1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
24 #include "insn-config.h"
25 #include "insn-flags.h"
26 #include "insn-codes.h"
30 #include "hard-reg-set.h"
33 #include "basic-block.h"
37 /* This file contains the reload pass of the compiler, which is
38 run after register allocation has been done. It checks that
39 each insn is valid (operands required to be in registers really
40 are in registers of the proper class) and fixes up invalid ones
41 by copying values temporarily into registers for the insns
44 The results of register allocation are described by the vector
45 reg_renumber; the insns still contain pseudo regs, but reg_renumber
46 can be used to find which hard reg, if any, a pseudo reg is in.
48 The technique we always use is to free up a few hard regs that are
49 called ``reload regs'', and for each place where a pseudo reg
50 must be in a hard reg, copy it temporarily into one of the reload regs.
52 All the pseudos that were formerly allocated to the hard regs that
53 are now in use as reload regs must be ``spilled''. This means
54 that they go to other hard regs, or to stack slots if no other
55 available hard regs can be found. Spilling can invalidate more
56 insns, requiring additional need for reloads, so we must keep checking
57 until the process stabilizes.
59 For machines with different classes of registers, we must keep track
60 of the register class needed for each reload, and make sure that
61 we allocate enough reload registers of each class.
63 The file reload.c contains the code that checks one insn for
64 validity and reports the reloads that it needs. This file
65 is in charge of scanning the entire rtl code, accumulating the
66 reload needs, spilling, assigning reload registers to use for
67 fixing up each insn, and generating the new insns to copy values
68 into the reload registers. */
70 /* During reload_as_needed, element N contains a REG rtx for the hard reg
71 into which pseudo reg N has been reloaded (perhaps for a previous insn). */
72 static rtx
*reg_last_reload_reg
;
74 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
75 for an output reload that stores into reg N. */
76 static char *reg_has_output_reload
;
78 /* Indicates which hard regs are reload-registers for an output reload
79 in the current insn. */
80 static HARD_REG_SET reg_is_output_reload
;
82 /* Element N is the constant value to which pseudo reg N is equivalent,
83 or zero if pseudo reg N is not equivalent to a constant.
84 find_reloads looks at this in order to replace pseudo reg N
85 with the constant it stands for. */
86 rtx
*reg_equiv_constant
;
88 /* Element N is a memory location to which pseudo reg N is equivalent,
89 prior to any register elimination (such as frame pointer to stack
90 pointer). Depending on whether or not it is a valid address, this value
91 is transferred to either reg_equiv_address or reg_equiv_mem. */
92 static rtx
*reg_equiv_memory_loc
;
94 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
95 This is used when the address is not valid as a memory address
96 (because its displacement is too big for the machine.) */
97 rtx
*reg_equiv_address
;
99 /* Element N is the memory slot to which pseudo reg N is equivalent,
100 or zero if pseudo reg N is not equivalent to a memory slot. */
103 /* Widest width in which each pseudo reg is referred to (via subreg). */
104 static int *reg_max_ref_width
;
106 /* Element N is the insn that initialized reg N from its equivalent
107 constant or memory slot. */
108 static rtx
*reg_equiv_init
;
110 /* During reload_as_needed, element N contains the last pseudo regno
111 reloaded into the Nth reload register. This vector is in parallel
112 with spill_regs. If that pseudo reg occupied more than one register,
113 reg_reloaded_contents points to that pseudo for each spill register in
114 use; all of these must remain set for an inheritance to occur. */
115 static int reg_reloaded_contents
[FIRST_PSEUDO_REGISTER
];
117 /* During reload_as_needed, element N contains the insn for which
118 the Nth reload register was last used. This vector is in parallel
119 with spill_regs, and its contents are significant only when
120 reg_reloaded_contents is significant. */
121 static rtx reg_reloaded_insn
[FIRST_PSEUDO_REGISTER
];
123 /* Number of spill-regs so far; number of valid elements of spill_regs. */
126 /* In parallel with spill_regs, contains REG rtx's for those regs.
127 Holds the last rtx used for any given reg, or 0 if it has never
128 been used for spilling yet. This rtx is reused, provided it has
130 static rtx spill_reg_rtx
[FIRST_PSEUDO_REGISTER
];
132 /* In parallel with spill_regs, contains nonzero for a spill reg
133 that was stored after the last time it was used.
134 The precise value is the insn generated to do the store. */
135 static rtx spill_reg_store
[FIRST_PSEUDO_REGISTER
];
137 /* This table is the inverse mapping of spill_regs:
138 indexed by hard reg number,
139 it contains the position of that reg in spill_regs,
140 or -1 for something that is not in spill_regs. */
141 static short spill_reg_order
[FIRST_PSEUDO_REGISTER
];
143 /* This reg set indicates registers that may not be used for retrying global
144 allocation. The registers that may not be used include all spill registers
145 and the frame pointer (if we are using one). */
146 HARD_REG_SET forbidden_regs
;
148 /* This reg set indicates registers that are not good for spill registers.
149 They will not be used to complete groups of spill registers. This includes
150 all fixed registers, registers that may be eliminated, and registers
151 explicitly used in the rtl.
153 (spill_reg_order prevents these registers from being used to start a
155 static HARD_REG_SET bad_spill_regs
;
157 /* Describes order of use of registers for reloading
158 of spilled pseudo-registers. `spills' is the number of
159 elements that are actually valid; new ones are added at the end. */
160 static short spill_regs
[FIRST_PSEUDO_REGISTER
];
162 /* Describes order of preference for putting regs into spill_regs.
163 Contains the numbers of all the hard regs, in order most preferred first.
164 This order is different for each function.
165 It is set up by order_regs_for_reload.
166 Empty elements at the end contain -1. */
167 static short potential_reload_regs
[FIRST_PSEUDO_REGISTER
];
169 /* 1 for a hard register that appears explicitly in the rtl
170 (for example, function value registers, special registers
171 used by insns, structure value pointer registers). */
172 static char regs_explicitly_used
[FIRST_PSEUDO_REGISTER
];
174 /* Indicates if a register was counted against the need for
175 groups. 0 means it can count against max_nongroup instead. */
176 static HARD_REG_SET counted_for_groups
;
178 /* Indicates if a register was counted against the need for
179 non-groups. 0 means it can become part of a new group.
180 During choose_reload_regs, 1 here means don't use this reg
181 as part of a group, even if it seems to be otherwise ok. */
182 static HARD_REG_SET counted_for_nongroups
;
184 /* Nonzero if indirect addressing is supported on the machine; this means
185 that spilling (REG n) does not require reloading it into a register in
186 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
187 value indicates the level of indirect addressing supported, e.g., two
188 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
191 static char spill_indirect_levels
;
193 /* Nonzero if indirect addressing is supported when the innermost MEM is
194 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
195 which these are valid is the same as spill_indirect_levels, above. */
197 char indirect_symref_ok
;
199 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
201 char double_reg_address_ok
;
203 /* Record the stack slot for each spilled hard register. */
205 static rtx spill_stack_slot
[FIRST_PSEUDO_REGISTER
];
207 /* Width allocated so far for that stack slot. */
209 static int spill_stack_slot_width
[FIRST_PSEUDO_REGISTER
];
211 /* Indexed by register class and basic block number, nonzero if there is
212 any need for a spill register of that class in that basic block.
213 The pointer is 0 if we did stupid allocation and don't know
214 the structure of basic blocks. */
216 char *basic_block_needs
[N_REG_CLASSES
];
218 /* First uid used by insns created by reload in this function.
219 Used in find_equiv_reg. */
220 int reload_first_uid
;
222 /* Flag set by local-alloc or global-alloc if anything is live in
223 a call-clobbered reg across calls. */
225 int caller_save_needed
;
227 /* Set to 1 while reload_as_needed is operating.
228 Required by some machines to handle any generated moves differently. */
230 int reload_in_progress
= 0;
232 /* These arrays record the insn_code of insns that may be needed to
233 perform input and output reloads of special objects. They provide a
234 place to pass a scratch register. */
236 enum insn_code reload_in_optab
[NUM_MACHINE_MODES
];
237 enum insn_code reload_out_optab
[NUM_MACHINE_MODES
];
239 /* This obstack is used for allocation of rtl during register elimination.
240 The allocated storage can be freed once find_reloads has processed the
243 struct obstack reload_obstack
;
244 char *reload_firstobj
;
246 #define obstack_chunk_alloc xmalloc
247 #define obstack_chunk_free free
249 extern int xmalloc ();
252 /* List of labels that must never be deleted. */
253 extern rtx forced_labels
;
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
260 static struct elim_table
262 int from
; /* Register number to be eliminated. */
263 int to
; /* Register number used as replacement. */
264 int initial_offset
; /* Initial difference between values. */
265 int can_eliminate
; /* Non-zero if this elimination can be done. */
266 int can_eliminate_previous
; /* Value of CAN_ELIMINATE in previous scan over
267 insns made by reload. */
268 int offset
; /* Current offset between the two regs. */
269 int max_offset
; /* Maximum offset between the two regs. */
270 int previous_offset
; /* Offset at end of previous insn. */
271 int ref_outside_mem
; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx
; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx
; /* REG rtx for the replacement. */
280 /* If a set of eliminable registers was specified, define the table from it.
281 Otherwise, default to the normal case of the frame pointer being
282 replaced by the stack pointer. */
284 #ifdef ELIMINABLE_REGS
287 {{ FRAME_POINTER_REGNUM
, STACK_POINTER_REGNUM
}};
290 #define NUM_ELIMINABLE_REGS (sizeof reg_eliminate / sizeof reg_eliminate[0])
292 /* Record the number of pending eliminations that have an offset not equal
293 to their initial offset. If non-zero, we use a new copy of each
294 replacement result in any insns encountered. */
295 static int num_not_at_initial_offset
;
297 /* Count the number of registers that we may be able to eliminate. */
298 static int num_eliminable
;
300 /* For each label, we record the offset of each elimination. If we reach
301 a label by more than one path and an offset differs, we cannot do the
302 elimination. This information is indexed by the number of the label.
303 The first table is an array of flags that records whether we have yet
304 encountered a label and the second table is an array of arrays, one
305 entry in the latter array for each elimination. */
307 static char *offsets_known_at
;
308 static int (*offsets_at
)[NUM_ELIMINABLE_REGS
];
310 /* Number of labels in the current function. */
312 static int num_labels
;
314 void mark_home_live ();
315 static void count_possible_groups ();
316 static int possible_group_p ();
317 static void scan_paradoxical_subregs ();
318 static void reload_as_needed ();
319 static int modes_equiv_for_class_p ();
320 static void alter_reg ();
321 static void delete_dead_insn ();
322 static int new_spill_reg();
323 static void set_label_offsets ();
324 static int eliminate_regs_in_insn ();
325 static void mark_not_eliminable ();
326 static int spill_hard_reg ();
327 static void choose_reload_regs ();
328 static void emit_reload_insns ();
329 static void delete_output_reload ();
330 static void forget_old_reloads_1 ();
331 static void order_regs_for_reload ();
332 static rtx
inc_for_reload ();
333 static int constraint_accepts_reg_p ();
334 static int count_occurrences ();
336 extern void remove_death ();
337 extern rtx
adj_offsettable_operand ();
338 extern rtx
form_sum ();
345 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
346 Set spill_indirect_levels to the number of levels such addressing is
347 permitted, zero if it is not permitted at all. */
350 = gen_rtx (MEM
, Pmode
,
351 gen_rtx (PLUS
, Pmode
,
352 gen_rtx (REG
, Pmode
, LAST_VIRTUAL_REGISTER
+ 1),
353 gen_rtx (CONST_INT
, VOIDmode
, 4)));
354 spill_indirect_levels
= 0;
356 while (memory_address_p (QImode
, tem
))
358 spill_indirect_levels
++;
359 tem
= gen_rtx (MEM
, Pmode
, tem
);
362 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
364 tem
= gen_rtx (MEM
, Pmode
, gen_rtx (SYMBOL_REF
, Pmode
, "foo"));
365 indirect_symref_ok
= memory_address_p (QImode
, tem
);
367 /* See if reg+reg is a valid (and offsettable) address. */
369 tem
= gen_rtx (PLUS
, Pmode
,
370 gen_rtx (REG
, Pmode
, FRAME_POINTER_REGNUM
),
371 gen_rtx (REG
, Pmode
, FRAME_POINTER_REGNUM
));
372 /* This way, we make sure that reg+reg is an offsettable address. */
373 tem
= plus_constant (tem
, 4);
375 double_reg_address_ok
= memory_address_p (QImode
, tem
);
377 /* Initialize obstack for our rtl allocation. */
378 gcc_obstack_init (&reload_obstack
);
379 reload_firstobj
= (char *) obstack_alloc (&reload_obstack
, 0);
381 #ifdef HAVE_SECONDARY_RELOADS
383 /* Initialize the optabs for doing special input and output reloads. */
385 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
386 reload_in_optab
[i
] = reload_out_optab
[i
] = CODE_FOR_nothing
;
388 #ifdef HAVE_reload_inqi
389 if (HAVE_reload_inqi
)
390 reload_in_optab
[(int) QImode
] = CODE_FOR_reload_inqi
;
392 #ifdef HAVE_reload_inhi
393 if (HAVE_reload_inhi
)
394 reload_in_optab
[(int) HImode
] = CODE_FOR_reload_inhi
;
396 #ifdef HAVE_reload_insi
397 if (HAVE_reload_insi
)
398 reload_in_optab
[(int) SImode
] = CODE_FOR_reload_insi
;
400 #ifdef HAVE_reload_indi
401 if (HAVE_reload_indi
)
402 reload_in_optab
[(int) DImode
] = CODE_FOR_reload_indi
;
404 #ifdef HAVE_reload_inti
405 if (HAVE_reload_inti
)
406 reload_in_optab
[(int) TImode
] = CODE_FOR_reload_inti
;
408 #ifdef HAVE_reload_insf
409 if (HAVE_reload_insf
)
410 reload_in_optab
[(int) SFmode
] = CODE_FOR_reload_insf
;
412 #ifdef HAVE_reload_indf
413 if (HAVE_reload_indf
)
414 reload_in_optab
[(int) DFmode
] = CODE_FOR_reload_indf
;
416 #ifdef HAVE_reload_inxf
417 if (HAVE_reload_inxf
)
418 reload_in_optab
[(int) XFmode
] = CODE_FOR_reload_inxf
;
420 #ifdef HAVE_reload_intf
421 if (HAVE_reload_intf
)
422 reload_in_optab
[(int) TFmode
] = CODE_FOR_reload_intf
;
425 #ifdef HAVE_reload_outqi
426 if (HAVE_reload_outqi
)
427 reload_out_optab
[(int) QImode
] = CODE_FOR_reload_outqi
;
429 #ifdef HAVE_reload_outhi
430 if (HAVE_reload_outhi
)
431 reload_out_optab
[(int) HImode
] = CODE_FOR_reload_outhi
;
433 #ifdef HAVE_reload_outsi
434 if (HAVE_reload_outsi
)
435 reload_out_optab
[(int) SImode
] = CODE_FOR_reload_outsi
;
437 #ifdef HAVE_reload_outdi
438 if (HAVE_reload_outdi
)
439 reload_out_optab
[(int) DImode
] = CODE_FOR_reload_outdi
;
441 #ifdef HAVE_reload_outti
442 if (HAVE_reload_outti
)
443 reload_out_optab
[(int) TImode
] = CODE_FOR_reload_outti
;
445 #ifdef HAVE_reload_outsf
446 if (HAVE_reload_outsf
)
447 reload_out_optab
[(int) SFmode
] = CODE_FOR_reload_outsf
;
449 #ifdef HAVE_reload_outdf
450 if (HAVE_reload_outdf
)
451 reload_out_optab
[(int) DFmode
] = CODE_FOR_reload_outdf
;
453 #ifdef HAVE_reload_outxf
454 if (HAVE_reload_outxf
)
455 reload_out_optab
[(int) XFmode
] = CODE_FOR_reload_outxf
;
457 #ifdef HAVE_reload_outtf
458 if (HAVE_reload_outtf
)
459 reload_out_optab
[(int) TFmode
] = CODE_FOR_reload_outtf
;
462 #endif /* HAVE_SECONDARY_RELOADS */
466 /* Main entry point for the reload pass, and only entry point
469 FIRST is the first insn of the function being compiled.
471 GLOBAL nonzero means we were called from global_alloc
472 and should attempt to reallocate any pseudoregs that we
473 displace from hard regs we will use for reloads.
474 If GLOBAL is zero, we do not have enough information to do that,
475 so any pseudo reg that is spilled must go to the stack.
477 DUMPFILE is the global-reg debugging dump file stream, or 0.
478 If it is nonzero, messages are written to it to describe
479 which registers are seized as reload regs, which pseudo regs
480 are spilled from them, and where the pseudo regs are reallocated to. */
483 reload (first
, global
, dumpfile
)
491 register struct elim_table
*ep
;
493 int something_changed
;
494 int something_needs_reloads
;
495 int something_needs_elimination
;
496 int new_basic_block_needs
;
497 enum reg_class caller_save_spill_class
= NO_REGS
;
498 int caller_save_group_size
= 1;
500 /* The basic block number currently being processed for INSN. */
503 /* Make sure even insns with volatile mem refs are recognizable. */
506 /* Enable find_equiv_reg to distinguish insns made by reload. */
507 reload_first_uid
= get_max_uid ();
509 for (i
= 0; i
< N_REG_CLASSES
; i
++)
510 basic_block_needs
[i
] = 0;
512 /* Remember which hard regs appear explicitly
513 before we merge into `regs_ever_live' the ones in which
514 pseudo regs have been allocated. */
515 bcopy (regs_ever_live
, regs_explicitly_used
, sizeof regs_ever_live
);
517 /* We don't have a stack slot for any spill reg yet. */
518 bzero (spill_stack_slot
, sizeof spill_stack_slot
);
519 bzero (spill_stack_slot_width
, sizeof spill_stack_slot_width
);
521 /* Initialize the save area information for caller-save, in case some
525 /* Compute which hard registers are now in use
526 as homes for pseudo registers.
527 This is done here rather than (eg) in global_alloc
528 because this point is reached even if not optimizing. */
530 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
533 /* Make sure that the last insn in the chain
534 is not something that needs reloading. */
535 emit_note (0, NOTE_INSN_DELETED
);
537 /* Find all the pseudo registers that didn't get hard regs
538 but do have known equivalent constants or memory slots.
539 These include parameters (known equivalent to parameter slots)
540 and cse'd or loop-moved constant memory addresses.
542 Record constant equivalents in reg_equiv_constant
543 so they will be substituted by find_reloads.
544 Record memory equivalents in reg_mem_equiv so they can
545 be substituted eventually by altering the REG-rtx's. */
547 reg_equiv_constant
= (rtx
*) alloca (max_regno
* sizeof (rtx
));
548 bzero (reg_equiv_constant
, max_regno
* sizeof (rtx
));
549 reg_equiv_memory_loc
= (rtx
*) alloca (max_regno
* sizeof (rtx
));
550 bzero (reg_equiv_memory_loc
, max_regno
* sizeof (rtx
));
551 reg_equiv_mem
= (rtx
*) alloca (max_regno
* sizeof (rtx
));
552 bzero (reg_equiv_mem
, max_regno
* sizeof (rtx
));
553 reg_equiv_init
= (rtx
*) alloca (max_regno
* sizeof (rtx
));
554 bzero (reg_equiv_init
, max_regno
* sizeof (rtx
));
555 reg_equiv_address
= (rtx
*) alloca (max_regno
* sizeof (rtx
));
556 bzero (reg_equiv_address
, max_regno
* sizeof (rtx
));
557 reg_max_ref_width
= (int *) alloca (max_regno
* sizeof (int));
558 bzero (reg_max_ref_width
, max_regno
* sizeof (int));
560 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
561 Also find all paradoxical subregs
562 and find largest such for each pseudo. */
564 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
566 rtx set
= single_set (insn
);
568 if (set
!= 0 && GET_CODE (SET_DEST (set
)) == REG
)
570 rtx note
= find_reg_note (insn
, REG_EQUIV
, 0);
572 #ifdef LEGITIMATE_PIC_OPERAND_P
573 && (! CONSTANT_P (XEXP (note
, 0)) || ! flag_pic
574 || LEGITIMATE_PIC_OPERAND_P (XEXP (note
, 0)))
578 rtx x
= XEXP (note
, 0);
579 i
= REGNO (SET_DEST (set
));
580 if (i
> LAST_VIRTUAL_REGISTER
)
582 if (GET_CODE (x
) == MEM
)
583 reg_equiv_memory_loc
[i
] = x
;
584 else if (CONSTANT_P (x
))
586 if (LEGITIMATE_CONSTANT_P (x
))
587 reg_equiv_constant
[i
] = x
;
589 reg_equiv_memory_loc
[i
]
590 = force_const_mem (GET_MODE (SET_DEST (set
)), x
);
595 /* If this register is being made equivalent to a MEM
596 and the MEM is not SET_SRC, the equivalencing insn
597 is one with the MEM as a SET_DEST and it occurs later.
598 So don't mark this insn now. */
599 if (GET_CODE (x
) != MEM
600 || rtx_equal_p (SET_SRC (set
), x
))
601 reg_equiv_init
[i
] = insn
;
606 /* If this insn is setting a MEM from a register equivalent to it,
607 this is the equivalencing insn. */
608 else if (set
&& GET_CODE (SET_DEST (set
)) == MEM
609 && GET_CODE (SET_SRC (set
)) == REG
610 && reg_equiv_memory_loc
[REGNO (SET_SRC (set
))]
611 && rtx_equal_p (SET_DEST (set
),
612 reg_equiv_memory_loc
[REGNO (SET_SRC (set
))]))
613 reg_equiv_init
[REGNO (SET_SRC (set
))] = insn
;
615 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
616 scan_paradoxical_subregs (PATTERN (insn
));
619 /* Does this function require a frame pointer? */
621 frame_pointer_needed
= (! flag_omit_frame_pointer
622 #ifdef EXIT_IGNORE_STACK
623 /* ?? If EXIT_IGNORE_STACK is set, we will not save
624 and restore sp for alloca. So we can't eliminate
625 the frame pointer in that case. At some point,
626 we should improve this by emitting the
627 sp-adjusting insns for this case. */
628 || (current_function_calls_alloca
629 && EXIT_IGNORE_STACK
)
631 || FRAME_POINTER_REQUIRED
);
635 /* Initialize the table of registers to eliminate. The way we do this
636 depends on how the eliminable registers were defined. */
637 #ifdef ELIMINABLE_REGS
638 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
640 ep
->can_eliminate
= ep
->can_eliminate_previous
641 = (CAN_ELIMINATE (ep
->from
, ep
->to
)
642 && (ep
->from
!= FRAME_POINTER_REGNUM
|| ! frame_pointer_needed
));
645 reg_eliminate
[0].can_eliminate
= reg_eliminate
[0].can_eliminate_previous
646 = ! frame_pointer_needed
;
649 /* Count the number of eliminable registers and build the FROM and TO
650 REG rtx's. Note that code in gen_rtx will cause, e.g.,
651 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
652 We depend on this. */
653 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
655 num_eliminable
+= ep
->can_eliminate
;
656 ep
->from_rtx
= gen_rtx (REG
, Pmode
, ep
->from
);
657 ep
->to_rtx
= gen_rtx (REG
, Pmode
, ep
->to
);
660 num_labels
= max_label_num () - get_first_label_num ();
662 /* Allocate the tables used to store offset information at labels. */
663 offsets_known_at
= (char *) alloca (num_labels
);
665 = (int (*)[NUM_ELIMINABLE_REGS
])
666 alloca (num_labels
* NUM_ELIMINABLE_REGS
* sizeof (int));
668 offsets_known_at
-= get_first_label_num ();
669 offsets_at
-= get_first_label_num ();
671 /* Alter each pseudo-reg rtx to contain its hard reg number.
672 Assign stack slots to the pseudos that lack hard regs or equivalents.
673 Do not touch virtual registers. */
675 for (i
= LAST_VIRTUAL_REGISTER
+ 1; i
< max_regno
; i
++)
678 /* Round size of stack frame to BIGGEST_ALIGNMENT. This must be done here
679 because the stack size may be a part of the offset computation for
680 register elimination. */
681 assign_stack_local (BLKmode
, 0, 0);
683 /* If we have some registers we think can be eliminated, scan all insns to
684 see if there is an insn that sets one of these registers to something
685 other than itself plus a constant. If so, the register cannot be
686 eliminated. Doing this scan here eliminates an extra pass through the
687 main reload loop in the most common case where register elimination
689 for (insn
= first
; insn
&& num_eliminable
; insn
= NEXT_INSN (insn
))
690 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == JUMP_INSN
691 || GET_CODE (insn
) == CALL_INSN
)
692 note_stores (PATTERN (insn
), mark_not_eliminable
);
694 #ifndef REGISTER_CONSTRAINTS
695 /* If all the pseudo regs have hard regs,
696 except for those that are never referenced,
697 we know that no reloads are needed. */
698 /* But that is not true if there are register constraints, since
699 in that case some pseudos might be in the wrong kind of hard reg. */
701 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
702 if (reg_renumber
[i
] == -1 && reg_n_refs
[i
] != 0)
705 if (i
== max_regno
&& num_eliminable
== 0 && ! caller_save_needed
)
709 /* Compute the order of preference for hard registers to spill.
710 Store them by decreasing preference in potential_reload_regs. */
712 order_regs_for_reload ();
714 /* So far, no hard regs have been spilled. */
716 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
717 spill_reg_order
[i
] = -1;
719 /* On most machines, we can't use any register explicitly used in the
720 rtl as a spill register. But on some, we have to. Those will have
721 taken care to keep the life of hard regs as short as possible. */
723 #ifdef SMALL_REGISTER_CLASSES
724 CLEAR_HARD_REG_SET (forbidden_regs
);
726 COPY_HARD_REG_SET (forbidden_regs
, bad_spill_regs
);
729 /* Spill any hard regs that we know we can't eliminate. */
730 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
731 if (! ep
->can_eliminate
)
733 spill_hard_reg (ep
->from
, global
, dumpfile
, 1);
734 regs_ever_live
[ep
->from
] = 1;
738 for (i
= 0; i
< N_REG_CLASSES
; i
++)
740 basic_block_needs
[i
] = (char *)alloca (n_basic_blocks
);
741 bzero (basic_block_needs
[i
], n_basic_blocks
);
744 /* This loop scans the entire function each go-round
745 and repeats until one repetition spills no additional hard regs. */
747 /* This flag is set when a pseudo reg is spilled,
748 to require another pass. Note that getting an additional reload
749 reg does not necessarily imply any pseudo reg was spilled;
750 sometimes we find a reload reg that no pseudo reg was allocated in. */
751 something_changed
= 1;
752 /* This flag is set if there are any insns that require reloading. */
753 something_needs_reloads
= 0;
754 /* This flag is set if there are any insns that require register
756 something_needs_elimination
= 0;
757 while (something_changed
)
761 /* For each class, number of reload regs needed in that class.
762 This is the maximum over all insns of the needs in that class
763 of the individual insn. */
764 int max_needs
[N_REG_CLASSES
];
765 /* For each class, size of group of consecutive regs
766 that is needed for the reloads of this class. */
767 int group_size
[N_REG_CLASSES
];
768 /* For each class, max number of consecutive groups needed.
769 (Each group contains group_size[CLASS] consecutive registers.) */
770 int max_groups
[N_REG_CLASSES
];
771 /* For each class, max number needed of regs that don't belong
772 to any of the groups. */
773 int max_nongroups
[N_REG_CLASSES
];
774 /* For each class, the machine mode which requires consecutive
775 groups of regs of that class.
776 If two different modes ever require groups of one class,
777 they must be the same size and equally restrictive for that class,
778 otherwise we can't handle the complexity. */
779 enum machine_mode group_mode
[N_REG_CLASSES
];
782 something_changed
= 0;
783 bzero (max_needs
, sizeof max_needs
);
784 bzero (max_groups
, sizeof max_groups
);
785 bzero (max_nongroups
, sizeof max_nongroups
);
786 bzero (group_size
, sizeof group_size
);
787 for (i
= 0; i
< N_REG_CLASSES
; i
++)
788 group_mode
[i
] = VOIDmode
;
790 /* Keep track of which basic blocks are needing the reloads. */
793 /* Remember whether any element of basic_block_needs
794 changes from 0 to 1 in this pass. */
795 new_basic_block_needs
= 0;
797 /* Reset all offsets on eliminable registers to their initial values. */
798 #ifdef ELIMINABLE_REGS
799 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
801 INITIAL_ELIMINATION_OFFSET (ep
->from
, ep
->to
, ep
->initial_offset
);
802 ep
->previous_offset
= ep
->offset
803 = ep
->max_offset
= ep
->initial_offset
;
806 #ifdef INITIAL_FRAME_POINTER_OFFSET
807 INITIAL_FRAME_POINTER_OFFSET (reg_eliminate
[0].initial_offset
);
809 if (!FRAME_POINTER_REQUIRED
)
811 reg_eliminate
[0].initial_offset
= 0;
813 reg_eliminate
[0].previous_offset
= reg_eliminate
[0].max_offset
814 = reg_eliminate
[0].offset
= reg_eliminate
[0].initial_offset
;
817 num_not_at_initial_offset
= 0;
819 bzero (&offsets_known_at
[get_first_label_num ()], num_labels
);
821 /* Set a known offset for each forced label to be at the initial offset
822 of each elimination. We do this because we assume that all
823 computed jumps occur from a location where each elimination is
824 at its initial offset. */
826 for (x
= forced_labels
; x
; x
= XEXP (x
, 1))
828 set_label_offsets (XEXP (x
, 0), 0, 1);
830 /* For each pseudo register that has an equivalent location defined,
831 try to eliminate any eliminable registers (such as the frame pointer)
832 assuming initial offsets for the replacement register, which
835 If the resulting location is directly addressable, substitute
836 the MEM we just got directly for the old REG.
838 If it is not addressable but is a constant or the sum of a hard reg
839 and constant, it is probably not addressable because the constant is
840 out of range, in that case record the address; we will generate
841 hairy code to compute the address in a register each time it is
844 If the location is not addressable, but does not have one of the
845 above forms, assign a stack slot. We have to do this to avoid the
846 potential of producing lots of reloads if, e.g., a location involves
847 a pseudo that didn't get a hard register and has an equivalent memory
848 location that also involves a pseudo that didn't get a hard register.
850 Perhaps at some point we will improve reload_when_needed handling
851 so this problem goes away. But that's very hairy. */
853 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
854 if (reg_renumber
[i
] < 0 && reg_equiv_memory_loc
[i
])
856 rtx x
= eliminate_regs (reg_equiv_memory_loc
[i
], 0, 0);
858 if (strict_memory_address_p (GET_MODE (regno_reg_rtx
[i
]),
860 reg_equiv_mem
[i
] = x
, reg_equiv_address
[i
] = 0;
861 else if (CONSTANT_P (XEXP (x
, 0))
862 || (GET_CODE (XEXP (x
, 0)) == PLUS
863 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == REG
864 && (REGNO (XEXP (XEXP (x
, 0), 0))
865 < FIRST_PSEUDO_REGISTER
)
866 && CONSTANT_P (XEXP (XEXP (x
, 0), 1))))
867 reg_equiv_address
[i
] = XEXP (x
, 0), reg_equiv_mem
[i
] = 0;
870 /* Make a new stack slot. Then indicate that something
871 changed so we go back and recompute offsets for
872 eliminable registers because the allocation of memory
873 below might change some offset. reg_equiv_{mem,address}
874 will be set up for this pseudo on the next pass around
876 reg_equiv_memory_loc
[i
] = 0;
877 reg_equiv_init
[i
] = 0;
879 something_changed
= 1;
883 /* If we allocated another pseudo to the stack, redo elimination
885 if (something_changed
)
888 /* If caller-saves needs a group, initialize the group to include
889 the size and mode required for caller-saves. */
891 if (caller_save_group_size
> 1)
893 group_mode
[(int) caller_save_spill_class
] = Pmode
;
894 group_size
[(int) caller_save_spill_class
] = caller_save_group_size
;
897 /* Compute the most additional registers needed by any instruction.
898 Collect information separately for each class of regs. */
900 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
902 if (global
&& this_block
+ 1 < n_basic_blocks
903 && insn
== basic_block_head
[this_block
+1])
906 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which
907 might include REG_LABEL), we need to see what effects this
908 has on the known offsets at labels. */
910 if (GET_CODE (insn
) == CODE_LABEL
|| GET_CODE (insn
) == JUMP_INSN
911 || (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
912 && REG_NOTES (insn
) != 0))
913 set_label_offsets (insn
, insn
, 0);
915 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
917 /* Nonzero means don't use a reload reg that overlaps
918 the place where a function value can be returned. */
919 rtx avoid_return_reg
= 0;
921 rtx old_body
= PATTERN (insn
);
922 int old_code
= INSN_CODE (insn
);
923 rtx old_notes
= REG_NOTES (insn
);
924 int did_elimination
= 0;
926 /* Initially, count RELOAD_OTHER reloads.
927 Later, merge in the other kinds. */
928 int insn_needs
[N_REG_CLASSES
];
929 int insn_groups
[N_REG_CLASSES
];
930 int insn_total_groups
= 0;
932 /* Count RELOAD_FOR_INPUT_RELOAD_ADDRESS reloads. */
933 int insn_needs_for_inputs
[N_REG_CLASSES
];
934 int insn_groups_for_inputs
[N_REG_CLASSES
];
935 int insn_total_groups_for_inputs
= 0;
937 /* Count RELOAD_FOR_OUTPUT_RELOAD_ADDRESS reloads. */
938 int insn_needs_for_outputs
[N_REG_CLASSES
];
939 int insn_groups_for_outputs
[N_REG_CLASSES
];
940 int insn_total_groups_for_outputs
= 0;
942 /* Count RELOAD_FOR_OPERAND_ADDRESS reloads. */
943 int insn_needs_for_operands
[N_REG_CLASSES
];
944 int insn_groups_for_operands
[N_REG_CLASSES
];
945 int insn_total_groups_for_operands
= 0;
947 #if 0 /* This wouldn't work nowadays, since optimize_bit_field
948 looks for non-strict memory addresses. */
949 /* Optimization: a bit-field instruction whose field
950 happens to be a byte or halfword in memory
951 can be changed to a move instruction. */
953 if (GET_CODE (PATTERN (insn
)) == SET
)
955 rtx dest
= SET_DEST (PATTERN (insn
));
956 rtx src
= SET_SRC (PATTERN (insn
));
958 if (GET_CODE (dest
) == ZERO_EXTRACT
959 || GET_CODE (dest
) == SIGN_EXTRACT
)
960 optimize_bit_field (PATTERN (insn
), insn
, reg_equiv_mem
);
961 if (GET_CODE (src
) == ZERO_EXTRACT
962 || GET_CODE (src
) == SIGN_EXTRACT
)
963 optimize_bit_field (PATTERN (insn
), insn
, reg_equiv_mem
);
967 /* If needed, eliminate any eliminable registers. */
969 did_elimination
= eliminate_regs_in_insn (insn
, 0);
971 #ifdef SMALL_REGISTER_CLASSES
972 /* Set avoid_return_reg if this is an insn
973 that might use the value of a function call. */
974 if (GET_CODE (insn
) == CALL_INSN
)
976 if (GET_CODE (PATTERN (insn
)) == SET
)
977 after_call
= SET_DEST (PATTERN (insn
));
978 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
979 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
980 after_call
= SET_DEST (XVECEXP (PATTERN (insn
), 0, 0));
984 else if (after_call
!= 0
985 && !(GET_CODE (PATTERN (insn
)) == SET
986 && SET_DEST (PATTERN (insn
)) == stack_pointer_rtx
))
988 if (reg_mentioned_p (after_call
, PATTERN (insn
)))
989 avoid_return_reg
= after_call
;
992 #endif /* SMALL_REGISTER_CLASSES */
994 /* Analyze the instruction. */
995 find_reloads (insn
, 0, spill_indirect_levels
, global
,
998 /* Remember for later shortcuts which insns had any reloads or
999 register eliminations.
1001 One might think that it would be worthwhile to mark insns
1002 that need register replacements but not reloads, but this is
1003 not safe because find_reloads may do some manipulation of
1004 the insn (such as swapping commutative operands), which would
1005 be lost when we restore the old pattern after register
1006 replacement. So the actions of find_reloads must be redone in
1007 subsequent passes or in reload_as_needed.
1009 However, it is safe to mark insns that need reloads
1010 but not register replacement. */
1012 PUT_MODE (insn
, (did_elimination
? QImode
1013 : n_reloads
? HImode
1016 /* Discard any register replacements done. */
1017 if (did_elimination
)
1019 obstack_free (&reload_obstack
, reload_firstobj
);
1020 PATTERN (insn
) = old_body
;
1021 INSN_CODE (insn
) = old_code
;
1022 REG_NOTES (insn
) = old_notes
;
1023 something_needs_elimination
= 1;
1026 /* If this insn has no reloads, we need not do anything except
1027 in the case of a CALL_INSN when we have caller-saves and
1028 caller-save needs reloads. */
1031 && ! (GET_CODE (insn
) == CALL_INSN
1032 && caller_save_spill_class
!= NO_REGS
))
1035 something_needs_reloads
= 1;
1037 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1039 insn_needs
[i
] = 0, insn_groups
[i
] = 0;
1040 insn_needs_for_inputs
[i
] = 0, insn_groups_for_inputs
[i
] = 0;
1041 insn_needs_for_outputs
[i
] = 0, insn_groups_for_outputs
[i
] = 0;
1042 insn_needs_for_operands
[i
] = 0, insn_groups_for_operands
[i
] = 0;
1045 /* Count each reload once in every class
1046 containing the reload's own class. */
1048 for (i
= 0; i
< n_reloads
; i
++)
1050 register enum reg_class
*p
;
1052 enum machine_mode mode
;
1055 int *this_total_groups
;
1057 /* Don't count the dummy reloads, for which one of the
1058 regs mentioned in the insn can be used for reloading.
1059 Don't count optional reloads.
1060 Don't count reloads that got combined with others. */
1061 if (reload_reg_rtx
[i
] != 0
1062 || reload_optional
[i
] != 0
1063 || (reload_out
[i
] == 0 && reload_in
[i
] == 0
1064 && ! reload_secondary_p
[i
]))
1067 /* Decide which time-of-use to count this reload for. */
1068 switch (reload_when_needed
[i
])
1071 case RELOAD_FOR_OUTPUT
:
1072 case RELOAD_FOR_INPUT
:
1073 this_needs
= insn_needs
;
1074 this_groups
= insn_groups
;
1075 this_total_groups
= &insn_total_groups
;
1078 case RELOAD_FOR_INPUT_RELOAD_ADDRESS
:
1079 this_needs
= insn_needs_for_inputs
;
1080 this_groups
= insn_groups_for_inputs
;
1081 this_total_groups
= &insn_total_groups_for_inputs
;
1084 case RELOAD_FOR_OUTPUT_RELOAD_ADDRESS
:
1085 this_needs
= insn_needs_for_outputs
;
1086 this_groups
= insn_groups_for_outputs
;
1087 this_total_groups
= &insn_total_groups_for_outputs
;
1090 case RELOAD_FOR_OPERAND_ADDRESS
:
1091 this_needs
= insn_needs_for_operands
;
1092 this_groups
= insn_groups_for_operands
;
1093 this_total_groups
= &insn_total_groups_for_operands
;
1097 mode
= reload_inmode
[i
];
1098 if (GET_MODE_SIZE (reload_outmode
[i
]) > GET_MODE_SIZE (mode
))
1099 mode
= reload_outmode
[i
];
1100 size
= CLASS_MAX_NREGS (reload_reg_class
[i
], mode
);
1103 enum machine_mode other_mode
, allocate_mode
;
1105 /* Count number of groups needed separately from
1106 number of individual regs needed. */
1107 this_groups
[(int) reload_reg_class
[i
]]++;
1108 p
= reg_class_superclasses
[(int) reload_reg_class
[i
]];
1109 while (*p
!= LIM_REG_CLASSES
)
1110 this_groups
[(int) *p
++]++;
1111 (*this_total_groups
)++;
1113 /* Record size and mode of a group of this class. */
1114 /* If more than one size group is needed,
1115 make all groups the largest needed size. */
1116 if (group_size
[(int) reload_reg_class
[i
]] < size
)
1118 other_mode
= group_mode
[(int) reload_reg_class
[i
]];
1119 allocate_mode
= mode
;
1121 group_size
[(int) reload_reg_class
[i
]] = size
;
1122 group_mode
[(int) reload_reg_class
[i
]] = mode
;
1127 allocate_mode
= group_mode
[(int) reload_reg_class
[i
]];
1130 /* Crash if two dissimilar machine modes both need
1131 groups of consecutive regs of the same class. */
1133 if (other_mode
!= VOIDmode
1134 && other_mode
!= allocate_mode
1135 && ! modes_equiv_for_class_p (allocate_mode
,
1137 reload_reg_class
[i
]))
1142 this_needs
[(int) reload_reg_class
[i
]] += 1;
1143 p
= reg_class_superclasses
[(int) reload_reg_class
[i
]];
1144 while (*p
!= LIM_REG_CLASSES
)
1145 this_needs
[(int) *p
++] += 1;
1151 /* All reloads have been counted for this insn;
1152 now merge the various times of use.
1153 This sets insn_needs, etc., to the maximum total number
1154 of registers needed at any point in this insn. */
1156 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1159 this_max
= insn_needs_for_inputs
[i
];
1160 if (insn_needs_for_outputs
[i
] > this_max
)
1161 this_max
= insn_needs_for_outputs
[i
];
1162 if (insn_needs_for_operands
[i
] > this_max
)
1163 this_max
= insn_needs_for_operands
[i
];
1164 insn_needs
[i
] += this_max
;
1165 this_max
= insn_groups_for_inputs
[i
];
1166 if (insn_groups_for_outputs
[i
] > this_max
)
1167 this_max
= insn_groups_for_outputs
[i
];
1168 if (insn_groups_for_operands
[i
] > this_max
)
1169 this_max
= insn_groups_for_operands
[i
];
1170 insn_groups
[i
] += this_max
;
1173 insn_total_groups
+= MAX (insn_total_groups_for_inputs
,
1174 MAX (insn_total_groups_for_outputs
,
1175 insn_total_groups_for_operands
));
1177 /* If this is a CALL_INSN and caller-saves will need
1178 a spill register, act as if the spill register is
1179 needed for this insn. However, the spill register
1180 can be used by any reload of this insn, so we only
1181 need do something if no need for that class has
1184 The assumption that every CALL_INSN will trigger a
1185 caller-save is highly conservative, however, the number
1186 of cases where caller-saves will need a spill register but
1187 a block containing a CALL_INSN won't need a spill register
1188 of that class should be quite rare.
1190 If a group is needed, the size and mode of the group will
1191 have been set up at the beginning of this loop. */
1193 if (GET_CODE (insn
) == CALL_INSN
1194 && caller_save_spill_class
!= NO_REGS
)
1196 int *caller_save_needs
1197 = (caller_save_group_size
> 1 ? insn_groups
: insn_needs
);
1199 if (caller_save_needs
[(int) caller_save_spill_class
] == 0)
1201 register enum reg_class
*p
1202 = reg_class_superclasses
[(int) caller_save_spill_class
];
1204 caller_save_needs
[(int) caller_save_spill_class
]++;
1206 while (*p
!= LIM_REG_CLASSES
)
1207 caller_save_needs
[(int) *p
++] += 1;
1210 if (caller_save_group_size
> 1)
1211 insn_total_groups
= MAX (insn_total_groups
, 1);
1214 /* Update the basic block needs. */
1216 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1217 if (global
&& (insn_needs
[i
] || insn_groups
[i
])
1218 && ! basic_block_needs
[i
][this_block
])
1220 new_basic_block_needs
= 1;
1221 basic_block_needs
[i
][this_block
] = 1;
1224 #ifdef SMALL_REGISTER_CLASSES
1225 /* If this insn stores the value of a function call,
1226 and that value is in a register that has been spilled,
1227 and if the insn needs a reload in a class
1228 that might use that register as the reload register,
1229 then add add an extra need in that class.
1230 This makes sure we have a register available that does
1231 not overlap the return value. */
1232 if (avoid_return_reg
)
1234 int regno
= REGNO (avoid_return_reg
);
1236 = HARD_REGNO_NREGS (regno
, GET_MODE (avoid_return_reg
));
1239 for (r
= regno
; r
< regno
+ nregs
; r
++)
1240 if (spill_reg_order
[r
] >= 0)
1241 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1242 if (TEST_HARD_REG_BIT (reg_class_contents
[i
], r
))
1244 if (insn_needs
[i
] > 0)
1246 if (insn_groups
[i
] > 0
1253 #endif /* SMALL_REGISTER_CLASSES */
1255 /* For each class, collect maximum need of any insn. */
1257 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1259 if (max_needs
[i
] < insn_needs
[i
])
1260 max_needs
[i
] = insn_needs
[i
];
1261 if (max_groups
[i
] < insn_groups
[i
])
1262 max_groups
[i
] = insn_groups
[i
];
1263 if (insn_total_groups
> 0)
1264 if (max_nongroups
[i
] < insn_needs
[i
])
1265 max_nongroups
[i
] = insn_needs
[i
];
1268 /* Note that there is a continue statement above. */
1271 /* If we have caller-saves, set up the save areas and see if caller-save
1272 will need a spill register. */
1274 if (caller_save_needed
1275 && ! setup_save_areas (&something_changed
)
1276 && caller_save_spill_class
== NO_REGS
)
1278 /* The class we will need depends on whether the machine
1279 supports the sum of two registers for an address; see
1280 find_address_reloads for details. */
1282 caller_save_spill_class
1283 = double_reg_address_ok
? INDEX_REG_CLASS
: BASE_REG_CLASS
;
1284 caller_save_group_size
1285 = CLASS_MAX_NREGS (caller_save_spill_class
, Pmode
);
1286 something_changed
= 1;
1289 /* Now deduct from the needs for the registers already
1290 available (already spilled). */
1292 CLEAR_HARD_REG_SET (counted_for_groups
);
1293 CLEAR_HARD_REG_SET (counted_for_nongroups
);
1295 /* First find all regs alone in their class
1296 and count them (if desired) for non-groups.
1297 We would be screwed if a group took the only reg in a class
1298 for which a non-group reload is needed.
1299 (Note there is still a bug; if a class has 2 regs,
1300 both could be stolen by groups and we would lose the same way.
1301 With luck, no machine will need a nongroup in a 2-reg class.) */
1303 for (i
= 0; i
< n_spills
; i
++)
1305 register enum reg_class
*p
;
1306 class = (int) REGNO_REG_CLASS (spill_regs
[i
]);
1308 if (reg_class_size
[class] == 1 && max_nongroups
[class] > 0)
1311 p
= reg_class_superclasses
[class];
1312 while (*p
!= LIM_REG_CLASSES
)
1313 max_needs
[(int) *p
++]--;
1315 SET_HARD_REG_BIT (counted_for_nongroups
, spill_regs
[i
]);
1316 max_nongroups
[class]--;
1317 p
= reg_class_superclasses
[class];
1318 while (*p
!= LIM_REG_CLASSES
)
1320 if (max_nongroups
[(int) *p
] > 0)
1321 SET_HARD_REG_BIT (counted_for_nongroups
, spill_regs
[i
]);
1322 max_nongroups
[(int) *p
++]--;
1327 /* Now find all consecutive groups of spilled registers
1328 and mark each group off against the need for such groups.
1329 But don't count them against ordinary need, yet. */
1331 count_possible_groups (group_size
, group_mode
, max_groups
);
1333 /* Now count all spill regs against the individual need,
1334 This includes those counted above for groups,
1335 but not those previously counted for nongroups.
1337 Those that weren't counted_for_groups can also count against
1338 the not-in-group need. */
1340 for (i
= 0; i
< n_spills
; i
++)
1342 register enum reg_class
*p
;
1343 class = (int) REGNO_REG_CLASS (spill_regs
[i
]);
1345 /* Those counted at the beginning shouldn't be counted twice. */
1346 if (! TEST_HARD_REG_BIT (counted_for_nongroups
, spill_regs
[i
]))
1349 p
= reg_class_superclasses
[class];
1350 while (*p
!= LIM_REG_CLASSES
)
1351 max_needs
[(int) *p
++]--;
1353 if (! TEST_HARD_REG_BIT (counted_for_groups
, spill_regs
[i
]))
1355 if (max_nongroups
[class] > 0)
1356 SET_HARD_REG_BIT (counted_for_nongroups
, spill_regs
[i
]);
1357 max_nongroups
[class]--;
1358 p
= reg_class_superclasses
[class];
1359 while (*p
!= LIM_REG_CLASSES
)
1361 if (max_nongroups
[(int) *p
] > 0)
1362 SET_HARD_REG_BIT (counted_for_nongroups
,
1364 max_nongroups
[(int) *p
++]--;
1370 /* See if anything that happened changes which eliminations are valid.
1371 For example, on the Sparc, whether or not the frame pointer can
1372 be eliminated can depend on what registers have been used. We need
1373 not check some conditions again (such as flag_omit_frame_pointer)
1374 since they can't have changed. */
1376 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
1377 if ((ep
->from
== FRAME_POINTER_REGNUM
&& FRAME_POINTER_REQUIRED
)
1378 #ifdef ELIMINABLE_REGS
1379 || ! CAN_ELIMINATE (ep
->from
, ep
->to
)
1382 ep
->can_eliminate
= 0;
1384 /* Look for the case where we have discovered that we can't replace
1385 register A with register B and that means that we will now be
1386 trying to replace register A with register C. This means we can
1387 no longer replace register C with register B and we need to disable
1388 such an elimination, if it exists. This occurs often with A == ap,
1389 B == sp, and C == fp. */
1391 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
1393 struct elim_table
*op
;
1394 register int new_to
= -1;
1396 if (! ep
->can_eliminate
&& ep
->can_eliminate_previous
)
1398 /* Find the current elimination for ep->from, if there is a
1400 for (op
= reg_eliminate
;
1401 op
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; op
++)
1402 if (op
->from
== ep
->from
&& op
->can_eliminate
)
1408 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
1410 for (op
= reg_eliminate
;
1411 op
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; op
++)
1412 if (op
->from
== new_to
&& op
->to
== ep
->to
)
1413 op
->can_eliminate
= 0;
1417 /* See if any registers that we thought we could eliminate the previous
1418 time are no longer eliminable. If so, something has changed and we
1419 must spill the register. Also, recompute the number of eliminable
1420 registers and see if the frame pointer is needed; it is if there is
1421 no elimination of the frame pointer that we can perform. */
1423 frame_pointer_needed
= 1;
1424 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
1426 if (ep
->can_eliminate
&& ep
->from
== FRAME_POINTER_REGNUM
)
1427 frame_pointer_needed
= 0;
1429 if (! ep
->can_eliminate
&& ep
->can_eliminate_previous
)
1431 ep
->can_eliminate_previous
= 0;
1432 spill_hard_reg (ep
->from
, global
, dumpfile
, 1);
1433 regs_ever_live
[ep
->from
] = 1;
1434 something_changed
= 1;
1439 /* If all needs are met, we win. */
1441 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1442 if (max_needs
[i
] > 0 || max_groups
[i
] > 0 || max_nongroups
[i
] > 0)
1444 if (i
== N_REG_CLASSES
&& !new_basic_block_needs
&& ! something_changed
)
1447 /* Not all needs are met; must spill more hard regs. */
1449 /* If any element of basic_block_needs changed from 0 to 1,
1450 re-spill all the regs already spilled. This may spill
1451 additional pseudos that didn't spill before. */
1453 if (new_basic_block_needs
)
1454 for (i
= 0; i
< n_spills
; i
++)
1456 |= spill_hard_reg (spill_regs
[i
], global
, dumpfile
, 0);
1458 /* Now find more reload regs to satisfy the remaining need
1459 Do it by ascending class number, since otherwise a reg
1460 might be spilled for a big class and might fail to count
1461 for a smaller class even though it belongs to that class.
1463 Count spilled regs in `spills', and add entries to
1464 `spill_regs' and `spill_reg_order'.
1466 ??? Note there is a problem here.
1467 When there is a need for a group in a high-numbered class,
1468 and also need for non-group regs that come from a lower class,
1469 the non-group regs are chosen first. If there aren't many regs,
1470 they might leave no room for a group.
1472 This was happening on the 386. To fix it, we added the code
1473 that calls possible_group_p, so that the lower class won't
1474 break up the last possible group.
1476 Really fixing the problem would require changes above
1477 in counting the regs already spilled, and in choose_reload_regs.
1478 It might be hard to avoid introducing bugs there. */
1480 for (class = 0; class < N_REG_CLASSES
; class++)
1482 /* First get the groups of registers.
1483 If we got single registers first, we might fragment
1485 while (max_groups
[class] > 0)
1487 /* If any single spilled regs happen to form groups,
1488 count them now. Maybe we don't really need
1489 to spill another group. */
1490 count_possible_groups (group_size
, group_mode
, max_groups
);
1492 /* Groups of size 2 (the only groups used on most machines)
1493 are treated specially. */
1494 if (group_size
[class] == 2)
1496 /* First, look for a register that will complete a group. */
1497 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1499 int j
= potential_reload_regs
[i
];
1501 if (j
>= 0 && ! TEST_HARD_REG_BIT (bad_spill_regs
, j
)
1503 ((j
> 0 && (other
= j
- 1, spill_reg_order
[other
] >= 0)
1504 && TEST_HARD_REG_BIT (reg_class_contents
[class], j
)
1505 && TEST_HARD_REG_BIT (reg_class_contents
[class], other
)
1506 && HARD_REGNO_MODE_OK (other
, group_mode
[class])
1507 && ! TEST_HARD_REG_BIT (counted_for_nongroups
,
1509 /* We don't want one part of another group.
1510 We could get "two groups" that overlap! */
1511 && ! TEST_HARD_REG_BIT (counted_for_groups
, other
))
1513 (j
< FIRST_PSEUDO_REGISTER
- 1
1514 && (other
= j
+ 1, spill_reg_order
[other
] >= 0)
1515 && TEST_HARD_REG_BIT (reg_class_contents
[class], j
)
1516 && TEST_HARD_REG_BIT (reg_class_contents
[class], other
)
1517 && HARD_REGNO_MODE_OK (j
, group_mode
[class])
1518 && ! TEST_HARD_REG_BIT (counted_for_nongroups
,
1520 && ! TEST_HARD_REG_BIT (counted_for_groups
,
1523 register enum reg_class
*p
;
1525 /* We have found one that will complete a group,
1526 so count off one group as provided. */
1527 max_groups
[class]--;
1528 p
= reg_class_superclasses
[class];
1529 while (*p
!= LIM_REG_CLASSES
)
1530 max_groups
[(int) *p
++]--;
1532 /* Indicate both these regs are part of a group. */
1533 SET_HARD_REG_BIT (counted_for_groups
, j
);
1534 SET_HARD_REG_BIT (counted_for_groups
, other
);
1538 /* We can't complete a group, so start one. */
1539 if (i
== FIRST_PSEUDO_REGISTER
)
1540 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1542 int j
= potential_reload_regs
[i
];
1543 if (j
>= 0 && j
+ 1 < FIRST_PSEUDO_REGISTER
1544 && spill_reg_order
[j
] < 0 && spill_reg_order
[j
+ 1] < 0
1545 && TEST_HARD_REG_BIT (reg_class_contents
[class], j
)
1546 && TEST_HARD_REG_BIT (reg_class_contents
[class], j
+ 1)
1547 && HARD_REGNO_MODE_OK (j
, group_mode
[class])
1548 && ! TEST_HARD_REG_BIT (counted_for_nongroups
,
1553 /* I should be the index in potential_reload_regs
1554 of the new reload reg we have found. */
1557 |= new_spill_reg (i
, class, max_needs
, 0,
1562 /* For groups of more than 2 registers,
1563 look for a sufficient sequence of unspilled registers,
1564 and spill them all at once. */
1565 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1567 int j
= potential_reload_regs
[i
];
1569 if (j
>= 0 && j
+ 1 < FIRST_PSEUDO_REGISTER
1570 && HARD_REGNO_MODE_OK (j
, group_mode
[class]))
1572 /* Check each reg in the sequence. */
1573 for (k
= 0; k
< group_size
[class]; k
++)
1574 if (! (spill_reg_order
[j
+ k
] < 0
1575 && ! TEST_HARD_REG_BIT (bad_spill_regs
, j
+ k
)
1576 && TEST_HARD_REG_BIT (reg_class_contents
[class], j
+ k
)))
1578 /* We got a full sequence, so spill them all. */
1579 if (k
== group_size
[class])
1581 register enum reg_class
*p
;
1582 for (k
= 0; k
< group_size
[class]; k
++)
1585 SET_HARD_REG_BIT (counted_for_groups
, j
+ k
);
1586 for (idx
= 0; idx
< FIRST_PSEUDO_REGISTER
; idx
++)
1587 if (potential_reload_regs
[idx
] == j
+ k
)
1590 |= new_spill_reg (idx
, class, max_needs
, 0,
1594 /* We have found one that will complete a group,
1595 so count off one group as provided. */
1596 max_groups
[class]--;
1597 p
= reg_class_superclasses
[class];
1598 while (*p
!= LIM_REG_CLASSES
)
1599 max_groups
[(int) *p
++]--;
1608 /* Now similarly satisfy all need for single registers. */
1610 while (max_needs
[class] > 0 || max_nongroups
[class] > 0)
1612 /* Consider the potential reload regs that aren't
1613 yet in use as reload regs, in order of preference.
1614 Find the most preferred one that's in this class. */
1616 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1617 if (potential_reload_regs
[i
] >= 0
1618 && TEST_HARD_REG_BIT (reg_class_contents
[class],
1619 potential_reload_regs
[i
])
1620 /* If this reg will not be available for groups,
1621 pick one that does not foreclose possible groups.
1622 This is a kludge, and not very general,
1623 but it should be sufficient to make the 386 work,
1624 and the problem should not occur on machines with
1626 && (max_nongroups
[class] == 0
1627 || possible_group_p (potential_reload_regs
[i
], max_groups
)))
1630 /* I should be the index in potential_reload_regs
1631 of the new reload reg we have found. */
1634 |= new_spill_reg (i
, class, max_needs
, max_nongroups
,
1640 /* If global-alloc was run, notify it of any register eliminations we have
1643 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
1644 if (ep
->can_eliminate
)
1645 mark_elimination (ep
->from
, ep
->to
);
1647 /* From now on, we need to emit any moves without making new pseudos. */
1648 reload_in_progress
= 1;
1650 /* Insert code to save and restore call-clobbered hard regs
1651 around calls. Tell if what mode to use so that we will process
1652 those insns in reload_as_needed if we have to. */
1654 if (caller_save_needed
)
1655 save_call_clobbered_regs (num_eliminable
? QImode
1656 : caller_save_spill_class
!= NO_REGS
? HImode
1659 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1660 If that insn didn't set the register (i.e., it copied the register to
1661 memory), just delete that insn instead of the equivalencing insn plus
1662 anything now dead. If we call delete_dead_insn on that insn, we may
1663 delete the insn that actually sets the register if the register die
1664 there and that is incorrect. */
1666 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
1667 if (reg_renumber
[i
] < 0 && reg_equiv_init
[i
] != 0
1668 && GET_CODE (reg_equiv_init
[i
]) != NOTE
)
1670 if (reg_set_p (regno_reg_rtx
[i
], PATTERN (reg_equiv_init
[i
])))
1671 delete_dead_insn (reg_equiv_init
[i
]);
1674 PUT_CODE (reg_equiv_init
[i
], NOTE
);
1675 NOTE_SOURCE_FILE (reg_equiv_init
[i
]) = 0;
1676 NOTE_LINE_NUMBER (reg_equiv_init
[i
]) = NOTE_INSN_DELETED
;
1680 /* Use the reload registers where necessary
1681 by generating move instructions to move the must-be-register
1682 values into or out of the reload registers. */
1684 if (something_needs_reloads
|| something_needs_elimination
1685 || (caller_save_needed
&& num_eliminable
)
1686 || caller_save_spill_class
!= NO_REGS
)
1687 reload_as_needed (first
, global
);
1689 reload_in_progress
= 0;
1691 /* Now eliminate all pseudo regs by modifying them into
1692 their equivalent memory references.
1693 The REG-rtx's for the pseudos are modified in place,
1694 so all insns that used to refer to them now refer to memory.
1696 For a reg that has a reg_equiv_address, all those insns
1697 were changed by reloading so that no insns refer to it any longer;
1698 but the DECL_RTL of a variable decl may refer to it,
1699 and if so this causes the debugging info to mention the variable. */
1701 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
1704 if (reg_equiv_mem
[i
])
1705 addr
= XEXP (reg_equiv_mem
[i
], 0);
1706 if (reg_equiv_address
[i
])
1707 addr
= reg_equiv_address
[i
];
1710 if (reg_renumber
[i
] < 0)
1712 rtx reg
= regno_reg_rtx
[i
];
1713 XEXP (reg
, 0) = addr
;
1714 REG_USERVAR_P (reg
) = 0;
1715 PUT_CODE (reg
, MEM
);
1717 else if (reg_equiv_mem
[i
])
1718 XEXP (reg_equiv_mem
[i
], 0) = addr
;
1722 #ifdef PRESERVE_DEATH_INFO_REGNO_P
1723 /* Make a pass over all the insns and remove death notes for things that
1724 are no longer registers or no longer die in the insn (e.g., an input
1725 and output pseudo being tied). */
1727 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1728 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
1732 for (note
= REG_NOTES (insn
); note
; note
= next
)
1734 next
= XEXP (note
, 1);
1735 if (REG_NOTE_KIND (note
) == REG_DEAD
1736 && (GET_CODE (XEXP (note
, 0)) != REG
1737 || reg_set_p (XEXP (note
, 0), PATTERN (insn
))))
1738 remove_note (insn
, note
);
1743 /* Indicate that we no longer have known memory locations or constants. */
1744 reg_equiv_constant
= 0;
1745 reg_equiv_memory_loc
= 0;
1748 /* Nonzero if, after spilling reg REGNO for non-groups,
1749 it will still be possible to find a group if we still need one. */
1752 possible_group_p (regno
, max_groups
)
1757 int class = (int) NO_REGS
;
1759 for (i
= 0; i
< (int) N_REG_CLASSES
; i
++)
1760 if (max_groups
[i
] > 0)
1766 if (class == (int) NO_REGS
)
1769 /* Consider each pair of consecutive registers. */
1770 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
- 1; i
++)
1772 /* Ignore pairs that include reg REGNO. */
1773 if (i
== regno
|| i
+ 1 == regno
)
1776 /* Ignore pairs that are outside the class that needs the group.
1777 ??? Here we fail to handle the case where two different classes
1778 independently need groups. But this never happens with our
1779 current machine descriptions. */
1780 if (! (TEST_HARD_REG_BIT (reg_class_contents
[class], i
)
1781 && TEST_HARD_REG_BIT (reg_class_contents
[class], i
+ 1)))
1784 /* A pair of consecutive regs we can still spill does the trick. */
1785 if (spill_reg_order
[i
] < 0 && spill_reg_order
[i
+ 1] < 0
1786 && ! TEST_HARD_REG_BIT (bad_spill_regs
, i
)
1787 && ! TEST_HARD_REG_BIT (bad_spill_regs
, i
+ 1))
1790 /* A pair of one already spilled and one we can spill does it
1791 provided the one already spilled is not otherwise reserved. */
1792 if (spill_reg_order
[i
] < 0
1793 && ! TEST_HARD_REG_BIT (bad_spill_regs
, i
)
1794 && spill_reg_order
[i
+ 1] >= 0
1795 && ! TEST_HARD_REG_BIT (counted_for_groups
, i
+ 1)
1796 && ! TEST_HARD_REG_BIT (counted_for_nongroups
, i
+ 1))
1798 if (spill_reg_order
[i
+ 1] < 0
1799 && ! TEST_HARD_REG_BIT (bad_spill_regs
, i
+ 1)
1800 && spill_reg_order
[i
] >= 0
1801 && ! TEST_HARD_REG_BIT (counted_for_groups
, i
)
1802 && ! TEST_HARD_REG_BIT (counted_for_nongroups
, i
))
1809 /* Count any groups that can be formed from the registers recently spilled.
1810 This is done class by class, in order of ascending class number. */
1813 count_possible_groups (group_size
, group_mode
, max_groups
)
1814 int *group_size
, *max_groups
;
1815 enum machine_mode
*group_mode
;
1818 /* Now find all consecutive groups of spilled registers
1819 and mark each group off against the need for such groups.
1820 But don't count them against ordinary need, yet. */
1822 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1823 if (group_size
[i
] > 1)
1825 char regmask
[FIRST_PSEUDO_REGISTER
];
1828 bzero (regmask
, sizeof regmask
);
1829 /* Make a mask of all the regs that are spill regs in class I. */
1830 for (j
= 0; j
< n_spills
; j
++)
1831 if (TEST_HARD_REG_BIT (reg_class_contents
[i
], spill_regs
[j
])
1832 && ! TEST_HARD_REG_BIT (counted_for_groups
, spill_regs
[j
])
1833 && ! TEST_HARD_REG_BIT (counted_for_nongroups
,
1835 regmask
[spill_regs
[j
]] = 1;
1836 /* Find each consecutive group of them. */
1837 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
&& max_groups
[i
] > 0; j
++)
1838 if (regmask
[j
] && j
+ group_size
[i
] <= FIRST_PSEUDO_REGISTER
1839 /* Next line in case group-mode for this class
1840 demands an even-odd pair. */
1841 && HARD_REGNO_MODE_OK (j
, group_mode
[i
]))
1844 for (k
= 1; k
< group_size
[i
]; k
++)
1845 if (! regmask
[j
+ k
])
1847 if (k
== group_size
[i
])
1849 /* We found a group. Mark it off against this class's
1850 need for groups, and against each superclass too. */
1851 register enum reg_class
*p
;
1853 p
= reg_class_superclasses
[i
];
1854 while (*p
!= LIM_REG_CLASSES
)
1855 max_groups
[(int) *p
++]--;
1856 /* Don't count these registers again. */
1857 for (k
= 0; k
< group_size
[i
]; k
++)
1858 SET_HARD_REG_BIT (counted_for_groups
, j
+ k
);
1866 /* ALLOCATE_MODE is a register mode that needs to be reloaded. OTHER_MODE is
1867 another mode that needs to be reloaded for the same register class CLASS.
1868 If any reg in CLASS allows ALLOCATE_MODE but not OTHER_MODE, fail.
1869 ALLOCATE_MODE will never be smaller than OTHER_MODE.
1871 This code used to also fail if any reg in CLASS allows OTHER_MODE but not
1872 ALLOCATE_MODE. This test is unnecessary, because we will never try to put
1873 something of mode ALLOCATE_MODE into an OTHER_MODE register. Testing this
1874 causes unnecessary failures on machines requiring alignment of register
1875 groups when the two modes are different sizes, because the larger mode has
1876 more strict alignment rules than the smaller mode. */
1879 modes_equiv_for_class_p (allocate_mode
, other_mode
, class)
1880 enum machine_mode allocate_mode
, other_mode
;
1881 enum reg_class
class;
1884 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
1886 if (TEST_HARD_REG_BIT (reg_class_contents
[(int) class], regno
)
1887 && HARD_REGNO_MODE_OK (regno
, allocate_mode
)
1888 && ! HARD_REGNO_MODE_OK (regno
, other_mode
))
1894 /* Add a new register to the tables of available spill-registers
1895 (as well as spilling all pseudos allocated to the register).
1896 I is the index of this register in potential_reload_regs.
1897 CLASS is the regclass whose need is being satisfied.
1898 MAX_NEEDS and MAX_NONGROUPS are the vectors of needs,
1899 so that this register can count off against them.
1900 MAX_NONGROUPS is 0 if this register is part of a group.
1901 GLOBAL and DUMPFILE are the same as the args that `reload' got. */
1904 new_spill_reg (i
, class, max_needs
, max_nongroups
, global
, dumpfile
)
1912 register enum reg_class
*p
;
1914 int regno
= potential_reload_regs
[i
];
1916 if (i
>= FIRST_PSEUDO_REGISTER
)
1917 abort (); /* Caller failed to find any register. */
1919 if (fixed_regs
[regno
] || TEST_HARD_REG_BIT (forbidden_regs
, regno
))
1920 fatal ("fixed or forbidden register was spilled.\n\
1921 This may be due to a compiler bug or to impossible asm statements.");
1923 /* Make reg REGNO an additional reload reg. */
1925 potential_reload_regs
[i
] = -1;
1926 spill_regs
[n_spills
] = regno
;
1927 spill_reg_order
[regno
] = n_spills
;
1929 fprintf (dumpfile
, "Spilling reg %d.\n", spill_regs
[n_spills
]);
1931 /* Clear off the needs we just satisfied. */
1934 p
= reg_class_superclasses
[class];
1935 while (*p
!= LIM_REG_CLASSES
)
1936 max_needs
[(int) *p
++]--;
1938 if (max_nongroups
&& max_nongroups
[class] > 0)
1940 SET_HARD_REG_BIT (counted_for_nongroups
, regno
);
1941 max_nongroups
[class]--;
1942 p
= reg_class_superclasses
[class];
1943 while (*p
!= LIM_REG_CLASSES
)
1944 max_nongroups
[(int) *p
++]--;
1947 /* Spill every pseudo reg that was allocated to this reg
1948 or to something that overlaps this reg. */
1950 val
= spill_hard_reg (spill_regs
[n_spills
], global
, dumpfile
, 0);
1952 /* If there are some registers still to eliminate and this register
1953 wasn't ever used before, additional stack space may have to be
1954 allocated to store this register. Thus, we may have changed the offset
1955 between the stack and frame pointers, so mark that something has changed.
1956 (If new pseudos were spilled, thus requiring more space, VAL would have
1957 been set non-zero by the call to spill_hard_reg above since additional
1958 reloads may be needed in that case.
1960 One might think that we need only set VAL to 1 if this is a call-used
1961 register. However, the set of registers that must be saved by the
1962 prologue is not identical to the call-used set. For example, the
1963 register used by the call insn for the return PC is a call-used register,
1964 but must be saved by the prologue. */
1965 if (num_eliminable
&& ! regs_ever_live
[spill_regs
[n_spills
]])
1968 regs_ever_live
[spill_regs
[n_spills
]] = 1;
1974 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1975 data that is dead in INSN. */
1978 delete_dead_insn (insn
)
1981 rtx prev
= prev_real_insn (insn
);
1984 /* If the previous insn sets a register that dies in our insn, delete it
1986 if (prev
&& GET_CODE (PATTERN (prev
)) == SET
1987 && (prev_dest
= SET_DEST (PATTERN (prev
)), GET_CODE (prev_dest
) == REG
)
1988 && reg_mentioned_p (prev_dest
, PATTERN (insn
))
1989 && find_regno_note (insn
, REG_DEAD
, REGNO (prev_dest
)))
1990 delete_dead_insn (prev
);
1992 PUT_CODE (insn
, NOTE
);
1993 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
1994 NOTE_SOURCE_FILE (insn
) = 0;
1997 /* Modify the home of pseudo-reg I.
1998 The new home is present in reg_renumber[I].
2000 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2001 or it may be -1, meaning there is none or it is not relevant.
2002 This is used so that all pseudos spilled from a given hard reg
2003 can share one stack slot. */
2006 alter_reg (i
, from_reg
)
2010 /* When outputting an inline function, this can happen
2011 for a reg that isn't actually used. */
2012 if (regno_reg_rtx
[i
] == 0)
2015 /* If the reg got changed to a MEM at rtl-generation time,
2017 if (GET_CODE (regno_reg_rtx
[i
]) != REG
)
2020 /* Modify the reg-rtx to contain the new hard reg
2021 number or else to contain its pseudo reg number. */
2022 REGNO (regno_reg_rtx
[i
])
2023 = reg_renumber
[i
] >= 0 ? reg_renumber
[i
] : i
;
2025 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2026 allocate a stack slot for it. */
2028 if (reg_renumber
[i
] < 0
2029 && reg_n_refs
[i
] > 0
2030 && reg_equiv_constant
[i
] == 0
2031 && reg_equiv_memory_loc
[i
] == 0)
2034 int inherent_size
= PSEUDO_REGNO_BYTES (i
);
2035 int total_size
= MAX (inherent_size
, reg_max_ref_width
[i
]);
2038 /* Each pseudo reg has an inherent size which comes from its own mode,
2039 and a total size which provides room for paradoxical subregs
2040 which refer to the pseudo reg in wider modes.
2042 We can use a slot already allocated if it provides both
2043 enough inherent space and enough total space.
2044 Otherwise, we allocate a new slot, making sure that it has no less
2045 inherent space, and no less total space, then the previous slot. */
2048 /* No known place to spill from => no slot to reuse. */
2049 x
= assign_stack_local (GET_MODE (regno_reg_rtx
[i
]), total_size
, -1);
2050 #if BYTES_BIG_ENDIAN
2051 /* Cancel the big-endian correction done in assign_stack_local.
2052 Get the address of the beginning of the slot.
2053 This is so we can do a big-endian correction unconditionally
2055 adjust
= inherent_size
- total_size
;
2058 /* Reuse a stack slot if possible. */
2059 else if (spill_stack_slot
[from_reg
] != 0
2060 && spill_stack_slot_width
[from_reg
] >= total_size
2061 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot
[from_reg
]))
2063 x
= spill_stack_slot
[from_reg
];
2064 /* Allocate a bigger slot. */
2067 /* Compute maximum size needed, both for inherent size
2068 and for total size. */
2069 enum machine_mode mode
= GET_MODE (regno_reg_rtx
[i
]);
2070 if (spill_stack_slot
[from_reg
])
2072 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot
[from_reg
]))
2074 mode
= GET_MODE (spill_stack_slot
[from_reg
]);
2075 if (spill_stack_slot_width
[from_reg
] > total_size
)
2076 total_size
= spill_stack_slot_width
[from_reg
];
2078 /* Make a slot with that size. */
2079 x
= assign_stack_local (mode
, total_size
, -1);
2080 #if BYTES_BIG_ENDIAN
2081 /* Cancel the big-endian correction done in assign_stack_local.
2082 Get the address of the beginning of the slot.
2083 This is so we can do a big-endian correction unconditionally
2085 adjust
= GET_MODE_SIZE (mode
) - total_size
;
2087 spill_stack_slot
[from_reg
] = x
;
2088 spill_stack_slot_width
[from_reg
] = total_size
;
2091 #if BYTES_BIG_ENDIAN
2092 /* On a big endian machine, the "address" of the slot
2093 is the address of the low part that fits its inherent mode. */
2094 if (inherent_size
< total_size
)
2095 adjust
+= (total_size
- inherent_size
);
2096 #endif /* BYTES_BIG_ENDIAN */
2098 /* If we have any adjustment to make, or if the stack slot is the
2099 wrong mode, make a new stack slot. */
2100 if (adjust
!= 0 || GET_MODE (x
) != GET_MODE (regno_reg_rtx
[i
]))
2102 x
= gen_rtx (MEM
, GET_MODE (regno_reg_rtx
[i
]),
2103 plus_constant (XEXP (x
, 0), adjust
));
2104 RTX_UNCHANGING_P (x
) = RTX_UNCHANGING_P (regno_reg_rtx
[i
]);
2107 /* Save the stack slot for later. */
2108 reg_equiv_memory_loc
[i
] = x
;
2112 /* Mark the slots in regs_ever_live for the hard regs
2113 used by pseudo-reg number REGNO. */
2116 mark_home_live (regno
)
2119 register int i
, lim
;
2120 i
= reg_renumber
[regno
];
2123 lim
= i
+ HARD_REGNO_NREGS (i
, PSEUDO_REGNO_MODE (regno
));
2125 regs_ever_live
[i
++] = 1;
2128 /* This function handles the tracking of elimination offsets around branches.
2130 X is a piece of RTL being scanned.
2132 INSN is the insn that it came from, if any.
2134 INITIAL_P is non-zero if we are to set the offset to be the initial
2135 offset and zero if we are setting the offset of the label to be the
2139 set_label_offsets (x
, insn
, initial_p
)
2144 enum rtx_code code
= GET_CODE (x
);
2147 struct elim_table
*p
;
2154 /* ... fall through ... */
2157 /* If we know nothing about this label, set the desired offsets. Note
2158 that this sets the offset at a label to be the offset before a label
2159 if we don't know anything about the label. This is not correct for
2160 the label after a BARRIER, but is the best guess we can make. If
2161 we guessed wrong, we will suppress an elimination that might have
2162 been possible had we been able to guess correctly. */
2164 if (! offsets_known_at
[CODE_LABEL_NUMBER (x
)])
2166 for (i
= 0; i
< NUM_ELIMINABLE_REGS
; i
++)
2167 offsets_at
[CODE_LABEL_NUMBER (x
)][i
]
2168 = (initial_p
? reg_eliminate
[i
].initial_offset
2169 : reg_eliminate
[i
].offset
);
2170 offsets_known_at
[CODE_LABEL_NUMBER (x
)] = 1;
2173 /* Otherwise, if this is the definition of a label and it is
2174 preceded by a BARRIER, set our offsets to the known offset of
2178 && (tem
= prev_nonnote_insn (insn
)) != 0
2179 && GET_CODE (tem
) == BARRIER
)
2181 num_not_at_initial_offset
= 0;
2182 for (i
= 0; i
< NUM_ELIMINABLE_REGS
; i
++)
2184 reg_eliminate
[i
].offset
= reg_eliminate
[i
].previous_offset
2185 = offsets_at
[CODE_LABEL_NUMBER (x
)][i
];
2186 if (reg_eliminate
[i
].can_eliminate
2187 && (reg_eliminate
[i
].offset
2188 != reg_eliminate
[i
].initial_offset
))
2189 num_not_at_initial_offset
++;
2194 /* If neither of the above cases is true, compare each offset
2195 with those previously recorded and suppress any eliminations
2196 where the offsets disagree. */
2198 for (i
= 0; i
< NUM_ELIMINABLE_REGS
; i
++)
2199 if (offsets_at
[CODE_LABEL_NUMBER (x
)][i
]
2200 != (initial_p
? reg_eliminate
[i
].initial_offset
2201 : reg_eliminate
[i
].offset
))
2202 reg_eliminate
[i
].can_eliminate
= 0;
2207 set_label_offsets (PATTERN (insn
), insn
, initial_p
);
2209 /* ... fall through ... */
2213 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2214 and hence must have all eliminations at their initial offsets. */
2215 for (tem
= REG_NOTES (x
); tem
; tem
= XEXP (tem
, 1))
2216 if (REG_NOTE_KIND (tem
) == REG_LABEL
)
2217 set_label_offsets (XEXP (tem
, 0), insn
, 1);
2222 /* Each of the labels in the address vector must be at their initial
2223 offsets. We want the first first for ADDR_VEC and the second
2224 field for ADDR_DIFF_VEC. */
2226 for (i
= 0; i
< XVECLEN (x
, code
== ADDR_DIFF_VEC
); i
++)
2227 set_label_offsets (XVECEXP (x
, code
== ADDR_DIFF_VEC
, i
),
2232 /* We only care about setting PC. If the source is not RETURN,
2233 IF_THEN_ELSE, or a label, disable any eliminations not at
2234 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2235 isn't one of those possibilities. For branches to a label,
2236 call ourselves recursively.
2238 Note that this can disable elimination unnecessarily when we have
2239 a non-local goto since it will look like a non-constant jump to
2240 someplace in the current function. This isn't a significant
2241 problem since such jumps will normally be when all elimination
2242 pairs are back to their initial offsets. */
2244 if (SET_DEST (x
) != pc_rtx
)
2247 switch (GET_CODE (SET_SRC (x
)))
2254 set_label_offsets (XEXP (SET_SRC (x
), 0), insn
, initial_p
);
2258 tem
= XEXP (SET_SRC (x
), 1);
2259 if (GET_CODE (tem
) == LABEL_REF
)
2260 set_label_offsets (XEXP (tem
, 0), insn
, initial_p
);
2261 else if (GET_CODE (tem
) != PC
&& GET_CODE (tem
) != RETURN
)
2264 tem
= XEXP (SET_SRC (x
), 2);
2265 if (GET_CODE (tem
) == LABEL_REF
)
2266 set_label_offsets (XEXP (tem
, 0), insn
, initial_p
);
2267 else if (GET_CODE (tem
) != PC
&& GET_CODE (tem
) != RETURN
)
2272 /* If we reach here, all eliminations must be at their initial
2273 offset because we are doing a jump to a variable address. */
2274 for (p
= reg_eliminate
; p
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; p
++)
2275 if (p
->offset
!= p
->initial_offset
)
2276 p
->can_eliminate
= 0;
2280 /* Used for communication between the next two function to properly share
2281 the vector for an ASM_OPERANDS. */
2283 static struct rtvec_def
*old_asm_operands_vec
, *new_asm_operands_vec
;
2285 /* Scan X and replace any eliminable registers (such as fp) with a
2286 replacement (such as sp), plus an offset.
2288 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2289 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2290 MEM, we are allowed to replace a sum of a register and the constant zero
2291 with the register, which we cannot do outside a MEM. In addition, we need
2292 to record the fact that a register is referenced outside a MEM.
2294 If INSN is nonzero, it is the insn containing X. If we replace a REG
2295 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2296 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2297 that the REG is being modified.
2299 If we see a modification to a register we know about, take the
2300 appropriate action (see case SET, below).
2302 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2303 replacements done assuming all offsets are at their initial values. If
2304 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2305 encounter, return the actual location so that find_reloads will do
2306 the proper thing. */
2309 eliminate_regs (x
, mem_mode
, insn
)
2311 enum machine_mode mem_mode
;
2314 enum rtx_code code
= GET_CODE (x
);
2315 struct elim_table
*ep
;
2340 /* First handle the case where we encounter a bare register that
2341 is eliminable. Replace it with a PLUS. */
2342 if (regno
< FIRST_PSEUDO_REGISTER
)
2344 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
2346 if (ep
->from_rtx
== x
&& ep
->can_eliminate
)
2349 ep
->ref_outside_mem
= 1;
2350 return plus_constant (ep
->to_rtx
, ep
->previous_offset
);
2354 else if (reg_equiv_memory_loc
&& reg_equiv_memory_loc
[regno
]
2355 && (reg_equiv_address
[regno
] || num_not_at_initial_offset
))
2357 /* In this case, find_reloads would attempt to either use an
2358 incorrect address (if something is not at its initial offset)
2359 or substitute an replaced address into an insn (which loses
2360 if the offset is changed by some later action). So we simply
2361 return the replaced stack slot (assuming it is changed by
2362 elimination) and ignore the fact that this is actually a
2363 reference to the pseudo. Ensure we make a copy of the
2364 address in case it is shared. */
2365 new = eliminate_regs (reg_equiv_memory_loc
[regno
], mem_mode
, 0);
2366 if (new != reg_equiv_memory_loc
[regno
])
2367 return copy_rtx (new);
2372 /* If this is the sum of an eliminable register and a constant, rework
2374 if (GET_CODE (XEXP (x
, 0)) == REG
2375 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2376 && CONSTANT_P (XEXP (x
, 1)))
2378 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
2380 if (ep
->from_rtx
== XEXP (x
, 0) && ep
->can_eliminate
)
2383 ep
->ref_outside_mem
= 1;
2385 /* The only time we want to replace a PLUS with a REG (this
2386 occurs when the constant operand of the PLUS is the negative
2387 of the offset) is when we are inside a MEM. We won't want
2388 to do so at other times because that would change the
2389 structure of the insn in a way that reload can't handle.
2390 We special-case the commonest situation in
2391 eliminate_regs_in_insn, so just replace a PLUS with a
2392 PLUS here, unless inside a MEM. */
2393 if (mem_mode
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
2394 && INTVAL (XEXP (x
, 1)) == - ep
->previous_offset
)
2397 return gen_rtx (PLUS
, Pmode
, ep
->to_rtx
,
2398 plus_constant (XEXP (x
, 1),
2399 ep
->previous_offset
));
2402 /* If the register is not eliminable, we are done since the other
2403 operand is a constant. */
2407 /* If this is part of an address, we want to bring any constant to the
2408 outermost PLUS. We will do this by doing register replacement in
2409 our operands and seeing if a constant shows up in one of them.
2411 We assume here this is part of an address (or a "load address" insn)
2412 since an eliminable register is not likely to appear in any other
2415 If we have (plus (eliminable) (reg)), we want to produce
2416 (plus (plus (replacement) (reg) (const))). If this was part of a
2417 normal add insn, (plus (replacement) (reg)) will be pushed as a
2418 reload. This is the desired action. */
2421 rtx new0
= eliminate_regs (XEXP (x
, 0), mem_mode
, 0);
2422 rtx new1
= eliminate_regs (XEXP (x
, 1), mem_mode
, 0);
2424 if (new0
!= XEXP (x
, 0) || new1
!= XEXP (x
, 1))
2426 /* If one side is a PLUS and the other side is a pseudo that
2427 didn't get a hard register but has a reg_equiv_constant,
2428 we must replace the constant here since it may no longer
2429 be in the position of any operand. */
2430 if (GET_CODE (new0
) == PLUS
&& GET_CODE (new1
) == REG
2431 && REGNO (new1
) >= FIRST_PSEUDO_REGISTER
2432 && reg_renumber
[REGNO (new1
)] < 0
2433 && reg_equiv_constant
!= 0
2434 && reg_equiv_constant
[REGNO (new1
)] != 0)
2435 new1
= reg_equiv_constant
[REGNO (new1
)];
2436 else if (GET_CODE (new1
) == PLUS
&& GET_CODE (new0
) == REG
2437 && REGNO (new0
) >= FIRST_PSEUDO_REGISTER
2438 && reg_renumber
[REGNO (new0
)] < 0
2439 && reg_equiv_constant
[REGNO (new0
)] != 0)
2440 new0
= reg_equiv_constant
[REGNO (new0
)];
2442 new = form_sum (new0
, new1
);
2444 /* As above, if we are not inside a MEM we do not want to
2445 turn a PLUS into something else. We might try to do so here
2446 for an addition of 0 if we aren't optimizing. */
2447 if (! mem_mode
&& GET_CODE (new) != PLUS
)
2448 return gen_rtx (PLUS
, GET_MODE (x
), new, const0_rtx
);
2456 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2459 new = eliminate_regs (XEXP (x
, 0), mem_mode
, 0);
2460 if (new != XEXP (x
, 0))
2461 x
= gen_rtx (EXPR_LIST
, REG_NOTE_KIND (x
), new, XEXP (x
, 1));
2464 /* ... fall through ... */
2467 /* Now do eliminations in the rest of the chain. If this was
2468 an EXPR_LIST, this might result in allocating more memory than is
2469 strictly needed, but it simplifies the code. */
2472 new = eliminate_regs (XEXP (x
, 1), mem_mode
, 0);
2473 if (new != XEXP (x
, 1))
2474 return gen_rtx (INSN_LIST
, GET_MODE (x
), XEXP (x
, 0), new);
2482 case DIV
: case UDIV
:
2483 case MOD
: case UMOD
:
2484 case AND
: case IOR
: case XOR
:
2485 case LSHIFT
: case ASHIFT
: case ROTATE
:
2486 case ASHIFTRT
: case LSHIFTRT
: case ROTATERT
:
2488 case GE
: case GT
: case GEU
: case GTU
:
2489 case LE
: case LT
: case LEU
: case LTU
:
2491 rtx new0
= eliminate_regs (XEXP (x
, 0), mem_mode
, 0);
2492 rtx new1
= XEXP (x
, 1) ? eliminate_regs (XEXP (x
, 1), mem_mode
, 0) : 0;
2494 if (new0
!= XEXP (x
, 0) || new1
!= XEXP (x
, 1))
2495 return gen_rtx (code
, GET_MODE (x
), new0
, new1
);
2503 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
2504 if (ep
->to_rtx
== XEXP (x
, 0))
2506 if (code
== PRE_DEC
|| code
== POST_DEC
)
2507 ep
->offset
+= GET_MODE_SIZE (mem_mode
);
2509 ep
->offset
-= GET_MODE_SIZE (mem_mode
);
2512 /* Fall through to generic unary operation case. */
2514 case STRICT_LOW_PART
:
2516 case SIGN_EXTEND
: case ZERO_EXTEND
:
2517 case TRUNCATE
: case FLOAT_EXTEND
: case FLOAT_TRUNCATE
:
2518 case FLOAT
: case FIX
:
2519 case UNSIGNED_FIX
: case UNSIGNED_FLOAT
:
2523 new = eliminate_regs (XEXP (x
, 0), mem_mode
, 0);
2524 if (new != XEXP (x
, 0))
2525 return gen_rtx (code
, GET_MODE (x
), new);
2529 /* Similar to above processing, but preserve SUBREG_WORD.
2530 Convert (subreg (mem)) to (mem) if not paradoxical.
2531 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2532 pseudo didn't get a hard reg, we must replace this with the
2533 eliminated version of the memory location because push_reloads
2534 may do the replacement in certain circumstances. */
2535 if (GET_CODE (SUBREG_REG (x
)) == REG
2536 && (GET_MODE_SIZE (GET_MODE (x
))
2537 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
2538 && reg_equiv_memory_loc
!= 0
2539 && reg_equiv_memory_loc
[REGNO (SUBREG_REG (x
))] != 0)
2541 new = eliminate_regs (reg_equiv_memory_loc
[REGNO (SUBREG_REG (x
))],
2544 /* If we didn't change anything, we must retain the pseudo. */
2545 if (new == reg_equiv_memory_loc
[REGNO (SUBREG_REG (x
))])
2548 /* Otherwise, ensure NEW isn't shared in case we have to reload
2550 new = copy_rtx (new);
2553 new = eliminate_regs (SUBREG_REG (x
), mem_mode
, 0);
2555 if (new != XEXP (x
, 0))
2557 if (GET_CODE (new) == MEM
2558 && (GET_MODE_SIZE (GET_MODE (x
))
2559 <= GET_MODE_SIZE (GET_MODE (new))))
2561 int offset
= SUBREG_WORD (x
) * UNITS_PER_WORD
;
2562 enum machine_mode mode
= GET_MODE (x
);
2564 #if BYTES_BIG_ENDIAN
2565 offset
+= (MIN (UNITS_PER_WORD
,
2566 GET_MODE_SIZE (GET_MODE (new)))
2567 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
)));
2570 PUT_MODE (new, mode
);
2571 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset
);
2575 return gen_rtx (SUBREG
, GET_MODE (x
), new, SUBREG_WORD (x
));
2581 /* If clobbering a register that is the replacement register for an
2582 elimination we still think can be performed, note that it cannot
2583 be performed. Otherwise, we need not be concerned about it. */
2584 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
2585 if (ep
->to_rtx
== XEXP (x
, 0))
2586 ep
->can_eliminate
= 0;
2593 /* Properly handle sharing input and constraint vectors. */
2594 if (ASM_OPERANDS_INPUT_VEC (x
) != old_asm_operands_vec
)
2596 /* When we come to a new vector not seen before,
2597 scan all its elements; keep the old vector if none
2598 of them changes; otherwise, make a copy. */
2599 old_asm_operands_vec
= ASM_OPERANDS_INPUT_VEC (x
);
2600 temp_vec
= (rtx
*) alloca (XVECLEN (x
, 3) * sizeof (rtx
));
2601 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (x
); i
++)
2602 temp_vec
[i
] = eliminate_regs (ASM_OPERANDS_INPUT (x
, i
),
2605 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (x
); i
++)
2606 if (temp_vec
[i
] != ASM_OPERANDS_INPUT (x
, i
))
2609 if (i
== ASM_OPERANDS_INPUT_LENGTH (x
))
2610 new_asm_operands_vec
= old_asm_operands_vec
;
2612 new_asm_operands_vec
2613 = gen_rtvec_v (ASM_OPERANDS_INPUT_LENGTH (x
), temp_vec
);
2616 /* If we had to copy the vector, copy the entire ASM_OPERANDS. */
2617 if (new_asm_operands_vec
== old_asm_operands_vec
)
2620 new = gen_rtx (ASM_OPERANDS
, VOIDmode
, ASM_OPERANDS_TEMPLATE (x
),
2621 ASM_OPERANDS_OUTPUT_CONSTRAINT (x
),
2622 ASM_OPERANDS_OUTPUT_IDX (x
), new_asm_operands_vec
,
2623 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (x
),
2624 ASM_OPERANDS_SOURCE_FILE (x
),
2625 ASM_OPERANDS_SOURCE_LINE (x
));
2626 new->volatil
= x
->volatil
;
2631 /* Check for setting a register that we know about. */
2632 if (GET_CODE (SET_DEST (x
)) == REG
)
2634 /* See if this is setting the replacement register for an
2637 If DEST is the frame pointer, we do nothing because we assume that
2638 all assignments to the frame pointer are for non-local gotos and
2639 are being done at a time when they are valid and do not disturb
2640 anything else. Some machines want to eliminate a fake argument
2641 pointer with either the frame or stack pointer. Assignments to
2642 the frame pointer must not prevent this elimination. */
2644 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
2646 if (ep
->to_rtx
== SET_DEST (x
)
2647 && SET_DEST (x
) != frame_pointer_rtx
)
2649 /* If it is being incremented, adjust the offset. Otherwise,
2650 this elimination can't be done. */
2651 rtx src
= SET_SRC (x
);
2653 if (GET_CODE (src
) == PLUS
2654 && XEXP (src
, 0) == SET_DEST (x
)
2655 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
2656 ep
->offset
-= INTVAL (XEXP (src
, 1));
2658 ep
->can_eliminate
= 0;
2661 /* Now check to see we are assigning to a register that can be
2662 eliminated. If so, it must be as part of a PARALLEL, since we
2663 will not have been called if this is a single SET. So indicate
2664 that we can no longer eliminate this reg. */
2665 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
2667 if (ep
->from_rtx
== SET_DEST (x
) && ep
->can_eliminate
)
2668 ep
->can_eliminate
= 0;
2671 /* Now avoid the loop below in this common case. */
2673 rtx new0
= eliminate_regs (SET_DEST (x
), 0, 0);
2674 rtx new1
= eliminate_regs (SET_SRC (x
), 0, 0);
2676 /* If SET_DEST changed from a REG to a MEM and INSN is non-zero,
2677 write a CLOBBER insn. */
2678 if (GET_CODE (SET_DEST (x
)) == REG
&& GET_CODE (new0
) == MEM
2680 emit_insn_after (gen_rtx (CLOBBER
, VOIDmode
, SET_DEST (x
)), insn
);
2682 if (new0
!= SET_DEST (x
) || new1
!= SET_SRC (x
))
2683 return gen_rtx (SET
, VOIDmode
, new0
, new1
);
2689 /* Our only special processing is to pass the mode of the MEM to our
2690 recursive call and copy the flags. While we are here, handle this
2691 case more efficiently. */
2692 new = eliminate_regs (XEXP (x
, 0), GET_MODE (x
), 0);
2693 if (new != XEXP (x
, 0))
2695 new = gen_rtx (MEM
, GET_MODE (x
), new);
2696 new->volatil
= x
->volatil
;
2697 new->unchanging
= x
->unchanging
;
2698 new->in_struct
= x
->in_struct
;
2705 /* Process each of our operands recursively. If any have changed, make a
2707 fmt
= GET_RTX_FORMAT (code
);
2708 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
2712 new = eliminate_regs (XEXP (x
, i
), mem_mode
, 0);
2713 if (new != XEXP (x
, i
) && ! copied
)
2715 rtx new_x
= rtx_alloc (code
);
2716 bcopy (x
, new_x
, (sizeof (*new_x
) - sizeof (new_x
->fld
)
2717 + (sizeof (new_x
->fld
[0])
2718 * GET_RTX_LENGTH (code
))));
2724 else if (*fmt
== 'E')
2727 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2729 new = eliminate_regs (XVECEXP (x
, i
, j
), mem_mode
, insn
);
2730 if (new != XVECEXP (x
, i
, j
) && ! copied_vec
)
2732 rtvec new_v
= gen_rtvec_v (XVECLEN (x
, i
),
2733 &XVECEXP (x
, i
, 0));
2736 rtx new_x
= rtx_alloc (code
);
2737 bcopy (x
, new_x
, (sizeof (*new_x
) - sizeof (new_x
->fld
)
2738 + (sizeof (new_x
->fld
[0])
2739 * GET_RTX_LENGTH (code
))));
2743 XVEC (x
, i
) = new_v
;
2746 XVECEXP (x
, i
, j
) = new;
2754 /* Scan INSN and eliminate all eliminable registers in it.
2756 If REPLACE is nonzero, do the replacement destructively. Also
2757 delete the insn as dead it if it is setting an eliminable register.
2759 If REPLACE is zero, do all our allocations in reload_obstack.
2761 If no eliminations were done and this insn doesn't require any elimination
2762 processing (these are not identical conditions: it might be updating sp,
2763 but not referencing fp; this needs to be seen during reload_as_needed so
2764 that the offset between fp and sp can be taken into consideration), zero
2765 is returned. Otherwise, 1 is returned. */
2768 eliminate_regs_in_insn (insn
, replace
)
2772 rtx old_body
= PATTERN (insn
);
2775 struct elim_table
*ep
;
2778 push_obstacks (&reload_obstack
, &reload_obstack
);
2780 if (GET_CODE (old_body
) == SET
&& GET_CODE (SET_DEST (old_body
)) == REG
2781 && REGNO (SET_DEST (old_body
)) < FIRST_PSEUDO_REGISTER
)
2783 /* Check for setting an eliminable register. */
2784 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
2785 if (ep
->from_rtx
== SET_DEST (old_body
) && ep
->can_eliminate
)
2787 /* In this case this insn isn't serving a useful purpose. We
2788 will delete it in reload_as_needed once we know that this
2789 elimination is, in fact, being done.
2791 If REPLACE isn't set, we can't delete this insn, but neededn't
2792 process it since it won't be used unless something changes. */
2794 delete_dead_insn (insn
);
2799 /* Check for (set (reg) (plus (reg from) (offset))) where the offset
2800 in the insn is the negative of the offset in FROM. Substitute
2801 (set (reg) (reg to)) for the insn and change its code.
2803 We have to do this here, rather than in eliminate_regs, do that we can
2804 change the insn code. */
2806 if (GET_CODE (SET_SRC (old_body
)) == PLUS
2807 && GET_CODE (XEXP (SET_SRC (old_body
), 0)) == REG
2808 && GET_CODE (XEXP (SET_SRC (old_body
), 1)) == CONST_INT
)
2809 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
2811 if (ep
->from_rtx
== XEXP (SET_SRC (old_body
), 0)
2812 && ep
->can_eliminate
2813 && ep
->offset
== - INTVAL (XEXP (SET_SRC (old_body
), 1)))
2815 PATTERN (insn
) = gen_rtx (SET
, VOIDmode
,
2816 SET_DEST (old_body
), ep
->to_rtx
);
2817 INSN_CODE (insn
) = -1;
2823 old_asm_operands_vec
= 0;
2825 /* Replace the body of this insn with a substituted form. If we changed
2826 something, return non-zero. If this is the final call for this
2827 insn (REPLACE is non-zero), do the elimination in REG_NOTES as well.
2829 If we are replacing a body that was a (set X (plus Y Z)), try to
2830 re-recognize the insn. We do this in case we had a simple addition
2831 but now can do this as a load-address. This saves an insn in this
2834 new_body
= eliminate_regs (old_body
, 0, replace
? insn
: 0);
2835 if (new_body
!= old_body
)
2837 if (GET_CODE (old_body
) != SET
|| GET_CODE (SET_SRC (old_body
)) != PLUS
2838 || ! validate_change (insn
, &PATTERN (insn
), new_body
, 0))
2839 PATTERN (insn
) = new_body
;
2841 if (replace
&& REG_NOTES (insn
))
2842 REG_NOTES (insn
) = eliminate_regs (REG_NOTES (insn
), 0, 0);
2846 /* Loop through all elimination pairs. See if any have changed and
2847 recalculate the number not at initial offset.
2849 Compute the maximum offset (minimum offset if the stack does not
2850 grow downward) for each elimination pair.
2852 We also detect a cases where register elimination cannot be done,
2853 namely, if a register would be both changed and referenced outside a MEM
2854 in the resulting insn since such an insn is often undefined and, even if
2855 not, we cannot know what meaning will be given to it. Note that it is
2856 valid to have a register used in an address in an insn that changes it
2857 (presumably with a pre- or post-increment or decrement).
2859 If anything changes, return nonzero. */
2861 num_not_at_initial_offset
= 0;
2862 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
2864 if (ep
->previous_offset
!= ep
->offset
&& ep
->ref_outside_mem
)
2865 ep
->can_eliminate
= 0;
2867 ep
->ref_outside_mem
= 0;
2869 if (ep
->previous_offset
!= ep
->offset
)
2872 ep
->previous_offset
= ep
->offset
;
2873 if (ep
->can_eliminate
&& ep
->offset
!= ep
->initial_offset
)
2874 num_not_at_initial_offset
++;
2876 #ifdef STACK_GROWS_DOWNWARD
2877 ep
->max_offset
= MAX (ep
->max_offset
, ep
->offset
);
2879 ep
->max_offset
= MIN (ep
->max_offset
, ep
->offset
);
2890 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
2891 replacement we currently believe is valid, mark it as not eliminable if X
2892 modifies DEST in any way other than by adding a constant integer to it.
2894 If DEST is the frame pointer, we do nothing because we assume that
2895 all assignments to the frame pointer are nonlocal gotos and are being done
2896 at a time when they are valid and do not disturb anything else.
2897 Some machines want to eliminate a fake argument pointer with either the
2898 frame or stack pointer. Assignments to the frame pointer must not prevent
2901 Called via note_stores from reload before starting its passes to scan
2902 the insns of the function. */
2905 mark_not_eliminable (dest
, x
)
2911 /* A SUBREG of a hard register here is just changing its mode. We should
2912 not see a SUBREG of an eliminable hard register, but check just in
2914 if (GET_CODE (dest
) == SUBREG
)
2915 dest
= SUBREG_REG (dest
);
2917 if (dest
== frame_pointer_rtx
)
2920 for (i
= 0; i
< NUM_ELIMINABLE_REGS
; i
++)
2921 if (reg_eliminate
[i
].can_eliminate
&& dest
== reg_eliminate
[i
].to_rtx
2922 && (GET_CODE (x
) != SET
2923 || GET_CODE (SET_SRC (x
)) != PLUS
2924 || XEXP (SET_SRC (x
), 0) != dest
2925 || GET_CODE (XEXP (SET_SRC (x
), 1)) != CONST_INT
))
2927 reg_eliminate
[i
].can_eliminate_previous
2928 = reg_eliminate
[i
].can_eliminate
= 0;
2933 /* Kick all pseudos out of hard register REGNO.
2934 If GLOBAL is nonzero, try to find someplace else to put them.
2935 If DUMPFILE is nonzero, log actions taken on that file.
2937 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
2938 because we found we can't eliminate some register. In the case, no pseudos
2939 are allowed to be in the register, even if they are only in a block that
2940 doesn't require spill registers, unlike the case when we are spilling this
2941 hard reg to produce another spill register.
2943 Return nonzero if any pseudos needed to be kicked out. */
2946 spill_hard_reg (regno
, global
, dumpfile
, cant_eliminate
)
2952 int something_changed
= 0;
2955 SET_HARD_REG_BIT (forbidden_regs
, regno
);
2957 /* Spill every pseudo reg that was allocated to this reg
2958 or to something that overlaps this reg. */
2960 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
2961 if (reg_renumber
[i
] >= 0
2962 && reg_renumber
[i
] <= regno
2964 + HARD_REGNO_NREGS (reg_renumber
[i
],
2965 PSEUDO_REGNO_MODE (i
))
2968 enum reg_class
class = REGNO_REG_CLASS (regno
);
2970 /* If this register belongs solely to a basic block which needed no
2971 spilling of any class that this register is contained in,
2972 leave it be, unless we are spilling this register because
2973 it was a hard register that can't be eliminated. */
2975 if (! cant_eliminate
2976 && basic_block_needs
[0]
2977 && reg_basic_block
[i
] >= 0
2978 && basic_block_needs
[(int) class][reg_basic_block
[i
]] == 0)
2982 for (p
= reg_class_superclasses
[(int) class];
2983 *p
!= LIM_REG_CLASSES
; p
++)
2984 if (basic_block_needs
[(int) *p
][reg_basic_block
[i
]] > 0)
2987 if (*p
== LIM_REG_CLASSES
)
2991 /* Mark it as no longer having a hard register home. */
2992 reg_renumber
[i
] = -1;
2993 /* We will need to scan everything again. */
2994 something_changed
= 1;
2996 retry_global_alloc (i
, forbidden_regs
);
2998 alter_reg (i
, regno
);
3001 if (reg_renumber
[i
] == -1)
3002 fprintf (dumpfile
, " Register %d now on stack.\n\n", i
);
3004 fprintf (dumpfile
, " Register %d now in %d.\n\n",
3005 i
, reg_renumber
[i
]);
3009 return something_changed
;
3012 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
3015 scan_paradoxical_subregs (x
)
3020 register enum rtx_code code
= GET_CODE (x
);
3037 if (GET_CODE (SUBREG_REG (x
)) == REG
3038 && GET_MODE_SIZE (GET_MODE (x
)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
3039 reg_max_ref_width
[REGNO (SUBREG_REG (x
))]
3040 = GET_MODE_SIZE (GET_MODE (x
));
3044 fmt
= GET_RTX_FORMAT (code
);
3045 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3048 scan_paradoxical_subregs (XEXP (x
, i
));
3049 else if (fmt
[i
] == 'E')
3052 for (j
= XVECLEN (x
, i
) - 1; j
>=0; j
--)
3053 scan_paradoxical_subregs (XVECEXP (x
, i
, j
));
3058 struct hard_reg_n_uses
{ int regno
; int uses
; };
3061 hard_reg_use_compare (p1
, p2
)
3062 struct hard_reg_n_uses
*p1
, *p2
;
3064 int tem
= p1
->uses
- p2
->uses
;
3065 if (tem
!= 0) return tem
;
3066 /* If regs are equally good, sort by regno,
3067 so that the results of qsort leave nothing to chance. */
3068 return p1
->regno
- p2
->regno
;
3071 /* Choose the order to consider regs for use as reload registers
3072 based on how much trouble would be caused by spilling one.
3073 Store them in order of decreasing preference in potential_reload_regs. */
3076 order_regs_for_reload ()
3082 struct hard_reg_n_uses hard_reg_n_uses
[FIRST_PSEUDO_REGISTER
];
3084 CLEAR_HARD_REG_SET (bad_spill_regs
);
3086 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3087 potential_reload_regs
[i
] = -1;
3089 /* Count number of uses of each hard reg by pseudo regs allocated to it
3090 and then order them by decreasing use. */
3092 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3094 hard_reg_n_uses
[i
].uses
= 0;
3095 hard_reg_n_uses
[i
].regno
= i
;
3098 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
3100 int regno
= reg_renumber
[i
];
3103 int lim
= regno
+ HARD_REGNO_NREGS (regno
, PSEUDO_REGNO_MODE (i
));
3105 hard_reg_n_uses
[regno
++].uses
+= reg_n_refs
[i
];
3107 large
+= reg_n_refs
[i
];
3110 /* Now fixed registers (which cannot safely be used for reloading)
3111 get a very high use count so they will be considered least desirable.
3112 Registers used explicitly in the rtl code are almost as bad. */
3114 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3118 hard_reg_n_uses
[i
].uses
+= 2 * large
+ 2;
3119 SET_HARD_REG_BIT (bad_spill_regs
, i
);
3121 else if (regs_explicitly_used
[i
])
3123 hard_reg_n_uses
[i
].uses
+= large
+ 1;
3124 /* ??? We are doing this here because of the potential that
3125 bad code may be generated if a register explicitly used in
3126 an insn was used as a spill register for that insn. But
3127 not using these are spill registers may lose on some machine.
3128 We'll have to see how this works out. */
3129 SET_HARD_REG_BIT (bad_spill_regs
, i
);
3132 hard_reg_n_uses
[FRAME_POINTER_REGNUM
].uses
+= 2 * large
+ 2;
3133 SET_HARD_REG_BIT (bad_spill_regs
, FRAME_POINTER_REGNUM
);
3135 #ifdef ELIMINABLE_REGS
3136 /* If registers other than the frame pointer are eliminable, mark them as
3138 for (i
= 0; i
< NUM_ELIMINABLE_REGS
; i
++)
3140 hard_reg_n_uses
[reg_eliminate
[i
].from
].uses
+= 2 * large
+ 2;
3141 SET_HARD_REG_BIT (bad_spill_regs
, reg_eliminate
[i
].from
);
3145 /* Prefer registers not so far used, for use in temporary loading.
3146 Among them, if REG_ALLOC_ORDER is defined, use that order.
3147 Otherwise, prefer registers not preserved by calls. */
3149 #ifdef REG_ALLOC_ORDER
3150 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3152 int regno
= reg_alloc_order
[i
];
3154 if (hard_reg_n_uses
[regno
].uses
== 0)
3155 potential_reload_regs
[o
++] = regno
;
3158 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3160 if (hard_reg_n_uses
[i
].uses
== 0 && call_used_regs
[i
])
3161 potential_reload_regs
[o
++] = i
;
3163 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3165 if (hard_reg_n_uses
[i
].uses
== 0 && ! call_used_regs
[i
])
3166 potential_reload_regs
[o
++] = i
;
3170 qsort (hard_reg_n_uses
, FIRST_PSEUDO_REGISTER
,
3171 sizeof hard_reg_n_uses
[0], hard_reg_use_compare
);
3173 /* Now add the regs that are already used,
3174 preferring those used less often. The fixed and otherwise forbidden
3175 registers will be at the end of this list. */
3177 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3178 if (hard_reg_n_uses
[i
].uses
!= 0)
3179 potential_reload_regs
[o
++] = hard_reg_n_uses
[i
].regno
;
3182 /* Reload pseudo-registers into hard regs around each insn as needed.
3183 Additional register load insns are output before the insn that needs it
3184 and perhaps store insns after insns that modify the reloaded pseudo reg.
3186 reg_last_reload_reg and reg_reloaded_contents keep track of
3187 which pseudo-registers are already available in reload registers.
3188 We update these for the reloads that we perform,
3189 as the insns are scanned. */
3192 reload_as_needed (first
, live_known
)
3202 bzero (spill_reg_rtx
, sizeof spill_reg_rtx
);
3203 reg_last_reload_reg
= (rtx
*) alloca (max_regno
* sizeof (rtx
));
3204 bzero (reg_last_reload_reg
, max_regno
* sizeof (rtx
));
3205 reg_has_output_reload
= (char *) alloca (max_regno
);
3206 for (i
= 0; i
< n_spills
; i
++)
3208 reg_reloaded_contents
[i
] = -1;
3209 reg_reloaded_insn
[i
] = 0;
3212 /* Reset all offsets on eliminable registers to their initial values. */
3213 #ifdef ELIMINABLE_REGS
3214 for (i
= 0; i
< NUM_ELIMINABLE_REGS
; i
++)
3216 INITIAL_ELIMINATION_OFFSET (reg_eliminate
[i
].from
, reg_eliminate
[i
].to
,
3217 reg_eliminate
[i
].initial_offset
)
3218 reg_eliminate
[i
].previous_offset
3219 = reg_eliminate
[i
].offset
= reg_eliminate
[i
].initial_offset
;
3222 INITIAL_FRAME_POINTER_OFFSET (reg_eliminate
[0].initial_offset
);
3223 reg_eliminate
[0].previous_offset
3224 = reg_eliminate
[0].offset
= reg_eliminate
[0].initial_offset
;
3227 num_not_at_initial_offset
= 0;
3229 for (insn
= first
; insn
;)
3231 register rtx next
= NEXT_INSN (insn
);
3233 /* Notice when we move to a new basic block. */
3234 if (live_known
&& this_block
+ 1 < n_basic_blocks
3235 && insn
== basic_block_head
[this_block
+1])
3238 /* If we pass a label, copy the offsets from the label information
3239 into the current offsets of each elimination. */
3240 if (GET_CODE (insn
) == CODE_LABEL
)
3242 num_not_at_initial_offset
= 0;
3243 for (i
= 0; i
< NUM_ELIMINABLE_REGS
; i
++)
3245 reg_eliminate
[i
].offset
= reg_eliminate
[i
].previous_offset
3246 = offsets_at
[CODE_LABEL_NUMBER (insn
)][i
];
3247 if (reg_eliminate
[i
].can_eliminate
3248 && (reg_eliminate
[i
].offset
3249 != reg_eliminate
[i
].initial_offset
))
3250 num_not_at_initial_offset
++;
3254 else if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
3256 rtx avoid_return_reg
= 0;
3258 #ifdef SMALL_REGISTER_CLASSES
3259 /* Set avoid_return_reg if this is an insn
3260 that might use the value of a function call. */
3261 if (GET_CODE (insn
) == CALL_INSN
)
3263 if (GET_CODE (PATTERN (insn
)) == SET
)
3264 after_call
= SET_DEST (PATTERN (insn
));
3265 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
3266 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
3267 after_call
= SET_DEST (XVECEXP (PATTERN (insn
), 0, 0));
3271 else if (after_call
!= 0
3272 && !(GET_CODE (PATTERN (insn
)) == SET
3273 && SET_DEST (PATTERN (insn
)) == stack_pointer_rtx
))
3275 if (reg_mentioned_p (after_call
, PATTERN (insn
)))
3276 avoid_return_reg
= after_call
;
3279 #endif /* SMALL_REGISTER_CLASSES */
3281 /* If this is a USE and CLOBBER of a MEM, ensure that any
3282 references to eliminable registers have been removed. */
3284 if ((GET_CODE (PATTERN (insn
)) == USE
3285 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
3286 && GET_CODE (XEXP (PATTERN (insn
), 0)) == MEM
)
3287 XEXP (XEXP (PATTERN (insn
), 0), 0)
3288 = eliminate_regs (XEXP (XEXP (PATTERN (insn
), 0), 0),
3289 GET_MODE (XEXP (PATTERN (insn
), 0)), 0);
3291 /* If we need to do register elimination processing, do so.
3292 This might delete the insn, in which case we are done. */
3293 if (num_eliminable
&& GET_MODE (insn
) == QImode
)
3295 eliminate_regs_in_insn (insn
, 1);
3296 if (GET_CODE (insn
) == NOTE
)
3303 if (GET_MODE (insn
) == VOIDmode
)
3305 /* First find the pseudo regs that must be reloaded for this insn.
3306 This info is returned in the tables reload_... (see reload.h).
3307 Also modify the body of INSN by substituting RELOAD
3308 rtx's for those pseudo regs. */
3311 bzero (reg_has_output_reload
, max_regno
);
3312 CLEAR_HARD_REG_SET (reg_is_output_reload
);
3314 find_reloads (insn
, 1, spill_indirect_levels
, live_known
,
3322 /* If this block has not had spilling done for a
3323 particular class, deactivate any optional reloads
3324 of that class lest they try to use a spill-reg which isn't
3325 available here. If we have any non-optionals that need a
3326 spill reg, abort. */
3328 for (class = 0; class < N_REG_CLASSES
; class++)
3329 if (basic_block_needs
[class] != 0
3330 && basic_block_needs
[class][this_block
] == 0)
3331 for (i
= 0; i
< n_reloads
; i
++)
3332 if (class == (int) reload_reg_class
[i
])
3334 if (reload_optional
[i
])
3335 reload_in
[i
] = reload_out
[i
] = reload_reg_rtx
[i
] = 0;
3336 else if (reload_reg_rtx
[i
] == 0)
3340 /* Now compute which reload regs to reload them into. Perhaps
3341 reusing reload regs from previous insns, or else output
3342 load insns to reload them. Maybe output store insns too.
3343 Record the choices of reload reg in reload_reg_rtx. */
3344 choose_reload_regs (insn
, avoid_return_reg
);
3346 /* Generate the insns to reload operands into or out of
3347 their reload regs. */
3348 emit_reload_insns (insn
);
3350 /* Substitute the chosen reload regs from reload_reg_rtx
3351 into the insn's body (or perhaps into the bodies of other
3352 load and store insn that we just made for reloading
3353 and that we moved the structure into). */
3356 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3357 is no longer validly lying around to save a future reload.
3358 Note that this does not detect pseudos that were reloaded
3359 for this insn in order to be stored in
3360 (obeying register constraints). That is correct; such reload
3361 registers ARE still valid. */
3362 note_stores (PATTERN (insn
), forget_old_reloads_1
);
3364 /* There may have been CLOBBER insns placed after INSN. So scan
3365 between INSN and NEXT and use them to forget old reloads. */
3366 for (x
= NEXT_INSN (insn
); x
!= next
; x
= NEXT_INSN (x
))
3367 if (GET_CODE (x
) == INSN
&& GET_CODE (PATTERN (x
)) == CLOBBER
)
3368 note_stores (PATTERN (x
), forget_old_reloads_1
);
3371 /* Likewise for regs altered by auto-increment in this insn.
3372 But note that the reg-notes are not changed by reloading:
3373 they still contain the pseudo-regs, not the spill regs. */
3374 for (x
= REG_NOTES (insn
); x
; x
= XEXP (x
, 1))
3375 if (REG_NOTE_KIND (x
) == REG_INC
)
3377 /* See if this pseudo reg was reloaded in this insn.
3378 If so, its last-reload info is still valid
3379 because it is based on this insn's reload. */
3380 for (i
= 0; i
< n_reloads
; i
++)
3381 if (reload_out
[i
] == XEXP (x
, 0))
3385 forget_old_reloads_1 (XEXP (x
, 0));
3389 /* A reload reg's contents are unknown after a label. */
3390 if (GET_CODE (insn
) == CODE_LABEL
)
3391 for (i
= 0; i
< n_spills
; i
++)
3393 reg_reloaded_contents
[i
] = -1;
3394 reg_reloaded_insn
[i
] = 0;
3397 /* Don't assume a reload reg is still good after a call insn
3398 if it is a call-used reg. */
3399 if (GET_CODE (insn
) == CODE_LABEL
|| GET_CODE (insn
) == CALL_INSN
)
3400 for (i
= 0; i
< n_spills
; i
++)
3401 if (call_used_regs
[spill_regs
[i
]])
3403 reg_reloaded_contents
[i
] = -1;
3404 reg_reloaded_insn
[i
] = 0;
3407 /* In case registers overlap, allow certain insns to invalidate
3408 particular hard registers. */
3410 #ifdef INSN_CLOBBERS_REGNO_P
3411 for (i
= 0 ; i
< n_spills
; i
++)
3412 if (INSN_CLOBBERS_REGNO_P (insn
, spill_regs
[i
]))
3414 reg_reloaded_contents
[i
] = -1;
3415 reg_reloaded_insn
[i
] = 0;
3427 /* Discard all record of any value reloaded from X,
3428 or reloaded in X from someplace else;
3429 unless X is an output reload reg of the current insn.
3431 X may be a hard reg (the reload reg)
3432 or it may be a pseudo reg that was reloaded from. */
3435 forget_old_reloads_1 (x
)
3441 if (GET_CODE (x
) != REG
)
3446 if (regno
>= FIRST_PSEUDO_REGISTER
)
3451 nr
= HARD_REGNO_NREGS (regno
, GET_MODE (x
));
3452 /* Storing into a spilled-reg invalidates its contents.
3453 This can happen if a block-local pseudo is allocated to that reg
3454 and it wasn't spilled because this block's total need is 0.
3455 Then some insn might have an optional reload and use this reg. */
3456 for (i
= 0; i
< nr
; i
++)
3457 if (spill_reg_order
[regno
+ i
] >= 0
3458 /* But don't do this if the reg actually serves as an output
3459 reload reg in the current instruction. */
3461 || ! TEST_HARD_REG_BIT (reg_is_output_reload
, regno
+ i
)))
3463 reg_reloaded_contents
[spill_reg_order
[regno
+ i
]] = -1;
3464 reg_reloaded_insn
[spill_reg_order
[regno
+ i
]] = 0;
3468 /* Since value of X has changed,
3469 forget any value previously copied from it. */
3472 /* But don't forget a copy if this is the output reload
3473 that establishes the copy's validity. */
3474 if (n_reloads
== 0 || reg_has_output_reload
[regno
+ nr
] == 0)
3475 reg_last_reload_reg
[regno
+ nr
] = 0;
3478 /* For each reload, the mode of the reload register. */
3479 static enum machine_mode reload_mode
[MAX_RELOADS
];
3481 /* For each reload, the largest number of registers it will require. */
3482 static int reload_nregs
[MAX_RELOADS
];
3484 /* Comparison function for qsort to decide which of two reloads
3485 should be handled first. *P1 and *P2 are the reload numbers. */
3488 reload_reg_class_lower (p1
, p2
)
3491 register int r1
= *p1
, r2
= *p2
;
3494 /* Consider required reloads before optional ones. */
3495 t
= reload_optional
[r1
] - reload_optional
[r2
];
3499 /* Count all solitary classes before non-solitary ones. */
3500 t
= ((reg_class_size
[(int) reload_reg_class
[r2
]] == 1)
3501 - (reg_class_size
[(int) reload_reg_class
[r1
]] == 1));
3505 /* Aside from solitaires, consider all multi-reg groups first. */
3506 t
= reload_nregs
[r2
] - reload_nregs
[r1
];
3510 /* Consider reloads in order of increasing reg-class number. */
3511 t
= (int) reload_reg_class
[r1
] - (int) reload_reg_class
[r2
];
3515 /* If reloads are equally urgent, sort by reload number,
3516 so that the results of qsort leave nothing to chance. */
3520 /* The following HARD_REG_SETs indicate when each hard register is
3521 used for a reload of various parts of the current insn. */
3523 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
3524 static HARD_REG_SET reload_reg_used
;
3525 /* If reg is in use for a RELOAD_FOR_INPUT_RELOAD_ADDRESS reload. */
3526 static HARD_REG_SET reload_reg_used_in_input_addr
;
3527 /* If reg is in use for a RELOAD_FOR_OUTPUT_RELOAD_ADDRESS reload. */
3528 static HARD_REG_SET reload_reg_used_in_output_addr
;
3529 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
3530 static HARD_REG_SET reload_reg_used_in_op_addr
;
3531 /* If reg is in use for a RELOAD_FOR_INPUT reload. */
3532 static HARD_REG_SET reload_reg_used_in_input
;
3533 /* If reg is in use for a RELOAD_FOR_OUTPUT reload. */
3534 static HARD_REG_SET reload_reg_used_in_output
;
3536 /* If reg is in use as a reload reg for any sort of reload. */
3537 static HARD_REG_SET reload_reg_used_at_all
;
3539 /* Mark reg REGNO as in use for a reload of the sort spec'd by WHEN_NEEDED.
3540 MODE is used to indicate how many consecutive regs are actually used. */
3543 mark_reload_reg_in_use (regno
, when_needed
, mode
)
3545 enum reload_when_needed when_needed
;
3546 enum machine_mode mode
;
3548 int nregs
= HARD_REGNO_NREGS (regno
, mode
);
3551 for (i
= regno
; i
< nregs
+ regno
; i
++)
3553 switch (when_needed
)
3556 SET_HARD_REG_BIT (reload_reg_used
, i
);
3559 case RELOAD_FOR_INPUT_RELOAD_ADDRESS
:
3560 SET_HARD_REG_BIT (reload_reg_used_in_input_addr
, i
);
3563 case RELOAD_FOR_OUTPUT_RELOAD_ADDRESS
:
3564 SET_HARD_REG_BIT (reload_reg_used_in_output_addr
, i
);
3567 case RELOAD_FOR_OPERAND_ADDRESS
:
3568 SET_HARD_REG_BIT (reload_reg_used_in_op_addr
, i
);
3571 case RELOAD_FOR_INPUT
:
3572 SET_HARD_REG_BIT (reload_reg_used_in_input
, i
);
3575 case RELOAD_FOR_OUTPUT
:
3576 SET_HARD_REG_BIT (reload_reg_used_in_output
, i
);
3580 SET_HARD_REG_BIT (reload_reg_used_at_all
, i
);
3584 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
3585 specified by WHEN_NEEDED. */
3588 reload_reg_free_p (regno
, when_needed
)
3590 enum reload_when_needed when_needed
;
3592 /* In use for a RELOAD_OTHER means it's not available for anything. */
3593 if (TEST_HARD_REG_BIT (reload_reg_used
, regno
))
3595 switch (when_needed
)
3598 /* In use for anything means not available for a RELOAD_OTHER. */
3599 return ! TEST_HARD_REG_BIT (reload_reg_used_at_all
, regno
);
3601 /* The other kinds of use can sometimes share a register. */
3602 case RELOAD_FOR_INPUT
:
3603 return (! TEST_HARD_REG_BIT (reload_reg_used_in_input
, regno
)
3604 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
)
3605 && ! TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
, regno
));
3606 case RELOAD_FOR_INPUT_RELOAD_ADDRESS
:
3607 return (! TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
, regno
)
3608 && ! TEST_HARD_REG_BIT (reload_reg_used_in_input
, regno
));
3609 case RELOAD_FOR_OUTPUT_RELOAD_ADDRESS
:
3610 return (! TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
, regno
)
3611 && ! TEST_HARD_REG_BIT (reload_reg_used_in_output
, regno
));
3612 case RELOAD_FOR_OPERAND_ADDRESS
:
3613 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
)
3614 && ! TEST_HARD_REG_BIT (reload_reg_used_in_input
, regno
)
3615 && ! TEST_HARD_REG_BIT (reload_reg_used_in_output
, regno
));
3616 case RELOAD_FOR_OUTPUT
:
3617 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
)
3618 && ! TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
, regno
)
3619 && ! TEST_HARD_REG_BIT (reload_reg_used_in_output
, regno
));
3624 /* Return 1 if the value in reload reg REGNO, as used by a reload
3625 needed for the part of the insn specified by WHEN_NEEDED,
3626 is not in use for a reload in any prior part of the insn.
3628 We can assume that the reload reg was already tested for availability
3629 at the time it is needed, and we should not check this again,
3630 in case the reg has already been marked in use. */
3633 reload_reg_free_before_p (regno
, when_needed
)
3635 enum reload_when_needed when_needed
;
3637 switch (when_needed
)
3640 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
3641 its use starts from the beginning, so nothing can use it earlier. */
3644 /* If this use is for part of the insn,
3645 check the reg is not in use for any prior part. */
3646 case RELOAD_FOR_OUTPUT_RELOAD_ADDRESS
:
3647 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
))
3649 case RELOAD_FOR_OUTPUT
:
3650 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
, regno
))
3652 case RELOAD_FOR_OPERAND_ADDRESS
:
3653 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
, regno
))
3655 case RELOAD_FOR_INPUT_RELOAD_ADDRESS
:
3656 case RELOAD_FOR_INPUT
:
3662 /* Return 1 if the value in reload reg REGNO, as used by a reload
3663 needed for the part of the insn specified by WHEN_NEEDED,
3664 is still available in REGNO at the end of the insn.
3666 We can assume that the reload reg was already tested for availability
3667 at the time it is needed, and we should not check this again,
3668 in case the reg has already been marked in use. */
3671 reload_reg_reaches_end_p (regno
, when_needed
)
3673 enum reload_when_needed when_needed
;
3675 switch (when_needed
)
3678 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
3679 its value must reach the end. */
3682 /* If this use is for part of the insn,
3683 its value reaches if no subsequent part uses the same register. */
3684 case RELOAD_FOR_INPUT_RELOAD_ADDRESS
:
3685 case RELOAD_FOR_INPUT
:
3686 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
)
3687 || TEST_HARD_REG_BIT (reload_reg_used_in_output
, regno
))
3689 case RELOAD_FOR_OPERAND_ADDRESS
:
3690 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
, regno
))
3692 case RELOAD_FOR_OUTPUT
:
3693 case RELOAD_FOR_OUTPUT_RELOAD_ADDRESS
:
3699 /* Vector of reload-numbers showing the order in which the reloads should
3701 short reload_order
[MAX_RELOADS
];
3703 /* Indexed by reload number, 1 if incoming value
3704 inherited from previous insns. */
3705 char reload_inherited
[MAX_RELOADS
];
3707 /* For an inherited reload, this is the insn the reload was inherited from,
3708 if we know it. Otherwise, this is 0. */
3709 rtx reload_inheritance_insn
[MAX_RELOADS
];
3711 /* If non-zero, this is a place to get the value of the reload,
3712 rather than using reload_in. */
3713 rtx reload_override_in
[MAX_RELOADS
];
3715 /* For each reload, the index in spill_regs of the spill register used,
3716 or -1 if we did not need one of the spill registers for this reload. */
3717 int reload_spill_index
[MAX_RELOADS
];
3719 /* Index of last register assigned as a spill register. We allocate in
3720 a round-robin fashio. */
3722 static last_spill_reg
= 0;
3724 /* Find a spill register to use as a reload register for reload R.
3725 LAST_RELOAD is non-zero if this is the last reload for the insn being
3728 Set reload_reg_rtx[R] to the register allocated.
3730 If NOERROR is nonzero, we return 1 if successful,
3731 or 0 if we couldn't find a spill reg and we didn't change anything. */
3734 allocate_reload_reg (r
, insn
, last_reload
, noerror
)
3746 /* If we put this reload ahead, thinking it is a group,
3747 then insist on finding a group. Otherwise we can grab a
3748 reg that some other reload needs.
3749 (That can happen when we have a 68000 DATA_OR_FP_REG
3750 which is a group of data regs or one fp reg.)
3751 We need not be so restrictive if there are no more reloads
3754 ??? Really it would be nicer to have smarter handling
3755 for that kind of reg class, where a problem like this is normal.
3756 Perhaps those classes should be avoided for reloading
3757 by use of more alternatives. */
3759 int force_group
= reload_nregs
[r
] > 1 && ! last_reload
;
3761 /* If we want a single register and haven't yet found one,
3762 take any reg in the right class and not in use.
3763 If we want a consecutive group, here is where we look for it.
3765 We use two passes so we can first look for reload regs to
3766 reuse, which are already in use for other reloads in this insn,
3767 and only then use additional registers.
3768 I think that maximizing reuse is needed to make sure we don't
3769 run out of reload regs. Suppose we have three reloads, and
3770 reloads A and B can share regs. These need two regs.
3771 Suppose A and B are given different regs.
3772 That leaves none for C. */
3773 for (pass
= 0; pass
< 2; pass
++)
3775 /* I is the index in spill_regs.
3776 We advance it round-robin between insns to use all spill regs
3777 equally, so that inherited reloads have a chance
3778 of leapfrogging each other. */
3780 for (count
= 0, i
= last_spill_reg
; count
< n_spills
; count
++)
3782 int class = (int) reload_reg_class
[r
];
3784 i
= (i
+ 1) % n_spills
;
3786 if (reload_reg_free_p (spill_regs
[i
], reload_when_needed
[r
])
3787 && TEST_HARD_REG_BIT (reg_class_contents
[class], spill_regs
[i
])
3788 && HARD_REGNO_MODE_OK (spill_regs
[i
], reload_mode
[r
])
3789 /* Look first for regs to share, then for unshared. */
3790 && (pass
|| TEST_HARD_REG_BIT (reload_reg_used_at_all
,
3793 int nr
= HARD_REGNO_NREGS (spill_regs
[i
], reload_mode
[r
]);
3794 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
3795 (on 68000) got us two FP regs. If NR is 1,
3796 we would reject both of them. */
3798 nr
= CLASS_MAX_NREGS (reload_reg_class
[r
], reload_mode
[r
]);
3799 /* If we need only one reg, we have already won. */
3802 /* But reject a single reg if we demand a group. */
3807 /* Otherwise check that as many consecutive regs as we need
3809 Also, don't use for a group registers that are
3810 needed for nongroups. */
3811 if (! TEST_HARD_REG_BIT (counted_for_nongroups
, spill_regs
[i
]))
3814 regno
= spill_regs
[i
] + nr
- 1;
3815 if (!(TEST_HARD_REG_BIT (reg_class_contents
[class], regno
)
3816 && spill_reg_order
[regno
] >= 0
3817 && reload_reg_free_p (regno
, reload_when_needed
[r
])
3818 && ! TEST_HARD_REG_BIT (counted_for_nongroups
,
3828 /* If we found something on pass 1, omit pass 2. */
3829 if (count
< n_spills
)
3833 /* We should have found a spill register by now. */
3834 if (count
== n_spills
)
3843 /* Mark as in use for this insn the reload regs we use for this. */
3844 mark_reload_reg_in_use (spill_regs
[i
], reload_when_needed
[r
],
3847 new = spill_reg_rtx
[i
];
3849 if (new == 0 || GET_MODE (new) != reload_mode
[r
])
3850 spill_reg_rtx
[i
] = new = gen_rtx (REG
, reload_mode
[r
], spill_regs
[i
]);
3852 reload_reg_rtx
[r
] = new;
3853 reload_spill_index
[r
] = i
;
3854 regno
= true_regnum (new);
3856 /* Detect when the reload reg can't hold the reload mode.
3857 This used to be one `if', but Sequent compiler can't handle that. */
3858 if (HARD_REGNO_MODE_OK (regno
, reload_mode
[r
]))
3860 enum machine_mode test_mode
= VOIDmode
;
3862 test_mode
= GET_MODE (reload_in
[r
]);
3863 /* If reload_in[r] has VOIDmode, it means we will load it
3864 in whatever mode the reload reg has: to wit, reload_mode[r].
3865 We have already tested that for validity. */
3866 /* Aside from that, we need to test that the expressions
3867 to reload from or into have modes which are valid for this
3868 reload register. Otherwise the reload insns would be invalid. */
3869 if (! (reload_in
[r
] != 0 && test_mode
!= VOIDmode
3870 && ! HARD_REGNO_MODE_OK (regno
, test_mode
)))
3871 if (! (reload_out
[r
] != 0
3872 && ! HARD_REGNO_MODE_OK (regno
, GET_MODE (reload_out
[r
]))))
3873 /* The reg is OK. */
3877 /* The reg is not OK. */
3881 if (asm_noperands (PATTERN (insn
)) < 0)
3882 /* It's the compiler's fault. */
3885 /* It's the user's fault; the operand's mode and constraint
3886 don't match. Disable this reload so we don't crash in final. */
3887 error_for_asm (insn
,
3888 "`asm' operand constraint incompatible with operand size");
3891 reload_reg_rtx
[r
] = 0;
3892 reload_optional
[r
] = 1;
3893 reload_secondary_p
[r
] = 1;
3898 /* Assign hard reg targets for the pseudo-registers we must reload
3899 into hard regs for this insn.
3900 Also output the instructions to copy them in and out of the hard regs.
3902 For machines with register classes, we are responsible for
3903 finding a reload reg in the proper class. */
3906 choose_reload_regs (insn
, avoid_return_reg
)
3908 /* This argument is currently ignored. */
3909 rtx avoid_return_reg
;
3912 int max_group_size
= 1;
3913 enum reg_class group_class
= NO_REGS
;
3916 rtx save_reload_reg_rtx
[MAX_RELOADS
];
3917 char save_reload_inherited
[MAX_RELOADS
];
3918 rtx save_reload_inheritance_insn
[MAX_RELOADS
];
3919 rtx save_reload_override_in
[MAX_RELOADS
];
3920 int save_reload_spill_index
[MAX_RELOADS
];
3921 HARD_REG_SET save_reload_reg_used
;
3922 HARD_REG_SET save_reload_reg_used_in_input_addr
;
3923 HARD_REG_SET save_reload_reg_used_in_output_addr
;
3924 HARD_REG_SET save_reload_reg_used_in_op_addr
;
3925 HARD_REG_SET save_reload_reg_used_in_input
;
3926 HARD_REG_SET save_reload_reg_used_in_output
;
3927 HARD_REG_SET save_reload_reg_used_at_all
;
3929 bzero (reload_inherited
, MAX_RELOADS
);
3930 bzero (reload_inheritance_insn
, MAX_RELOADS
* sizeof (rtx
));
3931 bzero (reload_override_in
, MAX_RELOADS
* sizeof (rtx
));
3933 CLEAR_HARD_REG_SET (reload_reg_used
);
3934 CLEAR_HARD_REG_SET (reload_reg_used_at_all
);
3935 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr
);
3936 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr
);
3937 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr
);
3938 CLEAR_HARD_REG_SET (reload_reg_used_in_output
);
3939 CLEAR_HARD_REG_SET (reload_reg_used_in_input
);
3941 /* Distinguish output-only and input-only reloads
3942 because they can overlap with other things. */
3943 for (j
= 0; j
< n_reloads
; j
++)
3944 if (reload_when_needed
[j
] == RELOAD_OTHER
3945 && ! reload_needed_for_multiple
[j
])
3947 if (reload_in
[j
] == 0)
3949 /* But earlyclobber operands must stay as RELOAD_OTHER. */
3950 for (i
= 0; i
< n_earlyclobbers
; i
++)
3951 if (rtx_equal_p (reload_out
[j
], reload_earlyclobbers
[i
]))
3953 if (i
== n_earlyclobbers
)
3954 reload_when_needed
[j
] = RELOAD_FOR_OUTPUT
;
3956 if (reload_out
[j
] == 0)
3957 reload_when_needed
[j
] = RELOAD_FOR_INPUT
;
3959 if (reload_secondary_reload
[j
] >= 0
3960 && ! reload_needed_for_multiple
[reload_secondary_reload
[j
]])
3961 reload_when_needed
[reload_secondary_reload
[j
]]
3962 = reload_when_needed
[j
];
3965 #ifdef SMALL_REGISTER_CLASSES
3966 /* Don't bother with avoiding the return reg
3967 if we have no mandatory reload that could use it. */
3968 if (avoid_return_reg
)
3971 int regno
= REGNO (avoid_return_reg
);
3973 = HARD_REGNO_NREGS (regno
, GET_MODE (avoid_return_reg
));
3976 for (r
= regno
; r
< regno
+ nregs
; r
++)
3977 if (spill_reg_order
[r
] >= 0)
3978 for (j
= 0; j
< n_reloads
; j
++)
3979 if (!reload_optional
[j
] && reload_reg_rtx
[j
] == 0
3980 && (reload_in
[j
] != 0 || reload_out
[j
] != 0
3981 || reload_secondary_p
[j
])
3983 TEST_HARD_REG_BIT (reg_class_contents
[(int) reload_reg_class
[j
]], r
))
3986 avoid_return_reg
= 0;
3988 #endif /* SMALL_REGISTER_CLASSES */
3990 #if 0 /* Not needed, now that we can always retry without inheritance. */
3991 /* See if we have more mandatory reloads than spill regs.
3992 If so, then we cannot risk optimizations that could prevent
3993 reloads from sharing one spill register.
3995 Since we will try finding a better register than reload_reg_rtx
3996 unless it is equal to reload_in or reload_out, count such reloads. */
4000 #ifdef SMALL_REGISTER_CLASSES
4001 int tem
= (avoid_return_reg
!= 0);
4003 for (j
= 0; j
< n_reloads
; j
++)
4004 if (! reload_optional
[j
]
4005 && (reload_in
[j
] != 0 || reload_out
[j
] != 0 || reload_secondary_p
[j
])
4006 && (reload_reg_rtx
[j
] == 0
4007 || (! rtx_equal_p (reload_reg_rtx
[j
], reload_in
[j
])
4008 && ! rtx_equal_p (reload_reg_rtx
[j
], reload_out
[j
]))))
4015 #ifdef SMALL_REGISTER_CLASSES
4016 /* Don't use the subroutine call return reg for a reload
4017 if we are supposed to avoid it. */
4018 if (avoid_return_reg
)
4020 int regno
= REGNO (avoid_return_reg
);
4022 = HARD_REGNO_NREGS (regno
, GET_MODE (avoid_return_reg
));
4025 for (r
= regno
; r
< regno
+ nregs
; r
++)
4026 if (spill_reg_order
[r
] >= 0)
4027 SET_HARD_REG_BIT (reload_reg_used
, r
);
4029 #endif /* SMALL_REGISTER_CLASSES */
4031 /* In order to be certain of getting the registers we need,
4032 we must sort the reloads into order of increasing register class.
4033 Then our grabbing of reload registers will parallel the process
4034 that provided the reload registers.
4036 Also note whether any of the reloads wants a consecutive group of regs.
4037 If so, record the maximum size of the group desired and what
4038 register class contains all the groups needed by this insn. */
4040 for (j
= 0; j
< n_reloads
; j
++)
4042 reload_order
[j
] = j
;
4043 reload_spill_index
[j
] = -1;
4046 = (reload_strict_low
[j
] && reload_out
[j
]
4047 ? GET_MODE (SUBREG_REG (reload_out
[j
]))
4048 : (reload_inmode
[j
] == VOIDmode
4049 || (GET_MODE_SIZE (reload_outmode
[j
])
4050 > GET_MODE_SIZE (reload_inmode
[j
])))
4051 ? reload_outmode
[j
] : reload_inmode
[j
]);
4053 reload_nregs
[j
] = CLASS_MAX_NREGS (reload_reg_class
[j
], reload_mode
[j
]);
4055 if (reload_nregs
[j
] > 1)
4057 max_group_size
= MAX (reload_nregs
[j
], max_group_size
);
4058 group_class
= reg_class_superunion
[(int)reload_reg_class
[j
]][(int)group_class
];
4061 /* If we have already decided to use a certain register,
4062 don't use it in another way. */
4063 if (reload_reg_rtx
[j
])
4064 mark_reload_reg_in_use (REGNO (reload_reg_rtx
[j
]),
4065 reload_when_needed
[j
], reload_mode
[j
]);
4069 qsort (reload_order
, n_reloads
, sizeof (short), reload_reg_class_lower
);
4071 bcopy (reload_reg_rtx
, save_reload_reg_rtx
, sizeof reload_reg_rtx
);
4072 bcopy (reload_inherited
, save_reload_inherited
, sizeof reload_inherited
);
4073 bcopy (reload_inheritance_insn
, save_reload_inheritance_insn
,
4074 sizeof reload_inheritance_insn
);
4075 bcopy (reload_override_in
, save_reload_override_in
,
4076 sizeof reload_override_in
);
4077 bcopy (reload_spill_index
, save_reload_spill_index
,
4078 sizeof reload_spill_index
);
4079 COPY_HARD_REG_SET (save_reload_reg_used
, reload_reg_used
);
4080 COPY_HARD_REG_SET (save_reload_reg_used_at_all
, reload_reg_used_at_all
);
4081 COPY_HARD_REG_SET (save_reload_reg_used_in_output
,
4082 reload_reg_used_in_output
);
4083 COPY_HARD_REG_SET (save_reload_reg_used_in_input
,
4084 reload_reg_used_in_input
);
4085 COPY_HARD_REG_SET (save_reload_reg_used_in_input_addr
,
4086 reload_reg_used_in_input_addr
);
4087 COPY_HARD_REG_SET (save_reload_reg_used_in_output_addr
,
4088 reload_reg_used_in_output_addr
);
4089 COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr
,
4090 reload_reg_used_in_op_addr
);
4092 /* Try first with inheritance, then turning it off. */
4094 for (inheritance
= 1; inheritance
>= 0; inheritance
--)
4096 /* Process the reloads in order of preference just found.
4097 Beyond this point, subregs can be found in reload_reg_rtx.
4099 This used to look for an existing reloaded home for all
4100 of the reloads, and only then perform any new reloads.
4101 But that could lose if the reloads were done out of reg-class order
4102 because a later reload with a looser constraint might have an old
4103 home in a register needed by an earlier reload with a tighter constraint.
4105 To solve this, we make two passes over the reloads, in the order
4106 described above. In the first pass we try to inherit a reload
4107 from a previous insn. If there is a later reload that needs a
4108 class that is a proper subset of the class being processed, we must
4109 also allocate a spill register during the first pass.
4111 Then make a second pass over the reloads to allocate any reloads
4112 that haven't been given registers yet. */
4114 for (j
= 0; j
< n_reloads
; j
++)
4116 register int r
= reload_order
[j
];
4118 /* Ignore reloads that got marked inoperative. */
4119 if (reload_out
[r
] == 0 && reload_in
[r
] == 0 && ! reload_secondary_p
[r
])
4122 /* If find_reloads chose a to use reload_in or reload_out as a reload
4123 register, we don't need to chose one. Otherwise, try even if it found
4124 one since we might save an insn if we find the value lying around. */
4125 if (reload_in
[r
] != 0 && reload_reg_rtx
[r
] != 0
4126 && (rtx_equal_p (reload_in
[r
], reload_reg_rtx
[r
])
4127 || rtx_equal_p (reload_out
[r
], reload_reg_rtx
[r
])))
4130 #if 0 /* No longer needed for correct operation.
4131 It might give better code, or might not; worth an experiment? */
4132 /* If this is an optional reload, we can't inherit from earlier insns
4133 until we are sure that any non-optional reloads have been allocated.
4134 The following code takes advantage of the fact that optional reloads
4135 are at the end of reload_order. */
4136 if (reload_optional
[r
] != 0)
4137 for (i
= 0; i
< j
; i
++)
4138 if ((reload_out
[reload_order
[i
]] != 0
4139 || reload_in
[reload_order
[i
]] != 0
4140 || reload_secondary_p
[reload_order
[i
]])
4141 && ! reload_optional
[reload_order
[i
]]
4142 && reload_reg_rtx
[reload_order
[i
]] == 0)
4143 allocate_reload_reg (reload_order
[i
], insn
, 0, inheritance
);
4146 /* First see if this pseudo is already available as reloaded
4147 for a previous insn. We cannot try to inherit for reloads
4148 that are smaller than the maximum number of registers needed
4149 for groups unless the register we would allocate cannot be used
4152 We could check here to see if this is a secondary reload for
4153 an object that is already in a register of the desired class.
4154 This would avoid the need for the secondary reload register.
4155 But this is complex because we can't easily determine what
4156 objects might want to be loaded via this reload. So let a register
4157 be allocated here. In `emit_reload_insns' we suppress one of the
4158 loads in the case described above. */
4162 register int regno
= -1;
4164 if (reload_in
[r
] == 0)
4166 else if (GET_CODE (reload_in
[r
]) == REG
)
4167 regno
= REGNO (reload_in
[r
]);
4168 else if (GET_CODE (reload_in_reg
[r
]) == REG
)
4169 regno
= REGNO (reload_in_reg
[r
]);
4171 /* This won't work, since REGNO can be a pseudo reg number.
4172 Also, it takes much more hair to keep track of all the things
4173 that can invalidate an inherited reload of part of a pseudoreg. */
4174 else if (GET_CODE (reload_in
[r
]) == SUBREG
4175 && GET_CODE (SUBREG_REG (reload_in
[r
])) == REG
)
4176 regno
= REGNO (SUBREG_REG (reload_in
[r
])) + SUBREG_WORD (reload_in
[r
]);
4179 if (regno
>= 0 && reg_last_reload_reg
[regno
] != 0)
4181 i
= spill_reg_order
[REGNO (reg_last_reload_reg
[regno
])];
4183 if (reg_reloaded_contents
[i
] == regno
4184 && HARD_REGNO_MODE_OK (spill_regs
[i
], reload_mode
[r
])
4185 && TEST_HARD_REG_BIT (reg_class_contents
[(int) reload_reg_class
[r
]],
4187 && (reload_nregs
[r
] == max_group_size
4188 || ! TEST_HARD_REG_BIT (reg_class_contents
[(int) group_class
],
4190 && reload_reg_free_p (spill_regs
[i
], reload_when_needed
[r
])
4191 && reload_reg_free_before_p (spill_regs
[i
],
4192 reload_when_needed
[r
]))
4194 /* If a group is needed, verify that all the subsequent
4195 registers still have their values intact. */
4197 = HARD_REGNO_NREGS (spill_regs
[i
], reload_mode
[r
]);
4200 for (k
= 1; k
< nr
; k
++)
4201 if (reg_reloaded_contents
[spill_reg_order
[spill_regs
[i
] + k
]]
4207 /* Mark the register as in use for this part of
4209 mark_reload_reg_in_use (spill_regs
[i
],
4210 reload_when_needed
[r
],
4212 reload_reg_rtx
[r
] = reg_last_reload_reg
[regno
];
4213 reload_inherited
[r
] = 1;
4214 reload_inheritance_insn
[r
] = reg_reloaded_insn
[i
];
4215 reload_spill_index
[r
] = i
;
4221 /* Here's another way to see if the value is already lying around. */
4223 && reload_in
[r
] != 0
4224 && ! reload_inherited
[r
]
4225 && reload_out
[r
] == 0
4226 && (CONSTANT_P (reload_in
[r
])
4227 || GET_CODE (reload_in
[r
]) == PLUS
4228 || GET_CODE (reload_in
[r
]) == REG
4229 || GET_CODE (reload_in
[r
]) == MEM
)
4230 && (reload_nregs
[r
] == max_group_size
4231 || ! reg_classes_intersect_p (reload_reg_class
[r
], group_class
)))
4234 = find_equiv_reg (reload_in
[r
], insn
, reload_reg_class
[r
],
4235 -1, 0, 0, reload_mode
[r
]);
4240 if (GET_CODE (equiv
) == REG
)
4241 regno
= REGNO (equiv
);
4242 else if (GET_CODE (equiv
) == SUBREG
)
4244 regno
= REGNO (SUBREG_REG (equiv
));
4245 if (regno
< FIRST_PSEUDO_REGISTER
)
4246 regno
+= SUBREG_WORD (equiv
);
4252 /* If we found a spill reg, reject it unless it is free
4253 and of the desired class. */
4255 && ((spill_reg_order
[regno
] >= 0
4256 && ! reload_reg_free_before_p (regno
,
4257 reload_when_needed
[r
]))
4258 || ! TEST_HARD_REG_BIT (reg_class_contents
[(int) reload_reg_class
[r
]],
4262 if (equiv
!= 0 && TEST_HARD_REG_BIT (reload_reg_used_at_all
, regno
))
4265 if (equiv
!= 0 && ! HARD_REGNO_MODE_OK (regno
, reload_mode
[r
]))
4268 /* We found a register that contains the value we need.
4269 If this register is the same as an `earlyclobber' operand
4270 of the current insn, just mark it as a place to reload from
4271 since we can't use it as the reload register itself. */
4274 for (i
= 0; i
< n_earlyclobbers
; i
++)
4275 if (reg_overlap_mentioned_for_reload_p (equiv
,
4276 reload_earlyclobbers
[i
]))
4278 reload_override_in
[r
] = equiv
;
4283 /* JRV: If the equiv register we have found is explicitly
4284 clobbered in the current insn, mark but don't use, as above. */
4286 if (equiv
!= 0 && regno_clobbered_p (regno
, insn
))
4288 reload_override_in
[r
] = equiv
;
4292 /* If we found an equivalent reg, say no code need be generated
4293 to load it, and use it as our reload reg. */
4294 if (equiv
!= 0 && regno
!= FRAME_POINTER_REGNUM
)
4296 reload_reg_rtx
[r
] = equiv
;
4297 reload_inherited
[r
] = 1;
4298 /* If it is a spill reg,
4299 mark the spill reg as in use for this insn. */
4300 i
= spill_reg_order
[regno
];
4302 mark_reload_reg_in_use (regno
, reload_when_needed
[r
],
4307 /* If we found a register to use already, or if this is an optional
4308 reload, we are done. */
4309 if (reload_reg_rtx
[r
] != 0 || reload_optional
[r
] != 0)
4312 #if 0 /* No longer needed for correct operation. Might or might not
4313 give better code on the average. Want to experiment? */
4315 /* See if there is a later reload that has a class different from our
4316 class that intersects our class or that requires less register
4317 than our reload. If so, we must allocate a register to this
4318 reload now, since that reload might inherit a previous reload
4319 and take the only available register in our class. Don't do this
4320 for optional reloads since they will force all previous reloads
4321 to be allocated. Also don't do this for reloads that have been
4324 for (i
= j
+ 1; i
< n_reloads
; i
++)
4326 int s
= reload_order
[i
];
4328 if ((reload_in
[s
] == 0 && reload_out
[s
] == 0
4329 && ! reload_secondary_p
[s
])
4330 || reload_optional
[s
])
4333 if ((reload_reg_class
[s
] != reload_reg_class
[r
]
4334 && reg_classes_intersect_p (reload_reg_class
[r
],
4335 reload_reg_class
[s
]))
4336 || reload_nregs
[s
] < reload_nregs
[r
])
4343 allocate_reload_reg (r
, insn
, j
== n_reloads
- 1, inheritance
);
4347 /* Now allocate reload registers for anything non-optional that
4348 didn't get one yet. */
4349 for (j
= 0; j
< n_reloads
; j
++)
4351 register int r
= reload_order
[j
];
4353 /* Ignore reloads that got marked inoperative. */
4354 if (reload_out
[r
] == 0 && reload_in
[r
] == 0 && ! reload_secondary_p
[r
])
4357 /* Skip reloads that already have a register allocated or are
4359 if (reload_reg_rtx
[r
] != 0 || reload_optional
[r
])
4362 if (! allocate_reload_reg (r
, insn
, j
== n_reloads
- 1, inheritance
))
4366 /* If that loop got all the way, we have won. */
4371 /* Loop around and try without any inheritance. */
4372 /* First undo everything done by the failed attempt
4373 to allocate with inheritance. */
4374 bcopy (save_reload_reg_rtx
, reload_reg_rtx
, sizeof reload_reg_rtx
);
4375 bcopy (save_reload_inherited
, reload_inherited
, sizeof reload_inherited
);
4376 bcopy (save_reload_inheritance_insn
, reload_inheritance_insn
,
4377 sizeof reload_inheritance_insn
);
4378 bcopy (save_reload_override_in
, reload_override_in
,
4379 sizeof reload_override_in
);
4380 bcopy (save_reload_spill_index
, reload_spill_index
,
4381 sizeof reload_spill_index
);
4382 COPY_HARD_REG_SET (reload_reg_used
, save_reload_reg_used
);
4383 COPY_HARD_REG_SET (reload_reg_used_at_all
, save_reload_reg_used_at_all
);
4384 COPY_HARD_REG_SET (reload_reg_used_in_input
,
4385 save_reload_reg_used_in_input
);
4386 COPY_HARD_REG_SET (reload_reg_used_in_output
,
4387 save_reload_reg_used_in_output
);
4388 COPY_HARD_REG_SET (reload_reg_used_in_input_addr
,
4389 save_reload_reg_used_in_input_addr
);
4390 COPY_HARD_REG_SET (reload_reg_used_in_output_addr
,
4391 save_reload_reg_used_in_output_addr
);
4392 COPY_HARD_REG_SET (reload_reg_used_in_op_addr
,
4393 save_reload_reg_used_in_op_addr
);
4396 /* If we thought we could inherit a reload, because it seemed that
4397 nothing else wanted the same reload register earlier in the insn,
4398 verify that assumption, now that all reloads have been assigned. */
4400 for (j
= 0; j
< n_reloads
; j
++)
4402 register int r
= reload_order
[j
];
4404 if (reload_inherited
[r
] && reload_reg_rtx
[r
] != 0
4405 && ! reload_reg_free_before_p (true_regnum (reload_reg_rtx
[r
]),
4406 reload_when_needed
[r
]))
4407 reload_inherited
[r
] = 0;
4409 /* If we found a better place to reload from,
4410 validate it in the same fashion, if it is a reload reg. */
4411 if (reload_override_in
[r
]
4412 && (GET_CODE (reload_override_in
[r
]) == REG
4413 || GET_CODE (reload_override_in
[r
]) == SUBREG
))
4415 int regno
= true_regnum (reload_override_in
[r
]);
4416 if (spill_reg_order
[regno
] >= 0
4417 && ! reload_reg_free_before_p (regno
, reload_when_needed
[r
]))
4418 reload_override_in
[r
] = 0;
4422 /* Now that reload_override_in is known valid,
4423 actually override reload_in. */
4424 for (j
= 0; j
< n_reloads
; j
++)
4425 if (reload_override_in
[j
])
4426 reload_in
[j
] = reload_override_in
[j
];
4428 /* If this reload won't be done because it has been cancelled or is
4429 optional and not inherited, clear reload_reg_rtx so other
4430 routines (such as subst_reloads) don't get confused. */
4431 for (j
= 0; j
< n_reloads
; j
++)
4432 if ((reload_optional
[j
] && ! reload_inherited
[j
])
4433 || (reload_in
[j
] == 0 && reload_out
[j
] == 0
4434 && ! reload_secondary_p
[j
]))
4435 reload_reg_rtx
[j
] = 0;
4437 /* Record which pseudos and which spill regs have output reloads. */
4438 for (j
= 0; j
< n_reloads
; j
++)
4440 register int r
= reload_order
[j
];
4442 i
= reload_spill_index
[r
];
4444 /* I is nonneg if this reload used one of the spill regs.
4445 If reload_reg_rtx[r] is 0, this is an optional reload
4446 that we opted to ignore. */
4447 if (reload_out
[r
] != 0 && GET_CODE (reload_out
[r
]) == REG
4448 && reload_reg_rtx
[r
] != 0)
4450 register int nregno
= REGNO (reload_out
[r
]);
4451 int nr
= HARD_REGNO_NREGS (nregno
, reload_mode
[r
]);
4455 reg_has_output_reload
[nregno
+ nr
] = 1;
4457 SET_HARD_REG_BIT (reg_is_output_reload
, spill_regs
[i
] + nr
);
4460 if (reload_when_needed
[r
] != RELOAD_OTHER
4461 && reload_when_needed
[r
] != RELOAD_FOR_OUTPUT
)
4467 /* Output insns to reload values in and out of the chosen reload regs. */
4470 emit_reload_insns (insn
)
4474 rtx following_insn
= NEXT_INSN (insn
);
4475 rtx before_insn
= insn
;
4476 rtx first_output_reload_insn
= NEXT_INSN (insn
);
4477 rtx first_other_reload_insn
= insn
;
4478 rtx first_operand_address_reload_insn
= insn
;
4480 /* Values to be put in spill_reg_store are put here first. */
4481 rtx new_spill_reg_store
[FIRST_PSEUDO_REGISTER
];
4482 int is_asm
= asm_noperands (PATTERN (insn
)) >= 0;
4484 /* If this is a CALL_INSN preceded by USE insns, any reload insns
4485 must go in front of the first USE insn, not in front of INSN. */
4487 if (GET_CODE (insn
) == CALL_INSN
&& GET_CODE (PREV_INSN (insn
)) == INSN
4488 && GET_CODE (PATTERN (PREV_INSN (insn
))) == USE
)
4489 while (GET_CODE (PREV_INSN (before_insn
)) == INSN
4490 && GET_CODE (PATTERN (PREV_INSN (before_insn
))) == USE
)
4491 first_other_reload_insn
= first_operand_address_reload_insn
4492 = before_insn
= PREV_INSN (before_insn
);
4494 /* Now output the instructions to copy the data into and out of the
4495 reload registers. Do these in the order that the reloads were reported,
4496 since reloads of base and index registers precede reloads of operands
4497 and the operands may need the base and index registers reloaded. */
4499 for (j
= 0; j
< n_reloads
; j
++)
4502 rtx oldequiv_reg
= 0;
4503 rtx this_reload_insn
= 0;
4507 if (old
!= 0 && ! reload_inherited
[j
]
4508 && ! rtx_equal_p (reload_reg_rtx
[j
], old
)
4509 && reload_reg_rtx
[j
] != 0)
4511 register rtx reloadreg
= reload_reg_rtx
[j
];
4513 enum machine_mode mode
;
4517 /* Determine the mode to reload in.
4518 This is very tricky because we have three to choose from.
4519 There is the mode the insn operand wants (reload_inmode[J]).
4520 There is the mode of the reload register RELOADREG.
4521 There is the intrinsic mode of the operand, which we could find
4522 by stripping some SUBREGs.
4523 It turns out that RELOADREG's mode is irrelevant:
4524 we can change that arbitrarily.
4526 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
4527 then the reload reg may not support QImode moves, so use SImode.
4528 If foo is in memory due to spilling a pseudo reg, this is safe,
4529 because the QImode value is in the least significant part of a
4530 slot big enough for a SImode. If foo is some other sort of
4531 memory reference, then it is impossible to reload this case,
4532 so previous passes had better make sure this never happens.
4534 Then consider a one-word union which has SImode and one of its
4535 members is a float, being fetched as (SUBREG:SF union:SI).
4536 We must fetch that as SFmode because we could be loading into
4537 a float-only register. In this case OLD's mode is correct.
4539 Consider an immediate integer: it has VOIDmode. Here we need
4540 to get a mode from something else.
4542 In some cases, there is a fourth mode, the operand's
4543 containing mode. If the insn specifies a containing mode for
4544 this operand, it overrides all others.
4546 I am not sure whether the algorithm here is always right,
4547 but it does the right things in those cases. */
4549 mode
= GET_MODE (old
);
4550 if (mode
== VOIDmode
)
4551 mode
= reload_inmode
[j
];
4552 if (reload_strict_low
[j
])
4553 mode
= GET_MODE (SUBREG_REG (reload_in
[j
]));
4555 #ifdef SECONDARY_INPUT_RELOAD_CLASS
4556 /* If we need a secondary register for this operation, see if
4557 the value is already in a register in that class. Don't
4558 do this if the secondary register will be used as a scratch
4561 if (reload_secondary_reload
[j
] >= 0
4562 && reload_secondary_icode
[j
] == CODE_FOR_nothing
)
4564 = find_equiv_reg (old
, insn
,
4565 reload_reg_class
[reload_secondary_reload
[j
]],
4569 /* If reloading from memory, see if there is a register
4570 that already holds the same value. If so, reload from there.
4571 We can pass 0 as the reload_reg_p argument because
4572 any other reload has either already been emitted,
4573 in which case find_equiv_reg will see the reload-insn,
4574 or has yet to be emitted, in which case it doesn't matter
4575 because we will use this equiv reg right away. */
4578 && (GET_CODE (old
) == MEM
4579 || (GET_CODE (old
) == REG
4580 && REGNO (old
) >= FIRST_PSEUDO_REGISTER
4581 && reg_renumber
[REGNO (old
)] < 0)))
4582 oldequiv
= find_equiv_reg (old
, insn
, GENERAL_REGS
,
4587 int regno
= true_regnum (oldequiv
);
4589 /* If OLDEQUIV is a spill register, don't use it for this
4590 if any other reload needs it at an earlier stage of this insn
4591 or at this stage. */
4592 if (spill_reg_order
[regno
] >= 0
4593 && (! reload_reg_free_p (regno
, reload_when_needed
[j
])
4594 || ! reload_reg_free_before_p (regno
,
4595 reload_when_needed
[j
])))
4598 /* If OLDEQUIV is not a spill register,
4599 don't use it if any other reload wants it. */
4600 if (spill_reg_order
[regno
] < 0)
4603 for (k
= 0; k
< n_reloads
; k
++)
4604 if (reload_reg_rtx
[k
] != 0 && k
!= j
4605 && reg_overlap_mentioned_for_reload_p (reload_reg_rtx
[k
],
4616 else if (GET_CODE (oldequiv
) == REG
)
4617 oldequiv_reg
= oldequiv
;
4618 else if (GET_CODE (oldequiv
) == SUBREG
)
4619 oldequiv_reg
= SUBREG_REG (oldequiv
);
4621 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
4622 then load RELOADREG from OLDEQUIV. */
4624 if (GET_MODE (reloadreg
) != mode
)
4625 reloadreg
= gen_rtx (REG
, mode
, REGNO (reloadreg
));
4626 while (GET_CODE (oldequiv
) == SUBREG
&& GET_MODE (oldequiv
) != mode
)
4627 oldequiv
= SUBREG_REG (oldequiv
);
4628 if (GET_MODE (oldequiv
) != VOIDmode
4629 && mode
!= GET_MODE (oldequiv
))
4630 oldequiv
= gen_rtx (SUBREG
, mode
, oldequiv
, 0);
4632 /* Decide where to put reload insn for this reload. */
4633 switch (reload_when_needed
[j
])
4635 case RELOAD_FOR_INPUT
:
4637 where
= first_operand_address_reload_insn
;
4639 case RELOAD_FOR_INPUT_RELOAD_ADDRESS
:
4640 where
= first_other_reload_insn
;
4642 case RELOAD_FOR_OUTPUT_RELOAD_ADDRESS
:
4643 where
= first_output_reload_insn
;
4645 case RELOAD_FOR_OPERAND_ADDRESS
:
4646 where
= before_insn
;
4651 /* Auto-increment addresses must be reloaded in a special way. */
4652 if (GET_CODE (oldequiv
) == POST_INC
4653 || GET_CODE (oldequiv
) == POST_DEC
4654 || GET_CODE (oldequiv
) == PRE_INC
4655 || GET_CODE (oldequiv
) == PRE_DEC
)
4657 /* We are not going to bother supporting the case where a
4658 incremented register can't be copied directly from
4659 OLDEQUIV since this seems highly unlikely. */
4660 if (reload_secondary_reload
[j
] >= 0)
4662 /* Prevent normal processing of this reload. */
4664 /* Output a special code sequence for this case. */
4666 = inc_for_reload (reloadreg
, oldequiv
, reload_inc
[j
], where
);
4669 /* If we are reloading a pseudo-register that was set by the previous
4670 insn, see if we can get rid of that pseudo-register entirely
4671 by redirecting the previous insn into our reload register. */
4673 else if (optimize
&& GET_CODE (old
) == REG
4674 && REGNO (old
) >= FIRST_PSEUDO_REGISTER
4675 && dead_or_set_p (insn
, old
)
4676 /* This is unsafe if some other reload
4677 uses the same reg first. */
4678 && (reload_when_needed
[j
] == RELOAD_OTHER
4679 || reload_when_needed
[j
] == RELOAD_FOR_INPUT
4680 || reload_when_needed
[j
] == RELOAD_FOR_INPUT_RELOAD_ADDRESS
))
4682 rtx temp
= PREV_INSN (insn
);
4683 while (temp
&& GET_CODE (temp
) == NOTE
)
4684 temp
= PREV_INSN (temp
);
4686 && GET_CODE (temp
) == INSN
4687 && GET_CODE (PATTERN (temp
)) == SET
4688 && SET_DEST (PATTERN (temp
)) == old
4689 /* Make sure we can access insn_operand_constraint. */
4690 && asm_noperands (PATTERN (temp
)) < 0
4691 /* This is unsafe if prev insn rejects our reload reg. */
4692 && constraint_accepts_reg_p (insn_operand_constraint
[recog_memoized (temp
)][0],
4694 /* This is unsafe if operand occurs more than once in current
4695 insn. Perhaps some occurrences aren't reloaded. */
4696 && count_occurrences (PATTERN (insn
), old
) == 1
4697 /* Don't risk splitting a matching pair of operands. */
4698 && ! reg_mentioned_p (old
, SET_SRC (PATTERN (temp
))))
4700 /* Store into the reload register instead of the pseudo. */
4701 SET_DEST (PATTERN (temp
)) = reloadreg
;
4702 /* If these are the only uses of the pseudo reg,
4703 pretend for GDB it lives in the reload reg we used. */
4704 if (reg_n_deaths
[REGNO (old
)] == 1
4705 && reg_n_sets
[REGNO (old
)] == 1)
4707 reg_renumber
[REGNO (old
)] = REGNO (reload_reg_rtx
[j
]);
4708 alter_reg (REGNO (old
), -1);
4714 /* We can't do that, so output an insn to load RELOADREG.
4715 Keep them in the following order:
4716 all reloads for input reload addresses,
4717 all reloads for ordinary input operands,
4718 all reloads for addresses of non-reloaded operands,
4719 the insn being reloaded,
4720 all reloads for addresses of output reloads,
4721 the output reloads. */
4724 #ifdef SECONDARY_INPUT_RELOAD_CLASS
4725 rtx second_reload_reg
= 0;
4726 enum insn_code icode
;
4728 /* If we have a secondary reload, pick up the secondary register
4729 and icode, if any. If OLDEQUIV and OLD are different or
4730 if this is an in-out reload, recompute whether or not we
4731 still need a secondary register and what the icode should
4732 be. If we still need a secondary register and the class or
4733 icode is different, go back to reloading from OLD if using
4734 OLDEQUIV means that we got the wrong type of register. We
4735 cannot have different class or icode due to an in-out reload
4736 because we don't make such reloads when both the input and
4737 output need secondary reload registers. */
4739 if (reload_secondary_reload
[j
] >= 0)
4741 int secondary_reload
= reload_secondary_reload
[j
];
4742 rtx real_oldequiv
= oldequiv
;
4745 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
4746 and similarly for OLD.
4747 See comments in find_secondary_reload in reload.c. */
4748 if (GET_CODE (oldequiv
) == REG
4749 && REGNO (oldequiv
) >= FIRST_PSEUDO_REGISTER
4750 && reg_equiv_mem
[REGNO (oldequiv
)] != 0)
4751 real_oldequiv
= reg_equiv_mem
[REGNO (oldequiv
)];
4753 if (GET_CODE (old
) == REG
4754 && REGNO (old
) >= FIRST_PSEUDO_REGISTER
4755 && reg_equiv_mem
[REGNO (old
)] != 0)
4756 real_old
= reg_equiv_mem
[REGNO (old
)];
4758 second_reload_reg
= reload_reg_rtx
[secondary_reload
];
4759 icode
= reload_secondary_icode
[j
];
4761 if ((old
!= oldequiv
&& ! rtx_equal_p (old
, oldequiv
))
4762 || (reload_in
[j
] != 0 && reload_out
[j
] != 0))
4764 enum reg_class new_class
4765 = SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class
[j
],
4766 mode
, real_oldequiv
);
4768 if (new_class
== NO_REGS
)
4769 second_reload_reg
= 0;
4772 enum insn_code new_icode
;
4773 enum machine_mode new_mode
;
4775 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) new_class
],
4776 REGNO (second_reload_reg
)))
4777 oldequiv
= old
, real_oldequiv
= real_old
;
4780 new_icode
= reload_in_optab
[(int) mode
];
4781 if (new_icode
!= CODE_FOR_nothing
4782 && ((insn_operand_predicate
[(int) new_icode
][0]
4783 && ! ((*insn_operand_predicate
[(int) new_icode
][0])
4785 || (insn_operand_predicate
[(int) new_icode
][1]
4786 && ! ((*insn_operand_predicate
[(int) new_icode
][1])
4787 (real_oldequiv
, mode
)))))
4788 new_icode
= CODE_FOR_nothing
;
4790 if (new_icode
== CODE_FOR_nothing
)
4793 new_mode
= insn_operand_mode
[new_icode
][2];
4795 if (GET_MODE (second_reload_reg
) != new_mode
)
4797 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg
),
4799 oldequiv
= old
, real_oldequiv
= real_old
;
4802 = gen_reg_rtx (REG
, new_mode
,
4803 REGNO (second_reload_reg
));
4809 /* If we still need a secondary reload register, check
4810 to see if it is being used as a scratch or intermediate
4811 register and generate code appropriately. If we need
4812 a scratch register, use REAL_OLDEQUIV since the form of
4813 the insn may depend on the actual address if it is
4816 if (second_reload_reg
)
4818 if (icode
!= CODE_FOR_nothing
)
4820 reload_insn
= emit_insn_before (GEN_FCN (icode
)
4825 if (this_reload_insn
== 0)
4826 this_reload_insn
= reload_insn
;
4831 /* See if we need a scratch register to load the
4832 intermediate register (a tertiary reload). */
4833 enum insn_code tertiary_icode
4834 = reload_secondary_icode
[secondary_reload
];
4836 if (tertiary_icode
!= CODE_FOR_nothing
)
4838 rtx third_reload_reg
4839 = reload_reg_rtx
[reload_secondary_reload
[secondary_reload
]];
4842 = emit_insn_before ((GEN_FCN (tertiary_icode
)
4847 if (this_reload_insn
== 0)
4848 this_reload_insn
= reload_insn
;
4853 = gen_input_reload (second_reload_reg
,
4854 oldequiv
, where
, is_asm
);
4855 /* If we can't create the reload insn,
4856 report an error and give up. */
4857 if (reload_insn
== 0)
4859 error_for_asm (insn
,
4860 "`asm' operand requires impossible reload");
4863 if (this_reload_insn
== 0)
4864 this_reload_insn
= reload_insn
;
4865 oldequiv
= second_reload_reg
;
4874 reload_insn
= gen_input_reload (reloadreg
,
4875 oldequiv
, where
, is_asm
);
4876 /* If we can't create the reload insn,
4877 report an error and give up. */
4878 if (reload_insn
== 0)
4880 error_for_asm (insn
,
4881 "`asm' operand requires impossible reload");
4884 if (this_reload_insn
== 0)
4885 this_reload_insn
= reload_insn
;
4888 #if defined(SECONDARY_INPUT_RELOAD_CLASS) && defined(PRESERVE_DEATH_INFO_REGNO_P)
4889 /* We may have to make a REG_DEAD note for the secondary reload
4890 register in the insns we just made. Find the last insn that
4891 mentioned the register. */
4892 if (! special
&& second_reload_reg
4893 && PRESERVE_DEATH_INFO_REGNO_P (REGNO (second_reload_reg
)))
4898 prev
!= PREV_INSN (this_reload_insn
);
4899 prev
= PREV_INSN (prev
))
4900 if (GET_RTX_CLASS (GET_CODE (prev
) == 'i')
4901 && reg_overlap_mentioned_for_reload_p (second_reload_reg
,
4904 REG_NOTES (prev
) = gen_rtx (EXPR_LIST
, REG_DEAD
,
4913 /* Update where to put other reload insns. */
4914 if (this_reload_insn
)
4915 switch (reload_when_needed
[j
])
4917 case RELOAD_FOR_INPUT
:
4919 if (first_other_reload_insn
== first_operand_address_reload_insn
)
4920 first_other_reload_insn
= this_reload_insn
;
4922 case RELOAD_FOR_OPERAND_ADDRESS
:
4923 if (first_operand_address_reload_insn
== before_insn
)
4924 first_operand_address_reload_insn
= this_reload_insn
;
4925 if (first_other_reload_insn
== before_insn
)
4926 first_other_reload_insn
= this_reload_insn
;
4929 /* reload_inc[j] was formerly processed here. */
4932 /* Add a note saying the input reload reg
4933 dies in this insn, if anyone cares. */
4934 #ifdef PRESERVE_DEATH_INFO_REGNO_P
4936 && reload_reg_rtx
[j
] != old
4937 && reload_reg_rtx
[j
] != 0
4938 && reload_out
[j
] == 0
4939 && ! reload_inherited
[j
]
4940 && PRESERVE_DEATH_INFO_REGNO_P (REGNO (reload_reg_rtx
[j
])))
4942 register rtx reloadreg
= reload_reg_rtx
[j
];
4945 /* We can't abort here because we need to support this for sched.c.
4946 It's not terrible to miss a REG_DEAD note, but we should try
4947 to figure out how to do this correctly. */
4948 /* The code below is incorrect for address-only reloads. */
4949 if (reload_when_needed
[j
] != RELOAD_OTHER
4950 && reload_when_needed
[j
] != RELOAD_FOR_INPUT
)
4954 /* Add a death note to this insn, for an input reload. */
4956 if ((reload_when_needed
[j
] == RELOAD_OTHER
4957 || reload_when_needed
[j
] == RELOAD_FOR_INPUT
)
4958 && ! dead_or_set_p (insn
, reloadreg
))
4960 = gen_rtx (EXPR_LIST
, REG_DEAD
,
4961 reloadreg
, REG_NOTES (insn
));
4964 /* When we inherit a reload, the last marked death of the reload reg
4965 may no longer really be a death. */
4966 if (reload_reg_rtx
[j
] != 0
4967 && PRESERVE_DEATH_INFO_REGNO_P (REGNO (reload_reg_rtx
[j
]))
4968 && reload_inherited
[j
])
4970 /* Handle inheriting an output reload.
4971 Remove the death note from the output reload insn. */
4972 if (reload_spill_index
[j
] >= 0
4973 && GET_CODE (reload_in
[j
]) == REG
4974 && spill_reg_store
[reload_spill_index
[j
]] != 0
4975 && find_regno_note (spill_reg_store
[reload_spill_index
[j
]],
4976 REG_DEAD
, REGNO (reload_reg_rtx
[j
])))
4977 remove_death (REGNO (reload_reg_rtx
[j
]),
4978 spill_reg_store
[reload_spill_index
[j
]]);
4979 /* Likewise for input reloads that were inherited. */
4980 else if (reload_spill_index
[j
] >= 0
4981 && GET_CODE (reload_in
[j
]) == REG
4982 && spill_reg_store
[reload_spill_index
[j
]] == 0
4983 && reload_inheritance_insn
[j
] != 0
4984 && find_regno_note (reload_inheritance_insn
[j
], REG_DEAD
,
4985 REGNO (reload_reg_rtx
[j
])))
4986 remove_death (REGNO (reload_reg_rtx
[j
]),
4987 reload_inheritance_insn
[j
]);
4992 /* We got this register from find_equiv_reg.
4993 Search back for its last death note and get rid of it.
4994 But don't search back too far.
4995 Don't go past a place where this reg is set,
4996 since a death note before that remains valid. */
4997 for (prev
= PREV_INSN (insn
);
4998 prev
&& GET_CODE (prev
) != CODE_LABEL
;
4999 prev
= PREV_INSN (prev
))
5000 if (GET_RTX_CLASS (GET_CODE (prev
)) == 'i'
5001 && dead_or_set_p (prev
, reload_reg_rtx
[j
]))
5003 if (find_regno_note (prev
, REG_DEAD
,
5004 REGNO (reload_reg_rtx
[j
])))
5005 remove_death (REGNO (reload_reg_rtx
[j
]), prev
);
5011 /* We might have used find_equiv_reg above to choose an alternate
5012 place from which to reload. If so, and it died, we need to remove
5013 that death and move it to one of the insns we just made. */
5015 if (oldequiv_reg
!= 0
5016 && PRESERVE_DEATH_INFO_REGNO_P (true_regnum (oldequiv_reg
)))
5020 for (prev
= PREV_INSN (insn
); prev
&& GET_CODE (prev
) != CODE_LABEL
;
5021 prev
= PREV_INSN (prev
))
5022 if (GET_RTX_CLASS (GET_CODE (prev
)) == 'i'
5023 && dead_or_set_p (prev
, oldequiv_reg
))
5025 if (find_regno_note (prev
, REG_DEAD
, REGNO (oldequiv_reg
)))
5027 for (prev1
= this_reload_insn
;
5028 prev1
; prev1
= PREV_INSN (prev1
))
5029 if (GET_RTX_CLASS (GET_CODE (prev1
) == 'i')
5030 && reg_overlap_mentioned_for_reload_p (oldequiv_reg
,
5033 REG_NOTES (prev1
) = gen_rtx (EXPR_LIST
, REG_DEAD
,
5038 remove_death (REGNO (oldequiv_reg
), prev
);
5045 /* If we are reloading a register that was recently stored in with an
5046 output-reload, see if we can prove there was
5047 actually no need to store the old value in it. */
5049 if (optimize
&& reload_inherited
[j
] && reload_spill_index
[j
] >= 0
5050 /* This is unsafe if some other reload uses the same reg first. */
5051 && (reload_when_needed
[j
] == RELOAD_OTHER
5052 || reload_when_needed
[j
] == RELOAD_FOR_INPUT
5053 || reload_when_needed
[j
] == RELOAD_FOR_INPUT_RELOAD_ADDRESS
)
5054 && GET_CODE (reload_in
[j
]) == REG
5056 /* There doesn't seem to be any reason to restrict this to pseudos
5057 and doing so loses in the case where we are copying from a
5058 register of the wrong class. */
5059 && REGNO (reload_in
[j
]) >= FIRST_PSEUDO_REGISTER
5061 && spill_reg_store
[reload_spill_index
[j
]] != 0
5062 && dead_or_set_p (insn
, reload_in
[j
])
5063 /* This is unsafe if operand occurs more than once in current
5064 insn. Perhaps some occurrences weren't reloaded. */
5065 && count_occurrences (PATTERN (insn
), reload_in
[j
]) == 1)
5066 delete_output_reload (insn
, j
,
5067 spill_reg_store
[reload_spill_index
[j
]]);
5069 /* Input-reloading is done. Now do output-reloading,
5070 storing the value from the reload-register after the main insn
5071 if reload_out[j] is nonzero.
5073 ??? At some point we need to support handling output reloads of
5074 JUMP_INSNs or insns that set cc0. */
5075 old
= reload_out
[j
];
5077 && reload_reg_rtx
[j
] != old
5078 && reload_reg_rtx
[j
] != 0)
5080 register rtx reloadreg
= reload_reg_rtx
[j
];
5081 register rtx second_reloadreg
= 0;
5082 rtx prev_insn
= PREV_INSN (first_output_reload_insn
);
5084 enum machine_mode mode
;
5087 /* An output operand that dies right away does need a reload,
5088 but need not be copied from it. Show the new location in the
5090 if ((GET_CODE (old
) == REG
|| GET_CODE (old
) == SCRATCH
)
5091 && (note
= find_reg_note (insn
, REG_UNUSED
, old
)) != 0)
5093 XEXP (note
, 0) = reload_reg_rtx
[j
];
5096 else if (GET_CODE (old
) == SCRATCH
)
5097 /* If we aren't optimizing, there won't be a REG_UNUSED note,
5098 but we don't want to make an output reload. */
5102 /* Strip off of OLD any size-increasing SUBREGs such as
5103 (SUBREG:SI foo:QI 0). */
5105 while (GET_CODE (old
) == SUBREG
&& SUBREG_WORD (old
) == 0
5106 && (GET_MODE_SIZE (GET_MODE (old
))
5107 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (old
)))))
5108 old
= SUBREG_REG (old
);
5111 /* If is a JUMP_INSN, we can't support output reloads yet. */
5112 if (GET_CODE (insn
) == JUMP_INSN
)
5115 /* Determine the mode to reload in.
5116 See comments above (for input reloading). */
5118 mode
= GET_MODE (old
);
5119 if (mode
== VOIDmode
)
5120 abort (); /* Should never happen for an output. */
5122 /* A strict-low-part output operand needs to be reloaded
5123 in the mode of the entire value. */
5124 if (reload_strict_low
[j
])
5126 mode
= GET_MODE (SUBREG_REG (reload_out
[j
]));
5127 /* Encapsulate OLD into that mode. */
5128 /* If OLD is a subreg, then strip it, since the subreg will
5129 be altered by this very reload. */
5130 while (GET_CODE (old
) == SUBREG
&& GET_MODE (old
) != mode
)
5131 old
= SUBREG_REG (old
);
5132 if (GET_MODE (old
) != VOIDmode
5133 && mode
!= GET_MODE (old
))
5134 old
= gen_rtx (SUBREG
, mode
, old
, 0);
5137 if (GET_MODE (reloadreg
) != mode
)
5138 reloadreg
= gen_rtx (REG
, mode
, REGNO (reloadreg
));
5140 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
5142 /* If we need two reload regs, set RELOADREG to the intermediate
5143 one, since it will be stored into OUT. We might need a secondary
5144 register only for an input reload, so check again here. */
5146 if (reload_secondary_reload
[j
] >= 0)
5150 if (GET_CODE (old
) == REG
&& REGNO (old
) >= FIRST_PSEUDO_REGISTER
5151 && reg_equiv_mem
[REGNO (old
)] != 0)
5152 real_old
= reg_equiv_mem
[REGNO (old
)];
5154 if((SECONDARY_OUTPUT_RELOAD_CLASS (reload_reg_class
[j
],
5158 second_reloadreg
= reloadreg
;
5159 reloadreg
= reload_reg_rtx
[reload_secondary_reload
[j
]];
5161 /* See if RELOADREG is to be used as a scratch register
5162 or as an intermediate register. */
5163 if (reload_secondary_icode
[j
] != CODE_FOR_nothing
)
5165 emit_insn_before ((GEN_FCN (reload_secondary_icode
[j
])
5166 (real_old
, second_reloadreg
,
5168 first_output_reload_insn
);
5173 /* See if we need both a scratch and intermediate reload
5175 int secondary_reload
= reload_secondary_reload
[j
];
5176 enum insn_code tertiary_icode
5177 = reload_secondary_icode
[secondary_reload
];
5180 if (GET_MODE (reloadreg
) != mode
)
5181 reloadreg
= gen_rtx (REG
, mode
, REGNO (reloadreg
));
5183 if (tertiary_icode
!= CODE_FOR_nothing
)
5186 = reload_reg_rtx
[reload_secondary_reload
[secondary_reload
]];
5187 pat
= (GEN_FCN (tertiary_icode
)
5188 (reloadreg
, second_reloadreg
, third_reloadreg
));
5191 pat
= gen_move_insn (reloadreg
, second_reloadreg
);
5193 emit_insn_before (pat
, first_output_reload_insn
);
5199 /* Output the last reload insn. */
5201 emit_insn_before (gen_move_insn (old
, reloadreg
),
5202 first_output_reload_insn
);
5204 #ifdef PRESERVE_DEATH_INFO_REGNO_P
5205 /* If final will look at death notes for this reg,
5206 put one on the last output-reload insn to use it. Similarly
5207 for any secondary register. */
5208 if (PRESERVE_DEATH_INFO_REGNO_P (REGNO (reloadreg
)))
5209 for (p
= PREV_INSN (first_output_reload_insn
);
5210 p
!= prev_insn
; p
= PREV_INSN (p
))
5211 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i'
5212 && reg_overlap_mentioned_for_reload_p (reloadreg
,
5214 REG_NOTES (p
) = gen_rtx (EXPR_LIST
, REG_DEAD
,
5215 reloadreg
, REG_NOTES (p
));
5217 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
5219 && PRESERVE_DEATH_INFO_REGNO_P (REGNO (second_reloadreg
)))
5220 for (p
= PREV_INSN (first_output_reload_insn
);
5221 p
!= prev_insn
; p
= PREV_INSN (p
))
5222 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i'
5223 && reg_overlap_mentioned_for_reload_p (second_reloadreg
,
5225 REG_NOTES (p
) = gen_rtx (EXPR_LIST
, REG_DEAD
,
5226 second_reloadreg
, REG_NOTES (p
));
5229 /* Look at all insns we emitted, just to be safe. */
5230 for (p
= NEXT_INSN (prev_insn
); p
!= first_output_reload_insn
;
5232 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i')
5234 /* If this output reload doesn't come from a spill reg,
5235 clear any memory of reloaded copies of the pseudo reg.
5236 If this output reload comes from a spill reg,
5237 reg_has_output_reload will make this do nothing. */
5238 note_stores (PATTERN (p
), forget_old_reloads_1
);
5240 if (reg_mentioned_p (reload_reg_rtx
[j
], PATTERN (p
)))
5244 first_output_reload_insn
= NEXT_INSN (prev_insn
);
5247 if (reload_spill_index
[j
] >= 0)
5248 new_spill_reg_store
[reload_spill_index
[j
]] = store_insn
;
5251 /* Move death notes from INSN
5252 to output-operand-address and output reload insns. */
5253 #ifdef PRESERVE_DEATH_INFO_REGNO_P
5256 /* Loop over those insns, last ones first. */
5257 for (insn1
= PREV_INSN (following_insn
); insn1
!= insn
;
5258 insn1
= PREV_INSN (insn1
))
5259 if (GET_CODE (insn1
) == INSN
&& GET_CODE (PATTERN (insn1
)) == SET
)
5261 rtx source
= SET_SRC (PATTERN (insn1
));
5262 rtx dest
= SET_DEST (PATTERN (insn1
));
5264 /* The note we will examine next. */
5265 rtx reg_notes
= REG_NOTES (insn
);
5266 /* The place that pointed to this note. */
5267 rtx
*prev_reg_note
= ®_NOTES (insn
);
5269 /* If the note is for something used in the source of this
5270 reload insn, or in the output address, move the note. */
5273 rtx next_reg_notes
= XEXP (reg_notes
, 1);
5274 if (REG_NOTE_KIND (reg_notes
) == REG_DEAD
5275 && GET_CODE (XEXP (reg_notes
, 0)) == REG
5276 && ((GET_CODE (dest
) != REG
5277 && reg_overlap_mentioned_for_reload_p (XEXP (reg_notes
, 0),
5279 || reg_overlap_mentioned_for_reload_p (XEXP (reg_notes
, 0),
5282 *prev_reg_note
= next_reg_notes
;
5283 XEXP (reg_notes
, 1) = REG_NOTES (insn1
);
5284 REG_NOTES (insn1
) = reg_notes
;
5287 prev_reg_note
= &XEXP (reg_notes
, 1);
5289 reg_notes
= next_reg_notes
;
5295 /* For all the spill regs newly reloaded in this instruction,
5296 record what they were reloaded from, so subsequent instructions
5297 can inherit the reloads.
5299 Update spill_reg_store for the reloads of this insn.
5300 Copy the elements that were updated in the loop above. */
5302 for (j
= 0; j
< n_reloads
; j
++)
5304 register int r
= reload_order
[j
];
5305 register int i
= reload_spill_index
[r
];
5307 /* I is nonneg if this reload used one of the spill regs.
5308 If reload_reg_rtx[r] is 0, this is an optional reload
5309 that we opted to ignore. */
5311 if (i
>= 0 && reload_reg_rtx
[r
] != 0)
5313 /* First, clear out memory of what used to be in this spill reg.
5314 If consecutive registers are used, clear them all. */
5316 = HARD_REGNO_NREGS (spill_regs
[i
], GET_MODE (reload_reg_rtx
[r
]));
5319 for (k
= 0; k
< nr
; k
++)
5321 reg_reloaded_contents
[spill_reg_order
[spill_regs
[i
] + k
]] = -1;
5322 reg_reloaded_insn
[spill_reg_order
[spill_regs
[i
] + k
]] = 0;
5325 /* Maybe the spill reg contains a copy of reload_out. */
5326 if (reload_out
[r
] != 0 && GET_CODE (reload_out
[r
]) == REG
)
5328 register int nregno
= REGNO (reload_out
[r
]);
5330 spill_reg_store
[i
] = new_spill_reg_store
[i
];
5331 reg_last_reload_reg
[nregno
] = reload_reg_rtx
[r
];
5333 for (k
= 0; k
< nr
; k
++)
5335 reg_reloaded_contents
[spill_reg_order
[spill_regs
[i
] + k
]]
5337 reg_reloaded_insn
[spill_reg_order
[spill_regs
[i
] + k
]] = insn
;
5341 /* Maybe the spill reg contains a copy of reload_in. */
5342 else if (reload_out
[r
] == 0
5343 && reload_in
[r
] != 0
5344 && (GET_CODE (reload_in
[r
]) == REG
5345 || GET_CODE (reload_in_reg
[r
]) == REG
))
5347 register int nregno
;
5348 if (GET_CODE (reload_in
[r
]) == REG
)
5349 nregno
= REGNO (reload_in
[r
]);
5351 nregno
= REGNO (reload_in_reg
[r
]);
5353 /* If there are two separate reloads (one in and one out)
5354 for the same (hard or pseudo) reg,
5355 leave reg_last_reload_reg set
5356 based on the output reload.
5357 Otherwise, set it from this input reload. */
5358 if (!reg_has_output_reload
[nregno
]
5359 /* But don't do so if another input reload
5360 will clobber this one's value. */
5361 && reload_reg_reaches_end_p (spill_regs
[i
],
5362 reload_when_needed
[r
]))
5364 reg_last_reload_reg
[nregno
] = reload_reg_rtx
[r
];
5366 /* Unless we inherited this reload, show we haven't
5367 recently done a store. */
5368 if (! reload_inherited
[r
])
5369 spill_reg_store
[i
] = 0;
5371 for (k
= 0; k
< nr
; k
++)
5373 reg_reloaded_contents
[spill_reg_order
[spill_regs
[i
] + k
]]
5375 reg_reloaded_insn
[spill_reg_order
[spill_regs
[i
] + k
]]
5382 /* The following if-statement was #if 0'd in 1.34 (or before...).
5383 It's reenabled in 1.35 because supposedly nothing else
5384 deals with this problem. */
5386 /* If a register gets output-reloaded from a non-spill register,
5387 that invalidates any previous reloaded copy of it.
5388 But forget_old_reloads_1 won't get to see it, because
5389 it thinks only about the original insn. So invalidate it here. */
5390 if (i
< 0 && reload_out
[r
] != 0 && GET_CODE (reload_out
[r
]) == REG
)
5392 register int nregno
= REGNO (reload_out
[r
]);
5393 reg_last_reload_reg
[nregno
] = 0;
5398 /* Emit code before BEFORE_INSN to perform an input reload of IN to RELOADREG.
5399 Returns first insn emitted.
5401 If IS_ASM, check the emitted insns for validity.
5402 If they are invalid, delete them and return 0. */
5405 gen_input_reload (reloadreg
, in
, before_insn
, is_asm
)
5411 register rtx prev_insn
= PREV_INSN (before_insn
);
5413 /* How to do this reload can get quite tricky. Normally, we are being
5414 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
5415 register that didn't get a hard register. In that case we can just
5416 call emit_move_insn.
5418 We can also be asked to reload a PLUS that adds either two registers or
5419 a register and a constant or MEM. This can occur during frame pointer
5420 elimination. That case if handled by trying to emit a single insn
5421 to perform the add. If it is not valid, we use a two insn sequence.
5423 Finally, we could be called to handle an 'o' constraint by putting
5424 an address into a register. In that case, we first try to do this
5425 with a named pattern of "reload_load_address". If no such pattern
5426 exists, we just emit a SET insn and hope for the best (it will normally
5427 be valid on machines that use 'o').
5429 This entire process is made complex because reload will never
5430 process the insns we generate here and so we must ensure that
5431 they will fit their constraints and also by the fact that parts of
5432 IN might be being reloaded separately and replaced with spill registers.
5433 Because of this, we are, in some sense, just guessing the right approach
5434 here. The one listed above seems to work.
5436 ??? At some point, this whole thing needs to be rethought. */
5438 if (GET_CODE (in
) == PLUS
5439 && GET_CODE (XEXP (in
, 0)) == REG
5440 && (GET_CODE (XEXP (in
, 1)) == REG
5441 || CONSTANT_P (XEXP (in
, 1))
5442 || GET_CODE (XEXP (in
, 1)) == MEM
))
5444 /* We need to compute the sum of what is either a register and a
5445 constant, a register and memory, or a hard register and a pseudo
5446 register and put it into the reload register. The best possible way
5447 of doing this is if the machine has a three-operand ADD insn that
5448 accepts the required operands.
5450 The simplest approach is to try to generate such an insn and see if it
5451 is recognized and matches its constraints. If so, it can be used.
5453 It might be better not to actually emit the insn unless it is valid,
5454 but we need to pass the insn as an operand to `recog' and
5455 `insn_extract'and it is simpler to emit and then delete the insn if
5456 not valid than to dummy things up. */
5458 rtx op0
, op1
, tem
, insn
;
5461 op0
= find_replacement (&XEXP (in
, 0));
5462 op1
= find_replacement (&XEXP (in
, 1));
5464 /* Since constraint checking is strict, commutativity won't be
5465 checked, so we need to do that here to avoid spurious failure
5466 if the add instruction is two-address and the second operand
5467 of the add is the same as the reload reg, which is frequently
5468 the case. If the insn would be A = B + A, rearrange it so
5469 it will be A = A + B as constrain_operands expects. */
5471 if (GET_CODE (XEXP (in
, 1)) == REG
5472 && REGNO (reloadreg
) == REGNO (XEXP (in
, 1)))
5473 tem
= op0
, op0
= op1
, op1
= tem
;
5475 if (op0
!= XEXP (in
, 0) || op1
!= XEXP (in
, 1))
5476 in
= gen_rtx (PLUS
, GET_MODE (in
), op0
, op1
);
5478 insn
= emit_insn_before (gen_rtx (SET
, VOIDmode
, reloadreg
, in
),
5480 code
= recog_memoized (insn
);
5484 insn_extract (insn
);
5485 /* We want constrain operands to treat this insn strictly in
5486 its validity determination, i.e., the way it would after reload
5488 if (constrain_operands (code
, 1))
5492 if (PREV_INSN (insn
))
5493 NEXT_INSN (PREV_INSN (insn
)) = NEXT_INSN (insn
);
5494 if (NEXT_INSN (insn
))
5495 PREV_INSN (NEXT_INSN (insn
)) = PREV_INSN (insn
);
5497 /* If that failed, we must use a conservative two-insn sequence.
5498 use move to copy constant, MEM, or pseudo register to the reload
5499 register since "move" will be able to handle an arbitrary operand,
5500 unlike add which can't, in general. Then add the registers.
5502 If there is another way to do this for a specific machine, a
5503 DEFINE_PEEPHOLE should be specified that recognizes the sequence
5506 if (CONSTANT_P (op1
) || GET_CODE (op1
) == MEM
5507 || (GET_CODE (op1
) == REG
5508 && REGNO (op1
) >= FIRST_PSEUDO_REGISTER
))
5509 tem
= op0
, op0
= op1
, op1
= tem
;
5511 emit_insn_before (gen_move_insn (reloadreg
, op0
), before_insn
);
5512 emit_insn_before (gen_add2_insn (reloadreg
, op1
), before_insn
);
5515 /* If IN is a simple operand, use gen_move_insn. */
5516 else if (GET_RTX_CLASS (GET_CODE (in
)) == 'o' || GET_CODE (in
) == SUBREG
)
5518 rtx x
= emit_insn_before (gen_move_insn (reloadreg
, in
), before_insn
);
5519 if (is_asm
&& recog_memoized (x
) < 0)
5526 #ifdef HAVE_reload_load_address
5527 else if (HAVE_reload_load_address
)
5529 rtx x
= emit_insn_before (gen_reload_load_address (reloadreg
, in
),
5531 if (is_asm
&& recog_memoized (x
) < 0)
5539 /* Otherwise, just write (set REGLOADREG IN) and hope for the best. */
5542 rtx x
= emit_insn_before (gen_rtx (SET
, VOIDmode
, reloadreg
, in
),
5544 if (is_asm
&& recog_memoized (x
) < 0)
5551 /* Return the first insn emitted.
5552 We can not just return PREV_INSN (before_insn), because there may have
5553 been multiple instructions emitted. Also note that gen_move_insn may
5554 emit more than one insn itself, so we can not assume that there is one
5555 insn emitted per emit_insn_before call. */
5557 return NEXT_INSN (prev_insn
);
5560 /* Delete a previously made output-reload
5561 whose result we now believe is not needed.
5562 First we double-check.
5564 INSN is the insn now being processed.
5565 OUTPUT_RELOAD_INSN is the insn of the output reload.
5566 J is the reload-number for this insn. */
5569 delete_output_reload (insn
, j
, output_reload_insn
)
5572 rtx output_reload_insn
;
5576 /* Get the raw pseudo-register referred to. */
5578 rtx reg
= reload_in
[j
];
5579 while (GET_CODE (reg
) == SUBREG
)
5580 reg
= SUBREG_REG (reg
);
5582 /* If the pseudo-reg we are reloading is no longer referenced
5583 anywhere between the store into it and here,
5584 and no jumps or labels intervene, then the value can get
5585 here through the reload reg alone.
5586 Otherwise, give up--return. */
5587 for (i1
= NEXT_INSN (output_reload_insn
);
5588 i1
!= insn
; i1
= NEXT_INSN (i1
))
5590 if (GET_CODE (i1
) == CODE_LABEL
|| GET_CODE (i1
) == JUMP_INSN
)
5592 if ((GET_CODE (i1
) == INSN
|| GET_CODE (i1
) == CALL_INSN
)
5593 && reg_mentioned_p (reg
, PATTERN (i1
)))
5597 /* If this insn will store in the pseudo again,
5598 the previous store can be removed. */
5599 if (reload_out
[j
] == reload_in
[j
])
5600 delete_insn (output_reload_insn
);
5602 /* See if the pseudo reg has been completely replaced
5603 with reload regs. If so, delete the store insn
5604 and forget we had a stack slot for the pseudo. */
5605 else if (reg_n_deaths
[REGNO (reg
)] == 1
5606 && reg_basic_block
[REGNO (reg
)] >= 0
5607 && find_regno_note (insn
, REG_DEAD
, REGNO (reg
)))
5611 /* We know that it was used only between here
5612 and the beginning of the current basic block.
5613 (We also know that the last use before INSN was
5614 the output reload we are thinking of deleting, but never mind that.)
5615 Search that range; see if any ref remains. */
5616 for (i2
= PREV_INSN (insn
); i2
; i2
= PREV_INSN (i2
))
5618 rtx set
= single_set (i2
);
5620 /* Uses which just store in the pseudo don't count,
5621 since if they are the only uses, they are dead. */
5622 if (set
!= 0 && SET_DEST (set
) == reg
)
5624 if (GET_CODE (i2
) == CODE_LABEL
5625 || GET_CODE (i2
) == JUMP_INSN
)
5627 if ((GET_CODE (i2
) == INSN
|| GET_CODE (i2
) == CALL_INSN
)
5628 && reg_mentioned_p (reg
, PATTERN (i2
)))
5629 /* Some other ref remains;
5630 we can't do anything. */
5634 /* Delete the now-dead stores into this pseudo. */
5635 for (i2
= PREV_INSN (insn
); i2
; i2
= PREV_INSN (i2
))
5637 rtx set
= single_set (i2
);
5639 if (set
!= 0 && SET_DEST (set
) == reg
)
5641 if (GET_CODE (i2
) == CODE_LABEL
5642 || GET_CODE (i2
) == JUMP_INSN
)
5646 /* For the debugging info,
5647 say the pseudo lives in this reload reg. */
5648 reg_renumber
[REGNO (reg
)] = REGNO (reload_reg_rtx
[j
]);
5649 alter_reg (REGNO (reg
), -1);
5654 /* Output reload-insns to reload VALUE into RELOADREG.
5655 VALUE is a autoincrement or autodecrement RTX whose operand
5656 is a register or memory location;
5657 so reloading involves incrementing that location.
5659 INC_AMOUNT is the number to increment or decrement by (always positive).
5660 This cannot be deduced from VALUE.
5662 INSN is the insn before which the new insns should be emitted.
5664 The return value is the first of the insns emitted. */
5667 inc_for_reload (reloadreg
, value
, inc_amount
, insn
)
5673 /* REG or MEM to be copied and incremented. */
5674 rtx incloc
= XEXP (value
, 0);
5675 /* Nonzero if increment after copying. */
5676 int post
= (GET_CODE (value
) == POST_DEC
|| GET_CODE (value
) == POST_INC
);
5677 rtx prev
= PREV_INSN (insn
);
5682 /* No hard register is equivalent to this register after
5683 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
5684 we could inc/dec that register as well (maybe even using it for
5685 the source), but I'm not sure it's worth worrying about. */
5686 if (GET_CODE (incloc
) == REG
)
5687 reg_last_reload_reg
[REGNO (incloc
)] = 0;
5689 if (GET_CODE (value
) == PRE_DEC
|| GET_CODE (value
) == POST_DEC
)
5690 inc_amount
= - inc_amount
;
5692 inc
= gen_rtx (CONST_INT
, VOIDmode
, inc_amount
);
5694 /* If this is post-increment, first copy the location to the reload reg. */
5696 emit_insn_before (gen_move_insn (reloadreg
, incloc
), insn
);
5698 /* See if we can directly increment INCLOC. Use a method similar to that
5699 in gen_input_reload. */
5701 add_insn
= emit_insn_before (gen_rtx (SET
, VOIDmode
, incloc
,
5702 gen_rtx (PLUS
, GET_MODE (incloc
),
5703 incloc
, inc
)), insn
);
5705 code
= recog_memoized (add_insn
);
5708 insn_extract (add_insn
);
5709 if (constrain_operands (code
, 1))
5711 /* If this is a pre-increment and we have incremented the value
5712 where it lives, copy the incremented value to RELOADREG to
5713 be used as an address. */
5716 emit_insn_before (gen_move_insn (reloadreg
, incloc
), insn
);
5717 return NEXT_INSN (prev
);
5721 if (PREV_INSN (add_insn
))
5722 NEXT_INSN (PREV_INSN (add_insn
)) = NEXT_INSN (add_insn
);
5723 if (NEXT_INSN (add_insn
))
5724 PREV_INSN (NEXT_INSN (add_insn
)) = PREV_INSN (add_insn
);
5726 /* If couldn't do the increment directly, must increment in RELOADREG.
5727 The way we do this depends on whether this is pre- or post-increment.
5728 For pre-increment, copy INCLOC to the reload register, increment it
5729 there, then save back. */
5733 emit_insn_before (gen_move_insn (reloadreg
, incloc
), insn
);
5734 emit_insn_before (gen_add2_insn (reloadreg
, inc
), insn
);
5735 emit_insn_before (gen_move_insn (incloc
, reloadreg
), insn
);
5740 Because this might be a jump insn or a compare, and because RELOADREG
5741 may not be available after the insn in an input reload, we must do
5742 the incrementation before the insn being reloaded for.
5744 We have already copied INCLOC to RELOADREG. Increment the copy in
5745 RELOADREG, save that back, then decrement RELOADREG so it has
5746 the original value. */
5748 emit_insn_before (gen_add2_insn (reloadreg
, inc
), insn
);
5749 emit_insn_before (gen_move_insn (incloc
, reloadreg
), insn
);
5750 emit_insn_before (gen_add2_insn (reloadreg
,
5751 gen_rtx (CONST_INT
, VOIDmode
,
5756 return NEXT_INSN (prev
);
5759 /* Return 1 if we are certain that the constraint-string STRING allows
5760 the hard register REG. Return 0 if we can't be sure of this. */
5763 constraint_accepts_reg_p (string
, reg
)
5768 int regno
= true_regnum (reg
);
5771 /* Initialize for first alternative. */
5773 /* Check that each alternative contains `g' or `r'. */
5775 switch (c
= *string
++)
5778 /* If an alternative lacks `g' or `r', we lose. */
5781 /* If an alternative lacks `g' or `r', we lose. */
5784 /* Initialize for next alternative. */
5789 /* Any general reg wins for this alternative. */
5790 if (TEST_HARD_REG_BIT (reg_class_contents
[(int) GENERAL_REGS
], regno
))
5794 /* Any reg in specified class wins for this alternative. */
5796 enum reg_class
class = REG_CLASS_FROM_LETTER (c
);
5798 if (TEST_HARD_REG_BIT (reg_class_contents
[(int) class], regno
))
5804 /* Return the number of places FIND appears within X, but don't count
5805 an occurrence if some SET_DEST is FIND. */
5808 count_occurrences (x
, find
)
5809 register rtx x
, find
;
5812 register enum rtx_code code
;
5813 register char *format_ptr
;
5821 code
= GET_CODE (x
);
5836 if (SET_DEST (x
) == find
)
5837 return count_occurrences (SET_SRC (x
), find
);
5841 format_ptr
= GET_RTX_FORMAT (code
);
5844 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
5846 switch (*format_ptr
++)
5849 count
+= count_occurrences (XEXP (x
, i
), find
);
5853 if (XVEC (x
, i
) != NULL
)
5855 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
5856 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
);