]> gcc.gnu.org Git - gcc.git/blob - gcc/reload1.c
1ea21ee389094817d027c237a604039006c546ca
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "real.h"
43 #include "toplev.h"
44 #include "except.h"
45 #include "tree.h"
46
47 /* This file contains the reload pass of the compiler, which is
48 run after register allocation has been done. It checks that
49 each insn is valid (operands required to be in registers really
50 are in registers of the proper class) and fixes up invalid ones
51 by copying values temporarily into registers for the insns
52 that need them.
53
54 The results of register allocation are described by the vector
55 reg_renumber; the insns still contain pseudo regs, but reg_renumber
56 can be used to find which hard reg, if any, a pseudo reg is in.
57
58 The technique we always use is to free up a few hard regs that are
59 called ``reload regs'', and for each place where a pseudo reg
60 must be in a hard reg, copy it temporarily into one of the reload regs.
61
62 Reload regs are allocated locally for every instruction that needs
63 reloads. When there are pseudos which are allocated to a register that
64 has been chosen as a reload reg, such pseudos must be ``spilled''.
65 This means that they go to other hard regs, or to stack slots if no other
66 available hard regs can be found. Spilling can invalidate more
67 insns, requiring additional need for reloads, so we must keep checking
68 until the process stabilizes.
69
70 For machines with different classes of registers, we must keep track
71 of the register class needed for each reload, and make sure that
72 we allocate enough reload registers of each class.
73
74 The file reload.c contains the code that checks one insn for
75 validity and reports the reloads that it needs. This file
76 is in charge of scanning the entire rtl code, accumulating the
77 reload needs, spilling, assigning reload registers to use for
78 fixing up each insn, and generating the new insns to copy values
79 into the reload registers. */
80 \f
81 /* During reload_as_needed, element N contains a REG rtx for the hard reg
82 into which reg N has been reloaded (perhaps for a previous insn). */
83 static rtx *reg_last_reload_reg;
84
85 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
86 for an output reload that stores into reg N. */
87 static char *reg_has_output_reload;
88
89 /* Indicates which hard regs are reload-registers for an output reload
90 in the current insn. */
91 static HARD_REG_SET reg_is_output_reload;
92
93 /* Element N is the constant value to which pseudo reg N is equivalent,
94 or zero if pseudo reg N is not equivalent to a constant.
95 find_reloads looks at this in order to replace pseudo reg N
96 with the constant it stands for. */
97 rtx *reg_equiv_constant;
98
99 /* Element N is a memory location to which pseudo reg N is equivalent,
100 prior to any register elimination (such as frame pointer to stack
101 pointer). Depending on whether or not it is a valid address, this value
102 is transferred to either reg_equiv_address or reg_equiv_mem. */
103 rtx *reg_equiv_memory_loc;
104
105 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
106 This is used when the address is not valid as a memory address
107 (because its displacement is too big for the machine.) */
108 rtx *reg_equiv_address;
109
110 /* Element N is the memory slot to which pseudo reg N is equivalent,
111 or zero if pseudo reg N is not equivalent to a memory slot. */
112 rtx *reg_equiv_mem;
113
114 /* Widest width in which each pseudo reg is referred to (via subreg). */
115 static unsigned int *reg_max_ref_width;
116
117 /* Element N is the list of insns that initialized reg N from its equivalent
118 constant or memory slot. */
119 static rtx *reg_equiv_init;
120
121 /* Vector to remember old contents of reg_renumber before spilling. */
122 static short *reg_old_renumber;
123
124 /* During reload_as_needed, element N contains the last pseudo regno reloaded
125 into hard register N. If that pseudo reg occupied more than one register,
126 reg_reloaded_contents points to that pseudo for each spill register in
127 use; all of these must remain set for an inheritance to occur. */
128 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
129
130 /* During reload_as_needed, element N contains the insn for which
131 hard register N was last used. Its contents are significant only
132 when reg_reloaded_valid is set for this register. */
133 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
134
135 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
136 static HARD_REG_SET reg_reloaded_valid;
137 /* Indicate if the register was dead at the end of the reload.
138 This is only valid if reg_reloaded_contents is set and valid. */
139 static HARD_REG_SET reg_reloaded_dead;
140
141 /* Indicate whether the register's current value is one that is not
142 safe to retain across a call, even for registers that are normally
143 call-saved. */
144 static HARD_REG_SET reg_reloaded_call_part_clobbered;
145
146 /* Number of spill-regs so far; number of valid elements of spill_regs. */
147 static int n_spills;
148
149 /* In parallel with spill_regs, contains REG rtx's for those regs.
150 Holds the last rtx used for any given reg, or 0 if it has never
151 been used for spilling yet. This rtx is reused, provided it has
152 the proper mode. */
153 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
154
155 /* In parallel with spill_regs, contains nonzero for a spill reg
156 that was stored after the last time it was used.
157 The precise value is the insn generated to do the store. */
158 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
159
160 /* This is the register that was stored with spill_reg_store. This is a
161 copy of reload_out / reload_out_reg when the value was stored; if
162 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
163 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
164
165 /* This table is the inverse mapping of spill_regs:
166 indexed by hard reg number,
167 it contains the position of that reg in spill_regs,
168 or -1 for something that is not in spill_regs.
169
170 ?!? This is no longer accurate. */
171 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
172
173 /* This reg set indicates registers that can't be used as spill registers for
174 the currently processed insn. These are the hard registers which are live
175 during the insn, but not allocated to pseudos, as well as fixed
176 registers. */
177 static HARD_REG_SET bad_spill_regs;
178
179 /* These are the hard registers that can't be used as spill register for any
180 insn. This includes registers used for user variables and registers that
181 we can't eliminate. A register that appears in this set also can't be used
182 to retry register allocation. */
183 static HARD_REG_SET bad_spill_regs_global;
184
185 /* Describes order of use of registers for reloading
186 of spilled pseudo-registers. `n_spills' is the number of
187 elements that are actually valid; new ones are added at the end.
188
189 Both spill_regs and spill_reg_order are used on two occasions:
190 once during find_reload_regs, where they keep track of the spill registers
191 for a single insn, but also during reload_as_needed where they show all
192 the registers ever used by reload. For the latter case, the information
193 is calculated during finish_spills. */
194 static short spill_regs[FIRST_PSEUDO_REGISTER];
195
196 /* This vector of reg sets indicates, for each pseudo, which hard registers
197 may not be used for retrying global allocation because the register was
198 formerly spilled from one of them. If we allowed reallocating a pseudo to
199 a register that it was already allocated to, reload might not
200 terminate. */
201 static HARD_REG_SET *pseudo_previous_regs;
202
203 /* This vector of reg sets indicates, for each pseudo, which hard
204 registers may not be used for retrying global allocation because they
205 are used as spill registers during one of the insns in which the
206 pseudo is live. */
207 static HARD_REG_SET *pseudo_forbidden_regs;
208
209 /* All hard regs that have been used as spill registers for any insn are
210 marked in this set. */
211 static HARD_REG_SET used_spill_regs;
212
213 /* Index of last register assigned as a spill register. We allocate in
214 a round-robin fashion. */
215 static int last_spill_reg;
216
217 /* Nonzero if indirect addressing is supported on the machine; this means
218 that spilling (REG n) does not require reloading it into a register in
219 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
220 value indicates the level of indirect addressing supported, e.g., two
221 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
222 a hard register. */
223 static char spill_indirect_levels;
224
225 /* Nonzero if indirect addressing is supported when the innermost MEM is
226 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
227 which these are valid is the same as spill_indirect_levels, above. */
228 char indirect_symref_ok;
229
230 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
231 char double_reg_address_ok;
232
233 /* Record the stack slot for each spilled hard register. */
234 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
235
236 /* Width allocated so far for that stack slot. */
237 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
238
239 /* Record which pseudos needed to be spilled. */
240 static regset_head spilled_pseudos;
241
242 /* Used for communication between order_regs_for_reload and count_pseudo.
243 Used to avoid counting one pseudo twice. */
244 static regset_head pseudos_counted;
245
246 /* First uid used by insns created by reload in this function.
247 Used in find_equiv_reg. */
248 int reload_first_uid;
249
250 /* Flag set by local-alloc or global-alloc if anything is live in
251 a call-clobbered reg across calls. */
252 int caller_save_needed;
253
254 /* Set to 1 while reload_as_needed is operating.
255 Required by some machines to handle any generated moves differently. */
256 int reload_in_progress = 0;
257
258 /* These arrays record the insn_code of insns that may be needed to
259 perform input and output reloads of special objects. They provide a
260 place to pass a scratch register. */
261 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
262 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
263
264 /* This obstack is used for allocation of rtl during register elimination.
265 The allocated storage can be freed once find_reloads has processed the
266 insn. */
267 struct obstack reload_obstack;
268
269 /* Points to the beginning of the reload_obstack. All insn_chain structures
270 are allocated first. */
271 char *reload_startobj;
272
273 /* The point after all insn_chain structures. Used to quickly deallocate
274 memory allocated in copy_reloads during calculate_needs_all_insns. */
275 char *reload_firstobj;
276
277 /* This points before all local rtl generated by register elimination.
278 Used to quickly free all memory after processing one insn. */
279 static char *reload_insn_firstobj;
280
281 /* List of insn_chain instructions, one for every insn that reload needs to
282 examine. */
283 struct insn_chain *reload_insn_chain;
284
285 /* List of all insns needing reloads. */
286 static struct insn_chain *insns_need_reload;
287 \f
288 /* This structure is used to record information about register eliminations.
289 Each array entry describes one possible way of eliminating a register
290 in favor of another. If there is more than one way of eliminating a
291 particular register, the most preferred should be specified first. */
292
293 struct elim_table
294 {
295 int from; /* Register number to be eliminated. */
296 int to; /* Register number used as replacement. */
297 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
298 int can_eliminate; /* Nonzero if this elimination can be done. */
299 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
300 insns made by reload. */
301 HOST_WIDE_INT offset; /* Current offset between the two regs. */
302 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
303 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
304 rtx from_rtx; /* REG rtx for the register to be eliminated.
305 We cannot simply compare the number since
306 we might then spuriously replace a hard
307 register corresponding to a pseudo
308 assigned to the reg to be eliminated. */
309 rtx to_rtx; /* REG rtx for the replacement. */
310 };
311
312 static struct elim_table *reg_eliminate = 0;
313
314 /* This is an intermediate structure to initialize the table. It has
315 exactly the members provided by ELIMINABLE_REGS. */
316 static const struct elim_table_1
317 {
318 const int from;
319 const int to;
320 } reg_eliminate_1[] =
321
322 /* If a set of eliminable registers was specified, define the table from it.
323 Otherwise, default to the normal case of the frame pointer being
324 replaced by the stack pointer. */
325
326 #ifdef ELIMINABLE_REGS
327 ELIMINABLE_REGS;
328 #else
329 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
330 #endif
331
332 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
333
334 /* Record the number of pending eliminations that have an offset not equal
335 to their initial offset. If nonzero, we use a new copy of each
336 replacement result in any insns encountered. */
337 int num_not_at_initial_offset;
338
339 /* Count the number of registers that we may be able to eliminate. */
340 static int num_eliminable;
341 /* And the number of registers that are equivalent to a constant that
342 can be eliminated to frame_pointer / arg_pointer + constant. */
343 static int num_eliminable_invariants;
344
345 /* For each label, we record the offset of each elimination. If we reach
346 a label by more than one path and an offset differs, we cannot do the
347 elimination. This information is indexed by the difference of the
348 number of the label and the first label number. We can't offset the
349 pointer itself as this can cause problems on machines with segmented
350 memory. The first table is an array of flags that records whether we
351 have yet encountered a label and the second table is an array of arrays,
352 one entry in the latter array for each elimination. */
353
354 static int first_label_num;
355 static char *offsets_known_at;
356 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
357
358 /* Number of labels in the current function. */
359
360 static int num_labels;
361 \f
362 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
363 static void maybe_fix_stack_asms (void);
364 static void copy_reloads (struct insn_chain *);
365 static void calculate_needs_all_insns (int);
366 static int find_reg (struct insn_chain *, int);
367 static void find_reload_regs (struct insn_chain *);
368 static void select_reload_regs (void);
369 static void delete_caller_save_insns (void);
370
371 static void spill_failure (rtx, enum reg_class);
372 static void count_spilled_pseudo (int, int, int);
373 static void delete_dead_insn (rtx);
374 static void alter_reg (int, int);
375 static void set_label_offsets (rtx, rtx, int);
376 static void check_eliminable_occurrences (rtx);
377 static void elimination_effects (rtx, enum machine_mode);
378 static int eliminate_regs_in_insn (rtx, int);
379 static void update_eliminable_offsets (void);
380 static void mark_not_eliminable (rtx, rtx, void *);
381 static void set_initial_elim_offsets (void);
382 static void verify_initial_elim_offsets (void);
383 static void set_initial_label_offsets (void);
384 static void set_offsets_for_label (rtx);
385 static void init_elim_table (void);
386 static void update_eliminables (HARD_REG_SET *);
387 static void spill_hard_reg (unsigned int, int);
388 static int finish_spills (int);
389 static void ior_hard_reg_set (HARD_REG_SET *, HARD_REG_SET *);
390 static void scan_paradoxical_subregs (rtx);
391 static void count_pseudo (int);
392 static void order_regs_for_reload (struct insn_chain *);
393 static void reload_as_needed (int);
394 static void forget_old_reloads_1 (rtx, rtx, void *);
395 static int reload_reg_class_lower (const void *, const void *);
396 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
397 enum machine_mode);
398 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
399 enum machine_mode);
400 static int reload_reg_free_p (unsigned int, int, enum reload_type);
401 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
402 rtx, rtx, int, int);
403 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
404 rtx, rtx, int, int);
405 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
406 static int allocate_reload_reg (struct insn_chain *, int, int);
407 static int conflicts_with_override (rtx);
408 static void failed_reload (rtx, int);
409 static int set_reload_reg (int, int);
410 static void choose_reload_regs_init (struct insn_chain *, rtx *);
411 static void choose_reload_regs (struct insn_chain *);
412 static void merge_assigned_reloads (rtx);
413 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
414 rtx, int);
415 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
416 int);
417 static void do_input_reload (struct insn_chain *, struct reload *, int);
418 static void do_output_reload (struct insn_chain *, struct reload *, int);
419 static void emit_reload_insns (struct insn_chain *);
420 static void delete_output_reload (rtx, int, int);
421 static void delete_address_reloads (rtx, rtx);
422 static void delete_address_reloads_1 (rtx, rtx, rtx);
423 static rtx inc_for_reload (rtx, rtx, rtx, int);
424 #ifdef AUTO_INC_DEC
425 static void add_auto_inc_notes (rtx, rtx);
426 #endif
427 static void copy_eh_notes (rtx, rtx);
428 \f
429 /* Initialize the reload pass once per compilation. */
430
431 void
432 init_reload (void)
433 {
434 int i;
435
436 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
437 Set spill_indirect_levels to the number of levels such addressing is
438 permitted, zero if it is not permitted at all. */
439
440 rtx tem
441 = gen_rtx_MEM (Pmode,
442 gen_rtx_PLUS (Pmode,
443 gen_rtx_REG (Pmode,
444 LAST_VIRTUAL_REGISTER + 1),
445 GEN_INT (4)));
446 spill_indirect_levels = 0;
447
448 while (memory_address_p (QImode, tem))
449 {
450 spill_indirect_levels++;
451 tem = gen_rtx_MEM (Pmode, tem);
452 }
453
454 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
455
456 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
457 indirect_symref_ok = memory_address_p (QImode, tem);
458
459 /* See if reg+reg is a valid (and offsettable) address. */
460
461 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
462 {
463 tem = gen_rtx_PLUS (Pmode,
464 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
465 gen_rtx_REG (Pmode, i));
466
467 /* This way, we make sure that reg+reg is an offsettable address. */
468 tem = plus_constant (tem, 4);
469
470 if (memory_address_p (QImode, tem))
471 {
472 double_reg_address_ok = 1;
473 break;
474 }
475 }
476
477 /* Initialize obstack for our rtl allocation. */
478 gcc_obstack_init (&reload_obstack);
479 reload_startobj = obstack_alloc (&reload_obstack, 0);
480
481 INIT_REG_SET (&spilled_pseudos);
482 INIT_REG_SET (&pseudos_counted);
483 }
484
485 /* List of insn chains that are currently unused. */
486 static struct insn_chain *unused_insn_chains = 0;
487
488 /* Allocate an empty insn_chain structure. */
489 struct insn_chain *
490 new_insn_chain (void)
491 {
492 struct insn_chain *c;
493
494 if (unused_insn_chains == 0)
495 {
496 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
497 INIT_REG_SET (&c->live_throughout);
498 INIT_REG_SET (&c->dead_or_set);
499 }
500 else
501 {
502 c = unused_insn_chains;
503 unused_insn_chains = c->next;
504 }
505 c->is_caller_save_insn = 0;
506 c->need_operand_change = 0;
507 c->need_reload = 0;
508 c->need_elim = 0;
509 return c;
510 }
511
512 /* Small utility function to set all regs in hard reg set TO which are
513 allocated to pseudos in regset FROM. */
514
515 void
516 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
517 {
518 unsigned int regno;
519
520 EXECUTE_IF_SET_IN_REG_SET
521 (from, FIRST_PSEUDO_REGISTER, regno,
522 {
523 int r = reg_renumber[regno];
524 int nregs;
525
526 if (r < 0)
527 {
528 /* reload_combine uses the information from
529 BASIC_BLOCK->global_live_at_start, which might still
530 contain registers that have not actually been allocated
531 since they have an equivalence. */
532 if (! reload_completed)
533 abort ();
534 }
535 else
536 {
537 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
538 while (nregs-- > 0)
539 SET_HARD_REG_BIT (*to, r + nregs);
540 }
541 });
542 }
543
544 /* Replace all pseudos found in LOC with their corresponding
545 equivalences. */
546
547 static void
548 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
549 {
550 rtx x = *loc;
551 enum rtx_code code;
552 const char *fmt;
553 int i, j;
554
555 if (! x)
556 return;
557
558 code = GET_CODE (x);
559 if (code == REG)
560 {
561 unsigned int regno = REGNO (x);
562
563 if (regno < FIRST_PSEUDO_REGISTER)
564 return;
565
566 x = eliminate_regs (x, mem_mode, usage);
567 if (x != *loc)
568 {
569 *loc = x;
570 replace_pseudos_in (loc, mem_mode, usage);
571 return;
572 }
573
574 if (reg_equiv_constant[regno])
575 *loc = reg_equiv_constant[regno];
576 else if (reg_equiv_mem[regno])
577 *loc = reg_equiv_mem[regno];
578 else if (reg_equiv_address[regno])
579 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
580 else if (GET_CODE (regno_reg_rtx[regno]) != REG
581 || REGNO (regno_reg_rtx[regno]) != regno)
582 *loc = regno_reg_rtx[regno];
583 else
584 abort ();
585
586 return;
587 }
588 else if (code == MEM)
589 {
590 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
591 return;
592 }
593
594 /* Process each of our operands recursively. */
595 fmt = GET_RTX_FORMAT (code);
596 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
597 if (*fmt == 'e')
598 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
599 else if (*fmt == 'E')
600 for (j = 0; j < XVECLEN (x, i); j++)
601 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
602 }
603
604 \f
605 /* Global variables used by reload and its subroutines. */
606
607 /* Set during calculate_needs if an insn needs register elimination. */
608 static int something_needs_elimination;
609 /* Set during calculate_needs if an insn needs an operand changed. */
610 int something_needs_operands_changed;
611
612 /* Nonzero means we couldn't get enough spill regs. */
613 static int failure;
614
615 /* Main entry point for the reload pass.
616
617 FIRST is the first insn of the function being compiled.
618
619 GLOBAL nonzero means we were called from global_alloc
620 and should attempt to reallocate any pseudoregs that we
621 displace from hard regs we will use for reloads.
622 If GLOBAL is zero, we do not have enough information to do that,
623 so any pseudo reg that is spilled must go to the stack.
624
625 Return value is nonzero if reload failed
626 and we must not do any more for this function. */
627
628 int
629 reload (rtx first, int global)
630 {
631 int i;
632 rtx insn;
633 struct elim_table *ep;
634 basic_block bb;
635
636 /* Make sure even insns with volatile mem refs are recognizable. */
637 init_recog ();
638
639 failure = 0;
640
641 reload_firstobj = obstack_alloc (&reload_obstack, 0);
642
643 /* Make sure that the last insn in the chain
644 is not something that needs reloading. */
645 emit_note (NOTE_INSN_DELETED);
646
647 /* Enable find_equiv_reg to distinguish insns made by reload. */
648 reload_first_uid = get_max_uid ();
649
650 #ifdef SECONDARY_MEMORY_NEEDED
651 /* Initialize the secondary memory table. */
652 clear_secondary_mem ();
653 #endif
654
655 /* We don't have a stack slot for any spill reg yet. */
656 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
657 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
658
659 /* Initialize the save area information for caller-save, in case some
660 are needed. */
661 init_save_areas ();
662
663 /* Compute which hard registers are now in use
664 as homes for pseudo registers.
665 This is done here rather than (eg) in global_alloc
666 because this point is reached even if not optimizing. */
667 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
668 mark_home_live (i);
669
670 /* A function that receives a nonlocal goto must save all call-saved
671 registers. */
672 if (current_function_has_nonlocal_label)
673 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
674 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
675 regs_ever_live[i] = 1;
676
677 #ifdef NON_SAVING_SETJMP
678 /* A function that calls setjmp should save and restore all the
679 call-saved registers on a system where longjmp clobbers them. */
680 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
681 {
682 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
683 if (! call_used_regs[i])
684 regs_ever_live[i] = 1;
685 }
686 #endif
687
688 /* Find all the pseudo registers that didn't get hard regs
689 but do have known equivalent constants or memory slots.
690 These include parameters (known equivalent to parameter slots)
691 and cse'd or loop-moved constant memory addresses.
692
693 Record constant equivalents in reg_equiv_constant
694 so they will be substituted by find_reloads.
695 Record memory equivalents in reg_mem_equiv so they can
696 be substituted eventually by altering the REG-rtx's. */
697
698 reg_equiv_constant = xcalloc (max_regno, sizeof (rtx));
699 reg_equiv_mem = xcalloc (max_regno, sizeof (rtx));
700 reg_equiv_init = xcalloc (max_regno, sizeof (rtx));
701 reg_equiv_address = xcalloc (max_regno, sizeof (rtx));
702 reg_max_ref_width = xcalloc (max_regno, sizeof (int));
703 reg_old_renumber = xcalloc (max_regno, sizeof (short));
704 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
705 pseudo_forbidden_regs = xmalloc (max_regno * sizeof (HARD_REG_SET));
706 pseudo_previous_regs = xcalloc (max_regno, sizeof (HARD_REG_SET));
707
708 CLEAR_HARD_REG_SET (bad_spill_regs_global);
709
710 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
711 Also find all paradoxical subregs and find largest such for each pseudo.
712 On machines with small register classes, record hard registers that
713 are used for user variables. These can never be used for spills. */
714
715 num_eliminable_invariants = 0;
716 for (insn = first; insn; insn = NEXT_INSN (insn))
717 {
718 rtx set = single_set (insn);
719
720 /* We may introduce USEs that we want to remove at the end, so
721 we'll mark them with QImode. Make sure there are no
722 previously-marked insns left by say regmove. */
723 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
724 && GET_MODE (insn) != VOIDmode)
725 PUT_MODE (insn, VOIDmode);
726
727 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
728 {
729 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
730 if (note
731 #ifdef LEGITIMATE_PIC_OPERAND_P
732 && (! function_invariant_p (XEXP (note, 0))
733 || ! flag_pic
734 /* A function invariant is often CONSTANT_P but may
735 include a register. We promise to only pass
736 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
737 || (CONSTANT_P (XEXP (note, 0))
738 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
739 #endif
740 )
741 {
742 rtx x = XEXP (note, 0);
743 i = REGNO (SET_DEST (set));
744 if (i > LAST_VIRTUAL_REGISTER)
745 {
746 /* It can happen that a REG_EQUIV note contains a MEM
747 that is not a legitimate memory operand. As later
748 stages of reload assume that all addresses found
749 in the reg_equiv_* arrays were originally legitimate,
750 we ignore such REG_EQUIV notes. */
751 if (memory_operand (x, VOIDmode))
752 {
753 /* Always unshare the equivalence, so we can
754 substitute into this insn without touching the
755 equivalence. */
756 reg_equiv_memory_loc[i] = copy_rtx (x);
757 }
758 else if (function_invariant_p (x))
759 {
760 if (GET_CODE (x) == PLUS)
761 {
762 /* This is PLUS of frame pointer and a constant,
763 and might be shared. Unshare it. */
764 reg_equiv_constant[i] = copy_rtx (x);
765 num_eliminable_invariants++;
766 }
767 else if (x == frame_pointer_rtx
768 || x == arg_pointer_rtx)
769 {
770 reg_equiv_constant[i] = x;
771 num_eliminable_invariants++;
772 }
773 else if (LEGITIMATE_CONSTANT_P (x))
774 reg_equiv_constant[i] = x;
775 else
776 {
777 reg_equiv_memory_loc[i]
778 = force_const_mem (GET_MODE (SET_DEST (set)), x);
779 if (!reg_equiv_memory_loc[i])
780 continue;
781 }
782 }
783 else
784 continue;
785
786 /* If this register is being made equivalent to a MEM
787 and the MEM is not SET_SRC, the equivalencing insn
788 is one with the MEM as a SET_DEST and it occurs later.
789 So don't mark this insn now. */
790 if (GET_CODE (x) != MEM
791 || rtx_equal_p (SET_SRC (set), x))
792 reg_equiv_init[i]
793 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
794 }
795 }
796 }
797
798 /* If this insn is setting a MEM from a register equivalent to it,
799 this is the equivalencing insn. */
800 else if (set && GET_CODE (SET_DEST (set)) == MEM
801 && GET_CODE (SET_SRC (set)) == REG
802 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
803 && rtx_equal_p (SET_DEST (set),
804 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
805 reg_equiv_init[REGNO (SET_SRC (set))]
806 = gen_rtx_INSN_LIST (VOIDmode, insn,
807 reg_equiv_init[REGNO (SET_SRC (set))]);
808
809 if (INSN_P (insn))
810 scan_paradoxical_subregs (PATTERN (insn));
811 }
812
813 init_elim_table ();
814
815 first_label_num = get_first_label_num ();
816 num_labels = max_label_num () - first_label_num;
817
818 /* Allocate the tables used to store offset information at labels. */
819 /* We used to use alloca here, but the size of what it would try to
820 allocate would occasionally cause it to exceed the stack limit and
821 cause a core dump. */
822 offsets_known_at = xmalloc (num_labels);
823 offsets_at = xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
824
825 /* Alter each pseudo-reg rtx to contain its hard reg number.
826 Assign stack slots to the pseudos that lack hard regs or equivalents.
827 Do not touch virtual registers. */
828
829 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
830 alter_reg (i, -1);
831
832 /* If we have some registers we think can be eliminated, scan all insns to
833 see if there is an insn that sets one of these registers to something
834 other than itself plus a constant. If so, the register cannot be
835 eliminated. Doing this scan here eliminates an extra pass through the
836 main reload loop in the most common case where register elimination
837 cannot be done. */
838 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
839 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
840 || GET_CODE (insn) == CALL_INSN)
841 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
842
843 maybe_fix_stack_asms ();
844
845 insns_need_reload = 0;
846 something_needs_elimination = 0;
847
848 /* Initialize to -1, which means take the first spill register. */
849 last_spill_reg = -1;
850
851 /* Spill any hard regs that we know we can't eliminate. */
852 CLEAR_HARD_REG_SET (used_spill_regs);
853 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
854 if (! ep->can_eliminate)
855 spill_hard_reg (ep->from, 1);
856
857 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
858 if (frame_pointer_needed)
859 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
860 #endif
861 finish_spills (global);
862
863 /* From now on, we may need to generate moves differently. We may also
864 allow modifications of insns which cause them to not be recognized.
865 Any such modifications will be cleaned up during reload itself. */
866 reload_in_progress = 1;
867
868 /* This loop scans the entire function each go-round
869 and repeats until one repetition spills no additional hard regs. */
870 for (;;)
871 {
872 int something_changed;
873 int did_spill;
874
875 HOST_WIDE_INT starting_frame_size;
876
877 /* Round size of stack frame to stack_alignment_needed. This must be done
878 here because the stack size may be a part of the offset computation
879 for register elimination, and there might have been new stack slots
880 created in the last iteration of this loop. */
881 if (cfun->stack_alignment_needed)
882 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
883
884 starting_frame_size = get_frame_size ();
885
886 set_initial_elim_offsets ();
887 set_initial_label_offsets ();
888
889 /* For each pseudo register that has an equivalent location defined,
890 try to eliminate any eliminable registers (such as the frame pointer)
891 assuming initial offsets for the replacement register, which
892 is the normal case.
893
894 If the resulting location is directly addressable, substitute
895 the MEM we just got directly for the old REG.
896
897 If it is not addressable but is a constant or the sum of a hard reg
898 and constant, it is probably not addressable because the constant is
899 out of range, in that case record the address; we will generate
900 hairy code to compute the address in a register each time it is
901 needed. Similarly if it is a hard register, but one that is not
902 valid as an address register.
903
904 If the location is not addressable, but does not have one of the
905 above forms, assign a stack slot. We have to do this to avoid the
906 potential of producing lots of reloads if, e.g., a location involves
907 a pseudo that didn't get a hard register and has an equivalent memory
908 location that also involves a pseudo that didn't get a hard register.
909
910 Perhaps at some point we will improve reload_when_needed handling
911 so this problem goes away. But that's very hairy. */
912
913 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
914 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
915 {
916 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
917
918 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
919 XEXP (x, 0)))
920 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
921 else if (CONSTANT_P (XEXP (x, 0))
922 || (GET_CODE (XEXP (x, 0)) == REG
923 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
924 || (GET_CODE (XEXP (x, 0)) == PLUS
925 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
926 && (REGNO (XEXP (XEXP (x, 0), 0))
927 < FIRST_PSEUDO_REGISTER)
928 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
929 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
930 else
931 {
932 /* Make a new stack slot. Then indicate that something
933 changed so we go back and recompute offsets for
934 eliminable registers because the allocation of memory
935 below might change some offset. reg_equiv_{mem,address}
936 will be set up for this pseudo on the next pass around
937 the loop. */
938 reg_equiv_memory_loc[i] = 0;
939 reg_equiv_init[i] = 0;
940 alter_reg (i, -1);
941 }
942 }
943
944 if (caller_save_needed)
945 setup_save_areas ();
946
947 /* If we allocated another stack slot, redo elimination bookkeeping. */
948 if (starting_frame_size != get_frame_size ())
949 continue;
950
951 if (caller_save_needed)
952 {
953 save_call_clobbered_regs ();
954 /* That might have allocated new insn_chain structures. */
955 reload_firstobj = obstack_alloc (&reload_obstack, 0);
956 }
957
958 calculate_needs_all_insns (global);
959
960 CLEAR_REG_SET (&spilled_pseudos);
961 did_spill = 0;
962
963 something_changed = 0;
964
965 /* If we allocated any new memory locations, make another pass
966 since it might have changed elimination offsets. */
967 if (starting_frame_size != get_frame_size ())
968 something_changed = 1;
969
970 {
971 HARD_REG_SET to_spill;
972 CLEAR_HARD_REG_SET (to_spill);
973 update_eliminables (&to_spill);
974 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
975 if (TEST_HARD_REG_BIT (to_spill, i))
976 {
977 spill_hard_reg (i, 1);
978 did_spill = 1;
979
980 /* Regardless of the state of spills, if we previously had
981 a register that we thought we could eliminate, but now can
982 not eliminate, we must run another pass.
983
984 Consider pseudos which have an entry in reg_equiv_* which
985 reference an eliminable register. We must make another pass
986 to update reg_equiv_* so that we do not substitute in the
987 old value from when we thought the elimination could be
988 performed. */
989 something_changed = 1;
990 }
991 }
992
993 select_reload_regs ();
994 if (failure)
995 goto failed;
996
997 if (insns_need_reload != 0 || did_spill)
998 something_changed |= finish_spills (global);
999
1000 if (! something_changed)
1001 break;
1002
1003 if (caller_save_needed)
1004 delete_caller_save_insns ();
1005
1006 obstack_free (&reload_obstack, reload_firstobj);
1007 }
1008
1009 /* If global-alloc was run, notify it of any register eliminations we have
1010 done. */
1011 if (global)
1012 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1013 if (ep->can_eliminate)
1014 mark_elimination (ep->from, ep->to);
1015
1016 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1017 If that insn didn't set the register (i.e., it copied the register to
1018 memory), just delete that insn instead of the equivalencing insn plus
1019 anything now dead. If we call delete_dead_insn on that insn, we may
1020 delete the insn that actually sets the register if the register dies
1021 there and that is incorrect. */
1022
1023 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1024 {
1025 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1026 {
1027 rtx list;
1028 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1029 {
1030 rtx equiv_insn = XEXP (list, 0);
1031
1032 /* If we already deleted the insn or if it may trap, we can't
1033 delete it. The latter case shouldn't happen, but can
1034 if an insn has a variable address, gets a REG_EH_REGION
1035 note added to it, and then gets converted into an load
1036 from a constant address. */
1037 if (GET_CODE (equiv_insn) == NOTE
1038 || can_throw_internal (equiv_insn))
1039 ;
1040 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1041 delete_dead_insn (equiv_insn);
1042 else
1043 {
1044 PUT_CODE (equiv_insn, NOTE);
1045 NOTE_SOURCE_FILE (equiv_insn) = 0;
1046 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1047 }
1048 }
1049 }
1050 }
1051
1052 /* Use the reload registers where necessary
1053 by generating move instructions to move the must-be-register
1054 values into or out of the reload registers. */
1055
1056 if (insns_need_reload != 0 || something_needs_elimination
1057 || something_needs_operands_changed)
1058 {
1059 HOST_WIDE_INT old_frame_size = get_frame_size ();
1060
1061 reload_as_needed (global);
1062
1063 if (old_frame_size != get_frame_size ())
1064 abort ();
1065
1066 if (num_eliminable)
1067 verify_initial_elim_offsets ();
1068 }
1069
1070 /* If we were able to eliminate the frame pointer, show that it is no
1071 longer live at the start of any basic block. If it ls live by
1072 virtue of being in a pseudo, that pseudo will be marked live
1073 and hence the frame pointer will be known to be live via that
1074 pseudo. */
1075
1076 if (! frame_pointer_needed)
1077 FOR_EACH_BB (bb)
1078 CLEAR_REGNO_REG_SET (bb->global_live_at_start,
1079 HARD_FRAME_POINTER_REGNUM);
1080
1081 /* Come here (with failure set nonzero) if we can't get enough spill regs
1082 and we decide not to abort about it. */
1083 failed:
1084
1085 CLEAR_REG_SET (&spilled_pseudos);
1086 reload_in_progress = 0;
1087
1088 /* Now eliminate all pseudo regs by modifying them into
1089 their equivalent memory references.
1090 The REG-rtx's for the pseudos are modified in place,
1091 so all insns that used to refer to them now refer to memory.
1092
1093 For a reg that has a reg_equiv_address, all those insns
1094 were changed by reloading so that no insns refer to it any longer;
1095 but the DECL_RTL of a variable decl may refer to it,
1096 and if so this causes the debugging info to mention the variable. */
1097
1098 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1099 {
1100 rtx addr = 0;
1101
1102 if (reg_equiv_mem[i])
1103 addr = XEXP (reg_equiv_mem[i], 0);
1104
1105 if (reg_equiv_address[i])
1106 addr = reg_equiv_address[i];
1107
1108 if (addr)
1109 {
1110 if (reg_renumber[i] < 0)
1111 {
1112 rtx reg = regno_reg_rtx[i];
1113
1114 REG_USERVAR_P (reg) = 0;
1115 PUT_CODE (reg, MEM);
1116 XEXP (reg, 0) = addr;
1117 if (reg_equiv_memory_loc[i])
1118 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1119 else
1120 {
1121 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1122 = MEM_SCALAR_P (reg) = 0;
1123 MEM_ATTRS (reg) = 0;
1124 }
1125 }
1126 else if (reg_equiv_mem[i])
1127 XEXP (reg_equiv_mem[i], 0) = addr;
1128 }
1129 }
1130
1131 /* We must set reload_completed now since the cleanup_subreg_operands call
1132 below will re-recognize each insn and reload may have generated insns
1133 which are only valid during and after reload. */
1134 reload_completed = 1;
1135
1136 /* Make a pass over all the insns and delete all USEs which we inserted
1137 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1138 notes. Delete all CLOBBER insns, except those that refer to the return
1139 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1140 from misarranging variable-array code, and simplify (subreg (reg))
1141 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1142 are no longer useful or accurate. Strip and regenerate REG_INC notes
1143 that may have been moved around. */
1144
1145 for (insn = first; insn; insn = NEXT_INSN (insn))
1146 if (INSN_P (insn))
1147 {
1148 rtx *pnote;
1149
1150 if (GET_CODE (insn) == CALL_INSN)
1151 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1152 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1153
1154 if ((GET_CODE (PATTERN (insn)) == USE
1155 /* We mark with QImode USEs introduced by reload itself. */
1156 && (GET_MODE (insn) == QImode
1157 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1158 || (GET_CODE (PATTERN (insn)) == CLOBBER
1159 && (GET_CODE (XEXP (PATTERN (insn), 0)) != MEM
1160 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1161 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1162 && XEXP (XEXP (PATTERN (insn), 0), 0)
1163 != stack_pointer_rtx))
1164 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1165 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1166 {
1167 delete_insn (insn);
1168 continue;
1169 }
1170
1171 /* Some CLOBBERs may survive until here and still reference unassigned
1172 pseudos with const equivalent, which may in turn cause ICE in later
1173 passes if the reference remains in place. */
1174 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1175 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1176 VOIDmode, PATTERN (insn));
1177
1178 pnote = &REG_NOTES (insn);
1179 while (*pnote != 0)
1180 {
1181 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1182 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1183 || REG_NOTE_KIND (*pnote) == REG_INC
1184 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1185 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1186 *pnote = XEXP (*pnote, 1);
1187 else
1188 pnote = &XEXP (*pnote, 1);
1189 }
1190
1191 #ifdef AUTO_INC_DEC
1192 add_auto_inc_notes (insn, PATTERN (insn));
1193 #endif
1194
1195 /* And simplify (subreg (reg)) if it appears as an operand. */
1196 cleanup_subreg_operands (insn);
1197 }
1198
1199 /* If we are doing stack checking, give a warning if this function's
1200 frame size is larger than we expect. */
1201 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1202 {
1203 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1204 static int verbose_warned = 0;
1205
1206 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1207 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1208 size += UNITS_PER_WORD;
1209
1210 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1211 {
1212 warning ("frame size too large for reliable stack checking");
1213 if (! verbose_warned)
1214 {
1215 warning ("try reducing the number of local variables");
1216 verbose_warned = 1;
1217 }
1218 }
1219 }
1220
1221 /* Indicate that we no longer have known memory locations or constants. */
1222 if (reg_equiv_constant)
1223 free (reg_equiv_constant);
1224 reg_equiv_constant = 0;
1225 if (reg_equiv_memory_loc)
1226 free (reg_equiv_memory_loc);
1227 reg_equiv_memory_loc = 0;
1228
1229 if (offsets_known_at)
1230 free (offsets_known_at);
1231 if (offsets_at)
1232 free (offsets_at);
1233
1234 free (reg_equiv_mem);
1235 free (reg_equiv_init);
1236 free (reg_equiv_address);
1237 free (reg_max_ref_width);
1238 free (reg_old_renumber);
1239 free (pseudo_previous_regs);
1240 free (pseudo_forbidden_regs);
1241
1242 CLEAR_HARD_REG_SET (used_spill_regs);
1243 for (i = 0; i < n_spills; i++)
1244 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1245
1246 /* Free all the insn_chain structures at once. */
1247 obstack_free (&reload_obstack, reload_startobj);
1248 unused_insn_chains = 0;
1249 fixup_abnormal_edges ();
1250
1251 /* Replacing pseudos with their memory equivalents might have
1252 created shared rtx. Subsequent passes would get confused
1253 by this, so unshare everything here. */
1254 unshare_all_rtl_again (first);
1255
1256 #ifdef STACK_BOUNDARY
1257 /* init_emit has set the alignment of the hard frame pointer
1258 to STACK_BOUNDARY. It is very likely no longer valid if
1259 the hard frame pointer was used for register allocation. */
1260 if (!frame_pointer_needed)
1261 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1262 #endif
1263
1264 return failure;
1265 }
1266
1267 /* Yet another special case. Unfortunately, reg-stack forces people to
1268 write incorrect clobbers in asm statements. These clobbers must not
1269 cause the register to appear in bad_spill_regs, otherwise we'll call
1270 fatal_insn later. We clear the corresponding regnos in the live
1271 register sets to avoid this.
1272 The whole thing is rather sick, I'm afraid. */
1273
1274 static void
1275 maybe_fix_stack_asms (void)
1276 {
1277 #ifdef STACK_REGS
1278 const char *constraints[MAX_RECOG_OPERANDS];
1279 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1280 struct insn_chain *chain;
1281
1282 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1283 {
1284 int i, noperands;
1285 HARD_REG_SET clobbered, allowed;
1286 rtx pat;
1287
1288 if (! INSN_P (chain->insn)
1289 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1290 continue;
1291 pat = PATTERN (chain->insn);
1292 if (GET_CODE (pat) != PARALLEL)
1293 continue;
1294
1295 CLEAR_HARD_REG_SET (clobbered);
1296 CLEAR_HARD_REG_SET (allowed);
1297
1298 /* First, make a mask of all stack regs that are clobbered. */
1299 for (i = 0; i < XVECLEN (pat, 0); i++)
1300 {
1301 rtx t = XVECEXP (pat, 0, i);
1302 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1303 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1304 }
1305
1306 /* Get the operand values and constraints out of the insn. */
1307 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1308 constraints, operand_mode);
1309
1310 /* For every operand, see what registers are allowed. */
1311 for (i = 0; i < noperands; i++)
1312 {
1313 const char *p = constraints[i];
1314 /* For every alternative, we compute the class of registers allowed
1315 for reloading in CLS, and merge its contents into the reg set
1316 ALLOWED. */
1317 int cls = (int) NO_REGS;
1318
1319 for (;;)
1320 {
1321 char c = *p;
1322
1323 if (c == '\0' || c == ',' || c == '#')
1324 {
1325 /* End of one alternative - mark the regs in the current
1326 class, and reset the class. */
1327 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1328 cls = NO_REGS;
1329 p++;
1330 if (c == '#')
1331 do {
1332 c = *p++;
1333 } while (c != '\0' && c != ',');
1334 if (c == '\0')
1335 break;
1336 continue;
1337 }
1338
1339 switch (c)
1340 {
1341 case '=': case '+': case '*': case '%': case '?': case '!':
1342 case '0': case '1': case '2': case '3': case '4': case 'm':
1343 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1344 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1345 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1346 case 'P':
1347 break;
1348
1349 case 'p':
1350 cls = (int) reg_class_subunion[cls]
1351 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1352 break;
1353
1354 case 'g':
1355 case 'r':
1356 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1357 break;
1358
1359 default:
1360 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1361 cls = (int) reg_class_subunion[cls]
1362 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1363 else
1364 cls = (int) reg_class_subunion[cls]
1365 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1366 }
1367 p += CONSTRAINT_LEN (c, p);
1368 }
1369 }
1370 /* Those of the registers which are clobbered, but allowed by the
1371 constraints, must be usable as reload registers. So clear them
1372 out of the life information. */
1373 AND_HARD_REG_SET (allowed, clobbered);
1374 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1375 if (TEST_HARD_REG_BIT (allowed, i))
1376 {
1377 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1378 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1379 }
1380 }
1381
1382 #endif
1383 }
1384 \f
1385 /* Copy the global variables n_reloads and rld into the corresponding elts
1386 of CHAIN. */
1387 static void
1388 copy_reloads (struct insn_chain *chain)
1389 {
1390 chain->n_reloads = n_reloads;
1391 chain->rld = obstack_alloc (&reload_obstack,
1392 n_reloads * sizeof (struct reload));
1393 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1394 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1395 }
1396
1397 /* Walk the chain of insns, and determine for each whether it needs reloads
1398 and/or eliminations. Build the corresponding insns_need_reload list, and
1399 set something_needs_elimination as appropriate. */
1400 static void
1401 calculate_needs_all_insns (int global)
1402 {
1403 struct insn_chain **pprev_reload = &insns_need_reload;
1404 struct insn_chain *chain, *next = 0;
1405
1406 something_needs_elimination = 0;
1407
1408 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1409 for (chain = reload_insn_chain; chain != 0; chain = next)
1410 {
1411 rtx insn = chain->insn;
1412
1413 next = chain->next;
1414
1415 /* Clear out the shortcuts. */
1416 chain->n_reloads = 0;
1417 chain->need_elim = 0;
1418 chain->need_reload = 0;
1419 chain->need_operand_change = 0;
1420
1421 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1422 include REG_LABEL), we need to see what effects this has on the
1423 known offsets at labels. */
1424
1425 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1426 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1427 set_label_offsets (insn, insn, 0);
1428
1429 if (INSN_P (insn))
1430 {
1431 rtx old_body = PATTERN (insn);
1432 int old_code = INSN_CODE (insn);
1433 rtx old_notes = REG_NOTES (insn);
1434 int did_elimination = 0;
1435 int operands_changed = 0;
1436 rtx set = single_set (insn);
1437
1438 /* Skip insns that only set an equivalence. */
1439 if (set && GET_CODE (SET_DEST (set)) == REG
1440 && reg_renumber[REGNO (SET_DEST (set))] < 0
1441 && reg_equiv_constant[REGNO (SET_DEST (set))])
1442 continue;
1443
1444 /* If needed, eliminate any eliminable registers. */
1445 if (num_eliminable || num_eliminable_invariants)
1446 did_elimination = eliminate_regs_in_insn (insn, 0);
1447
1448 /* Analyze the instruction. */
1449 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1450 global, spill_reg_order);
1451
1452 /* If a no-op set needs more than one reload, this is likely
1453 to be something that needs input address reloads. We
1454 can't get rid of this cleanly later, and it is of no use
1455 anyway, so discard it now.
1456 We only do this when expensive_optimizations is enabled,
1457 since this complements reload inheritance / output
1458 reload deletion, and it can make debugging harder. */
1459 if (flag_expensive_optimizations && n_reloads > 1)
1460 {
1461 rtx set = single_set (insn);
1462 if (set
1463 && SET_SRC (set) == SET_DEST (set)
1464 && GET_CODE (SET_SRC (set)) == REG
1465 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1466 {
1467 delete_insn (insn);
1468 /* Delete it from the reload chain. */
1469 if (chain->prev)
1470 chain->prev->next = next;
1471 else
1472 reload_insn_chain = next;
1473 if (next)
1474 next->prev = chain->prev;
1475 chain->next = unused_insn_chains;
1476 unused_insn_chains = chain;
1477 continue;
1478 }
1479 }
1480 if (num_eliminable)
1481 update_eliminable_offsets ();
1482
1483 /* Remember for later shortcuts which insns had any reloads or
1484 register eliminations. */
1485 chain->need_elim = did_elimination;
1486 chain->need_reload = n_reloads > 0;
1487 chain->need_operand_change = operands_changed;
1488
1489 /* Discard any register replacements done. */
1490 if (did_elimination)
1491 {
1492 obstack_free (&reload_obstack, reload_insn_firstobj);
1493 PATTERN (insn) = old_body;
1494 INSN_CODE (insn) = old_code;
1495 REG_NOTES (insn) = old_notes;
1496 something_needs_elimination = 1;
1497 }
1498
1499 something_needs_operands_changed |= operands_changed;
1500
1501 if (n_reloads != 0)
1502 {
1503 copy_reloads (chain);
1504 *pprev_reload = chain;
1505 pprev_reload = &chain->next_need_reload;
1506 }
1507 }
1508 }
1509 *pprev_reload = 0;
1510 }
1511 \f
1512 /* Comparison function for qsort to decide which of two reloads
1513 should be handled first. *P1 and *P2 are the reload numbers. */
1514
1515 static int
1516 reload_reg_class_lower (const void *r1p, const void *r2p)
1517 {
1518 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1519 int t;
1520
1521 /* Consider required reloads before optional ones. */
1522 t = rld[r1].optional - rld[r2].optional;
1523 if (t != 0)
1524 return t;
1525
1526 /* Count all solitary classes before non-solitary ones. */
1527 t = ((reg_class_size[(int) rld[r2].class] == 1)
1528 - (reg_class_size[(int) rld[r1].class] == 1));
1529 if (t != 0)
1530 return t;
1531
1532 /* Aside from solitaires, consider all multi-reg groups first. */
1533 t = rld[r2].nregs - rld[r1].nregs;
1534 if (t != 0)
1535 return t;
1536
1537 /* Consider reloads in order of increasing reg-class number. */
1538 t = (int) rld[r1].class - (int) rld[r2].class;
1539 if (t != 0)
1540 return t;
1541
1542 /* If reloads are equally urgent, sort by reload number,
1543 so that the results of qsort leave nothing to chance. */
1544 return r1 - r2;
1545 }
1546 \f
1547 /* The cost of spilling each hard reg. */
1548 static int spill_cost[FIRST_PSEUDO_REGISTER];
1549
1550 /* When spilling multiple hard registers, we use SPILL_COST for the first
1551 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1552 only the first hard reg for a multi-reg pseudo. */
1553 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1554
1555 /* Update the spill cost arrays, considering that pseudo REG is live. */
1556
1557 static void
1558 count_pseudo (int reg)
1559 {
1560 int freq = REG_FREQ (reg);
1561 int r = reg_renumber[reg];
1562 int nregs;
1563
1564 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1565 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1566 return;
1567
1568 SET_REGNO_REG_SET (&pseudos_counted, reg);
1569
1570 if (r < 0)
1571 abort ();
1572
1573 spill_add_cost[r] += freq;
1574
1575 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1576 while (nregs-- > 0)
1577 spill_cost[r + nregs] += freq;
1578 }
1579
1580 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1581 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1582
1583 static void
1584 order_regs_for_reload (struct insn_chain *chain)
1585 {
1586 int i;
1587 HARD_REG_SET used_by_pseudos;
1588 HARD_REG_SET used_by_pseudos2;
1589
1590 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1591
1592 memset (spill_cost, 0, sizeof spill_cost);
1593 memset (spill_add_cost, 0, sizeof spill_add_cost);
1594
1595 /* Count number of uses of each hard reg by pseudo regs allocated to it
1596 and then order them by decreasing use. First exclude hard registers
1597 that are live in or across this insn. */
1598
1599 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1600 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1601 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1602 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1603
1604 /* Now find out which pseudos are allocated to it, and update
1605 hard_reg_n_uses. */
1606 CLEAR_REG_SET (&pseudos_counted);
1607
1608 EXECUTE_IF_SET_IN_REG_SET
1609 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1610 {
1611 count_pseudo (i);
1612 });
1613 EXECUTE_IF_SET_IN_REG_SET
1614 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1615 {
1616 count_pseudo (i);
1617 });
1618 CLEAR_REG_SET (&pseudos_counted);
1619 }
1620 \f
1621 /* Vector of reload-numbers showing the order in which the reloads should
1622 be processed. */
1623 static short reload_order[MAX_RELOADS];
1624
1625 /* This is used to keep track of the spill regs used in one insn. */
1626 static HARD_REG_SET used_spill_regs_local;
1627
1628 /* We decided to spill hard register SPILLED, which has a size of
1629 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1630 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1631 update SPILL_COST/SPILL_ADD_COST. */
1632
1633 static void
1634 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1635 {
1636 int r = reg_renumber[reg];
1637 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1638
1639 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1640 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1641 return;
1642
1643 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1644
1645 spill_add_cost[r] -= REG_FREQ (reg);
1646 while (nregs-- > 0)
1647 spill_cost[r + nregs] -= REG_FREQ (reg);
1648 }
1649
1650 /* Find reload register to use for reload number ORDER. */
1651
1652 static int
1653 find_reg (struct insn_chain *chain, int order)
1654 {
1655 int rnum = reload_order[order];
1656 struct reload *rl = rld + rnum;
1657 int best_cost = INT_MAX;
1658 int best_reg = -1;
1659 unsigned int i, j;
1660 int k;
1661 HARD_REG_SET not_usable;
1662 HARD_REG_SET used_by_other_reload;
1663
1664 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1665 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1666 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1667
1668 CLEAR_HARD_REG_SET (used_by_other_reload);
1669 for (k = 0; k < order; k++)
1670 {
1671 int other = reload_order[k];
1672
1673 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1674 for (j = 0; j < rld[other].nregs; j++)
1675 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1676 }
1677
1678 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1679 {
1680 unsigned int regno = i;
1681
1682 if (! TEST_HARD_REG_BIT (not_usable, regno)
1683 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1684 && HARD_REGNO_MODE_OK (regno, rl->mode))
1685 {
1686 int this_cost = spill_cost[regno];
1687 int ok = 1;
1688 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1689
1690 for (j = 1; j < this_nregs; j++)
1691 {
1692 this_cost += spill_add_cost[regno + j];
1693 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1694 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1695 ok = 0;
1696 }
1697 if (! ok)
1698 continue;
1699 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1700 this_cost--;
1701 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1702 this_cost--;
1703 if (this_cost < best_cost
1704 /* Among registers with equal cost, prefer caller-saved ones, or
1705 use REG_ALLOC_ORDER if it is defined. */
1706 || (this_cost == best_cost
1707 #ifdef REG_ALLOC_ORDER
1708 && (inv_reg_alloc_order[regno]
1709 < inv_reg_alloc_order[best_reg])
1710 #else
1711 && call_used_regs[regno]
1712 && ! call_used_regs[best_reg]
1713 #endif
1714 ))
1715 {
1716 best_reg = regno;
1717 best_cost = this_cost;
1718 }
1719 }
1720 }
1721 if (best_reg == -1)
1722 return 0;
1723
1724 if (rtl_dump_file)
1725 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1726
1727 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1728 rl->regno = best_reg;
1729
1730 EXECUTE_IF_SET_IN_REG_SET
1731 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1732 {
1733 count_spilled_pseudo (best_reg, rl->nregs, j);
1734 });
1735
1736 EXECUTE_IF_SET_IN_REG_SET
1737 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1738 {
1739 count_spilled_pseudo (best_reg, rl->nregs, j);
1740 });
1741
1742 for (i = 0; i < rl->nregs; i++)
1743 {
1744 if (spill_cost[best_reg + i] != 0
1745 || spill_add_cost[best_reg + i] != 0)
1746 abort ();
1747 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1748 }
1749 return 1;
1750 }
1751
1752 /* Find more reload regs to satisfy the remaining need of an insn, which
1753 is given by CHAIN.
1754 Do it by ascending class number, since otherwise a reg
1755 might be spilled for a big class and might fail to count
1756 for a smaller class even though it belongs to that class. */
1757
1758 static void
1759 find_reload_regs (struct insn_chain *chain)
1760 {
1761 int i;
1762
1763 /* In order to be certain of getting the registers we need,
1764 we must sort the reloads into order of increasing register class.
1765 Then our grabbing of reload registers will parallel the process
1766 that provided the reload registers. */
1767 for (i = 0; i < chain->n_reloads; i++)
1768 {
1769 /* Show whether this reload already has a hard reg. */
1770 if (chain->rld[i].reg_rtx)
1771 {
1772 int regno = REGNO (chain->rld[i].reg_rtx);
1773 chain->rld[i].regno = regno;
1774 chain->rld[i].nregs
1775 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1776 }
1777 else
1778 chain->rld[i].regno = -1;
1779 reload_order[i] = i;
1780 }
1781
1782 n_reloads = chain->n_reloads;
1783 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1784
1785 CLEAR_HARD_REG_SET (used_spill_regs_local);
1786
1787 if (rtl_dump_file)
1788 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1789
1790 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1791
1792 /* Compute the order of preference for hard registers to spill. */
1793
1794 order_regs_for_reload (chain);
1795
1796 for (i = 0; i < n_reloads; i++)
1797 {
1798 int r = reload_order[i];
1799
1800 /* Ignore reloads that got marked inoperative. */
1801 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1802 && ! rld[r].optional
1803 && rld[r].regno == -1)
1804 if (! find_reg (chain, i))
1805 {
1806 spill_failure (chain->insn, rld[r].class);
1807 failure = 1;
1808 return;
1809 }
1810 }
1811
1812 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1813 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1814
1815 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1816 }
1817
1818 static void
1819 select_reload_regs (void)
1820 {
1821 struct insn_chain *chain;
1822
1823 /* Try to satisfy the needs for each insn. */
1824 for (chain = insns_need_reload; chain != 0;
1825 chain = chain->next_need_reload)
1826 find_reload_regs (chain);
1827 }
1828 \f
1829 /* Delete all insns that were inserted by emit_caller_save_insns during
1830 this iteration. */
1831 static void
1832 delete_caller_save_insns (void)
1833 {
1834 struct insn_chain *c = reload_insn_chain;
1835
1836 while (c != 0)
1837 {
1838 while (c != 0 && c->is_caller_save_insn)
1839 {
1840 struct insn_chain *next = c->next;
1841 rtx insn = c->insn;
1842
1843 if (c == reload_insn_chain)
1844 reload_insn_chain = next;
1845 delete_insn (insn);
1846
1847 if (next)
1848 next->prev = c->prev;
1849 if (c->prev)
1850 c->prev->next = next;
1851 c->next = unused_insn_chains;
1852 unused_insn_chains = c;
1853 c = next;
1854 }
1855 if (c != 0)
1856 c = c->next;
1857 }
1858 }
1859 \f
1860 /* Handle the failure to find a register to spill.
1861 INSN should be one of the insns which needed this particular spill reg. */
1862
1863 static void
1864 spill_failure (rtx insn, enum reg_class class)
1865 {
1866 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1867 if (asm_noperands (PATTERN (insn)) >= 0)
1868 error_for_asm (insn, "can't find a register in class `%s' while reloading `asm'",
1869 reg_class_names[class]);
1870 else
1871 {
1872 error ("unable to find a register to spill in class `%s'",
1873 reg_class_names[class]);
1874 fatal_insn ("this is the insn:", insn);
1875 }
1876 }
1877 \f
1878 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1879 data that is dead in INSN. */
1880
1881 static void
1882 delete_dead_insn (rtx insn)
1883 {
1884 rtx prev = prev_real_insn (insn);
1885 rtx prev_dest;
1886
1887 /* If the previous insn sets a register that dies in our insn, delete it
1888 too. */
1889 if (prev && GET_CODE (PATTERN (prev)) == SET
1890 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1891 && reg_mentioned_p (prev_dest, PATTERN (insn))
1892 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1893 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1894 delete_dead_insn (prev);
1895
1896 PUT_CODE (insn, NOTE);
1897 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1898 NOTE_SOURCE_FILE (insn) = 0;
1899 }
1900
1901 /* Modify the home of pseudo-reg I.
1902 The new home is present in reg_renumber[I].
1903
1904 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1905 or it may be -1, meaning there is none or it is not relevant.
1906 This is used so that all pseudos spilled from a given hard reg
1907 can share one stack slot. */
1908
1909 static void
1910 alter_reg (int i, int from_reg)
1911 {
1912 /* When outputting an inline function, this can happen
1913 for a reg that isn't actually used. */
1914 if (regno_reg_rtx[i] == 0)
1915 return;
1916
1917 /* If the reg got changed to a MEM at rtl-generation time,
1918 ignore it. */
1919 if (GET_CODE (regno_reg_rtx[i]) != REG)
1920 return;
1921
1922 /* Modify the reg-rtx to contain the new hard reg
1923 number or else to contain its pseudo reg number. */
1924 REGNO (regno_reg_rtx[i])
1925 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1926
1927 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1928 allocate a stack slot for it. */
1929
1930 if (reg_renumber[i] < 0
1931 && REG_N_REFS (i) > 0
1932 && reg_equiv_constant[i] == 0
1933 && reg_equiv_memory_loc[i] == 0)
1934 {
1935 rtx x;
1936 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1937 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1938 int adjust = 0;
1939
1940 /* Each pseudo reg has an inherent size which comes from its own mode,
1941 and a total size which provides room for paradoxical subregs
1942 which refer to the pseudo reg in wider modes.
1943
1944 We can use a slot already allocated if it provides both
1945 enough inherent space and enough total space.
1946 Otherwise, we allocate a new slot, making sure that it has no less
1947 inherent space, and no less total space, then the previous slot. */
1948 if (from_reg == -1)
1949 {
1950 /* No known place to spill from => no slot to reuse. */
1951 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1952 inherent_size == total_size ? 0 : -1);
1953 if (BYTES_BIG_ENDIAN)
1954 /* Cancel the big-endian correction done in assign_stack_local.
1955 Get the address of the beginning of the slot.
1956 This is so we can do a big-endian correction unconditionally
1957 below. */
1958 adjust = inherent_size - total_size;
1959
1960 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
1961
1962 /* Nothing can alias this slot except this pseudo. */
1963 set_mem_alias_set (x, new_alias_set ());
1964 }
1965
1966 /* Reuse a stack slot if possible. */
1967 else if (spill_stack_slot[from_reg] != 0
1968 && spill_stack_slot_width[from_reg] >= total_size
1969 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1970 >= inherent_size))
1971 x = spill_stack_slot[from_reg];
1972
1973 /* Allocate a bigger slot. */
1974 else
1975 {
1976 /* Compute maximum size needed, both for inherent size
1977 and for total size. */
1978 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1979 rtx stack_slot;
1980
1981 if (spill_stack_slot[from_reg])
1982 {
1983 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1984 > inherent_size)
1985 mode = GET_MODE (spill_stack_slot[from_reg]);
1986 if (spill_stack_slot_width[from_reg] > total_size)
1987 total_size = spill_stack_slot_width[from_reg];
1988 }
1989
1990 /* Make a slot with that size. */
1991 x = assign_stack_local (mode, total_size,
1992 inherent_size == total_size ? 0 : -1);
1993 stack_slot = x;
1994
1995 /* All pseudos mapped to this slot can alias each other. */
1996 if (spill_stack_slot[from_reg])
1997 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
1998 else
1999 set_mem_alias_set (x, new_alias_set ());
2000
2001 if (BYTES_BIG_ENDIAN)
2002 {
2003 /* Cancel the big-endian correction done in assign_stack_local.
2004 Get the address of the beginning of the slot.
2005 This is so we can do a big-endian correction unconditionally
2006 below. */
2007 adjust = GET_MODE_SIZE (mode) - total_size;
2008 if (adjust)
2009 stack_slot
2010 = adjust_address_nv (x, mode_for_size (total_size
2011 * BITS_PER_UNIT,
2012 MODE_INT, 1),
2013 adjust);
2014 }
2015
2016 spill_stack_slot[from_reg] = stack_slot;
2017 spill_stack_slot_width[from_reg] = total_size;
2018 }
2019
2020 /* On a big endian machine, the "address" of the slot
2021 is the address of the low part that fits its inherent mode. */
2022 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2023 adjust += (total_size - inherent_size);
2024
2025 /* If we have any adjustment to make, or if the stack slot is the
2026 wrong mode, make a new stack slot. */
2027 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2028
2029 /* If we have a decl for the original register, set it for the
2030 memory. If this is a shared MEM, make a copy. */
2031 if (REG_EXPR (regno_reg_rtx[i])
2032 && TREE_CODE_CLASS (TREE_CODE (REG_EXPR (regno_reg_rtx[i]))) == 'd')
2033 {
2034 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2035
2036 /* We can do this only for the DECLs home pseudo, not for
2037 any copies of it, since otherwise when the stack slot
2038 is reused, nonoverlapping_memrefs_p might think they
2039 cannot overlap. */
2040 if (decl && GET_CODE (decl) == REG && REGNO (decl) == (unsigned) i)
2041 {
2042 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2043 x = copy_rtx (x);
2044
2045 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2046 }
2047 }
2048
2049 /* Save the stack slot for later. */
2050 reg_equiv_memory_loc[i] = x;
2051 }
2052 }
2053
2054 /* Mark the slots in regs_ever_live for the hard regs
2055 used by pseudo-reg number REGNO. */
2056
2057 void
2058 mark_home_live (int regno)
2059 {
2060 int i, lim;
2061
2062 i = reg_renumber[regno];
2063 if (i < 0)
2064 return;
2065 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2066 while (i < lim)
2067 regs_ever_live[i++] = 1;
2068 }
2069 \f
2070 /* This function handles the tracking of elimination offsets around branches.
2071
2072 X is a piece of RTL being scanned.
2073
2074 INSN is the insn that it came from, if any.
2075
2076 INITIAL_P is nonzero if we are to set the offset to be the initial
2077 offset and zero if we are setting the offset of the label to be the
2078 current offset. */
2079
2080 static void
2081 set_label_offsets (rtx x, rtx insn, int initial_p)
2082 {
2083 enum rtx_code code = GET_CODE (x);
2084 rtx tem;
2085 unsigned int i;
2086 struct elim_table *p;
2087
2088 switch (code)
2089 {
2090 case LABEL_REF:
2091 if (LABEL_REF_NONLOCAL_P (x))
2092 return;
2093
2094 x = XEXP (x, 0);
2095
2096 /* ... fall through ... */
2097
2098 case CODE_LABEL:
2099 /* If we know nothing about this label, set the desired offsets. Note
2100 that this sets the offset at a label to be the offset before a label
2101 if we don't know anything about the label. This is not correct for
2102 the label after a BARRIER, but is the best guess we can make. If
2103 we guessed wrong, we will suppress an elimination that might have
2104 been possible had we been able to guess correctly. */
2105
2106 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2107 {
2108 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2109 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2110 = (initial_p ? reg_eliminate[i].initial_offset
2111 : reg_eliminate[i].offset);
2112 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2113 }
2114
2115 /* Otherwise, if this is the definition of a label and it is
2116 preceded by a BARRIER, set our offsets to the known offset of
2117 that label. */
2118
2119 else if (x == insn
2120 && (tem = prev_nonnote_insn (insn)) != 0
2121 && GET_CODE (tem) == BARRIER)
2122 set_offsets_for_label (insn);
2123 else
2124 /* If neither of the above cases is true, compare each offset
2125 with those previously recorded and suppress any eliminations
2126 where the offsets disagree. */
2127
2128 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2129 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2130 != (initial_p ? reg_eliminate[i].initial_offset
2131 : reg_eliminate[i].offset))
2132 reg_eliminate[i].can_eliminate = 0;
2133
2134 return;
2135
2136 case JUMP_INSN:
2137 set_label_offsets (PATTERN (insn), insn, initial_p);
2138
2139 /* ... fall through ... */
2140
2141 case INSN:
2142 case CALL_INSN:
2143 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2144 and hence must have all eliminations at their initial offsets. */
2145 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2146 if (REG_NOTE_KIND (tem) == REG_LABEL)
2147 set_label_offsets (XEXP (tem, 0), insn, 1);
2148 return;
2149
2150 case PARALLEL:
2151 case ADDR_VEC:
2152 case ADDR_DIFF_VEC:
2153 /* Each of the labels in the parallel or address vector must be
2154 at their initial offsets. We want the first field for PARALLEL
2155 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2156
2157 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2158 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2159 insn, initial_p);
2160 return;
2161
2162 case SET:
2163 /* We only care about setting PC. If the source is not RETURN,
2164 IF_THEN_ELSE, or a label, disable any eliminations not at
2165 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2166 isn't one of those possibilities. For branches to a label,
2167 call ourselves recursively.
2168
2169 Note that this can disable elimination unnecessarily when we have
2170 a non-local goto since it will look like a non-constant jump to
2171 someplace in the current function. This isn't a significant
2172 problem since such jumps will normally be when all elimination
2173 pairs are back to their initial offsets. */
2174
2175 if (SET_DEST (x) != pc_rtx)
2176 return;
2177
2178 switch (GET_CODE (SET_SRC (x)))
2179 {
2180 case PC:
2181 case RETURN:
2182 return;
2183
2184 case LABEL_REF:
2185 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2186 return;
2187
2188 case IF_THEN_ELSE:
2189 tem = XEXP (SET_SRC (x), 1);
2190 if (GET_CODE (tem) == LABEL_REF)
2191 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2192 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2193 break;
2194
2195 tem = XEXP (SET_SRC (x), 2);
2196 if (GET_CODE (tem) == LABEL_REF)
2197 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2198 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2199 break;
2200 return;
2201
2202 default:
2203 break;
2204 }
2205
2206 /* If we reach here, all eliminations must be at their initial
2207 offset because we are doing a jump to a variable address. */
2208 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2209 if (p->offset != p->initial_offset)
2210 p->can_eliminate = 0;
2211 break;
2212
2213 default:
2214 break;
2215 }
2216 }
2217 \f
2218 /* Scan X and replace any eliminable registers (such as fp) with a
2219 replacement (such as sp), plus an offset.
2220
2221 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2222 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2223 MEM, we are allowed to replace a sum of a register and the constant zero
2224 with the register, which we cannot do outside a MEM. In addition, we need
2225 to record the fact that a register is referenced outside a MEM.
2226
2227 If INSN is an insn, it is the insn containing X. If we replace a REG
2228 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2229 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2230 the REG is being modified.
2231
2232 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2233 That's used when we eliminate in expressions stored in notes.
2234 This means, do not set ref_outside_mem even if the reference
2235 is outside of MEMs.
2236
2237 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2238 replacements done assuming all offsets are at their initial values. If
2239 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2240 encounter, return the actual location so that find_reloads will do
2241 the proper thing. */
2242
2243 rtx
2244 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2245 {
2246 enum rtx_code code = GET_CODE (x);
2247 struct elim_table *ep;
2248 int regno;
2249 rtx new;
2250 int i, j;
2251 const char *fmt;
2252 int copied = 0;
2253
2254 if (! current_function_decl)
2255 return x;
2256
2257 switch (code)
2258 {
2259 case CONST_INT:
2260 case CONST_DOUBLE:
2261 case CONST_VECTOR:
2262 case CONST:
2263 case SYMBOL_REF:
2264 case CODE_LABEL:
2265 case PC:
2266 case CC0:
2267 case ASM_INPUT:
2268 case ADDR_VEC:
2269 case ADDR_DIFF_VEC:
2270 case RETURN:
2271 return x;
2272
2273 case ADDRESSOF:
2274 /* This is only for the benefit of the debugging backends, which call
2275 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2276 removed after CSE. */
2277 new = eliminate_regs (XEXP (x, 0), 0, insn);
2278 if (GET_CODE (new) == MEM)
2279 return XEXP (new, 0);
2280 return x;
2281
2282 case REG:
2283 regno = REGNO (x);
2284
2285 /* First handle the case where we encounter a bare register that
2286 is eliminable. Replace it with a PLUS. */
2287 if (regno < FIRST_PSEUDO_REGISTER)
2288 {
2289 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2290 ep++)
2291 if (ep->from_rtx == x && ep->can_eliminate)
2292 return plus_constant (ep->to_rtx, ep->previous_offset);
2293
2294 }
2295 else if (reg_renumber && reg_renumber[regno] < 0
2296 && reg_equiv_constant && reg_equiv_constant[regno]
2297 && ! CONSTANT_P (reg_equiv_constant[regno]))
2298 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2299 mem_mode, insn);
2300 return x;
2301
2302 /* You might think handling MINUS in a manner similar to PLUS is a
2303 good idea. It is not. It has been tried multiple times and every
2304 time the change has had to have been reverted.
2305
2306 Other parts of reload know a PLUS is special (gen_reload for example)
2307 and require special code to handle code a reloaded PLUS operand.
2308
2309 Also consider backends where the flags register is clobbered by a
2310 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2311 lea instruction comes to mind). If we try to reload a MINUS, we
2312 may kill the flags register that was holding a useful value.
2313
2314 So, please before trying to handle MINUS, consider reload as a
2315 whole instead of this little section as well as the backend issues. */
2316 case PLUS:
2317 /* If this is the sum of an eliminable register and a constant, rework
2318 the sum. */
2319 if (GET_CODE (XEXP (x, 0)) == REG
2320 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2321 && CONSTANT_P (XEXP (x, 1)))
2322 {
2323 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2324 ep++)
2325 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2326 {
2327 /* The only time we want to replace a PLUS with a REG (this
2328 occurs when the constant operand of the PLUS is the negative
2329 of the offset) is when we are inside a MEM. We won't want
2330 to do so at other times because that would change the
2331 structure of the insn in a way that reload can't handle.
2332 We special-case the commonest situation in
2333 eliminate_regs_in_insn, so just replace a PLUS with a
2334 PLUS here, unless inside a MEM. */
2335 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2336 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2337 return ep->to_rtx;
2338 else
2339 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2340 plus_constant (XEXP (x, 1),
2341 ep->previous_offset));
2342 }
2343
2344 /* If the register is not eliminable, we are done since the other
2345 operand is a constant. */
2346 return x;
2347 }
2348
2349 /* If this is part of an address, we want to bring any constant to the
2350 outermost PLUS. We will do this by doing register replacement in
2351 our operands and seeing if a constant shows up in one of them.
2352
2353 Note that there is no risk of modifying the structure of the insn,
2354 since we only get called for its operands, thus we are either
2355 modifying the address inside a MEM, or something like an address
2356 operand of a load-address insn. */
2357
2358 {
2359 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2360 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2361
2362 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2363 {
2364 /* If one side is a PLUS and the other side is a pseudo that
2365 didn't get a hard register but has a reg_equiv_constant,
2366 we must replace the constant here since it may no longer
2367 be in the position of any operand. */
2368 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2369 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2370 && reg_renumber[REGNO (new1)] < 0
2371 && reg_equiv_constant != 0
2372 && reg_equiv_constant[REGNO (new1)] != 0)
2373 new1 = reg_equiv_constant[REGNO (new1)];
2374 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2375 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2376 && reg_renumber[REGNO (new0)] < 0
2377 && reg_equiv_constant[REGNO (new0)] != 0)
2378 new0 = reg_equiv_constant[REGNO (new0)];
2379
2380 new = form_sum (new0, new1);
2381
2382 /* As above, if we are not inside a MEM we do not want to
2383 turn a PLUS into something else. We might try to do so here
2384 for an addition of 0 if we aren't optimizing. */
2385 if (! mem_mode && GET_CODE (new) != PLUS)
2386 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2387 else
2388 return new;
2389 }
2390 }
2391 return x;
2392
2393 case MULT:
2394 /* If this is the product of an eliminable register and a
2395 constant, apply the distribute law and move the constant out
2396 so that we have (plus (mult ..) ..). This is needed in order
2397 to keep load-address insns valid. This case is pathological.
2398 We ignore the possibility of overflow here. */
2399 if (GET_CODE (XEXP (x, 0)) == REG
2400 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2401 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2402 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2403 ep++)
2404 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2405 {
2406 if (! mem_mode
2407 /* Refs inside notes don't count for this purpose. */
2408 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2409 || GET_CODE (insn) == INSN_LIST)))
2410 ep->ref_outside_mem = 1;
2411
2412 return
2413 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2414 ep->previous_offset * INTVAL (XEXP (x, 1)));
2415 }
2416
2417 /* ... fall through ... */
2418
2419 case CALL:
2420 case COMPARE:
2421 /* See comments before PLUS about handling MINUS. */
2422 case MINUS:
2423 case DIV: case UDIV:
2424 case MOD: case UMOD:
2425 case AND: case IOR: case XOR:
2426 case ROTATERT: case ROTATE:
2427 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2428 case NE: case EQ:
2429 case GE: case GT: case GEU: case GTU:
2430 case LE: case LT: case LEU: case LTU:
2431 {
2432 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2433 rtx new1
2434 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2435
2436 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2437 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2438 }
2439 return x;
2440
2441 case EXPR_LIST:
2442 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2443 if (XEXP (x, 0))
2444 {
2445 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2446 if (new != XEXP (x, 0))
2447 {
2448 /* If this is a REG_DEAD note, it is not valid anymore.
2449 Using the eliminated version could result in creating a
2450 REG_DEAD note for the stack or frame pointer. */
2451 if (GET_MODE (x) == REG_DEAD)
2452 return (XEXP (x, 1)
2453 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2454 : NULL_RTX);
2455
2456 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2457 }
2458 }
2459
2460 /* ... fall through ... */
2461
2462 case INSN_LIST:
2463 /* Now do eliminations in the rest of the chain. If this was
2464 an EXPR_LIST, this might result in allocating more memory than is
2465 strictly needed, but it simplifies the code. */
2466 if (XEXP (x, 1))
2467 {
2468 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2469 if (new != XEXP (x, 1))
2470 return
2471 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2472 }
2473 return x;
2474
2475 case PRE_INC:
2476 case POST_INC:
2477 case PRE_DEC:
2478 case POST_DEC:
2479 case STRICT_LOW_PART:
2480 case NEG: case NOT:
2481 case SIGN_EXTEND: case ZERO_EXTEND:
2482 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2483 case FLOAT: case FIX:
2484 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2485 case ABS:
2486 case SQRT:
2487 case FFS:
2488 case CLZ:
2489 case CTZ:
2490 case POPCOUNT:
2491 case PARITY:
2492 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2493 if (new != XEXP (x, 0))
2494 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2495 return x;
2496
2497 case SUBREG:
2498 /* Similar to above processing, but preserve SUBREG_BYTE.
2499 Convert (subreg (mem)) to (mem) if not paradoxical.
2500 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2501 pseudo didn't get a hard reg, we must replace this with the
2502 eliminated version of the memory location because push_reload
2503 may do the replacement in certain circumstances. */
2504 if (GET_CODE (SUBREG_REG (x)) == REG
2505 && (GET_MODE_SIZE (GET_MODE (x))
2506 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2507 && reg_equiv_memory_loc != 0
2508 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2509 {
2510 new = SUBREG_REG (x);
2511 }
2512 else
2513 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2514
2515 if (new != SUBREG_REG (x))
2516 {
2517 int x_size = GET_MODE_SIZE (GET_MODE (x));
2518 int new_size = GET_MODE_SIZE (GET_MODE (new));
2519
2520 if (GET_CODE (new) == MEM
2521 && ((x_size < new_size
2522 #ifdef WORD_REGISTER_OPERATIONS
2523 /* On these machines, combine can create rtl of the form
2524 (set (subreg:m1 (reg:m2 R) 0) ...)
2525 where m1 < m2, and expects something interesting to
2526 happen to the entire word. Moreover, it will use the
2527 (reg:m2 R) later, expecting all bits to be preserved.
2528 So if the number of words is the same, preserve the
2529 subreg so that push_reload can see it. */
2530 && ! ((x_size - 1) / UNITS_PER_WORD
2531 == (new_size -1 ) / UNITS_PER_WORD)
2532 #endif
2533 )
2534 || x_size == new_size)
2535 )
2536 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2537 else
2538 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2539 }
2540
2541 return x;
2542
2543 case MEM:
2544 /* This is only for the benefit of the debugging backends, which call
2545 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2546 removed after CSE. */
2547 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2548 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2549
2550 /* Our only special processing is to pass the mode of the MEM to our
2551 recursive call and copy the flags. While we are here, handle this
2552 case more efficiently. */
2553 return
2554 replace_equiv_address_nv (x,
2555 eliminate_regs (XEXP (x, 0),
2556 GET_MODE (x), insn));
2557
2558 case USE:
2559 /* Handle insn_list USE that a call to a pure function may generate. */
2560 new = eliminate_regs (XEXP (x, 0), 0, insn);
2561 if (new != XEXP (x, 0))
2562 return gen_rtx_USE (GET_MODE (x), new);
2563 return x;
2564
2565 case CLOBBER:
2566 case ASM_OPERANDS:
2567 case SET:
2568 abort ();
2569
2570 default:
2571 break;
2572 }
2573
2574 /* Process each of our operands recursively. If any have changed, make a
2575 copy of the rtx. */
2576 fmt = GET_RTX_FORMAT (code);
2577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2578 {
2579 if (*fmt == 'e')
2580 {
2581 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2582 if (new != XEXP (x, i) && ! copied)
2583 {
2584 rtx new_x = rtx_alloc (code);
2585 memcpy (new_x, x, RTX_SIZE (code));
2586 x = new_x;
2587 copied = 1;
2588 }
2589 XEXP (x, i) = new;
2590 }
2591 else if (*fmt == 'E')
2592 {
2593 int copied_vec = 0;
2594 for (j = 0; j < XVECLEN (x, i); j++)
2595 {
2596 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2597 if (new != XVECEXP (x, i, j) && ! copied_vec)
2598 {
2599 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2600 XVEC (x, i)->elem);
2601 if (! copied)
2602 {
2603 rtx new_x = rtx_alloc (code);
2604 memcpy (new_x, x, RTX_SIZE (code));
2605 x = new_x;
2606 copied = 1;
2607 }
2608 XVEC (x, i) = new_v;
2609 copied_vec = 1;
2610 }
2611 XVECEXP (x, i, j) = new;
2612 }
2613 }
2614 }
2615
2616 return x;
2617 }
2618
2619 /* Scan rtx X for modifications of elimination target registers. Update
2620 the table of eliminables to reflect the changed state. MEM_MODE is
2621 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2622
2623 static void
2624 elimination_effects (rtx x, enum machine_mode mem_mode)
2625 {
2626 enum rtx_code code = GET_CODE (x);
2627 struct elim_table *ep;
2628 int regno;
2629 int i, j;
2630 const char *fmt;
2631
2632 switch (code)
2633 {
2634 case CONST_INT:
2635 case CONST_DOUBLE:
2636 case CONST_VECTOR:
2637 case CONST:
2638 case SYMBOL_REF:
2639 case CODE_LABEL:
2640 case PC:
2641 case CC0:
2642 case ASM_INPUT:
2643 case ADDR_VEC:
2644 case ADDR_DIFF_VEC:
2645 case RETURN:
2646 return;
2647
2648 case ADDRESSOF:
2649 abort ();
2650
2651 case REG:
2652 regno = REGNO (x);
2653
2654 /* First handle the case where we encounter a bare register that
2655 is eliminable. Replace it with a PLUS. */
2656 if (regno < FIRST_PSEUDO_REGISTER)
2657 {
2658 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2659 ep++)
2660 if (ep->from_rtx == x && ep->can_eliminate)
2661 {
2662 if (! mem_mode)
2663 ep->ref_outside_mem = 1;
2664 return;
2665 }
2666
2667 }
2668 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2669 && reg_equiv_constant[regno]
2670 && ! function_invariant_p (reg_equiv_constant[regno]))
2671 elimination_effects (reg_equiv_constant[regno], mem_mode);
2672 return;
2673
2674 case PRE_INC:
2675 case POST_INC:
2676 case PRE_DEC:
2677 case POST_DEC:
2678 case POST_MODIFY:
2679 case PRE_MODIFY:
2680 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2681 if (ep->to_rtx == XEXP (x, 0))
2682 {
2683 int size = GET_MODE_SIZE (mem_mode);
2684
2685 /* If more bytes than MEM_MODE are pushed, account for them. */
2686 #ifdef PUSH_ROUNDING
2687 if (ep->to_rtx == stack_pointer_rtx)
2688 size = PUSH_ROUNDING (size);
2689 #endif
2690 if (code == PRE_DEC || code == POST_DEC)
2691 ep->offset += size;
2692 else if (code == PRE_INC || code == POST_INC)
2693 ep->offset -= size;
2694 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2695 && GET_CODE (XEXP (x, 1)) == PLUS
2696 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2697 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2698 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2699 }
2700
2701 /* These two aren't unary operators. */
2702 if (code == POST_MODIFY || code == PRE_MODIFY)
2703 break;
2704
2705 /* Fall through to generic unary operation case. */
2706 case STRICT_LOW_PART:
2707 case NEG: case NOT:
2708 case SIGN_EXTEND: case ZERO_EXTEND:
2709 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2710 case FLOAT: case FIX:
2711 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2712 case ABS:
2713 case SQRT:
2714 case FFS:
2715 case CLZ:
2716 case CTZ:
2717 case POPCOUNT:
2718 case PARITY:
2719 elimination_effects (XEXP (x, 0), mem_mode);
2720 return;
2721
2722 case SUBREG:
2723 if (GET_CODE (SUBREG_REG (x)) == REG
2724 && (GET_MODE_SIZE (GET_MODE (x))
2725 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2726 && reg_equiv_memory_loc != 0
2727 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2728 return;
2729
2730 elimination_effects (SUBREG_REG (x), mem_mode);
2731 return;
2732
2733 case USE:
2734 /* If using a register that is the source of an eliminate we still
2735 think can be performed, note it cannot be performed since we don't
2736 know how this register is used. */
2737 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2738 if (ep->from_rtx == XEXP (x, 0))
2739 ep->can_eliminate = 0;
2740
2741 elimination_effects (XEXP (x, 0), mem_mode);
2742 return;
2743
2744 case CLOBBER:
2745 /* If clobbering a register that is the replacement register for an
2746 elimination we still think can be performed, note that it cannot
2747 be performed. Otherwise, we need not be concerned about it. */
2748 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2749 if (ep->to_rtx == XEXP (x, 0))
2750 ep->can_eliminate = 0;
2751
2752 elimination_effects (XEXP (x, 0), mem_mode);
2753 return;
2754
2755 case SET:
2756 /* Check for setting a register that we know about. */
2757 if (GET_CODE (SET_DEST (x)) == REG)
2758 {
2759 /* See if this is setting the replacement register for an
2760 elimination.
2761
2762 If DEST is the hard frame pointer, we do nothing because we
2763 assume that all assignments to the frame pointer are for
2764 non-local gotos and are being done at a time when they are valid
2765 and do not disturb anything else. Some machines want to
2766 eliminate a fake argument pointer (or even a fake frame pointer)
2767 with either the real frame or the stack pointer. Assignments to
2768 the hard frame pointer must not prevent this elimination. */
2769
2770 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2771 ep++)
2772 if (ep->to_rtx == SET_DEST (x)
2773 && SET_DEST (x) != hard_frame_pointer_rtx)
2774 {
2775 /* If it is being incremented, adjust the offset. Otherwise,
2776 this elimination can't be done. */
2777 rtx src = SET_SRC (x);
2778
2779 if (GET_CODE (src) == PLUS
2780 && XEXP (src, 0) == SET_DEST (x)
2781 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2782 ep->offset -= INTVAL (XEXP (src, 1));
2783 else
2784 ep->can_eliminate = 0;
2785 }
2786 }
2787
2788 elimination_effects (SET_DEST (x), 0);
2789 elimination_effects (SET_SRC (x), 0);
2790 return;
2791
2792 case MEM:
2793 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2794 abort ();
2795
2796 /* Our only special processing is to pass the mode of the MEM to our
2797 recursive call. */
2798 elimination_effects (XEXP (x, 0), GET_MODE (x));
2799 return;
2800
2801 default:
2802 break;
2803 }
2804
2805 fmt = GET_RTX_FORMAT (code);
2806 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2807 {
2808 if (*fmt == 'e')
2809 elimination_effects (XEXP (x, i), mem_mode);
2810 else if (*fmt == 'E')
2811 for (j = 0; j < XVECLEN (x, i); j++)
2812 elimination_effects (XVECEXP (x, i, j), mem_mode);
2813 }
2814 }
2815
2816 /* Descend through rtx X and verify that no references to eliminable registers
2817 remain. If any do remain, mark the involved register as not
2818 eliminable. */
2819
2820 static void
2821 check_eliminable_occurrences (rtx x)
2822 {
2823 const char *fmt;
2824 int i;
2825 enum rtx_code code;
2826
2827 if (x == 0)
2828 return;
2829
2830 code = GET_CODE (x);
2831
2832 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2833 {
2834 struct elim_table *ep;
2835
2836 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2837 if (ep->from_rtx == x && ep->can_eliminate)
2838 ep->can_eliminate = 0;
2839 return;
2840 }
2841
2842 fmt = GET_RTX_FORMAT (code);
2843 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2844 {
2845 if (*fmt == 'e')
2846 check_eliminable_occurrences (XEXP (x, i));
2847 else if (*fmt == 'E')
2848 {
2849 int j;
2850 for (j = 0; j < XVECLEN (x, i); j++)
2851 check_eliminable_occurrences (XVECEXP (x, i, j));
2852 }
2853 }
2854 }
2855 \f
2856 /* Scan INSN and eliminate all eliminable registers in it.
2857
2858 If REPLACE is nonzero, do the replacement destructively. Also
2859 delete the insn as dead it if it is setting an eliminable register.
2860
2861 If REPLACE is zero, do all our allocations in reload_obstack.
2862
2863 If no eliminations were done and this insn doesn't require any elimination
2864 processing (these are not identical conditions: it might be updating sp,
2865 but not referencing fp; this needs to be seen during reload_as_needed so
2866 that the offset between fp and sp can be taken into consideration), zero
2867 is returned. Otherwise, 1 is returned. */
2868
2869 static int
2870 eliminate_regs_in_insn (rtx insn, int replace)
2871 {
2872 int icode = recog_memoized (insn);
2873 rtx old_body = PATTERN (insn);
2874 int insn_is_asm = asm_noperands (old_body) >= 0;
2875 rtx old_set = single_set (insn);
2876 rtx new_body;
2877 int val = 0;
2878 int i;
2879 rtx substed_operand[MAX_RECOG_OPERANDS];
2880 rtx orig_operand[MAX_RECOG_OPERANDS];
2881 struct elim_table *ep;
2882
2883 if (! insn_is_asm && icode < 0)
2884 {
2885 if (GET_CODE (PATTERN (insn)) == USE
2886 || GET_CODE (PATTERN (insn)) == CLOBBER
2887 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2888 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2889 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2890 return 0;
2891 abort ();
2892 }
2893
2894 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2895 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2896 {
2897 /* Check for setting an eliminable register. */
2898 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2899 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2900 {
2901 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2902 /* If this is setting the frame pointer register to the
2903 hardware frame pointer register and this is an elimination
2904 that will be done (tested above), this insn is really
2905 adjusting the frame pointer downward to compensate for
2906 the adjustment done before a nonlocal goto. */
2907 if (ep->from == FRAME_POINTER_REGNUM
2908 && ep->to == HARD_FRAME_POINTER_REGNUM)
2909 {
2910 rtx base = SET_SRC (old_set);
2911 rtx base_insn = insn;
2912 HOST_WIDE_INT offset = 0;
2913
2914 while (base != ep->to_rtx)
2915 {
2916 rtx prev_insn, prev_set;
2917
2918 if (GET_CODE (base) == PLUS
2919 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2920 {
2921 offset += INTVAL (XEXP (base, 1));
2922 base = XEXP (base, 0);
2923 }
2924 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2925 && (prev_set = single_set (prev_insn)) != 0
2926 && rtx_equal_p (SET_DEST (prev_set), base))
2927 {
2928 base = SET_SRC (prev_set);
2929 base_insn = prev_insn;
2930 }
2931 else
2932 break;
2933 }
2934
2935 if (base == ep->to_rtx)
2936 {
2937 rtx src
2938 = plus_constant (ep->to_rtx, offset - ep->offset);
2939
2940 new_body = old_body;
2941 if (! replace)
2942 {
2943 new_body = copy_insn (old_body);
2944 if (REG_NOTES (insn))
2945 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2946 }
2947 PATTERN (insn) = new_body;
2948 old_set = single_set (insn);
2949
2950 /* First see if this insn remains valid when we
2951 make the change. If not, keep the INSN_CODE
2952 the same and let reload fit it up. */
2953 validate_change (insn, &SET_SRC (old_set), src, 1);
2954 validate_change (insn, &SET_DEST (old_set),
2955 ep->to_rtx, 1);
2956 if (! apply_change_group ())
2957 {
2958 SET_SRC (old_set) = src;
2959 SET_DEST (old_set) = ep->to_rtx;
2960 }
2961
2962 val = 1;
2963 goto done;
2964 }
2965 }
2966 #endif
2967
2968 /* In this case this insn isn't serving a useful purpose. We
2969 will delete it in reload_as_needed once we know that this
2970 elimination is, in fact, being done.
2971
2972 If REPLACE isn't set, we can't delete this insn, but needn't
2973 process it since it won't be used unless something changes. */
2974 if (replace)
2975 {
2976 delete_dead_insn (insn);
2977 return 1;
2978 }
2979 val = 1;
2980 goto done;
2981 }
2982 }
2983
2984 /* We allow one special case which happens to work on all machines we
2985 currently support: a single set with the source being a PLUS of an
2986 eliminable register and a constant. */
2987 if (old_set
2988 && GET_CODE (SET_DEST (old_set)) == REG
2989 && GET_CODE (SET_SRC (old_set)) == PLUS
2990 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
2991 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
2992 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
2993 {
2994 rtx reg = XEXP (SET_SRC (old_set), 0);
2995 HOST_WIDE_INT offset = INTVAL (XEXP (SET_SRC (old_set), 1));
2996
2997 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2998 if (ep->from_rtx == reg && ep->can_eliminate)
2999 {
3000 offset += ep->offset;
3001
3002 if (offset == 0)
3003 {
3004 int num_clobbers;
3005 /* We assume here that if we need a PARALLEL with
3006 CLOBBERs for this assignment, we can do with the
3007 MATCH_SCRATCHes that add_clobbers allocates.
3008 There's not much we can do if that doesn't work. */
3009 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3010 SET_DEST (old_set),
3011 ep->to_rtx);
3012 num_clobbers = 0;
3013 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3014 if (num_clobbers)
3015 {
3016 rtvec vec = rtvec_alloc (num_clobbers + 1);
3017
3018 vec->elem[0] = PATTERN (insn);
3019 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3020 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3021 }
3022 if (INSN_CODE (insn) < 0)
3023 abort ();
3024 }
3025 else
3026 {
3027 new_body = old_body;
3028 if (! replace)
3029 {
3030 new_body = copy_insn (old_body);
3031 if (REG_NOTES (insn))
3032 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3033 }
3034 PATTERN (insn) = new_body;
3035 old_set = single_set (insn);
3036
3037 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3038 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3039 }
3040 val = 1;
3041 /* This can't have an effect on elimination offsets, so skip right
3042 to the end. */
3043 goto done;
3044 }
3045 }
3046
3047 /* Determine the effects of this insn on elimination offsets. */
3048 elimination_effects (old_body, 0);
3049
3050 /* Eliminate all eliminable registers occurring in operands that
3051 can be handled by reload. */
3052 extract_insn (insn);
3053 for (i = 0; i < recog_data.n_operands; i++)
3054 {
3055 orig_operand[i] = recog_data.operand[i];
3056 substed_operand[i] = recog_data.operand[i];
3057
3058 /* For an asm statement, every operand is eliminable. */
3059 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3060 {
3061 /* Check for setting a register that we know about. */
3062 if (recog_data.operand_type[i] != OP_IN
3063 && GET_CODE (orig_operand[i]) == REG)
3064 {
3065 /* If we are assigning to a register that can be eliminated, it
3066 must be as part of a PARALLEL, since the code above handles
3067 single SETs. We must indicate that we can no longer
3068 eliminate this reg. */
3069 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3070 ep++)
3071 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3072 ep->can_eliminate = 0;
3073 }
3074
3075 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3076 replace ? insn : NULL_RTX);
3077 if (substed_operand[i] != orig_operand[i])
3078 val = 1;
3079 /* Terminate the search in check_eliminable_occurrences at
3080 this point. */
3081 *recog_data.operand_loc[i] = 0;
3082
3083 /* If an output operand changed from a REG to a MEM and INSN is an
3084 insn, write a CLOBBER insn. */
3085 if (recog_data.operand_type[i] != OP_IN
3086 && GET_CODE (orig_operand[i]) == REG
3087 && GET_CODE (substed_operand[i]) == MEM
3088 && replace)
3089 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3090 insn);
3091 }
3092 }
3093
3094 for (i = 0; i < recog_data.n_dups; i++)
3095 *recog_data.dup_loc[i]
3096 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3097
3098 /* If any eliminable remain, they aren't eliminable anymore. */
3099 check_eliminable_occurrences (old_body);
3100
3101 /* Substitute the operands; the new values are in the substed_operand
3102 array. */
3103 for (i = 0; i < recog_data.n_operands; i++)
3104 *recog_data.operand_loc[i] = substed_operand[i];
3105 for (i = 0; i < recog_data.n_dups; i++)
3106 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3107
3108 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3109 re-recognize the insn. We do this in case we had a simple addition
3110 but now can do this as a load-address. This saves an insn in this
3111 common case.
3112 If re-recognition fails, the old insn code number will still be used,
3113 and some register operands may have changed into PLUS expressions.
3114 These will be handled by find_reloads by loading them into a register
3115 again. */
3116
3117 if (val)
3118 {
3119 /* If we aren't replacing things permanently and we changed something,
3120 make another copy to ensure that all the RTL is new. Otherwise
3121 things can go wrong if find_reload swaps commutative operands
3122 and one is inside RTL that has been copied while the other is not. */
3123 new_body = old_body;
3124 if (! replace)
3125 {
3126 new_body = copy_insn (old_body);
3127 if (REG_NOTES (insn))
3128 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3129 }
3130 PATTERN (insn) = new_body;
3131
3132 /* If we had a move insn but now we don't, rerecognize it. This will
3133 cause spurious re-recognition if the old move had a PARALLEL since
3134 the new one still will, but we can't call single_set without
3135 having put NEW_BODY into the insn and the re-recognition won't
3136 hurt in this rare case. */
3137 /* ??? Why this huge if statement - why don't we just rerecognize the
3138 thing always? */
3139 if (! insn_is_asm
3140 && old_set != 0
3141 && ((GET_CODE (SET_SRC (old_set)) == REG
3142 && (GET_CODE (new_body) != SET
3143 || GET_CODE (SET_SRC (new_body)) != REG))
3144 /* If this was a load from or store to memory, compare
3145 the MEM in recog_data.operand to the one in the insn.
3146 If they are not equal, then rerecognize the insn. */
3147 || (old_set != 0
3148 && ((GET_CODE (SET_SRC (old_set)) == MEM
3149 && SET_SRC (old_set) != recog_data.operand[1])
3150 || (GET_CODE (SET_DEST (old_set)) == MEM
3151 && SET_DEST (old_set) != recog_data.operand[0])))
3152 /* If this was an add insn before, rerecognize. */
3153 || GET_CODE (SET_SRC (old_set)) == PLUS))
3154 {
3155 int new_icode = recog (PATTERN (insn), insn, 0);
3156 if (new_icode < 0)
3157 INSN_CODE (insn) = icode;
3158 }
3159 }
3160
3161 /* Restore the old body. If there were any changes to it, we made a copy
3162 of it while the changes were still in place, so we'll correctly return
3163 a modified insn below. */
3164 if (! replace)
3165 {
3166 /* Restore the old body. */
3167 for (i = 0; i < recog_data.n_operands; i++)
3168 *recog_data.operand_loc[i] = orig_operand[i];
3169 for (i = 0; i < recog_data.n_dups; i++)
3170 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3171 }
3172
3173 /* Update all elimination pairs to reflect the status after the current
3174 insn. The changes we make were determined by the earlier call to
3175 elimination_effects.
3176
3177 We also detect cases where register elimination cannot be done,
3178 namely, if a register would be both changed and referenced outside a MEM
3179 in the resulting insn since such an insn is often undefined and, even if
3180 not, we cannot know what meaning will be given to it. Note that it is
3181 valid to have a register used in an address in an insn that changes it
3182 (presumably with a pre- or post-increment or decrement).
3183
3184 If anything changes, return nonzero. */
3185
3186 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3187 {
3188 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3189 ep->can_eliminate = 0;
3190
3191 ep->ref_outside_mem = 0;
3192
3193 if (ep->previous_offset != ep->offset)
3194 val = 1;
3195 }
3196
3197 done:
3198 /* If we changed something, perform elimination in REG_NOTES. This is
3199 needed even when REPLACE is zero because a REG_DEAD note might refer
3200 to a register that we eliminate and could cause a different number
3201 of spill registers to be needed in the final reload pass than in
3202 the pre-passes. */
3203 if (val && REG_NOTES (insn) != 0)
3204 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3205
3206 return val;
3207 }
3208
3209 /* Loop through all elimination pairs.
3210 Recalculate the number not at initial offset.
3211
3212 Compute the maximum offset (minimum offset if the stack does not
3213 grow downward) for each elimination pair. */
3214
3215 static void
3216 update_eliminable_offsets (void)
3217 {
3218 struct elim_table *ep;
3219
3220 num_not_at_initial_offset = 0;
3221 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3222 {
3223 ep->previous_offset = ep->offset;
3224 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3225 num_not_at_initial_offset++;
3226 }
3227 }
3228
3229 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3230 replacement we currently believe is valid, mark it as not eliminable if X
3231 modifies DEST in any way other than by adding a constant integer to it.
3232
3233 If DEST is the frame pointer, we do nothing because we assume that
3234 all assignments to the hard frame pointer are nonlocal gotos and are being
3235 done at a time when they are valid and do not disturb anything else.
3236 Some machines want to eliminate a fake argument pointer with either the
3237 frame or stack pointer. Assignments to the hard frame pointer must not
3238 prevent this elimination.
3239
3240 Called via note_stores from reload before starting its passes to scan
3241 the insns of the function. */
3242
3243 static void
3244 mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3245 {
3246 unsigned int i;
3247
3248 /* A SUBREG of a hard register here is just changing its mode. We should
3249 not see a SUBREG of an eliminable hard register, but check just in
3250 case. */
3251 if (GET_CODE (dest) == SUBREG)
3252 dest = SUBREG_REG (dest);
3253
3254 if (dest == hard_frame_pointer_rtx)
3255 return;
3256
3257 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3258 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3259 && (GET_CODE (x) != SET
3260 || GET_CODE (SET_SRC (x)) != PLUS
3261 || XEXP (SET_SRC (x), 0) != dest
3262 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3263 {
3264 reg_eliminate[i].can_eliminate_previous
3265 = reg_eliminate[i].can_eliminate = 0;
3266 num_eliminable--;
3267 }
3268 }
3269
3270 /* Verify that the initial elimination offsets did not change since the
3271 last call to set_initial_elim_offsets. This is used to catch cases
3272 where something illegal happened during reload_as_needed that could
3273 cause incorrect code to be generated if we did not check for it. */
3274
3275 static void
3276 verify_initial_elim_offsets (void)
3277 {
3278 HOST_WIDE_INT t;
3279
3280 #ifdef ELIMINABLE_REGS
3281 struct elim_table *ep;
3282
3283 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3284 {
3285 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3286 if (t != ep->initial_offset)
3287 abort ();
3288 }
3289 #else
3290 INITIAL_FRAME_POINTER_OFFSET (t);
3291 if (t != reg_eliminate[0].initial_offset)
3292 abort ();
3293 #endif
3294 }
3295
3296 /* Reset all offsets on eliminable registers to their initial values. */
3297
3298 static void
3299 set_initial_elim_offsets (void)
3300 {
3301 struct elim_table *ep = reg_eliminate;
3302
3303 #ifdef ELIMINABLE_REGS
3304 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3305 {
3306 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3307 ep->previous_offset = ep->offset = ep->initial_offset;
3308 }
3309 #else
3310 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3311 ep->previous_offset = ep->offset = ep->initial_offset;
3312 #endif
3313
3314 num_not_at_initial_offset = 0;
3315 }
3316
3317 /* Initialize the known label offsets.
3318 Set a known offset for each forced label to be at the initial offset
3319 of each elimination. We do this because we assume that all
3320 computed jumps occur from a location where each elimination is
3321 at its initial offset.
3322 For all other labels, show that we don't know the offsets. */
3323
3324 static void
3325 set_initial_label_offsets (void)
3326 {
3327 rtx x;
3328 memset (offsets_known_at, 0, num_labels);
3329
3330 for (x = forced_labels; x; x = XEXP (x, 1))
3331 if (XEXP (x, 0))
3332 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3333 }
3334
3335 /* Set all elimination offsets to the known values for the code label given
3336 by INSN. */
3337
3338 static void
3339 set_offsets_for_label (rtx insn)
3340 {
3341 unsigned int i;
3342 int label_nr = CODE_LABEL_NUMBER (insn);
3343 struct elim_table *ep;
3344
3345 num_not_at_initial_offset = 0;
3346 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3347 {
3348 ep->offset = ep->previous_offset
3349 = offsets_at[label_nr - first_label_num][i];
3350 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3351 num_not_at_initial_offset++;
3352 }
3353 }
3354
3355 /* See if anything that happened changes which eliminations are valid.
3356 For example, on the SPARC, whether or not the frame pointer can
3357 be eliminated can depend on what registers have been used. We need
3358 not check some conditions again (such as flag_omit_frame_pointer)
3359 since they can't have changed. */
3360
3361 static void
3362 update_eliminables (HARD_REG_SET *pset)
3363 {
3364 int previous_frame_pointer_needed = frame_pointer_needed;
3365 struct elim_table *ep;
3366
3367 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3368 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3369 #ifdef ELIMINABLE_REGS
3370 || ! CAN_ELIMINATE (ep->from, ep->to)
3371 #endif
3372 )
3373 ep->can_eliminate = 0;
3374
3375 /* Look for the case where we have discovered that we can't replace
3376 register A with register B and that means that we will now be
3377 trying to replace register A with register C. This means we can
3378 no longer replace register C with register B and we need to disable
3379 such an elimination, if it exists. This occurs often with A == ap,
3380 B == sp, and C == fp. */
3381
3382 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3383 {
3384 struct elim_table *op;
3385 int new_to = -1;
3386
3387 if (! ep->can_eliminate && ep->can_eliminate_previous)
3388 {
3389 /* Find the current elimination for ep->from, if there is a
3390 new one. */
3391 for (op = reg_eliminate;
3392 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3393 if (op->from == ep->from && op->can_eliminate)
3394 {
3395 new_to = op->to;
3396 break;
3397 }
3398
3399 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3400 disable it. */
3401 for (op = reg_eliminate;
3402 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3403 if (op->from == new_to && op->to == ep->to)
3404 op->can_eliminate = 0;
3405 }
3406 }
3407
3408 /* See if any registers that we thought we could eliminate the previous
3409 time are no longer eliminable. If so, something has changed and we
3410 must spill the register. Also, recompute the number of eliminable
3411 registers and see if the frame pointer is needed; it is if there is
3412 no elimination of the frame pointer that we can perform. */
3413
3414 frame_pointer_needed = 1;
3415 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3416 {
3417 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3418 && ep->to != HARD_FRAME_POINTER_REGNUM)
3419 frame_pointer_needed = 0;
3420
3421 if (! ep->can_eliminate && ep->can_eliminate_previous)
3422 {
3423 ep->can_eliminate_previous = 0;
3424 SET_HARD_REG_BIT (*pset, ep->from);
3425 num_eliminable--;
3426 }
3427 }
3428
3429 /* If we didn't need a frame pointer last time, but we do now, spill
3430 the hard frame pointer. */
3431 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3432 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3433 }
3434
3435 /* Initialize the table of registers to eliminate. */
3436
3437 static void
3438 init_elim_table (void)
3439 {
3440 struct elim_table *ep;
3441 #ifdef ELIMINABLE_REGS
3442 const struct elim_table_1 *ep1;
3443 #endif
3444
3445 if (!reg_eliminate)
3446 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3447
3448 /* Does this function require a frame pointer? */
3449
3450 frame_pointer_needed = (! flag_omit_frame_pointer
3451 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3452 and restore sp for alloca. So we can't eliminate
3453 the frame pointer in that case. At some point,
3454 we should improve this by emitting the
3455 sp-adjusting insns for this case. */
3456 || (current_function_calls_alloca
3457 && EXIT_IGNORE_STACK)
3458 || FRAME_POINTER_REQUIRED);
3459
3460 num_eliminable = 0;
3461
3462 #ifdef ELIMINABLE_REGS
3463 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3464 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3465 {
3466 ep->from = ep1->from;
3467 ep->to = ep1->to;
3468 ep->can_eliminate = ep->can_eliminate_previous
3469 = (CAN_ELIMINATE (ep->from, ep->to)
3470 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3471 }
3472 #else
3473 reg_eliminate[0].from = reg_eliminate_1[0].from;
3474 reg_eliminate[0].to = reg_eliminate_1[0].to;
3475 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3476 = ! frame_pointer_needed;
3477 #endif
3478
3479 /* Count the number of eliminable registers and build the FROM and TO
3480 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3481 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3482 We depend on this. */
3483 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3484 {
3485 num_eliminable += ep->can_eliminate;
3486 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3487 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3488 }
3489 }
3490 \f
3491 /* Kick all pseudos out of hard register REGNO.
3492
3493 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3494 because we found we can't eliminate some register. In the case, no pseudos
3495 are allowed to be in the register, even if they are only in a block that
3496 doesn't require spill registers, unlike the case when we are spilling this
3497 hard reg to produce another spill register.
3498
3499 Return nonzero if any pseudos needed to be kicked out. */
3500
3501 static void
3502 spill_hard_reg (unsigned int regno, int cant_eliminate)
3503 {
3504 int i;
3505
3506 if (cant_eliminate)
3507 {
3508 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3509 regs_ever_live[regno] = 1;
3510 }
3511
3512 /* Spill every pseudo reg that was allocated to this reg
3513 or to something that overlaps this reg. */
3514
3515 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3516 if (reg_renumber[i] >= 0
3517 && (unsigned int) reg_renumber[i] <= regno
3518 && ((unsigned int) reg_renumber[i]
3519 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3520 PSEUDO_REGNO_MODE (i))
3521 > regno))
3522 SET_REGNO_REG_SET (&spilled_pseudos, i);
3523 }
3524
3525 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3526 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3527
3528 static void
3529 ior_hard_reg_set (HARD_REG_SET *set1, HARD_REG_SET *set2)
3530 {
3531 IOR_HARD_REG_SET (*set1, *set2);
3532 }
3533
3534 /* After find_reload_regs has been run for all insn that need reloads,
3535 and/or spill_hard_regs was called, this function is used to actually
3536 spill pseudo registers and try to reallocate them. It also sets up the
3537 spill_regs array for use by choose_reload_regs. */
3538
3539 static int
3540 finish_spills (int global)
3541 {
3542 struct insn_chain *chain;
3543 int something_changed = 0;
3544 int i;
3545
3546 /* Build the spill_regs array for the function. */
3547 /* If there are some registers still to eliminate and one of the spill regs
3548 wasn't ever used before, additional stack space may have to be
3549 allocated to store this register. Thus, we may have changed the offset
3550 between the stack and frame pointers, so mark that something has changed.
3551
3552 One might think that we need only set VAL to 1 if this is a call-used
3553 register. However, the set of registers that must be saved by the
3554 prologue is not identical to the call-used set. For example, the
3555 register used by the call insn for the return PC is a call-used register,
3556 but must be saved by the prologue. */
3557
3558 n_spills = 0;
3559 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3560 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3561 {
3562 spill_reg_order[i] = n_spills;
3563 spill_regs[n_spills++] = i;
3564 if (num_eliminable && ! regs_ever_live[i])
3565 something_changed = 1;
3566 regs_ever_live[i] = 1;
3567 }
3568 else
3569 spill_reg_order[i] = -1;
3570
3571 EXECUTE_IF_SET_IN_REG_SET
3572 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3573 {
3574 /* Record the current hard register the pseudo is allocated to in
3575 pseudo_previous_regs so we avoid reallocating it to the same
3576 hard reg in a later pass. */
3577 if (reg_renumber[i] < 0)
3578 abort ();
3579
3580 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3581 /* Mark it as no longer having a hard register home. */
3582 reg_renumber[i] = -1;
3583 /* We will need to scan everything again. */
3584 something_changed = 1;
3585 });
3586
3587 /* Retry global register allocation if possible. */
3588 if (global)
3589 {
3590 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3591 /* For every insn that needs reloads, set the registers used as spill
3592 regs in pseudo_forbidden_regs for every pseudo live across the
3593 insn. */
3594 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3595 {
3596 EXECUTE_IF_SET_IN_REG_SET
3597 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3598 {
3599 ior_hard_reg_set (pseudo_forbidden_regs + i,
3600 &chain->used_spill_regs);
3601 });
3602 EXECUTE_IF_SET_IN_REG_SET
3603 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3604 {
3605 ior_hard_reg_set (pseudo_forbidden_regs + i,
3606 &chain->used_spill_regs);
3607 });
3608 }
3609
3610 /* Retry allocating the spilled pseudos. For each reg, merge the
3611 various reg sets that indicate which hard regs can't be used,
3612 and call retry_global_alloc.
3613 We change spill_pseudos here to only contain pseudos that did not
3614 get a new hard register. */
3615 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3616 if (reg_old_renumber[i] != reg_renumber[i])
3617 {
3618 HARD_REG_SET forbidden;
3619 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3620 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3621 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3622 retry_global_alloc (i, forbidden);
3623 if (reg_renumber[i] >= 0)
3624 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3625 }
3626 }
3627
3628 /* Fix up the register information in the insn chain.
3629 This involves deleting those of the spilled pseudos which did not get
3630 a new hard register home from the live_{before,after} sets. */
3631 for (chain = reload_insn_chain; chain; chain = chain->next)
3632 {
3633 HARD_REG_SET used_by_pseudos;
3634 HARD_REG_SET used_by_pseudos2;
3635
3636 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3637 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3638
3639 /* Mark any unallocated hard regs as available for spills. That
3640 makes inheritance work somewhat better. */
3641 if (chain->need_reload)
3642 {
3643 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3644 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3645 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3646
3647 /* Save the old value for the sanity test below. */
3648 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3649
3650 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3651 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3652 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3653 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3654
3655 /* Make sure we only enlarge the set. */
3656 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3657 abort ();
3658 ok:;
3659 }
3660 }
3661
3662 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3663 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3664 {
3665 int regno = reg_renumber[i];
3666 if (reg_old_renumber[i] == regno)
3667 continue;
3668
3669 alter_reg (i, reg_old_renumber[i]);
3670 reg_old_renumber[i] = regno;
3671 if (rtl_dump_file)
3672 {
3673 if (regno == -1)
3674 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3675 else
3676 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3677 i, reg_renumber[i]);
3678 }
3679 }
3680
3681 return something_changed;
3682 }
3683 \f
3684 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3685 Also mark any hard registers used to store user variables as
3686 forbidden from being used for spill registers. */
3687
3688 static void
3689 scan_paradoxical_subregs (rtx x)
3690 {
3691 int i;
3692 const char *fmt;
3693 enum rtx_code code = GET_CODE (x);
3694
3695 switch (code)
3696 {
3697 case REG:
3698 #if 0
3699 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3700 && REG_USERVAR_P (x))
3701 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3702 #endif
3703 return;
3704
3705 case CONST_INT:
3706 case CONST:
3707 case SYMBOL_REF:
3708 case LABEL_REF:
3709 case CONST_DOUBLE:
3710 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3711 case CC0:
3712 case PC:
3713 case USE:
3714 case CLOBBER:
3715 return;
3716
3717 case SUBREG:
3718 if (GET_CODE (SUBREG_REG (x)) == REG
3719 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3720 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3721 = GET_MODE_SIZE (GET_MODE (x));
3722 return;
3723
3724 default:
3725 break;
3726 }
3727
3728 fmt = GET_RTX_FORMAT (code);
3729 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3730 {
3731 if (fmt[i] == 'e')
3732 scan_paradoxical_subregs (XEXP (x, i));
3733 else if (fmt[i] == 'E')
3734 {
3735 int j;
3736 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3737 scan_paradoxical_subregs (XVECEXP (x, i, j));
3738 }
3739 }
3740 }
3741 \f
3742 /* Reload pseudo-registers into hard regs around each insn as needed.
3743 Additional register load insns are output before the insn that needs it
3744 and perhaps store insns after insns that modify the reloaded pseudo reg.
3745
3746 reg_last_reload_reg and reg_reloaded_contents keep track of
3747 which registers are already available in reload registers.
3748 We update these for the reloads that we perform,
3749 as the insns are scanned. */
3750
3751 static void
3752 reload_as_needed (int live_known)
3753 {
3754 struct insn_chain *chain;
3755 #if defined (AUTO_INC_DEC)
3756 int i;
3757 #endif
3758 rtx x;
3759
3760 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3761 memset (spill_reg_store, 0, sizeof spill_reg_store);
3762 reg_last_reload_reg = xcalloc (max_regno, sizeof (rtx));
3763 reg_has_output_reload = xmalloc (max_regno);
3764 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3765 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3766
3767 set_initial_elim_offsets ();
3768
3769 for (chain = reload_insn_chain; chain; chain = chain->next)
3770 {
3771 rtx prev = 0;
3772 rtx insn = chain->insn;
3773 rtx old_next = NEXT_INSN (insn);
3774
3775 /* If we pass a label, copy the offsets from the label information
3776 into the current offsets of each elimination. */
3777 if (GET_CODE (insn) == CODE_LABEL)
3778 set_offsets_for_label (insn);
3779
3780 else if (INSN_P (insn))
3781 {
3782 rtx oldpat = copy_rtx (PATTERN (insn));
3783
3784 /* If this is a USE and CLOBBER of a MEM, ensure that any
3785 references to eliminable registers have been removed. */
3786
3787 if ((GET_CODE (PATTERN (insn)) == USE
3788 || GET_CODE (PATTERN (insn)) == CLOBBER)
3789 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3790 XEXP (XEXP (PATTERN (insn), 0), 0)
3791 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3792 GET_MODE (XEXP (PATTERN (insn), 0)),
3793 NULL_RTX);
3794
3795 /* If we need to do register elimination processing, do so.
3796 This might delete the insn, in which case we are done. */
3797 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3798 {
3799 eliminate_regs_in_insn (insn, 1);
3800 if (GET_CODE (insn) == NOTE)
3801 {
3802 update_eliminable_offsets ();
3803 continue;
3804 }
3805 }
3806
3807 /* If need_elim is nonzero but need_reload is zero, one might think
3808 that we could simply set n_reloads to 0. However, find_reloads
3809 could have done some manipulation of the insn (such as swapping
3810 commutative operands), and these manipulations are lost during
3811 the first pass for every insn that needs register elimination.
3812 So the actions of find_reloads must be redone here. */
3813
3814 if (! chain->need_elim && ! chain->need_reload
3815 && ! chain->need_operand_change)
3816 n_reloads = 0;
3817 /* First find the pseudo regs that must be reloaded for this insn.
3818 This info is returned in the tables reload_... (see reload.h).
3819 Also modify the body of INSN by substituting RELOAD
3820 rtx's for those pseudo regs. */
3821 else
3822 {
3823 memset (reg_has_output_reload, 0, max_regno);
3824 CLEAR_HARD_REG_SET (reg_is_output_reload);
3825
3826 find_reloads (insn, 1, spill_indirect_levels, live_known,
3827 spill_reg_order);
3828 }
3829
3830 if (n_reloads > 0)
3831 {
3832 rtx next = NEXT_INSN (insn);
3833 rtx p;
3834
3835 prev = PREV_INSN (insn);
3836
3837 /* Now compute which reload regs to reload them into. Perhaps
3838 reusing reload regs from previous insns, or else output
3839 load insns to reload them. Maybe output store insns too.
3840 Record the choices of reload reg in reload_reg_rtx. */
3841 choose_reload_regs (chain);
3842
3843 /* Merge any reloads that we didn't combine for fear of
3844 increasing the number of spill registers needed but now
3845 discover can be safely merged. */
3846 if (SMALL_REGISTER_CLASSES)
3847 merge_assigned_reloads (insn);
3848
3849 /* Generate the insns to reload operands into or out of
3850 their reload regs. */
3851 emit_reload_insns (chain);
3852
3853 /* Substitute the chosen reload regs from reload_reg_rtx
3854 into the insn's body (or perhaps into the bodies of other
3855 load and store insn that we just made for reloading
3856 and that we moved the structure into). */
3857 subst_reloads (insn);
3858
3859 /* If this was an ASM, make sure that all the reload insns
3860 we have generated are valid. If not, give an error
3861 and delete them. */
3862
3863 if (asm_noperands (PATTERN (insn)) >= 0)
3864 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3865 if (p != insn && INSN_P (p)
3866 && GET_CODE (PATTERN (p)) != USE
3867 && (recog_memoized (p) < 0
3868 || (extract_insn (p), ! constrain_operands (1))))
3869 {
3870 error_for_asm (insn,
3871 "`asm' operand requires impossible reload");
3872 delete_insn (p);
3873 }
3874 }
3875
3876 if (num_eliminable && chain->need_elim)
3877 update_eliminable_offsets ();
3878
3879 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3880 is no longer validly lying around to save a future reload.
3881 Note that this does not detect pseudos that were reloaded
3882 for this insn in order to be stored in
3883 (obeying register constraints). That is correct; such reload
3884 registers ARE still valid. */
3885 note_stores (oldpat, forget_old_reloads_1, NULL);
3886
3887 /* There may have been CLOBBER insns placed after INSN. So scan
3888 between INSN and NEXT and use them to forget old reloads. */
3889 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3890 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3891 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3892
3893 #ifdef AUTO_INC_DEC
3894 /* Likewise for regs altered by auto-increment in this insn.
3895 REG_INC notes have been changed by reloading:
3896 find_reloads_address_1 records substitutions for them,
3897 which have been performed by subst_reloads above. */
3898 for (i = n_reloads - 1; i >= 0; i--)
3899 {
3900 rtx in_reg = rld[i].in_reg;
3901 if (in_reg)
3902 {
3903 enum rtx_code code = GET_CODE (in_reg);
3904 /* PRE_INC / PRE_DEC will have the reload register ending up
3905 with the same value as the stack slot, but that doesn't
3906 hold true for POST_INC / POST_DEC. Either we have to
3907 convert the memory access to a true POST_INC / POST_DEC,
3908 or we can't use the reload register for inheritance. */
3909 if ((code == POST_INC || code == POST_DEC)
3910 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3911 REGNO (rld[i].reg_rtx))
3912 /* Make sure it is the inc/dec pseudo, and not
3913 some other (e.g. output operand) pseudo. */
3914 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3915 == REGNO (XEXP (in_reg, 0))))
3916
3917 {
3918 rtx reload_reg = rld[i].reg_rtx;
3919 enum machine_mode mode = GET_MODE (reload_reg);
3920 int n = 0;
3921 rtx p;
3922
3923 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3924 {
3925 /* We really want to ignore REG_INC notes here, so
3926 use PATTERN (p) as argument to reg_set_p . */
3927 if (reg_set_p (reload_reg, PATTERN (p)))
3928 break;
3929 n = count_occurrences (PATTERN (p), reload_reg, 0);
3930 if (! n)
3931 continue;
3932 if (n == 1)
3933 {
3934 n = validate_replace_rtx (reload_reg,
3935 gen_rtx (code, mode,
3936 reload_reg),
3937 p);
3938
3939 /* We must also verify that the constraints
3940 are met after the replacement. */
3941 extract_insn (p);
3942 if (n)
3943 n = constrain_operands (1);
3944 else
3945 break;
3946
3947 /* If the constraints were not met, then
3948 undo the replacement. */
3949 if (!n)
3950 {
3951 validate_replace_rtx (gen_rtx (code, mode,
3952 reload_reg),
3953 reload_reg, p);
3954 break;
3955 }
3956
3957 }
3958 break;
3959 }
3960 if (n == 1)
3961 {
3962 REG_NOTES (p)
3963 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
3964 REG_NOTES (p));
3965 /* Mark this as having an output reload so that the
3966 REG_INC processing code below won't invalidate
3967 the reload for inheritance. */
3968 SET_HARD_REG_BIT (reg_is_output_reload,
3969 REGNO (reload_reg));
3970 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3971 }
3972 else
3973 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
3974 NULL);
3975 }
3976 else if ((code == PRE_INC || code == PRE_DEC)
3977 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3978 REGNO (rld[i].reg_rtx))
3979 /* Make sure it is the inc/dec pseudo, and not
3980 some other (e.g. output operand) pseudo. */
3981 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3982 == REGNO (XEXP (in_reg, 0))))
3983 {
3984 SET_HARD_REG_BIT (reg_is_output_reload,
3985 REGNO (rld[i].reg_rtx));
3986 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3987 }
3988 }
3989 }
3990 /* If a pseudo that got a hard register is auto-incremented,
3991 we must purge records of copying it into pseudos without
3992 hard registers. */
3993 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
3994 if (REG_NOTE_KIND (x) == REG_INC)
3995 {
3996 /* See if this pseudo reg was reloaded in this insn.
3997 If so, its last-reload info is still valid
3998 because it is based on this insn's reload. */
3999 for (i = 0; i < n_reloads; i++)
4000 if (rld[i].out == XEXP (x, 0))
4001 break;
4002
4003 if (i == n_reloads)
4004 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4005 }
4006 #endif
4007 }
4008 /* A reload reg's contents are unknown after a label. */
4009 if (GET_CODE (insn) == CODE_LABEL)
4010 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4011
4012 /* Don't assume a reload reg is still good after a call insn
4013 if it is a call-used reg, or if it contains a value that will
4014 be partially clobbered by the call. */
4015 else if (GET_CODE (insn) == CALL_INSN)
4016 {
4017 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4018 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4019 }
4020 }
4021
4022 /* Clean up. */
4023 free (reg_last_reload_reg);
4024 free (reg_has_output_reload);
4025 }
4026
4027 /* Discard all record of any value reloaded from X,
4028 or reloaded in X from someplace else;
4029 unless X is an output reload reg of the current insn.
4030
4031 X may be a hard reg (the reload reg)
4032 or it may be a pseudo reg that was reloaded from. */
4033
4034 static void
4035 forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4036 void *data ATTRIBUTE_UNUSED)
4037 {
4038 unsigned int regno;
4039 unsigned int nr;
4040
4041 /* note_stores does give us subregs of hard regs,
4042 subreg_regno_offset will abort if it is not a hard reg. */
4043 while (GET_CODE (x) == SUBREG)
4044 {
4045 /* We ignore the subreg offset when calculating the regno,
4046 because we are using the entire underlying hard register
4047 below. */
4048 x = SUBREG_REG (x);
4049 }
4050
4051 if (GET_CODE (x) != REG)
4052 return;
4053
4054 regno = REGNO (x);
4055
4056 if (regno >= FIRST_PSEUDO_REGISTER)
4057 nr = 1;
4058 else
4059 {
4060 unsigned int i;
4061
4062 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4063 /* Storing into a spilled-reg invalidates its contents.
4064 This can happen if a block-local pseudo is allocated to that reg
4065 and it wasn't spilled because this block's total need is 0.
4066 Then some insn might have an optional reload and use this reg. */
4067 for (i = 0; i < nr; i++)
4068 /* But don't do this if the reg actually serves as an output
4069 reload reg in the current instruction. */
4070 if (n_reloads == 0
4071 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4072 {
4073 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4074 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4075 spill_reg_store[regno + i] = 0;
4076 }
4077 }
4078
4079 /* Since value of X has changed,
4080 forget any value previously copied from it. */
4081
4082 while (nr-- > 0)
4083 /* But don't forget a copy if this is the output reload
4084 that establishes the copy's validity. */
4085 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4086 reg_last_reload_reg[regno + nr] = 0;
4087 }
4088 \f
4089 /* The following HARD_REG_SETs indicate when each hard register is
4090 used for a reload of various parts of the current insn. */
4091
4092 /* If reg is unavailable for all reloads. */
4093 static HARD_REG_SET reload_reg_unavailable;
4094 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4095 static HARD_REG_SET reload_reg_used;
4096 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4097 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4098 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4099 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4100 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4101 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4102 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4103 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4104 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4105 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4106 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4107 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4108 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4109 static HARD_REG_SET reload_reg_used_in_op_addr;
4110 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4111 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4112 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4113 static HARD_REG_SET reload_reg_used_in_insn;
4114 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4115 static HARD_REG_SET reload_reg_used_in_other_addr;
4116
4117 /* If reg is in use as a reload reg for any sort of reload. */
4118 static HARD_REG_SET reload_reg_used_at_all;
4119
4120 /* If reg is use as an inherited reload. We just mark the first register
4121 in the group. */
4122 static HARD_REG_SET reload_reg_used_for_inherit;
4123
4124 /* Records which hard regs are used in any way, either as explicit use or
4125 by being allocated to a pseudo during any point of the current insn. */
4126 static HARD_REG_SET reg_used_in_insn;
4127
4128 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4129 TYPE. MODE is used to indicate how many consecutive regs are
4130 actually used. */
4131
4132 static void
4133 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4134 enum machine_mode mode)
4135 {
4136 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4137 unsigned int i;
4138
4139 for (i = regno; i < nregs + regno; i++)
4140 {
4141 switch (type)
4142 {
4143 case RELOAD_OTHER:
4144 SET_HARD_REG_BIT (reload_reg_used, i);
4145 break;
4146
4147 case RELOAD_FOR_INPUT_ADDRESS:
4148 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4149 break;
4150
4151 case RELOAD_FOR_INPADDR_ADDRESS:
4152 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4153 break;
4154
4155 case RELOAD_FOR_OUTPUT_ADDRESS:
4156 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4157 break;
4158
4159 case RELOAD_FOR_OUTADDR_ADDRESS:
4160 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4161 break;
4162
4163 case RELOAD_FOR_OPERAND_ADDRESS:
4164 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4165 break;
4166
4167 case RELOAD_FOR_OPADDR_ADDR:
4168 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4169 break;
4170
4171 case RELOAD_FOR_OTHER_ADDRESS:
4172 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4173 break;
4174
4175 case RELOAD_FOR_INPUT:
4176 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4177 break;
4178
4179 case RELOAD_FOR_OUTPUT:
4180 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4181 break;
4182
4183 case RELOAD_FOR_INSN:
4184 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4185 break;
4186 }
4187
4188 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4189 }
4190 }
4191
4192 /* Similarly, but show REGNO is no longer in use for a reload. */
4193
4194 static void
4195 clear_reload_reg_in_use (unsigned int regno, int opnum,
4196 enum reload_type type, enum machine_mode mode)
4197 {
4198 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4199 unsigned int start_regno, end_regno, r;
4200 int i;
4201 /* A complication is that for some reload types, inheritance might
4202 allow multiple reloads of the same types to share a reload register.
4203 We set check_opnum if we have to check only reloads with the same
4204 operand number, and check_any if we have to check all reloads. */
4205 int check_opnum = 0;
4206 int check_any = 0;
4207 HARD_REG_SET *used_in_set;
4208
4209 switch (type)
4210 {
4211 case RELOAD_OTHER:
4212 used_in_set = &reload_reg_used;
4213 break;
4214
4215 case RELOAD_FOR_INPUT_ADDRESS:
4216 used_in_set = &reload_reg_used_in_input_addr[opnum];
4217 break;
4218
4219 case RELOAD_FOR_INPADDR_ADDRESS:
4220 check_opnum = 1;
4221 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4222 break;
4223
4224 case RELOAD_FOR_OUTPUT_ADDRESS:
4225 used_in_set = &reload_reg_used_in_output_addr[opnum];
4226 break;
4227
4228 case RELOAD_FOR_OUTADDR_ADDRESS:
4229 check_opnum = 1;
4230 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4231 break;
4232
4233 case RELOAD_FOR_OPERAND_ADDRESS:
4234 used_in_set = &reload_reg_used_in_op_addr;
4235 break;
4236
4237 case RELOAD_FOR_OPADDR_ADDR:
4238 check_any = 1;
4239 used_in_set = &reload_reg_used_in_op_addr_reload;
4240 break;
4241
4242 case RELOAD_FOR_OTHER_ADDRESS:
4243 used_in_set = &reload_reg_used_in_other_addr;
4244 check_any = 1;
4245 break;
4246
4247 case RELOAD_FOR_INPUT:
4248 used_in_set = &reload_reg_used_in_input[opnum];
4249 break;
4250
4251 case RELOAD_FOR_OUTPUT:
4252 used_in_set = &reload_reg_used_in_output[opnum];
4253 break;
4254
4255 case RELOAD_FOR_INSN:
4256 used_in_set = &reload_reg_used_in_insn;
4257 break;
4258 default:
4259 abort ();
4260 }
4261 /* We resolve conflicts with remaining reloads of the same type by
4262 excluding the intervals of reload registers by them from the
4263 interval of freed reload registers. Since we only keep track of
4264 one set of interval bounds, we might have to exclude somewhat
4265 more than what would be necessary if we used a HARD_REG_SET here.
4266 But this should only happen very infrequently, so there should
4267 be no reason to worry about it. */
4268
4269 start_regno = regno;
4270 end_regno = regno + nregs;
4271 if (check_opnum || check_any)
4272 {
4273 for (i = n_reloads - 1; i >= 0; i--)
4274 {
4275 if (rld[i].when_needed == type
4276 && (check_any || rld[i].opnum == opnum)
4277 && rld[i].reg_rtx)
4278 {
4279 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4280 unsigned int conflict_end
4281 = (conflict_start
4282 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4283
4284 /* If there is an overlap with the first to-be-freed register,
4285 adjust the interval start. */
4286 if (conflict_start <= start_regno && conflict_end > start_regno)
4287 start_regno = conflict_end;
4288 /* Otherwise, if there is a conflict with one of the other
4289 to-be-freed registers, adjust the interval end. */
4290 if (conflict_start > start_regno && conflict_start < end_regno)
4291 end_regno = conflict_start;
4292 }
4293 }
4294 }
4295
4296 for (r = start_regno; r < end_regno; r++)
4297 CLEAR_HARD_REG_BIT (*used_in_set, r);
4298 }
4299
4300 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4301 specified by OPNUM and TYPE. */
4302
4303 static int
4304 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4305 {
4306 int i;
4307
4308 /* In use for a RELOAD_OTHER means it's not available for anything. */
4309 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4310 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4311 return 0;
4312
4313 switch (type)
4314 {
4315 case RELOAD_OTHER:
4316 /* In use for anything means we can't use it for RELOAD_OTHER. */
4317 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4318 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4319 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4320 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4321 return 0;
4322
4323 for (i = 0; i < reload_n_operands; i++)
4324 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4325 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4326 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4327 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4328 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4329 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4330 return 0;
4331
4332 return 1;
4333
4334 case RELOAD_FOR_INPUT:
4335 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4336 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4337 return 0;
4338
4339 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4340 return 0;
4341
4342 /* If it is used for some other input, can't use it. */
4343 for (i = 0; i < reload_n_operands; i++)
4344 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4345 return 0;
4346
4347 /* If it is used in a later operand's address, can't use it. */
4348 for (i = opnum + 1; i < reload_n_operands; i++)
4349 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4350 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4351 return 0;
4352
4353 return 1;
4354
4355 case RELOAD_FOR_INPUT_ADDRESS:
4356 /* Can't use a register if it is used for an input address for this
4357 operand or used as an input in an earlier one. */
4358 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4359 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4360 return 0;
4361
4362 for (i = 0; i < opnum; i++)
4363 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4364 return 0;
4365
4366 return 1;
4367
4368 case RELOAD_FOR_INPADDR_ADDRESS:
4369 /* Can't use a register if it is used for an input address
4370 for this operand or used as an input in an earlier
4371 one. */
4372 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4373 return 0;
4374
4375 for (i = 0; i < opnum; i++)
4376 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4377 return 0;
4378
4379 return 1;
4380
4381 case RELOAD_FOR_OUTPUT_ADDRESS:
4382 /* Can't use a register if it is used for an output address for this
4383 operand or used as an output in this or a later operand. Note
4384 that multiple output operands are emitted in reverse order, so
4385 the conflicting ones are those with lower indices. */
4386 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4387 return 0;
4388
4389 for (i = 0; i <= opnum; i++)
4390 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4391 return 0;
4392
4393 return 1;
4394
4395 case RELOAD_FOR_OUTADDR_ADDRESS:
4396 /* Can't use a register if it is used for an output address
4397 for this operand or used as an output in this or a
4398 later operand. Note that multiple output operands are
4399 emitted in reverse order, so the conflicting ones are
4400 those with lower indices. */
4401 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4402 return 0;
4403
4404 for (i = 0; i <= opnum; i++)
4405 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4406 return 0;
4407
4408 return 1;
4409
4410 case RELOAD_FOR_OPERAND_ADDRESS:
4411 for (i = 0; i < reload_n_operands; i++)
4412 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4413 return 0;
4414
4415 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4416 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4417
4418 case RELOAD_FOR_OPADDR_ADDR:
4419 for (i = 0; i < reload_n_operands; i++)
4420 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4421 return 0;
4422
4423 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4424
4425 case RELOAD_FOR_OUTPUT:
4426 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4427 outputs, or an operand address for this or an earlier output.
4428 Note that multiple output operands are emitted in reverse order,
4429 so the conflicting ones are those with higher indices. */
4430 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4431 return 0;
4432
4433 for (i = 0; i < reload_n_operands; i++)
4434 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4435 return 0;
4436
4437 for (i = opnum; i < reload_n_operands; i++)
4438 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4439 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4440 return 0;
4441
4442 return 1;
4443
4444 case RELOAD_FOR_INSN:
4445 for (i = 0; i < reload_n_operands; i++)
4446 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4447 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4448 return 0;
4449
4450 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4451 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4452
4453 case RELOAD_FOR_OTHER_ADDRESS:
4454 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4455 }
4456 abort ();
4457 }
4458
4459 /* Return 1 if the value in reload reg REGNO, as used by a reload
4460 needed for the part of the insn specified by OPNUM and TYPE,
4461 is still available in REGNO at the end of the insn.
4462
4463 We can assume that the reload reg was already tested for availability
4464 at the time it is needed, and we should not check this again,
4465 in case the reg has already been marked in use. */
4466
4467 static int
4468 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4469 {
4470 int i;
4471
4472 switch (type)
4473 {
4474 case RELOAD_OTHER:
4475 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4476 its value must reach the end. */
4477 return 1;
4478
4479 /* If this use is for part of the insn,
4480 its value reaches if no subsequent part uses the same register.
4481 Just like the above function, don't try to do this with lots
4482 of fallthroughs. */
4483
4484 case RELOAD_FOR_OTHER_ADDRESS:
4485 /* Here we check for everything else, since these don't conflict
4486 with anything else and everything comes later. */
4487
4488 for (i = 0; i < reload_n_operands; i++)
4489 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4490 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4491 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4492 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4493 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4494 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4495 return 0;
4496
4497 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4498 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4499 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4500 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4501
4502 case RELOAD_FOR_INPUT_ADDRESS:
4503 case RELOAD_FOR_INPADDR_ADDRESS:
4504 /* Similar, except that we check only for this and subsequent inputs
4505 and the address of only subsequent inputs and we do not need
4506 to check for RELOAD_OTHER objects since they are known not to
4507 conflict. */
4508
4509 for (i = opnum; i < reload_n_operands; i++)
4510 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4511 return 0;
4512
4513 for (i = opnum + 1; i < reload_n_operands; i++)
4514 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4515 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4516 return 0;
4517
4518 for (i = 0; i < reload_n_operands; i++)
4519 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4520 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4521 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4522 return 0;
4523
4524 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4525 return 0;
4526
4527 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4528 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4529 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4530
4531 case RELOAD_FOR_INPUT:
4532 /* Similar to input address, except we start at the next operand for
4533 both input and input address and we do not check for
4534 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4535 would conflict. */
4536
4537 for (i = opnum + 1; i < reload_n_operands; i++)
4538 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4539 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4540 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4541 return 0;
4542
4543 /* ... fall through ... */
4544
4545 case RELOAD_FOR_OPERAND_ADDRESS:
4546 /* Check outputs and their addresses. */
4547
4548 for (i = 0; i < reload_n_operands; i++)
4549 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4550 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4551 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4552 return 0;
4553
4554 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4555
4556 case RELOAD_FOR_OPADDR_ADDR:
4557 for (i = 0; i < reload_n_operands; i++)
4558 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4559 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4560 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4561 return 0;
4562
4563 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4564 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4565 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4566
4567 case RELOAD_FOR_INSN:
4568 /* These conflict with other outputs with RELOAD_OTHER. So
4569 we need only check for output addresses. */
4570
4571 opnum = reload_n_operands;
4572
4573 /* ... fall through ... */
4574
4575 case RELOAD_FOR_OUTPUT:
4576 case RELOAD_FOR_OUTPUT_ADDRESS:
4577 case RELOAD_FOR_OUTADDR_ADDRESS:
4578 /* We already know these can't conflict with a later output. So the
4579 only thing to check are later output addresses.
4580 Note that multiple output operands are emitted in reverse order,
4581 so the conflicting ones are those with lower indices. */
4582 for (i = 0; i < opnum; i++)
4583 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4584 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4585 return 0;
4586
4587 return 1;
4588 }
4589
4590 abort ();
4591 }
4592 \f
4593 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4594 Return 0 otherwise.
4595
4596 This function uses the same algorithm as reload_reg_free_p above. */
4597
4598 int
4599 reloads_conflict (int r1, int r2)
4600 {
4601 enum reload_type r1_type = rld[r1].when_needed;
4602 enum reload_type r2_type = rld[r2].when_needed;
4603 int r1_opnum = rld[r1].opnum;
4604 int r2_opnum = rld[r2].opnum;
4605
4606 /* RELOAD_OTHER conflicts with everything. */
4607 if (r2_type == RELOAD_OTHER)
4608 return 1;
4609
4610 /* Otherwise, check conflicts differently for each type. */
4611
4612 switch (r1_type)
4613 {
4614 case RELOAD_FOR_INPUT:
4615 return (r2_type == RELOAD_FOR_INSN
4616 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4617 || r2_type == RELOAD_FOR_OPADDR_ADDR
4618 || r2_type == RELOAD_FOR_INPUT
4619 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4620 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4621 && r2_opnum > r1_opnum));
4622
4623 case RELOAD_FOR_INPUT_ADDRESS:
4624 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4625 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4626
4627 case RELOAD_FOR_INPADDR_ADDRESS:
4628 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4629 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4630
4631 case RELOAD_FOR_OUTPUT_ADDRESS:
4632 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4633 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4634
4635 case RELOAD_FOR_OUTADDR_ADDRESS:
4636 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4637 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4638
4639 case RELOAD_FOR_OPERAND_ADDRESS:
4640 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4641 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4642
4643 case RELOAD_FOR_OPADDR_ADDR:
4644 return (r2_type == RELOAD_FOR_INPUT
4645 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4646
4647 case RELOAD_FOR_OUTPUT:
4648 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4649 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4650 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4651 && r2_opnum >= r1_opnum));
4652
4653 case RELOAD_FOR_INSN:
4654 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4655 || r2_type == RELOAD_FOR_INSN
4656 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4657
4658 case RELOAD_FOR_OTHER_ADDRESS:
4659 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4660
4661 case RELOAD_OTHER:
4662 return 1;
4663
4664 default:
4665 abort ();
4666 }
4667 }
4668 \f
4669 /* Indexed by reload number, 1 if incoming value
4670 inherited from previous insns. */
4671 char reload_inherited[MAX_RELOADS];
4672
4673 /* For an inherited reload, this is the insn the reload was inherited from,
4674 if we know it. Otherwise, this is 0. */
4675 rtx reload_inheritance_insn[MAX_RELOADS];
4676
4677 /* If nonzero, this is a place to get the value of the reload,
4678 rather than using reload_in. */
4679 rtx reload_override_in[MAX_RELOADS];
4680
4681 /* For each reload, the hard register number of the register used,
4682 or -1 if we did not need a register for this reload. */
4683 int reload_spill_index[MAX_RELOADS];
4684
4685 /* Subroutine of free_for_value_p, used to check a single register.
4686 START_REGNO is the starting regno of the full reload register
4687 (possibly comprising multiple hard registers) that we are considering. */
4688
4689 static int
4690 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4691 enum reload_type type, rtx value, rtx out,
4692 int reloadnum, int ignore_address_reloads)
4693 {
4694 int time1;
4695 /* Set if we see an input reload that must not share its reload register
4696 with any new earlyclobber, but might otherwise share the reload
4697 register with an output or input-output reload. */
4698 int check_earlyclobber = 0;
4699 int i;
4700 int copy = 0;
4701
4702 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4703 return 0;
4704
4705 if (out == const0_rtx)
4706 {
4707 copy = 1;
4708 out = NULL_RTX;
4709 }
4710
4711 /* We use some pseudo 'time' value to check if the lifetimes of the
4712 new register use would overlap with the one of a previous reload
4713 that is not read-only or uses a different value.
4714 The 'time' used doesn't have to be linear in any shape or form, just
4715 monotonic.
4716 Some reload types use different 'buckets' for each operand.
4717 So there are MAX_RECOG_OPERANDS different time values for each
4718 such reload type.
4719 We compute TIME1 as the time when the register for the prospective
4720 new reload ceases to be live, and TIME2 for each existing
4721 reload as the time when that the reload register of that reload
4722 becomes live.
4723 Where there is little to be gained by exact lifetime calculations,
4724 we just make conservative assumptions, i.e. a longer lifetime;
4725 this is done in the 'default:' cases. */
4726 switch (type)
4727 {
4728 case RELOAD_FOR_OTHER_ADDRESS:
4729 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4730 time1 = copy ? 0 : 1;
4731 break;
4732 case RELOAD_OTHER:
4733 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4734 break;
4735 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4736 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4737 respectively, to the time values for these, we get distinct time
4738 values. To get distinct time values for each operand, we have to
4739 multiply opnum by at least three. We round that up to four because
4740 multiply by four is often cheaper. */
4741 case RELOAD_FOR_INPADDR_ADDRESS:
4742 time1 = opnum * 4 + 2;
4743 break;
4744 case RELOAD_FOR_INPUT_ADDRESS:
4745 time1 = opnum * 4 + 3;
4746 break;
4747 case RELOAD_FOR_INPUT:
4748 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4749 executes (inclusive). */
4750 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4751 break;
4752 case RELOAD_FOR_OPADDR_ADDR:
4753 /* opnum * 4 + 4
4754 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4755 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4756 break;
4757 case RELOAD_FOR_OPERAND_ADDRESS:
4758 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4759 is executed. */
4760 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4761 break;
4762 case RELOAD_FOR_OUTADDR_ADDRESS:
4763 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4764 break;
4765 case RELOAD_FOR_OUTPUT_ADDRESS:
4766 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4767 break;
4768 default:
4769 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4770 }
4771
4772 for (i = 0; i < n_reloads; i++)
4773 {
4774 rtx reg = rld[i].reg_rtx;
4775 if (reg && GET_CODE (reg) == REG
4776 && ((unsigned) regno - true_regnum (reg)
4777 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned) 1)
4778 && i != reloadnum)
4779 {
4780 rtx other_input = rld[i].in;
4781
4782 /* If the other reload loads the same input value, that
4783 will not cause a conflict only if it's loading it into
4784 the same register. */
4785 if (true_regnum (reg) != start_regno)
4786 other_input = NULL_RTX;
4787 if (! other_input || ! rtx_equal_p (other_input, value)
4788 || rld[i].out || out)
4789 {
4790 int time2;
4791 switch (rld[i].when_needed)
4792 {
4793 case RELOAD_FOR_OTHER_ADDRESS:
4794 time2 = 0;
4795 break;
4796 case RELOAD_FOR_INPADDR_ADDRESS:
4797 /* find_reloads makes sure that a
4798 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4799 by at most one - the first -
4800 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4801 address reload is inherited, the address address reload
4802 goes away, so we can ignore this conflict. */
4803 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4804 && ignore_address_reloads
4805 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4806 Then the address address is still needed to store
4807 back the new address. */
4808 && ! rld[reloadnum].out)
4809 continue;
4810 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4811 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4812 reloads go away. */
4813 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4814 && ignore_address_reloads
4815 /* Unless we are reloading an auto_inc expression. */
4816 && ! rld[reloadnum].out)
4817 continue;
4818 time2 = rld[i].opnum * 4 + 2;
4819 break;
4820 case RELOAD_FOR_INPUT_ADDRESS:
4821 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4822 && ignore_address_reloads
4823 && ! rld[reloadnum].out)
4824 continue;
4825 time2 = rld[i].opnum * 4 + 3;
4826 break;
4827 case RELOAD_FOR_INPUT:
4828 time2 = rld[i].opnum * 4 + 4;
4829 check_earlyclobber = 1;
4830 break;
4831 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4832 == MAX_RECOG_OPERAND * 4 */
4833 case RELOAD_FOR_OPADDR_ADDR:
4834 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4835 && ignore_address_reloads
4836 && ! rld[reloadnum].out)
4837 continue;
4838 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4839 break;
4840 case RELOAD_FOR_OPERAND_ADDRESS:
4841 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4842 check_earlyclobber = 1;
4843 break;
4844 case RELOAD_FOR_INSN:
4845 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4846 break;
4847 case RELOAD_FOR_OUTPUT:
4848 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4849 instruction is executed. */
4850 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4851 break;
4852 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4853 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4854 value. */
4855 case RELOAD_FOR_OUTADDR_ADDRESS:
4856 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4857 && ignore_address_reloads
4858 && ! rld[reloadnum].out)
4859 continue;
4860 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4861 break;
4862 case RELOAD_FOR_OUTPUT_ADDRESS:
4863 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4864 break;
4865 case RELOAD_OTHER:
4866 /* If there is no conflict in the input part, handle this
4867 like an output reload. */
4868 if (! rld[i].in || rtx_equal_p (other_input, value))
4869 {
4870 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4871 /* Earlyclobbered outputs must conflict with inputs. */
4872 if (earlyclobber_operand_p (rld[i].out))
4873 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4874
4875 break;
4876 }
4877 time2 = 1;
4878 /* RELOAD_OTHER might be live beyond instruction execution,
4879 but this is not obvious when we set time2 = 1. So check
4880 here if there might be a problem with the new reload
4881 clobbering the register used by the RELOAD_OTHER. */
4882 if (out)
4883 return 0;
4884 break;
4885 default:
4886 return 0;
4887 }
4888 if ((time1 >= time2
4889 && (! rld[i].in || rld[i].out
4890 || ! rtx_equal_p (other_input, value)))
4891 || (out && rld[reloadnum].out_reg
4892 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4893 return 0;
4894 }
4895 }
4896 }
4897
4898 /* Earlyclobbered outputs must conflict with inputs. */
4899 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4900 return 0;
4901
4902 return 1;
4903 }
4904
4905 /* Return 1 if the value in reload reg REGNO, as used by a reload
4906 needed for the part of the insn specified by OPNUM and TYPE,
4907 may be used to load VALUE into it.
4908
4909 MODE is the mode in which the register is used, this is needed to
4910 determine how many hard regs to test.
4911
4912 Other read-only reloads with the same value do not conflict
4913 unless OUT is nonzero and these other reloads have to live while
4914 output reloads live.
4915 If OUT is CONST0_RTX, this is a special case: it means that the
4916 test should not be for using register REGNO as reload register, but
4917 for copying from register REGNO into the reload register.
4918
4919 RELOADNUM is the number of the reload we want to load this value for;
4920 a reload does not conflict with itself.
4921
4922 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4923 reloads that load an address for the very reload we are considering.
4924
4925 The caller has to make sure that there is no conflict with the return
4926 register. */
4927
4928 static int
4929 free_for_value_p (int regno, enum machine_mode mode, int opnum,
4930 enum reload_type type, rtx value, rtx out, int reloadnum,
4931 int ignore_address_reloads)
4932 {
4933 int nregs = HARD_REGNO_NREGS (regno, mode);
4934 while (nregs-- > 0)
4935 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
4936 value, out, reloadnum,
4937 ignore_address_reloads))
4938 return 0;
4939 return 1;
4940 }
4941
4942 /* Determine whether the reload reg X overlaps any rtx'es used for
4943 overriding inheritance. Return nonzero if so. */
4944
4945 static int
4946 conflicts_with_override (rtx x)
4947 {
4948 int i;
4949 for (i = 0; i < n_reloads; i++)
4950 if (reload_override_in[i]
4951 && reg_overlap_mentioned_p (x, reload_override_in[i]))
4952 return 1;
4953 return 0;
4954 }
4955 \f
4956 /* Give an error message saying we failed to find a reload for INSN,
4957 and clear out reload R. */
4958 static void
4959 failed_reload (rtx insn, int r)
4960 {
4961 if (asm_noperands (PATTERN (insn)) < 0)
4962 /* It's the compiler's fault. */
4963 fatal_insn ("could not find a spill register", insn);
4964
4965 /* It's the user's fault; the operand's mode and constraint
4966 don't match. Disable this reload so we don't crash in final. */
4967 error_for_asm (insn,
4968 "`asm' operand constraint incompatible with operand size");
4969 rld[r].in = 0;
4970 rld[r].out = 0;
4971 rld[r].reg_rtx = 0;
4972 rld[r].optional = 1;
4973 rld[r].secondary_p = 1;
4974 }
4975
4976 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
4977 for reload R. If it's valid, get an rtx for it. Return nonzero if
4978 successful. */
4979 static int
4980 set_reload_reg (int i, int r)
4981 {
4982 int regno;
4983 rtx reg = spill_reg_rtx[i];
4984
4985 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
4986 spill_reg_rtx[i] = reg
4987 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
4988
4989 regno = true_regnum (reg);
4990
4991 /* Detect when the reload reg can't hold the reload mode.
4992 This used to be one `if', but Sequent compiler can't handle that. */
4993 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
4994 {
4995 enum machine_mode test_mode = VOIDmode;
4996 if (rld[r].in)
4997 test_mode = GET_MODE (rld[r].in);
4998 /* If rld[r].in has VOIDmode, it means we will load it
4999 in whatever mode the reload reg has: to wit, rld[r].mode.
5000 We have already tested that for validity. */
5001 /* Aside from that, we need to test that the expressions
5002 to reload from or into have modes which are valid for this
5003 reload register. Otherwise the reload insns would be invalid. */
5004 if (! (rld[r].in != 0 && test_mode != VOIDmode
5005 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5006 if (! (rld[r].out != 0
5007 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5008 {
5009 /* The reg is OK. */
5010 last_spill_reg = i;
5011
5012 /* Mark as in use for this insn the reload regs we use
5013 for this. */
5014 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5015 rld[r].when_needed, rld[r].mode);
5016
5017 rld[r].reg_rtx = reg;
5018 reload_spill_index[r] = spill_regs[i];
5019 return 1;
5020 }
5021 }
5022 return 0;
5023 }
5024
5025 /* Find a spill register to use as a reload register for reload R.
5026 LAST_RELOAD is nonzero if this is the last reload for the insn being
5027 processed.
5028
5029 Set rld[R].reg_rtx to the register allocated.
5030
5031 We return 1 if successful, or 0 if we couldn't find a spill reg and
5032 we didn't change anything. */
5033
5034 static int
5035 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5036 int last_reload)
5037 {
5038 int i, pass, count;
5039
5040 /* If we put this reload ahead, thinking it is a group,
5041 then insist on finding a group. Otherwise we can grab a
5042 reg that some other reload needs.
5043 (That can happen when we have a 68000 DATA_OR_FP_REG
5044 which is a group of data regs or one fp reg.)
5045 We need not be so restrictive if there are no more reloads
5046 for this insn.
5047
5048 ??? Really it would be nicer to have smarter handling
5049 for that kind of reg class, where a problem like this is normal.
5050 Perhaps those classes should be avoided for reloading
5051 by use of more alternatives. */
5052
5053 int force_group = rld[r].nregs > 1 && ! last_reload;
5054
5055 /* If we want a single register and haven't yet found one,
5056 take any reg in the right class and not in use.
5057 If we want a consecutive group, here is where we look for it.
5058
5059 We use two passes so we can first look for reload regs to
5060 reuse, which are already in use for other reloads in this insn,
5061 and only then use additional registers.
5062 I think that maximizing reuse is needed to make sure we don't
5063 run out of reload regs. Suppose we have three reloads, and
5064 reloads A and B can share regs. These need two regs.
5065 Suppose A and B are given different regs.
5066 That leaves none for C. */
5067 for (pass = 0; pass < 2; pass++)
5068 {
5069 /* I is the index in spill_regs.
5070 We advance it round-robin between insns to use all spill regs
5071 equally, so that inherited reloads have a chance
5072 of leapfrogging each other. */
5073
5074 i = last_spill_reg;
5075
5076 for (count = 0; count < n_spills; count++)
5077 {
5078 int class = (int) rld[r].class;
5079 int regnum;
5080
5081 i++;
5082 if (i >= n_spills)
5083 i -= n_spills;
5084 regnum = spill_regs[i];
5085
5086 if ((reload_reg_free_p (regnum, rld[r].opnum,
5087 rld[r].when_needed)
5088 || (rld[r].in
5089 /* We check reload_reg_used to make sure we
5090 don't clobber the return register. */
5091 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5092 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5093 rld[r].when_needed, rld[r].in,
5094 rld[r].out, r, 1)))
5095 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5096 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5097 /* Look first for regs to share, then for unshared. But
5098 don't share regs used for inherited reloads; they are
5099 the ones we want to preserve. */
5100 && (pass
5101 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5102 regnum)
5103 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5104 regnum))))
5105 {
5106 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5107 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5108 (on 68000) got us two FP regs. If NR is 1,
5109 we would reject both of them. */
5110 if (force_group)
5111 nr = rld[r].nregs;
5112 /* If we need only one reg, we have already won. */
5113 if (nr == 1)
5114 {
5115 /* But reject a single reg if we demand a group. */
5116 if (force_group)
5117 continue;
5118 break;
5119 }
5120 /* Otherwise check that as many consecutive regs as we need
5121 are available here. */
5122 while (nr > 1)
5123 {
5124 int regno = regnum + nr - 1;
5125 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5126 && spill_reg_order[regno] >= 0
5127 && reload_reg_free_p (regno, rld[r].opnum,
5128 rld[r].when_needed)))
5129 break;
5130 nr--;
5131 }
5132 if (nr == 1)
5133 break;
5134 }
5135 }
5136
5137 /* If we found something on pass 1, omit pass 2. */
5138 if (count < n_spills)
5139 break;
5140 }
5141
5142 /* We should have found a spill register by now. */
5143 if (count >= n_spills)
5144 return 0;
5145
5146 /* I is the index in SPILL_REG_RTX of the reload register we are to
5147 allocate. Get an rtx for it and find its register number. */
5148
5149 return set_reload_reg (i, r);
5150 }
5151 \f
5152 /* Initialize all the tables needed to allocate reload registers.
5153 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5154 is the array we use to restore the reg_rtx field for every reload. */
5155
5156 static void
5157 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5158 {
5159 int i;
5160
5161 for (i = 0; i < n_reloads; i++)
5162 rld[i].reg_rtx = save_reload_reg_rtx[i];
5163
5164 memset (reload_inherited, 0, MAX_RELOADS);
5165 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5166 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5167
5168 CLEAR_HARD_REG_SET (reload_reg_used);
5169 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5170 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5171 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5172 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5173 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5174
5175 CLEAR_HARD_REG_SET (reg_used_in_insn);
5176 {
5177 HARD_REG_SET tmp;
5178 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5179 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5180 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5181 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5182 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5183 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5184 }
5185
5186 for (i = 0; i < reload_n_operands; i++)
5187 {
5188 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5189 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5190 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5191 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5192 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5193 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5194 }
5195
5196 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5197
5198 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5199
5200 for (i = 0; i < n_reloads; i++)
5201 /* If we have already decided to use a certain register,
5202 don't use it in another way. */
5203 if (rld[i].reg_rtx)
5204 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5205 rld[i].when_needed, rld[i].mode);
5206 }
5207
5208 /* Assign hard reg targets for the pseudo-registers we must reload
5209 into hard regs for this insn.
5210 Also output the instructions to copy them in and out of the hard regs.
5211
5212 For machines with register classes, we are responsible for
5213 finding a reload reg in the proper class. */
5214
5215 static void
5216 choose_reload_regs (struct insn_chain *chain)
5217 {
5218 rtx insn = chain->insn;
5219 int i, j;
5220 unsigned int max_group_size = 1;
5221 enum reg_class group_class = NO_REGS;
5222 int pass, win, inheritance;
5223
5224 rtx save_reload_reg_rtx[MAX_RELOADS];
5225
5226 /* In order to be certain of getting the registers we need,
5227 we must sort the reloads into order of increasing register class.
5228 Then our grabbing of reload registers will parallel the process
5229 that provided the reload registers.
5230
5231 Also note whether any of the reloads wants a consecutive group of regs.
5232 If so, record the maximum size of the group desired and what
5233 register class contains all the groups needed by this insn. */
5234
5235 for (j = 0; j < n_reloads; j++)
5236 {
5237 reload_order[j] = j;
5238 reload_spill_index[j] = -1;
5239
5240 if (rld[j].nregs > 1)
5241 {
5242 max_group_size = MAX (rld[j].nregs, max_group_size);
5243 group_class
5244 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5245 }
5246
5247 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5248 }
5249
5250 if (n_reloads > 1)
5251 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5252
5253 /* If -O, try first with inheritance, then turning it off.
5254 If not -O, don't do inheritance.
5255 Using inheritance when not optimizing leads to paradoxes
5256 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5257 because one side of the comparison might be inherited. */
5258 win = 0;
5259 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5260 {
5261 choose_reload_regs_init (chain, save_reload_reg_rtx);
5262
5263 /* Process the reloads in order of preference just found.
5264 Beyond this point, subregs can be found in reload_reg_rtx.
5265
5266 This used to look for an existing reloaded home for all of the
5267 reloads, and only then perform any new reloads. But that could lose
5268 if the reloads were done out of reg-class order because a later
5269 reload with a looser constraint might have an old home in a register
5270 needed by an earlier reload with a tighter constraint.
5271
5272 To solve this, we make two passes over the reloads, in the order
5273 described above. In the first pass we try to inherit a reload
5274 from a previous insn. If there is a later reload that needs a
5275 class that is a proper subset of the class being processed, we must
5276 also allocate a spill register during the first pass.
5277
5278 Then make a second pass over the reloads to allocate any reloads
5279 that haven't been given registers yet. */
5280
5281 for (j = 0; j < n_reloads; j++)
5282 {
5283 int r = reload_order[j];
5284 rtx search_equiv = NULL_RTX;
5285
5286 /* Ignore reloads that got marked inoperative. */
5287 if (rld[r].out == 0 && rld[r].in == 0
5288 && ! rld[r].secondary_p)
5289 continue;
5290
5291 /* If find_reloads chose to use reload_in or reload_out as a reload
5292 register, we don't need to chose one. Otherwise, try even if it
5293 found one since we might save an insn if we find the value lying
5294 around.
5295 Try also when reload_in is a pseudo without a hard reg. */
5296 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5297 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5298 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5299 && GET_CODE (rld[r].in) != MEM
5300 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5301 continue;
5302
5303 #if 0 /* No longer needed for correct operation.
5304 It might give better code, or might not; worth an experiment? */
5305 /* If this is an optional reload, we can't inherit from earlier insns
5306 until we are sure that any non-optional reloads have been allocated.
5307 The following code takes advantage of the fact that optional reloads
5308 are at the end of reload_order. */
5309 if (rld[r].optional != 0)
5310 for (i = 0; i < j; i++)
5311 if ((rld[reload_order[i]].out != 0
5312 || rld[reload_order[i]].in != 0
5313 || rld[reload_order[i]].secondary_p)
5314 && ! rld[reload_order[i]].optional
5315 && rld[reload_order[i]].reg_rtx == 0)
5316 allocate_reload_reg (chain, reload_order[i], 0);
5317 #endif
5318
5319 /* First see if this pseudo is already available as reloaded
5320 for a previous insn. We cannot try to inherit for reloads
5321 that are smaller than the maximum number of registers needed
5322 for groups unless the register we would allocate cannot be used
5323 for the groups.
5324
5325 We could check here to see if this is a secondary reload for
5326 an object that is already in a register of the desired class.
5327 This would avoid the need for the secondary reload register.
5328 But this is complex because we can't easily determine what
5329 objects might want to be loaded via this reload. So let a
5330 register be allocated here. In `emit_reload_insns' we suppress
5331 one of the loads in the case described above. */
5332
5333 if (inheritance)
5334 {
5335 int byte = 0;
5336 int regno = -1;
5337 enum machine_mode mode = VOIDmode;
5338
5339 if (rld[r].in == 0)
5340 ;
5341 else if (GET_CODE (rld[r].in) == REG)
5342 {
5343 regno = REGNO (rld[r].in);
5344 mode = GET_MODE (rld[r].in);
5345 }
5346 else if (GET_CODE (rld[r].in_reg) == REG)
5347 {
5348 regno = REGNO (rld[r].in_reg);
5349 mode = GET_MODE (rld[r].in_reg);
5350 }
5351 else if (GET_CODE (rld[r].in_reg) == SUBREG
5352 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5353 {
5354 byte = SUBREG_BYTE (rld[r].in_reg);
5355 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5356 if (regno < FIRST_PSEUDO_REGISTER)
5357 regno = subreg_regno (rld[r].in_reg);
5358 mode = GET_MODE (rld[r].in_reg);
5359 }
5360 #ifdef AUTO_INC_DEC
5361 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5362 || GET_CODE (rld[r].in_reg) == PRE_DEC
5363 || GET_CODE (rld[r].in_reg) == POST_INC
5364 || GET_CODE (rld[r].in_reg) == POST_DEC)
5365 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5366 {
5367 regno = REGNO (XEXP (rld[r].in_reg, 0));
5368 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5369 rld[r].out = rld[r].in;
5370 }
5371 #endif
5372 #if 0
5373 /* This won't work, since REGNO can be a pseudo reg number.
5374 Also, it takes much more hair to keep track of all the things
5375 that can invalidate an inherited reload of part of a pseudoreg. */
5376 else if (GET_CODE (rld[r].in) == SUBREG
5377 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5378 regno = subreg_regno (rld[r].in);
5379 #endif
5380
5381 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5382 {
5383 enum reg_class class = rld[r].class, last_class;
5384 rtx last_reg = reg_last_reload_reg[regno];
5385 enum machine_mode need_mode;
5386
5387 i = REGNO (last_reg);
5388 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5389 last_class = REGNO_REG_CLASS (i);
5390
5391 if (byte == 0)
5392 need_mode = mode;
5393 else
5394 need_mode
5395 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5396 GET_MODE_CLASS (mode));
5397
5398 if (
5399 #ifdef CANNOT_CHANGE_MODE_CLASS
5400 (!REG_CANNOT_CHANGE_MODE_P (i, GET_MODE (last_reg),
5401 need_mode)
5402 &&
5403 #endif
5404 (GET_MODE_SIZE (GET_MODE (last_reg))
5405 >= GET_MODE_SIZE (need_mode))
5406 #ifdef CANNOT_CHANGE_MODE_CLASS
5407 )
5408 #endif
5409 && reg_reloaded_contents[i] == regno
5410 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5411 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5412 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5413 /* Even if we can't use this register as a reload
5414 register, we might use it for reload_override_in,
5415 if copying it to the desired class is cheap
5416 enough. */
5417 || ((REGISTER_MOVE_COST (mode, last_class, class)
5418 < MEMORY_MOVE_COST (mode, class, 1))
5419 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5420 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5421 last_reg)
5422 == NO_REGS)
5423 #endif
5424 #ifdef SECONDARY_MEMORY_NEEDED
5425 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5426 mode)
5427 #endif
5428 ))
5429
5430 && (rld[r].nregs == max_group_size
5431 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5432 i))
5433 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5434 rld[r].when_needed, rld[r].in,
5435 const0_rtx, r, 1))
5436 {
5437 /* If a group is needed, verify that all the subsequent
5438 registers still have their values intact. */
5439 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5440 int k;
5441
5442 for (k = 1; k < nr; k++)
5443 if (reg_reloaded_contents[i + k] != regno
5444 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5445 break;
5446
5447 if (k == nr)
5448 {
5449 int i1;
5450 int bad_for_class;
5451
5452 last_reg = (GET_MODE (last_reg) == mode
5453 ? last_reg : gen_rtx_REG (mode, i));
5454
5455 bad_for_class = 0;
5456 for (k = 0; k < nr; k++)
5457 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5458 i+k);
5459
5460 /* We found a register that contains the
5461 value we need. If this register is the
5462 same as an `earlyclobber' operand of the
5463 current insn, just mark it as a place to
5464 reload from since we can't use it as the
5465 reload register itself. */
5466
5467 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5468 if (reg_overlap_mentioned_for_reload_p
5469 (reg_last_reload_reg[regno],
5470 reload_earlyclobbers[i1]))
5471 break;
5472
5473 if (i1 != n_earlyclobbers
5474 || ! (free_for_value_p (i, rld[r].mode,
5475 rld[r].opnum,
5476 rld[r].when_needed, rld[r].in,
5477 rld[r].out, r, 1))
5478 /* Don't use it if we'd clobber a pseudo reg. */
5479 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5480 && rld[r].out
5481 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5482 /* Don't clobber the frame pointer. */
5483 || (i == HARD_FRAME_POINTER_REGNUM
5484 && frame_pointer_needed
5485 && rld[r].out)
5486 /* Don't really use the inherited spill reg
5487 if we need it wider than we've got it. */
5488 || (GET_MODE_SIZE (rld[r].mode)
5489 > GET_MODE_SIZE (mode))
5490 || bad_for_class
5491
5492 /* If find_reloads chose reload_out as reload
5493 register, stay with it - that leaves the
5494 inherited register for subsequent reloads. */
5495 || (rld[r].out && rld[r].reg_rtx
5496 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5497 {
5498 if (! rld[r].optional)
5499 {
5500 reload_override_in[r] = last_reg;
5501 reload_inheritance_insn[r]
5502 = reg_reloaded_insn[i];
5503 }
5504 }
5505 else
5506 {
5507 int k;
5508 /* We can use this as a reload reg. */
5509 /* Mark the register as in use for this part of
5510 the insn. */
5511 mark_reload_reg_in_use (i,
5512 rld[r].opnum,
5513 rld[r].when_needed,
5514 rld[r].mode);
5515 rld[r].reg_rtx = last_reg;
5516 reload_inherited[r] = 1;
5517 reload_inheritance_insn[r]
5518 = reg_reloaded_insn[i];
5519 reload_spill_index[r] = i;
5520 for (k = 0; k < nr; k++)
5521 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5522 i + k);
5523 }
5524 }
5525 }
5526 }
5527 }
5528
5529 /* Here's another way to see if the value is already lying around. */
5530 if (inheritance
5531 && rld[r].in != 0
5532 && ! reload_inherited[r]
5533 && rld[r].out == 0
5534 && (CONSTANT_P (rld[r].in)
5535 || GET_CODE (rld[r].in) == PLUS
5536 || GET_CODE (rld[r].in) == REG
5537 || GET_CODE (rld[r].in) == MEM)
5538 && (rld[r].nregs == max_group_size
5539 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5540 search_equiv = rld[r].in;
5541 /* If this is an output reload from a simple move insn, look
5542 if an equivalence for the input is available. */
5543 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5544 {
5545 rtx set = single_set (insn);
5546
5547 if (set
5548 && rtx_equal_p (rld[r].out, SET_DEST (set))
5549 && CONSTANT_P (SET_SRC (set)))
5550 search_equiv = SET_SRC (set);
5551 }
5552
5553 if (search_equiv)
5554 {
5555 rtx equiv
5556 = find_equiv_reg (search_equiv, insn, rld[r].class,
5557 -1, NULL, 0, rld[r].mode);
5558 int regno = 0;
5559
5560 if (equiv != 0)
5561 {
5562 if (GET_CODE (equiv) == REG)
5563 regno = REGNO (equiv);
5564 else if (GET_CODE (equiv) == SUBREG)
5565 {
5566 /* This must be a SUBREG of a hard register.
5567 Make a new REG since this might be used in an
5568 address and not all machines support SUBREGs
5569 there. */
5570 regno = subreg_regno (equiv);
5571 equiv = gen_rtx_REG (rld[r].mode, regno);
5572 }
5573 else
5574 abort ();
5575 }
5576
5577 /* If we found a spill reg, reject it unless it is free
5578 and of the desired class. */
5579 if (equiv != 0)
5580 {
5581 int regs_used = 0;
5582 int bad_for_class = 0;
5583 int max_regno = regno + rld[r].nregs;
5584
5585 for (i = regno; i < max_regno; i++)
5586 {
5587 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5588 i);
5589 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5590 i);
5591 }
5592
5593 if ((regs_used
5594 && ! free_for_value_p (regno, rld[r].mode,
5595 rld[r].opnum, rld[r].when_needed,
5596 rld[r].in, rld[r].out, r, 1))
5597 || bad_for_class)
5598 equiv = 0;
5599 }
5600
5601 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5602 equiv = 0;
5603
5604 /* We found a register that contains the value we need.
5605 If this register is the same as an `earlyclobber' operand
5606 of the current insn, just mark it as a place to reload from
5607 since we can't use it as the reload register itself. */
5608
5609 if (equiv != 0)
5610 for (i = 0; i < n_earlyclobbers; i++)
5611 if (reg_overlap_mentioned_for_reload_p (equiv,
5612 reload_earlyclobbers[i]))
5613 {
5614 if (! rld[r].optional)
5615 reload_override_in[r] = equiv;
5616 equiv = 0;
5617 break;
5618 }
5619
5620 /* If the equiv register we have found is explicitly clobbered
5621 in the current insn, it depends on the reload type if we
5622 can use it, use it for reload_override_in, or not at all.
5623 In particular, we then can't use EQUIV for a
5624 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5625
5626 if (equiv != 0)
5627 {
5628 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5629 switch (rld[r].when_needed)
5630 {
5631 case RELOAD_FOR_OTHER_ADDRESS:
5632 case RELOAD_FOR_INPADDR_ADDRESS:
5633 case RELOAD_FOR_INPUT_ADDRESS:
5634 case RELOAD_FOR_OPADDR_ADDR:
5635 break;
5636 case RELOAD_OTHER:
5637 case RELOAD_FOR_INPUT:
5638 case RELOAD_FOR_OPERAND_ADDRESS:
5639 if (! rld[r].optional)
5640 reload_override_in[r] = equiv;
5641 /* Fall through. */
5642 default:
5643 equiv = 0;
5644 break;
5645 }
5646 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5647 switch (rld[r].when_needed)
5648 {
5649 case RELOAD_FOR_OTHER_ADDRESS:
5650 case RELOAD_FOR_INPADDR_ADDRESS:
5651 case RELOAD_FOR_INPUT_ADDRESS:
5652 case RELOAD_FOR_OPADDR_ADDR:
5653 case RELOAD_FOR_OPERAND_ADDRESS:
5654 case RELOAD_FOR_INPUT:
5655 break;
5656 case RELOAD_OTHER:
5657 if (! rld[r].optional)
5658 reload_override_in[r] = equiv;
5659 /* Fall through. */
5660 default:
5661 equiv = 0;
5662 break;
5663 }
5664 }
5665
5666 /* If we found an equivalent reg, say no code need be generated
5667 to load it, and use it as our reload reg. */
5668 if (equiv != 0
5669 && (regno != HARD_FRAME_POINTER_REGNUM
5670 || !frame_pointer_needed))
5671 {
5672 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5673 int k;
5674 rld[r].reg_rtx = equiv;
5675 reload_inherited[r] = 1;
5676
5677 /* If reg_reloaded_valid is not set for this register,
5678 there might be a stale spill_reg_store lying around.
5679 We must clear it, since otherwise emit_reload_insns
5680 might delete the store. */
5681 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5682 spill_reg_store[regno] = NULL_RTX;
5683 /* If any of the hard registers in EQUIV are spill
5684 registers, mark them as in use for this insn. */
5685 for (k = 0; k < nr; k++)
5686 {
5687 i = spill_reg_order[regno + k];
5688 if (i >= 0)
5689 {
5690 mark_reload_reg_in_use (regno, rld[r].opnum,
5691 rld[r].when_needed,
5692 rld[r].mode);
5693 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5694 regno + k);
5695 }
5696 }
5697 }
5698 }
5699
5700 /* If we found a register to use already, or if this is an optional
5701 reload, we are done. */
5702 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5703 continue;
5704
5705 #if 0
5706 /* No longer needed for correct operation. Might or might
5707 not give better code on the average. Want to experiment? */
5708
5709 /* See if there is a later reload that has a class different from our
5710 class that intersects our class or that requires less register
5711 than our reload. If so, we must allocate a register to this
5712 reload now, since that reload might inherit a previous reload
5713 and take the only available register in our class. Don't do this
5714 for optional reloads since they will force all previous reloads
5715 to be allocated. Also don't do this for reloads that have been
5716 turned off. */
5717
5718 for (i = j + 1; i < n_reloads; i++)
5719 {
5720 int s = reload_order[i];
5721
5722 if ((rld[s].in == 0 && rld[s].out == 0
5723 && ! rld[s].secondary_p)
5724 || rld[s].optional)
5725 continue;
5726
5727 if ((rld[s].class != rld[r].class
5728 && reg_classes_intersect_p (rld[r].class,
5729 rld[s].class))
5730 || rld[s].nregs < rld[r].nregs)
5731 break;
5732 }
5733
5734 if (i == n_reloads)
5735 continue;
5736
5737 allocate_reload_reg (chain, r, j == n_reloads - 1);
5738 #endif
5739 }
5740
5741 /* Now allocate reload registers for anything non-optional that
5742 didn't get one yet. */
5743 for (j = 0; j < n_reloads; j++)
5744 {
5745 int r = reload_order[j];
5746
5747 /* Ignore reloads that got marked inoperative. */
5748 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5749 continue;
5750
5751 /* Skip reloads that already have a register allocated or are
5752 optional. */
5753 if (rld[r].reg_rtx != 0 || rld[r].optional)
5754 continue;
5755
5756 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5757 break;
5758 }
5759
5760 /* If that loop got all the way, we have won. */
5761 if (j == n_reloads)
5762 {
5763 win = 1;
5764 break;
5765 }
5766
5767 /* Loop around and try without any inheritance. */
5768 }
5769
5770 if (! win)
5771 {
5772 /* First undo everything done by the failed attempt
5773 to allocate with inheritance. */
5774 choose_reload_regs_init (chain, save_reload_reg_rtx);
5775
5776 /* Some sanity tests to verify that the reloads found in the first
5777 pass are identical to the ones we have now. */
5778 if (chain->n_reloads != n_reloads)
5779 abort ();
5780
5781 for (i = 0; i < n_reloads; i++)
5782 {
5783 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5784 continue;
5785 if (chain->rld[i].when_needed != rld[i].when_needed)
5786 abort ();
5787 for (j = 0; j < n_spills; j++)
5788 if (spill_regs[j] == chain->rld[i].regno)
5789 if (! set_reload_reg (j, i))
5790 failed_reload (chain->insn, i);
5791 }
5792 }
5793
5794 /* If we thought we could inherit a reload, because it seemed that
5795 nothing else wanted the same reload register earlier in the insn,
5796 verify that assumption, now that all reloads have been assigned.
5797 Likewise for reloads where reload_override_in has been set. */
5798
5799 /* If doing expensive optimizations, do one preliminary pass that doesn't
5800 cancel any inheritance, but removes reloads that have been needed only
5801 for reloads that we know can be inherited. */
5802 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5803 {
5804 for (j = 0; j < n_reloads; j++)
5805 {
5806 int r = reload_order[j];
5807 rtx check_reg;
5808 if (reload_inherited[r] && rld[r].reg_rtx)
5809 check_reg = rld[r].reg_rtx;
5810 else if (reload_override_in[r]
5811 && (GET_CODE (reload_override_in[r]) == REG
5812 || GET_CODE (reload_override_in[r]) == SUBREG))
5813 check_reg = reload_override_in[r];
5814 else
5815 continue;
5816 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5817 rld[r].opnum, rld[r].when_needed, rld[r].in,
5818 (reload_inherited[r]
5819 ? rld[r].out : const0_rtx),
5820 r, 1))
5821 {
5822 if (pass)
5823 continue;
5824 reload_inherited[r] = 0;
5825 reload_override_in[r] = 0;
5826 }
5827 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5828 reload_override_in, then we do not need its related
5829 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5830 likewise for other reload types.
5831 We handle this by removing a reload when its only replacement
5832 is mentioned in reload_in of the reload we are going to inherit.
5833 A special case are auto_inc expressions; even if the input is
5834 inherited, we still need the address for the output. We can
5835 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5836 If we succeeded removing some reload and we are doing a preliminary
5837 pass just to remove such reloads, make another pass, since the
5838 removal of one reload might allow us to inherit another one. */
5839 else if (rld[r].in
5840 && rld[r].out != rld[r].in
5841 && remove_address_replacements (rld[r].in) && pass)
5842 pass = 2;
5843 }
5844 }
5845
5846 /* Now that reload_override_in is known valid,
5847 actually override reload_in. */
5848 for (j = 0; j < n_reloads; j++)
5849 if (reload_override_in[j])
5850 rld[j].in = reload_override_in[j];
5851
5852 /* If this reload won't be done because it has been canceled or is
5853 optional and not inherited, clear reload_reg_rtx so other
5854 routines (such as subst_reloads) don't get confused. */
5855 for (j = 0; j < n_reloads; j++)
5856 if (rld[j].reg_rtx != 0
5857 && ((rld[j].optional && ! reload_inherited[j])
5858 || (rld[j].in == 0 && rld[j].out == 0
5859 && ! rld[j].secondary_p)))
5860 {
5861 int regno = true_regnum (rld[j].reg_rtx);
5862
5863 if (spill_reg_order[regno] >= 0)
5864 clear_reload_reg_in_use (regno, rld[j].opnum,
5865 rld[j].when_needed, rld[j].mode);
5866 rld[j].reg_rtx = 0;
5867 reload_spill_index[j] = -1;
5868 }
5869
5870 /* Record which pseudos and which spill regs have output reloads. */
5871 for (j = 0; j < n_reloads; j++)
5872 {
5873 int r = reload_order[j];
5874
5875 i = reload_spill_index[r];
5876
5877 /* I is nonneg if this reload uses a register.
5878 If rld[r].reg_rtx is 0, this is an optional reload
5879 that we opted to ignore. */
5880 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5881 && rld[r].reg_rtx != 0)
5882 {
5883 int nregno = REGNO (rld[r].out_reg);
5884 int nr = 1;
5885
5886 if (nregno < FIRST_PSEUDO_REGISTER)
5887 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5888
5889 while (--nr >= 0)
5890 reg_has_output_reload[nregno + nr] = 1;
5891
5892 if (i >= 0)
5893 {
5894 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5895 while (--nr >= 0)
5896 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5897 }
5898
5899 if (rld[r].when_needed != RELOAD_OTHER
5900 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5901 && rld[r].when_needed != RELOAD_FOR_INSN)
5902 abort ();
5903 }
5904 }
5905 }
5906
5907 /* Deallocate the reload register for reload R. This is called from
5908 remove_address_replacements. */
5909
5910 void
5911 deallocate_reload_reg (int r)
5912 {
5913 int regno;
5914
5915 if (! rld[r].reg_rtx)
5916 return;
5917 regno = true_regnum (rld[r].reg_rtx);
5918 rld[r].reg_rtx = 0;
5919 if (spill_reg_order[regno] >= 0)
5920 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5921 rld[r].mode);
5922 reload_spill_index[r] = -1;
5923 }
5924 \f
5925 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
5926 reloads of the same item for fear that we might not have enough reload
5927 registers. However, normally they will get the same reload register
5928 and hence actually need not be loaded twice.
5929
5930 Here we check for the most common case of this phenomenon: when we have
5931 a number of reloads for the same object, each of which were allocated
5932 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5933 reload, and is not modified in the insn itself. If we find such,
5934 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5935 This will not increase the number of spill registers needed and will
5936 prevent redundant code. */
5937
5938 static void
5939 merge_assigned_reloads (rtx insn)
5940 {
5941 int i, j;
5942
5943 /* Scan all the reloads looking for ones that only load values and
5944 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5945 assigned and not modified by INSN. */
5946
5947 for (i = 0; i < n_reloads; i++)
5948 {
5949 int conflicting_input = 0;
5950 int max_input_address_opnum = -1;
5951 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
5952
5953 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
5954 || rld[i].out != 0 || rld[i].reg_rtx == 0
5955 || reg_set_p (rld[i].reg_rtx, insn))
5956 continue;
5957
5958 /* Look at all other reloads. Ensure that the only use of this
5959 reload_reg_rtx is in a reload that just loads the same value
5960 as we do. Note that any secondary reloads must be of the identical
5961 class since the values, modes, and result registers are the
5962 same, so we need not do anything with any secondary reloads. */
5963
5964 for (j = 0; j < n_reloads; j++)
5965 {
5966 if (i == j || rld[j].reg_rtx == 0
5967 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
5968 rld[i].reg_rtx))
5969 continue;
5970
5971 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5972 && rld[j].opnum > max_input_address_opnum)
5973 max_input_address_opnum = rld[j].opnum;
5974
5975 /* If the reload regs aren't exactly the same (e.g, different modes)
5976 or if the values are different, we can't merge this reload.
5977 But if it is an input reload, we might still merge
5978 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
5979
5980 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
5981 || rld[j].out != 0 || rld[j].in == 0
5982 || ! rtx_equal_p (rld[i].in, rld[j].in))
5983 {
5984 if (rld[j].when_needed != RELOAD_FOR_INPUT
5985 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
5986 || rld[i].opnum > rld[j].opnum)
5987 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
5988 break;
5989 conflicting_input = 1;
5990 if (min_conflicting_input_opnum > rld[j].opnum)
5991 min_conflicting_input_opnum = rld[j].opnum;
5992 }
5993 }
5994
5995 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
5996 we, in fact, found any matching reloads. */
5997
5998 if (j == n_reloads
5999 && max_input_address_opnum <= min_conflicting_input_opnum)
6000 {
6001 for (j = 0; j < n_reloads; j++)
6002 if (i != j && rld[j].reg_rtx != 0
6003 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6004 && (! conflicting_input
6005 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6006 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6007 {
6008 rld[i].when_needed = RELOAD_OTHER;
6009 rld[j].in = 0;
6010 reload_spill_index[j] = -1;
6011 transfer_replacements (i, j);
6012 }
6013
6014 /* If this is now RELOAD_OTHER, look for any reloads that load
6015 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6016 if they were for inputs, RELOAD_OTHER for outputs. Note that
6017 this test is equivalent to looking for reloads for this operand
6018 number. */
6019 /* We must take special care when there are two or more reloads to
6020 be merged and a RELOAD_FOR_OUTPUT_ADDRESS reload that loads the
6021 same value or a part of it; we must not change its type if there
6022 is a conflicting input. */
6023
6024 if (rld[i].when_needed == RELOAD_OTHER)
6025 for (j = 0; j < n_reloads; j++)
6026 if (rld[j].in != 0
6027 && rld[j].when_needed != RELOAD_OTHER
6028 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6029 && (! conflicting_input
6030 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6031 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6032 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6033 rld[i].in))
6034 {
6035 int k;
6036
6037 rld[j].when_needed
6038 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6039 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6040 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6041
6042 /* Check to see if we accidentally converted two reloads
6043 that use the same reload register with different inputs
6044 to the same type. If so, the resulting code won't work,
6045 so abort. */
6046 if (rld[j].reg_rtx)
6047 for (k = 0; k < j; k++)
6048 if (rld[k].in != 0 && rld[k].reg_rtx != 0
6049 && rld[k].when_needed == rld[j].when_needed
6050 && rtx_equal_p (rld[k].reg_rtx, rld[j].reg_rtx)
6051 && ! rtx_equal_p (rld[k].in, rld[j].in))
6052 abort ();
6053 }
6054 }
6055 }
6056 }
6057 \f
6058 /* These arrays are filled by emit_reload_insns and its subroutines. */
6059 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6060 static rtx other_input_address_reload_insns = 0;
6061 static rtx other_input_reload_insns = 0;
6062 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6063 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6064 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6065 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6066 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6067 static rtx operand_reload_insns = 0;
6068 static rtx other_operand_reload_insns = 0;
6069 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6070
6071 /* Values to be put in spill_reg_store are put here first. */
6072 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6073 static HARD_REG_SET reg_reloaded_died;
6074
6075 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6076 has the number J. OLD contains the value to be used as input. */
6077
6078 static void
6079 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6080 rtx old, int j)
6081 {
6082 rtx insn = chain->insn;
6083 rtx reloadreg = rl->reg_rtx;
6084 rtx oldequiv_reg = 0;
6085 rtx oldequiv = 0;
6086 int special = 0;
6087 enum machine_mode mode;
6088 rtx *where;
6089
6090 /* Determine the mode to reload in.
6091 This is very tricky because we have three to choose from.
6092 There is the mode the insn operand wants (rl->inmode).
6093 There is the mode of the reload register RELOADREG.
6094 There is the intrinsic mode of the operand, which we could find
6095 by stripping some SUBREGs.
6096 It turns out that RELOADREG's mode is irrelevant:
6097 we can change that arbitrarily.
6098
6099 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6100 then the reload reg may not support QImode moves, so use SImode.
6101 If foo is in memory due to spilling a pseudo reg, this is safe,
6102 because the QImode value is in the least significant part of a
6103 slot big enough for a SImode. If foo is some other sort of
6104 memory reference, then it is impossible to reload this case,
6105 so previous passes had better make sure this never happens.
6106
6107 Then consider a one-word union which has SImode and one of its
6108 members is a float, being fetched as (SUBREG:SF union:SI).
6109 We must fetch that as SFmode because we could be loading into
6110 a float-only register. In this case OLD's mode is correct.
6111
6112 Consider an immediate integer: it has VOIDmode. Here we need
6113 to get a mode from something else.
6114
6115 In some cases, there is a fourth mode, the operand's
6116 containing mode. If the insn specifies a containing mode for
6117 this operand, it overrides all others.
6118
6119 I am not sure whether the algorithm here is always right,
6120 but it does the right things in those cases. */
6121
6122 mode = GET_MODE (old);
6123 if (mode == VOIDmode)
6124 mode = rl->inmode;
6125
6126 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6127 /* If we need a secondary register for this operation, see if
6128 the value is already in a register in that class. Don't
6129 do this if the secondary register will be used as a scratch
6130 register. */
6131
6132 if (rl->secondary_in_reload >= 0
6133 && rl->secondary_in_icode == CODE_FOR_nothing
6134 && optimize)
6135 oldequiv
6136 = find_equiv_reg (old, insn,
6137 rld[rl->secondary_in_reload].class,
6138 -1, NULL, 0, mode);
6139 #endif
6140
6141 /* If reloading from memory, see if there is a register
6142 that already holds the same value. If so, reload from there.
6143 We can pass 0 as the reload_reg_p argument because
6144 any other reload has either already been emitted,
6145 in which case find_equiv_reg will see the reload-insn,
6146 or has yet to be emitted, in which case it doesn't matter
6147 because we will use this equiv reg right away. */
6148
6149 if (oldequiv == 0 && optimize
6150 && (GET_CODE (old) == MEM
6151 || (GET_CODE (old) == REG
6152 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6153 && reg_renumber[REGNO (old)] < 0)))
6154 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6155
6156 if (oldequiv)
6157 {
6158 unsigned int regno = true_regnum (oldequiv);
6159
6160 /* Don't use OLDEQUIV if any other reload changes it at an
6161 earlier stage of this insn or at this stage. */
6162 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6163 rl->in, const0_rtx, j, 0))
6164 oldequiv = 0;
6165
6166 /* If it is no cheaper to copy from OLDEQUIV into the
6167 reload register than it would be to move from memory,
6168 don't use it. Likewise, if we need a secondary register
6169 or memory. */
6170
6171 if (oldequiv != 0
6172 && (((enum reg_class) REGNO_REG_CLASS (regno) != rl->class
6173 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6174 rl->class)
6175 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6176 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6177 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6178 mode, oldequiv)
6179 != NO_REGS)
6180 #endif
6181 #ifdef SECONDARY_MEMORY_NEEDED
6182 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6183 rl->class,
6184 mode)
6185 #endif
6186 ))
6187 oldequiv = 0;
6188 }
6189
6190 /* delete_output_reload is only invoked properly if old contains
6191 the original pseudo register. Since this is replaced with a
6192 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6193 find the pseudo in RELOAD_IN_REG. */
6194 if (oldequiv == 0
6195 && reload_override_in[j]
6196 && GET_CODE (rl->in_reg) == REG)
6197 {
6198 oldequiv = old;
6199 old = rl->in_reg;
6200 }
6201 if (oldequiv == 0)
6202 oldequiv = old;
6203 else if (GET_CODE (oldequiv) == REG)
6204 oldequiv_reg = oldequiv;
6205 else if (GET_CODE (oldequiv) == SUBREG)
6206 oldequiv_reg = SUBREG_REG (oldequiv);
6207
6208 /* If we are reloading from a register that was recently stored in
6209 with an output-reload, see if we can prove there was
6210 actually no need to store the old value in it. */
6211
6212 if (optimize && GET_CODE (oldequiv) == REG
6213 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6214 && spill_reg_store[REGNO (oldequiv)]
6215 && GET_CODE (old) == REG
6216 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6217 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6218 rl->out_reg)))
6219 delete_output_reload (insn, j, REGNO (oldequiv));
6220
6221 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6222 then load RELOADREG from OLDEQUIV. Note that we cannot use
6223 gen_lowpart_common since it can do the wrong thing when
6224 RELOADREG has a multi-word mode. Note that RELOADREG
6225 must always be a REG here. */
6226
6227 if (GET_MODE (reloadreg) != mode)
6228 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6229 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6230 oldequiv = SUBREG_REG (oldequiv);
6231 if (GET_MODE (oldequiv) != VOIDmode
6232 && mode != GET_MODE (oldequiv))
6233 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6234
6235 /* Switch to the right place to emit the reload insns. */
6236 switch (rl->when_needed)
6237 {
6238 case RELOAD_OTHER:
6239 where = &other_input_reload_insns;
6240 break;
6241 case RELOAD_FOR_INPUT:
6242 where = &input_reload_insns[rl->opnum];
6243 break;
6244 case RELOAD_FOR_INPUT_ADDRESS:
6245 where = &input_address_reload_insns[rl->opnum];
6246 break;
6247 case RELOAD_FOR_INPADDR_ADDRESS:
6248 where = &inpaddr_address_reload_insns[rl->opnum];
6249 break;
6250 case RELOAD_FOR_OUTPUT_ADDRESS:
6251 where = &output_address_reload_insns[rl->opnum];
6252 break;
6253 case RELOAD_FOR_OUTADDR_ADDRESS:
6254 where = &outaddr_address_reload_insns[rl->opnum];
6255 break;
6256 case RELOAD_FOR_OPERAND_ADDRESS:
6257 where = &operand_reload_insns;
6258 break;
6259 case RELOAD_FOR_OPADDR_ADDR:
6260 where = &other_operand_reload_insns;
6261 break;
6262 case RELOAD_FOR_OTHER_ADDRESS:
6263 where = &other_input_address_reload_insns;
6264 break;
6265 default:
6266 abort ();
6267 }
6268
6269 push_to_sequence (*where);
6270
6271 /* Auto-increment addresses must be reloaded in a special way. */
6272 if (rl->out && ! rl->out_reg)
6273 {
6274 /* We are not going to bother supporting the case where a
6275 incremented register can't be copied directly from
6276 OLDEQUIV since this seems highly unlikely. */
6277 if (rl->secondary_in_reload >= 0)
6278 abort ();
6279
6280 if (reload_inherited[j])
6281 oldequiv = reloadreg;
6282
6283 old = XEXP (rl->in_reg, 0);
6284
6285 if (optimize && GET_CODE (oldequiv) == REG
6286 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6287 && spill_reg_store[REGNO (oldequiv)]
6288 && GET_CODE (old) == REG
6289 && (dead_or_set_p (insn,
6290 spill_reg_stored_to[REGNO (oldequiv)])
6291 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6292 old)))
6293 delete_output_reload (insn, j, REGNO (oldequiv));
6294
6295 /* Prevent normal processing of this reload. */
6296 special = 1;
6297 /* Output a special code sequence for this case. */
6298 new_spill_reg_store[REGNO (reloadreg)]
6299 = inc_for_reload (reloadreg, oldequiv, rl->out,
6300 rl->inc);
6301 }
6302
6303 /* If we are reloading a pseudo-register that was set by the previous
6304 insn, see if we can get rid of that pseudo-register entirely
6305 by redirecting the previous insn into our reload register. */
6306
6307 else if (optimize && GET_CODE (old) == REG
6308 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6309 && dead_or_set_p (insn, old)
6310 /* This is unsafe if some other reload
6311 uses the same reg first. */
6312 && ! conflicts_with_override (reloadreg)
6313 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6314 rl->when_needed, old, rl->out, j, 0))
6315 {
6316 rtx temp = PREV_INSN (insn);
6317 while (temp && GET_CODE (temp) == NOTE)
6318 temp = PREV_INSN (temp);
6319 if (temp
6320 && GET_CODE (temp) == INSN
6321 && GET_CODE (PATTERN (temp)) == SET
6322 && SET_DEST (PATTERN (temp)) == old
6323 /* Make sure we can access insn_operand_constraint. */
6324 && asm_noperands (PATTERN (temp)) < 0
6325 /* This is unsafe if operand occurs more than once in current
6326 insn. Perhaps some occurrences aren't reloaded. */
6327 && count_occurrences (PATTERN (insn), old, 0) == 1)
6328 {
6329 rtx old = SET_DEST (PATTERN (temp));
6330 /* Store into the reload register instead of the pseudo. */
6331 SET_DEST (PATTERN (temp)) = reloadreg;
6332
6333 /* Verify that resulting insn is valid. */
6334 extract_insn (temp);
6335 if (constrain_operands (1))
6336 {
6337 /* If the previous insn is an output reload, the source is
6338 a reload register, and its spill_reg_store entry will
6339 contain the previous destination. This is now
6340 invalid. */
6341 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6342 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6343 {
6344 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6345 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6346 }
6347
6348 /* If these are the only uses of the pseudo reg,
6349 pretend for GDB it lives in the reload reg we used. */
6350 if (REG_N_DEATHS (REGNO (old)) == 1
6351 && REG_N_SETS (REGNO (old)) == 1)
6352 {
6353 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6354 alter_reg (REGNO (old), -1);
6355 }
6356 special = 1;
6357 }
6358 else
6359 {
6360 SET_DEST (PATTERN (temp)) = old;
6361 }
6362 }
6363 }
6364
6365 /* We can't do that, so output an insn to load RELOADREG. */
6366
6367 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6368 /* If we have a secondary reload, pick up the secondary register
6369 and icode, if any. If OLDEQUIV and OLD are different or
6370 if this is an in-out reload, recompute whether or not we
6371 still need a secondary register and what the icode should
6372 be. If we still need a secondary register and the class or
6373 icode is different, go back to reloading from OLD if using
6374 OLDEQUIV means that we got the wrong type of register. We
6375 cannot have different class or icode due to an in-out reload
6376 because we don't make such reloads when both the input and
6377 output need secondary reload registers. */
6378
6379 if (! special && rl->secondary_in_reload >= 0)
6380 {
6381 rtx second_reload_reg = 0;
6382 int secondary_reload = rl->secondary_in_reload;
6383 rtx real_oldequiv = oldequiv;
6384 rtx real_old = old;
6385 rtx tmp;
6386 enum insn_code icode;
6387
6388 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6389 and similarly for OLD.
6390 See comments in get_secondary_reload in reload.c. */
6391 /* If it is a pseudo that cannot be replaced with its
6392 equivalent MEM, we must fall back to reload_in, which
6393 will have all the necessary substitutions registered.
6394 Likewise for a pseudo that can't be replaced with its
6395 equivalent constant.
6396
6397 Take extra care for subregs of such pseudos. Note that
6398 we cannot use reg_equiv_mem in this case because it is
6399 not in the right mode. */
6400
6401 tmp = oldequiv;
6402 if (GET_CODE (tmp) == SUBREG)
6403 tmp = SUBREG_REG (tmp);
6404 if (GET_CODE (tmp) == REG
6405 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6406 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6407 || reg_equiv_constant[REGNO (tmp)] != 0))
6408 {
6409 if (! reg_equiv_mem[REGNO (tmp)]
6410 || num_not_at_initial_offset
6411 || GET_CODE (oldequiv) == SUBREG)
6412 real_oldequiv = rl->in;
6413 else
6414 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6415 }
6416
6417 tmp = old;
6418 if (GET_CODE (tmp) == SUBREG)
6419 tmp = SUBREG_REG (tmp);
6420 if (GET_CODE (tmp) == REG
6421 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6422 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6423 || reg_equiv_constant[REGNO (tmp)] != 0))
6424 {
6425 if (! reg_equiv_mem[REGNO (tmp)]
6426 || num_not_at_initial_offset
6427 || GET_CODE (old) == SUBREG)
6428 real_old = rl->in;
6429 else
6430 real_old = reg_equiv_mem[REGNO (tmp)];
6431 }
6432
6433 second_reload_reg = rld[secondary_reload].reg_rtx;
6434 icode = rl->secondary_in_icode;
6435
6436 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6437 || (rl->in != 0 && rl->out != 0))
6438 {
6439 enum reg_class new_class
6440 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6441 mode, real_oldequiv);
6442
6443 if (new_class == NO_REGS)
6444 second_reload_reg = 0;
6445 else
6446 {
6447 enum insn_code new_icode;
6448 enum machine_mode new_mode;
6449
6450 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6451 REGNO (second_reload_reg)))
6452 oldequiv = old, real_oldequiv = real_old;
6453 else
6454 {
6455 new_icode = reload_in_optab[(int) mode];
6456 if (new_icode != CODE_FOR_nothing
6457 && ((insn_data[(int) new_icode].operand[0].predicate
6458 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6459 (reloadreg, mode)))
6460 || (insn_data[(int) new_icode].operand[1].predicate
6461 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6462 (real_oldequiv, mode)))))
6463 new_icode = CODE_FOR_nothing;
6464
6465 if (new_icode == CODE_FOR_nothing)
6466 new_mode = mode;
6467 else
6468 new_mode = insn_data[(int) new_icode].operand[2].mode;
6469
6470 if (GET_MODE (second_reload_reg) != new_mode)
6471 {
6472 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6473 new_mode))
6474 oldequiv = old, real_oldequiv = real_old;
6475 else
6476 second_reload_reg
6477 = reload_adjust_reg_for_mode (second_reload_reg,
6478 new_mode);
6479 }
6480 }
6481 }
6482 }
6483
6484 /* If we still need a secondary reload register, check
6485 to see if it is being used as a scratch or intermediate
6486 register and generate code appropriately. If we need
6487 a scratch register, use REAL_OLDEQUIV since the form of
6488 the insn may depend on the actual address if it is
6489 a MEM. */
6490
6491 if (second_reload_reg)
6492 {
6493 if (icode != CODE_FOR_nothing)
6494 {
6495 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6496 second_reload_reg));
6497 special = 1;
6498 }
6499 else
6500 {
6501 /* See if we need a scratch register to load the
6502 intermediate register (a tertiary reload). */
6503 enum insn_code tertiary_icode
6504 = rld[secondary_reload].secondary_in_icode;
6505
6506 if (tertiary_icode != CODE_FOR_nothing)
6507 {
6508 rtx third_reload_reg
6509 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6510
6511 emit_insn ((GEN_FCN (tertiary_icode)
6512 (second_reload_reg, real_oldequiv,
6513 third_reload_reg)));
6514 }
6515 else
6516 gen_reload (second_reload_reg, real_oldequiv,
6517 rl->opnum,
6518 rl->when_needed);
6519
6520 oldequiv = second_reload_reg;
6521 }
6522 }
6523 }
6524 #endif
6525
6526 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6527 {
6528 rtx real_oldequiv = oldequiv;
6529
6530 if ((GET_CODE (oldequiv) == REG
6531 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6532 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6533 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6534 || (GET_CODE (oldequiv) == SUBREG
6535 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6536 && (REGNO (SUBREG_REG (oldequiv))
6537 >= FIRST_PSEUDO_REGISTER)
6538 && ((reg_equiv_memory_loc
6539 [REGNO (SUBREG_REG (oldequiv))] != 0)
6540 || (reg_equiv_constant
6541 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6542 || (CONSTANT_P (oldequiv)
6543 && (PREFERRED_RELOAD_CLASS (oldequiv,
6544 REGNO_REG_CLASS (REGNO (reloadreg)))
6545 == NO_REGS)))
6546 real_oldequiv = rl->in;
6547 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6548 rl->when_needed);
6549 }
6550
6551 if (flag_non_call_exceptions)
6552 copy_eh_notes (insn, get_insns ());
6553
6554 /* End this sequence. */
6555 *where = get_insns ();
6556 end_sequence ();
6557
6558 /* Update reload_override_in so that delete_address_reloads_1
6559 can see the actual register usage. */
6560 if (oldequiv_reg)
6561 reload_override_in[j] = oldequiv;
6562 }
6563
6564 /* Generate insns to for the output reload RL, which is for the insn described
6565 by CHAIN and has the number J. */
6566 static void
6567 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6568 int j)
6569 {
6570 rtx reloadreg = rl->reg_rtx;
6571 rtx insn = chain->insn;
6572 int special = 0;
6573 rtx old = rl->out;
6574 enum machine_mode mode = GET_MODE (old);
6575 rtx p;
6576
6577 if (rl->when_needed == RELOAD_OTHER)
6578 start_sequence ();
6579 else
6580 push_to_sequence (output_reload_insns[rl->opnum]);
6581
6582 /* Determine the mode to reload in.
6583 See comments above (for input reloading). */
6584
6585 if (mode == VOIDmode)
6586 {
6587 /* VOIDmode should never happen for an output. */
6588 if (asm_noperands (PATTERN (insn)) < 0)
6589 /* It's the compiler's fault. */
6590 fatal_insn ("VOIDmode on an output", insn);
6591 error_for_asm (insn, "output operand is constant in `asm'");
6592 /* Prevent crash--use something we know is valid. */
6593 mode = word_mode;
6594 old = gen_rtx_REG (mode, REGNO (reloadreg));
6595 }
6596
6597 if (GET_MODE (reloadreg) != mode)
6598 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6599
6600 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6601
6602 /* If we need two reload regs, set RELOADREG to the intermediate
6603 one, since it will be stored into OLD. We might need a secondary
6604 register only for an input reload, so check again here. */
6605
6606 if (rl->secondary_out_reload >= 0)
6607 {
6608 rtx real_old = old;
6609
6610 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6611 && reg_equiv_mem[REGNO (old)] != 0)
6612 real_old = reg_equiv_mem[REGNO (old)];
6613
6614 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6615 mode, real_old)
6616 != NO_REGS))
6617 {
6618 rtx second_reloadreg = reloadreg;
6619 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6620
6621 /* See if RELOADREG is to be used as a scratch register
6622 or as an intermediate register. */
6623 if (rl->secondary_out_icode != CODE_FOR_nothing)
6624 {
6625 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6626 (real_old, second_reloadreg, reloadreg)));
6627 special = 1;
6628 }
6629 else
6630 {
6631 /* See if we need both a scratch and intermediate reload
6632 register. */
6633
6634 int secondary_reload = rl->secondary_out_reload;
6635 enum insn_code tertiary_icode
6636 = rld[secondary_reload].secondary_out_icode;
6637
6638 if (GET_MODE (reloadreg) != mode)
6639 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6640
6641 if (tertiary_icode != CODE_FOR_nothing)
6642 {
6643 rtx third_reloadreg
6644 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6645 rtx tem;
6646
6647 /* Copy primary reload reg to secondary reload reg.
6648 (Note that these have been swapped above, then
6649 secondary reload reg to OLD using our insn.) */
6650
6651 /* If REAL_OLD is a paradoxical SUBREG, remove it
6652 and try to put the opposite SUBREG on
6653 RELOADREG. */
6654 if (GET_CODE (real_old) == SUBREG
6655 && (GET_MODE_SIZE (GET_MODE (real_old))
6656 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6657 && 0 != (tem = gen_lowpart_common
6658 (GET_MODE (SUBREG_REG (real_old)),
6659 reloadreg)))
6660 real_old = SUBREG_REG (real_old), reloadreg = tem;
6661
6662 gen_reload (reloadreg, second_reloadreg,
6663 rl->opnum, rl->when_needed);
6664 emit_insn ((GEN_FCN (tertiary_icode)
6665 (real_old, reloadreg, third_reloadreg)));
6666 special = 1;
6667 }
6668
6669 else
6670 /* Copy between the reload regs here and then to
6671 OUT later. */
6672
6673 gen_reload (reloadreg, second_reloadreg,
6674 rl->opnum, rl->when_needed);
6675 }
6676 }
6677 }
6678 #endif
6679
6680 /* Output the last reload insn. */
6681 if (! special)
6682 {
6683 rtx set;
6684
6685 /* Don't output the last reload if OLD is not the dest of
6686 INSN and is in the src and is clobbered by INSN. */
6687 if (! flag_expensive_optimizations
6688 || GET_CODE (old) != REG
6689 || !(set = single_set (insn))
6690 || rtx_equal_p (old, SET_DEST (set))
6691 || !reg_mentioned_p (old, SET_SRC (set))
6692 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6693 gen_reload (old, reloadreg, rl->opnum,
6694 rl->when_needed);
6695 }
6696
6697 /* Look at all insns we emitted, just to be safe. */
6698 for (p = get_insns (); p; p = NEXT_INSN (p))
6699 if (INSN_P (p))
6700 {
6701 rtx pat = PATTERN (p);
6702
6703 /* If this output reload doesn't come from a spill reg,
6704 clear any memory of reloaded copies of the pseudo reg.
6705 If this output reload comes from a spill reg,
6706 reg_has_output_reload will make this do nothing. */
6707 note_stores (pat, forget_old_reloads_1, NULL);
6708
6709 if (reg_mentioned_p (rl->reg_rtx, pat))
6710 {
6711 rtx set = single_set (insn);
6712 if (reload_spill_index[j] < 0
6713 && set
6714 && SET_SRC (set) == rl->reg_rtx)
6715 {
6716 int src = REGNO (SET_SRC (set));
6717
6718 reload_spill_index[j] = src;
6719 SET_HARD_REG_BIT (reg_is_output_reload, src);
6720 if (find_regno_note (insn, REG_DEAD, src))
6721 SET_HARD_REG_BIT (reg_reloaded_died, src);
6722 }
6723 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6724 {
6725 int s = rl->secondary_out_reload;
6726 set = single_set (p);
6727 /* If this reload copies only to the secondary reload
6728 register, the secondary reload does the actual
6729 store. */
6730 if (s >= 0 && set == NULL_RTX)
6731 /* We can't tell what function the secondary reload
6732 has and where the actual store to the pseudo is
6733 made; leave new_spill_reg_store alone. */
6734 ;
6735 else if (s >= 0
6736 && SET_SRC (set) == rl->reg_rtx
6737 && SET_DEST (set) == rld[s].reg_rtx)
6738 {
6739 /* Usually the next instruction will be the
6740 secondary reload insn; if we can confirm
6741 that it is, setting new_spill_reg_store to
6742 that insn will allow an extra optimization. */
6743 rtx s_reg = rld[s].reg_rtx;
6744 rtx next = NEXT_INSN (p);
6745 rld[s].out = rl->out;
6746 rld[s].out_reg = rl->out_reg;
6747 set = single_set (next);
6748 if (set && SET_SRC (set) == s_reg
6749 && ! new_spill_reg_store[REGNO (s_reg)])
6750 {
6751 SET_HARD_REG_BIT (reg_is_output_reload,
6752 REGNO (s_reg));
6753 new_spill_reg_store[REGNO (s_reg)] = next;
6754 }
6755 }
6756 else
6757 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6758 }
6759 }
6760 }
6761
6762 if (rl->when_needed == RELOAD_OTHER)
6763 {
6764 emit_insn (other_output_reload_insns[rl->opnum]);
6765 other_output_reload_insns[rl->opnum] = get_insns ();
6766 }
6767 else
6768 output_reload_insns[rl->opnum] = get_insns ();
6769
6770 if (flag_non_call_exceptions)
6771 copy_eh_notes (insn, get_insns ());
6772
6773 end_sequence ();
6774 }
6775
6776 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6777 and has the number J. */
6778 static void
6779 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
6780 {
6781 rtx insn = chain->insn;
6782 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6783 ? rl->in_reg : rl->in);
6784
6785 if (old != 0
6786 /* AUTO_INC reloads need to be handled even if inherited. We got an
6787 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6788 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6789 && ! rtx_equal_p (rl->reg_rtx, old)
6790 && rl->reg_rtx != 0)
6791 emit_input_reload_insns (chain, rld + j, old, j);
6792
6793 /* When inheriting a wider reload, we have a MEM in rl->in,
6794 e.g. inheriting a SImode output reload for
6795 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6796 if (optimize && reload_inherited[j] && rl->in
6797 && GET_CODE (rl->in) == MEM
6798 && GET_CODE (rl->in_reg) == MEM
6799 && reload_spill_index[j] >= 0
6800 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6801 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6802
6803 /* If we are reloading a register that was recently stored in with an
6804 output-reload, see if we can prove there was
6805 actually no need to store the old value in it. */
6806
6807 if (optimize
6808 && (reload_inherited[j] || reload_override_in[j])
6809 && rl->reg_rtx
6810 && GET_CODE (rl->reg_rtx) == REG
6811 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6812 #if 0
6813 /* There doesn't seem to be any reason to restrict this to pseudos
6814 and doing so loses in the case where we are copying from a
6815 register of the wrong class. */
6816 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6817 >= FIRST_PSEUDO_REGISTER)
6818 #endif
6819 /* The insn might have already some references to stackslots
6820 replaced by MEMs, while reload_out_reg still names the
6821 original pseudo. */
6822 && (dead_or_set_p (insn,
6823 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6824 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6825 rl->out_reg)))
6826 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6827 }
6828
6829 /* Do output reloading for reload RL, which is for the insn described by
6830 CHAIN and has the number J.
6831 ??? At some point we need to support handling output reloads of
6832 JUMP_INSNs or insns that set cc0. */
6833 static void
6834 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
6835 {
6836 rtx note, old;
6837 rtx insn = chain->insn;
6838 /* If this is an output reload that stores something that is
6839 not loaded in this same reload, see if we can eliminate a previous
6840 store. */
6841 rtx pseudo = rl->out_reg;
6842
6843 if (pseudo
6844 && optimize
6845 && GET_CODE (pseudo) == REG
6846 && ! rtx_equal_p (rl->in_reg, pseudo)
6847 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6848 && reg_last_reload_reg[REGNO (pseudo)])
6849 {
6850 int pseudo_no = REGNO (pseudo);
6851 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6852
6853 /* We don't need to test full validity of last_regno for
6854 inherit here; we only want to know if the store actually
6855 matches the pseudo. */
6856 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6857 && reg_reloaded_contents[last_regno] == pseudo_no
6858 && spill_reg_store[last_regno]
6859 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6860 delete_output_reload (insn, j, last_regno);
6861 }
6862
6863 old = rl->out_reg;
6864 if (old == 0
6865 || rl->reg_rtx == old
6866 || rl->reg_rtx == 0)
6867 return;
6868
6869 /* An output operand that dies right away does need a reload,
6870 but need not be copied from it. Show the new location in the
6871 REG_UNUSED note. */
6872 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6873 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6874 {
6875 XEXP (note, 0) = rl->reg_rtx;
6876 return;
6877 }
6878 /* Likewise for a SUBREG of an operand that dies. */
6879 else if (GET_CODE (old) == SUBREG
6880 && GET_CODE (SUBREG_REG (old)) == REG
6881 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6882 SUBREG_REG (old))))
6883 {
6884 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6885 rl->reg_rtx);
6886 return;
6887 }
6888 else if (GET_CODE (old) == SCRATCH)
6889 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6890 but we don't want to make an output reload. */
6891 return;
6892
6893 /* If is a JUMP_INSN, we can't support output reloads yet. */
6894 if (GET_CODE (insn) == JUMP_INSN)
6895 abort ();
6896
6897 emit_output_reload_insns (chain, rld + j, j);
6898 }
6899
6900 /* Output insns to reload values in and out of the chosen reload regs. */
6901
6902 static void
6903 emit_reload_insns (struct insn_chain *chain)
6904 {
6905 rtx insn = chain->insn;
6906
6907 int j;
6908
6909 CLEAR_HARD_REG_SET (reg_reloaded_died);
6910
6911 for (j = 0; j < reload_n_operands; j++)
6912 input_reload_insns[j] = input_address_reload_insns[j]
6913 = inpaddr_address_reload_insns[j]
6914 = output_reload_insns[j] = output_address_reload_insns[j]
6915 = outaddr_address_reload_insns[j]
6916 = other_output_reload_insns[j] = 0;
6917 other_input_address_reload_insns = 0;
6918 other_input_reload_insns = 0;
6919 operand_reload_insns = 0;
6920 other_operand_reload_insns = 0;
6921
6922 /* Dump reloads into the dump file. */
6923 if (rtl_dump_file)
6924 {
6925 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6926 debug_reload_to_stream (rtl_dump_file);
6927 }
6928
6929 /* Now output the instructions to copy the data into and out of the
6930 reload registers. Do these in the order that the reloads were reported,
6931 since reloads of base and index registers precede reloads of operands
6932 and the operands may need the base and index registers reloaded. */
6933
6934 for (j = 0; j < n_reloads; j++)
6935 {
6936 if (rld[j].reg_rtx
6937 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6938 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6939
6940 do_input_reload (chain, rld + j, j);
6941 do_output_reload (chain, rld + j, j);
6942 }
6943
6944 /* Now write all the insns we made for reloads in the order expected by
6945 the allocation functions. Prior to the insn being reloaded, we write
6946 the following reloads:
6947
6948 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6949
6950 RELOAD_OTHER reloads.
6951
6952 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6953 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6954 RELOAD_FOR_INPUT reload for the operand.
6955
6956 RELOAD_FOR_OPADDR_ADDRS reloads.
6957
6958 RELOAD_FOR_OPERAND_ADDRESS reloads.
6959
6960 After the insn being reloaded, we write the following:
6961
6962 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
6963 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
6964 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
6965 reloads for the operand. The RELOAD_OTHER output reloads are
6966 output in descending order by reload number. */
6967
6968 emit_insn_before_sameloc (other_input_address_reload_insns, insn);
6969 emit_insn_before_sameloc (other_input_reload_insns, insn);
6970
6971 for (j = 0; j < reload_n_operands; j++)
6972 {
6973 emit_insn_before_sameloc (inpaddr_address_reload_insns[j], insn);
6974 emit_insn_before_sameloc (input_address_reload_insns[j], insn);
6975 emit_insn_before_sameloc (input_reload_insns[j], insn);
6976 }
6977
6978 emit_insn_before_sameloc (other_operand_reload_insns, insn);
6979 emit_insn_before_sameloc (operand_reload_insns, insn);
6980
6981 for (j = 0; j < reload_n_operands; j++)
6982 {
6983 rtx x = emit_insn_after_sameloc (outaddr_address_reload_insns[j], insn);
6984 x = emit_insn_after_sameloc (output_address_reload_insns[j], x);
6985 x = emit_insn_after_sameloc (output_reload_insns[j], x);
6986 emit_insn_after_sameloc (other_output_reload_insns[j], x);
6987 }
6988
6989 /* For all the spill regs newly reloaded in this instruction,
6990 record what they were reloaded from, so subsequent instructions
6991 can inherit the reloads.
6992
6993 Update spill_reg_store for the reloads of this insn.
6994 Copy the elements that were updated in the loop above. */
6995
6996 for (j = 0; j < n_reloads; j++)
6997 {
6998 int r = reload_order[j];
6999 int i = reload_spill_index[r];
7000
7001 /* If this is a non-inherited input reload from a pseudo, we must
7002 clear any memory of a previous store to the same pseudo. Only do
7003 something if there will not be an output reload for the pseudo
7004 being reloaded. */
7005 if (rld[r].in_reg != 0
7006 && ! (reload_inherited[r] || reload_override_in[r]))
7007 {
7008 rtx reg = rld[r].in_reg;
7009
7010 if (GET_CODE (reg) == SUBREG)
7011 reg = SUBREG_REG (reg);
7012
7013 if (GET_CODE (reg) == REG
7014 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7015 && ! reg_has_output_reload[REGNO (reg)])
7016 {
7017 int nregno = REGNO (reg);
7018
7019 if (reg_last_reload_reg[nregno])
7020 {
7021 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7022
7023 if (reg_reloaded_contents[last_regno] == nregno)
7024 spill_reg_store[last_regno] = 0;
7025 }
7026 }
7027 }
7028
7029 /* I is nonneg if this reload used a register.
7030 If rld[r].reg_rtx is 0, this is an optional reload
7031 that we opted to ignore. */
7032
7033 if (i >= 0 && rld[r].reg_rtx != 0)
7034 {
7035 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7036 int k;
7037 int part_reaches_end = 0;
7038 int all_reaches_end = 1;
7039
7040 /* For a multi register reload, we need to check if all or part
7041 of the value lives to the end. */
7042 for (k = 0; k < nr; k++)
7043 {
7044 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7045 rld[r].when_needed))
7046 part_reaches_end = 1;
7047 else
7048 all_reaches_end = 0;
7049 }
7050
7051 /* Ignore reloads that don't reach the end of the insn in
7052 entirety. */
7053 if (all_reaches_end)
7054 {
7055 /* First, clear out memory of what used to be in this spill reg.
7056 If consecutive registers are used, clear them all. */
7057
7058 for (k = 0; k < nr; k++)
7059 {
7060 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7061 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7062 }
7063
7064 /* Maybe the spill reg contains a copy of reload_out. */
7065 if (rld[r].out != 0
7066 && (GET_CODE (rld[r].out) == REG
7067 #ifdef AUTO_INC_DEC
7068 || ! rld[r].out_reg
7069 #endif
7070 || GET_CODE (rld[r].out_reg) == REG))
7071 {
7072 rtx out = (GET_CODE (rld[r].out) == REG
7073 ? rld[r].out
7074 : rld[r].out_reg
7075 ? rld[r].out_reg
7076 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7077 int nregno = REGNO (out);
7078 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7079 : HARD_REGNO_NREGS (nregno,
7080 GET_MODE (rld[r].reg_rtx)));
7081
7082 spill_reg_store[i] = new_spill_reg_store[i];
7083 spill_reg_stored_to[i] = out;
7084 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7085
7086 /* If NREGNO is a hard register, it may occupy more than
7087 one register. If it does, say what is in the
7088 rest of the registers assuming that both registers
7089 agree on how many words the object takes. If not,
7090 invalidate the subsequent registers. */
7091
7092 if (nregno < FIRST_PSEUDO_REGISTER)
7093 for (k = 1; k < nnr; k++)
7094 reg_last_reload_reg[nregno + k]
7095 = (nr == nnr
7096 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7097 : 0);
7098
7099 /* Now do the inverse operation. */
7100 for (k = 0; k < nr; k++)
7101 {
7102 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7103 reg_reloaded_contents[i + k]
7104 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7105 ? nregno
7106 : nregno + k);
7107 reg_reloaded_insn[i + k] = insn;
7108 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7109 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7110 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7111 }
7112 }
7113
7114 /* Maybe the spill reg contains a copy of reload_in. Only do
7115 something if there will not be an output reload for
7116 the register being reloaded. */
7117 else if (rld[r].out_reg == 0
7118 && rld[r].in != 0
7119 && ((GET_CODE (rld[r].in) == REG
7120 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7121 && ! reg_has_output_reload[REGNO (rld[r].in)])
7122 || (GET_CODE (rld[r].in_reg) == REG
7123 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7124 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7125 {
7126 int nregno;
7127 int nnr;
7128 rtx in;
7129
7130 if (GET_CODE (rld[r].in) == REG
7131 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7132 in = rld[r].in;
7133 else if (GET_CODE (rld[r].in_reg) == REG)
7134 in = rld[r].in_reg;
7135 else
7136 in = XEXP (rld[r].in_reg, 0);
7137 nregno = REGNO (in);
7138
7139 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7140 : HARD_REGNO_NREGS (nregno,
7141 GET_MODE (rld[r].reg_rtx)));
7142
7143 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7144
7145 if (nregno < FIRST_PSEUDO_REGISTER)
7146 for (k = 1; k < nnr; k++)
7147 reg_last_reload_reg[nregno + k]
7148 = (nr == nnr
7149 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7150 : 0);
7151
7152 /* Unless we inherited this reload, show we haven't
7153 recently done a store.
7154 Previous stores of inherited auto_inc expressions
7155 also have to be discarded. */
7156 if (! reload_inherited[r]
7157 || (rld[r].out && ! rld[r].out_reg))
7158 spill_reg_store[i] = 0;
7159
7160 for (k = 0; k < nr; k++)
7161 {
7162 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7163 reg_reloaded_contents[i + k]
7164 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7165 ? nregno
7166 : nregno + k);
7167 reg_reloaded_insn[i + k] = insn;
7168 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7169 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7170 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7171 }
7172 }
7173 }
7174
7175 /* However, if part of the reload reaches the end, then we must
7176 invalidate the old info for the part that survives to the end. */
7177 else if (part_reaches_end)
7178 {
7179 for (k = 0; k < nr; k++)
7180 if (reload_reg_reaches_end_p (i + k,
7181 rld[r].opnum,
7182 rld[r].when_needed))
7183 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7184 }
7185 }
7186
7187 /* The following if-statement was #if 0'd in 1.34 (or before...).
7188 It's reenabled in 1.35 because supposedly nothing else
7189 deals with this problem. */
7190
7191 /* If a register gets output-reloaded from a non-spill register,
7192 that invalidates any previous reloaded copy of it.
7193 But forget_old_reloads_1 won't get to see it, because
7194 it thinks only about the original insn. So invalidate it here. */
7195 if (i < 0 && rld[r].out != 0
7196 && (GET_CODE (rld[r].out) == REG
7197 || (GET_CODE (rld[r].out) == MEM
7198 && GET_CODE (rld[r].out_reg) == REG)))
7199 {
7200 rtx out = (GET_CODE (rld[r].out) == REG
7201 ? rld[r].out : rld[r].out_reg);
7202 int nregno = REGNO (out);
7203 if (nregno >= FIRST_PSEUDO_REGISTER)
7204 {
7205 rtx src_reg, store_insn = NULL_RTX;
7206
7207 reg_last_reload_reg[nregno] = 0;
7208
7209 /* If we can find a hard register that is stored, record
7210 the storing insn so that we may delete this insn with
7211 delete_output_reload. */
7212 src_reg = rld[r].reg_rtx;
7213
7214 /* If this is an optional reload, try to find the source reg
7215 from an input reload. */
7216 if (! src_reg)
7217 {
7218 rtx set = single_set (insn);
7219 if (set && SET_DEST (set) == rld[r].out)
7220 {
7221 int k;
7222
7223 src_reg = SET_SRC (set);
7224 store_insn = insn;
7225 for (k = 0; k < n_reloads; k++)
7226 {
7227 if (rld[k].in == src_reg)
7228 {
7229 src_reg = rld[k].reg_rtx;
7230 break;
7231 }
7232 }
7233 }
7234 }
7235 else
7236 store_insn = new_spill_reg_store[REGNO (src_reg)];
7237 if (src_reg && GET_CODE (src_reg) == REG
7238 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7239 {
7240 int src_regno = REGNO (src_reg);
7241 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7242 /* The place where to find a death note varies with
7243 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7244 necessarily checked exactly in the code that moves
7245 notes, so just check both locations. */
7246 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7247 if (! note && store_insn)
7248 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7249 while (nr-- > 0)
7250 {
7251 spill_reg_store[src_regno + nr] = store_insn;
7252 spill_reg_stored_to[src_regno + nr] = out;
7253 reg_reloaded_contents[src_regno + nr] = nregno;
7254 reg_reloaded_insn[src_regno + nr] = store_insn;
7255 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7256 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7257 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7258 GET_MODE (src_reg)))
7259 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7260 src_regno + nr);
7261 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7262 if (note)
7263 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7264 else
7265 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7266 }
7267 reg_last_reload_reg[nregno] = src_reg;
7268 }
7269 }
7270 else
7271 {
7272 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7273
7274 while (num_regs-- > 0)
7275 reg_last_reload_reg[nregno + num_regs] = 0;
7276 }
7277 }
7278 }
7279 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7280 }
7281 \f
7282 /* Emit code to perform a reload from IN (which may be a reload register) to
7283 OUT (which may also be a reload register). IN or OUT is from operand
7284 OPNUM with reload type TYPE.
7285
7286 Returns first insn emitted. */
7287
7288 rtx
7289 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7290 {
7291 rtx last = get_last_insn ();
7292 rtx tem;
7293
7294 /* If IN is a paradoxical SUBREG, remove it and try to put the
7295 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7296 if (GET_CODE (in) == SUBREG
7297 && (GET_MODE_SIZE (GET_MODE (in))
7298 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7299 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7300 in = SUBREG_REG (in), out = tem;
7301 else if (GET_CODE (out) == SUBREG
7302 && (GET_MODE_SIZE (GET_MODE (out))
7303 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7304 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7305 out = SUBREG_REG (out), in = tem;
7306
7307 /* How to do this reload can get quite tricky. Normally, we are being
7308 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7309 register that didn't get a hard register. In that case we can just
7310 call emit_move_insn.
7311
7312 We can also be asked to reload a PLUS that adds a register or a MEM to
7313 another register, constant or MEM. This can occur during frame pointer
7314 elimination and while reloading addresses. This case is handled by
7315 trying to emit a single insn to perform the add. If it is not valid,
7316 we use a two insn sequence.
7317
7318 Finally, we could be called to handle an 'o' constraint by putting
7319 an address into a register. In that case, we first try to do this
7320 with a named pattern of "reload_load_address". If no such pattern
7321 exists, we just emit a SET insn and hope for the best (it will normally
7322 be valid on machines that use 'o').
7323
7324 This entire process is made complex because reload will never
7325 process the insns we generate here and so we must ensure that
7326 they will fit their constraints and also by the fact that parts of
7327 IN might be being reloaded separately and replaced with spill registers.
7328 Because of this, we are, in some sense, just guessing the right approach
7329 here. The one listed above seems to work.
7330
7331 ??? At some point, this whole thing needs to be rethought. */
7332
7333 if (GET_CODE (in) == PLUS
7334 && (GET_CODE (XEXP (in, 0)) == REG
7335 || GET_CODE (XEXP (in, 0)) == SUBREG
7336 || GET_CODE (XEXP (in, 0)) == MEM)
7337 && (GET_CODE (XEXP (in, 1)) == REG
7338 || GET_CODE (XEXP (in, 1)) == SUBREG
7339 || CONSTANT_P (XEXP (in, 1))
7340 || GET_CODE (XEXP (in, 1)) == MEM))
7341 {
7342 /* We need to compute the sum of a register or a MEM and another
7343 register, constant, or MEM, and put it into the reload
7344 register. The best possible way of doing this is if the machine
7345 has a three-operand ADD insn that accepts the required operands.
7346
7347 The simplest approach is to try to generate such an insn and see if it
7348 is recognized and matches its constraints. If so, it can be used.
7349
7350 It might be better not to actually emit the insn unless it is valid,
7351 but we need to pass the insn as an operand to `recog' and
7352 `extract_insn' and it is simpler to emit and then delete the insn if
7353 not valid than to dummy things up. */
7354
7355 rtx op0, op1, tem, insn;
7356 int code;
7357
7358 op0 = find_replacement (&XEXP (in, 0));
7359 op1 = find_replacement (&XEXP (in, 1));
7360
7361 /* Since constraint checking is strict, commutativity won't be
7362 checked, so we need to do that here to avoid spurious failure
7363 if the add instruction is two-address and the second operand
7364 of the add is the same as the reload reg, which is frequently
7365 the case. If the insn would be A = B + A, rearrange it so
7366 it will be A = A + B as constrain_operands expects. */
7367
7368 if (GET_CODE (XEXP (in, 1)) == REG
7369 && REGNO (out) == REGNO (XEXP (in, 1)))
7370 tem = op0, op0 = op1, op1 = tem;
7371
7372 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7373 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7374
7375 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7376 code = recog_memoized (insn);
7377
7378 if (code >= 0)
7379 {
7380 extract_insn (insn);
7381 /* We want constrain operands to treat this insn strictly in
7382 its validity determination, i.e., the way it would after reload
7383 has completed. */
7384 if (constrain_operands (1))
7385 return insn;
7386 }
7387
7388 delete_insns_since (last);
7389
7390 /* If that failed, we must use a conservative two-insn sequence.
7391
7392 Use a move to copy one operand into the reload register. Prefer
7393 to reload a constant, MEM or pseudo since the move patterns can
7394 handle an arbitrary operand. If OP1 is not a constant, MEM or
7395 pseudo and OP1 is not a valid operand for an add instruction, then
7396 reload OP1.
7397
7398 After reloading one of the operands into the reload register, add
7399 the reload register to the output register.
7400
7401 If there is another way to do this for a specific machine, a
7402 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7403 we emit below. */
7404
7405 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7406
7407 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7408 || (GET_CODE (op1) == REG
7409 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7410 || (code != CODE_FOR_nothing
7411 && ! ((*insn_data[code].operand[2].predicate)
7412 (op1, insn_data[code].operand[2].mode))))
7413 tem = op0, op0 = op1, op1 = tem;
7414
7415 gen_reload (out, op0, opnum, type);
7416
7417 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7418 This fixes a problem on the 32K where the stack pointer cannot
7419 be used as an operand of an add insn. */
7420
7421 if (rtx_equal_p (op0, op1))
7422 op1 = out;
7423
7424 insn = emit_insn (gen_add2_insn (out, op1));
7425
7426 /* If that failed, copy the address register to the reload register.
7427 Then add the constant to the reload register. */
7428
7429 code = recog_memoized (insn);
7430
7431 if (code >= 0)
7432 {
7433 extract_insn (insn);
7434 /* We want constrain operands to treat this insn strictly in
7435 its validity determination, i.e., the way it would after reload
7436 has completed. */
7437 if (constrain_operands (1))
7438 {
7439 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7440 REG_NOTES (insn)
7441 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7442 return insn;
7443 }
7444 }
7445
7446 delete_insns_since (last);
7447
7448 gen_reload (out, op1, opnum, type);
7449 insn = emit_insn (gen_add2_insn (out, op0));
7450 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7451 }
7452
7453 #ifdef SECONDARY_MEMORY_NEEDED
7454 /* If we need a memory location to do the move, do it that way. */
7455 else if ((GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
7456 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7457 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
7458 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7459 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7460 REGNO_REG_CLASS (reg_or_subregno (out)),
7461 GET_MODE (out)))
7462 {
7463 /* Get the memory to use and rewrite both registers to its mode. */
7464 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7465
7466 if (GET_MODE (loc) != GET_MODE (out))
7467 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7468
7469 if (GET_MODE (loc) != GET_MODE (in))
7470 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7471
7472 gen_reload (loc, in, opnum, type);
7473 gen_reload (out, loc, opnum, type);
7474 }
7475 #endif
7476
7477 /* If IN is a simple operand, use gen_move_insn. */
7478 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7479 emit_insn (gen_move_insn (out, in));
7480
7481 #ifdef HAVE_reload_load_address
7482 else if (HAVE_reload_load_address)
7483 emit_insn (gen_reload_load_address (out, in));
7484 #endif
7485
7486 /* Otherwise, just write (set OUT IN) and hope for the best. */
7487 else
7488 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7489
7490 /* Return the first insn emitted.
7491 We can not just return get_last_insn, because there may have
7492 been multiple instructions emitted. Also note that gen_move_insn may
7493 emit more than one insn itself, so we can not assume that there is one
7494 insn emitted per emit_insn_before call. */
7495
7496 return last ? NEXT_INSN (last) : get_insns ();
7497 }
7498 \f
7499 /* Delete a previously made output-reload whose result we now believe
7500 is not needed. First we double-check.
7501
7502 INSN is the insn now being processed.
7503 LAST_RELOAD_REG is the hard register number for which we want to delete
7504 the last output reload.
7505 J is the reload-number that originally used REG. The caller has made
7506 certain that reload J doesn't use REG any longer for input. */
7507
7508 static void
7509 delete_output_reload (rtx insn, int j, int last_reload_reg)
7510 {
7511 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7512 rtx reg = spill_reg_stored_to[last_reload_reg];
7513 int k;
7514 int n_occurrences;
7515 int n_inherited = 0;
7516 rtx i1;
7517 rtx substed;
7518
7519 /* It is possible that this reload has been only used to set another reload
7520 we eliminated earlier and thus deleted this instruction too. */
7521 if (INSN_DELETED_P (output_reload_insn))
7522 return;
7523
7524 /* Get the raw pseudo-register referred to. */
7525
7526 while (GET_CODE (reg) == SUBREG)
7527 reg = SUBREG_REG (reg);
7528 substed = reg_equiv_memory_loc[REGNO (reg)];
7529
7530 /* This is unsafe if the operand occurs more often in the current
7531 insn than it is inherited. */
7532 for (k = n_reloads - 1; k >= 0; k--)
7533 {
7534 rtx reg2 = rld[k].in;
7535 if (! reg2)
7536 continue;
7537 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7538 reg2 = rld[k].in_reg;
7539 #ifdef AUTO_INC_DEC
7540 if (rld[k].out && ! rld[k].out_reg)
7541 reg2 = XEXP (rld[k].in_reg, 0);
7542 #endif
7543 while (GET_CODE (reg2) == SUBREG)
7544 reg2 = SUBREG_REG (reg2);
7545 if (rtx_equal_p (reg2, reg))
7546 {
7547 if (reload_inherited[k] || reload_override_in[k] || k == j)
7548 {
7549 n_inherited++;
7550 reg2 = rld[k].out_reg;
7551 if (! reg2)
7552 continue;
7553 while (GET_CODE (reg2) == SUBREG)
7554 reg2 = XEXP (reg2, 0);
7555 if (rtx_equal_p (reg2, reg))
7556 n_inherited++;
7557 }
7558 else
7559 return;
7560 }
7561 }
7562 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7563 if (substed)
7564 n_occurrences += count_occurrences (PATTERN (insn),
7565 eliminate_regs (substed, 0,
7566 NULL_RTX), 0);
7567 if (n_occurrences > n_inherited)
7568 return;
7569
7570 /* If the pseudo-reg we are reloading is no longer referenced
7571 anywhere between the store into it and here,
7572 and no jumps or labels intervene, then the value can get
7573 here through the reload reg alone.
7574 Otherwise, give up--return. */
7575 for (i1 = NEXT_INSN (output_reload_insn);
7576 i1 != insn; i1 = NEXT_INSN (i1))
7577 {
7578 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7579 return;
7580 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7581 && reg_mentioned_p (reg, PATTERN (i1)))
7582 {
7583 /* If this is USE in front of INSN, we only have to check that
7584 there are no more references than accounted for by inheritance. */
7585 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7586 {
7587 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7588 i1 = NEXT_INSN (i1);
7589 }
7590 if (n_occurrences <= n_inherited && i1 == insn)
7591 break;
7592 return;
7593 }
7594 }
7595
7596 /* We will be deleting the insn. Remove the spill reg information. */
7597 for (k = HARD_REGNO_NREGS (last_reload_reg, GET_MODE (reg)); k-- > 0; )
7598 {
7599 spill_reg_store[last_reload_reg + k] = 0;
7600 spill_reg_stored_to[last_reload_reg + k] = 0;
7601 }
7602
7603 /* The caller has already checked that REG dies or is set in INSN.
7604 It has also checked that we are optimizing, and thus some
7605 inaccuracies in the debugging information are acceptable.
7606 So we could just delete output_reload_insn. But in some cases
7607 we can improve the debugging information without sacrificing
7608 optimization - maybe even improving the code: See if the pseudo
7609 reg has been completely replaced with reload regs. If so, delete
7610 the store insn and forget we had a stack slot for the pseudo. */
7611 if (rld[j].out != rld[j].in
7612 && REG_N_DEATHS (REGNO (reg)) == 1
7613 && REG_N_SETS (REGNO (reg)) == 1
7614 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7615 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7616 {
7617 rtx i2;
7618
7619 /* We know that it was used only between here and the beginning of
7620 the current basic block. (We also know that the last use before
7621 INSN was the output reload we are thinking of deleting, but never
7622 mind that.) Search that range; see if any ref remains. */
7623 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7624 {
7625 rtx set = single_set (i2);
7626
7627 /* Uses which just store in the pseudo don't count,
7628 since if they are the only uses, they are dead. */
7629 if (set != 0 && SET_DEST (set) == reg)
7630 continue;
7631 if (GET_CODE (i2) == CODE_LABEL
7632 || GET_CODE (i2) == JUMP_INSN)
7633 break;
7634 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7635 && reg_mentioned_p (reg, PATTERN (i2)))
7636 {
7637 /* Some other ref remains; just delete the output reload we
7638 know to be dead. */
7639 delete_address_reloads (output_reload_insn, insn);
7640 delete_insn (output_reload_insn);
7641 return;
7642 }
7643 }
7644
7645 /* Delete the now-dead stores into this pseudo. Note that this
7646 loop also takes care of deleting output_reload_insn. */
7647 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7648 {
7649 rtx set = single_set (i2);
7650
7651 if (set != 0 && SET_DEST (set) == reg)
7652 {
7653 delete_address_reloads (i2, insn);
7654 delete_insn (i2);
7655 }
7656 if (GET_CODE (i2) == CODE_LABEL
7657 || GET_CODE (i2) == JUMP_INSN)
7658 break;
7659 }
7660
7661 /* For the debugging info, say the pseudo lives in this reload reg. */
7662 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7663 alter_reg (REGNO (reg), -1);
7664 }
7665 else
7666 {
7667 delete_address_reloads (output_reload_insn, insn);
7668 delete_insn (output_reload_insn);
7669 }
7670 }
7671
7672 /* We are going to delete DEAD_INSN. Recursively delete loads of
7673 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7674 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7675 static void
7676 delete_address_reloads (rtx dead_insn, rtx current_insn)
7677 {
7678 rtx set = single_set (dead_insn);
7679 rtx set2, dst, prev, next;
7680 if (set)
7681 {
7682 rtx dst = SET_DEST (set);
7683 if (GET_CODE (dst) == MEM)
7684 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7685 }
7686 /* If we deleted the store from a reloaded post_{in,de}c expression,
7687 we can delete the matching adds. */
7688 prev = PREV_INSN (dead_insn);
7689 next = NEXT_INSN (dead_insn);
7690 if (! prev || ! next)
7691 return;
7692 set = single_set (next);
7693 set2 = single_set (prev);
7694 if (! set || ! set2
7695 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7696 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7697 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7698 return;
7699 dst = SET_DEST (set);
7700 if (! rtx_equal_p (dst, SET_DEST (set2))
7701 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7702 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7703 || (INTVAL (XEXP (SET_SRC (set), 1))
7704 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7705 return;
7706 delete_related_insns (prev);
7707 delete_related_insns (next);
7708 }
7709
7710 /* Subfunction of delete_address_reloads: process registers found in X. */
7711 static void
7712 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
7713 {
7714 rtx prev, set, dst, i2;
7715 int i, j;
7716 enum rtx_code code = GET_CODE (x);
7717
7718 if (code != REG)
7719 {
7720 const char *fmt = GET_RTX_FORMAT (code);
7721 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7722 {
7723 if (fmt[i] == 'e')
7724 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7725 else if (fmt[i] == 'E')
7726 {
7727 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7728 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7729 current_insn);
7730 }
7731 }
7732 return;
7733 }
7734
7735 if (spill_reg_order[REGNO (x)] < 0)
7736 return;
7737
7738 /* Scan backwards for the insn that sets x. This might be a way back due
7739 to inheritance. */
7740 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7741 {
7742 code = GET_CODE (prev);
7743 if (code == CODE_LABEL || code == JUMP_INSN)
7744 return;
7745 if (GET_RTX_CLASS (code) != 'i')
7746 continue;
7747 if (reg_set_p (x, PATTERN (prev)))
7748 break;
7749 if (reg_referenced_p (x, PATTERN (prev)))
7750 return;
7751 }
7752 if (! prev || INSN_UID (prev) < reload_first_uid)
7753 return;
7754 /* Check that PREV only sets the reload register. */
7755 set = single_set (prev);
7756 if (! set)
7757 return;
7758 dst = SET_DEST (set);
7759 if (GET_CODE (dst) != REG
7760 || ! rtx_equal_p (dst, x))
7761 return;
7762 if (! reg_set_p (dst, PATTERN (dead_insn)))
7763 {
7764 /* Check if DST was used in a later insn -
7765 it might have been inherited. */
7766 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7767 {
7768 if (GET_CODE (i2) == CODE_LABEL)
7769 break;
7770 if (! INSN_P (i2))
7771 continue;
7772 if (reg_referenced_p (dst, PATTERN (i2)))
7773 {
7774 /* If there is a reference to the register in the current insn,
7775 it might be loaded in a non-inherited reload. If no other
7776 reload uses it, that means the register is set before
7777 referenced. */
7778 if (i2 == current_insn)
7779 {
7780 for (j = n_reloads - 1; j >= 0; j--)
7781 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7782 || reload_override_in[j] == dst)
7783 return;
7784 for (j = n_reloads - 1; j >= 0; j--)
7785 if (rld[j].in && rld[j].reg_rtx == dst)
7786 break;
7787 if (j >= 0)
7788 break;
7789 }
7790 return;
7791 }
7792 if (GET_CODE (i2) == JUMP_INSN)
7793 break;
7794 /* If DST is still live at CURRENT_INSN, check if it is used for
7795 any reload. Note that even if CURRENT_INSN sets DST, we still
7796 have to check the reloads. */
7797 if (i2 == current_insn)
7798 {
7799 for (j = n_reloads - 1; j >= 0; j--)
7800 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7801 || reload_override_in[j] == dst)
7802 return;
7803 /* ??? We can't finish the loop here, because dst might be
7804 allocated to a pseudo in this block if no reload in this
7805 block needs any of the classes containing DST - see
7806 spill_hard_reg. There is no easy way to tell this, so we
7807 have to scan till the end of the basic block. */
7808 }
7809 if (reg_set_p (dst, PATTERN (i2)))
7810 break;
7811 }
7812 }
7813 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7814 reg_reloaded_contents[REGNO (dst)] = -1;
7815 delete_insn (prev);
7816 }
7817 \f
7818 /* Output reload-insns to reload VALUE into RELOADREG.
7819 VALUE is an autoincrement or autodecrement RTX whose operand
7820 is a register or memory location;
7821 so reloading involves incrementing that location.
7822 IN is either identical to VALUE, or some cheaper place to reload from.
7823
7824 INC_AMOUNT is the number to increment or decrement by (always positive).
7825 This cannot be deduced from VALUE.
7826
7827 Return the instruction that stores into RELOADREG. */
7828
7829 static rtx
7830 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
7831 {
7832 /* REG or MEM to be copied and incremented. */
7833 rtx incloc = XEXP (value, 0);
7834 /* Nonzero if increment after copying. */
7835 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7836 rtx last;
7837 rtx inc;
7838 rtx add_insn;
7839 int code;
7840 rtx store;
7841 rtx real_in = in == value ? XEXP (in, 0) : in;
7842
7843 /* No hard register is equivalent to this register after
7844 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
7845 we could inc/dec that register as well (maybe even using it for
7846 the source), but I'm not sure it's worth worrying about. */
7847 if (GET_CODE (incloc) == REG)
7848 reg_last_reload_reg[REGNO (incloc)] = 0;
7849
7850 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7851 inc_amount = -inc_amount;
7852
7853 inc = GEN_INT (inc_amount);
7854
7855 /* If this is post-increment, first copy the location to the reload reg. */
7856 if (post && real_in != reloadreg)
7857 emit_insn (gen_move_insn (reloadreg, real_in));
7858
7859 if (in == value)
7860 {
7861 /* See if we can directly increment INCLOC. Use a method similar to
7862 that in gen_reload. */
7863
7864 last = get_last_insn ();
7865 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7866 gen_rtx_PLUS (GET_MODE (incloc),
7867 incloc, inc)));
7868
7869 code = recog_memoized (add_insn);
7870 if (code >= 0)
7871 {
7872 extract_insn (add_insn);
7873 if (constrain_operands (1))
7874 {
7875 /* If this is a pre-increment and we have incremented the value
7876 where it lives, copy the incremented value to RELOADREG to
7877 be used as an address. */
7878
7879 if (! post)
7880 emit_insn (gen_move_insn (reloadreg, incloc));
7881
7882 return add_insn;
7883 }
7884 }
7885 delete_insns_since (last);
7886 }
7887
7888 /* If couldn't do the increment directly, must increment in RELOADREG.
7889 The way we do this depends on whether this is pre- or post-increment.
7890 For pre-increment, copy INCLOC to the reload register, increment it
7891 there, then save back. */
7892
7893 if (! post)
7894 {
7895 if (in != reloadreg)
7896 emit_insn (gen_move_insn (reloadreg, real_in));
7897 emit_insn (gen_add2_insn (reloadreg, inc));
7898 store = emit_insn (gen_move_insn (incloc, reloadreg));
7899 }
7900 else
7901 {
7902 /* Postincrement.
7903 Because this might be a jump insn or a compare, and because RELOADREG
7904 may not be available after the insn in an input reload, we must do
7905 the incrementation before the insn being reloaded for.
7906
7907 We have already copied IN to RELOADREG. Increment the copy in
7908 RELOADREG, save that back, then decrement RELOADREG so it has
7909 the original value. */
7910
7911 emit_insn (gen_add2_insn (reloadreg, inc));
7912 store = emit_insn (gen_move_insn (incloc, reloadreg));
7913 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7914 }
7915
7916 return store;
7917 }
7918 \f
7919 #ifdef AUTO_INC_DEC
7920 static void
7921 add_auto_inc_notes (rtx insn, rtx x)
7922 {
7923 enum rtx_code code = GET_CODE (x);
7924 const char *fmt;
7925 int i, j;
7926
7927 if (code == MEM && auto_inc_p (XEXP (x, 0)))
7928 {
7929 REG_NOTES (insn)
7930 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
7931 return;
7932 }
7933
7934 /* Scan all the operand sub-expressions. */
7935 fmt = GET_RTX_FORMAT (code);
7936 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7937 {
7938 if (fmt[i] == 'e')
7939 add_auto_inc_notes (insn, XEXP (x, i));
7940 else if (fmt[i] == 'E')
7941 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7942 add_auto_inc_notes (insn, XVECEXP (x, i, j));
7943 }
7944 }
7945 #endif
7946
7947 /* Copy EH notes from an insn to its reloads. */
7948 static void
7949 copy_eh_notes (rtx insn, rtx x)
7950 {
7951 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
7952 if (eh_note)
7953 {
7954 for (; x != 0; x = NEXT_INSN (x))
7955 {
7956 if (may_trap_p (PATTERN (x)))
7957 REG_NOTES (x)
7958 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
7959 REG_NOTES (x));
7960 }
7961 }
7962 }
7963
7964 /* This is used by reload pass, that does emit some instructions after
7965 abnormal calls moving basic block end, but in fact it wants to emit
7966 them on the edge. Looks for abnormal call edges, find backward the
7967 proper call and fix the damage.
7968
7969 Similar handle instructions throwing exceptions internally. */
7970 void
7971 fixup_abnormal_edges (void)
7972 {
7973 bool inserted = false;
7974 basic_block bb;
7975
7976 FOR_EACH_BB (bb)
7977 {
7978 edge e;
7979
7980 /* Look for cases we are interested in - calls or instructions causing
7981 exceptions. */
7982 for (e = bb->succ; e; e = e->succ_next)
7983 {
7984 if (e->flags & EDGE_ABNORMAL_CALL)
7985 break;
7986 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
7987 == (EDGE_ABNORMAL | EDGE_EH))
7988 break;
7989 }
7990 if (e && GET_CODE (BB_END (bb)) != CALL_INSN
7991 && !can_throw_internal (BB_END (bb)))
7992 {
7993 rtx insn = BB_END (bb), stop = NEXT_INSN (BB_END (bb));
7994 rtx next;
7995 for (e = bb->succ; e; e = e->succ_next)
7996 if (e->flags & EDGE_FALLTHRU)
7997 break;
7998 /* Get past the new insns generated. Allow notes, as the insns may
7999 be already deleted. */
8000 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
8001 && !can_throw_internal (insn)
8002 && insn != BB_HEAD (bb))
8003 insn = PREV_INSN (insn);
8004 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
8005 abort ();
8006 BB_END (bb) = insn;
8007 inserted = true;
8008 insn = NEXT_INSN (insn);
8009 while (insn && insn != stop)
8010 {
8011 next = NEXT_INSN (insn);
8012 if (INSN_P (insn))
8013 {
8014 delete_insn (insn);
8015
8016 /* Sometimes there's still the return value USE.
8017 If it's placed after a trapping call (i.e. that
8018 call is the last insn anyway), we have no fallthru
8019 edge. Simply delete this use and don't try to insert
8020 on the non-existent edge. */
8021 if (GET_CODE (PATTERN (insn)) != USE)
8022 {
8023 /* We're not deleting it, we're moving it. */
8024 INSN_DELETED_P (insn) = 0;
8025 PREV_INSN (insn) = NULL_RTX;
8026 NEXT_INSN (insn) = NULL_RTX;
8027
8028 insert_insn_on_edge (insn, e);
8029 }
8030 }
8031 insn = next;
8032 }
8033 }
8034 }
8035 /* We've possibly turned single trapping insn into multiple ones. */
8036 if (flag_non_call_exceptions)
8037 {
8038 sbitmap blocks;
8039 blocks = sbitmap_alloc (last_basic_block);
8040 sbitmap_ones (blocks);
8041 find_many_sub_basic_blocks (blocks);
8042 }
8043 if (inserted)
8044 commit_edge_insertions ();
8045 }
This page took 0.407079 seconds and 4 git commands to generate.