is an
3132 insn, write a CLOBBER insn. */
3133 if (recog_data.operand_type[i] != OP_IN
3134 && GET_CODE (orig_operand[i]) == REG
3135 && GET_CODE (substed_operand[i]) == MEM
3136 && replace)
3137 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3138 insn);
3139 }
3140 }
3141
3142 for (i = 0; i < recog_data.n_dups; i++)
3143 *recog_data.dup_loc[i]
3144 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3145
3146 /* If any eliminable remain, they aren't eliminable anymore. */
3147 check_eliminable_occurrences (old_body);
3148
3149 /* Substitute the operands; the new values are in the substed_operand
3150 array. */
3151 for (i = 0; i < recog_data.n_operands; i++)
3152 *recog_data.operand_loc[i] = substed_operand[i];
3153 for (i = 0; i < recog_data.n_dups; i++)
3154 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3155
3156 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3157 re-recognize the insn. We do this in case we had a simple addition
3158 but now can do this as a load-address. This saves an insn in this
3159 common case.
3160 If re-recognition fails, the old insn code number will still be used,
3161 and some register operands may have changed into PLUS expressions.
3162 These will be handled by find_reloads by loading them into a register
3163 again. */
3164
3165 if (val)
3166 {
3167 /* If we aren't replacing things permanently and we changed something,
3168 make another copy to ensure that all the RTL is new. Otherwise
3169 things can go wrong if find_reload swaps commutative operands
3170 and one is inside RTL that has been copied while the other is not. */
3171 new_body = old_body;
3172 if (! replace)
3173 {
3174 new_body = copy_insn (old_body);
3175 if (REG_NOTES (insn))
3176 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3177 }
3178 PATTERN (insn) = new_body;
3179
3180 /* If we had a move insn but now we don't, rerecognize it. This will
3181 cause spurious re-recognition if the old move had a PARALLEL since
3182 the new one still will, but we can't call single_set without
3183 having put NEW_BODY into the insn and the re-recognition won't
3184 hurt in this rare case. */
3185 /* ??? Why this huge if statement - why don't we just rerecognize the
3186 thing always? */
3187 if (! insn_is_asm
3188 && old_set != 0
3189 && ((GET_CODE (SET_SRC (old_set)) == REG
3190 && (GET_CODE (new_body) != SET
3191 || GET_CODE (SET_SRC (new_body)) != REG))
3192 /* If this was a load from or store to memory, compare
3193 the MEM in recog_data.operand to the one in the insn.
3194 If they are not equal, then rerecognize the insn. */
3195 || (old_set != 0
3196 && ((GET_CODE (SET_SRC (old_set)) == MEM
3197 && SET_SRC (old_set) != recog_data.operand[1])
3198 || (GET_CODE (SET_DEST (old_set)) == MEM
3199 && SET_DEST (old_set) != recog_data.operand[0])))
3200 /* If this was an add insn before, rerecognize. */
3201 || GET_CODE (SET_SRC (old_set)) == PLUS))
3202 {
3203 int new_icode = recog (PATTERN (insn), insn, 0);
3204 if (new_icode < 0)
3205 INSN_CODE (insn) = icode;
3206 }
3207 }
3208
3209 /* Restore the old body. If there were any changes to it, we made a copy
3210 of it while the changes were still in place, so we'll correctly return
3211 a modified insn below. */
3212 if (! replace)
3213 {
3214 /* Restore the old body. */
3215 for (i = 0; i < recog_data.n_operands; i++)
3216 *recog_data.operand_loc[i] = orig_operand[i];
3217 for (i = 0; i < recog_data.n_dups; i++)
3218 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3219 }
3220
3221 /* Update all elimination pairs to reflect the status after the current
3222 insn. The changes we make were determined by the earlier call to
3223 elimination_effects.
3224
3225 We also detect a cases where register elimination cannot be done,
3226 namely, if a register would be both changed and referenced outside a MEM
3227 in the resulting insn since such an insn is often undefined and, even if
3228 not, we cannot know what meaning will be given to it. Note that it is
3229 valid to have a register used in an address in an insn that changes it
3230 (presumably with a pre- or post-increment or decrement).
3231
3232 If anything changes, return nonzero. */
3233
3234 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3235 {
3236 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3237 ep->can_eliminate = 0;
3238
3239 ep->ref_outside_mem = 0;
3240
3241 if (ep->previous_offset != ep->offset)
3242 val = 1;
3243 }
3244
3245 done:
3246 /* If we changed something, perform elimination in REG_NOTES. This is
3247 needed even when REPLACE is zero because a REG_DEAD note might refer
3248 to a register that we eliminate and could cause a different number
3249 of spill registers to be needed in the final reload pass than in
3250 the pre-passes. */
3251 if (val && REG_NOTES (insn) != 0)
3252 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3253
3254 return val;
3255 }
3256
3257 /* Loop through all elimination pairs.
3258 Recalculate the number not at initial offset.
3259
3260 Compute the maximum offset (minimum offset if the stack does not
3261 grow downward) for each elimination pair. */
3262
3263 static void
3264 update_eliminable_offsets ()
3265 {
3266 struct elim_table *ep;
3267
3268 num_not_at_initial_offset = 0;
3269 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3270 {
3271 ep->previous_offset = ep->offset;
3272 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3273 num_not_at_initial_offset++;
3274 }
3275 }
3276
3277 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3278 replacement we currently believe is valid, mark it as not eliminable if X
3279 modifies DEST in any way other than by adding a constant integer to it.
3280
3281 If DEST is the frame pointer, we do nothing because we assume that
3282 all assignments to the hard frame pointer are nonlocal gotos and are being
3283 done at a time when they are valid and do not disturb anything else.
3284 Some machines want to eliminate a fake argument pointer with either the
3285 frame or stack pointer. Assignments to the hard frame pointer must not
3286 prevent this elimination.
3287
3288 Called via note_stores from reload before starting its passes to scan
3289 the insns of the function. */
3290
3291 static void
3292 mark_not_eliminable (dest, x, data)
3293 rtx dest;
3294 rtx x;
3295 void *data ATTRIBUTE_UNUSED;
3296 {
3297 unsigned int i;
3298
3299 /* A SUBREG of a hard register here is just changing its mode. We should
3300 not see a SUBREG of an eliminable hard register, but check just in
3301 case. */
3302 if (GET_CODE (dest) == SUBREG)
3303 dest = SUBREG_REG (dest);
3304
3305 if (dest == hard_frame_pointer_rtx)
3306 return;
3307
3308 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3309 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3310 && (GET_CODE (x) != SET
3311 || GET_CODE (SET_SRC (x)) != PLUS
3312 || XEXP (SET_SRC (x), 0) != dest
3313 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3314 {
3315 reg_eliminate[i].can_eliminate_previous
3316 = reg_eliminate[i].can_eliminate = 0;
3317 num_eliminable--;
3318 }
3319 }
3320
3321 /* Verify that the initial elimination offsets did not change since the
3322 last call to set_initial_elim_offsets. This is used to catch cases
3323 where something illegal happened during reload_as_needed that could
3324 cause incorrect code to be generated if we did not check for it. */
3325
3326 static void
3327 verify_initial_elim_offsets ()
3328 {
3329 int t;
3330
3331 #ifdef ELIMINABLE_REGS
3332 struct elim_table *ep;
3333
3334 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3335 {
3336 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3337 if (t != ep->initial_offset)
3338 abort ();
3339 }
3340 #else
3341 INITIAL_FRAME_POINTER_OFFSET (t);
3342 if (t != reg_eliminate[0].initial_offset)
3343 abort ();
3344 #endif
3345 }
3346
3347 /* Reset all offsets on eliminable registers to their initial values. */
3348
3349 static void
3350 set_initial_elim_offsets ()
3351 {
3352 struct elim_table *ep = reg_eliminate;
3353
3354 #ifdef ELIMINABLE_REGS
3355 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3356 {
3357 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3358 ep->previous_offset = ep->offset = ep->initial_offset;
3359 }
3360 #else
3361 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3362 ep->previous_offset = ep->offset = ep->initial_offset;
3363 #endif
3364
3365 num_not_at_initial_offset = 0;
3366 }
3367
3368 /* Initialize the known label offsets.
3369 Set a known offset for each forced label to be at the initial offset
3370 of each elimination. We do this because we assume that all
3371 computed jumps occur from a location where each elimination is
3372 at its initial offset.
3373 For all other labels, show that we don't know the offsets. */
3374
3375 static void
3376 set_initial_label_offsets ()
3377 {
3378 rtx x;
3379 memset ((char *) &offsets_known_at[get_first_label_num ()], 0, num_labels);
3380
3381 for (x = forced_labels; x; x = XEXP (x, 1))
3382 if (XEXP (x, 0))
3383 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3384 }
3385
3386 /* Set all elimination offsets to the known values for the code label given
3387 by INSN. */
3388
3389 static void
3390 set_offsets_for_label (insn)
3391 rtx insn;
3392 {
3393 unsigned int i;
3394 int label_nr = CODE_LABEL_NUMBER (insn);
3395 struct elim_table *ep;
3396
3397 num_not_at_initial_offset = 0;
3398 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3399 {
3400 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3401 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3402 num_not_at_initial_offset++;
3403 }
3404 }
3405
3406 /* See if anything that happened changes which eliminations are valid.
3407 For example, on the Sparc, whether or not the frame pointer can
3408 be eliminated can depend on what registers have been used. We need
3409 not check some conditions again (such as flag_omit_frame_pointer)
3410 since they can't have changed. */
3411
3412 static void
3413 update_eliminables (pset)
3414 HARD_REG_SET *pset;
3415 {
3416 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3417 int previous_frame_pointer_needed = frame_pointer_needed;
3418 #endif
3419 struct elim_table *ep;
3420
3421 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3422 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3423 #ifdef ELIMINABLE_REGS
3424 || ! CAN_ELIMINATE (ep->from, ep->to)
3425 #endif
3426 )
3427 ep->can_eliminate = 0;
3428
3429 /* Look for the case where we have discovered that we can't replace
3430 register A with register B and that means that we will now be
3431 trying to replace register A with register C. This means we can
3432 no longer replace register C with register B and we need to disable
3433 such an elimination, if it exists. This occurs often with A == ap,
3434 B == sp, and C == fp. */
3435
3436 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3437 {
3438 struct elim_table *op;
3439 int new_to = -1;
3440
3441 if (! ep->can_eliminate && ep->can_eliminate_previous)
3442 {
3443 /* Find the current elimination for ep->from, if there is a
3444 new one. */
3445 for (op = reg_eliminate;
3446 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3447 if (op->from == ep->from && op->can_eliminate)
3448 {
3449 new_to = op->to;
3450 break;
3451 }
3452
3453 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3454 disable it. */
3455 for (op = reg_eliminate;
3456 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3457 if (op->from == new_to && op->to == ep->to)
3458 op->can_eliminate = 0;
3459 }
3460 }
3461
3462 /* See if any registers that we thought we could eliminate the previous
3463 time are no longer eliminable. If so, something has changed and we
3464 must spill the register. Also, recompute the number of eliminable
3465 registers and see if the frame pointer is needed; it is if there is
3466 no elimination of the frame pointer that we can perform. */
3467
3468 frame_pointer_needed = 1;
3469 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3470 {
3471 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3472 && ep->to != HARD_FRAME_POINTER_REGNUM)
3473 frame_pointer_needed = 0;
3474
3475 if (! ep->can_eliminate && ep->can_eliminate_previous)
3476 {
3477 ep->can_eliminate_previous = 0;
3478 SET_HARD_REG_BIT (*pset, ep->from);
3479 num_eliminable--;
3480 }
3481 }
3482
3483 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3484 /* If we didn't need a frame pointer last time, but we do now, spill
3485 the hard frame pointer. */
3486 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3487 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3488 #endif
3489 }
3490
3491 /* Initialize the table of registers to eliminate. */
3492
3493 static void
3494 init_elim_table ()
3495 {
3496 struct elim_table *ep;
3497 #ifdef ELIMINABLE_REGS
3498 const struct elim_table_1 *ep1;
3499 #endif
3500
3501 if (!reg_eliminate)
3502 reg_eliminate = (struct elim_table *)
3503 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3504
3505 /* Does this function require a frame pointer? */
3506
3507 frame_pointer_needed = (! flag_omit_frame_pointer
3508 #ifdef EXIT_IGNORE_STACK
3509 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3510 and restore sp for alloca. So we can't eliminate
3511 the frame pointer in that case. At some point,
3512 we should improve this by emitting the
3513 sp-adjusting insns for this case. */
3514 || (current_function_calls_alloca
3515 && EXIT_IGNORE_STACK)
3516 #endif
3517 || FRAME_POINTER_REQUIRED);
3518
3519 num_eliminable = 0;
3520
3521 #ifdef ELIMINABLE_REGS
3522 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3523 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3524 {
3525 ep->from = ep1->from;
3526 ep->to = ep1->to;
3527 ep->can_eliminate = ep->can_eliminate_previous
3528 = (CAN_ELIMINATE (ep->from, ep->to)
3529 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3530 }
3531 #else
3532 reg_eliminate[0].from = reg_eliminate_1[0].from;
3533 reg_eliminate[0].to = reg_eliminate_1[0].to;
3534 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3535 = ! frame_pointer_needed;
3536 #endif
3537
3538 /* Count the number of eliminable registers and build the FROM and TO
3539 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3540 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3541 We depend on this. */
3542 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3543 {
3544 num_eliminable += ep->can_eliminate;
3545 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3546 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3547 }
3548 }
3549 \f
3550 /* Kick all pseudos out of hard register REGNO.
3551
3552 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3553 because we found we can't eliminate some register. In the case, no pseudos
3554 are allowed to be in the register, even if they are only in a block that
3555 doesn't require spill registers, unlike the case when we are spilling this
3556 hard reg to produce another spill register.
3557
3558 Return nonzero if any pseudos needed to be kicked out. */
3559
3560 static void
3561 spill_hard_reg (regno, cant_eliminate)
3562 unsigned int regno;
3563 int cant_eliminate;
3564 {
3565 int i;
3566
3567 if (cant_eliminate)
3568 {
3569 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3570 regs_ever_live[regno] = 1;
3571 }
3572
3573 /* Spill every pseudo reg that was allocated to this reg
3574 or to something that overlaps this reg. */
3575
3576 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3577 if (reg_renumber[i] >= 0
3578 && (unsigned int) reg_renumber[i] <= regno
3579 && ((unsigned int) reg_renumber[i]
3580 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3581 PSEUDO_REGNO_MODE (i))
3582 > regno))
3583 SET_REGNO_REG_SET (&spilled_pseudos, i);
3584 }
3585
3586 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3587 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3588
3589 static void
3590 ior_hard_reg_set (set1, set2)
3591 HARD_REG_SET *set1, *set2;
3592 {
3593 IOR_HARD_REG_SET (*set1, *set2);
3594 }
3595
3596 /* After find_reload_regs has been run for all insn that need reloads,
3597 and/or spill_hard_regs was called, this function is used to actually
3598 spill pseudo registers and try to reallocate them. It also sets up the
3599 spill_regs array for use by choose_reload_regs. */
3600
3601 static int
3602 finish_spills (global)
3603 int global;
3604 {
3605 struct insn_chain *chain;
3606 int something_changed = 0;
3607 int i;
3608
3609 /* Build the spill_regs array for the function. */
3610 /* If there are some registers still to eliminate and one of the spill regs
3611 wasn't ever used before, additional stack space may have to be
3612 allocated to store this register. Thus, we may have changed the offset
3613 between the stack and frame pointers, so mark that something has changed.
3614
3615 One might think that we need only set VAL to 1 if this is a call-used
3616 register. However, the set of registers that must be saved by the
3617 prologue is not identical to the call-used set. For example, the
3618 register used by the call insn for the return PC is a call-used register,
3619 but must be saved by the prologue. */
3620
3621 n_spills = 0;
3622 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3623 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3624 {
3625 spill_reg_order[i] = n_spills;
3626 spill_regs[n_spills++] = i;
3627 if (num_eliminable && ! regs_ever_live[i])
3628 something_changed = 1;
3629 regs_ever_live[i] = 1;
3630 }
3631 else
3632 spill_reg_order[i] = -1;
3633
3634 EXECUTE_IF_SET_IN_REG_SET
3635 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3636 {
3637 /* Record the current hard register the pseudo is allocated to in
3638 pseudo_previous_regs so we avoid reallocating it to the same
3639 hard reg in a later pass. */
3640 if (reg_renumber[i] < 0)
3641 abort ();
3642
3643 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3644 /* Mark it as no longer having a hard register home. */
3645 reg_renumber[i] = -1;
3646 /* We will need to scan everything again. */
3647 something_changed = 1;
3648 });
3649
3650 /* Retry global register allocation if possible. */
3651 if (global)
3652 {
3653 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3654 /* For every insn that needs reloads, set the registers used as spill
3655 regs in pseudo_forbidden_regs for every pseudo live across the
3656 insn. */
3657 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3658 {
3659 EXECUTE_IF_SET_IN_REG_SET
3660 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3661 {
3662 ior_hard_reg_set (pseudo_forbidden_regs + i,
3663 &chain->used_spill_regs);
3664 });
3665 EXECUTE_IF_SET_IN_REG_SET
3666 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3667 {
3668 ior_hard_reg_set (pseudo_forbidden_regs + i,
3669 &chain->used_spill_regs);
3670 });
3671 }
3672
3673 /* Retry allocating the spilled pseudos. For each reg, merge the
3674 various reg sets that indicate which hard regs can't be used,
3675 and call retry_global_alloc.
3676 We change spill_pseudos here to only contain pseudos that did not
3677 get a new hard register. */
3678 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3679 if (reg_old_renumber[i] != reg_renumber[i])
3680 {
3681 HARD_REG_SET forbidden;
3682 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3683 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3684 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3685 retry_global_alloc (i, forbidden);
3686 if (reg_renumber[i] >= 0)
3687 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3688 }
3689 }
3690
3691 /* Fix up the register information in the insn chain.
3692 This involves deleting those of the spilled pseudos which did not get
3693 a new hard register home from the live_{before,after} sets. */
3694 for (chain = reload_insn_chain; chain; chain = chain->next)
3695 {
3696 HARD_REG_SET used_by_pseudos;
3697 HARD_REG_SET used_by_pseudos2;
3698
3699 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3700 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3701
3702 /* Mark any unallocated hard regs as available for spills. That
3703 makes inheritance work somewhat better. */
3704 if (chain->need_reload)
3705 {
3706 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3707 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3708 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3709
3710 /* Save the old value for the sanity test below. */
3711 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3712
3713 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3714 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3715 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3716 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3717
3718 /* Make sure we only enlarge the set. */
3719 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3720 abort ();
3721 ok:;
3722 }
3723 }
3724
3725 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3726 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3727 {
3728 int regno = reg_renumber[i];
3729 if (reg_old_renumber[i] == regno)
3730 continue;
3731
3732 alter_reg (i, reg_old_renumber[i]);
3733 reg_old_renumber[i] = regno;
3734 if (rtl_dump_file)
3735 {
3736 if (regno == -1)
3737 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3738 else
3739 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3740 i, reg_renumber[i]);
3741 }
3742 }
3743
3744 return something_changed;
3745 }
3746 \f
3747 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3748 Also mark any hard registers used to store user variables as
3749 forbidden from being used for spill registers. */
3750
3751 static void
3752 scan_paradoxical_subregs (x)
3753 rtx x;
3754 {
3755 int i;
3756 const char *fmt;
3757 enum rtx_code code = GET_CODE (x);
3758
3759 switch (code)
3760 {
3761 case REG:
3762 #if 0
3763 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3764 && REG_USERVAR_P (x))
3765 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3766 #endif
3767 return;
3768
3769 case CONST_INT:
3770 case CONST:
3771 case SYMBOL_REF:
3772 case LABEL_REF:
3773 case CONST_DOUBLE:
3774 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3775 case CC0:
3776 case PC:
3777 case USE:
3778 case CLOBBER:
3779 return;
3780
3781 case SUBREG:
3782 if (GET_CODE (SUBREG_REG (x)) == REG
3783 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3784 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3785 = GET_MODE_SIZE (GET_MODE (x));
3786 return;
3787
3788 default:
3789 break;
3790 }
3791
3792 fmt = GET_RTX_FORMAT (code);
3793 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3794 {
3795 if (fmt[i] == 'e')
3796 scan_paradoxical_subregs (XEXP (x, i));
3797 else if (fmt[i] == 'E')
3798 {
3799 int j;
3800 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3801 scan_paradoxical_subregs (XVECEXP (x, i, j));
3802 }
3803 }
3804 }
3805 \f
3806 /* Reload pseudo-registers into hard regs around each insn as needed.
3807 Additional register load insns are output before the insn that needs it
3808 and perhaps store insns after insns that modify the reloaded pseudo reg.
3809
3810 reg_last_reload_reg and reg_reloaded_contents keep track of
3811 which registers are already available in reload registers.
3812 We update these for the reloads that we perform,
3813 as the insns are scanned. */
3814
3815 static void
3816 reload_as_needed (live_known)
3817 int live_known;
3818 {
3819 struct insn_chain *chain;
3820 #if defined (AUTO_INC_DEC)
3821 int i;
3822 #endif
3823 rtx x;
3824
3825 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3826 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
3827 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3828 reg_has_output_reload = (char *) xmalloc (max_regno);
3829 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3830
3831 set_initial_elim_offsets ();
3832
3833 for (chain = reload_insn_chain; chain; chain = chain->next)
3834 {
3835 rtx prev;
3836 rtx insn = chain->insn;
3837 rtx old_next = NEXT_INSN (insn);
3838
3839 /* If we pass a label, copy the offsets from the label information
3840 into the current offsets of each elimination. */
3841 if (GET_CODE (insn) == CODE_LABEL)
3842 set_offsets_for_label (insn);
3843
3844 else if (INSN_P (insn))
3845 {
3846 rtx oldpat = PATTERN (insn);
3847
3848 /* If this is a USE and CLOBBER of a MEM, ensure that any
3849 references to eliminable registers have been removed. */
3850
3851 if ((GET_CODE (PATTERN (insn)) == USE
3852 || GET_CODE (PATTERN (insn)) == CLOBBER)
3853 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3854 XEXP (XEXP (PATTERN (insn), 0), 0)
3855 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3856 GET_MODE (XEXP (PATTERN (insn), 0)),
3857 NULL_RTX);
3858
3859 /* If we need to do register elimination processing, do so.
3860 This might delete the insn, in which case we are done. */
3861 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3862 {
3863 eliminate_regs_in_insn (insn, 1);
3864 if (GET_CODE (insn) == NOTE)
3865 {
3866 update_eliminable_offsets ();
3867 continue;
3868 }
3869 }
3870
3871 /* If need_elim is nonzero but need_reload is zero, one might think
3872 that we could simply set n_reloads to 0. However, find_reloads
3873 could have done some manipulation of the insn (such as swapping
3874 commutative operands), and these manipulations are lost during
3875 the first pass for every insn that needs register elimination.
3876 So the actions of find_reloads must be redone here. */
3877
3878 if (! chain->need_elim && ! chain->need_reload
3879 && ! chain->need_operand_change)
3880 n_reloads = 0;
3881 /* First find the pseudo regs that must be reloaded for this insn.
3882 This info is returned in the tables reload_... (see reload.h).
3883 Also modify the body of INSN by substituting RELOAD
3884 rtx's for those pseudo regs. */
3885 else
3886 {
3887 memset (reg_has_output_reload, 0, max_regno);
3888 CLEAR_HARD_REG_SET (reg_is_output_reload);
3889
3890 find_reloads (insn, 1, spill_indirect_levels, live_known,
3891 spill_reg_order);
3892 }
3893
3894 if (n_reloads > 0)
3895 {
3896 rtx next = NEXT_INSN (insn);
3897 rtx p;
3898
3899 prev = PREV_INSN (insn);
3900
3901 /* Now compute which reload regs to reload them into. Perhaps
3902 reusing reload regs from previous insns, or else output
3903 load insns to reload them. Maybe output store insns too.
3904 Record the choices of reload reg in reload_reg_rtx. */
3905 choose_reload_regs (chain);
3906
3907 /* Merge any reloads that we didn't combine for fear of
3908 increasing the number of spill registers needed but now
3909 discover can be safely merged. */
3910 if (SMALL_REGISTER_CLASSES)
3911 merge_assigned_reloads (insn);
3912
3913 /* Generate the insns to reload operands into or out of
3914 their reload regs. */
3915 emit_reload_insns (chain);
3916
3917 /* Substitute the chosen reload regs from reload_reg_rtx
3918 into the insn's body (or perhaps into the bodies of other
3919 load and store insn that we just made for reloading
3920 and that we moved the structure into). */
3921 subst_reloads (insn);
3922
3923 /* If this was an ASM, make sure that all the reload insns
3924 we have generated are valid. If not, give an error
3925 and delete them. */
3926
3927 if (asm_noperands (PATTERN (insn)) >= 0)
3928 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3929 if (p != insn && INSN_P (p)
3930 && (recog_memoized (p) < 0
3931 || (extract_insn (p), ! constrain_operands (1))))
3932 {
3933 error_for_asm (insn,
3934 "`asm' operand requires impossible reload");
3935 delete_insn (p);
3936 }
3937 }
3938
3939 if (num_eliminable && chain->need_elim)
3940 update_eliminable_offsets ();
3941
3942 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3943 is no longer validly lying around to save a future reload.
3944 Note that this does not detect pseudos that were reloaded
3945 for this insn in order to be stored in
3946 (obeying register constraints). That is correct; such reload
3947 registers ARE still valid. */
3948 note_stores (oldpat, forget_old_reloads_1, NULL);
3949
3950 /* There may have been CLOBBER insns placed after INSN. So scan
3951 between INSN and NEXT and use them to forget old reloads. */
3952 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3953 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3954 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3955
3956 #ifdef AUTO_INC_DEC
3957 /* Likewise for regs altered by auto-increment in this insn.
3958 REG_INC notes have been changed by reloading:
3959 find_reloads_address_1 records substitutions for them,
3960 which have been performed by subst_reloads above. */
3961 for (i = n_reloads - 1; i >= 0; i--)
3962 {
3963 rtx in_reg = rld[i].in_reg;
3964 if (in_reg)
3965 {
3966 enum rtx_code code = GET_CODE (in_reg);
3967 /* PRE_INC / PRE_DEC will have the reload register ending up
3968 with the same value as the stack slot, but that doesn't
3969 hold true for POST_INC / POST_DEC. Either we have to
3970 convert the memory access to a true POST_INC / POST_DEC,
3971 or we can't use the reload register for inheritance. */
3972 if ((code == POST_INC || code == POST_DEC)
3973 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3974 REGNO (rld[i].reg_rtx))
3975 /* Make sure it is the inc/dec pseudo, and not
3976 some other (e.g. output operand) pseudo. */
3977 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3978 == REGNO (XEXP (in_reg, 0))))
3979
3980 {
3981 rtx reload_reg = rld[i].reg_rtx;
3982 enum machine_mode mode = GET_MODE (reload_reg);
3983 int n = 0;
3984 rtx p;
3985
3986 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3987 {
3988 /* We really want to ignore REG_INC notes here, so
3989 use PATTERN (p) as argument to reg_set_p . */
3990 if (reg_set_p (reload_reg, PATTERN (p)))
3991 break;
3992 n = count_occurrences (PATTERN (p), reload_reg, 0);
3993 if (! n)
3994 continue;
3995 if (n == 1)
3996 {
3997 n = validate_replace_rtx (reload_reg,
3998 gen_rtx (code, mode,
3999 reload_reg),
4000 p);
4001
4002 /* We must also verify that the constraints
4003 are met after the replacement. */
4004 extract_insn (p);
4005 if (n)
4006 n = constrain_operands (1);
4007 else
4008 break;
4009
4010 /* If the constraints were not met, then
4011 undo the replacement. */
4012 if (!n)
4013 {
4014 validate_replace_rtx (gen_rtx (code, mode,
4015 reload_reg),
4016 reload_reg, p);
4017 break;
4018 }
4019
4020 }
4021 break;
4022 }
4023 if (n == 1)
4024 {
4025 REG_NOTES (p)
4026 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4027 REG_NOTES (p));
4028 /* Mark this as having an output reload so that the
4029 REG_INC processing code below won't invalidate
4030 the reload for inheritance. */
4031 SET_HARD_REG_BIT (reg_is_output_reload,
4032 REGNO (reload_reg));
4033 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4034 }
4035 else
4036 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4037 NULL);
4038 }
4039 else if ((code == PRE_INC || code == PRE_DEC)
4040 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4041 REGNO (rld[i].reg_rtx))
4042 /* Make sure it is the inc/dec pseudo, and not
4043 some other (e.g. output operand) pseudo. */
4044 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4045 == REGNO (XEXP (in_reg, 0))))
4046 {
4047 SET_HARD_REG_BIT (reg_is_output_reload,
4048 REGNO (rld[i].reg_rtx));
4049 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4050 }
4051 }
4052 }
4053 /* If a pseudo that got a hard register is auto-incremented,
4054 we must purge records of copying it into pseudos without
4055 hard registers. */
4056 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4057 if (REG_NOTE_KIND (x) == REG_INC)
4058 {
4059 /* See if this pseudo reg was reloaded in this insn.
4060 If so, its last-reload info is still valid
4061 because it is based on this insn's reload. */
4062 for (i = 0; i < n_reloads; i++)
4063 if (rld[i].out == XEXP (x, 0))
4064 break;
4065
4066 if (i == n_reloads)
4067 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4068 }
4069 #endif
4070 }
4071 /* A reload reg's contents are unknown after a label. */
4072 if (GET_CODE (insn) == CODE_LABEL)
4073 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4074
4075 /* Don't assume a reload reg is still good after a call insn
4076 if it is a call-used reg. */
4077 else if (GET_CODE (insn) == CALL_INSN)
4078 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4079 }
4080
4081 /* Clean up. */
4082 free (reg_last_reload_reg);
4083 free (reg_has_output_reload);
4084 }
4085
4086 /* Discard all record of any value reloaded from X,
4087 or reloaded in X from someplace else;
4088 unless X is an output reload reg of the current insn.
4089
4090 X may be a hard reg (the reload reg)
4091 or it may be a pseudo reg that was reloaded from. */
4092
4093 static void
4094 forget_old_reloads_1 (x, ignored, data)
4095 rtx x;
4096 rtx ignored ATTRIBUTE_UNUSED;
4097 void *data ATTRIBUTE_UNUSED;
4098 {
4099 unsigned int regno;
4100 unsigned int nr;
4101
4102 /* note_stores does give us subregs of hard regs,
4103 subreg_regno_offset will abort if it is not a hard reg. */
4104 while (GET_CODE (x) == SUBREG)
4105 {
4106 /* We ignore the subreg offset when calculating the regno,
4107 because we are using the entire underlying hard register
4108 below. */
4109 x = SUBREG_REG (x);
4110 }
4111
4112 if (GET_CODE (x) != REG)
4113 return;
4114
4115 regno = REGNO (x);
4116
4117 if (regno >= FIRST_PSEUDO_REGISTER)
4118 nr = 1;
4119 else
4120 {
4121 unsigned int i;
4122
4123 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4124 /* Storing into a spilled-reg invalidates its contents.
4125 This can happen if a block-local pseudo is allocated to that reg
4126 and it wasn't spilled because this block's total need is 0.
4127 Then some insn might have an optional reload and use this reg. */
4128 for (i = 0; i < nr; i++)
4129 /* But don't do this if the reg actually serves as an output
4130 reload reg in the current instruction. */
4131 if (n_reloads == 0
4132 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4133 {
4134 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4135 spill_reg_store[regno + i] = 0;
4136 }
4137 }
4138
4139 /* Since value of X has changed,
4140 forget any value previously copied from it. */
4141
4142 while (nr-- > 0)
4143 /* But don't forget a copy if this is the output reload
4144 that establishes the copy's validity. */
4145 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4146 reg_last_reload_reg[regno + nr] = 0;
4147 }
4148 \f
4149 /* The following HARD_REG_SETs indicate when each hard register is
4150 used for a reload of various parts of the current insn. */
4151
4152 /* If reg is unavailable for all reloads. */
4153 static HARD_REG_SET reload_reg_unavailable;
4154 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4155 static HARD_REG_SET reload_reg_used;
4156 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4157 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4158 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4159 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4160 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4161 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4162 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4163 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4164 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4165 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4166 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4167 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4168 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4169 static HARD_REG_SET reload_reg_used_in_op_addr;
4170 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4171 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4172 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4173 static HARD_REG_SET reload_reg_used_in_insn;
4174 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4175 static HARD_REG_SET reload_reg_used_in_other_addr;
4176
4177 /* If reg is in use as a reload reg for any sort of reload. */
4178 static HARD_REG_SET reload_reg_used_at_all;
4179
4180 /* If reg is use as an inherited reload. We just mark the first register
4181 in the group. */
4182 static HARD_REG_SET reload_reg_used_for_inherit;
4183
4184 /* Records which hard regs are used in any way, either as explicit use or
4185 by being allocated to a pseudo during any point of the current insn. */
4186 static HARD_REG_SET reg_used_in_insn;
4187
4188 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4189 TYPE. MODE is used to indicate how many consecutive regs are
4190 actually used. */
4191
4192 static void
4193 mark_reload_reg_in_use (regno, opnum, type, mode)
4194 unsigned int regno;
4195 int opnum;
4196 enum reload_type type;
4197 enum machine_mode mode;
4198 {
4199 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4200 unsigned int i;
4201
4202 for (i = regno; i < nregs + regno; i++)
4203 {
4204 switch (type)
4205 {
4206 case RELOAD_OTHER:
4207 SET_HARD_REG_BIT (reload_reg_used, i);
4208 break;
4209
4210 case RELOAD_FOR_INPUT_ADDRESS:
4211 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4212 break;
4213
4214 case RELOAD_FOR_INPADDR_ADDRESS:
4215 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4216 break;
4217
4218 case RELOAD_FOR_OUTPUT_ADDRESS:
4219 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4220 break;
4221
4222 case RELOAD_FOR_OUTADDR_ADDRESS:
4223 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4224 break;
4225
4226 case RELOAD_FOR_OPERAND_ADDRESS:
4227 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4228 break;
4229
4230 case RELOAD_FOR_OPADDR_ADDR:
4231 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4232 break;
4233
4234 case RELOAD_FOR_OTHER_ADDRESS:
4235 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4236 break;
4237
4238 case RELOAD_FOR_INPUT:
4239 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4240 break;
4241
4242 case RELOAD_FOR_OUTPUT:
4243 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4244 break;
4245
4246 case RELOAD_FOR_INSN:
4247 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4248 break;
4249 }
4250
4251 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4252 }
4253 }
4254
4255 /* Similarly, but show REGNO is no longer in use for a reload. */
4256
4257 static void
4258 clear_reload_reg_in_use (regno, opnum, type, mode)
4259 unsigned int regno;
4260 int opnum;
4261 enum reload_type type;
4262 enum machine_mode mode;
4263 {
4264 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4265 unsigned int start_regno, end_regno, r;
4266 int i;
4267 /* A complication is that for some reload types, inheritance might
4268 allow multiple reloads of the same types to share a reload register.
4269 We set check_opnum if we have to check only reloads with the same
4270 operand number, and check_any if we have to check all reloads. */
4271 int check_opnum = 0;
4272 int check_any = 0;
4273 HARD_REG_SET *used_in_set;
4274
4275 switch (type)
4276 {
4277 case RELOAD_OTHER:
4278 used_in_set = &reload_reg_used;
4279 break;
4280
4281 case RELOAD_FOR_INPUT_ADDRESS:
4282 used_in_set = &reload_reg_used_in_input_addr[opnum];
4283 break;
4284
4285 case RELOAD_FOR_INPADDR_ADDRESS:
4286 check_opnum = 1;
4287 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4288 break;
4289
4290 case RELOAD_FOR_OUTPUT_ADDRESS:
4291 used_in_set = &reload_reg_used_in_output_addr[opnum];
4292 break;
4293
4294 case RELOAD_FOR_OUTADDR_ADDRESS:
4295 check_opnum = 1;
4296 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4297 break;
4298
4299 case RELOAD_FOR_OPERAND_ADDRESS:
4300 used_in_set = &reload_reg_used_in_op_addr;
4301 break;
4302
4303 case RELOAD_FOR_OPADDR_ADDR:
4304 check_any = 1;
4305 used_in_set = &reload_reg_used_in_op_addr_reload;
4306 break;
4307
4308 case RELOAD_FOR_OTHER_ADDRESS:
4309 used_in_set = &reload_reg_used_in_other_addr;
4310 check_any = 1;
4311 break;
4312
4313 case RELOAD_FOR_INPUT:
4314 used_in_set = &reload_reg_used_in_input[opnum];
4315 break;
4316
4317 case RELOAD_FOR_OUTPUT:
4318 used_in_set = &reload_reg_used_in_output[opnum];
4319 break;
4320
4321 case RELOAD_FOR_INSN:
4322 used_in_set = &reload_reg_used_in_insn;
4323 break;
4324 default:
4325 abort ();
4326 }
4327 /* We resolve conflicts with remaining reloads of the same type by
4328 excluding the intervals of of reload registers by them from the
4329 interval of freed reload registers. Since we only keep track of
4330 one set of interval bounds, we might have to exclude somewhat
4331 more than what would be necessary if we used a HARD_REG_SET here.
4332 But this should only happen very infrequently, so there should
4333 be no reason to worry about it. */
4334
4335 start_regno = regno;
4336 end_regno = regno + nregs;
4337 if (check_opnum || check_any)
4338 {
4339 for (i = n_reloads - 1; i >= 0; i--)
4340 {
4341 if (rld[i].when_needed == type
4342 && (check_any || rld[i].opnum == opnum)
4343 && rld[i].reg_rtx)
4344 {
4345 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4346 unsigned int conflict_end
4347 = (conflict_start
4348 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4349
4350 /* If there is an overlap with the first to-be-freed register,
4351 adjust the interval start. */
4352 if (conflict_start <= start_regno && conflict_end > start_regno)
4353 start_regno = conflict_end;
4354 /* Otherwise, if there is a conflict with one of the other
4355 to-be-freed registers, adjust the interval end. */
4356 if (conflict_start > start_regno && conflict_start < end_regno)
4357 end_regno = conflict_start;
4358 }
4359 }
4360 }
4361
4362 for (r = start_regno; r < end_regno; r++)
4363 CLEAR_HARD_REG_BIT (*used_in_set, r);
4364 }
4365
4366 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4367 specified by OPNUM and TYPE. */
4368
4369 static int
4370 reload_reg_free_p (regno, opnum, type)
4371 unsigned int regno;
4372 int opnum;
4373 enum reload_type type;
4374 {
4375 int i;
4376
4377 /* In use for a RELOAD_OTHER means it's not available for anything. */
4378 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4379 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4380 return 0;
4381
4382 switch (type)
4383 {
4384 case RELOAD_OTHER:
4385 /* In use for anything means we can't use it for RELOAD_OTHER. */
4386 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4387 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4388 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4389 return 0;
4390
4391 for (i = 0; i < reload_n_operands; i++)
4392 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4393 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4394 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4395 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4396 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4397 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4398 return 0;
4399
4400 return 1;
4401
4402 case RELOAD_FOR_INPUT:
4403 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4404 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4405 return 0;
4406
4407 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4408 return 0;
4409
4410 /* If it is used for some other input, can't use it. */
4411 for (i = 0; i < reload_n_operands; i++)
4412 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4413 return 0;
4414
4415 /* If it is used in a later operand's address, can't use it. */
4416 for (i = opnum + 1; i < reload_n_operands; i++)
4417 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4418 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4419 return 0;
4420
4421 return 1;
4422
4423 case RELOAD_FOR_INPUT_ADDRESS:
4424 /* Can't use a register if it is used for an input address for this
4425 operand or used as an input in an earlier one. */
4426 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4427 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4428 return 0;
4429
4430 for (i = 0; i < opnum; i++)
4431 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4432 return 0;
4433
4434 return 1;
4435
4436 case RELOAD_FOR_INPADDR_ADDRESS:
4437 /* Can't use a register if it is used for an input address
4438 for this operand or used as an input in an earlier
4439 one. */
4440 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4441 return 0;
4442
4443 for (i = 0; i < opnum; i++)
4444 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4445 return 0;
4446
4447 return 1;
4448
4449 case RELOAD_FOR_OUTPUT_ADDRESS:
4450 /* Can't use a register if it is used for an output address for this
4451 operand or used as an output in this or a later operand. Note
4452 that multiple output operands are emitted in reverse order, so
4453 the conflicting ones are those with lower indices. */
4454 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4455 return 0;
4456
4457 for (i = 0; i <= opnum; i++)
4458 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4459 return 0;
4460
4461 return 1;
4462
4463 case RELOAD_FOR_OUTADDR_ADDRESS:
4464 /* Can't use a register if it is used for an output address
4465 for this operand or used as an output in this or a
4466 later operand. Note that multiple output operands are
4467 emitted in reverse order, so the conflicting ones are
4468 those with lower indices. */
4469 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4470 return 0;
4471
4472 for (i = 0; i <= opnum; i++)
4473 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4474 return 0;
4475
4476 return 1;
4477
4478 case RELOAD_FOR_OPERAND_ADDRESS:
4479 for (i = 0; i < reload_n_operands; i++)
4480 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4481 return 0;
4482
4483 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4484 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4485
4486 case RELOAD_FOR_OPADDR_ADDR:
4487 for (i = 0; i < reload_n_operands; i++)
4488 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4489 return 0;
4490
4491 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4492
4493 case RELOAD_FOR_OUTPUT:
4494 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4495 outputs, or an operand address for this or an earlier output.
4496 Note that multiple output operands are emitted in reverse order,
4497 so the conflicting ones are those with higher indices. */
4498 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4499 return 0;
4500
4501 for (i = 0; i < reload_n_operands; i++)
4502 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4503 return 0;
4504
4505 for (i = opnum; i < reload_n_operands; i++)
4506 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4507 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4508 return 0;
4509
4510 return 1;
4511
4512 case RELOAD_FOR_INSN:
4513 for (i = 0; i < reload_n_operands; i++)
4514 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4515 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4516 return 0;
4517
4518 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4519 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4520
4521 case RELOAD_FOR_OTHER_ADDRESS:
4522 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4523 }
4524 abort ();
4525 }
4526
4527 /* Return 1 if the value in reload reg REGNO, as used by a reload
4528 needed for the part of the insn specified by OPNUM and TYPE,
4529 is still available in REGNO at the end of the insn.
4530
4531 We can assume that the reload reg was already tested for availability
4532 at the time it is needed, and we should not check this again,
4533 in case the reg has already been marked in use. */
4534
4535 static int
4536 reload_reg_reaches_end_p (regno, opnum, type)
4537 unsigned int regno;
4538 int opnum;
4539 enum reload_type type;
4540 {
4541 int i;
4542
4543 switch (type)
4544 {
4545 case RELOAD_OTHER:
4546 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4547 its value must reach the end. */
4548 return 1;
4549
4550 /* If this use is for part of the insn,
4551 its value reaches if no subsequent part uses the same register.
4552 Just like the above function, don't try to do this with lots
4553 of fallthroughs. */
4554
4555 case RELOAD_FOR_OTHER_ADDRESS:
4556 /* Here we check for everything else, since these don't conflict
4557 with anything else and everything comes later. */
4558
4559 for (i = 0; i < reload_n_operands; i++)
4560 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4561 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4562 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4563 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4564 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4565 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4566 return 0;
4567
4568 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4569 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4570 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4571
4572 case RELOAD_FOR_INPUT_ADDRESS:
4573 case RELOAD_FOR_INPADDR_ADDRESS:
4574 /* Similar, except that we check only for this and subsequent inputs
4575 and the address of only subsequent inputs and we do not need
4576 to check for RELOAD_OTHER objects since they are known not to
4577 conflict. */
4578
4579 for (i = opnum; i < reload_n_operands; i++)
4580 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4581 return 0;
4582
4583 for (i = opnum + 1; i < reload_n_operands; i++)
4584 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4585 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4586 return 0;
4587
4588 for (i = 0; i < reload_n_operands; i++)
4589 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4590 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4591 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4592 return 0;
4593
4594 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4595 return 0;
4596
4597 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4598 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4599 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4600
4601 case RELOAD_FOR_INPUT:
4602 /* Similar to input address, except we start at the next operand for
4603 both input and input address and we do not check for
4604 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4605 would conflict. */
4606
4607 for (i = opnum + 1; i < reload_n_operands; i++)
4608 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4609 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4610 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4611 return 0;
4612
4613 /* ... fall through ... */
4614
4615 case RELOAD_FOR_OPERAND_ADDRESS:
4616 /* Check outputs and their addresses. */
4617
4618 for (i = 0; i < reload_n_operands; i++)
4619 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4620 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4621 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4622 return 0;
4623
4624 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4625
4626 case RELOAD_FOR_OPADDR_ADDR:
4627 for (i = 0; i < reload_n_operands; i++)
4628 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4629 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4630 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4631 return 0;
4632
4633 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4634 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4635 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4636
4637 case RELOAD_FOR_INSN:
4638 /* These conflict with other outputs with RELOAD_OTHER. So
4639 we need only check for output addresses. */
4640
4641 opnum = reload_n_operands;
4642
4643 /* ... fall through ... */
4644
4645 case RELOAD_FOR_OUTPUT:
4646 case RELOAD_FOR_OUTPUT_ADDRESS:
4647 case RELOAD_FOR_OUTADDR_ADDRESS:
4648 /* We already know these can't conflict with a later output. So the
4649 only thing to check are later output addresses.
4650 Note that multiple output operands are emitted in reverse order,
4651 so the conflicting ones are those with lower indices. */
4652 for (i = 0; i < opnum; i++)
4653 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4654 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4655 return 0;
4656
4657 return 1;
4658 }
4659
4660 abort ();
4661 }
4662 \f
4663 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4664 Return 0 otherwise.
4665
4666 This function uses the same algorithm as reload_reg_free_p above. */
4667
4668 int
4669 reloads_conflict (r1, r2)
4670 int r1, r2;
4671 {
4672 enum reload_type r1_type = rld[r1].when_needed;
4673 enum reload_type r2_type = rld[r2].when_needed;
4674 int r1_opnum = rld[r1].opnum;
4675 int r2_opnum = rld[r2].opnum;
4676
4677 /* RELOAD_OTHER conflicts with everything. */
4678 if (r2_type == RELOAD_OTHER)
4679 return 1;
4680
4681 /* Otherwise, check conflicts differently for each type. */
4682
4683 switch (r1_type)
4684 {
4685 case RELOAD_FOR_INPUT:
4686 return (r2_type == RELOAD_FOR_INSN
4687 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4688 || r2_type == RELOAD_FOR_OPADDR_ADDR
4689 || r2_type == RELOAD_FOR_INPUT
4690 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4691 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4692 && r2_opnum > r1_opnum));
4693
4694 case RELOAD_FOR_INPUT_ADDRESS:
4695 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4696 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4697
4698 case RELOAD_FOR_INPADDR_ADDRESS:
4699 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4700 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4701
4702 case RELOAD_FOR_OUTPUT_ADDRESS:
4703 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4704 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4705
4706 case RELOAD_FOR_OUTADDR_ADDRESS:
4707 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4708 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4709
4710 case RELOAD_FOR_OPERAND_ADDRESS:
4711 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4712 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4713
4714 case RELOAD_FOR_OPADDR_ADDR:
4715 return (r2_type == RELOAD_FOR_INPUT
4716 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4717
4718 case RELOAD_FOR_OUTPUT:
4719 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4720 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4721 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4722 && r2_opnum >= r1_opnum));
4723
4724 case RELOAD_FOR_INSN:
4725 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4726 || r2_type == RELOAD_FOR_INSN
4727 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4728
4729 case RELOAD_FOR_OTHER_ADDRESS:
4730 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4731
4732 case RELOAD_OTHER:
4733 return 1;
4734
4735 default:
4736 abort ();
4737 }
4738 }
4739 \f
4740 /* Indexed by reload number, 1 if incoming value
4741 inherited from previous insns. */
4742 char reload_inherited[MAX_RELOADS];
4743
4744 /* For an inherited reload, this is the insn the reload was inherited from,
4745 if we know it. Otherwise, this is 0. */
4746 rtx reload_inheritance_insn[MAX_RELOADS];
4747
4748 /* If non-zero, this is a place to get the value of the reload,
4749 rather than using reload_in. */
4750 rtx reload_override_in[MAX_RELOADS];
4751
4752 /* For each reload, the hard register number of the register used,
4753 or -1 if we did not need a register for this reload. */
4754 int reload_spill_index[MAX_RELOADS];
4755
4756 /* Subroutine of free_for_value_p, used to check a single register.
4757 START_REGNO is the starting regno of the full reload register
4758 (possibly comprising multiple hard registers) that we are considering. */
4759
4760 static int
4761 reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4762 reloadnum, ignore_address_reloads)
4763 int start_regno, regno;
4764 int opnum;
4765 enum reload_type type;
4766 rtx value, out;
4767 int reloadnum;
4768 int ignore_address_reloads;
4769 {
4770 int time1;
4771 /* Set if we see an input reload that must not share its reload register
4772 with any new earlyclobber, but might otherwise share the reload
4773 register with an output or input-output reload. */
4774 int check_earlyclobber = 0;
4775 int i;
4776 int copy = 0;
4777
4778 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4779 return 0;
4780
4781 if (out == const0_rtx)
4782 {
4783 copy = 1;
4784 out = NULL_RTX;
4785 }
4786
4787 /* We use some pseudo 'time' value to check if the lifetimes of the
4788 new register use would overlap with the one of a previous reload
4789 that is not read-only or uses a different value.
4790 The 'time' used doesn't have to be linear in any shape or form, just
4791 monotonic.
4792 Some reload types use different 'buckets' for each operand.
4793 So there are MAX_RECOG_OPERANDS different time values for each
4794 such reload type.
4795 We compute TIME1 as the time when the register for the prospective
4796 new reload ceases to be live, and TIME2 for each existing
4797 reload as the time when that the reload register of that reload
4798 becomes live.
4799 Where there is little to be gained by exact lifetime calculations,
4800 we just make conservative assumptions, i.e. a longer lifetime;
4801 this is done in the 'default:' cases. */
4802 switch (type)
4803 {
4804 case RELOAD_FOR_OTHER_ADDRESS:
4805 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4806 time1 = copy ? 0 : 1;
4807 break;
4808 case RELOAD_OTHER:
4809 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4810 break;
4811 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4812 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4813 respectively, to the time values for these, we get distinct time
4814 values. To get distinct time values for each operand, we have to
4815 multiply opnum by at least three. We round that up to four because
4816 multiply by four is often cheaper. */
4817 case RELOAD_FOR_INPADDR_ADDRESS:
4818 time1 = opnum * 4 + 2;
4819 break;
4820 case RELOAD_FOR_INPUT_ADDRESS:
4821 time1 = opnum * 4 + 3;
4822 break;
4823 case RELOAD_FOR_INPUT:
4824 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4825 executes (inclusive). */
4826 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4827 break;
4828 case RELOAD_FOR_OPADDR_ADDR:
4829 /* opnum * 4 + 4
4830 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4831 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4832 break;
4833 case RELOAD_FOR_OPERAND_ADDRESS:
4834 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4835 is executed. */
4836 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4837 break;
4838 case RELOAD_FOR_OUTADDR_ADDRESS:
4839 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4840 break;
4841 case RELOAD_FOR_OUTPUT_ADDRESS:
4842 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4843 break;
4844 default:
4845 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4846 }
4847
4848 for (i = 0; i < n_reloads; i++)
4849 {
4850 rtx reg = rld[i].reg_rtx;
4851 if (reg && GET_CODE (reg) == REG
4852 && ((unsigned) regno - true_regnum (reg)
4853 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned) 1)
4854 && i != reloadnum)
4855 {
4856 rtx other_input = rld[i].in;
4857
4858 /* If the other reload loads the same input value, that
4859 will not cause a conflict only if it's loading it into
4860 the same register. */
4861 if (true_regnum (reg) != start_regno)
4862 other_input = NULL_RTX;
4863 if (! other_input || ! rtx_equal_p (other_input, value)
4864 || rld[i].out || out)
4865 {
4866 int time2;
4867 switch (rld[i].when_needed)
4868 {
4869 case RELOAD_FOR_OTHER_ADDRESS:
4870 time2 = 0;
4871 break;
4872 case RELOAD_FOR_INPADDR_ADDRESS:
4873 /* find_reloads makes sure that a
4874 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4875 by at most one - the first -
4876 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4877 address reload is inherited, the address address reload
4878 goes away, so we can ignore this conflict. */
4879 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4880 && ignore_address_reloads
4881 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4882 Then the address address is still needed to store
4883 back the new address. */
4884 && ! rld[reloadnum].out)
4885 continue;
4886 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4887 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4888 reloads go away. */
4889 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4890 && ignore_address_reloads
4891 /* Unless we are reloading an auto_inc expression. */
4892 && ! rld[reloadnum].out)
4893 continue;
4894 time2 = rld[i].opnum * 4 + 2;
4895 break;
4896 case RELOAD_FOR_INPUT_ADDRESS:
4897 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4898 && ignore_address_reloads
4899 && ! rld[reloadnum].out)
4900 continue;
4901 time2 = rld[i].opnum * 4 + 3;
4902 break;
4903 case RELOAD_FOR_INPUT:
4904 time2 = rld[i].opnum * 4 + 4;
4905 check_earlyclobber = 1;
4906 break;
4907 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4908 == MAX_RECOG_OPERAND * 4 */
4909 case RELOAD_FOR_OPADDR_ADDR:
4910 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4911 && ignore_address_reloads
4912 && ! rld[reloadnum].out)
4913 continue;
4914 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4915 break;
4916 case RELOAD_FOR_OPERAND_ADDRESS:
4917 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4918 check_earlyclobber = 1;
4919 break;
4920 case RELOAD_FOR_INSN:
4921 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4922 break;
4923 case RELOAD_FOR_OUTPUT:
4924 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4925 instruction is executed. */
4926 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4927 break;
4928 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4929 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4930 value. */
4931 case RELOAD_FOR_OUTADDR_ADDRESS:
4932 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4933 && ignore_address_reloads
4934 && ! rld[reloadnum].out)
4935 continue;
4936 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4937 break;
4938 case RELOAD_FOR_OUTPUT_ADDRESS:
4939 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4940 break;
4941 case RELOAD_OTHER:
4942 /* If there is no conflict in the input part, handle this
4943 like an output reload. */
4944 if (! rld[i].in || rtx_equal_p (other_input, value))
4945 {
4946 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4947 /* Earlyclobbered outputs must conflict with inputs. */
4948 if (earlyclobber_operand_p (rld[i].out))
4949 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4950
4951 break;
4952 }
4953 time2 = 1;
4954 /* RELOAD_OTHER might be live beyond instruction execution,
4955 but this is not obvious when we set time2 = 1. So check
4956 here if there might be a problem with the new reload
4957 clobbering the register used by the RELOAD_OTHER. */
4958 if (out)
4959 return 0;
4960 break;
4961 default:
4962 return 0;
4963 }
4964 if ((time1 >= time2
4965 && (! rld[i].in || rld[i].out
4966 || ! rtx_equal_p (other_input, value)))
4967 || (out && rld[reloadnum].out_reg
4968 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4969 return 0;
4970 }
4971 }
4972 }
4973
4974 /* Earlyclobbered outputs must conflict with inputs. */
4975 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4976 return 0;
4977
4978 return 1;
4979 }
4980
4981 /* Return 1 if the value in reload reg REGNO, as used by a reload
4982 needed for the part of the insn specified by OPNUM and TYPE,
4983 may be used to load VALUE into it.
4984
4985 MODE is the mode in which the register is used, this is needed to
4986 determine how many hard regs to test.
4987
4988 Other read-only reloads with the same value do not conflict
4989 unless OUT is non-zero and these other reloads have to live while
4990 output reloads live.
4991 If OUT is CONST0_RTX, this is a special case: it means that the
4992 test should not be for using register REGNO as reload register, but
4993 for copying from register REGNO into the reload register.
4994
4995 RELOADNUM is the number of the reload we want to load this value for;
4996 a reload does not conflict with itself.
4997
4998 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4999 reloads that load an address for the very reload we are considering.
5000
5001 The caller has to make sure that there is no conflict with the return
5002 register. */
5003
5004 static int
5005 free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
5006 ignore_address_reloads)
5007 int regno;
5008 enum machine_mode mode;
5009 int opnum;
5010 enum reload_type type;
5011 rtx value, out;
5012 int reloadnum;
5013 int ignore_address_reloads;
5014 {
5015 int nregs = HARD_REGNO_NREGS (regno, mode);
5016 while (nregs-- > 0)
5017 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5018 value, out, reloadnum,
5019 ignore_address_reloads))
5020 return 0;
5021 return 1;
5022 }
5023
5024 /* Determine whether the reload reg X overlaps any rtx'es used for
5025 overriding inheritance. Return nonzero if so. */
5026
5027 static int
5028 conflicts_with_override (x)
5029 rtx x;
5030 {
5031 int i;
5032 for (i = 0; i < n_reloads; i++)
5033 if (reload_override_in[i]
5034 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5035 return 1;
5036 return 0;
5037 }
5038 \f
5039 /* Give an error message saying we failed to find a reload for INSN,
5040 and clear out reload R. */
5041 static void
5042 failed_reload (insn, r)
5043 rtx insn;
5044 int r;
5045 {
5046 if (asm_noperands (PATTERN (insn)) < 0)
5047 /* It's the compiler's fault. */
5048 fatal_insn ("could not find a spill register", insn);
5049
5050 /* It's the user's fault; the operand's mode and constraint
5051 don't match. Disable this reload so we don't crash in final. */
5052 error_for_asm (insn,
5053 "`asm' operand constraint incompatible with operand size");
5054 rld[r].in = 0;
5055 rld[r].out = 0;
5056 rld[r].reg_rtx = 0;
5057 rld[r].optional = 1;
5058 rld[r].secondary_p = 1;
5059 }
5060
5061 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5062 for reload R. If it's valid, get an rtx for it. Return nonzero if
5063 successful. */
5064 static int
5065 set_reload_reg (i, r)
5066 int i, r;
5067 {
5068 int regno;
5069 rtx reg = spill_reg_rtx[i];
5070
5071 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5072 spill_reg_rtx[i] = reg
5073 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5074
5075 regno = true_regnum (reg);
5076
5077 /* Detect when the reload reg can't hold the reload mode.
5078 This used to be one `if', but Sequent compiler can't handle that. */
5079 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5080 {
5081 enum machine_mode test_mode = VOIDmode;
5082 if (rld[r].in)
5083 test_mode = GET_MODE (rld[r].in);
5084 /* If rld[r].in has VOIDmode, it means we will load it
5085 in whatever mode the reload reg has: to wit, rld[r].mode.
5086 We have already tested that for validity. */
5087 /* Aside from that, we need to test that the expressions
5088 to reload from or into have modes which are valid for this
5089 reload register. Otherwise the reload insns would be invalid. */
5090 if (! (rld[r].in != 0 && test_mode != VOIDmode
5091 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5092 if (! (rld[r].out != 0
5093 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5094 {
5095 /* The reg is OK. */
5096 last_spill_reg = i;
5097
5098 /* Mark as in use for this insn the reload regs we use
5099 for this. */
5100 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5101 rld[r].when_needed, rld[r].mode);
5102
5103 rld[r].reg_rtx = reg;
5104 reload_spill_index[r] = spill_regs[i];
5105 return 1;
5106 }
5107 }
5108 return 0;
5109 }
5110
5111 /* Find a spill register to use as a reload register for reload R.
5112 LAST_RELOAD is non-zero if this is the last reload for the insn being
5113 processed.
5114
5115 Set rld[R].reg_rtx to the register allocated.
5116
5117 We return 1 if successful, or 0 if we couldn't find a spill reg and
5118 we didn't change anything. */
5119
5120 static int
5121 allocate_reload_reg (chain, r, last_reload)
5122 struct insn_chain *chain ATTRIBUTE_UNUSED;
5123 int r;
5124 int last_reload;
5125 {
5126 int i, pass, count;
5127
5128 /* If we put this reload ahead, thinking it is a group,
5129 then insist on finding a group. Otherwise we can grab a
5130 reg that some other reload needs.
5131 (That can happen when we have a 68000 DATA_OR_FP_REG
5132 which is a group of data regs or one fp reg.)
5133 We need not be so restrictive if there are no more reloads
5134 for this insn.
5135
5136 ??? Really it would be nicer to have smarter handling
5137 for that kind of reg class, where a problem like this is normal.
5138 Perhaps those classes should be avoided for reloading
5139 by use of more alternatives. */
5140
5141 int force_group = rld[r].nregs > 1 && ! last_reload;
5142
5143 /* If we want a single register and haven't yet found one,
5144 take any reg in the right class and not in use.
5145 If we want a consecutive group, here is where we look for it.
5146
5147 We use two passes so we can first look for reload regs to
5148 reuse, which are already in use for other reloads in this insn,
5149 and only then use additional registers.
5150 I think that maximizing reuse is needed to make sure we don't
5151 run out of reload regs. Suppose we have three reloads, and
5152 reloads A and B can share regs. These need two regs.
5153 Suppose A and B are given different regs.
5154 That leaves none for C. */
5155 for (pass = 0; pass < 2; pass++)
5156 {
5157 /* I is the index in spill_regs.
5158 We advance it round-robin between insns to use all spill regs
5159 equally, so that inherited reloads have a chance
5160 of leapfrogging each other. */
5161
5162 i = last_spill_reg;
5163
5164 for (count = 0; count < n_spills; count++)
5165 {
5166 int class = (int) rld[r].class;
5167 int regnum;
5168
5169 i++;
5170 if (i >= n_spills)
5171 i -= n_spills;
5172 regnum = spill_regs[i];
5173
5174 if ((reload_reg_free_p (regnum, rld[r].opnum,
5175 rld[r].when_needed)
5176 || (rld[r].in
5177 /* We check reload_reg_used to make sure we
5178 don't clobber the return register. */
5179 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5180 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5181 rld[r].when_needed, rld[r].in,
5182 rld[r].out, r, 1)))
5183 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5184 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5185 /* Look first for regs to share, then for unshared. But
5186 don't share regs used for inherited reloads; they are
5187 the ones we want to preserve. */
5188 && (pass
5189 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5190 regnum)
5191 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5192 regnum))))
5193 {
5194 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5195 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5196 (on 68000) got us two FP regs. If NR is 1,
5197 we would reject both of them. */
5198 if (force_group)
5199 nr = rld[r].nregs;
5200 /* If we need only one reg, we have already won. */
5201 if (nr == 1)
5202 {
5203 /* But reject a single reg if we demand a group. */
5204 if (force_group)
5205 continue;
5206 break;
5207 }
5208 /* Otherwise check that as many consecutive regs as we need
5209 are available here. */
5210 while (nr > 1)
5211 {
5212 int regno = regnum + nr - 1;
5213 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5214 && spill_reg_order[regno] >= 0
5215 && reload_reg_free_p (regno, rld[r].opnum,
5216 rld[r].when_needed)))
5217 break;
5218 nr--;
5219 }
5220 if (nr == 1)
5221 break;
5222 }
5223 }
5224
5225 /* If we found something on pass 1, omit pass 2. */
5226 if (count < n_spills)
5227 break;
5228 }
5229
5230 /* We should have found a spill register by now. */
5231 if (count >= n_spills)
5232 return 0;
5233
5234 /* I is the index in SPILL_REG_RTX of the reload register we are to
5235 allocate. Get an rtx for it and find its register number. */
5236
5237 return set_reload_reg (i, r);
5238 }
5239 \f
5240 /* Initialize all the tables needed to allocate reload registers.
5241 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5242 is the array we use to restore the reg_rtx field for every reload. */
5243
5244 static void
5245 choose_reload_regs_init (chain, save_reload_reg_rtx)
5246 struct insn_chain *chain;
5247 rtx *save_reload_reg_rtx;
5248 {
5249 int i;
5250
5251 for (i = 0; i < n_reloads; i++)
5252 rld[i].reg_rtx = save_reload_reg_rtx[i];
5253
5254 memset (reload_inherited, 0, MAX_RELOADS);
5255 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5256 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5257
5258 CLEAR_HARD_REG_SET (reload_reg_used);
5259 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5260 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5261 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5262 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5263 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5264
5265 CLEAR_HARD_REG_SET (reg_used_in_insn);
5266 {
5267 HARD_REG_SET tmp;
5268 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5269 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5270 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5271 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5272 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5273 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5274 }
5275
5276 for (i = 0; i < reload_n_operands; i++)
5277 {
5278 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5279 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5280 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5281 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5282 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5283 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5284 }
5285
5286 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5287
5288 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5289
5290 for (i = 0; i < n_reloads; i++)
5291 /* If we have already decided to use a certain register,
5292 don't use it in another way. */
5293 if (rld[i].reg_rtx)
5294 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5295 rld[i].when_needed, rld[i].mode);
5296 }
5297
5298 /* Assign hard reg targets for the pseudo-registers we must reload
5299 into hard regs for this insn.
5300 Also output the instructions to copy them in and out of the hard regs.
5301
5302 For machines with register classes, we are responsible for
5303 finding a reload reg in the proper class. */
5304
5305 static void
5306 choose_reload_regs (chain)
5307 struct insn_chain *chain;
5308 {
5309 rtx insn = chain->insn;
5310 int i, j;
5311 unsigned int max_group_size = 1;
5312 enum reg_class group_class = NO_REGS;
5313 int pass, win, inheritance;
5314
5315 rtx save_reload_reg_rtx[MAX_RELOADS];
5316
5317 /* In order to be certain of getting the registers we need,
5318 we must sort the reloads into order of increasing register class.
5319 Then our grabbing of reload registers will parallel the process
5320 that provided the reload registers.
5321
5322 Also note whether any of the reloads wants a consecutive group of regs.
5323 If so, record the maximum size of the group desired and what
5324 register class contains all the groups needed by this insn. */
5325
5326 for (j = 0; j < n_reloads; j++)
5327 {
5328 reload_order[j] = j;
5329 reload_spill_index[j] = -1;
5330
5331 if (rld[j].nregs > 1)
5332 {
5333 max_group_size = MAX (rld[j].nregs, max_group_size);
5334 group_class
5335 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5336 }
5337
5338 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5339 }
5340
5341 if (n_reloads > 1)
5342 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5343
5344 /* If -O, try first with inheritance, then turning it off.
5345 If not -O, don't do inheritance.
5346 Using inheritance when not optimizing leads to paradoxes
5347 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5348 because one side of the comparison might be inherited. */
5349 win = 0;
5350 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5351 {
5352 choose_reload_regs_init (chain, save_reload_reg_rtx);
5353
5354 /* Process the reloads in order of preference just found.
5355 Beyond this point, subregs can be found in reload_reg_rtx.
5356
5357 This used to look for an existing reloaded home for all of the
5358 reloads, and only then perform any new reloads. But that could lose
5359 if the reloads were done out of reg-class order because a later
5360 reload with a looser constraint might have an old home in a register
5361 needed by an earlier reload with a tighter constraint.
5362
5363 To solve this, we make two passes over the reloads, in the order
5364 described above. In the first pass we try to inherit a reload
5365 from a previous insn. If there is a later reload that needs a
5366 class that is a proper subset of the class being processed, we must
5367 also allocate a spill register during the first pass.
5368
5369 Then make a second pass over the reloads to allocate any reloads
5370 that haven't been given registers yet. */
5371
5372 for (j = 0; j < n_reloads; j++)
5373 {
5374 int r = reload_order[j];
5375 rtx search_equiv = NULL_RTX;
5376
5377 /* Ignore reloads that got marked inoperative. */
5378 if (rld[r].out == 0 && rld[r].in == 0
5379 && ! rld[r].secondary_p)
5380 continue;
5381
5382 /* If find_reloads chose to use reload_in or reload_out as a reload
5383 register, we don't need to chose one. Otherwise, try even if it
5384 found one since we might save an insn if we find the value lying
5385 around.
5386 Try also when reload_in is a pseudo without a hard reg. */
5387 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5388 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5389 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5390 && GET_CODE (rld[r].in) != MEM
5391 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5392 continue;
5393
5394 #if 0 /* No longer needed for correct operation.
5395 It might give better code, or might not; worth an experiment? */
5396 /* If this is an optional reload, we can't inherit from earlier insns
5397 until we are sure that any non-optional reloads have been allocated.
5398 The following code takes advantage of the fact that optional reloads
5399 are at the end of reload_order. */
5400 if (rld[r].optional != 0)
5401 for (i = 0; i < j; i++)
5402 if ((rld[reload_order[i]].out != 0
5403 || rld[reload_order[i]].in != 0
5404 || rld[reload_order[i]].secondary_p)
5405 && ! rld[reload_order[i]].optional
5406 && rld[reload_order[i]].reg_rtx == 0)
5407 allocate_reload_reg (chain, reload_order[i], 0);
5408 #endif
5409
5410 /* First see if this pseudo is already available as reloaded
5411 for a previous insn. We cannot try to inherit for reloads
5412 that are smaller than the maximum number of registers needed
5413 for groups unless the register we would allocate cannot be used
5414 for the groups.
5415
5416 We could check here to see if this is a secondary reload for
5417 an object that is already in a register of the desired class.
5418 This would avoid the need for the secondary reload register.
5419 But this is complex because we can't easily determine what
5420 objects might want to be loaded via this reload. So let a
5421 register be allocated here. In `emit_reload_insns' we suppress
5422 one of the loads in the case described above. */
5423
5424 if (inheritance)
5425 {
5426 int byte = 0;
5427 int regno = -1;
5428 enum machine_mode mode = VOIDmode;
5429
5430 if (rld[r].in == 0)
5431 ;
5432 else if (GET_CODE (rld[r].in) == REG)
5433 {
5434 regno = REGNO (rld[r].in);
5435 mode = GET_MODE (rld[r].in);
5436 }
5437 else if (GET_CODE (rld[r].in_reg) == REG)
5438 {
5439 regno = REGNO (rld[r].in_reg);
5440 mode = GET_MODE (rld[r].in_reg);
5441 }
5442 else if (GET_CODE (rld[r].in_reg) == SUBREG
5443 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5444 {
5445 byte = SUBREG_BYTE (rld[r].in_reg);
5446 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5447 if (regno < FIRST_PSEUDO_REGISTER)
5448 regno = subreg_regno (rld[r].in_reg);
5449 mode = GET_MODE (rld[r].in_reg);
5450 }
5451 #ifdef AUTO_INC_DEC
5452 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5453 || GET_CODE (rld[r].in_reg) == PRE_DEC
5454 || GET_CODE (rld[r].in_reg) == POST_INC
5455 || GET_CODE (rld[r].in_reg) == POST_DEC)
5456 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5457 {
5458 regno = REGNO (XEXP (rld[r].in_reg, 0));
5459 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5460 rld[r].out = rld[r].in;
5461 }
5462 #endif
5463 #if 0
5464 /* This won't work, since REGNO can be a pseudo reg number.
5465 Also, it takes much more hair to keep track of all the things
5466 that can invalidate an inherited reload of part of a pseudoreg. */
5467 else if (GET_CODE (rld[r].in) == SUBREG
5468 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5469 regno = subreg_regno (rld[r].in);
5470 #endif
5471
5472 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5473 {
5474 enum reg_class class = rld[r].class, last_class;
5475 rtx last_reg = reg_last_reload_reg[regno];
5476 enum machine_mode need_mode;
5477
5478 i = REGNO (last_reg);
5479 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5480 last_class = REGNO_REG_CLASS (i);
5481
5482 if (byte == 0)
5483 need_mode = mode;
5484 else
5485 need_mode
5486 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5487 GET_MODE_CLASS (mode));
5488
5489 if (
5490 #ifdef CLASS_CANNOT_CHANGE_MODE
5491 (TEST_HARD_REG_BIT
5492 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
5493 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
5494 need_mode)
5495 : (GET_MODE_SIZE (GET_MODE (last_reg))
5496 >= GET_MODE_SIZE (need_mode)))
5497 #else
5498 (GET_MODE_SIZE (GET_MODE (last_reg))
5499 >= GET_MODE_SIZE (need_mode))
5500 #endif
5501 && reg_reloaded_contents[i] == regno
5502 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5503 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5504 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5505 /* Even if we can't use this register as a reload
5506 register, we might use it for reload_override_in,
5507 if copying it to the desired class is cheap
5508 enough. */
5509 || ((REGISTER_MOVE_COST (mode, last_class, class)
5510 < MEMORY_MOVE_COST (mode, class, 1))
5511 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5512 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5513 last_reg)
5514 == NO_REGS)
5515 #endif
5516 #ifdef SECONDARY_MEMORY_NEEDED
5517 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5518 mode)
5519 #endif
5520 ))
5521
5522 && (rld[r].nregs == max_group_size
5523 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5524 i))
5525 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5526 rld[r].when_needed, rld[r].in,
5527 const0_rtx, r, 1))
5528 {
5529 /* If a group is needed, verify that all the subsequent
5530 registers still have their values intact. */
5531 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5532 int k;
5533
5534 for (k = 1; k < nr; k++)
5535 if (reg_reloaded_contents[i + k] != regno
5536 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5537 break;
5538
5539 if (k == nr)
5540 {
5541 int i1;
5542 int bad_for_class;
5543
5544 last_reg = (GET_MODE (last_reg) == mode
5545 ? last_reg : gen_rtx_REG (mode, i));
5546
5547 bad_for_class = 0;
5548 for (k = 0; k < nr; k++)
5549 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5550 i+k);
5551
5552 /* We found a register that contains the
5553 value we need. If this register is the
5554 same as an `earlyclobber' operand of the
5555 current insn, just mark it as a place to
5556 reload from since we can't use it as the
5557 reload register itself. */
5558
5559 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5560 if (reg_overlap_mentioned_for_reload_p
5561 (reg_last_reload_reg[regno],
5562 reload_earlyclobbers[i1]))
5563 break;
5564
5565 if (i1 != n_earlyclobbers
5566 || ! (free_for_value_p (i, rld[r].mode,
5567 rld[r].opnum,
5568 rld[r].when_needed, rld[r].in,
5569 rld[r].out, r, 1))
5570 /* Don't use it if we'd clobber a pseudo reg. */
5571 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5572 && rld[r].out
5573 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5574 /* Don't clobber the frame pointer. */
5575 || (i == HARD_FRAME_POINTER_REGNUM
5576 && frame_pointer_needed
5577 && rld[r].out)
5578 /* Don't really use the inherited spill reg
5579 if we need it wider than we've got it. */
5580 || (GET_MODE_SIZE (rld[r].mode)
5581 > GET_MODE_SIZE (mode))
5582 || bad_for_class
5583
5584 /* If find_reloads chose reload_out as reload
5585 register, stay with it - that leaves the
5586 inherited register for subsequent reloads. */
5587 || (rld[r].out && rld[r].reg_rtx
5588 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5589 {
5590 if (! rld[r].optional)
5591 {
5592 reload_override_in[r] = last_reg;
5593 reload_inheritance_insn[r]
5594 = reg_reloaded_insn[i];
5595 }
5596 }
5597 else
5598 {
5599 int k;
5600 /* We can use this as a reload reg. */
5601 /* Mark the register as in use for this part of
5602 the insn. */
5603 mark_reload_reg_in_use (i,
5604 rld[r].opnum,
5605 rld[r].when_needed,
5606 rld[r].mode);
5607 rld[r].reg_rtx = last_reg;
5608 reload_inherited[r] = 1;
5609 reload_inheritance_insn[r]
5610 = reg_reloaded_insn[i];
5611 reload_spill_index[r] = i;
5612 for (k = 0; k < nr; k++)
5613 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5614 i + k);
5615 }
5616 }
5617 }
5618 }
5619 }
5620
5621 /* Here's another way to see if the value is already lying around. */
5622 if (inheritance
5623 && rld[r].in != 0
5624 && ! reload_inherited[r]
5625 && rld[r].out == 0
5626 && (CONSTANT_P (rld[r].in)
5627 || GET_CODE (rld[r].in) == PLUS
5628 || GET_CODE (rld[r].in) == REG
5629 || GET_CODE (rld[r].in) == MEM)
5630 && (rld[r].nregs == max_group_size
5631 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5632 search_equiv = rld[r].in;
5633 /* If this is an output reload from a simple move insn, look
5634 if an equivalence for the input is available. */
5635 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5636 {
5637 rtx set = single_set (insn);
5638
5639 if (set
5640 && rtx_equal_p (rld[r].out, SET_DEST (set))
5641 && CONSTANT_P (SET_SRC (set)))
5642 search_equiv = SET_SRC (set);
5643 }
5644
5645 if (search_equiv)
5646 {
5647 rtx equiv
5648 = find_equiv_reg (search_equiv, insn, rld[r].class,
5649 -1, NULL, 0, rld[r].mode);
5650 int regno = 0;
5651
5652 if (equiv != 0)
5653 {
5654 if (GET_CODE (equiv) == REG)
5655 regno = REGNO (equiv);
5656 else if (GET_CODE (equiv) == SUBREG)
5657 {
5658 /* This must be a SUBREG of a hard register.
5659 Make a new REG since this might be used in an
5660 address and not all machines support SUBREGs
5661 there. */
5662 regno = subreg_regno (equiv);
5663 equiv = gen_rtx_REG (rld[r].mode, regno);
5664 }
5665 else
5666 abort ();
5667 }
5668
5669 /* If we found a spill reg, reject it unless it is free
5670 and of the desired class. */
5671 if (equiv != 0
5672 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5673 && ! free_for_value_p (regno, rld[r].mode,
5674 rld[r].opnum, rld[r].when_needed,
5675 rld[r].in, rld[r].out, r, 1))
5676 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5677 regno)))
5678 equiv = 0;
5679
5680 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5681 equiv = 0;
5682
5683 /* We found a register that contains the value we need.
5684 If this register is the same as an `earlyclobber' operand
5685 of the current insn, just mark it as a place to reload from
5686 since we can't use it as the reload register itself. */
5687
5688 if (equiv != 0)
5689 for (i = 0; i < n_earlyclobbers; i++)
5690 if (reg_overlap_mentioned_for_reload_p (equiv,
5691 reload_earlyclobbers[i]))
5692 {
5693 if (! rld[r].optional)
5694 reload_override_in[r] = equiv;
5695 equiv = 0;
5696 break;
5697 }
5698
5699 /* If the equiv register we have found is explicitly clobbered
5700 in the current insn, it depends on the reload type if we
5701 can use it, use it for reload_override_in, or not at all.
5702 In particular, we then can't use EQUIV for a
5703 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5704
5705 if (equiv != 0)
5706 {
5707 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5708 switch (rld[r].when_needed)
5709 {
5710 case RELOAD_FOR_OTHER_ADDRESS:
5711 case RELOAD_FOR_INPADDR_ADDRESS:
5712 case RELOAD_FOR_INPUT_ADDRESS:
5713 case RELOAD_FOR_OPADDR_ADDR:
5714 break;
5715 case RELOAD_OTHER:
5716 case RELOAD_FOR_INPUT:
5717 case RELOAD_FOR_OPERAND_ADDRESS:
5718 if (! rld[r].optional)
5719 reload_override_in[r] = equiv;
5720 /* Fall through. */
5721 default:
5722 equiv = 0;
5723 break;
5724 }
5725 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5726 switch (rld[r].when_needed)
5727 {
5728 case RELOAD_FOR_OTHER_ADDRESS:
5729 case RELOAD_FOR_INPADDR_ADDRESS:
5730 case RELOAD_FOR_INPUT_ADDRESS:
5731 case RELOAD_FOR_OPADDR_ADDR:
5732 case RELOAD_FOR_OPERAND_ADDRESS:
5733 case RELOAD_FOR_INPUT:
5734 break;
5735 case RELOAD_OTHER:
5736 if (! rld[r].optional)
5737 reload_override_in[r] = equiv;
5738 /* Fall through. */
5739 default:
5740 equiv = 0;
5741 break;
5742 }
5743 }
5744
5745 /* If we found an equivalent reg, say no code need be generated
5746 to load it, and use it as our reload reg. */
5747 if (equiv != 0
5748 && (regno != HARD_FRAME_POINTER_REGNUM
5749 || !frame_pointer_needed))
5750 {
5751 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5752 int k;
5753 rld[r].reg_rtx = equiv;
5754 reload_inherited[r] = 1;
5755
5756 /* If reg_reloaded_valid is not set for this register,
5757 there might be a stale spill_reg_store lying around.
5758 We must clear it, since otherwise emit_reload_insns
5759 might delete the store. */
5760 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5761 spill_reg_store[regno] = NULL_RTX;
5762 /* If any of the hard registers in EQUIV are spill
5763 registers, mark them as in use for this insn. */
5764 for (k = 0; k < nr; k++)
5765 {
5766 i = spill_reg_order[regno + k];
5767 if (i >= 0)
5768 {
5769 mark_reload_reg_in_use (regno, rld[r].opnum,
5770 rld[r].when_needed,
5771 rld[r].mode);
5772 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5773 regno + k);
5774 }
5775 }
5776 }
5777 }
5778
5779 /* If we found a register to use already, or if this is an optional
5780 reload, we are done. */
5781 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5782 continue;
5783
5784 #if 0
5785 /* No longer needed for correct operation. Might or might
5786 not give better code on the average. Want to experiment? */
5787
5788 /* See if there is a later reload that has a class different from our
5789 class that intersects our class or that requires less register
5790 than our reload. If so, we must allocate a register to this
5791 reload now, since that reload might inherit a previous reload
5792 and take the only available register in our class. Don't do this
5793 for optional reloads since they will force all previous reloads
5794 to be allocated. Also don't do this for reloads that have been
5795 turned off. */
5796
5797 for (i = j + 1; i < n_reloads; i++)
5798 {
5799 int s = reload_order[i];
5800
5801 if ((rld[s].in == 0 && rld[s].out == 0
5802 && ! rld[s].secondary_p)
5803 || rld[s].optional)
5804 continue;
5805
5806 if ((rld[s].class != rld[r].class
5807 && reg_classes_intersect_p (rld[r].class,
5808 rld[s].class))
5809 || rld[s].nregs < rld[r].nregs)
5810 break;
5811 }
5812
5813 if (i == n_reloads)
5814 continue;
5815
5816 allocate_reload_reg (chain, r, j == n_reloads - 1);
5817 #endif
5818 }
5819
5820 /* Now allocate reload registers for anything non-optional that
5821 didn't get one yet. */
5822 for (j = 0; j < n_reloads; j++)
5823 {
5824 int r = reload_order[j];
5825
5826 /* Ignore reloads that got marked inoperative. */
5827 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5828 continue;
5829
5830 /* Skip reloads that already have a register allocated or are
5831 optional. */
5832 if (rld[r].reg_rtx != 0 || rld[r].optional)
5833 continue;
5834
5835 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5836 break;
5837 }
5838
5839 /* If that loop got all the way, we have won. */
5840 if (j == n_reloads)
5841 {
5842 win = 1;
5843 break;
5844 }
5845
5846 /* Loop around and try without any inheritance. */
5847 }
5848
5849 if (! win)
5850 {
5851 /* First undo everything done by the failed attempt
5852 to allocate with inheritance. */
5853 choose_reload_regs_init (chain, save_reload_reg_rtx);
5854
5855 /* Some sanity tests to verify that the reloads found in the first
5856 pass are identical to the ones we have now. */
5857 if (chain->n_reloads != n_reloads)
5858 abort ();
5859
5860 for (i = 0; i < n_reloads; i++)
5861 {
5862 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5863 continue;
5864 if (chain->rld[i].when_needed != rld[i].when_needed)
5865 abort ();
5866 for (j = 0; j < n_spills; j++)
5867 if (spill_regs[j] == chain->rld[i].regno)
5868 if (! set_reload_reg (j, i))
5869 failed_reload (chain->insn, i);
5870 }
5871 }
5872
5873 /* If we thought we could inherit a reload, because it seemed that
5874 nothing else wanted the same reload register earlier in the insn,
5875 verify that assumption, now that all reloads have been assigned.
5876 Likewise for reloads where reload_override_in has been set. */
5877
5878 /* If doing expensive optimizations, do one preliminary pass that doesn't
5879 cancel any inheritance, but removes reloads that have been needed only
5880 for reloads that we know can be inherited. */
5881 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5882 {
5883 for (j = 0; j < n_reloads; j++)
5884 {
5885 int r = reload_order[j];
5886 rtx check_reg;
5887 if (reload_inherited[r] && rld[r].reg_rtx)
5888 check_reg = rld[r].reg_rtx;
5889 else if (reload_override_in[r]
5890 && (GET_CODE (reload_override_in[r]) == REG
5891 || GET_CODE (reload_override_in[r]) == SUBREG))
5892 check_reg = reload_override_in[r];
5893 else
5894 continue;
5895 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5896 rld[r].opnum, rld[r].when_needed, rld[r].in,
5897 (reload_inherited[r]
5898 ? rld[r].out : const0_rtx),
5899 r, 1))
5900 {
5901 if (pass)
5902 continue;
5903 reload_inherited[r] = 0;
5904 reload_override_in[r] = 0;
5905 }
5906 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5907 reload_override_in, then we do not need its related
5908 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5909 likewise for other reload types.
5910 We handle this by removing a reload when its only replacement
5911 is mentioned in reload_in of the reload we are going to inherit.
5912 A special case are auto_inc expressions; even if the input is
5913 inherited, we still need the address for the output. We can
5914 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5915 If we succeeded removing some reload and we are doing a preliminary
5916 pass just to remove such reloads, make another pass, since the
5917 removal of one reload might allow us to inherit another one. */
5918 else if (rld[r].in
5919 && rld[r].out != rld[r].in
5920 && remove_address_replacements (rld[r].in) && pass)
5921 pass = 2;
5922 }
5923 }
5924
5925 /* Now that reload_override_in is known valid,
5926 actually override reload_in. */
5927 for (j = 0; j < n_reloads; j++)
5928 if (reload_override_in[j])
5929 rld[j].in = reload_override_in[j];
5930
5931 /* If this reload won't be done because it has been cancelled or is
5932 optional and not inherited, clear reload_reg_rtx so other
5933 routines (such as subst_reloads) don't get confused. */
5934 for (j = 0; j < n_reloads; j++)
5935 if (rld[j].reg_rtx != 0
5936 && ((rld[j].optional && ! reload_inherited[j])
5937 || (rld[j].in == 0 && rld[j].out == 0
5938 && ! rld[j].secondary_p)))
5939 {
5940 int regno = true_regnum (rld[j].reg_rtx);
5941
5942 if (spill_reg_order[regno] >= 0)
5943 clear_reload_reg_in_use (regno, rld[j].opnum,
5944 rld[j].when_needed, rld[j].mode);
5945 rld[j].reg_rtx = 0;
5946 reload_spill_index[j] = -1;
5947 }
5948
5949 /* Record which pseudos and which spill regs have output reloads. */
5950 for (j = 0; j < n_reloads; j++)
5951 {
5952 int r = reload_order[j];
5953
5954 i = reload_spill_index[r];
5955
5956 /* I is nonneg if this reload uses a register.
5957 If rld[r].reg_rtx is 0, this is an optional reload
5958 that we opted to ignore. */
5959 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5960 && rld[r].reg_rtx != 0)
5961 {
5962 int nregno = REGNO (rld[r].out_reg);
5963 int nr = 1;
5964
5965 if (nregno < FIRST_PSEUDO_REGISTER)
5966 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5967
5968 while (--nr >= 0)
5969 reg_has_output_reload[nregno + nr] = 1;
5970
5971 if (i >= 0)
5972 {
5973 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5974 while (--nr >= 0)
5975 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5976 }
5977
5978 if (rld[r].when_needed != RELOAD_OTHER
5979 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5980 && rld[r].when_needed != RELOAD_FOR_INSN)
5981 abort ();
5982 }
5983 }
5984 }
5985
5986 /* Deallocate the reload register for reload R. This is called from
5987 remove_address_replacements. */
5988
5989 void
5990 deallocate_reload_reg (r)
5991 int r;
5992 {
5993 int regno;
5994
5995 if (! rld[r].reg_rtx)
5996 return;
5997 regno = true_regnum (rld[r].reg_rtx);
5998 rld[r].reg_rtx = 0;
5999 if (spill_reg_order[regno] >= 0)
6000 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6001 rld[r].mode);
6002 reload_spill_index[r] = -1;
6003 }
6004 \f
6005 /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
6006 reloads of the same item for fear that we might not have enough reload
6007 registers. However, normally they will get the same reload register
6008 and hence actually need not be loaded twice.
6009
6010 Here we check for the most common case of this phenomenon: when we have
6011 a number of reloads for the same object, each of which were allocated
6012 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6013 reload, and is not modified in the insn itself. If we find such,
6014 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6015 This will not increase the number of spill registers needed and will
6016 prevent redundant code. */
6017
6018 static void
6019 merge_assigned_reloads (insn)
6020 rtx insn;
6021 {
6022 int i, j;
6023
6024 /* Scan all the reloads looking for ones that only load values and
6025 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6026 assigned and not modified by INSN. */
6027
6028 for (i = 0; i < n_reloads; i++)
6029 {
6030 int conflicting_input = 0;
6031 int max_input_address_opnum = -1;
6032 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6033
6034 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6035 || rld[i].out != 0 || rld[i].reg_rtx == 0
6036 || reg_set_p (rld[i].reg_rtx, insn))
6037 continue;
6038
6039 /* Look at all other reloads. Ensure that the only use of this
6040 reload_reg_rtx is in a reload that just loads the same value
6041 as we do. Note that any secondary reloads must be of the identical
6042 class since the values, modes, and result registers are the
6043 same, so we need not do anything with any secondary reloads. */
6044
6045 for (j = 0; j < n_reloads; j++)
6046 {
6047 if (i == j || rld[j].reg_rtx == 0
6048 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6049 rld[i].reg_rtx))
6050 continue;
6051
6052 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6053 && rld[j].opnum > max_input_address_opnum)
6054 max_input_address_opnum = rld[j].opnum;
6055
6056 /* If the reload regs aren't exactly the same (e.g, different modes)
6057 or if the values are different, we can't merge this reload.
6058 But if it is an input reload, we might still merge
6059 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6060
6061 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6062 || rld[j].out != 0 || rld[j].in == 0
6063 || ! rtx_equal_p (rld[i].in, rld[j].in))
6064 {
6065 if (rld[j].when_needed != RELOAD_FOR_INPUT
6066 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6067 || rld[i].opnum > rld[j].opnum)
6068 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6069 break;
6070 conflicting_input = 1;
6071 if (min_conflicting_input_opnum > rld[j].opnum)
6072 min_conflicting_input_opnum = rld[j].opnum;
6073 }
6074 }
6075
6076 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6077 we, in fact, found any matching reloads. */
6078
6079 if (j == n_reloads
6080 && max_input_address_opnum <= min_conflicting_input_opnum)
6081 {
6082 for (j = 0; j < n_reloads; j++)
6083 if (i != j && rld[j].reg_rtx != 0
6084 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6085 && (! conflicting_input
6086 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6087 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6088 {
6089 rld[i].when_needed = RELOAD_OTHER;
6090 rld[j].in = 0;
6091 reload_spill_index[j] = -1;
6092 transfer_replacements (i, j);
6093 }
6094
6095 /* If this is now RELOAD_OTHER, look for any reloads that load
6096 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6097 if they were for inputs, RELOAD_OTHER for outputs. Note that
6098 this test is equivalent to looking for reloads for this operand
6099 number. */
6100
6101 if (rld[i].when_needed == RELOAD_OTHER)
6102 for (j = 0; j < n_reloads; j++)
6103 if (rld[j].in != 0
6104 && rld[j].when_needed != RELOAD_OTHER
6105 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6106 rld[i].in))
6107 rld[j].when_needed
6108 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6109 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6110 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6111 }
6112 }
6113 }
6114 \f
6115 /* These arrays are filled by emit_reload_insns and its subroutines. */
6116 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6117 static rtx other_input_address_reload_insns = 0;
6118 static rtx other_input_reload_insns = 0;
6119 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6120 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6121 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6122 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6123 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6124 static rtx operand_reload_insns = 0;
6125 static rtx other_operand_reload_insns = 0;
6126 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6127
6128 /* Values to be put in spill_reg_store are put here first. */
6129 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6130 static HARD_REG_SET reg_reloaded_died;
6131
6132 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6133 has the number J. OLD contains the value to be used as input. */
6134
6135 static void
6136 emit_input_reload_insns (chain, rl, old, j)
6137 struct insn_chain *chain;
6138 struct reload *rl;
6139 rtx old;
6140 int j;
6141 {
6142 rtx insn = chain->insn;
6143 rtx reloadreg = rl->reg_rtx;
6144 rtx oldequiv_reg = 0;
6145 rtx oldequiv = 0;
6146 int special = 0;
6147 enum machine_mode mode;
6148 rtx *where;
6149
6150 /* Determine the mode to reload in.
6151 This is very tricky because we have three to choose from.
6152 There is the mode the insn operand wants (rl->inmode).
6153 There is the mode of the reload register RELOADREG.
6154 There is the intrinsic mode of the operand, which we could find
6155 by stripping some SUBREGs.
6156 It turns out that RELOADREG's mode is irrelevant:
6157 we can change that arbitrarily.
6158
6159 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6160 then the reload reg may not support QImode moves, so use SImode.
6161 If foo is in memory due to spilling a pseudo reg, this is safe,
6162 because the QImode value is in the least significant part of a
6163 slot big enough for a SImode. If foo is some other sort of
6164 memory reference, then it is impossible to reload this case,
6165 so previous passes had better make sure this never happens.
6166
6167 Then consider a one-word union which has SImode and one of its
6168 members is a float, being fetched as (SUBREG:SF union:SI).
6169 We must fetch that as SFmode because we could be loading into
6170 a float-only register. In this case OLD's mode is correct.
6171
6172 Consider an immediate integer: it has VOIDmode. Here we need
6173 to get a mode from something else.
6174
6175 In some cases, there is a fourth mode, the operand's
6176 containing mode. If the insn specifies a containing mode for
6177 this operand, it overrides all others.
6178
6179 I am not sure whether the algorithm here is always right,
6180 but it does the right things in those cases. */
6181
6182 mode = GET_MODE (old);
6183 if (mode == VOIDmode)
6184 mode = rl->inmode;
6185
6186 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6187 /* If we need a secondary register for this operation, see if
6188 the value is already in a register in that class. Don't
6189 do this if the secondary register will be used as a scratch
6190 register. */
6191
6192 if (rl->secondary_in_reload >= 0
6193 && rl->secondary_in_icode == CODE_FOR_nothing
6194 && optimize)
6195 oldequiv
6196 = find_equiv_reg (old, insn,
6197 rld[rl->secondary_in_reload].class,
6198 -1, NULL, 0, mode);
6199 #endif
6200
6201 /* If reloading from memory, see if there is a register
6202 that already holds the same value. If so, reload from there.
6203 We can pass 0 as the reload_reg_p argument because
6204 any other reload has either already been emitted,
6205 in which case find_equiv_reg will see the reload-insn,
6206 or has yet to be emitted, in which case it doesn't matter
6207 because we will use this equiv reg right away. */
6208
6209 if (oldequiv == 0 && optimize
6210 && (GET_CODE (old) == MEM
6211 || (GET_CODE (old) == REG
6212 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6213 && reg_renumber[REGNO (old)] < 0)))
6214 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6215
6216 if (oldequiv)
6217 {
6218 unsigned int regno = true_regnum (oldequiv);
6219
6220 /* Don't use OLDEQUIV if any other reload changes it at an
6221 earlier stage of this insn or at this stage. */
6222 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6223 rl->in, const0_rtx, j, 0))
6224 oldequiv = 0;
6225
6226 /* If it is no cheaper to copy from OLDEQUIV into the
6227 reload register than it would be to move from memory,
6228 don't use it. Likewise, if we need a secondary register
6229 or memory. */
6230
6231 if (oldequiv != 0
6232 && ((REGNO_REG_CLASS (regno) != rl->class
6233 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6234 rl->class)
6235 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6236 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6237 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6238 mode, oldequiv)
6239 != NO_REGS)
6240 #endif
6241 #ifdef SECONDARY_MEMORY_NEEDED
6242 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6243 rl->class,
6244 mode)
6245 #endif
6246 ))
6247 oldequiv = 0;
6248 }
6249
6250 /* delete_output_reload is only invoked properly if old contains
6251 the original pseudo register. Since this is replaced with a
6252 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6253 find the pseudo in RELOAD_IN_REG. */
6254 if (oldequiv == 0
6255 && reload_override_in[j]
6256 && GET_CODE (rl->in_reg) == REG)
6257 {
6258 oldequiv = old;
6259 old = rl->in_reg;
6260 }
6261 if (oldequiv == 0)
6262 oldequiv = old;
6263 else if (GET_CODE (oldequiv) == REG)
6264 oldequiv_reg = oldequiv;
6265 else if (GET_CODE (oldequiv) == SUBREG)
6266 oldequiv_reg = SUBREG_REG (oldequiv);
6267
6268 /* If we are reloading from a register that was recently stored in
6269 with an output-reload, see if we can prove there was
6270 actually no need to store the old value in it. */
6271
6272 if (optimize && GET_CODE (oldequiv) == REG
6273 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6274 && spill_reg_store[REGNO (oldequiv)]
6275 && GET_CODE (old) == REG
6276 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6277 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6278 rl->out_reg)))
6279 delete_output_reload (insn, j, REGNO (oldequiv));
6280
6281 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6282 then load RELOADREG from OLDEQUIV. Note that we cannot use
6283 gen_lowpart_common since it can do the wrong thing when
6284 RELOADREG has a multi-word mode. Note that RELOADREG
6285 must always be a REG here. */
6286
6287 if (GET_MODE (reloadreg) != mode)
6288 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6289 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6290 oldequiv = SUBREG_REG (oldequiv);
6291 if (GET_MODE (oldequiv) != VOIDmode
6292 && mode != GET_MODE (oldequiv))
6293 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6294
6295 /* Switch to the right place to emit the reload insns. */
6296 switch (rl->when_needed)
6297 {
6298 case RELOAD_OTHER:
6299 where = &other_input_reload_insns;
6300 break;
6301 case RELOAD_FOR_INPUT:
6302 where = &input_reload_insns[rl->opnum];
6303 break;
6304 case RELOAD_FOR_INPUT_ADDRESS:
6305 where = &input_address_reload_insns[rl->opnum];
6306 break;
6307 case RELOAD_FOR_INPADDR_ADDRESS:
6308 where = &inpaddr_address_reload_insns[rl->opnum];
6309 break;
6310 case RELOAD_FOR_OUTPUT_ADDRESS:
6311 where = &output_address_reload_insns[rl->opnum];
6312 break;
6313 case RELOAD_FOR_OUTADDR_ADDRESS:
6314 where = &outaddr_address_reload_insns[rl->opnum];
6315 break;
6316 case RELOAD_FOR_OPERAND_ADDRESS:
6317 where = &operand_reload_insns;
6318 break;
6319 case RELOAD_FOR_OPADDR_ADDR:
6320 where = &other_operand_reload_insns;
6321 break;
6322 case RELOAD_FOR_OTHER_ADDRESS:
6323 where = &other_input_address_reload_insns;
6324 break;
6325 default:
6326 abort ();
6327 }
6328
6329 push_to_sequence (*where);
6330
6331 /* Auto-increment addresses must be reloaded in a special way. */
6332 if (rl->out && ! rl->out_reg)
6333 {
6334 /* We are not going to bother supporting the case where a
6335 incremented register can't be copied directly from
6336 OLDEQUIV since this seems highly unlikely. */
6337 if (rl->secondary_in_reload >= 0)
6338 abort ();
6339
6340 if (reload_inherited[j])
6341 oldequiv = reloadreg;
6342
6343 old = XEXP (rl->in_reg, 0);
6344
6345 if (optimize && GET_CODE (oldequiv) == REG
6346 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6347 && spill_reg_store[REGNO (oldequiv)]
6348 && GET_CODE (old) == REG
6349 && (dead_or_set_p (insn,
6350 spill_reg_stored_to[REGNO (oldequiv)])
6351 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6352 old)))
6353 delete_output_reload (insn, j, REGNO (oldequiv));
6354
6355 /* Prevent normal processing of this reload. */
6356 special = 1;
6357 /* Output a special code sequence for this case. */
6358 new_spill_reg_store[REGNO (reloadreg)]
6359 = inc_for_reload (reloadreg, oldequiv, rl->out,
6360 rl->inc);
6361 }
6362
6363 /* If we are reloading a pseudo-register that was set by the previous
6364 insn, see if we can get rid of that pseudo-register entirely
6365 by redirecting the previous insn into our reload register. */
6366
6367 else if (optimize && GET_CODE (old) == REG
6368 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6369 && dead_or_set_p (insn, old)
6370 /* This is unsafe if some other reload
6371 uses the same reg first. */
6372 && ! conflicts_with_override (reloadreg)
6373 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6374 rl->when_needed, old, rl->out, j, 0))
6375 {
6376 rtx temp = PREV_INSN (insn);
6377 while (temp && GET_CODE (temp) == NOTE)
6378 temp = PREV_INSN (temp);
6379 if (temp
6380 && GET_CODE (temp) == INSN
6381 && GET_CODE (PATTERN (temp)) == SET
6382 && SET_DEST (PATTERN (temp)) == old
6383 /* Make sure we can access insn_operand_constraint. */
6384 && asm_noperands (PATTERN (temp)) < 0
6385 /* This is unsafe if prev insn rejects our reload reg. */
6386 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6387 reloadreg)
6388 /* This is unsafe if operand occurs more than once in current
6389 insn. Perhaps some occurrences aren't reloaded. */
6390 && count_occurrences (PATTERN (insn), old, 0) == 1
6391 /* Don't risk splitting a matching pair of operands. */
6392 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6393 {
6394 /* Store into the reload register instead of the pseudo. */
6395 SET_DEST (PATTERN (temp)) = reloadreg;
6396
6397 /* If the previous insn is an output reload, the source is
6398 a reload register, and its spill_reg_store entry will
6399 contain the previous destination. This is now
6400 invalid. */
6401 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6402 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6403 {
6404 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6405 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6406 }
6407
6408 /* If these are the only uses of the pseudo reg,
6409 pretend for GDB it lives in the reload reg we used. */
6410 if (REG_N_DEATHS (REGNO (old)) == 1
6411 && REG_N_SETS (REGNO (old)) == 1)
6412 {
6413 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6414 alter_reg (REGNO (old), -1);
6415 }
6416 special = 1;
6417 }
6418 }
6419
6420 /* We can't do that, so output an insn to load RELOADREG. */
6421
6422 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6423 /* If we have a secondary reload, pick up the secondary register
6424 and icode, if any. If OLDEQUIV and OLD are different or
6425 if this is an in-out reload, recompute whether or not we
6426 still need a secondary register and what the icode should
6427 be. If we still need a secondary register and the class or
6428 icode is different, go back to reloading from OLD if using
6429 OLDEQUIV means that we got the wrong type of register. We
6430 cannot have different class or icode due to an in-out reload
6431 because we don't make such reloads when both the input and
6432 output need secondary reload registers. */
6433
6434 if (! special && rl->secondary_in_reload >= 0)
6435 {
6436 rtx second_reload_reg = 0;
6437 int secondary_reload = rl->secondary_in_reload;
6438 rtx real_oldequiv = oldequiv;
6439 rtx real_old = old;
6440 rtx tmp;
6441 enum insn_code icode;
6442
6443 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6444 and similarly for OLD.
6445 See comments in get_secondary_reload in reload.c. */
6446 /* If it is a pseudo that cannot be replaced with its
6447 equivalent MEM, we must fall back to reload_in, which
6448 will have all the necessary substitutions registered.
6449 Likewise for a pseudo that can't be replaced with its
6450 equivalent constant.
6451
6452 Take extra care for subregs of such pseudos. Note that
6453 we cannot use reg_equiv_mem in this case because it is
6454 not in the right mode. */
6455
6456 tmp = oldequiv;
6457 if (GET_CODE (tmp) == SUBREG)
6458 tmp = SUBREG_REG (tmp);
6459 if (GET_CODE (tmp) == REG
6460 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6461 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6462 || reg_equiv_constant[REGNO (tmp)] != 0))
6463 {
6464 if (! reg_equiv_mem[REGNO (tmp)]
6465 || num_not_at_initial_offset
6466 || GET_CODE (oldequiv) == SUBREG)
6467 real_oldequiv = rl->in;
6468 else
6469 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6470 }
6471
6472 tmp = old;
6473 if (GET_CODE (tmp) == SUBREG)
6474 tmp = SUBREG_REG (tmp);
6475 if (GET_CODE (tmp) == REG
6476 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6477 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6478 || reg_equiv_constant[REGNO (tmp)] != 0))
6479 {
6480 if (! reg_equiv_mem[REGNO (tmp)]
6481 || num_not_at_initial_offset
6482 || GET_CODE (old) == SUBREG)
6483 real_old = rl->in;
6484 else
6485 real_old = reg_equiv_mem[REGNO (tmp)];
6486 }
6487
6488 second_reload_reg = rld[secondary_reload].reg_rtx;
6489 icode = rl->secondary_in_icode;
6490
6491 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6492 || (rl->in != 0 && rl->out != 0))
6493 {
6494 enum reg_class new_class
6495 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6496 mode, real_oldequiv);
6497
6498 if (new_class == NO_REGS)
6499 second_reload_reg = 0;
6500 else
6501 {
6502 enum insn_code new_icode;
6503 enum machine_mode new_mode;
6504
6505 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6506 REGNO (second_reload_reg)))
6507 oldequiv = old, real_oldequiv = real_old;
6508 else
6509 {
6510 new_icode = reload_in_optab[(int) mode];
6511 if (new_icode != CODE_FOR_nothing
6512 && ((insn_data[(int) new_icode].operand[0].predicate
6513 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6514 (reloadreg, mode)))
6515 || (insn_data[(int) new_icode].operand[1].predicate
6516 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6517 (real_oldequiv, mode)))))
6518 new_icode = CODE_FOR_nothing;
6519
6520 if (new_icode == CODE_FOR_nothing)
6521 new_mode = mode;
6522 else
6523 new_mode = insn_data[(int) new_icode].operand[2].mode;
6524
6525 if (GET_MODE (second_reload_reg) != new_mode)
6526 {
6527 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6528 new_mode))
6529 oldequiv = old, real_oldequiv = real_old;
6530 else
6531 second_reload_reg
6532 = gen_rtx_REG (new_mode,
6533 REGNO (second_reload_reg));
6534 }
6535 }
6536 }
6537 }
6538
6539 /* If we still need a secondary reload register, check
6540 to see if it is being used as a scratch or intermediate
6541 register and generate code appropriately. If we need
6542 a scratch register, use REAL_OLDEQUIV since the form of
6543 the insn may depend on the actual address if it is
6544 a MEM. */
6545
6546 if (second_reload_reg)
6547 {
6548 if (icode != CODE_FOR_nothing)
6549 {
6550 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6551 second_reload_reg));
6552 special = 1;
6553 }
6554 else
6555 {
6556 /* See if we need a scratch register to load the
6557 intermediate register (a tertiary reload). */
6558 enum insn_code tertiary_icode
6559 = rld[secondary_reload].secondary_in_icode;
6560
6561 if (tertiary_icode != CODE_FOR_nothing)
6562 {
6563 rtx third_reload_reg
6564 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6565
6566 emit_insn ((GEN_FCN (tertiary_icode)
6567 (second_reload_reg, real_oldequiv,
6568 third_reload_reg)));
6569 }
6570 else
6571 gen_reload (second_reload_reg, real_oldequiv,
6572 rl->opnum,
6573 rl->when_needed);
6574
6575 oldequiv = second_reload_reg;
6576 }
6577 }
6578 }
6579 #endif
6580
6581 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6582 {
6583 rtx real_oldequiv = oldequiv;
6584
6585 if ((GET_CODE (oldequiv) == REG
6586 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6587 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6588 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6589 || (GET_CODE (oldequiv) == SUBREG
6590 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6591 && (REGNO (SUBREG_REG (oldequiv))
6592 >= FIRST_PSEUDO_REGISTER)
6593 && ((reg_equiv_memory_loc
6594 [REGNO (SUBREG_REG (oldequiv))] != 0)
6595 || (reg_equiv_constant
6596 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6597 || (CONSTANT_P (oldequiv)
6598 && (PREFERRED_RELOAD_CLASS (oldequiv,
6599 REGNO_REG_CLASS (REGNO (reloadreg)))
6600 == NO_REGS)))
6601 real_oldequiv = rl->in;
6602 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6603 rl->when_needed);
6604 }
6605
6606 if (flag_non_call_exceptions)
6607 copy_eh_notes (insn, get_insns ());
6608
6609 /* End this sequence. */
6610 *where = get_insns ();
6611 end_sequence ();
6612
6613 /* Update reload_override_in so that delete_address_reloads_1
6614 can see the actual register usage. */
6615 if (oldequiv_reg)
6616 reload_override_in[j] = oldequiv;
6617 }
6618
6619 /* Generate insns to for the output reload RL, which is for the insn described
6620 by CHAIN and has the number J. */
6621 static void
6622 emit_output_reload_insns (chain, rl, j)
6623 struct insn_chain *chain;
6624 struct reload *rl;
6625 int j;
6626 {
6627 rtx reloadreg = rl->reg_rtx;
6628 rtx insn = chain->insn;
6629 int special = 0;
6630 rtx old = rl->out;
6631 enum machine_mode mode = GET_MODE (old);
6632 rtx p;
6633
6634 if (rl->when_needed == RELOAD_OTHER)
6635 start_sequence ();
6636 else
6637 push_to_sequence (output_reload_insns[rl->opnum]);
6638
6639 /* Determine the mode to reload in.
6640 See comments above (for input reloading). */
6641
6642 if (mode == VOIDmode)
6643 {
6644 /* VOIDmode should never happen for an output. */
6645 if (asm_noperands (PATTERN (insn)) < 0)
6646 /* It's the compiler's fault. */
6647 fatal_insn ("VOIDmode on an output", insn);
6648 error_for_asm (insn, "output operand is constant in `asm'");
6649 /* Prevent crash--use something we know is valid. */
6650 mode = word_mode;
6651 old = gen_rtx_REG (mode, REGNO (reloadreg));
6652 }
6653
6654 if (GET_MODE (reloadreg) != mode)
6655 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6656
6657 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6658
6659 /* If we need two reload regs, set RELOADREG to the intermediate
6660 one, since it will be stored into OLD. We might need a secondary
6661 register only for an input reload, so check again here. */
6662
6663 if (rl->secondary_out_reload >= 0)
6664 {
6665 rtx real_old = old;
6666
6667 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6668 && reg_equiv_mem[REGNO (old)] != 0)
6669 real_old = reg_equiv_mem[REGNO (old)];
6670
6671 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6672 mode, real_old)
6673 != NO_REGS))
6674 {
6675 rtx second_reloadreg = reloadreg;
6676 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6677
6678 /* See if RELOADREG is to be used as a scratch register
6679 or as an intermediate register. */
6680 if (rl->secondary_out_icode != CODE_FOR_nothing)
6681 {
6682 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6683 (real_old, second_reloadreg, reloadreg)));
6684 special = 1;
6685 }
6686 else
6687 {
6688 /* See if we need both a scratch and intermediate reload
6689 register. */
6690
6691 int secondary_reload = rl->secondary_out_reload;
6692 enum insn_code tertiary_icode
6693 = rld[secondary_reload].secondary_out_icode;
6694
6695 if (GET_MODE (reloadreg) != mode)
6696 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6697
6698 if (tertiary_icode != CODE_FOR_nothing)
6699 {
6700 rtx third_reloadreg
6701 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6702 rtx tem;
6703
6704 /* Copy primary reload reg to secondary reload reg.
6705 (Note that these have been swapped above, then
6706 secondary reload reg to OLD using our insn.) */
6707
6708 /* If REAL_OLD is a paradoxical SUBREG, remove it
6709 and try to put the opposite SUBREG on
6710 RELOADREG. */
6711 if (GET_CODE (real_old) == SUBREG
6712 && (GET_MODE_SIZE (GET_MODE (real_old))
6713 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6714 && 0 != (tem = gen_lowpart_common
6715 (GET_MODE (SUBREG_REG (real_old)),
6716 reloadreg)))
6717 real_old = SUBREG_REG (real_old), reloadreg = tem;
6718
6719 gen_reload (reloadreg, second_reloadreg,
6720 rl->opnum, rl->when_needed);
6721 emit_insn ((GEN_FCN (tertiary_icode)
6722 (real_old, reloadreg, third_reloadreg)));
6723 special = 1;
6724 }
6725
6726 else
6727 /* Copy between the reload regs here and then to
6728 OUT later. */
6729
6730 gen_reload (reloadreg, second_reloadreg,
6731 rl->opnum, rl->when_needed);
6732 }
6733 }
6734 }
6735 #endif
6736
6737 /* Output the last reload insn. */
6738 if (! special)
6739 {
6740 rtx set;
6741
6742 /* Don't output the last reload if OLD is not the dest of
6743 INSN and is in the src and is clobbered by INSN. */
6744 if (! flag_expensive_optimizations
6745 || GET_CODE (old) != REG
6746 || !(set = single_set (insn))
6747 || rtx_equal_p (old, SET_DEST (set))
6748 || !reg_mentioned_p (old, SET_SRC (set))
6749 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6750 gen_reload (old, reloadreg, rl->opnum,
6751 rl->when_needed);
6752 }
6753
6754 /* Look at all insns we emitted, just to be safe. */
6755 for (p = get_insns (); p; p = NEXT_INSN (p))
6756 if (INSN_P (p))
6757 {
6758 rtx pat = PATTERN (p);
6759
6760 /* If this output reload doesn't come from a spill reg,
6761 clear any memory of reloaded copies of the pseudo reg.
6762 If this output reload comes from a spill reg,
6763 reg_has_output_reload will make this do nothing. */
6764 note_stores (pat, forget_old_reloads_1, NULL);
6765
6766 if (reg_mentioned_p (rl->reg_rtx, pat))
6767 {
6768 rtx set = single_set (insn);
6769 if (reload_spill_index[j] < 0
6770 && set
6771 && SET_SRC (set) == rl->reg_rtx)
6772 {
6773 int src = REGNO (SET_SRC (set));
6774
6775 reload_spill_index[j] = src;
6776 SET_HARD_REG_BIT (reg_is_output_reload, src);
6777 if (find_regno_note (insn, REG_DEAD, src))
6778 SET_HARD_REG_BIT (reg_reloaded_died, src);
6779 }
6780 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6781 {
6782 int s = rl->secondary_out_reload;
6783 set = single_set (p);
6784 /* If this reload copies only to the secondary reload
6785 register, the secondary reload does the actual
6786 store. */
6787 if (s >= 0 && set == NULL_RTX)
6788 /* We can't tell what function the secondary reload
6789 has and where the actual store to the pseudo is
6790 made; leave new_spill_reg_store alone. */
6791 ;
6792 else if (s >= 0
6793 && SET_SRC (set) == rl->reg_rtx
6794 && SET_DEST (set) == rld[s].reg_rtx)
6795 {
6796 /* Usually the next instruction will be the
6797 secondary reload insn; if we can confirm
6798 that it is, setting new_spill_reg_store to
6799 that insn will allow an extra optimization. */
6800 rtx s_reg = rld[s].reg_rtx;
6801 rtx next = NEXT_INSN (p);
6802 rld[s].out = rl->out;
6803 rld[s].out_reg = rl->out_reg;
6804 set = single_set (next);
6805 if (set && SET_SRC (set) == s_reg
6806 && ! new_spill_reg_store[REGNO (s_reg)])
6807 {
6808 SET_HARD_REG_BIT (reg_is_output_reload,
6809 REGNO (s_reg));
6810 new_spill_reg_store[REGNO (s_reg)] = next;
6811 }
6812 }
6813 else
6814 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6815 }
6816 }
6817 }
6818
6819 if (rl->when_needed == RELOAD_OTHER)
6820 {
6821 emit_insns (other_output_reload_insns[rl->opnum]);
6822 other_output_reload_insns[rl->opnum] = get_insns ();
6823 }
6824 else
6825 output_reload_insns[rl->opnum] = get_insns ();
6826
6827 if (flag_non_call_exceptions)
6828 copy_eh_notes (insn, get_insns ());
6829
6830 end_sequence ();
6831 }
6832
6833 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6834 and has the number J. */
6835 static void
6836 do_input_reload (chain, rl, j)
6837 struct insn_chain *chain;
6838 struct reload *rl;
6839 int j;
6840 {
6841 int expect_occurrences = 1;
6842 rtx insn = chain->insn;
6843 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6844 ? rl->in_reg : rl->in);
6845
6846 if (old != 0
6847 /* AUTO_INC reloads need to be handled even if inherited. We got an
6848 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6849 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6850 && ! rtx_equal_p (rl->reg_rtx, old)
6851 && rl->reg_rtx != 0)
6852 emit_input_reload_insns (chain, rld + j, old, j);
6853
6854 /* When inheriting a wider reload, we have a MEM in rl->in,
6855 e.g. inheriting a SImode output reload for
6856 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6857 if (optimize && reload_inherited[j] && rl->in
6858 && GET_CODE (rl->in) == MEM
6859 && GET_CODE (rl->in_reg) == MEM
6860 && reload_spill_index[j] >= 0
6861 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6862 {
6863 expect_occurrences
6864 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
6865 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6866 }
6867
6868 /* If we are reloading a register that was recently stored in with an
6869 output-reload, see if we can prove there was
6870 actually no need to store the old value in it. */
6871
6872 if (optimize
6873 && (reload_inherited[j] || reload_override_in[j])
6874 && rl->reg_rtx
6875 && GET_CODE (rl->reg_rtx) == REG
6876 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6877 #if 0
6878 /* There doesn't seem to be any reason to restrict this to pseudos
6879 and doing so loses in the case where we are copying from a
6880 register of the wrong class. */
6881 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6882 >= FIRST_PSEUDO_REGISTER)
6883 #endif
6884 /* The insn might have already some references to stackslots
6885 replaced by MEMs, while reload_out_reg still names the
6886 original pseudo. */
6887 && (dead_or_set_p (insn,
6888 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6889 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6890 rl->out_reg)))
6891 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6892 }
6893
6894 /* Do output reloading for reload RL, which is for the insn described by
6895 CHAIN and has the number J.
6896 ??? At some point we need to support handling output reloads of
6897 JUMP_INSNs or insns that set cc0. */
6898 static void
6899 do_output_reload (chain, rl, j)
6900 struct insn_chain *chain;
6901 struct reload *rl;
6902 int j;
6903 {
6904 rtx note, old;
6905 rtx insn = chain->insn;
6906 /* If this is an output reload that stores something that is
6907 not loaded in this same reload, see if we can eliminate a previous
6908 store. */
6909 rtx pseudo = rl->out_reg;
6910
6911 if (pseudo
6912 && optimize
6913 && GET_CODE (pseudo) == REG
6914 && ! rtx_equal_p (rl->in_reg, pseudo)
6915 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6916 && reg_last_reload_reg[REGNO (pseudo)])
6917 {
6918 int pseudo_no = REGNO (pseudo);
6919 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6920
6921 /* We don't need to test full validity of last_regno for
6922 inherit here; we only want to know if the store actually
6923 matches the pseudo. */
6924 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6925 && reg_reloaded_contents[last_regno] == pseudo_no
6926 && spill_reg_store[last_regno]
6927 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6928 delete_output_reload (insn, j, last_regno);
6929 }
6930
6931 old = rl->out_reg;
6932 if (old == 0
6933 || rl->reg_rtx == old
6934 || rl->reg_rtx == 0)
6935 return;
6936
6937 /* An output operand that dies right away does need a reload,
6938 but need not be copied from it. Show the new location in the
6939 REG_UNUSED note. */
6940 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6941 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6942 {
6943 XEXP (note, 0) = rl->reg_rtx;
6944 return;
6945 }
6946 /* Likewise for a SUBREG of an operand that dies. */
6947 else if (GET_CODE (old) == SUBREG
6948 && GET_CODE (SUBREG_REG (old)) == REG
6949 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6950 SUBREG_REG (old))))
6951 {
6952 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6953 rl->reg_rtx);
6954 return;
6955 }
6956 else if (GET_CODE (old) == SCRATCH)
6957 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6958 but we don't want to make an output reload. */
6959 return;
6960
6961 /* If is a JUMP_INSN, we can't support output reloads yet. */
6962 if (GET_CODE (insn) == JUMP_INSN)
6963 abort ();
6964
6965 emit_output_reload_insns (chain, rld + j, j);
6966 }
6967
6968 /* Output insns to reload values in and out of the chosen reload regs. */
6969
6970 static void
6971 emit_reload_insns (chain)
6972 struct insn_chain *chain;
6973 {
6974 rtx insn = chain->insn;
6975
6976 int j;
6977
6978 CLEAR_HARD_REG_SET (reg_reloaded_died);
6979
6980 for (j = 0; j < reload_n_operands; j++)
6981 input_reload_insns[j] = input_address_reload_insns[j]
6982 = inpaddr_address_reload_insns[j]
6983 = output_reload_insns[j] = output_address_reload_insns[j]
6984 = outaddr_address_reload_insns[j]
6985 = other_output_reload_insns[j] = 0;
6986 other_input_address_reload_insns = 0;
6987 other_input_reload_insns = 0;
6988 operand_reload_insns = 0;
6989 other_operand_reload_insns = 0;
6990
6991 /* Dump reloads into the dump file. */
6992 if (rtl_dump_file)
6993 {
6994 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6995 debug_reload_to_stream (rtl_dump_file);
6996 }
6997
6998 /* Now output the instructions to copy the data into and out of the
6999 reload registers. Do these in the order that the reloads were reported,
7000 since reloads of base and index registers precede reloads of operands
7001 and the operands may need the base and index registers reloaded. */
7002
7003 for (j = 0; j < n_reloads; j++)
7004 {
7005 if (rld[j].reg_rtx
7006 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7007 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7008
7009 do_input_reload (chain, rld + j, j);
7010 do_output_reload (chain, rld + j, j);
7011 }
7012
7013 /* Now write all the insns we made for reloads in the order expected by
7014 the allocation functions. Prior to the insn being reloaded, we write
7015 the following reloads:
7016
7017 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7018
7019 RELOAD_OTHER reloads.
7020
7021 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7022 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7023 RELOAD_FOR_INPUT reload for the operand.
7024
7025 RELOAD_FOR_OPADDR_ADDRS reloads.
7026
7027 RELOAD_FOR_OPERAND_ADDRESS reloads.
7028
7029 After the insn being reloaded, we write the following:
7030
7031 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7032 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7033 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7034 reloads for the operand. The RELOAD_OTHER output reloads are
7035 output in descending order by reload number. */
7036
7037 emit_insns_before (other_input_address_reload_insns, insn);
7038 emit_insns_before (other_input_reload_insns, insn);
7039
7040 for (j = 0; j < reload_n_operands; j++)
7041 {
7042 emit_insns_before (inpaddr_address_reload_insns[j], insn);
7043 emit_insns_before (input_address_reload_insns[j], insn);
7044 emit_insns_before (input_reload_insns[j], insn);
7045 }
7046
7047 emit_insns_before (other_operand_reload_insns, insn);
7048 emit_insns_before (operand_reload_insns, insn);
7049
7050 for (j = 0; j < reload_n_operands; j++)
7051 {
7052 rtx x = emit_insns_after (outaddr_address_reload_insns[j], insn);
7053 x = emit_insns_after (output_address_reload_insns[j], x);
7054 x = emit_insns_after (output_reload_insns[j], x);
7055 emit_insns_after (other_output_reload_insns[j], x);
7056 }
7057
7058 /* For all the spill regs newly reloaded in this instruction,
7059 record what they were reloaded from, so subsequent instructions
7060 can inherit the reloads.
7061
7062 Update spill_reg_store for the reloads of this insn.
7063 Copy the elements that were updated in the loop above. */
7064
7065 for (j = 0; j < n_reloads; j++)
7066 {
7067 int r = reload_order[j];
7068 int i = reload_spill_index[r];
7069
7070 /* If this is a non-inherited input reload from a pseudo, we must
7071 clear any memory of a previous store to the same pseudo. Only do
7072 something if there will not be an output reload for the pseudo
7073 being reloaded. */
7074 if (rld[r].in_reg != 0
7075 && ! (reload_inherited[r] || reload_override_in[r]))
7076 {
7077 rtx reg = rld[r].in_reg;
7078
7079 if (GET_CODE (reg) == SUBREG)
7080 reg = SUBREG_REG (reg);
7081
7082 if (GET_CODE (reg) == REG
7083 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7084 && ! reg_has_output_reload[REGNO (reg)])
7085 {
7086 int nregno = REGNO (reg);
7087
7088 if (reg_last_reload_reg[nregno])
7089 {
7090 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7091
7092 if (reg_reloaded_contents[last_regno] == nregno)
7093 spill_reg_store[last_regno] = 0;
7094 }
7095 }
7096 }
7097
7098 /* I is nonneg if this reload used a register.
7099 If rld[r].reg_rtx is 0, this is an optional reload
7100 that we opted to ignore. */
7101
7102 if (i >= 0 && rld[r].reg_rtx != 0)
7103 {
7104 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7105 int k;
7106 int part_reaches_end = 0;
7107 int all_reaches_end = 1;
7108
7109 /* For a multi register reload, we need to check if all or part
7110 of the value lives to the end. */
7111 for (k = 0; k < nr; k++)
7112 {
7113 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7114 rld[r].when_needed))
7115 part_reaches_end = 1;
7116 else
7117 all_reaches_end = 0;
7118 }
7119
7120 /* Ignore reloads that don't reach the end of the insn in
7121 entirety. */
7122 if (all_reaches_end)
7123 {
7124 /* First, clear out memory of what used to be in this spill reg.
7125 If consecutive registers are used, clear them all. */
7126
7127 for (k = 0; k < nr; k++)
7128 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7129
7130 /* Maybe the spill reg contains a copy of reload_out. */
7131 if (rld[r].out != 0
7132 && (GET_CODE (rld[r].out) == REG
7133 #ifdef AUTO_INC_DEC
7134 || ! rld[r].out_reg
7135 #endif
7136 || GET_CODE (rld[r].out_reg) == REG))
7137 {
7138 rtx out = (GET_CODE (rld[r].out) == REG
7139 ? rld[r].out
7140 : rld[r].out_reg
7141 ? rld[r].out_reg
7142 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7143 int nregno = REGNO (out);
7144 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7145 : HARD_REGNO_NREGS (nregno,
7146 GET_MODE (rld[r].reg_rtx)));
7147
7148 spill_reg_store[i] = new_spill_reg_store[i];
7149 spill_reg_stored_to[i] = out;
7150 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7151
7152 /* If NREGNO is a hard register, it may occupy more than
7153 one register. If it does, say what is in the
7154 rest of the registers assuming that both registers
7155 agree on how many words the object takes. If not,
7156 invalidate the subsequent registers. */
7157
7158 if (nregno < FIRST_PSEUDO_REGISTER)
7159 for (k = 1; k < nnr; k++)
7160 reg_last_reload_reg[nregno + k]
7161 = (nr == nnr
7162 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7163 REGNO (rld[r].reg_rtx) + k)
7164 : 0);
7165
7166 /* Now do the inverse operation. */
7167 for (k = 0; k < nr; k++)
7168 {
7169 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7170 reg_reloaded_contents[i + k]
7171 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7172 ? nregno
7173 : nregno + k);
7174 reg_reloaded_insn[i + k] = insn;
7175 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7176 }
7177 }
7178
7179 /* Maybe the spill reg contains a copy of reload_in. Only do
7180 something if there will not be an output reload for
7181 the register being reloaded. */
7182 else if (rld[r].out_reg == 0
7183 && rld[r].in != 0
7184 && ((GET_CODE (rld[r].in) == REG
7185 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7186 && ! reg_has_output_reload[REGNO (rld[r].in)])
7187 || (GET_CODE (rld[r].in_reg) == REG
7188 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7189 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7190 {
7191 int nregno;
7192 int nnr;
7193
7194 if (GET_CODE (rld[r].in) == REG
7195 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7196 nregno = REGNO (rld[r].in);
7197 else if (GET_CODE (rld[r].in_reg) == REG)
7198 nregno = REGNO (rld[r].in_reg);
7199 else
7200 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7201
7202 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7203 : HARD_REGNO_NREGS (nregno,
7204 GET_MODE (rld[r].reg_rtx)));
7205
7206 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7207
7208 if (nregno < FIRST_PSEUDO_REGISTER)
7209 for (k = 1; k < nnr; k++)
7210 reg_last_reload_reg[nregno + k]
7211 = (nr == nnr
7212 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7213 REGNO (rld[r].reg_rtx) + k)
7214 : 0);
7215
7216 /* Unless we inherited this reload, show we haven't
7217 recently done a store.
7218 Previous stores of inherited auto_inc expressions
7219 also have to be discarded. */
7220 if (! reload_inherited[r]
7221 || (rld[r].out && ! rld[r].out_reg))
7222 spill_reg_store[i] = 0;
7223
7224 for (k = 0; k < nr; k++)
7225 {
7226 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7227 reg_reloaded_contents[i + k]
7228 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7229 ? nregno
7230 : nregno + k);
7231 reg_reloaded_insn[i + k] = insn;
7232 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7233 }
7234 }
7235 }
7236
7237 /* However, if part of the reload reaches the end, then we must
7238 invalidate the old info for the part that survives to the end. */
7239 else if (part_reaches_end)
7240 {
7241 for (k = 0; k < nr; k++)
7242 if (reload_reg_reaches_end_p (i + k,
7243 rld[r].opnum,
7244 rld[r].when_needed))
7245 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7246 }
7247 }
7248
7249 /* The following if-statement was #if 0'd in 1.34 (or before...).
7250 It's reenabled in 1.35 because supposedly nothing else
7251 deals with this problem. */
7252
7253 /* If a register gets output-reloaded from a non-spill register,
7254 that invalidates any previous reloaded copy of it.
7255 But forget_old_reloads_1 won't get to see it, because
7256 it thinks only about the original insn. So invalidate it here. */
7257 if (i < 0 && rld[r].out != 0
7258 && (GET_CODE (rld[r].out) == REG
7259 || (GET_CODE (rld[r].out) == MEM
7260 && GET_CODE (rld[r].out_reg) == REG)))
7261 {
7262 rtx out = (GET_CODE (rld[r].out) == REG
7263 ? rld[r].out : rld[r].out_reg);
7264 int nregno = REGNO (out);
7265 if (nregno >= FIRST_PSEUDO_REGISTER)
7266 {
7267 rtx src_reg, store_insn = NULL_RTX;
7268
7269 reg_last_reload_reg[nregno] = 0;
7270
7271 /* If we can find a hard register that is stored, record
7272 the storing insn so that we may delete this insn with
7273 delete_output_reload. */
7274 src_reg = rld[r].reg_rtx;
7275
7276 /* If this is an optional reload, try to find the source reg
7277 from an input reload. */
7278 if (! src_reg)
7279 {
7280 rtx set = single_set (insn);
7281 if (set && SET_DEST (set) == rld[r].out)
7282 {
7283 int k;
7284
7285 src_reg = SET_SRC (set);
7286 store_insn = insn;
7287 for (k = 0; k < n_reloads; k++)
7288 {
7289 if (rld[k].in == src_reg)
7290 {
7291 src_reg = rld[k].reg_rtx;
7292 break;
7293 }
7294 }
7295 }
7296 }
7297 else
7298 store_insn = new_spill_reg_store[REGNO (src_reg)];
7299 if (src_reg && GET_CODE (src_reg) == REG
7300 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7301 {
7302 int src_regno = REGNO (src_reg);
7303 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7304 /* The place where to find a death note varies with
7305 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7306 necessarily checked exactly in the code that moves
7307 notes, so just check both locations. */
7308 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7309 if (! note && store_insn)
7310 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7311 while (nr-- > 0)
7312 {
7313 spill_reg_store[src_regno + nr] = store_insn;
7314 spill_reg_stored_to[src_regno + nr] = out;
7315 reg_reloaded_contents[src_regno + nr] = nregno;
7316 reg_reloaded_insn[src_regno + nr] = store_insn;
7317 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7318 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7319 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7320 if (note)
7321 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7322 else
7323 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7324 }
7325 reg_last_reload_reg[nregno] = src_reg;
7326 }
7327 }
7328 else
7329 {
7330 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7331
7332 while (num_regs-- > 0)
7333 reg_last_reload_reg[nregno + num_regs] = 0;
7334 }
7335 }
7336 }
7337 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7338 }
7339 \f
7340 /* Emit code to perform a reload from IN (which may be a reload register) to
7341 OUT (which may also be a reload register). IN or OUT is from operand
7342 OPNUM with reload type TYPE.
7343
7344 Returns first insn emitted. */
7345
7346 rtx
7347 gen_reload (out, in, opnum, type)
7348 rtx out;
7349 rtx in;
7350 int opnum;
7351 enum reload_type type;
7352 {
7353 rtx last = get_last_insn ();
7354 rtx tem;
7355
7356 /* If IN is a paradoxical SUBREG, remove it and try to put the
7357 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7358 if (GET_CODE (in) == SUBREG
7359 && (GET_MODE_SIZE (GET_MODE (in))
7360 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7361 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7362 in = SUBREG_REG (in), out = tem;
7363 else if (GET_CODE (out) == SUBREG
7364 && (GET_MODE_SIZE (GET_MODE (out))
7365 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7366 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7367 out = SUBREG_REG (out), in = tem;
7368
7369 /* How to do this reload can get quite tricky. Normally, we are being
7370 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7371 register that didn't get a hard register. In that case we can just
7372 call emit_move_insn.
7373
7374 We can also be asked to reload a PLUS that adds a register or a MEM to
7375 another register, constant or MEM. This can occur during frame pointer
7376 elimination and while reloading addresses. This case is handled by
7377 trying to emit a single insn to perform the add. If it is not valid,
7378 we use a two insn sequence.
7379
7380 Finally, we could be called to handle an 'o' constraint by putting
7381 an address into a register. In that case, we first try to do this
7382 with a named pattern of "reload_load_address". If no such pattern
7383 exists, we just emit a SET insn and hope for the best (it will normally
7384 be valid on machines that use 'o').
7385
7386 This entire process is made complex because reload will never
7387 process the insns we generate here and so we must ensure that
7388 they will fit their constraints and also by the fact that parts of
7389 IN might be being reloaded separately and replaced with spill registers.
7390 Because of this, we are, in some sense, just guessing the right approach
7391 here. The one listed above seems to work.
7392
7393 ??? At some point, this whole thing needs to be rethought. */
7394
7395 if (GET_CODE (in) == PLUS
7396 && (GET_CODE (XEXP (in, 0)) == REG
7397 || GET_CODE (XEXP (in, 0)) == SUBREG
7398 || GET_CODE (XEXP (in, 0)) == MEM)
7399 && (GET_CODE (XEXP (in, 1)) == REG
7400 || GET_CODE (XEXP (in, 1)) == SUBREG
7401 || CONSTANT_P (XEXP (in, 1))
7402 || GET_CODE (XEXP (in, 1)) == MEM))
7403 {
7404 /* We need to compute the sum of a register or a MEM and another
7405 register, constant, or MEM, and put it into the reload
7406 register. The best possible way of doing this is if the machine
7407 has a three-operand ADD insn that accepts the required operands.
7408
7409 The simplest approach is to try to generate such an insn and see if it
7410 is recognized and matches its constraints. If so, it can be used.
7411
7412 It might be better not to actually emit the insn unless it is valid,
7413 but we need to pass the insn as an operand to `recog' and
7414 `extract_insn' and it is simpler to emit and then delete the insn if
7415 not valid than to dummy things up. */
7416
7417 rtx op0, op1, tem, insn;
7418 int code;
7419
7420 op0 = find_replacement (&XEXP (in, 0));
7421 op1 = find_replacement (&XEXP (in, 1));
7422
7423 /* Since constraint checking is strict, commutativity won't be
7424 checked, so we need to do that here to avoid spurious failure
7425 if the add instruction is two-address and the second operand
7426 of the add is the same as the reload reg, which is frequently
7427 the case. If the insn would be A = B + A, rearrange it so
7428 it will be A = A + B as constrain_operands expects. */
7429
7430 if (GET_CODE (XEXP (in, 1)) == REG
7431 && REGNO (out) == REGNO (XEXP (in, 1)))
7432 tem = op0, op0 = op1, op1 = tem;
7433
7434 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7435 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7436
7437 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7438 code = recog_memoized (insn);
7439
7440 if (code >= 0)
7441 {
7442 extract_insn (insn);
7443 /* We want constrain operands to treat this insn strictly in
7444 its validity determination, i.e., the way it would after reload
7445 has completed. */
7446 if (constrain_operands (1))
7447 return insn;
7448 }
7449
7450 delete_insns_since (last);
7451
7452 /* If that failed, we must use a conservative two-insn sequence.
7453
7454 Use a move to copy one operand into the reload register. Prefer
7455 to reload a constant, MEM or pseudo since the move patterns can
7456 handle an arbitrary operand. If OP1 is not a constant, MEM or
7457 pseudo and OP1 is not a valid operand for an add instruction, then
7458 reload OP1.
7459
7460 After reloading one of the operands into the reload register, add
7461 the reload register to the output register.
7462
7463 If there is another way to do this for a specific machine, a
7464 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7465 we emit below. */
7466
7467 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7468
7469 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7470 || (GET_CODE (op1) == REG
7471 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7472 || (code != CODE_FOR_nothing
7473 && ! ((*insn_data[code].operand[2].predicate)
7474 (op1, insn_data[code].operand[2].mode))))
7475 tem = op0, op0 = op1, op1 = tem;
7476
7477 gen_reload (out, op0, opnum, type);
7478
7479 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7480 This fixes a problem on the 32K where the stack pointer cannot
7481 be used as an operand of an add insn. */
7482
7483 if (rtx_equal_p (op0, op1))
7484 op1 = out;
7485
7486 insn = emit_insn (gen_add2_insn (out, op1));
7487
7488 /* If that failed, copy the address register to the reload register.
7489 Then add the constant to the reload register. */
7490
7491 code = recog_memoized (insn);
7492
7493 if (code >= 0)
7494 {
7495 extract_insn (insn);
7496 /* We want constrain operands to treat this insn strictly in
7497 its validity determination, i.e., the way it would after reload
7498 has completed. */
7499 if (constrain_operands (1))
7500 {
7501 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7502 REG_NOTES (insn)
7503 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7504 return insn;
7505 }
7506 }
7507
7508 delete_insns_since (last);
7509
7510 gen_reload (out, op1, opnum, type);
7511 insn = emit_insn (gen_add2_insn (out, op0));
7512 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7513 }
7514
7515 #ifdef SECONDARY_MEMORY_NEEDED
7516 /* If we need a memory location to do the move, do it that way. */
7517 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
7518 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
7519 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
7520 REGNO_REG_CLASS (REGNO (out)),
7521 GET_MODE (out)))
7522 {
7523 /* Get the memory to use and rewrite both registers to its mode. */
7524 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7525
7526 if (GET_MODE (loc) != GET_MODE (out))
7527 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7528
7529 if (GET_MODE (loc) != GET_MODE (in))
7530 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7531
7532 gen_reload (loc, in, opnum, type);
7533 gen_reload (out, loc, opnum, type);
7534 }
7535 #endif
7536
7537 /* If IN is a simple operand, use gen_move_insn. */
7538 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7539 emit_insn (gen_move_insn (out, in));
7540
7541 #ifdef HAVE_reload_load_address
7542 else if (HAVE_reload_load_address)
7543 emit_insn (gen_reload_load_address (out, in));
7544 #endif
7545
7546 /* Otherwise, just write (set OUT IN) and hope for the best. */
7547 else
7548 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7549
7550 /* Return the first insn emitted.
7551 We can not just return get_last_insn, because there may have
7552 been multiple instructions emitted. Also note that gen_move_insn may
7553 emit more than one insn itself, so we can not assume that there is one
7554 insn emitted per emit_insn_before call. */
7555
7556 return last ? NEXT_INSN (last) : get_insns ();
7557 }
7558 \f
7559 /* Delete a previously made output-reload whose result we now believe
7560 is not needed. First we double-check.
7561
7562 INSN is the insn now being processed.
7563 LAST_RELOAD_REG is the hard register number for which we want to delete
7564 the last output reload.
7565 J is the reload-number that originally used REG. The caller has made
7566 certain that reload J doesn't use REG any longer for input. */
7567
7568 static void
7569 delete_output_reload (insn, j, last_reload_reg)
7570 rtx insn;
7571 int j;
7572 int last_reload_reg;
7573 {
7574 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7575 rtx reg = spill_reg_stored_to[last_reload_reg];
7576 int k;
7577 int n_occurrences;
7578 int n_inherited = 0;
7579 rtx i1;
7580 rtx substed;
7581
7582 /* Get the raw pseudo-register referred to. */
7583
7584 while (GET_CODE (reg) == SUBREG)
7585 reg = SUBREG_REG (reg);
7586 substed = reg_equiv_memory_loc[REGNO (reg)];
7587
7588 /* This is unsafe if the operand occurs more often in the current
7589 insn than it is inherited. */
7590 for (k = n_reloads - 1; k >= 0; k--)
7591 {
7592 rtx reg2 = rld[k].in;
7593 if (! reg2)
7594 continue;
7595 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7596 reg2 = rld[k].in_reg;
7597 #ifdef AUTO_INC_DEC
7598 if (rld[k].out && ! rld[k].out_reg)
7599 reg2 = XEXP (rld[k].in_reg, 0);
7600 #endif
7601 while (GET_CODE (reg2) == SUBREG)
7602 reg2 = SUBREG_REG (reg2);
7603 if (rtx_equal_p (reg2, reg))
7604 {
7605 if (reload_inherited[k] || reload_override_in[k] || k == j)
7606 {
7607 n_inherited++;
7608 reg2 = rld[k].out_reg;
7609 if (! reg2)
7610 continue;
7611 while (GET_CODE (reg2) == SUBREG)
7612 reg2 = XEXP (reg2, 0);
7613 if (rtx_equal_p (reg2, reg))
7614 n_inherited++;
7615 }
7616 else
7617 return;
7618 }
7619 }
7620 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7621 if (substed)
7622 n_occurrences += count_occurrences (PATTERN (insn),
7623 eliminate_regs (substed, 0,
7624 NULL_RTX), 0);
7625 if (n_occurrences > n_inherited)
7626 return;
7627
7628 /* If the pseudo-reg we are reloading is no longer referenced
7629 anywhere between the store into it and here,
7630 and no jumps or labels intervene, then the value can get
7631 here through the reload reg alone.
7632 Otherwise, give up--return. */
7633 for (i1 = NEXT_INSN (output_reload_insn);
7634 i1 != insn; i1 = NEXT_INSN (i1))
7635 {
7636 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7637 return;
7638 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7639 && reg_mentioned_p (reg, PATTERN (i1)))
7640 {
7641 /* If this is USE in front of INSN, we only have to check that
7642 there are no more references than accounted for by inheritance. */
7643 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7644 {
7645 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7646 i1 = NEXT_INSN (i1);
7647 }
7648 if (n_occurrences <= n_inherited && i1 == insn)
7649 break;
7650 return;
7651 }
7652 }
7653
7654 /* We will be deleting the insn. Remove the spill reg information. */
7655 for (k = HARD_REGNO_NREGS (last_reload_reg, GET_MODE (reg)); k-- > 0; )
7656 {
7657 spill_reg_store[last_reload_reg + k] = 0;
7658 spill_reg_stored_to[last_reload_reg + k] = 0;
7659 }
7660
7661 /* The caller has already checked that REG dies or is set in INSN.
7662 It has also checked that we are optimizing, and thus some
7663 inaccurancies in the debugging information are acceptable.
7664 So we could just delete output_reload_insn. But in some cases
7665 we can improve the debugging information without sacrificing
7666 optimization - maybe even improving the code: See if the pseudo
7667 reg has been completely replaced with reload regs. If so, delete
7668 the store insn and forget we had a stack slot for the pseudo. */
7669 if (rld[j].out != rld[j].in
7670 && REG_N_DEATHS (REGNO (reg)) == 1
7671 && REG_N_SETS (REGNO (reg)) == 1
7672 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7673 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7674 {
7675 rtx i2;
7676
7677 /* We know that it was used only between here and the beginning of
7678 the current basic block. (We also know that the last use before
7679 INSN was the output reload we are thinking of deleting, but never
7680 mind that.) Search that range; see if any ref remains. */
7681 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7682 {
7683 rtx set = single_set (i2);
7684
7685 /* Uses which just store in the pseudo don't count,
7686 since if they are the only uses, they are dead. */
7687 if (set != 0 && SET_DEST (set) == reg)
7688 continue;
7689 if (GET_CODE (i2) == CODE_LABEL
7690 || GET_CODE (i2) == JUMP_INSN)
7691 break;
7692 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7693 && reg_mentioned_p (reg, PATTERN (i2)))
7694 {
7695 /* Some other ref remains; just delete the output reload we
7696 know to be dead. */
7697 delete_address_reloads (output_reload_insn, insn);
7698 delete_insn (output_reload_insn);
7699 return;
7700 }
7701 }
7702
7703 /* Delete the now-dead stores into this pseudo. Note that this
7704 loop also takes care of deleting output_reload_insn. */
7705 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7706 {
7707 rtx set = single_set (i2);
7708
7709 if (set != 0 && SET_DEST (set) == reg)
7710 {
7711 delete_address_reloads (i2, insn);
7712 delete_insn (i2);
7713 }
7714 if (GET_CODE (i2) == CODE_LABEL
7715 || GET_CODE (i2) == JUMP_INSN)
7716 break;
7717 }
7718
7719 /* For the debugging info, say the pseudo lives in this reload reg. */
7720 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7721 alter_reg (REGNO (reg), -1);
7722 }
7723 else
7724 {
7725 delete_address_reloads (output_reload_insn, insn);
7726 delete_insn (output_reload_insn);
7727 }
7728 }
7729
7730 /* We are going to delete DEAD_INSN. Recursively delete loads of
7731 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7732 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7733 static void
7734 delete_address_reloads (dead_insn, current_insn)
7735 rtx dead_insn, current_insn;
7736 {
7737 rtx set = single_set (dead_insn);
7738 rtx set2, dst, prev, next;
7739 if (set)
7740 {
7741 rtx dst = SET_DEST (set);
7742 if (GET_CODE (dst) == MEM)
7743 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7744 }
7745 /* If we deleted the store from a reloaded post_{in,de}c expression,
7746 we can delete the matching adds. */
7747 prev = PREV_INSN (dead_insn);
7748 next = NEXT_INSN (dead_insn);
7749 if (! prev || ! next)
7750 return;
7751 set = single_set (next);
7752 set2 = single_set (prev);
7753 if (! set || ! set2
7754 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7755 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7756 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7757 return;
7758 dst = SET_DEST (set);
7759 if (! rtx_equal_p (dst, SET_DEST (set2))
7760 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7761 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7762 || (INTVAL (XEXP (SET_SRC (set), 1))
7763 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7764 return;
7765 delete_related_insns (prev);
7766 delete_related_insns (next);
7767 }
7768
7769 /* Subfunction of delete_address_reloads: process registers found in X. */
7770 static void
7771 delete_address_reloads_1 (dead_insn, x, current_insn)
7772 rtx dead_insn, x, current_insn;
7773 {
7774 rtx prev, set, dst, i2;
7775 int i, j;
7776 enum rtx_code code = GET_CODE (x);
7777
7778 if (code != REG)
7779 {
7780 const char *fmt = GET_RTX_FORMAT (code);
7781 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7782 {
7783 if (fmt[i] == 'e')
7784 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7785 else if (fmt[i] == 'E')
7786 {
7787 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7788 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7789 current_insn);
7790 }
7791 }
7792 return;
7793 }
7794
7795 if (spill_reg_order[REGNO (x)] < 0)
7796 return;
7797
7798 /* Scan backwards for the insn that sets x. This might be a way back due
7799 to inheritance. */
7800 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7801 {
7802 code = GET_CODE (prev);
7803 if (code == CODE_LABEL || code == JUMP_INSN)
7804 return;
7805 if (GET_RTX_CLASS (code) != 'i')
7806 continue;
7807 if (reg_set_p (x, PATTERN (prev)))
7808 break;
7809 if (reg_referenced_p (x, PATTERN (prev)))
7810 return;
7811 }
7812 if (! prev || INSN_UID (prev) < reload_first_uid)
7813 return;
7814 /* Check that PREV only sets the reload register. */
7815 set = single_set (prev);
7816 if (! set)
7817 return;
7818 dst = SET_DEST (set);
7819 if (GET_CODE (dst) != REG
7820 || ! rtx_equal_p (dst, x))
7821 return;
7822 if (! reg_set_p (dst, PATTERN (dead_insn)))
7823 {
7824 /* Check if DST was used in a later insn -
7825 it might have been inherited. */
7826 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7827 {
7828 if (GET_CODE (i2) == CODE_LABEL)
7829 break;
7830 if (! INSN_P (i2))
7831 continue;
7832 if (reg_referenced_p (dst, PATTERN (i2)))
7833 {
7834 /* If there is a reference to the register in the current insn,
7835 it might be loaded in a non-inherited reload. If no other
7836 reload uses it, that means the register is set before
7837 referenced. */
7838 if (i2 == current_insn)
7839 {
7840 for (j = n_reloads - 1; j >= 0; j--)
7841 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7842 || reload_override_in[j] == dst)
7843 return;
7844 for (j = n_reloads - 1; j >= 0; j--)
7845 if (rld[j].in && rld[j].reg_rtx == dst)
7846 break;
7847 if (j >= 0)
7848 break;
7849 }
7850 return;
7851 }
7852 if (GET_CODE (i2) == JUMP_INSN)
7853 break;
7854 /* If DST is still live at CURRENT_INSN, check if it is used for
7855 any reload. Note that even if CURRENT_INSN sets DST, we still
7856 have to check the reloads. */
7857 if (i2 == current_insn)
7858 {
7859 for (j = n_reloads - 1; j >= 0; j--)
7860 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7861 || reload_override_in[j] == dst)
7862 return;
7863 /* ??? We can't finish the loop here, because dst might be
7864 allocated to a pseudo in this block if no reload in this
7865 block needs any of the clsses containing DST - see
7866 spill_hard_reg. There is no easy way to tell this, so we
7867 have to scan till the end of the basic block. */
7868 }
7869 if (reg_set_p (dst, PATTERN (i2)))
7870 break;
7871 }
7872 }
7873 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7874 reg_reloaded_contents[REGNO (dst)] = -1;
7875 delete_insn (prev);
7876 }
7877 \f
7878 /* Output reload-insns to reload VALUE into RELOADREG.
7879 VALUE is an autoincrement or autodecrement RTX whose operand
7880 is a register or memory location;
7881 so reloading involves incrementing that location.
7882 IN is either identical to VALUE, or some cheaper place to reload from.
7883
7884 INC_AMOUNT is the number to increment or decrement by (always positive).
7885 This cannot be deduced from VALUE.
7886
7887 Return the instruction that stores into RELOADREG. */
7888
7889 static rtx
7890 inc_for_reload (reloadreg, in, value, inc_amount)
7891 rtx reloadreg;
7892 rtx in, value;
7893 int inc_amount;
7894 {
7895 /* REG or MEM to be copied and incremented. */
7896 rtx incloc = XEXP (value, 0);
7897 /* Nonzero if increment after copying. */
7898 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7899 rtx last;
7900 rtx inc;
7901 rtx add_insn;
7902 int code;
7903 rtx store;
7904 rtx real_in = in == value ? XEXP (in, 0) : in;
7905
7906 /* No hard register is equivalent to this register after
7907 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7908 we could inc/dec that register as well (maybe even using it for
7909 the source), but I'm not sure it's worth worrying about. */
7910 if (GET_CODE (incloc) == REG)
7911 reg_last_reload_reg[REGNO (incloc)] = 0;
7912
7913 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7914 inc_amount = -inc_amount;
7915
7916 inc = GEN_INT (inc_amount);
7917
7918 /* If this is post-increment, first copy the location to the reload reg. */
7919 if (post && real_in != reloadreg)
7920 emit_insn (gen_move_insn (reloadreg, real_in));
7921
7922 if (in == value)
7923 {
7924 /* See if we can directly increment INCLOC. Use a method similar to
7925 that in gen_reload. */
7926
7927 last = get_last_insn ();
7928 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7929 gen_rtx_PLUS (GET_MODE (incloc),
7930 incloc, inc)));
7931
7932 code = recog_memoized (add_insn);
7933 if (code >= 0)
7934 {
7935 extract_insn (add_insn);
7936 if (constrain_operands (1))
7937 {
7938 /* If this is a pre-increment and we have incremented the value
7939 where it lives, copy the incremented value to RELOADREG to
7940 be used as an address. */
7941
7942 if (! post)
7943 emit_insn (gen_move_insn (reloadreg, incloc));
7944
7945 return add_insn;
7946 }
7947 }
7948 delete_insns_since (last);
7949 }
7950
7951 /* If couldn't do the increment directly, must increment in RELOADREG.
7952 The way we do this depends on whether this is pre- or post-increment.
7953 For pre-increment, copy INCLOC to the reload register, increment it
7954 there, then save back. */
7955
7956 if (! post)
7957 {
7958 if (in != reloadreg)
7959 emit_insn (gen_move_insn (reloadreg, real_in));
7960 emit_insn (gen_add2_insn (reloadreg, inc));
7961 store = emit_insn (gen_move_insn (incloc, reloadreg));
7962 }
7963 else
7964 {
7965 /* Postincrement.
7966 Because this might be a jump insn or a compare, and because RELOADREG
7967 may not be available after the insn in an input reload, we must do
7968 the incrementation before the insn being reloaded for.
7969
7970 We have already copied IN to RELOADREG. Increment the copy in
7971 RELOADREG, save that back, then decrement RELOADREG so it has
7972 the original value. */
7973
7974 emit_insn (gen_add2_insn (reloadreg, inc));
7975 store = emit_insn (gen_move_insn (incloc, reloadreg));
7976 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7977 }
7978
7979 return store;
7980 }
7981 \f
7982 /* Return 1 if we are certain that the constraint-string STRING allows
7983 the hard register REG. Return 0 if we can't be sure of this. */
7984
7985 static int
7986 constraint_accepts_reg_p (string, reg)
7987 const char *string;
7988 rtx reg;
7989 {
7990 int value = 0;
7991 int regno = true_regnum (reg);
7992 int c;
7993
7994 /* Initialize for first alternative. */
7995 value = 0;
7996 /* Check that each alternative contains `g' or `r'. */
7997 while (1)
7998 switch (c = *string++)
7999 {
8000 case 0:
8001 /* If an alternative lacks `g' or `r', we lose. */
8002 return value;
8003 case ',':
8004 /* If an alternative lacks `g' or `r', we lose. */
8005 if (value == 0)
8006 return 0;
8007 /* Initialize for next alternative. */
8008 value = 0;
8009 break;
8010 case 'g':
8011 case 'r':
8012 /* Any general reg wins for this alternative. */
8013 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
8014 value = 1;
8015 break;
8016 default:
8017 /* Any reg in specified class wins for this alternative. */
8018 {
8019 enum reg_class class = REG_CLASS_FROM_LETTER (c);
8020
8021 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
8022 value = 1;
8023 }
8024 }
8025 }
8026 \f
8027 /* INSN is a no-op; delete it.
8028 If this sets the return value of the function, we must keep a USE around,
8029 in case this is in a different basic block than the final USE. Otherwise,
8030 we could loose important register lifeness information on
8031 SMALL_REGISTER_CLASSES machines, where return registers might be used as
8032 spills: subsequent passes assume that spill registers are dead at the end
8033 of a basic block.
8034 VALUE must be the return value in such a case, NULL otherwise. */
8035 static void
8036 reload_cse_delete_noop_set (insn, value)
8037 rtx insn, value;
8038 {
8039 bool purge = BLOCK_FOR_INSN (insn)->end == insn;
8040 if (value)
8041 {
8042 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
8043 INSN_CODE (insn) = -1;
8044 REG_NOTES (insn) = NULL_RTX;
8045 }
8046 else
8047 delete_insn (insn);
8048 if (purge)
8049 purge_dead_edges (BLOCK_FOR_INSN (insn));
8050 }
8051
8052 /* See whether a single set SET is a noop. */
8053 static int
8054 reload_cse_noop_set_p (set)
8055 rtx set;
8056 {
8057 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8058 }
8059
8060 /* Try to simplify INSN. */
8061 static void
8062 reload_cse_simplify (insn)
8063 rtx insn;
8064 {
8065 rtx body = PATTERN (insn);
8066
8067 if (GET_CODE (body) == SET)
8068 {
8069 int count = 0;
8070
8071 /* Simplify even if we may think it is a no-op.
8072 We may think a memory load of a value smaller than WORD_SIZE
8073 is redundant because we haven't taken into account possible
8074 implicit extension. reload_cse_simplify_set() will bring
8075 this out, so it's safer to simplify before we delete. */
8076 count += reload_cse_simplify_set (body, insn);
8077
8078 if (!count && reload_cse_noop_set_p (body))
8079 {
8080 rtx value = SET_DEST (body);
8081 if (REG_P (value)
8082 && ! REG_FUNCTION_VALUE_P (value))
8083 value = 0;
8084 reload_cse_delete_noop_set (insn, value);
8085 return;
8086 }
8087
8088 if (count > 0)
8089 apply_change_group ();
8090 else
8091 reload_cse_simplify_operands (insn);
8092 }
8093 else if (GET_CODE (body) == PARALLEL)
8094 {
8095 int i;
8096 int count = 0;
8097 rtx value = NULL_RTX;
8098
8099 /* If every action in a PARALLEL is a noop, we can delete
8100 the entire PARALLEL. */
8101 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8102 {
8103 rtx part = XVECEXP (body, 0, i);
8104 if (GET_CODE (part) == SET)
8105 {
8106 if (! reload_cse_noop_set_p (part))
8107 break;
8108 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
8109 {
8110 if (value)
8111 break;
8112 value = SET_DEST (part);
8113 }
8114 }
8115 else if (GET_CODE (part) != CLOBBER)
8116 break;
8117 }
8118
8119 if (i < 0)
8120 {
8121 reload_cse_delete_noop_set (insn, value);
8122 /* We're done with this insn. */
8123 return;
8124 }
8125
8126 /* It's not a no-op, but we can try to simplify it. */
8127 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8128 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8129 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8130
8131 if (count > 0)
8132 apply_change_group ();
8133 else
8134 reload_cse_simplify_operands (insn);
8135 }
8136 }
8137
8138 /* Do a very simple CSE pass over the hard registers.
8139
8140 This function detects no-op moves where we happened to assign two
8141 different pseudo-registers to the same hard register, and then
8142 copied one to the other. Reload will generate a useless
8143 instruction copying a register to itself.
8144
8145 This function also detects cases where we load a value from memory
8146 into two different registers, and (if memory is more expensive than
8147 registers) changes it to simply copy the first register into the
8148 second register.
8149
8150 Another optimization is performed that scans the operands of each
8151 instruction to see whether the value is already available in a
8152 hard register. It then replaces the operand with the hard register
8153 if possible, much like an optional reload would. */
8154
8155 static void
8156 reload_cse_regs_1 (first)
8157 rtx first;
8158 {
8159 rtx insn;
8160
8161 cselib_init ();
8162 init_alias_analysis ();
8163
8164 for (insn = first; insn; insn = NEXT_INSN (insn))
8165 {
8166 if (INSN_P (insn))
8167 reload_cse_simplify (insn);
8168
8169 cselib_process_insn (insn);
8170 }
8171
8172 /* Clean up. */
8173 end_alias_analysis ();
8174 cselib_finish ();
8175 }
8176
8177 /* Call cse / combine like post-reload optimization phases.
8178 FIRST is the first instruction. */
8179 void
8180 reload_cse_regs (first)
8181 rtx first;
8182 {
8183 reload_cse_regs_1 (first);
8184 reload_combine ();
8185 reload_cse_move2add (first);
8186 if (flag_expensive_optimizations)
8187 reload_cse_regs_1 (first);
8188 }
8189
8190 /* Try to simplify a single SET instruction. SET is the set pattern.
8191 INSN is the instruction it came from.
8192 This function only handles one case: if we set a register to a value
8193 which is not a register, we try to find that value in some other register
8194 and change the set into a register copy. */
8195
8196 static int
8197 reload_cse_simplify_set (set, insn)
8198 rtx set;
8199 rtx insn;
8200 {
8201 int did_change = 0;
8202 int dreg;
8203 rtx src;
8204 enum reg_class dclass;
8205 int old_cost;
8206 cselib_val *val;
8207 struct elt_loc_list *l;
8208 #ifdef LOAD_EXTEND_OP
8209 enum rtx_code extend_op = NIL;
8210 #endif
8211
8212 dreg = true_regnum (SET_DEST (set));
8213 if (dreg < 0)
8214 return 0;
8215
8216 src = SET_SRC (set);
8217 if (side_effects_p (src) || true_regnum (src) >= 0)
8218 return 0;
8219
8220 dclass = REGNO_REG_CLASS (dreg);
8221
8222 #ifdef LOAD_EXTEND_OP
8223 /* When replacing a memory with a register, we need to honor assumptions
8224 that combine made wrt the contents of sign bits. We'll do this by
8225 generating an extend instruction instead of a reg->reg copy. Thus
8226 the destination must be a register that we can widen. */
8227 if (GET_CODE (src) == MEM
8228 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8229 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8230 && GET_CODE (SET_DEST (set)) != REG)
8231 return 0;
8232 #endif
8233
8234 /* If memory loads are cheaper than register copies, don't change them. */
8235 if (GET_CODE (src) == MEM)
8236 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8237 else if (CONSTANT_P (src))
8238 old_cost = rtx_cost (src, SET);
8239 else if (GET_CODE (src) == REG)
8240 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8241 REGNO_REG_CLASS (REGNO (src)), dclass);
8242 else
8243 /* ??? */
8244 old_cost = rtx_cost (src, SET);
8245
8246 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
8247 if (! val)
8248 return 0;
8249 for (l = val->locs; l; l = l->next)
8250 {
8251 rtx this_rtx = l->loc;
8252 int this_cost;
8253
8254 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8255 {
8256 #ifdef LOAD_EXTEND_OP
8257 if (extend_op != NIL)
8258 {
8259 HOST_WIDE_INT this_val;
8260
8261 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8262 constants, such as SYMBOL_REF, cannot be extended. */
8263 if (GET_CODE (this_rtx) != CONST_INT)
8264 continue;
8265
8266 this_val = INTVAL (this_rtx);
8267 switch (extend_op)
8268 {
8269 case ZERO_EXTEND:
8270 this_val &= GET_MODE_MASK (GET_MODE (src));
8271 break;
8272 case SIGN_EXTEND:
8273 /* ??? In theory we're already extended. */
8274 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8275 break;
8276 default:
8277 abort ();
8278 }
8279 this_rtx = GEN_INT (this_val);
8280 }
8281 #endif
8282 this_cost = rtx_cost (this_rtx, SET);
8283 }
8284 else if (GET_CODE (this_rtx) == REG)
8285 {
8286 #ifdef LOAD_EXTEND_OP
8287 if (extend_op != NIL)
8288 {
8289 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8290 this_cost = rtx_cost (this_rtx, SET);
8291 }
8292 else
8293 #endif
8294 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8295 REGNO_REG_CLASS (REGNO (this_rtx)),
8296 dclass);
8297 }
8298 else
8299 continue;
8300
8301 /* If equal costs, prefer registers over anything else. That
8302 tends to lead to smaller instructions on some machines. */
8303 if (this_cost < old_cost
8304 || (this_cost == old_cost
8305 && GET_CODE (this_rtx) == REG
8306 && GET_CODE (SET_SRC (set)) != REG))
8307 {
8308 #ifdef LOAD_EXTEND_OP
8309 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8310 && extend_op != NIL)
8311 {
8312 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8313 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8314 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8315 }
8316 #endif
8317
8318 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8319 old_cost = this_cost, did_change = 1;
8320 }
8321 }
8322
8323 return did_change;
8324 }
8325
8326 /* Try to replace operands in INSN with equivalent values that are already
8327 in registers. This can be viewed as optional reloading.
8328
8329 For each non-register operand in the insn, see if any hard regs are
8330 known to be equivalent to that operand. Record the alternatives which
8331 can accept these hard registers. Among all alternatives, select the
8332 ones which are better or equal to the one currently matching, where
8333 "better" is in terms of '?' and '!' constraints. Among the remaining
8334 alternatives, select the one which replaces most operands with
8335 hard registers. */
8336
8337 static int
8338 reload_cse_simplify_operands (insn)
8339 rtx insn;
8340 {
8341 int i, j;
8342
8343 /* For each operand, all registers that are equivalent to it. */
8344 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8345
8346 const char *constraints[MAX_RECOG_OPERANDS];
8347
8348 /* Vector recording how bad an alternative is. */
8349 int *alternative_reject;
8350 /* Vector recording how many registers can be introduced by choosing
8351 this alternative. */
8352 int *alternative_nregs;
8353 /* Array of vectors recording, for each operand and each alternative,
8354 which hard register to substitute, or -1 if the operand should be
8355 left as it is. */
8356 int *op_alt_regno[MAX_RECOG_OPERANDS];
8357 /* Array of alternatives, sorted in order of decreasing desirability. */
8358 int *alternative_order;
8359 rtx reg = gen_rtx_REG (VOIDmode, -1);
8360
8361 extract_insn (insn);
8362
8363 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8364 return 0;
8365
8366 /* Figure out which alternative currently matches. */
8367 if (! constrain_operands (1))
8368 fatal_insn_not_found (insn);
8369
8370 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8371 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8372 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8373 memset ((char *) alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8374 memset ((char *) alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8375
8376 /* For each operand, find out which regs are equivalent. */
8377 for (i = 0; i < recog_data.n_operands; i++)
8378 {
8379 cselib_val *v;
8380 struct elt_loc_list *l;
8381
8382 CLEAR_HARD_REG_SET (equiv_regs[i]);
8383
8384 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8385 right, so avoid the problem here. Likewise if we have a constant
8386 and the insn pattern doesn't tell us the mode we need. */
8387 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8388 || (CONSTANT_P (recog_data.operand[i])
8389 && recog_data.operand_mode[i] == VOIDmode))
8390 continue;
8391
8392 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8393 if (! v)
8394 continue;
8395
8396 for (l = v->locs; l; l = l->next)
8397 if (GET_CODE (l->loc) == REG)
8398 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8399 }
8400
8401 for (i = 0; i < recog_data.n_operands; i++)
8402 {
8403 enum machine_mode mode;
8404 int regno;
8405 const char *p;
8406
8407 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8408 for (j = 0; j < recog_data.n_alternatives; j++)
8409 op_alt_regno[i][j] = -1;
8410
8411 p = constraints[i] = recog_data.constraints[i];
8412 mode = recog_data.operand_mode[i];
8413
8414 /* Add the reject values for each alternative given by the constraints
8415 for this operand. */
8416 j = 0;
8417 while (*p != '\0')
8418 {
8419 char c = *p++;
8420 if (c == ',')
8421 j++;
8422 else if (c == '?')
8423 alternative_reject[j] += 3;
8424 else if (c == '!')
8425 alternative_reject[j] += 300;
8426 }
8427
8428 /* We won't change operands which are already registers. We
8429 also don't want to modify output operands. */
8430 regno = true_regnum (recog_data.operand[i]);
8431 if (regno >= 0
8432 || constraints[i][0] == '='
8433 || constraints[i][0] == '+')
8434 continue;
8435
8436 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8437 {
8438 int class = (int) NO_REGS;
8439
8440 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8441 continue;
8442
8443 REGNO (reg) = regno;
8444 PUT_MODE (reg, mode);
8445
8446 /* We found a register equal to this operand. Now look for all
8447 alternatives that can accept this register and have not been
8448 assigned a register they can use yet. */
8449 j = 0;
8450 p = constraints[i];
8451 for (;;)
8452 {
8453 char c = *p++;
8454
8455 switch (c)
8456 {
8457 case '=': case '+': case '?':
8458 case '#': case '&': case '!':
8459 case '*': case '%':
8460 case '0': case '1': case '2': case '3': case '4':
8461 case '5': case '6': case '7': case '8': case '9':
8462 case 'm': case '<': case '>': case 'V': case 'o':
8463 case 'E': case 'F': case 'G': case 'H':
8464 case 's': case 'i': case 'n':
8465 case 'I': case 'J': case 'K': case 'L':
8466 case 'M': case 'N': case 'O': case 'P':
8467 case 'p': case 'X':
8468 /* These don't say anything we care about. */
8469 break;
8470
8471 case 'g': case 'r':
8472 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8473 break;
8474
8475 default:
8476 class
8477 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char) c)];
8478 break;
8479
8480 case ',': case '\0':
8481 /* See if REGNO fits this alternative, and set it up as the
8482 replacement register if we don't have one for this
8483 alternative yet and the operand being replaced is not
8484 a cheap CONST_INT. */
8485 if (op_alt_regno[i][j] == -1
8486 && reg_fits_class_p (reg, class, 0, mode)
8487 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8488 || (rtx_cost (recog_data.operand[i], SET)
8489 > rtx_cost (reg, SET))))
8490 {
8491 alternative_nregs[j]++;
8492 op_alt_regno[i][j] = regno;
8493 }
8494 j++;
8495 break;
8496 }
8497
8498 if (c == '\0')
8499 break;
8500 }
8501 }
8502 }
8503
8504 /* Record all alternatives which are better or equal to the currently
8505 matching one in the alternative_order array. */
8506 for (i = j = 0; i < recog_data.n_alternatives; i++)
8507 if (alternative_reject[i] <= alternative_reject[which_alternative])
8508 alternative_order[j++] = i;
8509 recog_data.n_alternatives = j;
8510
8511 /* Sort it. Given a small number of alternatives, a dumb algorithm
8512 won't hurt too much. */
8513 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8514 {
8515 int best = i;
8516 int best_reject = alternative_reject[alternative_order[i]];
8517 int best_nregs = alternative_nregs[alternative_order[i]];
8518 int tmp;
8519
8520 for (j = i + 1; j < recog_data.n_alternatives; j++)
8521 {
8522 int this_reject = alternative_reject[alternative_order[j]];
8523 int this_nregs = alternative_nregs[alternative_order[j]];
8524
8525 if (this_reject < best_reject
8526 || (this_reject == best_reject && this_nregs < best_nregs))
8527 {
8528 best = j;
8529 best_reject = this_reject;
8530 best_nregs = this_nregs;
8531 }
8532 }
8533
8534 tmp = alternative_order[best];
8535 alternative_order[best] = alternative_order[i];
8536 alternative_order[i] = tmp;
8537 }
8538
8539 /* Substitute the operands as determined by op_alt_regno for the best
8540 alternative. */
8541 j = alternative_order[0];
8542
8543 for (i = 0; i < recog_data.n_operands; i++)
8544 {
8545 enum machine_mode mode = recog_data.operand_mode[i];
8546 if (op_alt_regno[i][j] == -1)
8547 continue;
8548
8549 validate_change (insn, recog_data.operand_loc[i],
8550 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8551 }
8552
8553 for (i = recog_data.n_dups - 1; i >= 0; i--)
8554 {
8555 int op = recog_data.dup_num[i];
8556 enum machine_mode mode = recog_data.operand_mode[op];
8557
8558 if (op_alt_regno[op][j] == -1)
8559 continue;
8560
8561 validate_change (insn, recog_data.dup_loc[i],
8562 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8563 }
8564
8565 return apply_change_group ();
8566 }
8567 \f
8568 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8569 addressing now.
8570 This code might also be useful when reload gave up on reg+reg addresssing
8571 because of clashes between the return register and INDEX_REG_CLASS. */
8572
8573 /* The maximum number of uses of a register we can keep track of to
8574 replace them with reg+reg addressing. */
8575 #define RELOAD_COMBINE_MAX_USES 6
8576
8577 /* INSN is the insn where a register has ben used, and USEP points to the
8578 location of the register within the rtl. */
8579 struct reg_use { rtx insn, *usep; };
8580
8581 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8582 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8583 indicates where it becomes live again.
8584 Otherwise, USE_INDEX is the index of the last encountered use of the
8585 register (which is first among these we have seen since we scan backwards),
8586 OFFSET contains the constant offset that is added to the register in
8587 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8588 last, of these uses.
8589 STORE_RUID is always meaningful if we only want to use a value in a
8590 register in a different place: it denotes the next insn in the insn
8591 stream (i.e. the last ecountered) that sets or clobbers the register. */
8592 static struct
8593 {
8594 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8595 int use_index;
8596 rtx offset;
8597 int store_ruid;
8598 int use_ruid;
8599 } reg_state[FIRST_PSEUDO_REGISTER];
8600
8601 /* Reverse linear uid. This is increased in reload_combine while scanning
8602 the instructions from last to first. It is used to set last_label_ruid
8603 and the store_ruid / use_ruid fields in reg_state. */
8604 static int reload_combine_ruid;
8605
8606 #define LABEL_LIVE(LABEL) \
8607 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8608
8609 static void
8610 reload_combine ()
8611 {
8612 rtx insn, set;
8613 int first_index_reg = -1;
8614 int last_index_reg = 0;
8615 int i;
8616 unsigned int r;
8617 int last_label_ruid;
8618 int min_labelno, n_labels;
8619 HARD_REG_SET ever_live_at_start, *label_live;
8620
8621 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
8622 reload has already used it where appropriate, so there is no use in
8623 trying to generate it now. */
8624 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8625 return;
8626
8627 /* To avoid wasting too much time later searching for an index register,
8628 determine the minimum and maximum index register numbers. */
8629 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8630 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8631 {
8632 if (first_index_reg == -1)
8633 first_index_reg = r;
8634
8635 last_index_reg = r;
8636 }
8637
8638 /* If no index register is available, we can quit now. */
8639 if (first_index_reg == -1)
8640 return;
8641
8642 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8643 information is a bit fuzzy immediately after reload, but it's
8644 still good enough to determine which registers are live at a jump
8645 destination. */
8646 min_labelno = get_first_label_num ();
8647 n_labels = max_label_num () - min_labelno;
8648 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8649 CLEAR_HARD_REG_SET (ever_live_at_start);
8650
8651 for (i = n_basic_blocks - 1; i >= 0; i--)
8652 {
8653 insn = BLOCK_HEAD (i);
8654 if (GET_CODE (insn) == CODE_LABEL)
8655 {
8656 HARD_REG_SET live;
8657
8658 REG_SET_TO_HARD_REG_SET (live,
8659 BASIC_BLOCK (i)->global_live_at_start);
8660 compute_use_by_pseudos (&live,
8661 BASIC_BLOCK (i)->global_live_at_start);
8662 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8663 IOR_HARD_REG_SET (ever_live_at_start, live);
8664 }
8665 }
8666
8667 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8668 last_label_ruid = reload_combine_ruid = 0;
8669 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8670 {
8671 reg_state[r].store_ruid = reload_combine_ruid;
8672 if (fixed_regs[r])
8673 reg_state[r].use_index = -1;
8674 else
8675 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8676 }
8677
8678 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8679 {
8680 rtx note;
8681
8682 /* We cannot do our optimization across labels. Invalidating all the use
8683 information we have would be costly, so we just note where the label
8684 is and then later disable any optimization that would cross it. */
8685 if (GET_CODE (insn) == CODE_LABEL)
8686 last_label_ruid = reload_combine_ruid;
8687 else if (GET_CODE (insn) == BARRIER)
8688 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8689 if (! fixed_regs[r])
8690 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8691
8692 if (! INSN_P (insn))
8693 continue;
8694
8695 reload_combine_ruid++;
8696
8697 /* Look for (set (REGX) (CONST_INT))
8698 (set (REGX) (PLUS (REGX) (REGY)))
8699 ...
8700 ... (MEM (REGX)) ...
8701 and convert it to
8702 (set (REGZ) (CONST_INT))
8703 ...
8704 ... (MEM (PLUS (REGZ) (REGY)))... .
8705
8706 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8707 and that we know all uses of REGX before it dies. */
8708 set = single_set (insn);
8709 if (set != NULL_RTX
8710 && GET_CODE (SET_DEST (set)) == REG
8711 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8712 GET_MODE (SET_DEST (set)))
8713 == 1)
8714 && GET_CODE (SET_SRC (set)) == PLUS
8715 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8716 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8717 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8718 {
8719 rtx reg = SET_DEST (set);
8720 rtx plus = SET_SRC (set);
8721 rtx base = XEXP (plus, 1);
8722 rtx prev = prev_nonnote_insn (insn);
8723 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8724 unsigned int regno = REGNO (reg);
8725 rtx const_reg = NULL_RTX;
8726 rtx reg_sum = NULL_RTX;
8727
8728 /* Now, we need an index register.
8729 We'll set index_reg to this index register, const_reg to the
8730 register that is to be loaded with the constant
8731 (denoted as REGZ in the substitution illustration above),
8732 and reg_sum to the register-register that we want to use to
8733 substitute uses of REG (typically in MEMs) with.
8734 First check REG and BASE for being index registers;
8735 we can use them even if they are not dead. */
8736 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8737 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8738 REGNO (base)))
8739 {
8740 const_reg = reg;
8741 reg_sum = plus;
8742 }
8743 else
8744 {
8745 /* Otherwise, look for a free index register. Since we have
8746 checked above that neiter REG nor BASE are index registers,
8747 if we find anything at all, it will be different from these
8748 two registers. */
8749 for (i = first_index_reg; i <= last_index_reg; i++)
8750 {
8751 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8752 i)
8753 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8754 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8755 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8756 {
8757 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8758
8759 const_reg = index_reg;
8760 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8761 break;
8762 }
8763 }
8764 }
8765
8766 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8767 (REGY), i.e. BASE, is not clobbered before the last use we'll
8768 create. */
8769 if (prev_set != 0
8770 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8771 && rtx_equal_p (SET_DEST (prev_set), reg)
8772 && reg_state[regno].use_index >= 0
8773 && (reg_state[REGNO (base)].store_ruid
8774 <= reg_state[regno].use_ruid)
8775 && reg_sum != 0)
8776 {
8777 int i;
8778
8779 /* Change destination register and, if necessary, the
8780 constant value in PREV, the constant loading instruction. */
8781 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8782 if (reg_state[regno].offset != const0_rtx)
8783 validate_change (prev,
8784 &SET_SRC (prev_set),
8785 GEN_INT (INTVAL (SET_SRC (prev_set))
8786 + INTVAL (reg_state[regno].offset)),
8787 1);
8788
8789 /* Now for every use of REG that we have recorded, replace REG
8790 with REG_SUM. */
8791 for (i = reg_state[regno].use_index;
8792 i < RELOAD_COMBINE_MAX_USES; i++)
8793 validate_change (reg_state[regno].reg_use[i].insn,
8794 reg_state[regno].reg_use[i].usep,
8795 /* Each change must have its own
8796 replacement. */
8797 copy_rtx (reg_sum), 1);
8798
8799 if (apply_change_group ())
8800 {
8801 rtx *np;
8802
8803 /* Delete the reg-reg addition. */
8804 delete_insn (insn);
8805
8806 if (reg_state[regno].offset != const0_rtx)
8807 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8808 are now invalid. */
8809 for (np = &REG_NOTES (prev); *np;)
8810 {
8811 if (REG_NOTE_KIND (*np) == REG_EQUAL
8812 || REG_NOTE_KIND (*np) == REG_EQUIV)
8813 *np = XEXP (*np, 1);
8814 else
8815 np = &XEXP (*np, 1);
8816 }
8817
8818 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8819 reg_state[REGNO (const_reg)].store_ruid
8820 = reload_combine_ruid;
8821 continue;
8822 }
8823 }
8824 }
8825
8826 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8827
8828 if (GET_CODE (insn) == CALL_INSN)
8829 {
8830 rtx link;
8831
8832 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8833 if (call_used_regs[r])
8834 {
8835 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8836 reg_state[r].store_ruid = reload_combine_ruid;
8837 }
8838
8839 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8840 link = XEXP (link, 1))
8841 {
8842 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8843 if (GET_CODE (usage_rtx) == REG)
8844 {
8845 unsigned int i;
8846 unsigned int start_reg = REGNO (usage_rtx);
8847 unsigned int num_regs =
8848 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8849 unsigned int end_reg = start_reg + num_regs - 1;
8850 for (i = start_reg; i <= end_reg; i++)
8851 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8852 {
8853 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8854 reg_state[i].store_ruid = reload_combine_ruid;
8855 }
8856 else
8857 reg_state[i].use_index = -1;
8858 }
8859 }
8860
8861 }
8862 else if (GET_CODE (insn) == JUMP_INSN
8863 && GET_CODE (PATTERN (insn)) != RETURN)
8864 {
8865 /* Non-spill registers might be used at the call destination in
8866 some unknown fashion, so we have to mark the unknown use. */
8867 HARD_REG_SET *live;
8868
8869 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8870 && JUMP_LABEL (insn))
8871 live = &LABEL_LIVE (JUMP_LABEL (insn));
8872 else
8873 live = &ever_live_at_start;
8874
8875 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8876 if (TEST_HARD_REG_BIT (*live, i))
8877 reg_state[i].use_index = -1;
8878 }
8879
8880 reload_combine_note_use (&PATTERN (insn), insn);
8881 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8882 {
8883 if (REG_NOTE_KIND (note) == REG_INC
8884 && GET_CODE (XEXP (note, 0)) == REG)
8885 {
8886 int regno = REGNO (XEXP (note, 0));
8887
8888 reg_state[regno].store_ruid = reload_combine_ruid;
8889 reg_state[regno].use_index = -1;
8890 }
8891 }
8892 }
8893
8894 free (label_live);
8895 }
8896
8897 /* Check if DST is a register or a subreg of a register; if it is,
8898 update reg_state[regno].store_ruid and reg_state[regno].use_index
8899 accordingly. Called via note_stores from reload_combine. */
8900
8901 static void
8902 reload_combine_note_store (dst, set, data)
8903 rtx dst, set;
8904 void *data ATTRIBUTE_UNUSED;
8905 {
8906 int regno = 0;
8907 int i;
8908 enum machine_mode mode = GET_MODE (dst);
8909
8910 if (GET_CODE (dst) == SUBREG)
8911 {
8912 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8913 GET_MODE (SUBREG_REG (dst)),
8914 SUBREG_BYTE (dst),
8915 GET_MODE (dst));
8916 dst = SUBREG_REG (dst);
8917 }
8918 if (GET_CODE (dst) != REG)
8919 return;
8920 regno += REGNO (dst);
8921
8922 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8923 careful with registers / register parts that are not full words.
8924
8925 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8926 if (GET_CODE (set) != SET
8927 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8928 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8929 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8930 {
8931 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8932 {
8933 reg_state[i].use_index = -1;
8934 reg_state[i].store_ruid = reload_combine_ruid;
8935 }
8936 }
8937 else
8938 {
8939 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8940 {
8941 reg_state[i].store_ruid = reload_combine_ruid;
8942 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8943 }
8944 }
8945 }
8946
8947 /* XP points to a piece of rtl that has to be checked for any uses of
8948 registers.
8949 *XP is the pattern of INSN, or a part of it.
8950 Called from reload_combine, and recursively by itself. */
8951 static void
8952 reload_combine_note_use (xp, insn)
8953 rtx *xp, insn;
8954 {
8955 rtx x = *xp;
8956 enum rtx_code code = x->code;
8957 const char *fmt;
8958 int i, j;
8959 rtx offset = const0_rtx; /* For the REG case below. */
8960
8961 switch (code)
8962 {
8963 case SET:
8964 if (GET_CODE (SET_DEST (x)) == REG)
8965 {
8966 reload_combine_note_use (&SET_SRC (x), insn);
8967 return;
8968 }
8969 break;
8970
8971 case USE:
8972 /* If this is the USE of a return value, we can't change it. */
8973 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8974 {
8975 /* Mark the return register as used in an unknown fashion. */
8976 rtx reg = XEXP (x, 0);
8977 int regno = REGNO (reg);
8978 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8979
8980 while (--nregs >= 0)
8981 reg_state[regno + nregs].use_index = -1;
8982 return;
8983 }
8984 break;
8985
8986 case CLOBBER:
8987 if (GET_CODE (SET_DEST (x)) == REG)
8988 {
8989 /* No spurious CLOBBERs of pseudo registers may remain. */
8990 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
8991 abort ();
8992 return;
8993 }
8994 break;
8995
8996 case PLUS:
8997 /* We are interested in (plus (reg) (const_int)) . */
8998 if (GET_CODE (XEXP (x, 0)) != REG
8999 || GET_CODE (XEXP (x, 1)) != CONST_INT)
9000 break;
9001 offset = XEXP (x, 1);
9002 x = XEXP (x, 0);
9003 /* Fall through. */
9004 case REG:
9005 {
9006 int regno = REGNO (x);
9007 int use_index;
9008 int nregs;
9009
9010 /* No spurious USEs of pseudo registers may remain. */
9011 if (regno >= FIRST_PSEUDO_REGISTER)
9012 abort ();
9013
9014 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
9015
9016 /* We can't substitute into multi-hard-reg uses. */
9017 if (nregs > 1)
9018 {
9019 while (--nregs >= 0)
9020 reg_state[regno + nregs].use_index = -1;
9021 return;
9022 }
9023
9024 /* If this register is already used in some unknown fashion, we
9025 can't do anything.
9026 If we decrement the index from zero to -1, we can't store more
9027 uses, so this register becomes used in an unknown fashion. */
9028 use_index = --reg_state[regno].use_index;
9029 if (use_index < 0)
9030 return;
9031
9032 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
9033 {
9034 /* We have found another use for a register that is already
9035 used later. Check if the offsets match; if not, mark the
9036 register as used in an unknown fashion. */
9037 if (! rtx_equal_p (offset, reg_state[regno].offset))
9038 {
9039 reg_state[regno].use_index = -1;
9040 return;
9041 }
9042 }
9043 else
9044 {
9045 /* This is the first use of this register we have seen since we
9046 marked it as dead. */
9047 reg_state[regno].offset = offset;
9048 reg_state[regno].use_ruid = reload_combine_ruid;
9049 }
9050 reg_state[regno].reg_use[use_index].insn = insn;
9051 reg_state[regno].reg_use[use_index].usep = xp;
9052 return;
9053 }
9054
9055 default:
9056 break;
9057 }
9058
9059 /* Recursively process the components of X. */
9060 fmt = GET_RTX_FORMAT (code);
9061 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9062 {
9063 if (fmt[i] == 'e')
9064 reload_combine_note_use (&XEXP (x, i), insn);
9065 else if (fmt[i] == 'E')
9066 {
9067 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9068 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9069 }
9070 }
9071 }
9072 \f
9073 /* See if we can reduce the cost of a constant by replacing a move
9074 with an add. We track situations in which a register is set to a
9075 constant or to a register plus a constant. */
9076 /* We cannot do our optimization across labels. Invalidating all the
9077 information about register contents we have would be costly, so we
9078 use move2add_last_label_luid to note where the label is and then
9079 later disable any optimization that would cross it.
9080 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9081 reg_set_luid[n] is greater than last_label_luid[n] . */
9082 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
9083
9084 /* If reg_base_reg[n] is negative, register n has been set to
9085 reg_offset[n] in mode reg_mode[n] .
9086 If reg_base_reg[n] is non-negative, register n has been set to the
9087 sum of reg_offset[n] and the value of register reg_base_reg[n]
9088 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9089 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
9090 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9091 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
9092
9093 /* move2add_luid is linearily increased while scanning the instructions
9094 from first to last. It is used to set reg_set_luid in
9095 reload_cse_move2add and move2add_note_store. */
9096 static int move2add_luid;
9097
9098 /* move2add_last_label_luid is set whenever a label is found. Labels
9099 invalidate all previously collected reg_offset data. */
9100 static int move2add_last_label_luid;
9101
9102 /* Generate a CONST_INT and force it in the range of MODE. */
9103
9104 static HOST_WIDE_INT
9105 sext_for_mode (mode, value)
9106 enum machine_mode mode;
9107 HOST_WIDE_INT value;
9108 {
9109 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9110 int width = GET_MODE_BITSIZE (mode);
9111
9112 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9113 sign extend it. */
9114 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9115 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9116 cval |= (HOST_WIDE_INT) -1 << width;
9117
9118 return cval;
9119 }
9120
9121 /* ??? We don't know how zero / sign extension is handled, hence we
9122 can't go from a narrower to a wider mode. */
9123 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9124 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9125 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9126 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9127 GET_MODE_BITSIZE (INMODE))))
9128
9129 static void
9130 reload_cse_move2add (first)
9131 rtx first;
9132 {
9133 int i;
9134 rtx insn;
9135
9136 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9137 reg_set_luid[i] = 0;
9138
9139 move2add_last_label_luid = 0;
9140 move2add_luid = 2;
9141 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9142 {
9143 rtx pat, note;
9144
9145 if (GET_CODE (insn) == CODE_LABEL)
9146 {
9147 move2add_last_label_luid = move2add_luid;
9148 /* We're going to increment move2add_luid twice after a
9149 label, so that we can use move2add_last_label_luid + 1 as
9150 the luid for constants. */
9151 move2add_luid++;
9152 continue;
9153 }
9154 if (! INSN_P (insn))
9155 continue;
9156 pat = PATTERN (insn);
9157 /* For simplicity, we only perform this optimization on
9158 straightforward SETs. */
9159 if (GET_CODE (pat) == SET
9160 && GET_CODE (SET_DEST (pat)) == REG)
9161 {
9162 rtx reg = SET_DEST (pat);
9163 int regno = REGNO (reg);
9164 rtx src = SET_SRC (pat);
9165
9166 /* Check if we have valid information on the contents of this
9167 register in the mode of REG. */
9168 if (reg_set_luid[regno] > move2add_last_label_luid
9169 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
9170 {
9171 /* Try to transform (set (REGX) (CONST_INT A))
9172 ...
9173 (set (REGX) (CONST_INT B))
9174 to
9175 (set (REGX) (CONST_INT A))
9176 ...
9177 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9178
9179 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9180 {
9181 int success = 0;
9182 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9183 INTVAL (src)
9184 - reg_offset[regno]));
9185 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9186 use (set (reg) (reg)) instead.
9187 We don't delete this insn, nor do we convert it into a
9188 note, to avoid losing register notes or the return
9189 value flag. jump2 already knowns how to get rid of
9190 no-op moves. */
9191 if (new_src == const0_rtx)
9192 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9193 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
9194 && have_add2_insn (reg, new_src))
9195 success = validate_change (insn, &PATTERN (insn),
9196 gen_add2_insn (reg, new_src), 0);
9197 reg_set_luid[regno] = move2add_luid;
9198 reg_mode[regno] = GET_MODE (reg);
9199 reg_offset[regno] = INTVAL (src);
9200 continue;
9201 }
9202
9203 /* Try to transform (set (REGX) (REGY))
9204 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9205 ...
9206 (set (REGX) (REGY))
9207 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9208 to
9209 (REGX) (REGY))
9210 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9211 ...
9212 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9213 else if (GET_CODE (src) == REG
9214 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9215 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9216 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9217 reg_mode[REGNO (src)]))
9218 {
9219 rtx next = next_nonnote_insn (insn);
9220 rtx set = NULL_RTX;
9221 if (next)
9222 set = single_set (next);
9223 if (set
9224 && SET_DEST (set) == reg
9225 && GET_CODE (SET_SRC (set)) == PLUS
9226 && XEXP (SET_SRC (set), 0) == reg
9227 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9228 {
9229 rtx src3 = XEXP (SET_SRC (set), 1);
9230 HOST_WIDE_INT added_offset = INTVAL (src3);
9231 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9232 HOST_WIDE_INT regno_offset = reg_offset[regno];
9233 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9234 added_offset
9235 + base_offset
9236 - regno_offset));
9237 int success = 0;
9238
9239 if (new_src == const0_rtx)
9240 /* See above why we create (set (reg) (reg)) here. */
9241 success
9242 = validate_change (next, &SET_SRC (set), reg, 0);
9243 else if ((rtx_cost (new_src, PLUS)
9244 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
9245 && have_add2_insn (reg, new_src))
9246 success
9247 = validate_change (next, &PATTERN (next),
9248 gen_add2_insn (reg, new_src), 0);
9249 if (success)
9250 delete_insn (insn);
9251 insn = next;
9252 reg_mode[regno] = GET_MODE (reg);
9253 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9254 added_offset
9255 + base_offset);
9256 continue;
9257 }
9258 }
9259 }
9260 }
9261
9262 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9263 {
9264 if (REG_NOTE_KIND (note) == REG_INC
9265 && GET_CODE (XEXP (note, 0)) == REG)
9266 {
9267 /* Reset the information about this register. */
9268 int regno = REGNO (XEXP (note, 0));
9269 if (regno < FIRST_PSEUDO_REGISTER)
9270 reg_set_luid[regno] = 0;
9271 }
9272 }
9273 note_stores (PATTERN (insn), move2add_note_store, NULL);
9274 /* If this is a CALL_INSN, all call used registers are stored with
9275 unknown values. */
9276 if (GET_CODE (insn) == CALL_INSN)
9277 {
9278 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9279 {
9280 if (call_used_regs[i])
9281 /* Reset the information about this register. */
9282 reg_set_luid[i] = 0;
9283 }
9284 }
9285 }
9286 }
9287
9288 /* SET is a SET or CLOBBER that sets DST.
9289 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9290 Called from reload_cse_move2add via note_stores. */
9291
9292 static void
9293 move2add_note_store (dst, set, data)
9294 rtx dst, set;
9295 void *data ATTRIBUTE_UNUSED;
9296 {
9297 unsigned int regno = 0;
9298 unsigned int i;
9299 enum machine_mode mode = GET_MODE (dst);
9300
9301 if (GET_CODE (dst) == SUBREG)
9302 {
9303 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9304 GET_MODE (SUBREG_REG (dst)),
9305 SUBREG_BYTE (dst),
9306 GET_MODE (dst));
9307 dst = SUBREG_REG (dst);
9308 }
9309
9310 /* Some targets do argument pushes without adding REG_INC notes. */
9311
9312 if (GET_CODE (dst) == MEM)
9313 {
9314 dst = XEXP (dst, 0);
9315 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
9316 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
9317 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
9318 return;
9319 }
9320 if (GET_CODE (dst) != REG)
9321 return;
9322
9323 regno += REGNO (dst);
9324
9325 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9326 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9327 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9328 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9329 {
9330 rtx src = SET_SRC (set);
9331 rtx base_reg;
9332 HOST_WIDE_INT offset;
9333 int base_regno;
9334 /* This may be different from mode, if SET_DEST (set) is a
9335 SUBREG. */
9336 enum machine_mode dst_mode = GET_MODE (dst);
9337
9338 switch (GET_CODE (src))
9339 {
9340 case PLUS:
9341 if (GET_CODE (XEXP (src, 0)) == REG)
9342 {
9343 base_reg = XEXP (src, 0);
9344
9345 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9346 offset = INTVAL (XEXP (src, 1));
9347 else if (GET_CODE (XEXP (src, 1)) == REG
9348 && (reg_set_luid[REGNO (XEXP (src, 1))]
9349 > move2add_last_label_luid)
9350 && (MODES_OK_FOR_MOVE2ADD
9351 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9352 {
9353 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9354 offset = reg_offset[REGNO (XEXP (src, 1))];
9355 /* Maybe the first register is known to be a
9356 constant. */
9357 else if (reg_set_luid[REGNO (base_reg)]
9358 > move2add_last_label_luid
9359 && (MODES_OK_FOR_MOVE2ADD
9360 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9361 && reg_base_reg[REGNO (base_reg)] < 0)
9362 {
9363 offset = reg_offset[REGNO (base_reg)];
9364 base_reg = XEXP (src, 1);
9365 }
9366 else
9367 goto invalidate;
9368 }
9369 else
9370 goto invalidate;
9371
9372 break;
9373 }
9374
9375 goto invalidate;
9376
9377 case REG:
9378 base_reg = src;
9379 offset = 0;
9380 break;
9381
9382 case CONST_INT:
9383 /* Start tracking the register as a constant. */
9384 reg_base_reg[regno] = -1;
9385 reg_offset[regno] = INTVAL (SET_SRC (set));
9386 /* We assign the same luid to all registers set to constants. */
9387 reg_set_luid[regno] = move2add_last_label_luid + 1;
9388 reg_mode[regno] = mode;
9389 return;
9390
9391 default:
9392 invalidate:
9393 /* Invalidate the contents of the register. */
9394 reg_set_luid[regno] = 0;
9395 return;
9396 }
9397
9398 base_regno = REGNO (base_reg);
9399 /* If information about the base register is not valid, set it
9400 up as a new base register, pretending its value is known
9401 starting from the current insn. */
9402 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9403 {
9404 reg_base_reg[base_regno] = base_regno;
9405 reg_offset[base_regno] = 0;
9406 reg_set_luid[base_regno] = move2add_luid;
9407 reg_mode[base_regno] = mode;
9408 }
9409 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9410 reg_mode[base_regno]))
9411 goto invalidate;
9412
9413 reg_mode[regno] = mode;
9414
9415 /* Copy base information from our base register. */
9416 reg_set_luid[regno] = reg_set_luid[base_regno];
9417 reg_base_reg[regno] = reg_base_reg[base_regno];
9418
9419 /* Compute the sum of the offsets or constants. */
9420 reg_offset[regno] = sext_for_mode (dst_mode,
9421 offset
9422 + reg_offset[base_regno]);
9423 }
9424 else
9425 {
9426 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9427
9428 for (i = regno; i < endregno; i++)
9429 /* Reset the information about this register. */
9430 reg_set_luid[i] = 0;
9431 }
9432 }
9433
9434 #ifdef AUTO_INC_DEC
9435 static void
9436 add_auto_inc_notes (insn, x)
9437 rtx insn;
9438 rtx x;
9439 {
9440 enum rtx_code code = GET_CODE (x);
9441 const char *fmt;
9442 int i, j;
9443
9444 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9445 {
9446 REG_NOTES (insn)
9447 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9448 return;
9449 }
9450
9451 /* Scan all the operand sub-expressions. */
9452 fmt = GET_RTX_FORMAT (code);
9453 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9454 {
9455 if (fmt[i] == 'e')
9456 add_auto_inc_notes (insn, XEXP (x, i));
9457 else if (fmt[i] == 'E')
9458 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9459 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9460 }
9461 }
9462 #endif
9463
9464 /* Copy EH notes from an insn to its reloads. */
9465 static void
9466 copy_eh_notes (insn, x)
9467 rtx insn;
9468 rtx x;
9469 {
9470 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9471 if (eh_note)
9472 {
9473 for (; x != 0; x = NEXT_INSN (x))
9474 {
9475 if (may_trap_p (PATTERN (x)))
9476 REG_NOTES (x)
9477 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9478 REG_NOTES (x));
9479 }
9480 }
9481 }
9482
9483 /* This is used by reload pass, that does emit some instructions after
9484 abnormal calls moving basic block end, but in fact it wants to emit
9485 them on the edge. Looks for abnormal call edges, find backward the
9486 proper call and fix the damage.
9487
9488 Similar handle instructions throwing exceptions internally. */
9489 void
9490 fixup_abnormal_edges ()
9491 {
9492 int i;
9493 bool inserted = false;
9494
9495 for (i = 0; i < n_basic_blocks; i++)
9496 {
9497 basic_block bb = BASIC_BLOCK (i);
9498 edge e;
9499
9500 /* Look for cases we are interested in - an calls or instructions causing
9501 exceptions. */
9502 for (e = bb->succ; e; e = e->succ_next)
9503 {
9504 if (e->flags & EDGE_ABNORMAL_CALL)
9505 break;
9506 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
9507 == (EDGE_ABNORMAL | EDGE_EH))
9508 break;
9509 }
9510 if (e && GET_CODE (bb->end) != CALL_INSN && !can_throw_internal (bb->end))
9511 {
9512 rtx insn = bb->end, stop = NEXT_INSN (bb->end);
9513 rtx next;
9514 for (e = bb->succ; e; e = e->succ_next)
9515 if (e->flags & EDGE_FALLTHRU)
9516 break;
9517 /* Get past the new insns generated. Allow notes, as the insns may
9518 be already deleted. */
9519 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
9520 && !can_throw_internal (insn)
9521 && insn != bb->head)
9522 insn = PREV_INSN (insn);
9523 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
9524 abort ();
9525 bb->end = insn;
9526 inserted = true;
9527 insn = NEXT_INSN (insn);
9528 while (insn && insn != stop)
9529 {
9530 next = NEXT_INSN (insn);
9531 if (INSN_P (insn))
9532 {
9533 rtx seq;
9534
9535 delete_insn (insn);
9536
9537 /* We're not deleting it, we're moving it. */
9538 INSN_DELETED_P (insn) = 0;
9539
9540 /* Emit a sequence, rather than scarfing the pattern, so
9541 that we don't lose REG_NOTES etc. */
9542 /* ??? Could copy the test from gen_sequence, but don't
9543 think it's worth the bother. */
9544 seq = gen_rtx_SEQUENCE (VOIDmode, gen_rtvec (1, insn));
9545 insert_insn_on_edge (seq, e);
9546 }
9547 insn = next;
9548 }
9549 }
9550 }
9551 if (inserted)
9552 commit_edge_insertions ();
9553 }
This page took 0.458068 seconds and 5 git commands to generate.