]> gcc.gnu.org Git - gcc.git/blob - gcc/reload.c
reload.c (find_reloads): Do not use the mode specified in the insn pattern as reload...
[gcc.git] / gcc / reload.c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57 NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
72
73 Using a reload register for several reloads in one insn:
74
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
78
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
82
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
86
87 #define REG_OK_STRICT
88
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tm_p.h"
95 #include "insn-config.h"
96 #include "expr.h"
97 #include "optabs.h"
98 #include "recog.h"
99 #include "reload.h"
100 #include "regs.h"
101 #include "hard-reg-set.h"
102 #include "flags.h"
103 #include "real.h"
104 #include "output.h"
105 #include "function.h"
106 #include "toplev.h"
107
108 #ifndef REGISTER_MOVE_COST
109 #define REGISTER_MOVE_COST(m, x, y) 2
110 #endif
111
112 #ifndef REGNO_MODE_OK_FOR_BASE_P
113 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
114 #endif
115
116 #ifndef REG_MODE_OK_FOR_BASE_P
117 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
118 #endif
119 \f
120 /* All reloads of the current insn are recorded here. See reload.h for
121 comments. */
122 int n_reloads;
123 struct reload rld[MAX_RELOADS];
124
125 /* All the "earlyclobber" operands of the current insn
126 are recorded here. */
127 int n_earlyclobbers;
128 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
129
130 int reload_n_operands;
131
132 /* Replacing reloads.
133
134 If `replace_reloads' is nonzero, then as each reload is recorded
135 an entry is made for it in the table `replacements'.
136 Then later `subst_reloads' can look through that table and
137 perform all the replacements needed. */
138
139 /* Nonzero means record the places to replace. */
140 static int replace_reloads;
141
142 /* Each replacement is recorded with a structure like this. */
143 struct replacement
144 {
145 rtx *where; /* Location to store in */
146 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
147 a SUBREG; 0 otherwise. */
148 int what; /* which reload this is for */
149 enum machine_mode mode; /* mode it must have */
150 };
151
152 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
153
154 /* Number of replacements currently recorded. */
155 static int n_replacements;
156
157 /* Used to track what is modified by an operand. */
158 struct decomposition
159 {
160 int reg_flag; /* Nonzero if referencing a register. */
161 int safe; /* Nonzero if this can't conflict with anything. */
162 rtx base; /* Base address for MEM. */
163 HOST_WIDE_INT start; /* Starting offset or register number. */
164 HOST_WIDE_INT end; /* Ending offset or register number. */
165 };
166
167 #ifdef SECONDARY_MEMORY_NEEDED
168
169 /* Save MEMs needed to copy from one class of registers to another. One MEM
170 is used per mode, but normally only one or two modes are ever used.
171
172 We keep two versions, before and after register elimination. The one
173 after register elimination is record separately for each operand. This
174 is done in case the address is not valid to be sure that we separately
175 reload each. */
176
177 static rtx secondary_memlocs[NUM_MACHINE_MODES];
178 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
179 #endif
180
181 /* The instruction we are doing reloads for;
182 so we can test whether a register dies in it. */
183 static rtx this_insn;
184
185 /* Nonzero if this instruction is a user-specified asm with operands. */
186 static int this_insn_is_asm;
187
188 /* If hard_regs_live_known is nonzero,
189 we can tell which hard regs are currently live,
190 at least enough to succeed in choosing dummy reloads. */
191 static int hard_regs_live_known;
192
193 /* Indexed by hard reg number,
194 element is nonnegative if hard reg has been spilled.
195 This vector is passed to `find_reloads' as an argument
196 and is not changed here. */
197 static short *static_reload_reg_p;
198
199 /* Set to 1 in subst_reg_equivs if it changes anything. */
200 static int subst_reg_equivs_changed;
201
202 /* On return from push_reload, holds the reload-number for the OUT
203 operand, which can be different for that from the input operand. */
204 static int output_reloadnum;
205
206 /* Compare two RTX's. */
207 #define MATCHES(x, y) \
208 (x == y || (x != 0 && (GET_CODE (x) == REG \
209 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
210 : rtx_equal_p (x, y) && ! side_effects_p (x))))
211
212 /* Indicates if two reloads purposes are for similar enough things that we
213 can merge their reloads. */
214 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
215 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
216 || ((when1) == (when2) && (op1) == (op2)) \
217 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
218 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
219 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
220 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
221 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
222
223 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
224 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
225 ((when1) != (when2) \
226 || ! ((op1) == (op2) \
227 || (when1) == RELOAD_FOR_INPUT \
228 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
229 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
230
231 /* If we are going to reload an address, compute the reload type to
232 use. */
233 #define ADDR_TYPE(type) \
234 ((type) == RELOAD_FOR_INPUT_ADDRESS \
235 ? RELOAD_FOR_INPADDR_ADDRESS \
236 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
237 ? RELOAD_FOR_OUTADDR_ADDRESS \
238 : (type)))
239
240 #ifdef HAVE_SECONDARY_RELOADS
241 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
242 enum machine_mode, enum reload_type,
243 enum insn_code *));
244 #endif
245 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int,
246 unsigned int));
247 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode, int));
248 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
249 static void dup_replacements PARAMS ((rtx *, rtx *));
250 static void combine_reloads PARAMS ((void));
251 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
252 enum reload_type, int, int));
253 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
254 enum machine_mode, enum machine_mode,
255 enum reg_class, int, int));
256 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
257 static struct decomposition decompose PARAMS ((rtx));
258 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
259 static int alternative_allows_memconst PARAMS ((const char *, int));
260 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
261 int, rtx, int *));
262 static rtx make_memloc PARAMS ((rtx, int));
263 static int maybe_memory_address_p PARAMS ((enum machine_mode, rtx, rtx *));
264 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
265 int, enum reload_type, int, rtx));
266 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
267 static rtx subst_indexed_address PARAMS ((rtx));
268 static void update_auto_inc_notes PARAMS ((rtx, int, int));
269 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
270 int, enum reload_type,int, rtx));
271 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
272 enum machine_mode, int,
273 enum reload_type, int));
274 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int,
275 enum reload_type, int, rtx));
276 static void copy_replacements_1 PARAMS ((rtx *, rtx *, int));
277 static int find_inc_amount PARAMS ((rtx, rtx));
278 \f
279 #ifdef HAVE_SECONDARY_RELOADS
280
281 /* Determine if any secondary reloads are needed for loading (if IN_P is
282 nonzero) or storing (if IN_P is zero) X to or from a reload register of
283 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
284 are needed, push them.
285
286 Return the reload number of the secondary reload we made, or -1 if
287 we didn't need one. *PICODE is set to the insn_code to use if we do
288 need a secondary reload. */
289
290 static int
291 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
292 type, picode)
293 int in_p;
294 rtx x;
295 int opnum;
296 int optional;
297 enum reg_class reload_class;
298 enum machine_mode reload_mode;
299 enum reload_type type;
300 enum insn_code *picode;
301 {
302 enum reg_class class = NO_REGS;
303 enum machine_mode mode = reload_mode;
304 enum insn_code icode = CODE_FOR_nothing;
305 enum reg_class t_class = NO_REGS;
306 enum machine_mode t_mode = VOIDmode;
307 enum insn_code t_icode = CODE_FOR_nothing;
308 enum reload_type secondary_type;
309 int s_reload, t_reload = -1;
310
311 if (type == RELOAD_FOR_INPUT_ADDRESS
312 || type == RELOAD_FOR_OUTPUT_ADDRESS
313 || type == RELOAD_FOR_INPADDR_ADDRESS
314 || type == RELOAD_FOR_OUTADDR_ADDRESS)
315 secondary_type = type;
316 else
317 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
318
319 *picode = CODE_FOR_nothing;
320
321 /* If X is a paradoxical SUBREG, use the inner value to determine both the
322 mode and object being reloaded. */
323 if (GET_CODE (x) == SUBREG
324 && (GET_MODE_SIZE (GET_MODE (x))
325 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
326 {
327 x = SUBREG_REG (x);
328 reload_mode = GET_MODE (x);
329 }
330
331 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
332 is still a pseudo-register by now, it *must* have an equivalent MEM
333 but we don't want to assume that), use that equivalent when seeing if
334 a secondary reload is needed since whether or not a reload is needed
335 might be sensitive to the form of the MEM. */
336
337 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
338 && reg_equiv_mem[REGNO (x)] != 0)
339 x = reg_equiv_mem[REGNO (x)];
340
341 #ifdef SECONDARY_INPUT_RELOAD_CLASS
342 if (in_p)
343 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
344 #endif
345
346 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
347 if (! in_p)
348 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
349 #endif
350
351 /* If we don't need any secondary registers, done. */
352 if (class == NO_REGS)
353 return -1;
354
355 /* Get a possible insn to use. If the predicate doesn't accept X, don't
356 use the insn. */
357
358 icode = (in_p ? reload_in_optab[(int) reload_mode]
359 : reload_out_optab[(int) reload_mode]);
360
361 if (icode != CODE_FOR_nothing
362 && insn_data[(int) icode].operand[in_p].predicate
363 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
364 icode = CODE_FOR_nothing;
365
366 /* If we will be using an insn, see if it can directly handle the reload
367 register we will be using. If it can, the secondary reload is for a
368 scratch register. If it can't, we will use the secondary reload for
369 an intermediate register and require a tertiary reload for the scratch
370 register. */
371
372 if (icode != CODE_FOR_nothing)
373 {
374 /* If IN_P is nonzero, the reload register will be the output in
375 operand 0. If IN_P is zero, the reload register will be the input
376 in operand 1. Outputs should have an initial "=", which we must
377 skip. */
378
379 enum reg_class insn_class;
380
381 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
382 insn_class = ALL_REGS;
383 else
384 {
385 const char *insn_constraint
386 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
387 char insn_letter = *insn_constraint;
388 insn_class
389 = (insn_letter == 'r' ? GENERAL_REGS
390 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
391 insn_constraint));
392
393 if (insn_class == NO_REGS)
394 abort ();
395 if (in_p
396 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
397 abort ();
398 }
399
400 /* The scratch register's constraint must start with "=&". */
401 if (insn_data[(int) icode].operand[2].constraint[0] != '='
402 || insn_data[(int) icode].operand[2].constraint[1] != '&')
403 abort ();
404
405 if (reg_class_subset_p (reload_class, insn_class))
406 mode = insn_data[(int) icode].operand[2].mode;
407 else
408 {
409 const char *t_constraint
410 = &insn_data[(int) icode].operand[2].constraint[2];
411 char t_letter = *t_constraint;
412 class = insn_class;
413 t_mode = insn_data[(int) icode].operand[2].mode;
414 t_class = (t_letter == 'r' ? GENERAL_REGS
415 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
416 t_constraint));
417 t_icode = icode;
418 icode = CODE_FOR_nothing;
419 }
420 }
421
422 /* This case isn't valid, so fail. Reload is allowed to use the same
423 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
424 in the case of a secondary register, we actually need two different
425 registers for correct code. We fail here to prevent the possibility of
426 silently generating incorrect code later.
427
428 The convention is that secondary input reloads are valid only if the
429 secondary_class is different from class. If you have such a case, you
430 can not use secondary reloads, you must work around the problem some
431 other way.
432
433 Allow this when a reload_in/out pattern is being used. I.e. assume
434 that the generated code handles this case. */
435
436 if (in_p && class == reload_class && icode == CODE_FOR_nothing
437 && t_icode == CODE_FOR_nothing)
438 abort ();
439
440 /* If we need a tertiary reload, see if we have one we can reuse or else
441 make a new one. */
442
443 if (t_class != NO_REGS)
444 {
445 for (t_reload = 0; t_reload < n_reloads; t_reload++)
446 if (rld[t_reload].secondary_p
447 && (reg_class_subset_p (t_class, rld[t_reload].class)
448 || reg_class_subset_p (rld[t_reload].class, t_class))
449 && ((in_p && rld[t_reload].inmode == t_mode)
450 || (! in_p && rld[t_reload].outmode == t_mode))
451 && ((in_p && (rld[t_reload].secondary_in_icode
452 == CODE_FOR_nothing))
453 || (! in_p &&(rld[t_reload].secondary_out_icode
454 == CODE_FOR_nothing)))
455 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
456 && MERGABLE_RELOADS (secondary_type,
457 rld[t_reload].when_needed,
458 opnum, rld[t_reload].opnum))
459 {
460 if (in_p)
461 rld[t_reload].inmode = t_mode;
462 if (! in_p)
463 rld[t_reload].outmode = t_mode;
464
465 if (reg_class_subset_p (t_class, rld[t_reload].class))
466 rld[t_reload].class = t_class;
467
468 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
469 rld[t_reload].optional &= optional;
470 rld[t_reload].secondary_p = 1;
471 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
472 opnum, rld[t_reload].opnum))
473 rld[t_reload].when_needed = RELOAD_OTHER;
474 }
475
476 if (t_reload == n_reloads)
477 {
478 /* We need to make a new tertiary reload for this register class. */
479 rld[t_reload].in = rld[t_reload].out = 0;
480 rld[t_reload].class = t_class;
481 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
482 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
483 rld[t_reload].reg_rtx = 0;
484 rld[t_reload].optional = optional;
485 rld[t_reload].inc = 0;
486 /* Maybe we could combine these, but it seems too tricky. */
487 rld[t_reload].nocombine = 1;
488 rld[t_reload].in_reg = 0;
489 rld[t_reload].out_reg = 0;
490 rld[t_reload].opnum = opnum;
491 rld[t_reload].when_needed = secondary_type;
492 rld[t_reload].secondary_in_reload = -1;
493 rld[t_reload].secondary_out_reload = -1;
494 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
495 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
496 rld[t_reload].secondary_p = 1;
497
498 n_reloads++;
499 }
500 }
501
502 /* See if we can reuse an existing secondary reload. */
503 for (s_reload = 0; s_reload < n_reloads; s_reload++)
504 if (rld[s_reload].secondary_p
505 && (reg_class_subset_p (class, rld[s_reload].class)
506 || reg_class_subset_p (rld[s_reload].class, class))
507 && ((in_p && rld[s_reload].inmode == mode)
508 || (! in_p && rld[s_reload].outmode == mode))
509 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
510 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
511 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
512 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
513 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
514 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
515 opnum, rld[s_reload].opnum))
516 {
517 if (in_p)
518 rld[s_reload].inmode = mode;
519 if (! in_p)
520 rld[s_reload].outmode = mode;
521
522 if (reg_class_subset_p (class, rld[s_reload].class))
523 rld[s_reload].class = class;
524
525 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
526 rld[s_reload].optional &= optional;
527 rld[s_reload].secondary_p = 1;
528 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
529 opnum, rld[s_reload].opnum))
530 rld[s_reload].when_needed = RELOAD_OTHER;
531 }
532
533 if (s_reload == n_reloads)
534 {
535 #ifdef SECONDARY_MEMORY_NEEDED
536 /* If we need a memory location to copy between the two reload regs,
537 set it up now. Note that we do the input case before making
538 the reload and the output case after. This is due to the
539 way reloads are output. */
540
541 if (in_p && icode == CODE_FOR_nothing
542 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
543 {
544 get_secondary_mem (x, reload_mode, opnum, type);
545
546 /* We may have just added new reloads. Make sure we add
547 the new reload at the end. */
548 s_reload = n_reloads;
549 }
550 #endif
551
552 /* We need to make a new secondary reload for this register class. */
553 rld[s_reload].in = rld[s_reload].out = 0;
554 rld[s_reload].class = class;
555
556 rld[s_reload].inmode = in_p ? mode : VOIDmode;
557 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
558 rld[s_reload].reg_rtx = 0;
559 rld[s_reload].optional = optional;
560 rld[s_reload].inc = 0;
561 /* Maybe we could combine these, but it seems too tricky. */
562 rld[s_reload].nocombine = 1;
563 rld[s_reload].in_reg = 0;
564 rld[s_reload].out_reg = 0;
565 rld[s_reload].opnum = opnum;
566 rld[s_reload].when_needed = secondary_type;
567 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
568 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
569 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
570 rld[s_reload].secondary_out_icode
571 = ! in_p ? t_icode : CODE_FOR_nothing;
572 rld[s_reload].secondary_p = 1;
573
574 n_reloads++;
575
576 #ifdef SECONDARY_MEMORY_NEEDED
577 if (! in_p && icode == CODE_FOR_nothing
578 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
579 get_secondary_mem (x, mode, opnum, type);
580 #endif
581 }
582
583 *picode = icode;
584 return s_reload;
585 }
586 #endif /* HAVE_SECONDARY_RELOADS */
587 \f
588 #ifdef SECONDARY_MEMORY_NEEDED
589
590 /* Return a memory location that will be used to copy X in mode MODE.
591 If we haven't already made a location for this mode in this insn,
592 call find_reloads_address on the location being returned. */
593
594 rtx
595 get_secondary_mem (x, mode, opnum, type)
596 rtx x ATTRIBUTE_UNUSED;
597 enum machine_mode mode;
598 int opnum;
599 enum reload_type type;
600 {
601 rtx loc;
602 int mem_valid;
603
604 /* By default, if MODE is narrower than a word, widen it to a word.
605 This is required because most machines that require these memory
606 locations do not support short load and stores from all registers
607 (e.g., FP registers). */
608
609 #ifdef SECONDARY_MEMORY_NEEDED_MODE
610 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
611 #else
612 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
613 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
614 #endif
615
616 /* If we already have made a MEM for this operand in MODE, return it. */
617 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
618 return secondary_memlocs_elim[(int) mode][opnum];
619
620 /* If this is the first time we've tried to get a MEM for this mode,
621 allocate a new one. `something_changed' in reload will get set
622 by noticing that the frame size has changed. */
623
624 if (secondary_memlocs[(int) mode] == 0)
625 {
626 #ifdef SECONDARY_MEMORY_NEEDED_RTX
627 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
628 #else
629 secondary_memlocs[(int) mode]
630 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
631 #endif
632 }
633
634 /* Get a version of the address doing any eliminations needed. If that
635 didn't give us a new MEM, make a new one if it isn't valid. */
636
637 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
638 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
639
640 if (! mem_valid && loc == secondary_memlocs[(int) mode])
641 loc = copy_rtx (loc);
642
643 /* The only time the call below will do anything is if the stack
644 offset is too large. In that case IND_LEVELS doesn't matter, so we
645 can just pass a zero. Adjust the type to be the address of the
646 corresponding object. If the address was valid, save the eliminated
647 address. If it wasn't valid, we need to make a reload each time, so
648 don't save it. */
649
650 if (! mem_valid)
651 {
652 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
653 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
654 : RELOAD_OTHER);
655
656 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
657 opnum, type, 0, 0);
658 }
659
660 secondary_memlocs_elim[(int) mode][opnum] = loc;
661 return loc;
662 }
663
664 /* Clear any secondary memory locations we've made. */
665
666 void
667 clear_secondary_mem ()
668 {
669 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
670 }
671 #endif /* SECONDARY_MEMORY_NEEDED */
672 \f
673 /* Find the largest class for which every register number plus N is valid in
674 M1 (if in range) and is cheap to move into REGNO.
675 Abort if no such class exists. */
676
677 static enum reg_class
678 find_valid_class (m1, n, dest_regno)
679 enum machine_mode m1 ATTRIBUTE_UNUSED;
680 int n;
681 unsigned int dest_regno ATTRIBUTE_UNUSED;
682 {
683 int best_cost = -1;
684 int class;
685 int regno;
686 enum reg_class best_class = NO_REGS;
687 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
688 unsigned int best_size = 0;
689 int cost;
690
691 for (class = 1; class < N_REG_CLASSES; class++)
692 {
693 int bad = 0;
694 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
695 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
696 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
697 && ! HARD_REGNO_MODE_OK (regno + n, m1))
698 bad = 1;
699
700 if (bad)
701 continue;
702 cost = REGISTER_MOVE_COST (m1, class, dest_class);
703
704 if ((reg_class_size[class] > best_size
705 && (best_cost < 0 || best_cost >= cost))
706 || best_cost > cost)
707 {
708 best_class = class;
709 best_size = reg_class_size[class];
710 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
711 }
712 }
713
714 if (best_size == 0)
715 abort ();
716
717 return best_class;
718 }
719 \f
720 /* Return the number of a previously made reload that can be combined with
721 a new one, or n_reloads if none of the existing reloads can be used.
722 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
723 push_reload, they determine the kind of the new reload that we try to
724 combine. P_IN points to the corresponding value of IN, which can be
725 modified by this function.
726 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
727
728 static int
729 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
730 rtx *p_in, out;
731 enum reg_class class;
732 enum reload_type type;
733 int opnum, dont_share;
734 {
735 rtx in = *p_in;
736 int i;
737 /* We can't merge two reloads if the output of either one is
738 earlyclobbered. */
739
740 if (earlyclobber_operand_p (out))
741 return n_reloads;
742
743 /* We can use an existing reload if the class is right
744 and at least one of IN and OUT is a match
745 and the other is at worst neutral.
746 (A zero compared against anything is neutral.)
747
748 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
749 for the same thing since that can cause us to need more reload registers
750 than we otherwise would. */
751
752 for (i = 0; i < n_reloads; i++)
753 if ((reg_class_subset_p (class, rld[i].class)
754 || reg_class_subset_p (rld[i].class, class))
755 /* If the existing reload has a register, it must fit our class. */
756 && (rld[i].reg_rtx == 0
757 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
758 true_regnum (rld[i].reg_rtx)))
759 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
760 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
761 || (out != 0 && MATCHES (rld[i].out, out)
762 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
763 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
764 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
765 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
766 return i;
767
768 /* Reloading a plain reg for input can match a reload to postincrement
769 that reg, since the postincrement's value is the right value.
770 Likewise, it can match a preincrement reload, since we regard
771 the preincrementation as happening before any ref in this insn
772 to that register. */
773 for (i = 0; i < n_reloads; i++)
774 if ((reg_class_subset_p (class, rld[i].class)
775 || reg_class_subset_p (rld[i].class, class))
776 /* If the existing reload has a register, it must fit our
777 class. */
778 && (rld[i].reg_rtx == 0
779 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
780 true_regnum (rld[i].reg_rtx)))
781 && out == 0 && rld[i].out == 0 && rld[i].in != 0
782 && ((GET_CODE (in) == REG
783 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
784 && MATCHES (XEXP (rld[i].in, 0), in))
785 || (GET_CODE (rld[i].in) == REG
786 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
787 && MATCHES (XEXP (in, 0), rld[i].in)))
788 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
789 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
790 && MERGABLE_RELOADS (type, rld[i].when_needed,
791 opnum, rld[i].opnum))
792 {
793 /* Make sure reload_in ultimately has the increment,
794 not the plain register. */
795 if (GET_CODE (in) == REG)
796 *p_in = rld[i].in;
797 return i;
798 }
799 return n_reloads;
800 }
801
802 /* Return nonzero if X is a SUBREG which will require reloading of its
803 SUBREG_REG expression. */
804
805 static int
806 reload_inner_reg_of_subreg (x, mode, output)
807 rtx x;
808 enum machine_mode mode;
809 int output;
810 {
811 rtx inner;
812
813 /* Only SUBREGs are problematical. */
814 if (GET_CODE (x) != SUBREG)
815 return 0;
816
817 inner = SUBREG_REG (x);
818
819 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
820 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
821 return 1;
822
823 /* If INNER is not a hard register, then INNER will not need to
824 be reloaded. */
825 if (GET_CODE (inner) != REG
826 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
827 return 0;
828
829 /* If INNER is not ok for MODE, then INNER will need reloading. */
830 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
831 return 1;
832
833 /* If the outer part is a word or smaller, INNER larger than a
834 word and the number of regs for INNER is not the same as the
835 number of words in INNER, then INNER will need reloading. */
836 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
837 && output
838 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
839 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
840 != (int) HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
841 }
842
843 /* Record one reload that needs to be performed.
844 IN is an rtx saying where the data are to be found before this instruction.
845 OUT says where they must be stored after the instruction.
846 (IN is zero for data not read, and OUT is zero for data not written.)
847 INLOC and OUTLOC point to the places in the instructions where
848 IN and OUT were found.
849 If IN and OUT are both nonzero, it means the same register must be used
850 to reload both IN and OUT.
851
852 CLASS is a register class required for the reloaded data.
853 INMODE is the machine mode that the instruction requires
854 for the reg that replaces IN and OUTMODE is likewise for OUT.
855
856 If IN is zero, then OUT's location and mode should be passed as
857 INLOC and INMODE.
858
859 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
860
861 OPTIONAL nonzero means this reload does not need to be performed:
862 it can be discarded if that is more convenient.
863
864 OPNUM and TYPE say what the purpose of this reload is.
865
866 The return value is the reload-number for this reload.
867
868 If both IN and OUT are nonzero, in some rare cases we might
869 want to make two separate reloads. (Actually we never do this now.)
870 Therefore, the reload-number for OUT is stored in
871 output_reloadnum when we return; the return value applies to IN.
872 Usually (presently always), when IN and OUT are nonzero,
873 the two reload-numbers are equal, but the caller should be careful to
874 distinguish them. */
875
876 int
877 push_reload (in, out, inloc, outloc, class,
878 inmode, outmode, strict_low, optional, opnum, type)
879 rtx in, out;
880 rtx *inloc, *outloc;
881 enum reg_class class;
882 enum machine_mode inmode, outmode;
883 int strict_low;
884 int optional;
885 int opnum;
886 enum reload_type type;
887 {
888 int i;
889 int dont_share = 0;
890 int dont_remove_subreg = 0;
891 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
892 int secondary_in_reload = -1, secondary_out_reload = -1;
893 enum insn_code secondary_in_icode = CODE_FOR_nothing;
894 enum insn_code secondary_out_icode = CODE_FOR_nothing;
895
896 /* INMODE and/or OUTMODE could be VOIDmode if no mode
897 has been specified for the operand. In that case,
898 use the operand's mode as the mode to reload. */
899 if (inmode == VOIDmode && in != 0)
900 inmode = GET_MODE (in);
901 if (outmode == VOIDmode && out != 0)
902 outmode = GET_MODE (out);
903
904 /* If IN is a pseudo register everywhere-equivalent to a constant, and
905 it is not in a hard register, reload straight from the constant,
906 since we want to get rid of such pseudo registers.
907 Often this is done earlier, but not always in find_reloads_address. */
908 if (in != 0 && GET_CODE (in) == REG)
909 {
910 int regno = REGNO (in);
911
912 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
913 && reg_equiv_constant[regno] != 0)
914 in = reg_equiv_constant[regno];
915 }
916
917 /* Likewise for OUT. Of course, OUT will never be equivalent to
918 an actual constant, but it might be equivalent to a memory location
919 (in the case of a parameter). */
920 if (out != 0 && GET_CODE (out) == REG)
921 {
922 int regno = REGNO (out);
923
924 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
925 && reg_equiv_constant[regno] != 0)
926 out = reg_equiv_constant[regno];
927 }
928
929 /* If we have a read-write operand with an address side-effect,
930 change either IN or OUT so the side-effect happens only once. */
931 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
932 switch (GET_CODE (XEXP (in, 0)))
933 {
934 case POST_INC: case POST_DEC: case POST_MODIFY:
935 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
936 break;
937
938 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
939 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
940 break;
941
942 default:
943 break;
944 }
945
946 /* If we are reloading a (SUBREG constant ...), really reload just the
947 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
948 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
949 a pseudo and hence will become a MEM) with M1 wider than M2 and the
950 register is a pseudo, also reload the inside expression.
951 For machines that extend byte loads, do this for any SUBREG of a pseudo
952 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
953 M2 is an integral mode that gets extended when loaded.
954 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
955 either M1 is not valid for R or M2 is wider than a word but we only
956 need one word to store an M2-sized quantity in R.
957 (However, if OUT is nonzero, we need to reload the reg *and*
958 the subreg, so do nothing here, and let following statement handle it.)
959
960 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
961 we can't handle it here because CONST_INT does not indicate a mode.
962
963 Similarly, we must reload the inside expression if we have a
964 STRICT_LOW_PART (presumably, in == out in the cas).
965
966 Also reload the inner expression if it does not require a secondary
967 reload but the SUBREG does.
968
969 Finally, reload the inner expression if it is a register that is in
970 the class whose registers cannot be referenced in a different size
971 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
972 cannot reload just the inside since we might end up with the wrong
973 register class. But if it is inside a STRICT_LOW_PART, we have
974 no choice, so we hope we do get the right register class there. */
975
976 if (in != 0 && GET_CODE (in) == SUBREG
977 && (subreg_lowpart_p (in) || strict_low)
978 #ifdef CANNOT_CHANGE_MODE_CLASS
979 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
980 #endif
981 && (CONSTANT_P (SUBREG_REG (in))
982 || GET_CODE (SUBREG_REG (in)) == PLUS
983 || strict_low
984 || (((GET_CODE (SUBREG_REG (in)) == REG
985 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
986 || GET_CODE (SUBREG_REG (in)) == MEM)
987 && ((GET_MODE_SIZE (inmode)
988 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
989 #ifdef LOAD_EXTEND_OP
990 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
991 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
992 <= UNITS_PER_WORD)
993 && (GET_MODE_SIZE (inmode)
994 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
995 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
996 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
997 #endif
998 #ifdef WORD_REGISTER_OPERATIONS
999 || ((GET_MODE_SIZE (inmode)
1000 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1001 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1002 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1003 / UNITS_PER_WORD)))
1004 #endif
1005 ))
1006 || (GET_CODE (SUBREG_REG (in)) == REG
1007 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1008 /* The case where out is nonzero
1009 is handled differently in the following statement. */
1010 && (out == 0 || subreg_lowpart_p (in))
1011 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1012 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1013 > UNITS_PER_WORD)
1014 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1015 / UNITS_PER_WORD)
1016 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
1017 GET_MODE (SUBREG_REG (in)))))
1018 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1019 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1020 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1021 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1022 GET_MODE (SUBREG_REG (in)),
1023 SUBREG_REG (in))
1024 == NO_REGS))
1025 #endif
1026 #ifdef CANNOT_CHANGE_MODE_CLASS
1027 || (GET_CODE (SUBREG_REG (in)) == REG
1028 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1029 && REG_CANNOT_CHANGE_MODE_P
1030 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1031 #endif
1032 ))
1033 {
1034 in_subreg_loc = inloc;
1035 inloc = &SUBREG_REG (in);
1036 in = *inloc;
1037 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1038 if (GET_CODE (in) == MEM)
1039 /* This is supposed to happen only for paradoxical subregs made by
1040 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1041 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1042 abort ();
1043 #endif
1044 inmode = GET_MODE (in);
1045 }
1046
1047 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1048 either M1 is not valid for R or M2 is wider than a word but we only
1049 need one word to store an M2-sized quantity in R.
1050
1051 However, we must reload the inner reg *as well as* the subreg in
1052 that case. */
1053
1054 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1055 code above. This can happen if SUBREG_BYTE != 0. */
1056
1057 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1058 {
1059 enum reg_class in_class = class;
1060
1061 if (GET_CODE (SUBREG_REG (in)) == REG)
1062 in_class
1063 = find_valid_class (inmode,
1064 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1065 GET_MODE (SUBREG_REG (in)),
1066 SUBREG_BYTE (in),
1067 GET_MODE (in)),
1068 REGNO (SUBREG_REG (in)));
1069
1070 /* This relies on the fact that emit_reload_insns outputs the
1071 instructions for input reloads of type RELOAD_OTHER in the same
1072 order as the reloads. Thus if the outer reload is also of type
1073 RELOAD_OTHER, we are guaranteed that this inner reload will be
1074 output before the outer reload. */
1075 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1076 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1077 dont_remove_subreg = 1;
1078 }
1079
1080 /* Similarly for paradoxical and problematical SUBREGs on the output.
1081 Note that there is no reason we need worry about the previous value
1082 of SUBREG_REG (out); even if wider than out,
1083 storing in a subreg is entitled to clobber it all
1084 (except in the case of STRICT_LOW_PART,
1085 and in that case the constraint should label it input-output.) */
1086 if (out != 0 && GET_CODE (out) == SUBREG
1087 && (subreg_lowpart_p (out) || strict_low)
1088 #ifdef CANNOT_CHANGE_MODE_CLASS
1089 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1090 #endif
1091 && (CONSTANT_P (SUBREG_REG (out))
1092 || strict_low
1093 || (((GET_CODE (SUBREG_REG (out)) == REG
1094 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1095 || GET_CODE (SUBREG_REG (out)) == MEM)
1096 && ((GET_MODE_SIZE (outmode)
1097 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1098 #ifdef WORD_REGISTER_OPERATIONS
1099 || ((GET_MODE_SIZE (outmode)
1100 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1101 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1102 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1103 / UNITS_PER_WORD)))
1104 #endif
1105 ))
1106 || (GET_CODE (SUBREG_REG (out)) == REG
1107 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1108 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1109 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1110 > UNITS_PER_WORD)
1111 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1112 / UNITS_PER_WORD)
1113 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1114 GET_MODE (SUBREG_REG (out)))))
1115 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1116 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1117 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1118 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1119 GET_MODE (SUBREG_REG (out)),
1120 SUBREG_REG (out))
1121 == NO_REGS))
1122 #endif
1123 #ifdef CANNOT_CHANGE_MODE_CLASS
1124 || (GET_CODE (SUBREG_REG (out)) == REG
1125 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1126 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1127 GET_MODE (SUBREG_REG (out)),
1128 outmode))
1129 #endif
1130 ))
1131 {
1132 out_subreg_loc = outloc;
1133 outloc = &SUBREG_REG (out);
1134 out = *outloc;
1135 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1136 if (GET_CODE (out) == MEM
1137 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1138 abort ();
1139 #endif
1140 outmode = GET_MODE (out);
1141 }
1142
1143 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1144 either M1 is not valid for R or M2 is wider than a word but we only
1145 need one word to store an M2-sized quantity in R.
1146
1147 However, we must reload the inner reg *as well as* the subreg in
1148 that case. In this case, the inner reg is an in-out reload. */
1149
1150 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1151 {
1152 /* This relies on the fact that emit_reload_insns outputs the
1153 instructions for output reloads of type RELOAD_OTHER in reverse
1154 order of the reloads. Thus if the outer reload is also of type
1155 RELOAD_OTHER, we are guaranteed that this inner reload will be
1156 output after the outer reload. */
1157 dont_remove_subreg = 1;
1158 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1159 &SUBREG_REG (out),
1160 find_valid_class (outmode,
1161 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1162 GET_MODE (SUBREG_REG (out)),
1163 SUBREG_BYTE (out),
1164 GET_MODE (out)),
1165 REGNO (SUBREG_REG (out))),
1166 VOIDmode, VOIDmode, 0, 0,
1167 opnum, RELOAD_OTHER);
1168 }
1169
1170 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1171 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1172 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1173 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1174 dont_share = 1;
1175
1176 /* If IN is a SUBREG of a hard register, make a new REG. This
1177 simplifies some of the cases below. */
1178
1179 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1180 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1181 && ! dont_remove_subreg)
1182 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1183
1184 /* Similarly for OUT. */
1185 if (out != 0 && GET_CODE (out) == SUBREG
1186 && GET_CODE (SUBREG_REG (out)) == REG
1187 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1188 && ! dont_remove_subreg)
1189 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1190
1191 /* Narrow down the class of register wanted if that is
1192 desirable on this machine for efficiency. */
1193 if (in != 0)
1194 class = PREFERRED_RELOAD_CLASS (in, class);
1195
1196 /* Output reloads may need analogous treatment, different in detail. */
1197 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1198 if (out != 0)
1199 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1200 #endif
1201
1202 /* Make sure we use a class that can handle the actual pseudo
1203 inside any subreg. For example, on the 386, QImode regs
1204 can appear within SImode subregs. Although GENERAL_REGS
1205 can handle SImode, QImode needs a smaller class. */
1206 #ifdef LIMIT_RELOAD_CLASS
1207 if (in_subreg_loc)
1208 class = LIMIT_RELOAD_CLASS (inmode, class);
1209 else if (in != 0 && GET_CODE (in) == SUBREG)
1210 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1211
1212 if (out_subreg_loc)
1213 class = LIMIT_RELOAD_CLASS (outmode, class);
1214 if (out != 0 && GET_CODE (out) == SUBREG)
1215 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1216 #endif
1217
1218 /* Verify that this class is at least possible for the mode that
1219 is specified. */
1220 if (this_insn_is_asm)
1221 {
1222 enum machine_mode mode;
1223 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1224 mode = inmode;
1225 else
1226 mode = outmode;
1227 if (mode == VOIDmode)
1228 {
1229 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1230 mode = word_mode;
1231 if (in != 0)
1232 inmode = word_mode;
1233 if (out != 0)
1234 outmode = word_mode;
1235 }
1236 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1237 if (HARD_REGNO_MODE_OK (i, mode)
1238 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1239 {
1240 int nregs = HARD_REGNO_NREGS (i, mode);
1241
1242 int j;
1243 for (j = 1; j < nregs; j++)
1244 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1245 break;
1246 if (j == nregs)
1247 break;
1248 }
1249 if (i == FIRST_PSEUDO_REGISTER)
1250 {
1251 error_for_asm (this_insn, "impossible register constraint in `asm'");
1252 class = ALL_REGS;
1253 }
1254 }
1255
1256 /* Optional output reloads are always OK even if we have no register class,
1257 since the function of these reloads is only to have spill_reg_store etc.
1258 set, so that the storing insn can be deleted later. */
1259 if (class == NO_REGS
1260 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1261 abort ();
1262
1263 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1264
1265 if (i == n_reloads)
1266 {
1267 /* See if we need a secondary reload register to move between CLASS
1268 and IN or CLASS and OUT. Get the icode and push any required reloads
1269 needed for each of them if so. */
1270
1271 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1272 if (in != 0)
1273 secondary_in_reload
1274 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1275 &secondary_in_icode);
1276 #endif
1277
1278 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1279 if (out != 0 && GET_CODE (out) != SCRATCH)
1280 secondary_out_reload
1281 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1282 type, &secondary_out_icode);
1283 #endif
1284
1285 /* We found no existing reload suitable for re-use.
1286 So add an additional reload. */
1287
1288 #ifdef SECONDARY_MEMORY_NEEDED
1289 /* If a memory location is needed for the copy, make one. */
1290 if (in != 0 && (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
1291 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1292 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1293 class, inmode))
1294 get_secondary_mem (in, inmode, opnum, type);
1295 #endif
1296
1297 i = n_reloads;
1298 rld[i].in = in;
1299 rld[i].out = out;
1300 rld[i].class = class;
1301 rld[i].inmode = inmode;
1302 rld[i].outmode = outmode;
1303 rld[i].reg_rtx = 0;
1304 rld[i].optional = optional;
1305 rld[i].inc = 0;
1306 rld[i].nocombine = 0;
1307 rld[i].in_reg = inloc ? *inloc : 0;
1308 rld[i].out_reg = outloc ? *outloc : 0;
1309 rld[i].opnum = opnum;
1310 rld[i].when_needed = type;
1311 rld[i].secondary_in_reload = secondary_in_reload;
1312 rld[i].secondary_out_reload = secondary_out_reload;
1313 rld[i].secondary_in_icode = secondary_in_icode;
1314 rld[i].secondary_out_icode = secondary_out_icode;
1315 rld[i].secondary_p = 0;
1316
1317 n_reloads++;
1318
1319 #ifdef SECONDARY_MEMORY_NEEDED
1320 if (out != 0 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
1321 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1322 && SECONDARY_MEMORY_NEEDED (class,
1323 REGNO_REG_CLASS (reg_or_subregno (out)),
1324 outmode))
1325 get_secondary_mem (out, outmode, opnum, type);
1326 #endif
1327 }
1328 else
1329 {
1330 /* We are reusing an existing reload,
1331 but we may have additional information for it.
1332 For example, we may now have both IN and OUT
1333 while the old one may have just one of them. */
1334
1335 /* The modes can be different. If they are, we want to reload in
1336 the larger mode, so that the value is valid for both modes. */
1337 if (inmode != VOIDmode
1338 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1339 rld[i].inmode = inmode;
1340 if (outmode != VOIDmode
1341 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1342 rld[i].outmode = outmode;
1343 if (in != 0)
1344 {
1345 rtx in_reg = inloc ? *inloc : 0;
1346 /* If we merge reloads for two distinct rtl expressions that
1347 are identical in content, there might be duplicate address
1348 reloads. Remove the extra set now, so that if we later find
1349 that we can inherit this reload, we can get rid of the
1350 address reloads altogether.
1351
1352 Do not do this if both reloads are optional since the result
1353 would be an optional reload which could potentially leave
1354 unresolved address replacements.
1355
1356 It is not sufficient to call transfer_replacements since
1357 choose_reload_regs will remove the replacements for address
1358 reloads of inherited reloads which results in the same
1359 problem. */
1360 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1361 && ! (rld[i].optional && optional))
1362 {
1363 /* We must keep the address reload with the lower operand
1364 number alive. */
1365 if (opnum > rld[i].opnum)
1366 {
1367 remove_address_replacements (in);
1368 in = rld[i].in;
1369 in_reg = rld[i].in_reg;
1370 }
1371 else
1372 remove_address_replacements (rld[i].in);
1373 }
1374 rld[i].in = in;
1375 rld[i].in_reg = in_reg;
1376 }
1377 if (out != 0)
1378 {
1379 rld[i].out = out;
1380 rld[i].out_reg = outloc ? *outloc : 0;
1381 }
1382 if (reg_class_subset_p (class, rld[i].class))
1383 rld[i].class = class;
1384 rld[i].optional &= optional;
1385 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1386 opnum, rld[i].opnum))
1387 rld[i].when_needed = RELOAD_OTHER;
1388 rld[i].opnum = MIN (rld[i].opnum, opnum);
1389 }
1390
1391 /* If the ostensible rtx being reloaded differs from the rtx found
1392 in the location to substitute, this reload is not safe to combine
1393 because we cannot reliably tell whether it appears in the insn. */
1394
1395 if (in != 0 && in != *inloc)
1396 rld[i].nocombine = 1;
1397
1398 #if 0
1399 /* This was replaced by changes in find_reloads_address_1 and the new
1400 function inc_for_reload, which go with a new meaning of reload_inc. */
1401
1402 /* If this is an IN/OUT reload in an insn that sets the CC,
1403 it must be for an autoincrement. It doesn't work to store
1404 the incremented value after the insn because that would clobber the CC.
1405 So we must do the increment of the value reloaded from,
1406 increment it, store it back, then decrement again. */
1407 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1408 {
1409 out = 0;
1410 rld[i].out = 0;
1411 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1412 /* If we did not find a nonzero amount-to-increment-by,
1413 that contradicts the belief that IN is being incremented
1414 in an address in this insn. */
1415 if (rld[i].inc == 0)
1416 abort ();
1417 }
1418 #endif
1419
1420 /* If we will replace IN and OUT with the reload-reg,
1421 record where they are located so that substitution need
1422 not do a tree walk. */
1423
1424 if (replace_reloads)
1425 {
1426 if (inloc != 0)
1427 {
1428 struct replacement *r = &replacements[n_replacements++];
1429 r->what = i;
1430 r->subreg_loc = in_subreg_loc;
1431 r->where = inloc;
1432 r->mode = inmode;
1433 }
1434 if (outloc != 0 && outloc != inloc)
1435 {
1436 struct replacement *r = &replacements[n_replacements++];
1437 r->what = i;
1438 r->where = outloc;
1439 r->subreg_loc = out_subreg_loc;
1440 r->mode = outmode;
1441 }
1442 }
1443
1444 /* If this reload is just being introduced and it has both
1445 an incoming quantity and an outgoing quantity that are
1446 supposed to be made to match, see if either one of the two
1447 can serve as the place to reload into.
1448
1449 If one of them is acceptable, set rld[i].reg_rtx
1450 to that one. */
1451
1452 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1453 {
1454 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1455 inmode, outmode,
1456 rld[i].class, i,
1457 earlyclobber_operand_p (out));
1458
1459 /* If the outgoing register already contains the same value
1460 as the incoming one, we can dispense with loading it.
1461 The easiest way to tell the caller that is to give a phony
1462 value for the incoming operand (same as outgoing one). */
1463 if (rld[i].reg_rtx == out
1464 && (GET_CODE (in) == REG || CONSTANT_P (in))
1465 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1466 static_reload_reg_p, i, inmode))
1467 rld[i].in = out;
1468 }
1469
1470 /* If this is an input reload and the operand contains a register that
1471 dies in this insn and is used nowhere else, see if it is the right class
1472 to be used for this reload. Use it if so. (This occurs most commonly
1473 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1474 this if it is also an output reload that mentions the register unless
1475 the output is a SUBREG that clobbers an entire register.
1476
1477 Note that the operand might be one of the spill regs, if it is a
1478 pseudo reg and we are in a block where spilling has not taken place.
1479 But if there is no spilling in this block, that is OK.
1480 An explicitly used hard reg cannot be a spill reg. */
1481
1482 if (rld[i].reg_rtx == 0 && in != 0)
1483 {
1484 rtx note;
1485 int regno;
1486 enum machine_mode rel_mode = inmode;
1487
1488 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1489 rel_mode = outmode;
1490
1491 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1492 if (REG_NOTE_KIND (note) == REG_DEAD
1493 && GET_CODE (XEXP (note, 0)) == REG
1494 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1495 && reg_mentioned_p (XEXP (note, 0), in)
1496 && ! refers_to_regno_for_reload_p (regno,
1497 (regno
1498 + HARD_REGNO_NREGS (regno,
1499 rel_mode)),
1500 PATTERN (this_insn), inloc)
1501 /* If this is also an output reload, IN cannot be used as
1502 the reload register if it is set in this insn unless IN
1503 is also OUT. */
1504 && (out == 0 || in == out
1505 || ! hard_reg_set_here_p (regno,
1506 (regno
1507 + HARD_REGNO_NREGS (regno,
1508 rel_mode)),
1509 PATTERN (this_insn)))
1510 /* ??? Why is this code so different from the previous?
1511 Is there any simple coherent way to describe the two together?
1512 What's going on here. */
1513 && (in != out
1514 || (GET_CODE (in) == SUBREG
1515 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1516 / UNITS_PER_WORD)
1517 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1518 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1519 /* Make sure the operand fits in the reg that dies. */
1520 && (GET_MODE_SIZE (rel_mode)
1521 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1522 && HARD_REGNO_MODE_OK (regno, inmode)
1523 && HARD_REGNO_MODE_OK (regno, outmode))
1524 {
1525 unsigned int offs;
1526 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1527 HARD_REGNO_NREGS (regno, outmode));
1528
1529 for (offs = 0; offs < nregs; offs++)
1530 if (fixed_regs[regno + offs]
1531 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1532 regno + offs))
1533 break;
1534
1535 if (offs == nregs)
1536 {
1537 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1538 break;
1539 }
1540 }
1541 }
1542
1543 if (out)
1544 output_reloadnum = i;
1545
1546 return i;
1547 }
1548
1549 /* Record an additional place we must replace a value
1550 for which we have already recorded a reload.
1551 RELOADNUM is the value returned by push_reload
1552 when the reload was recorded.
1553 This is used in insn patterns that use match_dup. */
1554
1555 static void
1556 push_replacement (loc, reloadnum, mode)
1557 rtx *loc;
1558 int reloadnum;
1559 enum machine_mode mode;
1560 {
1561 if (replace_reloads)
1562 {
1563 struct replacement *r = &replacements[n_replacements++];
1564 r->what = reloadnum;
1565 r->where = loc;
1566 r->subreg_loc = 0;
1567 r->mode = mode;
1568 }
1569 }
1570
1571 /* Duplicate any replacement we have recorded to apply at
1572 location ORIG_LOC to also be performed at DUP_LOC.
1573 This is used in insn patterns that use match_dup. */
1574
1575 static void
1576 dup_replacements (dup_loc, orig_loc)
1577 rtx *dup_loc;
1578 rtx *orig_loc;
1579 {
1580 int i, n = n_replacements;
1581
1582 for (i = 0; i < n; i++)
1583 {
1584 struct replacement *r = &replacements[i];
1585 if (r->where == orig_loc)
1586 push_replacement (dup_loc, r->what, r->mode);
1587 }
1588 }
1589 \f
1590 /* Transfer all replacements that used to be in reload FROM to be in
1591 reload TO. */
1592
1593 void
1594 transfer_replacements (to, from)
1595 int to, from;
1596 {
1597 int i;
1598
1599 for (i = 0; i < n_replacements; i++)
1600 if (replacements[i].what == from)
1601 replacements[i].what = to;
1602 }
1603 \f
1604 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1605 or a subpart of it. If we have any replacements registered for IN_RTX,
1606 cancel the reloads that were supposed to load them.
1607 Return nonzero if we canceled any reloads. */
1608 int
1609 remove_address_replacements (in_rtx)
1610 rtx in_rtx;
1611 {
1612 int i, j;
1613 char reload_flags[MAX_RELOADS];
1614 int something_changed = 0;
1615
1616 memset (reload_flags, 0, sizeof reload_flags);
1617 for (i = 0, j = 0; i < n_replacements; i++)
1618 {
1619 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1620 reload_flags[replacements[i].what] |= 1;
1621 else
1622 {
1623 replacements[j++] = replacements[i];
1624 reload_flags[replacements[i].what] |= 2;
1625 }
1626 }
1627 /* Note that the following store must be done before the recursive calls. */
1628 n_replacements = j;
1629
1630 for (i = n_reloads - 1; i >= 0; i--)
1631 {
1632 if (reload_flags[i] == 1)
1633 {
1634 deallocate_reload_reg (i);
1635 remove_address_replacements (rld[i].in);
1636 rld[i].in = 0;
1637 something_changed = 1;
1638 }
1639 }
1640 return something_changed;
1641 }
1642 \f
1643 /* If there is only one output reload, and it is not for an earlyclobber
1644 operand, try to combine it with a (logically unrelated) input reload
1645 to reduce the number of reload registers needed.
1646
1647 This is safe if the input reload does not appear in
1648 the value being output-reloaded, because this implies
1649 it is not needed any more once the original insn completes.
1650
1651 If that doesn't work, see we can use any of the registers that
1652 die in this insn as a reload register. We can if it is of the right
1653 class and does not appear in the value being output-reloaded. */
1654
1655 static void
1656 combine_reloads ()
1657 {
1658 int i;
1659 int output_reload = -1;
1660 int secondary_out = -1;
1661 rtx note;
1662
1663 /* Find the output reload; return unless there is exactly one
1664 and that one is mandatory. */
1665
1666 for (i = 0; i < n_reloads; i++)
1667 if (rld[i].out != 0)
1668 {
1669 if (output_reload >= 0)
1670 return;
1671 output_reload = i;
1672 }
1673
1674 if (output_reload < 0 || rld[output_reload].optional)
1675 return;
1676
1677 /* An input-output reload isn't combinable. */
1678
1679 if (rld[output_reload].in != 0)
1680 return;
1681
1682 /* If this reload is for an earlyclobber operand, we can't do anything. */
1683 if (earlyclobber_operand_p (rld[output_reload].out))
1684 return;
1685
1686 /* If there is a reload for part of the address of this operand, we would
1687 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1688 its life to the point where doing this combine would not lower the
1689 number of spill registers needed. */
1690 for (i = 0; i < n_reloads; i++)
1691 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1692 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1693 && rld[i].opnum == rld[output_reload].opnum)
1694 return;
1695
1696 /* Check each input reload; can we combine it? */
1697
1698 for (i = 0; i < n_reloads; i++)
1699 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1700 /* Life span of this reload must not extend past main insn. */
1701 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1702 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1703 && rld[i].when_needed != RELOAD_OTHER
1704 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1705 == CLASS_MAX_NREGS (rld[output_reload].class,
1706 rld[output_reload].outmode))
1707 && rld[i].inc == 0
1708 && rld[i].reg_rtx == 0
1709 #ifdef SECONDARY_MEMORY_NEEDED
1710 /* Don't combine two reloads with different secondary
1711 memory locations. */
1712 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1713 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1714 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1715 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1716 #endif
1717 && (SMALL_REGISTER_CLASSES
1718 ? (rld[i].class == rld[output_reload].class)
1719 : (reg_class_subset_p (rld[i].class,
1720 rld[output_reload].class)
1721 || reg_class_subset_p (rld[output_reload].class,
1722 rld[i].class)))
1723 && (MATCHES (rld[i].in, rld[output_reload].out)
1724 /* Args reversed because the first arg seems to be
1725 the one that we imagine being modified
1726 while the second is the one that might be affected. */
1727 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1728 rld[i].in)
1729 /* However, if the input is a register that appears inside
1730 the output, then we also can't share.
1731 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1732 If the same reload reg is used for both reg 69 and the
1733 result to be stored in memory, then that result
1734 will clobber the address of the memory ref. */
1735 && ! (GET_CODE (rld[i].in) == REG
1736 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1737 rld[output_reload].out))))
1738 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1739 rld[i].when_needed != RELOAD_FOR_INPUT)
1740 && (reg_class_size[(int) rld[i].class]
1741 || SMALL_REGISTER_CLASSES)
1742 /* We will allow making things slightly worse by combining an
1743 input and an output, but no worse than that. */
1744 && (rld[i].when_needed == RELOAD_FOR_INPUT
1745 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1746 {
1747 int j;
1748
1749 /* We have found a reload to combine with! */
1750 rld[i].out = rld[output_reload].out;
1751 rld[i].out_reg = rld[output_reload].out_reg;
1752 rld[i].outmode = rld[output_reload].outmode;
1753 /* Mark the old output reload as inoperative. */
1754 rld[output_reload].out = 0;
1755 /* The combined reload is needed for the entire insn. */
1756 rld[i].when_needed = RELOAD_OTHER;
1757 /* If the output reload had a secondary reload, copy it. */
1758 if (rld[output_reload].secondary_out_reload != -1)
1759 {
1760 rld[i].secondary_out_reload
1761 = rld[output_reload].secondary_out_reload;
1762 rld[i].secondary_out_icode
1763 = rld[output_reload].secondary_out_icode;
1764 }
1765
1766 #ifdef SECONDARY_MEMORY_NEEDED
1767 /* Copy any secondary MEM. */
1768 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1769 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1770 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1771 #endif
1772 /* If required, minimize the register class. */
1773 if (reg_class_subset_p (rld[output_reload].class,
1774 rld[i].class))
1775 rld[i].class = rld[output_reload].class;
1776
1777 /* Transfer all replacements from the old reload to the combined. */
1778 for (j = 0; j < n_replacements; j++)
1779 if (replacements[j].what == output_reload)
1780 replacements[j].what = i;
1781
1782 return;
1783 }
1784
1785 /* If this insn has only one operand that is modified or written (assumed
1786 to be the first), it must be the one corresponding to this reload. It
1787 is safe to use anything that dies in this insn for that output provided
1788 that it does not occur in the output (we already know it isn't an
1789 earlyclobber. If this is an asm insn, give up. */
1790
1791 if (INSN_CODE (this_insn) == -1)
1792 return;
1793
1794 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1795 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1796 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1797 return;
1798
1799 /* See if some hard register that dies in this insn and is not used in
1800 the output is the right class. Only works if the register we pick
1801 up can fully hold our output reload. */
1802 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1803 if (REG_NOTE_KIND (note) == REG_DEAD
1804 && GET_CODE (XEXP (note, 0)) == REG
1805 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1806 rld[output_reload].out)
1807 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1808 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1809 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1810 REGNO (XEXP (note, 0)))
1811 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1812 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1813 /* Ensure that a secondary or tertiary reload for this output
1814 won't want this register. */
1815 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1816 || (! (TEST_HARD_REG_BIT
1817 (reg_class_contents[(int) rld[secondary_out].class],
1818 REGNO (XEXP (note, 0))))
1819 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1820 || ! (TEST_HARD_REG_BIT
1821 (reg_class_contents[(int) rld[secondary_out].class],
1822 REGNO (XEXP (note, 0)))))))
1823 && ! fixed_regs[REGNO (XEXP (note, 0))])
1824 {
1825 rld[output_reload].reg_rtx
1826 = gen_rtx_REG (rld[output_reload].outmode,
1827 REGNO (XEXP (note, 0)));
1828 return;
1829 }
1830 }
1831 \f
1832 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1833 See if one of IN and OUT is a register that may be used;
1834 this is desirable since a spill-register won't be needed.
1835 If so, return the register rtx that proves acceptable.
1836
1837 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1838 CLASS is the register class required for the reload.
1839
1840 If FOR_REAL is >= 0, it is the number of the reload,
1841 and in some cases when it can be discovered that OUT doesn't need
1842 to be computed, clear out rld[FOR_REAL].out.
1843
1844 If FOR_REAL is -1, this should not be done, because this call
1845 is just to see if a register can be found, not to find and install it.
1846
1847 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1848 puts an additional constraint on being able to use IN for OUT since
1849 IN must not appear elsewhere in the insn (it is assumed that IN itself
1850 is safe from the earlyclobber). */
1851
1852 static rtx
1853 find_dummy_reload (real_in, real_out, inloc, outloc,
1854 inmode, outmode, class, for_real, earlyclobber)
1855 rtx real_in, real_out;
1856 rtx *inloc, *outloc;
1857 enum machine_mode inmode, outmode;
1858 enum reg_class class;
1859 int for_real;
1860 int earlyclobber;
1861 {
1862 rtx in = real_in;
1863 rtx out = real_out;
1864 int in_offset = 0;
1865 int out_offset = 0;
1866 rtx value = 0;
1867
1868 /* If operands exceed a word, we can't use either of them
1869 unless they have the same size. */
1870 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1871 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1872 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1873 return 0;
1874
1875 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1876 respectively refers to a hard register. */
1877
1878 /* Find the inside of any subregs. */
1879 while (GET_CODE (out) == SUBREG)
1880 {
1881 if (GET_CODE (SUBREG_REG (out)) == REG
1882 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1883 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1884 GET_MODE (SUBREG_REG (out)),
1885 SUBREG_BYTE (out),
1886 GET_MODE (out));
1887 out = SUBREG_REG (out);
1888 }
1889 while (GET_CODE (in) == SUBREG)
1890 {
1891 if (GET_CODE (SUBREG_REG (in)) == REG
1892 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1893 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1894 GET_MODE (SUBREG_REG (in)),
1895 SUBREG_BYTE (in),
1896 GET_MODE (in));
1897 in = SUBREG_REG (in);
1898 }
1899
1900 /* Narrow down the reg class, the same way push_reload will;
1901 otherwise we might find a dummy now, but push_reload won't. */
1902 class = PREFERRED_RELOAD_CLASS (in, class);
1903
1904 /* See if OUT will do. */
1905 if (GET_CODE (out) == REG
1906 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1907 {
1908 unsigned int regno = REGNO (out) + out_offset;
1909 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1910 rtx saved_rtx;
1911
1912 /* When we consider whether the insn uses OUT,
1913 ignore references within IN. They don't prevent us
1914 from copying IN into OUT, because those refs would
1915 move into the insn that reloads IN.
1916
1917 However, we only ignore IN in its role as this reload.
1918 If the insn uses IN elsewhere and it contains OUT,
1919 that counts. We can't be sure it's the "same" operand
1920 so it might not go through this reload. */
1921 saved_rtx = *inloc;
1922 *inloc = const0_rtx;
1923
1924 if (regno < FIRST_PSEUDO_REGISTER
1925 && HARD_REGNO_MODE_OK (regno, outmode)
1926 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1927 PATTERN (this_insn), outloc))
1928 {
1929 unsigned int i;
1930
1931 for (i = 0; i < nwords; i++)
1932 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1933 regno + i))
1934 break;
1935
1936 if (i == nwords)
1937 {
1938 if (GET_CODE (real_out) == REG)
1939 value = real_out;
1940 else
1941 value = gen_rtx_REG (outmode, regno);
1942 }
1943 }
1944
1945 *inloc = saved_rtx;
1946 }
1947
1948 /* Consider using IN if OUT was not acceptable
1949 or if OUT dies in this insn (like the quotient in a divmod insn).
1950 We can't use IN unless it is dies in this insn,
1951 which means we must know accurately which hard regs are live.
1952 Also, the result can't go in IN if IN is used within OUT,
1953 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1954 if (hard_regs_live_known
1955 && GET_CODE (in) == REG
1956 && REGNO (in) < FIRST_PSEUDO_REGISTER
1957 && (value == 0
1958 || find_reg_note (this_insn, REG_UNUSED, real_out))
1959 && find_reg_note (this_insn, REG_DEAD, real_in)
1960 && !fixed_regs[REGNO (in)]
1961 && HARD_REGNO_MODE_OK (REGNO (in),
1962 /* The only case where out and real_out might
1963 have different modes is where real_out
1964 is a subreg, and in that case, out
1965 has a real mode. */
1966 (GET_MODE (out) != VOIDmode
1967 ? GET_MODE (out) : outmode)))
1968 {
1969 unsigned int regno = REGNO (in) + in_offset;
1970 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1971
1972 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1973 && ! hard_reg_set_here_p (regno, regno + nwords,
1974 PATTERN (this_insn))
1975 && (! earlyclobber
1976 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1977 PATTERN (this_insn), inloc)))
1978 {
1979 unsigned int i;
1980
1981 for (i = 0; i < nwords; i++)
1982 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1983 regno + i))
1984 break;
1985
1986 if (i == nwords)
1987 {
1988 /* If we were going to use OUT as the reload reg
1989 and changed our mind, it means OUT is a dummy that
1990 dies here. So don't bother copying value to it. */
1991 if (for_real >= 0 && value == real_out)
1992 rld[for_real].out = 0;
1993 if (GET_CODE (real_in) == REG)
1994 value = real_in;
1995 else
1996 value = gen_rtx_REG (inmode, regno);
1997 }
1998 }
1999 }
2000
2001 return value;
2002 }
2003 \f
2004 /* This page contains subroutines used mainly for determining
2005 whether the IN or an OUT of a reload can serve as the
2006 reload register. */
2007
2008 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2009
2010 int
2011 earlyclobber_operand_p (x)
2012 rtx x;
2013 {
2014 int i;
2015
2016 for (i = 0; i < n_earlyclobbers; i++)
2017 if (reload_earlyclobbers[i] == x)
2018 return 1;
2019
2020 return 0;
2021 }
2022
2023 /* Return 1 if expression X alters a hard reg in the range
2024 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2025 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2026 X should be the body of an instruction. */
2027
2028 static int
2029 hard_reg_set_here_p (beg_regno, end_regno, x)
2030 unsigned int beg_regno, end_regno;
2031 rtx x;
2032 {
2033 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2034 {
2035 rtx op0 = SET_DEST (x);
2036
2037 while (GET_CODE (op0) == SUBREG)
2038 op0 = SUBREG_REG (op0);
2039 if (GET_CODE (op0) == REG)
2040 {
2041 unsigned int r = REGNO (op0);
2042
2043 /* See if this reg overlaps range under consideration. */
2044 if (r < end_regno
2045 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
2046 return 1;
2047 }
2048 }
2049 else if (GET_CODE (x) == PARALLEL)
2050 {
2051 int i = XVECLEN (x, 0) - 1;
2052
2053 for (; i >= 0; i--)
2054 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2055 return 1;
2056 }
2057
2058 return 0;
2059 }
2060
2061 /* Return 1 if ADDR is a valid memory address for mode MODE,
2062 and check that each pseudo reg has the proper kind of
2063 hard reg. */
2064
2065 int
2066 strict_memory_address_p (mode, addr)
2067 enum machine_mode mode ATTRIBUTE_UNUSED;
2068 rtx addr;
2069 {
2070 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2071 return 0;
2072
2073 win:
2074 return 1;
2075 }
2076 \f
2077 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2078 if they are the same hard reg, and has special hacks for
2079 autoincrement and autodecrement.
2080 This is specifically intended for find_reloads to use
2081 in determining whether two operands match.
2082 X is the operand whose number is the lower of the two.
2083
2084 The value is 2 if Y contains a pre-increment that matches
2085 a non-incrementing address in X. */
2086
2087 /* ??? To be completely correct, we should arrange to pass
2088 for X the output operand and for Y the input operand.
2089 For now, we assume that the output operand has the lower number
2090 because that is natural in (SET output (... input ...)). */
2091
2092 int
2093 operands_match_p (x, y)
2094 rtx x, y;
2095 {
2096 int i;
2097 RTX_CODE code = GET_CODE (x);
2098 const char *fmt;
2099 int success_2;
2100
2101 if (x == y)
2102 return 1;
2103 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2104 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2105 && GET_CODE (SUBREG_REG (y)) == REG)))
2106 {
2107 int j;
2108
2109 if (code == SUBREG)
2110 {
2111 i = REGNO (SUBREG_REG (x));
2112 if (i >= FIRST_PSEUDO_REGISTER)
2113 goto slow;
2114 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2115 GET_MODE (SUBREG_REG (x)),
2116 SUBREG_BYTE (x),
2117 GET_MODE (x));
2118 }
2119 else
2120 i = REGNO (x);
2121
2122 if (GET_CODE (y) == SUBREG)
2123 {
2124 j = REGNO (SUBREG_REG (y));
2125 if (j >= FIRST_PSEUDO_REGISTER)
2126 goto slow;
2127 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2128 GET_MODE (SUBREG_REG (y)),
2129 SUBREG_BYTE (y),
2130 GET_MODE (y));
2131 }
2132 else
2133 j = REGNO (y);
2134
2135 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2136 multiple hard register group, so that for example (reg:DI 0) and
2137 (reg:SI 1) will be considered the same register. */
2138 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2139 && i < FIRST_PSEUDO_REGISTER)
2140 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2141 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2142 && j < FIRST_PSEUDO_REGISTER)
2143 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2144
2145 return i == j;
2146 }
2147 /* If two operands must match, because they are really a single
2148 operand of an assembler insn, then two postincrements are invalid
2149 because the assembler insn would increment only once.
2150 On the other hand, a postincrement matches ordinary indexing
2151 if the postincrement is the output operand. */
2152 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2153 return operands_match_p (XEXP (x, 0), y);
2154 /* Two preincrements are invalid
2155 because the assembler insn would increment only once.
2156 On the other hand, a preincrement matches ordinary indexing
2157 if the preincrement is the input operand.
2158 In this case, return 2, since some callers need to do special
2159 things when this happens. */
2160 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2161 || GET_CODE (y) == PRE_MODIFY)
2162 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2163
2164 slow:
2165
2166 /* Now we have disposed of all the cases
2167 in which different rtx codes can match. */
2168 if (code != GET_CODE (y))
2169 return 0;
2170 if (code == LABEL_REF)
2171 return XEXP (x, 0) == XEXP (y, 0);
2172 if (code == SYMBOL_REF)
2173 return XSTR (x, 0) == XSTR (y, 0);
2174
2175 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2176
2177 if (GET_MODE (x) != GET_MODE (y))
2178 return 0;
2179
2180 /* Compare the elements. If any pair of corresponding elements
2181 fail to match, return 0 for the whole things. */
2182
2183 success_2 = 0;
2184 fmt = GET_RTX_FORMAT (code);
2185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2186 {
2187 int val, j;
2188 switch (fmt[i])
2189 {
2190 case 'w':
2191 if (XWINT (x, i) != XWINT (y, i))
2192 return 0;
2193 break;
2194
2195 case 'i':
2196 if (XINT (x, i) != XINT (y, i))
2197 return 0;
2198 break;
2199
2200 case 'e':
2201 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2202 if (val == 0)
2203 return 0;
2204 /* If any subexpression returns 2,
2205 we should return 2 if we are successful. */
2206 if (val == 2)
2207 success_2 = 1;
2208 break;
2209
2210 case '0':
2211 break;
2212
2213 case 'E':
2214 if (XVECLEN (x, i) != XVECLEN (y, i))
2215 return 0;
2216 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2217 {
2218 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2219 if (val == 0)
2220 return 0;
2221 if (val == 2)
2222 success_2 = 1;
2223 }
2224 break;
2225
2226 /* It is believed that rtx's at this level will never
2227 contain anything but integers and other rtx's,
2228 except for within LABEL_REFs and SYMBOL_REFs. */
2229 default:
2230 abort ();
2231 }
2232 }
2233 return 1 + success_2;
2234 }
2235 \f
2236 /* Describe the range of registers or memory referenced by X.
2237 If X is a register, set REG_FLAG and put the first register
2238 number into START and the last plus one into END.
2239 If X is a memory reference, put a base address into BASE
2240 and a range of integer offsets into START and END.
2241 If X is pushing on the stack, we can assume it causes no trouble,
2242 so we set the SAFE field. */
2243
2244 static struct decomposition
2245 decompose (x)
2246 rtx x;
2247 {
2248 struct decomposition val;
2249 int all_const = 0;
2250
2251 val.reg_flag = 0;
2252 val.safe = 0;
2253 val.base = 0;
2254 if (GET_CODE (x) == MEM)
2255 {
2256 rtx base = NULL_RTX, offset = 0;
2257 rtx addr = XEXP (x, 0);
2258
2259 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2260 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2261 {
2262 val.base = XEXP (addr, 0);
2263 val.start = -GET_MODE_SIZE (GET_MODE (x));
2264 val.end = GET_MODE_SIZE (GET_MODE (x));
2265 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2266 return val;
2267 }
2268
2269 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2270 {
2271 if (GET_CODE (XEXP (addr, 1)) == PLUS
2272 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2273 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2274 {
2275 val.base = XEXP (addr, 0);
2276 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2277 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2278 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2279 return val;
2280 }
2281 }
2282
2283 if (GET_CODE (addr) == CONST)
2284 {
2285 addr = XEXP (addr, 0);
2286 all_const = 1;
2287 }
2288 if (GET_CODE (addr) == PLUS)
2289 {
2290 if (CONSTANT_P (XEXP (addr, 0)))
2291 {
2292 base = XEXP (addr, 1);
2293 offset = XEXP (addr, 0);
2294 }
2295 else if (CONSTANT_P (XEXP (addr, 1)))
2296 {
2297 base = XEXP (addr, 0);
2298 offset = XEXP (addr, 1);
2299 }
2300 }
2301
2302 if (offset == 0)
2303 {
2304 base = addr;
2305 offset = const0_rtx;
2306 }
2307 if (GET_CODE (offset) == CONST)
2308 offset = XEXP (offset, 0);
2309 if (GET_CODE (offset) == PLUS)
2310 {
2311 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2312 {
2313 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2314 offset = XEXP (offset, 0);
2315 }
2316 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2317 {
2318 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2319 offset = XEXP (offset, 1);
2320 }
2321 else
2322 {
2323 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2324 offset = const0_rtx;
2325 }
2326 }
2327 else if (GET_CODE (offset) != CONST_INT)
2328 {
2329 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2330 offset = const0_rtx;
2331 }
2332
2333 if (all_const && GET_CODE (base) == PLUS)
2334 base = gen_rtx_CONST (GET_MODE (base), base);
2335
2336 if (GET_CODE (offset) != CONST_INT)
2337 abort ();
2338
2339 val.start = INTVAL (offset);
2340 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2341 val.base = base;
2342 return val;
2343 }
2344 else if (GET_CODE (x) == REG)
2345 {
2346 val.reg_flag = 1;
2347 val.start = true_regnum (x);
2348 if (val.start < 0)
2349 {
2350 /* A pseudo with no hard reg. */
2351 val.start = REGNO (x);
2352 val.end = val.start + 1;
2353 }
2354 else
2355 /* A hard reg. */
2356 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2357 }
2358 else if (GET_CODE (x) == SUBREG)
2359 {
2360 if (GET_CODE (SUBREG_REG (x)) != REG)
2361 /* This could be more precise, but it's good enough. */
2362 return decompose (SUBREG_REG (x));
2363 val.reg_flag = 1;
2364 val.start = true_regnum (x);
2365 if (val.start < 0)
2366 return decompose (SUBREG_REG (x));
2367 else
2368 /* A hard reg. */
2369 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2370 }
2371 else if (CONSTANT_P (x)
2372 /* This hasn't been assigned yet, so it can't conflict yet. */
2373 || GET_CODE (x) == SCRATCH)
2374 val.safe = 1;
2375 else
2376 abort ();
2377 return val;
2378 }
2379
2380 /* Return 1 if altering Y will not modify the value of X.
2381 Y is also described by YDATA, which should be decompose (Y). */
2382
2383 static int
2384 immune_p (x, y, ydata)
2385 rtx x, y;
2386 struct decomposition ydata;
2387 {
2388 struct decomposition xdata;
2389
2390 if (ydata.reg_flag)
2391 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2392 if (ydata.safe)
2393 return 1;
2394
2395 if (GET_CODE (y) != MEM)
2396 abort ();
2397 /* If Y is memory and X is not, Y can't affect X. */
2398 if (GET_CODE (x) != MEM)
2399 return 1;
2400
2401 xdata = decompose (x);
2402
2403 if (! rtx_equal_p (xdata.base, ydata.base))
2404 {
2405 /* If bases are distinct symbolic constants, there is no overlap. */
2406 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2407 return 1;
2408 /* Constants and stack slots never overlap. */
2409 if (CONSTANT_P (xdata.base)
2410 && (ydata.base == frame_pointer_rtx
2411 || ydata.base == hard_frame_pointer_rtx
2412 || ydata.base == stack_pointer_rtx))
2413 return 1;
2414 if (CONSTANT_P (ydata.base)
2415 && (xdata.base == frame_pointer_rtx
2416 || xdata.base == hard_frame_pointer_rtx
2417 || xdata.base == stack_pointer_rtx))
2418 return 1;
2419 /* If either base is variable, we don't know anything. */
2420 return 0;
2421 }
2422
2423 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2424 }
2425
2426 /* Similar, but calls decompose. */
2427
2428 int
2429 safe_from_earlyclobber (op, clobber)
2430 rtx op, clobber;
2431 {
2432 struct decomposition early_data;
2433
2434 early_data = decompose (clobber);
2435 return immune_p (op, clobber, early_data);
2436 }
2437 \f
2438 /* Main entry point of this file: search the body of INSN
2439 for values that need reloading and record them with push_reload.
2440 REPLACE nonzero means record also where the values occur
2441 so that subst_reloads can be used.
2442
2443 IND_LEVELS says how many levels of indirection are supported by this
2444 machine; a value of zero means that a memory reference is not a valid
2445 memory address.
2446
2447 LIVE_KNOWN says we have valid information about which hard
2448 regs are live at each point in the program; this is true when
2449 we are called from global_alloc but false when stupid register
2450 allocation has been done.
2451
2452 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2453 which is nonnegative if the reg has been commandeered for reloading into.
2454 It is copied into STATIC_RELOAD_REG_P and referenced from there
2455 by various subroutines.
2456
2457 Return TRUE if some operands need to be changed, because of swapping
2458 commutative operands, reg_equiv_address substitution, or whatever. */
2459
2460 int
2461 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2462 rtx insn;
2463 int replace, ind_levels;
2464 int live_known;
2465 short *reload_reg_p;
2466 {
2467 int insn_code_number;
2468 int i, j;
2469 int noperands;
2470 /* These start out as the constraints for the insn
2471 and they are chewed up as we consider alternatives. */
2472 char *constraints[MAX_RECOG_OPERANDS];
2473 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2474 a register. */
2475 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2476 char pref_or_nothing[MAX_RECOG_OPERANDS];
2477 /* Nonzero for a MEM operand whose entire address needs a reload. */
2478 int address_reloaded[MAX_RECOG_OPERANDS];
2479 /* Nonzero for an address operand that needs to be completely reloaded. */
2480 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2481 /* Value of enum reload_type to use for operand. */
2482 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2483 /* Value of enum reload_type to use within address of operand. */
2484 enum reload_type address_type[MAX_RECOG_OPERANDS];
2485 /* Save the usage of each operand. */
2486 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2487 int no_input_reloads = 0, no_output_reloads = 0;
2488 int n_alternatives;
2489 int this_alternative[MAX_RECOG_OPERANDS];
2490 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2491 char this_alternative_win[MAX_RECOG_OPERANDS];
2492 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2493 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2494 int this_alternative_matches[MAX_RECOG_OPERANDS];
2495 int swapped;
2496 int goal_alternative[MAX_RECOG_OPERANDS];
2497 int this_alternative_number;
2498 int goal_alternative_number = 0;
2499 int operand_reloadnum[MAX_RECOG_OPERANDS];
2500 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2501 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2502 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2503 char goal_alternative_win[MAX_RECOG_OPERANDS];
2504 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2505 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2506 int goal_alternative_swapped;
2507 int best;
2508 int commutative;
2509 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2510 rtx substed_operand[MAX_RECOG_OPERANDS];
2511 rtx body = PATTERN (insn);
2512 rtx set = single_set (insn);
2513 int goal_earlyclobber = 0, this_earlyclobber;
2514 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2515 int retval = 0;
2516
2517 this_insn = insn;
2518 n_reloads = 0;
2519 n_replacements = 0;
2520 n_earlyclobbers = 0;
2521 replace_reloads = replace;
2522 hard_regs_live_known = live_known;
2523 static_reload_reg_p = reload_reg_p;
2524
2525 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2526 neither are insns that SET cc0. Insns that use CC0 are not allowed
2527 to have any input reloads. */
2528 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2529 no_output_reloads = 1;
2530
2531 #ifdef HAVE_cc0
2532 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2533 no_input_reloads = 1;
2534 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2535 no_output_reloads = 1;
2536 #endif
2537
2538 #ifdef SECONDARY_MEMORY_NEEDED
2539 /* The eliminated forms of any secondary memory locations are per-insn, so
2540 clear them out here. */
2541
2542 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2543 #endif
2544
2545 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2546 is cheap to move between them. If it is not, there may not be an insn
2547 to do the copy, so we may need a reload. */
2548 if (GET_CODE (body) == SET
2549 && GET_CODE (SET_DEST (body)) == REG
2550 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2551 && GET_CODE (SET_SRC (body)) == REG
2552 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2553 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2554 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2555 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2556 return 0;
2557
2558 extract_insn (insn);
2559
2560 noperands = reload_n_operands = recog_data.n_operands;
2561 n_alternatives = recog_data.n_alternatives;
2562
2563 /* Just return "no reloads" if insn has no operands with constraints. */
2564 if (noperands == 0 || n_alternatives == 0)
2565 return 0;
2566
2567 insn_code_number = INSN_CODE (insn);
2568 this_insn_is_asm = insn_code_number < 0;
2569
2570 memcpy (operand_mode, recog_data.operand_mode,
2571 noperands * sizeof (enum machine_mode));
2572 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2573
2574 commutative = -1;
2575
2576 /* If we will need to know, later, whether some pair of operands
2577 are the same, we must compare them now and save the result.
2578 Reloading the base and index registers will clobber them
2579 and afterward they will fail to match. */
2580
2581 for (i = 0; i < noperands; i++)
2582 {
2583 char *p;
2584 int c;
2585
2586 substed_operand[i] = recog_data.operand[i];
2587 p = constraints[i];
2588
2589 modified[i] = RELOAD_READ;
2590
2591 /* Scan this operand's constraint to see if it is an output operand,
2592 an in-out operand, is commutative, or should match another. */
2593
2594 while ((c = *p))
2595 {
2596 p += CONSTRAINT_LEN (c, p);
2597 if (c == '=')
2598 modified[i] = RELOAD_WRITE;
2599 else if (c == '+')
2600 modified[i] = RELOAD_READ_WRITE;
2601 else if (c == '%')
2602 {
2603 /* The last operand should not be marked commutative. */
2604 if (i == noperands - 1)
2605 abort ();
2606
2607 commutative = i;
2608 }
2609 else if (ISDIGIT (c))
2610 {
2611 c = strtoul (p - 1, &p, 10);
2612
2613 operands_match[c][i]
2614 = operands_match_p (recog_data.operand[c],
2615 recog_data.operand[i]);
2616
2617 /* An operand may not match itself. */
2618 if (c == i)
2619 abort ();
2620
2621 /* If C can be commuted with C+1, and C might need to match I,
2622 then C+1 might also need to match I. */
2623 if (commutative >= 0)
2624 {
2625 if (c == commutative || c == commutative + 1)
2626 {
2627 int other = c + (c == commutative ? 1 : -1);
2628 operands_match[other][i]
2629 = operands_match_p (recog_data.operand[other],
2630 recog_data.operand[i]);
2631 }
2632 if (i == commutative || i == commutative + 1)
2633 {
2634 int other = i + (i == commutative ? 1 : -1);
2635 operands_match[c][other]
2636 = operands_match_p (recog_data.operand[c],
2637 recog_data.operand[other]);
2638 }
2639 /* Note that C is supposed to be less than I.
2640 No need to consider altering both C and I because in
2641 that case we would alter one into the other. */
2642 }
2643 }
2644 }
2645 }
2646
2647 /* Examine each operand that is a memory reference or memory address
2648 and reload parts of the addresses into index registers.
2649 Also here any references to pseudo regs that didn't get hard regs
2650 but are equivalent to constants get replaced in the insn itself
2651 with those constants. Nobody will ever see them again.
2652
2653 Finally, set up the preferred classes of each operand. */
2654
2655 for (i = 0; i < noperands; i++)
2656 {
2657 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2658
2659 address_reloaded[i] = 0;
2660 address_operand_reloaded[i] = 0;
2661 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2662 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2663 : RELOAD_OTHER);
2664 address_type[i]
2665 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2666 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2667 : RELOAD_OTHER);
2668
2669 if (*constraints[i] == 0)
2670 /* Ignore things like match_operator operands. */
2671 ;
2672 else if (constraints[i][0] == 'p'
2673 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2674 {
2675 address_operand_reloaded[i]
2676 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2677 recog_data.operand[i],
2678 recog_data.operand_loc[i],
2679 i, operand_type[i], ind_levels, insn);
2680
2681 /* If we now have a simple operand where we used to have a
2682 PLUS or MULT, re-recognize and try again. */
2683 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2684 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2685 && (GET_CODE (recog_data.operand[i]) == MULT
2686 || GET_CODE (recog_data.operand[i]) == PLUS))
2687 {
2688 INSN_CODE (insn) = -1;
2689 retval = find_reloads (insn, replace, ind_levels, live_known,
2690 reload_reg_p);
2691 return retval;
2692 }
2693
2694 recog_data.operand[i] = *recog_data.operand_loc[i];
2695 substed_operand[i] = recog_data.operand[i];
2696
2697 /* Address operands are reloaded in their existing mode,
2698 no matter what is specified in the machine description. */
2699 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2700 }
2701 else if (code == MEM)
2702 {
2703 address_reloaded[i]
2704 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2705 recog_data.operand_loc[i],
2706 XEXP (recog_data.operand[i], 0),
2707 &XEXP (recog_data.operand[i], 0),
2708 i, address_type[i], ind_levels, insn);
2709 recog_data.operand[i] = *recog_data.operand_loc[i];
2710 substed_operand[i] = recog_data.operand[i];
2711 }
2712 else if (code == SUBREG)
2713 {
2714 rtx reg = SUBREG_REG (recog_data.operand[i]);
2715 rtx op
2716 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2717 ind_levels,
2718 set != 0
2719 && &SET_DEST (set) == recog_data.operand_loc[i],
2720 insn,
2721 &address_reloaded[i]);
2722
2723 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2724 that didn't get a hard register, emit a USE with a REG_EQUAL
2725 note in front so that we might inherit a previous, possibly
2726 wider reload. */
2727
2728 if (replace
2729 && GET_CODE (op) == MEM
2730 && GET_CODE (reg) == REG
2731 && (GET_MODE_SIZE (GET_MODE (reg))
2732 >= GET_MODE_SIZE (GET_MODE (op))))
2733 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2734 insn),
2735 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2736
2737 substed_operand[i] = recog_data.operand[i] = op;
2738 }
2739 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2740 /* We can get a PLUS as an "operand" as a result of register
2741 elimination. See eliminate_regs and gen_reload. We handle
2742 a unary operator by reloading the operand. */
2743 substed_operand[i] = recog_data.operand[i]
2744 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2745 ind_levels, 0, insn,
2746 &address_reloaded[i]);
2747 else if (code == REG)
2748 {
2749 /* This is equivalent to calling find_reloads_toplev.
2750 The code is duplicated for speed.
2751 When we find a pseudo always equivalent to a constant,
2752 we replace it by the constant. We must be sure, however,
2753 that we don't try to replace it in the insn in which it
2754 is being set. */
2755 int regno = REGNO (recog_data.operand[i]);
2756 if (reg_equiv_constant[regno] != 0
2757 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2758 {
2759 /* Record the existing mode so that the check if constants are
2760 allowed will work when operand_mode isn't specified. */
2761
2762 if (operand_mode[i] == VOIDmode)
2763 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2764
2765 substed_operand[i] = recog_data.operand[i]
2766 = reg_equiv_constant[regno];
2767 }
2768 if (reg_equiv_memory_loc[regno] != 0
2769 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2770 /* We need not give a valid is_set_dest argument since the case
2771 of a constant equivalence was checked above. */
2772 substed_operand[i] = recog_data.operand[i]
2773 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2774 ind_levels, 0, insn,
2775 &address_reloaded[i]);
2776 }
2777 /* If the operand is still a register (we didn't replace it with an
2778 equivalent), get the preferred class to reload it into. */
2779 code = GET_CODE (recog_data.operand[i]);
2780 preferred_class[i]
2781 = ((code == REG && REGNO (recog_data.operand[i])
2782 >= FIRST_PSEUDO_REGISTER)
2783 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2784 : NO_REGS);
2785 pref_or_nothing[i]
2786 = (code == REG
2787 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2788 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2789 }
2790
2791 /* If this is simply a copy from operand 1 to operand 0, merge the
2792 preferred classes for the operands. */
2793 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2794 && recog_data.operand[1] == SET_SRC (set))
2795 {
2796 preferred_class[0] = preferred_class[1]
2797 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2798 pref_or_nothing[0] |= pref_or_nothing[1];
2799 pref_or_nothing[1] |= pref_or_nothing[0];
2800 }
2801
2802 /* Now see what we need for pseudo-regs that didn't get hard regs
2803 or got the wrong kind of hard reg. For this, we must consider
2804 all the operands together against the register constraints. */
2805
2806 best = MAX_RECOG_OPERANDS * 2 + 600;
2807
2808 swapped = 0;
2809 goal_alternative_swapped = 0;
2810 try_swapped:
2811
2812 /* The constraints are made of several alternatives.
2813 Each operand's constraint looks like foo,bar,... with commas
2814 separating the alternatives. The first alternatives for all
2815 operands go together, the second alternatives go together, etc.
2816
2817 First loop over alternatives. */
2818
2819 for (this_alternative_number = 0;
2820 this_alternative_number < n_alternatives;
2821 this_alternative_number++)
2822 {
2823 /* Loop over operands for one constraint alternative. */
2824 /* LOSERS counts those that don't fit this alternative
2825 and would require loading. */
2826 int losers = 0;
2827 /* BAD is set to 1 if it some operand can't fit this alternative
2828 even after reloading. */
2829 int bad = 0;
2830 /* REJECT is a count of how undesirable this alternative says it is
2831 if any reloading is required. If the alternative matches exactly
2832 then REJECT is ignored, but otherwise it gets this much
2833 counted against it in addition to the reloading needed. Each
2834 ? counts three times here since we want the disparaging caused by
2835 a bad register class to only count 1/3 as much. */
2836 int reject = 0;
2837
2838 this_earlyclobber = 0;
2839
2840 for (i = 0; i < noperands; i++)
2841 {
2842 char *p = constraints[i];
2843 char *end;
2844 int len;
2845 int win = 0;
2846 int did_match = 0;
2847 /* 0 => this operand can be reloaded somehow for this alternative. */
2848 int badop = 1;
2849 /* 0 => this operand can be reloaded if the alternative allows regs. */
2850 int winreg = 0;
2851 int c;
2852 int m;
2853 rtx operand = recog_data.operand[i];
2854 int offset = 0;
2855 /* Nonzero means this is a MEM that must be reloaded into a reg
2856 regardless of what the constraint says. */
2857 int force_reload = 0;
2858 int offmemok = 0;
2859 /* Nonzero if a constant forced into memory would be OK for this
2860 operand. */
2861 int constmemok = 0;
2862 int earlyclobber = 0;
2863
2864 /* If the predicate accepts a unary operator, it means that
2865 we need to reload the operand, but do not do this for
2866 match_operator and friends. */
2867 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2868 operand = XEXP (operand, 0);
2869
2870 /* If the operand is a SUBREG, extract
2871 the REG or MEM (or maybe even a constant) within.
2872 (Constants can occur as a result of reg_equiv_constant.) */
2873
2874 while (GET_CODE (operand) == SUBREG)
2875 {
2876 /* Offset only matters when operand is a REG and
2877 it is a hard reg. This is because it is passed
2878 to reg_fits_class_p if it is a REG and all pseudos
2879 return 0 from that function. */
2880 if (GET_CODE (SUBREG_REG (operand)) == REG
2881 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2882 {
2883 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2884 GET_MODE (SUBREG_REG (operand)),
2885 SUBREG_BYTE (operand),
2886 GET_MODE (operand));
2887 }
2888 operand = SUBREG_REG (operand);
2889 /* Force reload if this is a constant or PLUS or if there may
2890 be a problem accessing OPERAND in the outer mode. */
2891 if (CONSTANT_P (operand)
2892 || GET_CODE (operand) == PLUS
2893 /* We must force a reload of paradoxical SUBREGs
2894 of a MEM because the alignment of the inner value
2895 may not be enough to do the outer reference. On
2896 big-endian machines, it may also reference outside
2897 the object.
2898
2899 On machines that extend byte operations and we have a
2900 SUBREG where both the inner and outer modes are no wider
2901 than a word and the inner mode is narrower, is integral,
2902 and gets extended when loaded from memory, combine.c has
2903 made assumptions about the behavior of the machine in such
2904 register access. If the data is, in fact, in memory we
2905 must always load using the size assumed to be in the
2906 register and let the insn do the different-sized
2907 accesses.
2908
2909 This is doubly true if WORD_REGISTER_OPERATIONS. In
2910 this case eliminate_regs has left non-paradoxical
2911 subregs for push_reloads to see. Make sure it does
2912 by forcing the reload.
2913
2914 ??? When is it right at this stage to have a subreg
2915 of a mem that is _not_ to be handled specially? IMO
2916 those should have been reduced to just a mem. */
2917 || ((GET_CODE (operand) == MEM
2918 || (GET_CODE (operand)== REG
2919 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2920 #ifndef WORD_REGISTER_OPERATIONS
2921 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2922 < BIGGEST_ALIGNMENT)
2923 && (GET_MODE_SIZE (operand_mode[i])
2924 > GET_MODE_SIZE (GET_MODE (operand))))
2925 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2926 #ifdef LOAD_EXTEND_OP
2927 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2928 && (GET_MODE_SIZE (GET_MODE (operand))
2929 <= UNITS_PER_WORD)
2930 && (GET_MODE_SIZE (operand_mode[i])
2931 > GET_MODE_SIZE (GET_MODE (operand)))
2932 && INTEGRAL_MODE_P (GET_MODE (operand))
2933 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2934 #endif
2935 )
2936 #endif
2937 )
2938 /* This following hunk of code should no longer be
2939 needed at all with SUBREG_BYTE. If you need this
2940 code back, please explain to me why so I can
2941 fix the real problem. -DaveM */
2942 #if 0
2943 /* Subreg of a hard reg which can't handle the subreg's mode
2944 or which would handle that mode in the wrong number of
2945 registers for subregging to work. */
2946 || (GET_CODE (operand) == REG
2947 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2948 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2949 && (GET_MODE_SIZE (GET_MODE (operand))
2950 > UNITS_PER_WORD)
2951 && ((GET_MODE_SIZE (GET_MODE (operand))
2952 / UNITS_PER_WORD)
2953 != HARD_REGNO_NREGS (REGNO (operand),
2954 GET_MODE (operand))))
2955 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2956 operand_mode[i])))
2957 #endif
2958 )
2959 force_reload = 1;
2960 }
2961
2962 this_alternative[i] = (int) NO_REGS;
2963 this_alternative_win[i] = 0;
2964 this_alternative_match_win[i] = 0;
2965 this_alternative_offmemok[i] = 0;
2966 this_alternative_earlyclobber[i] = 0;
2967 this_alternative_matches[i] = -1;
2968
2969 /* An empty constraint or empty alternative
2970 allows anything which matched the pattern. */
2971 if (*p == 0 || *p == ',')
2972 win = 1, badop = 0;
2973
2974 /* Scan this alternative's specs for this operand;
2975 set WIN if the operand fits any letter in this alternative.
2976 Otherwise, clear BADOP if this operand could
2977 fit some letter after reloads,
2978 or set WINREG if this operand could fit after reloads
2979 provided the constraint allows some registers. */
2980
2981 do
2982 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2983 {
2984 case '\0':
2985 len = 0;
2986 break;
2987 case ',':
2988 c = '\0';
2989 break;
2990
2991 case '=': case '+': case '*':
2992 break;
2993
2994 case '%':
2995 /* The last operand should not be marked commutative. */
2996 if (i != noperands - 1)
2997 commutative = i;
2998 break;
2999
3000 case '?':
3001 reject += 6;
3002 break;
3003
3004 case '!':
3005 reject = 600;
3006 break;
3007
3008 case '#':
3009 /* Ignore rest of this alternative as far as
3010 reloading is concerned. */
3011 do
3012 p++;
3013 while (*p && *p != ',');
3014 len = 0;
3015 break;
3016
3017 case '0': case '1': case '2': case '3': case '4':
3018 case '5': case '6': case '7': case '8': case '9':
3019 m = strtoul (p, &end, 10);
3020 p = end;
3021 len = 0;
3022
3023 this_alternative_matches[i] = m;
3024 /* We are supposed to match a previous operand.
3025 If we do, we win if that one did.
3026 If we do not, count both of the operands as losers.
3027 (This is too conservative, since most of the time
3028 only a single reload insn will be needed to make
3029 the two operands win. As a result, this alternative
3030 may be rejected when it is actually desirable.) */
3031 if ((swapped && (m != commutative || i != commutative + 1))
3032 /* If we are matching as if two operands were swapped,
3033 also pretend that operands_match had been computed
3034 with swapped.
3035 But if I is the second of those and C is the first,
3036 don't exchange them, because operands_match is valid
3037 only on one side of its diagonal. */
3038 ? (operands_match
3039 [(m == commutative || m == commutative + 1)
3040 ? 2 * commutative + 1 - m : m]
3041 [(i == commutative || i == commutative + 1)
3042 ? 2 * commutative + 1 - i : i])
3043 : operands_match[m][i])
3044 {
3045 /* If we are matching a non-offsettable address where an
3046 offsettable address was expected, then we must reject
3047 this combination, because we can't reload it. */
3048 if (this_alternative_offmemok[m]
3049 && GET_CODE (recog_data.operand[m]) == MEM
3050 && this_alternative[m] == (int) NO_REGS
3051 && ! this_alternative_win[m])
3052 bad = 1;
3053
3054 did_match = this_alternative_win[m];
3055 }
3056 else
3057 {
3058 /* Operands don't match. */
3059 rtx value;
3060 /* Retroactively mark the operand we had to match
3061 as a loser, if it wasn't already. */
3062 if (this_alternative_win[m])
3063 losers++;
3064 this_alternative_win[m] = 0;
3065 if (this_alternative[m] == (int) NO_REGS)
3066 bad = 1;
3067 /* But count the pair only once in the total badness of
3068 this alternative, if the pair can be a dummy reload. */
3069 value
3070 = find_dummy_reload (recog_data.operand[i],
3071 recog_data.operand[m],
3072 recog_data.operand_loc[i],
3073 recog_data.operand_loc[m],
3074 operand_mode[i], operand_mode[m],
3075 this_alternative[m], -1,
3076 this_alternative_earlyclobber[m]);
3077
3078 if (value != 0)
3079 losers--;
3080 }
3081 /* This can be fixed with reloads if the operand
3082 we are supposed to match can be fixed with reloads. */
3083 badop = 0;
3084 this_alternative[i] = this_alternative[m];
3085
3086 /* If we have to reload this operand and some previous
3087 operand also had to match the same thing as this
3088 operand, we don't know how to do that. So reject this
3089 alternative. */
3090 if (! did_match || force_reload)
3091 for (j = 0; j < i; j++)
3092 if (this_alternative_matches[j]
3093 == this_alternative_matches[i])
3094 badop = 1;
3095 break;
3096
3097 case 'p':
3098 /* All necessary reloads for an address_operand
3099 were handled in find_reloads_address. */
3100 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3101 win = 1;
3102 badop = 0;
3103 break;
3104
3105 case 'm':
3106 if (force_reload)
3107 break;
3108 if (GET_CODE (operand) == MEM
3109 || (GET_CODE (operand) == REG
3110 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3111 && reg_renumber[REGNO (operand)] < 0))
3112 win = 1;
3113 if (CONSTANT_P (operand)
3114 /* force_const_mem does not accept HIGH. */
3115 && GET_CODE (operand) != HIGH)
3116 badop = 0;
3117 constmemok = 1;
3118 break;
3119
3120 case '<':
3121 if (GET_CODE (operand) == MEM
3122 && ! address_reloaded[i]
3123 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3124 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3125 win = 1;
3126 break;
3127
3128 case '>':
3129 if (GET_CODE (operand) == MEM
3130 && ! address_reloaded[i]
3131 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3132 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3133 win = 1;
3134 break;
3135
3136 /* Memory operand whose address is not offsettable. */
3137 case 'V':
3138 if (force_reload)
3139 break;
3140 if (GET_CODE (operand) == MEM
3141 && ! (ind_levels ? offsettable_memref_p (operand)
3142 : offsettable_nonstrict_memref_p (operand))
3143 /* Certain mem addresses will become offsettable
3144 after they themselves are reloaded. This is important;
3145 we don't want our own handling of unoffsettables
3146 to override the handling of reg_equiv_address. */
3147 && !(GET_CODE (XEXP (operand, 0)) == REG
3148 && (ind_levels == 0
3149 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3150 win = 1;
3151 break;
3152
3153 /* Memory operand whose address is offsettable. */
3154 case 'o':
3155 if (force_reload)
3156 break;
3157 if ((GET_CODE (operand) == MEM
3158 /* If IND_LEVELS, find_reloads_address won't reload a
3159 pseudo that didn't get a hard reg, so we have to
3160 reject that case. */
3161 && ((ind_levels ? offsettable_memref_p (operand)
3162 : offsettable_nonstrict_memref_p (operand))
3163 /* A reloaded address is offsettable because it is now
3164 just a simple register indirect. */
3165 || address_reloaded[i]))
3166 || (GET_CODE (operand) == REG
3167 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3168 && reg_renumber[REGNO (operand)] < 0
3169 /* If reg_equiv_address is nonzero, we will be
3170 loading it into a register; hence it will be
3171 offsettable, but we cannot say that reg_equiv_mem
3172 is offsettable without checking. */
3173 && ((reg_equiv_mem[REGNO (operand)] != 0
3174 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3175 || (reg_equiv_address[REGNO (operand)] != 0))))
3176 win = 1;
3177 /* force_const_mem does not accept HIGH. */
3178 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3179 || GET_CODE (operand) == MEM)
3180 badop = 0;
3181 constmemok = 1;
3182 offmemok = 1;
3183 break;
3184
3185 case '&':
3186 /* Output operand that is stored before the need for the
3187 input operands (and their index registers) is over. */
3188 earlyclobber = 1, this_earlyclobber = 1;
3189 break;
3190
3191 case 'E':
3192 case 'F':
3193 if (GET_CODE (operand) == CONST_DOUBLE
3194 || (GET_CODE (operand) == CONST_VECTOR
3195 && (GET_MODE_CLASS (GET_MODE (operand))
3196 == MODE_VECTOR_FLOAT)))
3197 win = 1;
3198 break;
3199
3200 case 'G':
3201 case 'H':
3202 if (GET_CODE (operand) == CONST_DOUBLE
3203 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3204 win = 1;
3205 break;
3206
3207 case 's':
3208 if (GET_CODE (operand) == CONST_INT
3209 || (GET_CODE (operand) == CONST_DOUBLE
3210 && GET_MODE (operand) == VOIDmode))
3211 break;
3212 case 'i':
3213 if (CONSTANT_P (operand)
3214 #ifdef LEGITIMATE_PIC_OPERAND_P
3215 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3216 #endif
3217 )
3218 win = 1;
3219 break;
3220
3221 case 'n':
3222 if (GET_CODE (operand) == CONST_INT
3223 || (GET_CODE (operand) == CONST_DOUBLE
3224 && GET_MODE (operand) == VOIDmode))
3225 win = 1;
3226 break;
3227
3228 case 'I':
3229 case 'J':
3230 case 'K':
3231 case 'L':
3232 case 'M':
3233 case 'N':
3234 case 'O':
3235 case 'P':
3236 if (GET_CODE (operand) == CONST_INT
3237 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3238 win = 1;
3239 break;
3240
3241 case 'X':
3242 win = 1;
3243 break;
3244
3245 case 'g':
3246 if (! force_reload
3247 /* A PLUS is never a valid operand, but reload can make
3248 it from a register when eliminating registers. */
3249 && GET_CODE (operand) != PLUS
3250 /* A SCRATCH is not a valid operand. */
3251 && GET_CODE (operand) != SCRATCH
3252 #ifdef LEGITIMATE_PIC_OPERAND_P
3253 && (! CONSTANT_P (operand)
3254 || ! flag_pic
3255 || LEGITIMATE_PIC_OPERAND_P (operand))
3256 #endif
3257 && (GENERAL_REGS == ALL_REGS
3258 || GET_CODE (operand) != REG
3259 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3260 && reg_renumber[REGNO (operand)] < 0)))
3261 win = 1;
3262 /* Drop through into 'r' case. */
3263
3264 case 'r':
3265 this_alternative[i]
3266 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3267 goto reg;
3268
3269 default:
3270 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3271 {
3272 #ifdef EXTRA_CONSTRAINT_STR
3273 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3274 {
3275 if (force_reload)
3276 break;
3277 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3278 win = 1;
3279 /* If the address was already reloaded,
3280 we win as well. */
3281 if (GET_CODE (operand) == MEM && address_reloaded[i])
3282 win = 1;
3283 /* Likewise if the address will be reloaded because
3284 reg_equiv_address is nonzero. For reg_equiv_mem
3285 we have to check. */
3286 if (GET_CODE (operand) == REG
3287 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3288 && reg_renumber[REGNO (operand)] < 0
3289 && ((reg_equiv_mem[REGNO (operand)] != 0
3290 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3291 || (reg_equiv_address[REGNO (operand)] != 0)))
3292 win = 1;
3293
3294 /* If we didn't already win, we can reload
3295 constants via force_const_mem, and other
3296 MEMs by reloading the address like for 'o'. */
3297 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3298 || GET_CODE (operand) == MEM)
3299 badop = 0;
3300 constmemok = 1;
3301 offmemok = 1;
3302 break;
3303 }
3304 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3305 {
3306 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3307 win = 1;
3308
3309 /* If we didn't already win, we can reload
3310 the address into a base register. */
3311 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3312 badop = 0;
3313 break;
3314 }
3315
3316 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3317 win = 1;
3318 #endif
3319 break;
3320 }
3321
3322 this_alternative[i]
3323 = (int) (reg_class_subunion
3324 [this_alternative[i]]
3325 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3326 reg:
3327 if (GET_MODE (operand) == BLKmode)
3328 break;
3329 winreg = 1;
3330 if (GET_CODE (operand) == REG
3331 && reg_fits_class_p (operand, this_alternative[i],
3332 offset, GET_MODE (recog_data.operand[i])))
3333 win = 1;
3334 break;
3335 }
3336 while ((p += len), c);
3337
3338 constraints[i] = p;
3339
3340 /* If this operand could be handled with a reg,
3341 and some reg is allowed, then this operand can be handled. */
3342 if (winreg && this_alternative[i] != (int) NO_REGS)
3343 badop = 0;
3344
3345 /* Record which operands fit this alternative. */
3346 this_alternative_earlyclobber[i] = earlyclobber;
3347 if (win && ! force_reload)
3348 this_alternative_win[i] = 1;
3349 else if (did_match && ! force_reload)
3350 this_alternative_match_win[i] = 1;
3351 else
3352 {
3353 int const_to_mem = 0;
3354
3355 this_alternative_offmemok[i] = offmemok;
3356 losers++;
3357 if (badop)
3358 bad = 1;
3359 /* Alternative loses if it has no regs for a reg operand. */
3360 if (GET_CODE (operand) == REG
3361 && this_alternative[i] == (int) NO_REGS
3362 && this_alternative_matches[i] < 0)
3363 bad = 1;
3364
3365 /* If this is a constant that is reloaded into the desired
3366 class by copying it to memory first, count that as another
3367 reload. This is consistent with other code and is
3368 required to avoid choosing another alternative when
3369 the constant is moved into memory by this function on
3370 an early reload pass. Note that the test here is
3371 precisely the same as in the code below that calls
3372 force_const_mem. */
3373 if (CONSTANT_P (operand)
3374 /* force_const_mem does not accept HIGH. */
3375 && GET_CODE (operand) != HIGH
3376 && ((PREFERRED_RELOAD_CLASS (operand,
3377 (enum reg_class) this_alternative[i])
3378 == NO_REGS)
3379 || no_input_reloads)
3380 && operand_mode[i] != VOIDmode)
3381 {
3382 const_to_mem = 1;
3383 if (this_alternative[i] != (int) NO_REGS)
3384 losers++;
3385 }
3386
3387 /* If we can't reload this value at all, reject this
3388 alternative. Note that we could also lose due to
3389 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3390 here. */
3391
3392 if (! CONSTANT_P (operand)
3393 && (enum reg_class) this_alternative[i] != NO_REGS
3394 && (PREFERRED_RELOAD_CLASS (operand,
3395 (enum reg_class) this_alternative[i])
3396 == NO_REGS))
3397 bad = 1;
3398
3399 /* Alternative loses if it requires a type of reload not
3400 permitted for this insn. We can always reload SCRATCH
3401 and objects with a REG_UNUSED note. */
3402 else if (GET_CODE (operand) != SCRATCH
3403 && modified[i] != RELOAD_READ && no_output_reloads
3404 && ! find_reg_note (insn, REG_UNUSED, operand))
3405 bad = 1;
3406 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3407 && ! const_to_mem)
3408 bad = 1;
3409
3410 /* We prefer to reload pseudos over reloading other things,
3411 since such reloads may be able to be eliminated later.
3412 If we are reloading a SCRATCH, we won't be generating any
3413 insns, just using a register, so it is also preferred.
3414 So bump REJECT in other cases. Don't do this in the
3415 case where we are forcing a constant into memory and
3416 it will then win since we don't want to have a different
3417 alternative match then. */
3418 if (! (GET_CODE (operand) == REG
3419 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3420 && GET_CODE (operand) != SCRATCH
3421 && ! (const_to_mem && constmemok))
3422 reject += 2;
3423
3424 /* Input reloads can be inherited more often than output
3425 reloads can be removed, so penalize output reloads. */
3426 if (operand_type[i] != RELOAD_FOR_INPUT
3427 && GET_CODE (operand) != SCRATCH)
3428 reject++;
3429 }
3430
3431 /* If this operand is a pseudo register that didn't get a hard
3432 reg and this alternative accepts some register, see if the
3433 class that we want is a subset of the preferred class for this
3434 register. If not, but it intersects that class, use the
3435 preferred class instead. If it does not intersect the preferred
3436 class, show that usage of this alternative should be discouraged;
3437 it will be discouraged more still if the register is `preferred
3438 or nothing'. We do this because it increases the chance of
3439 reusing our spill register in a later insn and avoiding a pair
3440 of memory stores and loads.
3441
3442 Don't bother with this if this alternative will accept this
3443 operand.
3444
3445 Don't do this for a multiword operand, since it is only a
3446 small win and has the risk of requiring more spill registers,
3447 which could cause a large loss.
3448
3449 Don't do this if the preferred class has only one register
3450 because we might otherwise exhaust the class. */
3451
3452 if (! win && ! did_match
3453 && this_alternative[i] != (int) NO_REGS
3454 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3455 && reg_class_size[(int) preferred_class[i]] > 1)
3456 {
3457 if (! reg_class_subset_p (this_alternative[i],
3458 preferred_class[i]))
3459 {
3460 /* Since we don't have a way of forming the intersection,
3461 we just do something special if the preferred class
3462 is a subset of the class we have; that's the most
3463 common case anyway. */
3464 if (reg_class_subset_p (preferred_class[i],
3465 this_alternative[i]))
3466 this_alternative[i] = (int) preferred_class[i];
3467 else
3468 reject += (2 + 2 * pref_or_nothing[i]);
3469 }
3470 }
3471 }
3472
3473 /* Now see if any output operands that are marked "earlyclobber"
3474 in this alternative conflict with any input operands
3475 or any memory addresses. */
3476
3477 for (i = 0; i < noperands; i++)
3478 if (this_alternative_earlyclobber[i]
3479 && (this_alternative_win[i] || this_alternative_match_win[i]))
3480 {
3481 struct decomposition early_data;
3482
3483 early_data = decompose (recog_data.operand[i]);
3484
3485 if (modified[i] == RELOAD_READ)
3486 abort ();
3487
3488 if (this_alternative[i] == NO_REGS)
3489 {
3490 this_alternative_earlyclobber[i] = 0;
3491 if (this_insn_is_asm)
3492 error_for_asm (this_insn,
3493 "`&' constraint used with no register class");
3494 else
3495 abort ();
3496 }
3497
3498 for (j = 0; j < noperands; j++)
3499 /* Is this an input operand or a memory ref? */
3500 if ((GET_CODE (recog_data.operand[j]) == MEM
3501 || modified[j] != RELOAD_WRITE)
3502 && j != i
3503 /* Ignore things like match_operator operands. */
3504 && *recog_data.constraints[j] != 0
3505 /* Don't count an input operand that is constrained to match
3506 the early clobber operand. */
3507 && ! (this_alternative_matches[j] == i
3508 && rtx_equal_p (recog_data.operand[i],
3509 recog_data.operand[j]))
3510 /* Is it altered by storing the earlyclobber operand? */
3511 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3512 early_data))
3513 {
3514 /* If the output is in a single-reg class,
3515 it's costly to reload it, so reload the input instead. */
3516 if (reg_class_size[this_alternative[i]] == 1
3517 && (GET_CODE (recog_data.operand[j]) == REG
3518 || GET_CODE (recog_data.operand[j]) == SUBREG))
3519 {
3520 losers++;
3521 this_alternative_win[j] = 0;
3522 this_alternative_match_win[j] = 0;
3523 }
3524 else
3525 break;
3526 }
3527 /* If an earlyclobber operand conflicts with something,
3528 it must be reloaded, so request this and count the cost. */
3529 if (j != noperands)
3530 {
3531 losers++;
3532 this_alternative_win[i] = 0;
3533 this_alternative_match_win[j] = 0;
3534 for (j = 0; j < noperands; j++)
3535 if (this_alternative_matches[j] == i
3536 && this_alternative_match_win[j])
3537 {
3538 this_alternative_win[j] = 0;
3539 this_alternative_match_win[j] = 0;
3540 losers++;
3541 }
3542 }
3543 }
3544
3545 /* If one alternative accepts all the operands, no reload required,
3546 choose that alternative; don't consider the remaining ones. */
3547 if (losers == 0)
3548 {
3549 /* Unswap these so that they are never swapped at `finish'. */
3550 if (commutative >= 0)
3551 {
3552 recog_data.operand[commutative] = substed_operand[commutative];
3553 recog_data.operand[commutative + 1]
3554 = substed_operand[commutative + 1];
3555 }
3556 for (i = 0; i < noperands; i++)
3557 {
3558 goal_alternative_win[i] = this_alternative_win[i];
3559 goal_alternative_match_win[i] = this_alternative_match_win[i];
3560 goal_alternative[i] = this_alternative[i];
3561 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3562 goal_alternative_matches[i] = this_alternative_matches[i];
3563 goal_alternative_earlyclobber[i]
3564 = this_alternative_earlyclobber[i];
3565 }
3566 goal_alternative_number = this_alternative_number;
3567 goal_alternative_swapped = swapped;
3568 goal_earlyclobber = this_earlyclobber;
3569 goto finish;
3570 }
3571
3572 /* REJECT, set by the ! and ? constraint characters and when a register
3573 would be reloaded into a non-preferred class, discourages the use of
3574 this alternative for a reload goal. REJECT is incremented by six
3575 for each ? and two for each non-preferred class. */
3576 losers = losers * 6 + reject;
3577
3578 /* If this alternative can be made to work by reloading,
3579 and it needs less reloading than the others checked so far,
3580 record it as the chosen goal for reloading. */
3581 if (! bad && best > losers)
3582 {
3583 for (i = 0; i < noperands; i++)
3584 {
3585 goal_alternative[i] = this_alternative[i];
3586 goal_alternative_win[i] = this_alternative_win[i];
3587 goal_alternative_match_win[i] = this_alternative_match_win[i];
3588 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3589 goal_alternative_matches[i] = this_alternative_matches[i];
3590 goal_alternative_earlyclobber[i]
3591 = this_alternative_earlyclobber[i];
3592 }
3593 goal_alternative_swapped = swapped;
3594 best = losers;
3595 goal_alternative_number = this_alternative_number;
3596 goal_earlyclobber = this_earlyclobber;
3597 }
3598 }
3599
3600 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3601 then we need to try each alternative twice,
3602 the second time matching those two operands
3603 as if we had exchanged them.
3604 To do this, really exchange them in operands.
3605
3606 If we have just tried the alternatives the second time,
3607 return operands to normal and drop through. */
3608
3609 if (commutative >= 0)
3610 {
3611 swapped = !swapped;
3612 if (swapped)
3613 {
3614 enum reg_class tclass;
3615 int t;
3616
3617 recog_data.operand[commutative] = substed_operand[commutative + 1];
3618 recog_data.operand[commutative + 1] = substed_operand[commutative];
3619 /* Swap the duplicates too. */
3620 for (i = 0; i < recog_data.n_dups; i++)
3621 if (recog_data.dup_num[i] == commutative
3622 || recog_data.dup_num[i] == commutative + 1)
3623 *recog_data.dup_loc[i]
3624 = recog_data.operand[(int) recog_data.dup_num[i]];
3625
3626 tclass = preferred_class[commutative];
3627 preferred_class[commutative] = preferred_class[commutative + 1];
3628 preferred_class[commutative + 1] = tclass;
3629
3630 t = pref_or_nothing[commutative];
3631 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3632 pref_or_nothing[commutative + 1] = t;
3633
3634 memcpy (constraints, recog_data.constraints,
3635 noperands * sizeof (char *));
3636 goto try_swapped;
3637 }
3638 else
3639 {
3640 recog_data.operand[commutative] = substed_operand[commutative];
3641 recog_data.operand[commutative + 1]
3642 = substed_operand[commutative + 1];
3643 /* Unswap the duplicates too. */
3644 for (i = 0; i < recog_data.n_dups; i++)
3645 if (recog_data.dup_num[i] == commutative
3646 || recog_data.dup_num[i] == commutative + 1)
3647 *recog_data.dup_loc[i]
3648 = recog_data.operand[(int) recog_data.dup_num[i]];
3649 }
3650 }
3651
3652 /* The operands don't meet the constraints.
3653 goal_alternative describes the alternative
3654 that we could reach by reloading the fewest operands.
3655 Reload so as to fit it. */
3656
3657 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3658 {
3659 /* No alternative works with reloads?? */
3660 if (insn_code_number >= 0)
3661 fatal_insn ("unable to generate reloads for:", insn);
3662 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3663 /* Avoid further trouble with this insn. */
3664 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3665 n_reloads = 0;
3666 return 0;
3667 }
3668
3669 /* Jump to `finish' from above if all operands are valid already.
3670 In that case, goal_alternative_win is all 1. */
3671 finish:
3672
3673 /* Right now, for any pair of operands I and J that are required to match,
3674 with I < J,
3675 goal_alternative_matches[J] is I.
3676 Set up goal_alternative_matched as the inverse function:
3677 goal_alternative_matched[I] = J. */
3678
3679 for (i = 0; i < noperands; i++)
3680 goal_alternative_matched[i] = -1;
3681
3682 for (i = 0; i < noperands; i++)
3683 if (! goal_alternative_win[i]
3684 && goal_alternative_matches[i] >= 0)
3685 goal_alternative_matched[goal_alternative_matches[i]] = i;
3686
3687 for (i = 0; i < noperands; i++)
3688 goal_alternative_win[i] |= goal_alternative_match_win[i];
3689
3690 /* If the best alternative is with operands 1 and 2 swapped,
3691 consider them swapped before reporting the reloads. Update the
3692 operand numbers of any reloads already pushed. */
3693
3694 if (goal_alternative_swapped)
3695 {
3696 rtx tem;
3697
3698 tem = substed_operand[commutative];
3699 substed_operand[commutative] = substed_operand[commutative + 1];
3700 substed_operand[commutative + 1] = tem;
3701 tem = recog_data.operand[commutative];
3702 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3703 recog_data.operand[commutative + 1] = tem;
3704 tem = *recog_data.operand_loc[commutative];
3705 *recog_data.operand_loc[commutative]
3706 = *recog_data.operand_loc[commutative + 1];
3707 *recog_data.operand_loc[commutative + 1] = tem;
3708
3709 for (i = 0; i < n_reloads; i++)
3710 {
3711 if (rld[i].opnum == commutative)
3712 rld[i].opnum = commutative + 1;
3713 else if (rld[i].opnum == commutative + 1)
3714 rld[i].opnum = commutative;
3715 }
3716 }
3717
3718 for (i = 0; i < noperands; i++)
3719 {
3720 operand_reloadnum[i] = -1;
3721
3722 /* If this is an earlyclobber operand, we need to widen the scope.
3723 The reload must remain valid from the start of the insn being
3724 reloaded until after the operand is stored into its destination.
3725 We approximate this with RELOAD_OTHER even though we know that we
3726 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3727
3728 One special case that is worth checking is when we have an
3729 output that is earlyclobber but isn't used past the insn (typically
3730 a SCRATCH). In this case, we only need have the reload live
3731 through the insn itself, but not for any of our input or output
3732 reloads.
3733 But we must not accidentally narrow the scope of an existing
3734 RELOAD_OTHER reload - leave these alone.
3735
3736 In any case, anything needed to address this operand can remain
3737 however they were previously categorized. */
3738
3739 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3740 operand_type[i]
3741 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3742 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3743 }
3744
3745 /* Any constants that aren't allowed and can't be reloaded
3746 into registers are here changed into memory references. */
3747 for (i = 0; i < noperands; i++)
3748 if (! goal_alternative_win[i]
3749 && CONSTANT_P (recog_data.operand[i])
3750 /* force_const_mem does not accept HIGH. */
3751 && GET_CODE (recog_data.operand[i]) != HIGH
3752 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3753 (enum reg_class) goal_alternative[i])
3754 == NO_REGS)
3755 || no_input_reloads)
3756 && operand_mode[i] != VOIDmode)
3757 {
3758 substed_operand[i] = recog_data.operand[i]
3759 = find_reloads_toplev (force_const_mem (operand_mode[i],
3760 recog_data.operand[i]),
3761 i, address_type[i], ind_levels, 0, insn,
3762 NULL);
3763 if (alternative_allows_memconst (recog_data.constraints[i],
3764 goal_alternative_number))
3765 goal_alternative_win[i] = 1;
3766 }
3767
3768 /* Record the values of the earlyclobber operands for the caller. */
3769 if (goal_earlyclobber)
3770 for (i = 0; i < noperands; i++)
3771 if (goal_alternative_earlyclobber[i])
3772 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3773
3774 /* Now record reloads for all the operands that need them. */
3775 for (i = 0; i < noperands; i++)
3776 if (! goal_alternative_win[i])
3777 {
3778 /* Operands that match previous ones have already been handled. */
3779 if (goal_alternative_matches[i] >= 0)
3780 ;
3781 /* Handle an operand with a nonoffsettable address
3782 appearing where an offsettable address will do
3783 by reloading the address into a base register.
3784
3785 ??? We can also do this when the operand is a register and
3786 reg_equiv_mem is not offsettable, but this is a bit tricky,
3787 so we don't bother with it. It may not be worth doing. */
3788 else if (goal_alternative_matched[i] == -1
3789 && goal_alternative_offmemok[i]
3790 && GET_CODE (recog_data.operand[i]) == MEM)
3791 {
3792 operand_reloadnum[i]
3793 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3794 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3795 MODE_BASE_REG_CLASS (VOIDmode),
3796 GET_MODE (XEXP (recog_data.operand[i], 0)),
3797 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3798 rld[operand_reloadnum[i]].inc
3799 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3800
3801 /* If this operand is an output, we will have made any
3802 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3803 now we are treating part of the operand as an input, so
3804 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3805
3806 if (modified[i] == RELOAD_WRITE)
3807 {
3808 for (j = 0; j < n_reloads; j++)
3809 {
3810 if (rld[j].opnum == i)
3811 {
3812 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3813 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3814 else if (rld[j].when_needed
3815 == RELOAD_FOR_OUTADDR_ADDRESS)
3816 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3817 }
3818 }
3819 }
3820 }
3821 else if (goal_alternative_matched[i] == -1)
3822 {
3823 operand_reloadnum[i]
3824 = push_reload ((modified[i] != RELOAD_WRITE
3825 ? recog_data.operand[i] : 0),
3826 (modified[i] != RELOAD_READ
3827 ? recog_data.operand[i] : 0),
3828 (modified[i] != RELOAD_WRITE
3829 ? recog_data.operand_loc[i] : 0),
3830 (modified[i] != RELOAD_READ
3831 ? recog_data.operand_loc[i] : 0),
3832 (enum reg_class) goal_alternative[i],
3833 (modified[i] == RELOAD_WRITE
3834 ? VOIDmode : operand_mode[i]),
3835 (modified[i] == RELOAD_READ
3836 ? VOIDmode : operand_mode[i]),
3837 (insn_code_number < 0 ? 0
3838 : insn_data[insn_code_number].operand[i].strict_low),
3839 0, i, operand_type[i]);
3840 }
3841 /* In a matching pair of operands, one must be input only
3842 and the other must be output only.
3843 Pass the input operand as IN and the other as OUT. */
3844 else if (modified[i] == RELOAD_READ
3845 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3846 {
3847 operand_reloadnum[i]
3848 = push_reload (recog_data.operand[i],
3849 recog_data.operand[goal_alternative_matched[i]],
3850 recog_data.operand_loc[i],
3851 recog_data.operand_loc[goal_alternative_matched[i]],
3852 (enum reg_class) goal_alternative[i],
3853 operand_mode[i],
3854 operand_mode[goal_alternative_matched[i]],
3855 0, 0, i, RELOAD_OTHER);
3856 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3857 }
3858 else if (modified[i] == RELOAD_WRITE
3859 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3860 {
3861 operand_reloadnum[goal_alternative_matched[i]]
3862 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3863 recog_data.operand[i],
3864 recog_data.operand_loc[goal_alternative_matched[i]],
3865 recog_data.operand_loc[i],
3866 (enum reg_class) goal_alternative[i],
3867 operand_mode[goal_alternative_matched[i]],
3868 operand_mode[i],
3869 0, 0, i, RELOAD_OTHER);
3870 operand_reloadnum[i] = output_reloadnum;
3871 }
3872 else if (insn_code_number >= 0)
3873 abort ();
3874 else
3875 {
3876 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3877 /* Avoid further trouble with this insn. */
3878 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3879 n_reloads = 0;
3880 return 0;
3881 }
3882 }
3883 else if (goal_alternative_matched[i] < 0
3884 && goal_alternative_matches[i] < 0
3885 && !address_operand_reloaded[i]
3886 && optimize)
3887 {
3888 /* For each non-matching operand that's a MEM or a pseudo-register
3889 that didn't get a hard register, make an optional reload.
3890 This may get done even if the insn needs no reloads otherwise. */
3891
3892 rtx operand = recog_data.operand[i];
3893
3894 while (GET_CODE (operand) == SUBREG)
3895 operand = SUBREG_REG (operand);
3896 if ((GET_CODE (operand) == MEM
3897 || (GET_CODE (operand) == REG
3898 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3899 /* If this is only for an output, the optional reload would not
3900 actually cause us to use a register now, just note that
3901 something is stored here. */
3902 && ((enum reg_class) goal_alternative[i] != NO_REGS
3903 || modified[i] == RELOAD_WRITE)
3904 && ! no_input_reloads
3905 /* An optional output reload might allow to delete INSN later.
3906 We mustn't make in-out reloads on insns that are not permitted
3907 output reloads.
3908 If this is an asm, we can't delete it; we must not even call
3909 push_reload for an optional output reload in this case,
3910 because we can't be sure that the constraint allows a register,
3911 and push_reload verifies the constraints for asms. */
3912 && (modified[i] == RELOAD_READ
3913 || (! no_output_reloads && ! this_insn_is_asm)))
3914 operand_reloadnum[i]
3915 = push_reload ((modified[i] != RELOAD_WRITE
3916 ? recog_data.operand[i] : 0),
3917 (modified[i] != RELOAD_READ
3918 ? recog_data.operand[i] : 0),
3919 (modified[i] != RELOAD_WRITE
3920 ? recog_data.operand_loc[i] : 0),
3921 (modified[i] != RELOAD_READ
3922 ? recog_data.operand_loc[i] : 0),
3923 (enum reg_class) goal_alternative[i],
3924 (modified[i] == RELOAD_WRITE
3925 ? VOIDmode : operand_mode[i]),
3926 (modified[i] == RELOAD_READ
3927 ? VOIDmode : operand_mode[i]),
3928 (insn_code_number < 0 ? 0
3929 : insn_data[insn_code_number].operand[i].strict_low),
3930 1, i, operand_type[i]);
3931 /* If a memory reference remains (either as a MEM or a pseudo that
3932 did not get a hard register), yet we can't make an optional
3933 reload, check if this is actually a pseudo register reference;
3934 we then need to emit a USE and/or a CLOBBER so that reload
3935 inheritance will do the right thing. */
3936 else if (replace
3937 && (GET_CODE (operand) == MEM
3938 || (GET_CODE (operand) == REG
3939 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3940 && reg_renumber [REGNO (operand)] < 0)))
3941 {
3942 operand = *recog_data.operand_loc[i];
3943
3944 while (GET_CODE (operand) == SUBREG)
3945 operand = SUBREG_REG (operand);
3946 if (GET_CODE (operand) == REG)
3947 {
3948 if (modified[i] != RELOAD_WRITE)
3949 /* We mark the USE with QImode so that we recognize
3950 it as one that can be safely deleted at the end
3951 of reload. */
3952 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3953 insn), QImode);
3954 if (modified[i] != RELOAD_READ)
3955 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3956 }
3957 }
3958 }
3959 else if (goal_alternative_matches[i] >= 0
3960 && goal_alternative_win[goal_alternative_matches[i]]
3961 && modified[i] == RELOAD_READ
3962 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3963 && ! no_input_reloads && ! no_output_reloads
3964 && optimize)
3965 {
3966 /* Similarly, make an optional reload for a pair of matching
3967 objects that are in MEM or a pseudo that didn't get a hard reg. */
3968
3969 rtx operand = recog_data.operand[i];
3970
3971 while (GET_CODE (operand) == SUBREG)
3972 operand = SUBREG_REG (operand);
3973 if ((GET_CODE (operand) == MEM
3974 || (GET_CODE (operand) == REG
3975 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3976 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3977 != NO_REGS))
3978 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3979 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3980 recog_data.operand[i],
3981 recog_data.operand_loc[goal_alternative_matches[i]],
3982 recog_data.operand_loc[i],
3983 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3984 operand_mode[goal_alternative_matches[i]],
3985 operand_mode[i],
3986 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3987 }
3988
3989 /* Perform whatever substitutions on the operands we are supposed
3990 to make due to commutativity or replacement of registers
3991 with equivalent constants or memory slots. */
3992
3993 for (i = 0; i < noperands; i++)
3994 {
3995 /* We only do this on the last pass through reload, because it is
3996 possible for some data (like reg_equiv_address) to be changed during
3997 later passes. Moreover, we loose the opportunity to get a useful
3998 reload_{in,out}_reg when we do these replacements. */
3999
4000 if (replace)
4001 {
4002 rtx substitution = substed_operand[i];
4003
4004 *recog_data.operand_loc[i] = substitution;
4005
4006 /* If we're replacing an operand with a LABEL_REF, we need
4007 to make sure that there's a REG_LABEL note attached to
4008 this instruction. */
4009 if (GET_CODE (insn) != JUMP_INSN
4010 && GET_CODE (substitution) == LABEL_REF
4011 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4012 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4013 XEXP (substitution, 0),
4014 REG_NOTES (insn));
4015 }
4016 else
4017 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4018 }
4019
4020 /* If this insn pattern contains any MATCH_DUP's, make sure that
4021 they will be substituted if the operands they match are substituted.
4022 Also do now any substitutions we already did on the operands.
4023
4024 Don't do this if we aren't making replacements because we might be
4025 propagating things allocated by frame pointer elimination into places
4026 it doesn't expect. */
4027
4028 if (insn_code_number >= 0 && replace)
4029 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4030 {
4031 int opno = recog_data.dup_num[i];
4032 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4033 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4034 }
4035
4036 #if 0
4037 /* This loses because reloading of prior insns can invalidate the equivalence
4038 (or at least find_equiv_reg isn't smart enough to find it any more),
4039 causing this insn to need more reload regs than it needed before.
4040 It may be too late to make the reload regs available.
4041 Now this optimization is done safely in choose_reload_regs. */
4042
4043 /* For each reload of a reg into some other class of reg,
4044 search for an existing equivalent reg (same value now) in the right class.
4045 We can use it as long as we don't need to change its contents. */
4046 for (i = 0; i < n_reloads; i++)
4047 if (rld[i].reg_rtx == 0
4048 && rld[i].in != 0
4049 && GET_CODE (rld[i].in) == REG
4050 && rld[i].out == 0)
4051 {
4052 rld[i].reg_rtx
4053 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4054 static_reload_reg_p, 0, rld[i].inmode);
4055 /* Prevent generation of insn to load the value
4056 because the one we found already has the value. */
4057 if (rld[i].reg_rtx)
4058 rld[i].in = rld[i].reg_rtx;
4059 }
4060 #endif
4061
4062 /* Perhaps an output reload can be combined with another
4063 to reduce needs by one. */
4064 if (!goal_earlyclobber)
4065 combine_reloads ();
4066
4067 /* If we have a pair of reloads for parts of an address, they are reloading
4068 the same object, the operands themselves were not reloaded, and they
4069 are for two operands that are supposed to match, merge the reloads and
4070 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4071
4072 for (i = 0; i < n_reloads; i++)
4073 {
4074 int k;
4075
4076 for (j = i + 1; j < n_reloads; j++)
4077 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4078 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4079 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4080 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4081 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4082 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4083 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4084 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4085 && rtx_equal_p (rld[i].in, rld[j].in)
4086 && (operand_reloadnum[rld[i].opnum] < 0
4087 || rld[operand_reloadnum[rld[i].opnum]].optional)
4088 && (operand_reloadnum[rld[j].opnum] < 0
4089 || rld[operand_reloadnum[rld[j].opnum]].optional)
4090 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4091 || (goal_alternative_matches[rld[j].opnum]
4092 == rld[i].opnum)))
4093 {
4094 for (k = 0; k < n_replacements; k++)
4095 if (replacements[k].what == j)
4096 replacements[k].what = i;
4097
4098 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4099 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4100 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4101 else
4102 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4103 rld[j].in = 0;
4104 }
4105 }
4106
4107 /* Scan all the reloads and update their type.
4108 If a reload is for the address of an operand and we didn't reload
4109 that operand, change the type. Similarly, change the operand number
4110 of a reload when two operands match. If a reload is optional, treat it
4111 as though the operand isn't reloaded.
4112
4113 ??? This latter case is somewhat odd because if we do the optional
4114 reload, it means the object is hanging around. Thus we need only
4115 do the address reload if the optional reload was NOT done.
4116
4117 Change secondary reloads to be the address type of their operand, not
4118 the normal type.
4119
4120 If an operand's reload is now RELOAD_OTHER, change any
4121 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4122 RELOAD_FOR_OTHER_ADDRESS. */
4123
4124 for (i = 0; i < n_reloads; i++)
4125 {
4126 if (rld[i].secondary_p
4127 && rld[i].when_needed == operand_type[rld[i].opnum])
4128 rld[i].when_needed = address_type[rld[i].opnum];
4129
4130 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4131 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4132 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4133 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4134 && (operand_reloadnum[rld[i].opnum] < 0
4135 || rld[operand_reloadnum[rld[i].opnum]].optional))
4136 {
4137 /* If we have a secondary reload to go along with this reload,
4138 change its type to RELOAD_FOR_OPADDR_ADDR. */
4139
4140 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4141 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4142 && rld[i].secondary_in_reload != -1)
4143 {
4144 int secondary_in_reload = rld[i].secondary_in_reload;
4145
4146 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4147
4148 /* If there's a tertiary reload we have to change it also. */
4149 if (secondary_in_reload > 0
4150 && rld[secondary_in_reload].secondary_in_reload != -1)
4151 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4152 = RELOAD_FOR_OPADDR_ADDR;
4153 }
4154
4155 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4156 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4157 && rld[i].secondary_out_reload != -1)
4158 {
4159 int secondary_out_reload = rld[i].secondary_out_reload;
4160
4161 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4162
4163 /* If there's a tertiary reload we have to change it also. */
4164 if (secondary_out_reload
4165 && rld[secondary_out_reload].secondary_out_reload != -1)
4166 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4167 = RELOAD_FOR_OPADDR_ADDR;
4168 }
4169
4170 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4171 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4172 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4173 else
4174 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4175 }
4176
4177 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4178 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4179 && operand_reloadnum[rld[i].opnum] >= 0
4180 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4181 == RELOAD_OTHER))
4182 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4183
4184 if (goal_alternative_matches[rld[i].opnum] >= 0)
4185 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4186 }
4187
4188 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4189 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4190 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4191
4192 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4193 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4194 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4195 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4196 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4197 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4198 This is complicated by the fact that a single operand can have more
4199 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4200 choose_reload_regs without affecting code quality, and cases that
4201 actually fail are extremely rare, so it turns out to be better to fix
4202 the problem here by not generating cases that choose_reload_regs will
4203 fail for. */
4204 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4205 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4206 a single operand.
4207 We can reduce the register pressure by exploiting that a
4208 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4209 does not conflict with any of them, if it is only used for the first of
4210 the RELOAD_FOR_X_ADDRESS reloads. */
4211 {
4212 int first_op_addr_num = -2;
4213 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4214 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4215 int need_change = 0;
4216 /* We use last_op_addr_reload and the contents of the above arrays
4217 first as flags - -2 means no instance encountered, -1 means exactly
4218 one instance encountered.
4219 If more than one instance has been encountered, we store the reload
4220 number of the first reload of the kind in question; reload numbers
4221 are known to be non-negative. */
4222 for (i = 0; i < noperands; i++)
4223 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4224 for (i = n_reloads - 1; i >= 0; i--)
4225 {
4226 switch (rld[i].when_needed)
4227 {
4228 case RELOAD_FOR_OPERAND_ADDRESS:
4229 if (++first_op_addr_num >= 0)
4230 {
4231 first_op_addr_num = i;
4232 need_change = 1;
4233 }
4234 break;
4235 case RELOAD_FOR_INPUT_ADDRESS:
4236 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4237 {
4238 first_inpaddr_num[rld[i].opnum] = i;
4239 need_change = 1;
4240 }
4241 break;
4242 case RELOAD_FOR_OUTPUT_ADDRESS:
4243 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4244 {
4245 first_outpaddr_num[rld[i].opnum] = i;
4246 need_change = 1;
4247 }
4248 break;
4249 default:
4250 break;
4251 }
4252 }
4253
4254 if (need_change)
4255 {
4256 for (i = 0; i < n_reloads; i++)
4257 {
4258 int first_num;
4259 enum reload_type type;
4260
4261 switch (rld[i].when_needed)
4262 {
4263 case RELOAD_FOR_OPADDR_ADDR:
4264 first_num = first_op_addr_num;
4265 type = RELOAD_FOR_OPERAND_ADDRESS;
4266 break;
4267 case RELOAD_FOR_INPADDR_ADDRESS:
4268 first_num = first_inpaddr_num[rld[i].opnum];
4269 type = RELOAD_FOR_INPUT_ADDRESS;
4270 break;
4271 case RELOAD_FOR_OUTADDR_ADDRESS:
4272 first_num = first_outpaddr_num[rld[i].opnum];
4273 type = RELOAD_FOR_OUTPUT_ADDRESS;
4274 break;
4275 default:
4276 continue;
4277 }
4278 if (first_num < 0)
4279 continue;
4280 else if (i > first_num)
4281 rld[i].when_needed = type;
4282 else
4283 {
4284 /* Check if the only TYPE reload that uses reload I is
4285 reload FIRST_NUM. */
4286 for (j = n_reloads - 1; j > first_num; j--)
4287 {
4288 if (rld[j].when_needed == type
4289 && (rld[i].secondary_p
4290 ? rld[j].secondary_in_reload == i
4291 : reg_mentioned_p (rld[i].in, rld[j].in)))
4292 {
4293 rld[i].when_needed = type;
4294 break;
4295 }
4296 }
4297 }
4298 }
4299 }
4300 }
4301
4302 /* See if we have any reloads that are now allowed to be merged
4303 because we've changed when the reload is needed to
4304 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4305 check for the most common cases. */
4306
4307 for (i = 0; i < n_reloads; i++)
4308 if (rld[i].in != 0 && rld[i].out == 0
4309 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4310 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4311 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4312 for (j = 0; j < n_reloads; j++)
4313 if (i != j && rld[j].in != 0 && rld[j].out == 0
4314 && rld[j].when_needed == rld[i].when_needed
4315 && MATCHES (rld[i].in, rld[j].in)
4316 && rld[i].class == rld[j].class
4317 && !rld[i].nocombine && !rld[j].nocombine
4318 && rld[i].reg_rtx == rld[j].reg_rtx)
4319 {
4320 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4321 transfer_replacements (i, j);
4322 rld[j].in = 0;
4323 }
4324
4325 #ifdef HAVE_cc0
4326 /* If we made any reloads for addresses, see if they violate a
4327 "no input reloads" requirement for this insn. But loads that we
4328 do after the insn (such as for output addresses) are fine. */
4329 if (no_input_reloads)
4330 for (i = 0; i < n_reloads; i++)
4331 if (rld[i].in != 0
4332 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4333 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4334 abort ();
4335 #endif
4336
4337 /* Compute reload_mode and reload_nregs. */
4338 for (i = 0; i < n_reloads; i++)
4339 {
4340 rld[i].mode
4341 = (rld[i].inmode == VOIDmode
4342 || (GET_MODE_SIZE (rld[i].outmode)
4343 > GET_MODE_SIZE (rld[i].inmode)))
4344 ? rld[i].outmode : rld[i].inmode;
4345
4346 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4347 }
4348
4349 /* Special case a simple move with an input reload and a
4350 destination of a hard reg, if the hard reg is ok, use it. */
4351 for (i = 0; i < n_reloads; i++)
4352 if (rld[i].when_needed == RELOAD_FOR_INPUT
4353 && GET_CODE (PATTERN (insn)) == SET
4354 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
4355 && SET_SRC (PATTERN (insn)) == rld[i].in)
4356 {
4357 rtx dest = SET_DEST (PATTERN (insn));
4358 unsigned int regno = REGNO (dest);
4359
4360 if (regno < FIRST_PSEUDO_REGISTER
4361 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4362 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4363 rld[i].reg_rtx = dest;
4364 }
4365
4366 return retval;
4367 }
4368
4369 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4370 accepts a memory operand with constant address. */
4371
4372 static int
4373 alternative_allows_memconst (constraint, altnum)
4374 const char *constraint;
4375 int altnum;
4376 {
4377 int c;
4378 /* Skip alternatives before the one requested. */
4379 while (altnum > 0)
4380 {
4381 while (*constraint++ != ',');
4382 altnum--;
4383 }
4384 /* Scan the requested alternative for 'm' or 'o'.
4385 If one of them is present, this alternative accepts memory constants. */
4386 for (; (c = *constraint) && c != ',' && c != '#';
4387 constraint += CONSTRAINT_LEN (c, constraint))
4388 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4389 return 1;
4390 return 0;
4391 }
4392 \f
4393 /* Scan X for memory references and scan the addresses for reloading.
4394 Also checks for references to "constant" regs that we want to eliminate
4395 and replaces them with the values they stand for.
4396 We may alter X destructively if it contains a reference to such.
4397 If X is just a constant reg, we return the equivalent value
4398 instead of X.
4399
4400 IND_LEVELS says how many levels of indirect addressing this machine
4401 supports.
4402
4403 OPNUM and TYPE identify the purpose of the reload.
4404
4405 IS_SET_DEST is true if X is the destination of a SET, which is not
4406 appropriate to be replaced by a constant.
4407
4408 INSN, if nonzero, is the insn in which we do the reload. It is used
4409 to determine if we may generate output reloads, and where to put USEs
4410 for pseudos that we have to replace with stack slots.
4411
4412 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4413 result of find_reloads_address. */
4414
4415 static rtx
4416 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4417 address_reloaded)
4418 rtx x;
4419 int opnum;
4420 enum reload_type type;
4421 int ind_levels;
4422 int is_set_dest;
4423 rtx insn;
4424 int *address_reloaded;
4425 {
4426 RTX_CODE code = GET_CODE (x);
4427
4428 const char *fmt = GET_RTX_FORMAT (code);
4429 int i;
4430 int copied;
4431
4432 if (code == REG)
4433 {
4434 /* This code is duplicated for speed in find_reloads. */
4435 int regno = REGNO (x);
4436 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4437 x = reg_equiv_constant[regno];
4438 #if 0
4439 /* This creates (subreg (mem...)) which would cause an unnecessary
4440 reload of the mem. */
4441 else if (reg_equiv_mem[regno] != 0)
4442 x = reg_equiv_mem[regno];
4443 #endif
4444 else if (reg_equiv_memory_loc[regno]
4445 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4446 {
4447 rtx mem = make_memloc (x, regno);
4448 if (reg_equiv_address[regno]
4449 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4450 {
4451 /* If this is not a toplevel operand, find_reloads doesn't see
4452 this substitution. We have to emit a USE of the pseudo so
4453 that delete_output_reload can see it. */
4454 if (replace_reloads && recog_data.operand[opnum] != x)
4455 /* We mark the USE with QImode so that we recognize it
4456 as one that can be safely deleted at the end of
4457 reload. */
4458 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4459 QImode);
4460 x = mem;
4461 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4462 opnum, type, ind_levels, insn);
4463 if (address_reloaded)
4464 *address_reloaded = i;
4465 }
4466 }
4467 return x;
4468 }
4469 if (code == MEM)
4470 {
4471 rtx tem = x;
4472
4473 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4474 opnum, type, ind_levels, insn);
4475 if (address_reloaded)
4476 *address_reloaded = i;
4477
4478 return tem;
4479 }
4480
4481 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4482 {
4483 /* Check for SUBREG containing a REG that's equivalent to a constant.
4484 If the constant has a known value, truncate it right now.
4485 Similarly if we are extracting a single-word of a multi-word
4486 constant. If the constant is symbolic, allow it to be substituted
4487 normally. push_reload will strip the subreg later. If the
4488 constant is VOIDmode, abort because we will lose the mode of
4489 the register (this should never happen because one of the cases
4490 above should handle it). */
4491
4492 int regno = REGNO (SUBREG_REG (x));
4493 rtx tem;
4494
4495 if (subreg_lowpart_p (x)
4496 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4497 && reg_equiv_constant[regno] != 0
4498 && (tem = gen_lowpart_common (GET_MODE (x),
4499 reg_equiv_constant[regno])) != 0)
4500 return tem;
4501
4502 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4503 && reg_equiv_constant[regno] != 0)
4504 {
4505 tem =
4506 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4507 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4508 if (!tem)
4509 abort ();
4510 return tem;
4511 }
4512
4513 /* If the subreg contains a reg that will be converted to a mem,
4514 convert the subreg to a narrower memref now.
4515 Otherwise, we would get (subreg (mem ...) ...),
4516 which would force reload of the mem.
4517
4518 We also need to do this if there is an equivalent MEM that is
4519 not offsettable. In that case, alter_subreg would produce an
4520 invalid address on big-endian machines.
4521
4522 For machines that extend byte loads, we must not reload using
4523 a wider mode if we have a paradoxical SUBREG. find_reloads will
4524 force a reload in that case. So we should not do anything here. */
4525
4526 else if (regno >= FIRST_PSEUDO_REGISTER
4527 #ifdef LOAD_EXTEND_OP
4528 && (GET_MODE_SIZE (GET_MODE (x))
4529 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4530 #endif
4531 && (reg_equiv_address[regno] != 0
4532 || (reg_equiv_mem[regno] != 0
4533 && (! strict_memory_address_p (GET_MODE (x),
4534 XEXP (reg_equiv_mem[regno], 0))
4535 || ! offsettable_memref_p (reg_equiv_mem[regno])
4536 || num_not_at_initial_offset))))
4537 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4538 insn);
4539 }
4540
4541 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4542 {
4543 if (fmt[i] == 'e')
4544 {
4545 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4546 ind_levels, is_set_dest, insn,
4547 address_reloaded);
4548 /* If we have replaced a reg with it's equivalent memory loc -
4549 that can still be handled here e.g. if it's in a paradoxical
4550 subreg - we must make the change in a copy, rather than using
4551 a destructive change. This way, find_reloads can still elect
4552 not to do the change. */
4553 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4554 {
4555 x = shallow_copy_rtx (x);
4556 copied = 1;
4557 }
4558 XEXP (x, i) = new_part;
4559 }
4560 }
4561 return x;
4562 }
4563
4564 /* Return a mem ref for the memory equivalent of reg REGNO.
4565 This mem ref is not shared with anything. */
4566
4567 static rtx
4568 make_memloc (ad, regno)
4569 rtx ad;
4570 int regno;
4571 {
4572 /* We must rerun eliminate_regs, in case the elimination
4573 offsets have changed. */
4574 rtx tem
4575 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4576
4577 /* If TEM might contain a pseudo, we must copy it to avoid
4578 modifying it when we do the substitution for the reload. */
4579 if (rtx_varies_p (tem, 0))
4580 tem = copy_rtx (tem);
4581
4582 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4583 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4584
4585 /* Copy the result if it's still the same as the equivalence, to avoid
4586 modifying it when we do the substitution for the reload. */
4587 if (tem == reg_equiv_memory_loc[regno])
4588 tem = copy_rtx (tem);
4589 return tem;
4590 }
4591
4592 /* Returns true if AD could be turned into a valid memory reference
4593 to mode MODE by reloading the part pointed to by PART into a
4594 register. */
4595
4596 static int
4597 maybe_memory_address_p (mode, ad, part)
4598 enum machine_mode mode;
4599 rtx ad;
4600 rtx *part;
4601 {
4602 int retv;
4603 rtx tem = *part;
4604 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4605
4606 *part = reg;
4607 retv = memory_address_p (mode, ad);
4608 *part = tem;
4609
4610 return retv;
4611 }
4612
4613 /* Record all reloads needed for handling memory address AD
4614 which appears in *LOC in a memory reference to mode MODE
4615 which itself is found in location *MEMREFLOC.
4616 Note that we take shortcuts assuming that no multi-reg machine mode
4617 occurs as part of an address.
4618
4619 OPNUM and TYPE specify the purpose of this reload.
4620
4621 IND_LEVELS says how many levels of indirect addressing this machine
4622 supports.
4623
4624 INSN, if nonzero, is the insn in which we do the reload. It is used
4625 to determine if we may generate output reloads, and where to put USEs
4626 for pseudos that we have to replace with stack slots.
4627
4628 Value is nonzero if this address is reloaded or replaced as a whole.
4629 This is interesting to the caller if the address is an autoincrement.
4630
4631 Note that there is no verification that the address will be valid after
4632 this routine does its work. Instead, we rely on the fact that the address
4633 was valid when reload started. So we need only undo things that reload
4634 could have broken. These are wrong register types, pseudos not allocated
4635 to a hard register, and frame pointer elimination. */
4636
4637 static int
4638 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4639 enum machine_mode mode;
4640 rtx *memrefloc;
4641 rtx ad;
4642 rtx *loc;
4643 int opnum;
4644 enum reload_type type;
4645 int ind_levels;
4646 rtx insn;
4647 {
4648 int regno;
4649 int removed_and = 0;
4650 rtx tem;
4651
4652 /* If the address is a register, see if it is a legitimate address and
4653 reload if not. We first handle the cases where we need not reload
4654 or where we must reload in a non-standard way. */
4655
4656 if (GET_CODE (ad) == REG)
4657 {
4658 regno = REGNO (ad);
4659
4660 /* If the register is equivalent to an invariant expression, substitute
4661 the invariant, and eliminate any eliminable register references. */
4662 tem = reg_equiv_constant[regno];
4663 if (tem != 0
4664 && (tem = eliminate_regs (tem, mode, insn))
4665 && strict_memory_address_p (mode, tem))
4666 {
4667 *loc = ad = tem;
4668 return 0;
4669 }
4670
4671 tem = reg_equiv_memory_loc[regno];
4672 if (tem != 0)
4673 {
4674 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4675 {
4676 tem = make_memloc (ad, regno);
4677 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4678 {
4679 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4680 &XEXP (tem, 0), opnum,
4681 ADDR_TYPE (type), ind_levels, insn);
4682 }
4683 /* We can avoid a reload if the register's equivalent memory
4684 expression is valid as an indirect memory address.
4685 But not all addresses are valid in a mem used as an indirect
4686 address: only reg or reg+constant. */
4687
4688 if (ind_levels > 0
4689 && strict_memory_address_p (mode, tem)
4690 && (GET_CODE (XEXP (tem, 0)) == REG
4691 || (GET_CODE (XEXP (tem, 0)) == PLUS
4692 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4693 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4694 {
4695 /* TEM is not the same as what we'll be replacing the
4696 pseudo with after reload, put a USE in front of INSN
4697 in the final reload pass. */
4698 if (replace_reloads
4699 && num_not_at_initial_offset
4700 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4701 {
4702 *loc = tem;
4703 /* We mark the USE with QImode so that we
4704 recognize it as one that can be safely
4705 deleted at the end of reload. */
4706 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4707 insn), QImode);
4708
4709 /* This doesn't really count as replacing the address
4710 as a whole, since it is still a memory access. */
4711 }
4712 return 0;
4713 }
4714 ad = tem;
4715 }
4716 }
4717
4718 /* The only remaining case where we can avoid a reload is if this is a
4719 hard register that is valid as a base register and which is not the
4720 subject of a CLOBBER in this insn. */
4721
4722 else if (regno < FIRST_PSEUDO_REGISTER
4723 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4724 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4725 return 0;
4726
4727 /* If we do not have one of the cases above, we must do the reload. */
4728 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4729 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4730 return 1;
4731 }
4732
4733 if (strict_memory_address_p (mode, ad))
4734 {
4735 /* The address appears valid, so reloads are not needed.
4736 But the address may contain an eliminable register.
4737 This can happen because a machine with indirect addressing
4738 may consider a pseudo register by itself a valid address even when
4739 it has failed to get a hard reg.
4740 So do a tree-walk to find and eliminate all such regs. */
4741
4742 /* But first quickly dispose of a common case. */
4743 if (GET_CODE (ad) == PLUS
4744 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4745 && GET_CODE (XEXP (ad, 0)) == REG
4746 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4747 return 0;
4748
4749 subst_reg_equivs_changed = 0;
4750 *loc = subst_reg_equivs (ad, insn);
4751
4752 if (! subst_reg_equivs_changed)
4753 return 0;
4754
4755 /* Check result for validity after substitution. */
4756 if (strict_memory_address_p (mode, ad))
4757 return 0;
4758 }
4759
4760 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4761 do
4762 {
4763 if (memrefloc)
4764 {
4765 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4766 ind_levels, win);
4767 }
4768 break;
4769 win:
4770 *memrefloc = copy_rtx (*memrefloc);
4771 XEXP (*memrefloc, 0) = ad;
4772 move_replacements (&ad, &XEXP (*memrefloc, 0));
4773 return 1;
4774 }
4775 while (0);
4776 #endif
4777
4778 /* The address is not valid. We have to figure out why. First see if
4779 we have an outer AND and remove it if so. Then analyze what's inside. */
4780
4781 if (GET_CODE (ad) == AND)
4782 {
4783 removed_and = 1;
4784 loc = &XEXP (ad, 0);
4785 ad = *loc;
4786 }
4787
4788 /* One possibility for why the address is invalid is that it is itself
4789 a MEM. This can happen when the frame pointer is being eliminated, a
4790 pseudo is not allocated to a hard register, and the offset between the
4791 frame and stack pointers is not its initial value. In that case the
4792 pseudo will have been replaced by a MEM referring to the
4793 stack pointer. */
4794 if (GET_CODE (ad) == MEM)
4795 {
4796 /* First ensure that the address in this MEM is valid. Then, unless
4797 indirect addresses are valid, reload the MEM into a register. */
4798 tem = ad;
4799 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4800 opnum, ADDR_TYPE (type),
4801 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4802
4803 /* If tem was changed, then we must create a new memory reference to
4804 hold it and store it back into memrefloc. */
4805 if (tem != ad && memrefloc)
4806 {
4807 *memrefloc = copy_rtx (*memrefloc);
4808 copy_replacements (tem, XEXP (*memrefloc, 0));
4809 loc = &XEXP (*memrefloc, 0);
4810 if (removed_and)
4811 loc = &XEXP (*loc, 0);
4812 }
4813
4814 /* Check similar cases as for indirect addresses as above except
4815 that we can allow pseudos and a MEM since they should have been
4816 taken care of above. */
4817
4818 if (ind_levels == 0
4819 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4820 || GET_CODE (XEXP (tem, 0)) == MEM
4821 || ! (GET_CODE (XEXP (tem, 0)) == REG
4822 || (GET_CODE (XEXP (tem, 0)) == PLUS
4823 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4824 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4825 {
4826 /* Must use TEM here, not AD, since it is the one that will
4827 have any subexpressions reloaded, if needed. */
4828 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4829 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4830 VOIDmode, 0,
4831 0, opnum, type);
4832 return ! removed_and;
4833 }
4834 else
4835 return 0;
4836 }
4837
4838 /* If we have address of a stack slot but it's not valid because the
4839 displacement is too large, compute the sum in a register.
4840 Handle all base registers here, not just fp/ap/sp, because on some
4841 targets (namely SH) we can also get too large displacements from
4842 big-endian corrections. */
4843 else if (GET_CODE (ad) == PLUS
4844 && GET_CODE (XEXP (ad, 0)) == REG
4845 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4846 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4847 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4848 {
4849 /* Unshare the MEM rtx so we can safely alter it. */
4850 if (memrefloc)
4851 {
4852 *memrefloc = copy_rtx (*memrefloc);
4853 loc = &XEXP (*memrefloc, 0);
4854 if (removed_and)
4855 loc = &XEXP (*loc, 0);
4856 }
4857
4858 if (double_reg_address_ok)
4859 {
4860 /* Unshare the sum as well. */
4861 *loc = ad = copy_rtx (ad);
4862
4863 /* Reload the displacement into an index reg.
4864 We assume the frame pointer or arg pointer is a base reg. */
4865 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4866 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4867 type, ind_levels);
4868 return 0;
4869 }
4870 else
4871 {
4872 /* If the sum of two regs is not necessarily valid,
4873 reload the sum into a base reg.
4874 That will at least work. */
4875 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4876 Pmode, opnum, type, ind_levels);
4877 }
4878 return ! removed_and;
4879 }
4880
4881 /* If we have an indexed stack slot, there are three possible reasons why
4882 it might be invalid: The index might need to be reloaded, the address
4883 might have been made by frame pointer elimination and hence have a
4884 constant out of range, or both reasons might apply.
4885
4886 We can easily check for an index needing reload, but even if that is the
4887 case, we might also have an invalid constant. To avoid making the
4888 conservative assumption and requiring two reloads, we see if this address
4889 is valid when not interpreted strictly. If it is, the only problem is
4890 that the index needs a reload and find_reloads_address_1 will take care
4891 of it.
4892
4893 If we decide to do something here, it must be that
4894 `double_reg_address_ok' is true and that this address rtl was made by
4895 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4896 rework the sum so that the reload register will be added to the index.
4897 This is safe because we know the address isn't shared.
4898
4899 We check for fp/ap/sp as both the first and second operand of the
4900 innermost PLUS. */
4901
4902 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4903 && GET_CODE (XEXP (ad, 0)) == PLUS
4904 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4905 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4906 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4907 #endif
4908 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4909 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4910 #endif
4911 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4912 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 1)))
4913 {
4914 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4915 plus_constant (XEXP (XEXP (ad, 0), 0),
4916 INTVAL (XEXP (ad, 1))),
4917 XEXP (XEXP (ad, 0), 1));
4918 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4919 MODE_BASE_REG_CLASS (mode),
4920 GET_MODE (ad), opnum, type, ind_levels);
4921 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4922 type, 0, insn);
4923
4924 return 0;
4925 }
4926
4927 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4928 && GET_CODE (XEXP (ad, 0)) == PLUS
4929 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4930 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4931 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4932 #endif
4933 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4934 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4935 #endif
4936 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4937 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 0)))
4938 {
4939 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4940 XEXP (XEXP (ad, 0), 0),
4941 plus_constant (XEXP (XEXP (ad, 0), 1),
4942 INTVAL (XEXP (ad, 1))));
4943 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4944 MODE_BASE_REG_CLASS (mode),
4945 GET_MODE (ad), opnum, type, ind_levels);
4946 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4947 type, 0, insn);
4948
4949 return 0;
4950 }
4951
4952 /* See if address becomes valid when an eliminable register
4953 in a sum is replaced. */
4954
4955 tem = ad;
4956 if (GET_CODE (ad) == PLUS)
4957 tem = subst_indexed_address (ad);
4958 if (tem != ad && strict_memory_address_p (mode, tem))
4959 {
4960 /* Ok, we win that way. Replace any additional eliminable
4961 registers. */
4962
4963 subst_reg_equivs_changed = 0;
4964 tem = subst_reg_equivs (tem, insn);
4965
4966 /* Make sure that didn't make the address invalid again. */
4967
4968 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4969 {
4970 *loc = tem;
4971 return 0;
4972 }
4973 }
4974
4975 /* If constants aren't valid addresses, reload the constant address
4976 into a register. */
4977 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4978 {
4979 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4980 Unshare it so we can safely alter it. */
4981 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4982 && CONSTANT_POOL_ADDRESS_P (ad))
4983 {
4984 *memrefloc = copy_rtx (*memrefloc);
4985 loc = &XEXP (*memrefloc, 0);
4986 if (removed_and)
4987 loc = &XEXP (*loc, 0);
4988 }
4989
4990 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4991 Pmode, opnum, type, ind_levels);
4992 return ! removed_and;
4993 }
4994
4995 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4996 insn);
4997 }
4998 \f
4999 /* Find all pseudo regs appearing in AD
5000 that are eliminable in favor of equivalent values
5001 and do not have hard regs; replace them by their equivalents.
5002 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5003 front of it for pseudos that we have to replace with stack slots. */
5004
5005 static rtx
5006 subst_reg_equivs (ad, insn)
5007 rtx ad;
5008 rtx insn;
5009 {
5010 RTX_CODE code = GET_CODE (ad);
5011 int i;
5012 const char *fmt;
5013
5014 switch (code)
5015 {
5016 case HIGH:
5017 case CONST_INT:
5018 case CONST:
5019 case CONST_DOUBLE:
5020 case CONST_VECTOR:
5021 case SYMBOL_REF:
5022 case LABEL_REF:
5023 case PC:
5024 case CC0:
5025 return ad;
5026
5027 case REG:
5028 {
5029 int regno = REGNO (ad);
5030
5031 if (reg_equiv_constant[regno] != 0)
5032 {
5033 subst_reg_equivs_changed = 1;
5034 return reg_equiv_constant[regno];
5035 }
5036 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5037 {
5038 rtx mem = make_memloc (ad, regno);
5039 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5040 {
5041 subst_reg_equivs_changed = 1;
5042 /* We mark the USE with QImode so that we recognize it
5043 as one that can be safely deleted at the end of
5044 reload. */
5045 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5046 QImode);
5047 return mem;
5048 }
5049 }
5050 }
5051 return ad;
5052
5053 case PLUS:
5054 /* Quickly dispose of a common case. */
5055 if (XEXP (ad, 0) == frame_pointer_rtx
5056 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5057 return ad;
5058 break;
5059
5060 default:
5061 break;
5062 }
5063
5064 fmt = GET_RTX_FORMAT (code);
5065 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5066 if (fmt[i] == 'e')
5067 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5068 return ad;
5069 }
5070 \f
5071 /* Compute the sum of X and Y, making canonicalizations assumed in an
5072 address, namely: sum constant integers, surround the sum of two
5073 constants with a CONST, put the constant as the second operand, and
5074 group the constant on the outermost sum.
5075
5076 This routine assumes both inputs are already in canonical form. */
5077
5078 rtx
5079 form_sum (x, y)
5080 rtx x, y;
5081 {
5082 rtx tem;
5083 enum machine_mode mode = GET_MODE (x);
5084
5085 if (mode == VOIDmode)
5086 mode = GET_MODE (y);
5087
5088 if (mode == VOIDmode)
5089 mode = Pmode;
5090
5091 if (GET_CODE (x) == CONST_INT)
5092 return plus_constant (y, INTVAL (x));
5093 else if (GET_CODE (y) == CONST_INT)
5094 return plus_constant (x, INTVAL (y));
5095 else if (CONSTANT_P (x))
5096 tem = x, x = y, y = tem;
5097
5098 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5099 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5100
5101 /* Note that if the operands of Y are specified in the opposite
5102 order in the recursive calls below, infinite recursion will occur. */
5103 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5104 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5105
5106 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5107 constant will have been placed second. */
5108 if (CONSTANT_P (x) && CONSTANT_P (y))
5109 {
5110 if (GET_CODE (x) == CONST)
5111 x = XEXP (x, 0);
5112 if (GET_CODE (y) == CONST)
5113 y = XEXP (y, 0);
5114
5115 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5116 }
5117
5118 return gen_rtx_PLUS (mode, x, y);
5119 }
5120 \f
5121 /* If ADDR is a sum containing a pseudo register that should be
5122 replaced with a constant (from reg_equiv_constant),
5123 return the result of doing so, and also apply the associative
5124 law so that the result is more likely to be a valid address.
5125 (But it is not guaranteed to be one.)
5126
5127 Note that at most one register is replaced, even if more are
5128 replaceable. Also, we try to put the result into a canonical form
5129 so it is more likely to be a valid address.
5130
5131 In all other cases, return ADDR. */
5132
5133 static rtx
5134 subst_indexed_address (addr)
5135 rtx addr;
5136 {
5137 rtx op0 = 0, op1 = 0, op2 = 0;
5138 rtx tem;
5139 int regno;
5140
5141 if (GET_CODE (addr) == PLUS)
5142 {
5143 /* Try to find a register to replace. */
5144 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5145 if (GET_CODE (op0) == REG
5146 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5147 && reg_renumber[regno] < 0
5148 && reg_equiv_constant[regno] != 0)
5149 op0 = reg_equiv_constant[regno];
5150 else if (GET_CODE (op1) == REG
5151 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5152 && reg_renumber[regno] < 0
5153 && reg_equiv_constant[regno] != 0)
5154 op1 = reg_equiv_constant[regno];
5155 else if (GET_CODE (op0) == PLUS
5156 && (tem = subst_indexed_address (op0)) != op0)
5157 op0 = tem;
5158 else if (GET_CODE (op1) == PLUS
5159 && (tem = subst_indexed_address (op1)) != op1)
5160 op1 = tem;
5161 else
5162 return addr;
5163
5164 /* Pick out up to three things to add. */
5165 if (GET_CODE (op1) == PLUS)
5166 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5167 else if (GET_CODE (op0) == PLUS)
5168 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5169
5170 /* Compute the sum. */
5171 if (op2 != 0)
5172 op1 = form_sum (op1, op2);
5173 if (op1 != 0)
5174 op0 = form_sum (op0, op1);
5175
5176 return op0;
5177 }
5178 return addr;
5179 }
5180 \f
5181 /* Update the REG_INC notes for an insn. It updates all REG_INC
5182 notes for the instruction which refer to REGNO the to refer
5183 to the reload number.
5184
5185 INSN is the insn for which any REG_INC notes need updating.
5186
5187 REGNO is the register number which has been reloaded.
5188
5189 RELOADNUM is the reload number. */
5190
5191 static void
5192 update_auto_inc_notes (insn, regno, reloadnum)
5193 rtx insn ATTRIBUTE_UNUSED;
5194 int regno ATTRIBUTE_UNUSED;
5195 int reloadnum ATTRIBUTE_UNUSED;
5196 {
5197 #ifdef AUTO_INC_DEC
5198 rtx link;
5199
5200 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5201 if (REG_NOTE_KIND (link) == REG_INC
5202 && (int) REGNO (XEXP (link, 0)) == regno)
5203 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5204 #endif
5205 }
5206 \f
5207 /* Record the pseudo registers we must reload into hard registers in a
5208 subexpression of a would-be memory address, X referring to a value
5209 in mode MODE. (This function is not called if the address we find
5210 is strictly valid.)
5211
5212 CONTEXT = 1 means we are considering regs as index regs,
5213 = 0 means we are considering them as base regs.
5214
5215 OPNUM and TYPE specify the purpose of any reloads made.
5216
5217 IND_LEVELS says how many levels of indirect addressing are
5218 supported at this point in the address.
5219
5220 INSN, if nonzero, is the insn in which we do the reload. It is used
5221 to determine if we may generate output reloads.
5222
5223 We return nonzero if X, as a whole, is reloaded or replaced. */
5224
5225 /* Note that we take shortcuts assuming that no multi-reg machine mode
5226 occurs as part of an address.
5227 Also, this is not fully machine-customizable; it works for machines
5228 such as VAXen and 68000's and 32000's, but other possible machines
5229 could have addressing modes that this does not handle right. */
5230
5231 static int
5232 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5233 enum machine_mode mode;
5234 rtx x;
5235 int context;
5236 rtx *loc;
5237 int opnum;
5238 enum reload_type type;
5239 int ind_levels;
5240 rtx insn;
5241 {
5242 RTX_CODE code = GET_CODE (x);
5243
5244 switch (code)
5245 {
5246 case PLUS:
5247 {
5248 rtx orig_op0 = XEXP (x, 0);
5249 rtx orig_op1 = XEXP (x, 1);
5250 RTX_CODE code0 = GET_CODE (orig_op0);
5251 RTX_CODE code1 = GET_CODE (orig_op1);
5252 rtx op0 = orig_op0;
5253 rtx op1 = orig_op1;
5254
5255 if (GET_CODE (op0) == SUBREG)
5256 {
5257 op0 = SUBREG_REG (op0);
5258 code0 = GET_CODE (op0);
5259 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5260 op0 = gen_rtx_REG (word_mode,
5261 (REGNO (op0) +
5262 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5263 GET_MODE (SUBREG_REG (orig_op0)),
5264 SUBREG_BYTE (orig_op0),
5265 GET_MODE (orig_op0))));
5266 }
5267
5268 if (GET_CODE (op1) == SUBREG)
5269 {
5270 op1 = SUBREG_REG (op1);
5271 code1 = GET_CODE (op1);
5272 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5273 /* ??? Why is this given op1's mode and above for
5274 ??? op0 SUBREGs we use word_mode? */
5275 op1 = gen_rtx_REG (GET_MODE (op1),
5276 (REGNO (op1) +
5277 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5278 GET_MODE (SUBREG_REG (orig_op1)),
5279 SUBREG_BYTE (orig_op1),
5280 GET_MODE (orig_op1))));
5281 }
5282
5283 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5284 || code0 == ZERO_EXTEND || code1 == MEM)
5285 {
5286 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5287 type, ind_levels, insn);
5288 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5289 type, ind_levels, insn);
5290 }
5291
5292 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5293 || code1 == ZERO_EXTEND || code0 == MEM)
5294 {
5295 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5296 type, ind_levels, insn);
5297 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5298 type, ind_levels, insn);
5299 }
5300
5301 else if (code0 == CONST_INT || code0 == CONST
5302 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5303 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5304 type, ind_levels, insn);
5305
5306 else if (code1 == CONST_INT || code1 == CONST
5307 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5308 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5309 type, ind_levels, insn);
5310
5311 else if (code0 == REG && code1 == REG)
5312 {
5313 if (REG_OK_FOR_INDEX_P (op0)
5314 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5315 return 0;
5316 else if (REG_OK_FOR_INDEX_P (op1)
5317 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5318 return 0;
5319 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5320 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5321 type, ind_levels, insn);
5322 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5323 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5324 type, ind_levels, insn);
5325 else if (REG_OK_FOR_INDEX_P (op1))
5326 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5327 type, ind_levels, insn);
5328 else if (REG_OK_FOR_INDEX_P (op0))
5329 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5330 type, ind_levels, insn);
5331 else
5332 {
5333 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5334 type, ind_levels, insn);
5335 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5336 type, ind_levels, insn);
5337 }
5338 }
5339
5340 else if (code0 == REG)
5341 {
5342 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5343 type, ind_levels, insn);
5344 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5345 type, ind_levels, insn);
5346 }
5347
5348 else if (code1 == REG)
5349 {
5350 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5351 type, ind_levels, insn);
5352 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5353 type, ind_levels, insn);
5354 }
5355 }
5356
5357 return 0;
5358
5359 case POST_MODIFY:
5360 case PRE_MODIFY:
5361 {
5362 rtx op0 = XEXP (x, 0);
5363 rtx op1 = XEXP (x, 1);
5364
5365 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5366 return 0;
5367
5368 /* Currently, we only support {PRE,POST}_MODIFY constructs
5369 where a base register is {inc,dec}remented by the contents
5370 of another register or by a constant value. Thus, these
5371 operands must match. */
5372 if (op0 != XEXP (op1, 0))
5373 abort ();
5374
5375 /* Require index register (or constant). Let's just handle the
5376 register case in the meantime... If the target allows
5377 auto-modify by a constant then we could try replacing a pseudo
5378 register with its equivalent constant where applicable. */
5379 if (REG_P (XEXP (op1, 1)))
5380 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5381 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5382 opnum, type, ind_levels, insn);
5383
5384 if (REG_P (XEXP (op1, 0)))
5385 {
5386 int regno = REGNO (XEXP (op1, 0));
5387 int reloadnum;
5388
5389 /* A register that is incremented cannot be constant! */
5390 if (regno >= FIRST_PSEUDO_REGISTER
5391 && reg_equiv_constant[regno] != 0)
5392 abort ();
5393
5394 /* Handle a register that is equivalent to a memory location
5395 which cannot be addressed directly. */
5396 if (reg_equiv_memory_loc[regno] != 0
5397 && (reg_equiv_address[regno] != 0
5398 || num_not_at_initial_offset))
5399 {
5400 rtx tem = make_memloc (XEXP (x, 0), regno);
5401
5402 if (reg_equiv_address[regno]
5403 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5404 {
5405 /* First reload the memory location's address.
5406 We can't use ADDR_TYPE (type) here, because we need to
5407 write back the value after reading it, hence we actually
5408 need two registers. */
5409 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5410 &XEXP (tem, 0), opnum,
5411 RELOAD_OTHER,
5412 ind_levels, insn);
5413
5414 /* Then reload the memory location into a base
5415 register. */
5416 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5417 &XEXP (op1, 0),
5418 MODE_BASE_REG_CLASS (mode),
5419 GET_MODE (x), GET_MODE (x), 0,
5420 0, opnum, RELOAD_OTHER);
5421
5422 update_auto_inc_notes (this_insn, regno, reloadnum);
5423 return 0;
5424 }
5425 }
5426
5427 if (reg_renumber[regno] >= 0)
5428 regno = reg_renumber[regno];
5429
5430 /* We require a base register here... */
5431 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5432 {
5433 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5434 &XEXP (op1, 0), &XEXP (x, 0),
5435 MODE_BASE_REG_CLASS (mode),
5436 GET_MODE (x), GET_MODE (x), 0, 0,
5437 opnum, RELOAD_OTHER);
5438
5439 update_auto_inc_notes (this_insn, regno, reloadnum);
5440 return 0;
5441 }
5442 }
5443 else
5444 abort ();
5445 }
5446 return 0;
5447
5448 case POST_INC:
5449 case POST_DEC:
5450 case PRE_INC:
5451 case PRE_DEC:
5452 if (GET_CODE (XEXP (x, 0)) == REG)
5453 {
5454 int regno = REGNO (XEXP (x, 0));
5455 int value = 0;
5456 rtx x_orig = x;
5457
5458 /* A register that is incremented cannot be constant! */
5459 if (regno >= FIRST_PSEUDO_REGISTER
5460 && reg_equiv_constant[regno] != 0)
5461 abort ();
5462
5463 /* Handle a register that is equivalent to a memory location
5464 which cannot be addressed directly. */
5465 if (reg_equiv_memory_loc[regno] != 0
5466 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5467 {
5468 rtx tem = make_memloc (XEXP (x, 0), regno);
5469 if (reg_equiv_address[regno]
5470 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5471 {
5472 /* First reload the memory location's address.
5473 We can't use ADDR_TYPE (type) here, because we need to
5474 write back the value after reading it, hence we actually
5475 need two registers. */
5476 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5477 &XEXP (tem, 0), opnum, type,
5478 ind_levels, insn);
5479 /* Put this inside a new increment-expression. */
5480 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5481 /* Proceed to reload that, as if it contained a register. */
5482 }
5483 }
5484
5485 /* If we have a hard register that is ok as an index,
5486 don't make a reload. If an autoincrement of a nice register
5487 isn't "valid", it must be that no autoincrement is "valid".
5488 If that is true and something made an autoincrement anyway,
5489 this must be a special context where one is allowed.
5490 (For example, a "push" instruction.)
5491 We can't improve this address, so leave it alone. */
5492
5493 /* Otherwise, reload the autoincrement into a suitable hard reg
5494 and record how much to increment by. */
5495
5496 if (reg_renumber[regno] >= 0)
5497 regno = reg_renumber[regno];
5498 if ((regno >= FIRST_PSEUDO_REGISTER
5499 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5500 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5501 {
5502 int reloadnum;
5503
5504 /* If we can output the register afterwards, do so, this
5505 saves the extra update.
5506 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5507 CALL_INSN - and it does not set CC0.
5508 But don't do this if we cannot directly address the
5509 memory location, since this will make it harder to
5510 reuse address reloads, and increases register pressure.
5511 Also don't do this if we can probably update x directly. */
5512 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5513 ? XEXP (x, 0)
5514 : reg_equiv_mem[regno]);
5515 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5516 if (insn && GET_CODE (insn) == INSN && equiv
5517 && memory_operand (equiv, GET_MODE (equiv))
5518 #ifdef HAVE_cc0
5519 && ! sets_cc0_p (PATTERN (insn))
5520 #endif
5521 && ! (icode != CODE_FOR_nothing
5522 && ((*insn_data[icode].operand[0].predicate)
5523 (equiv, Pmode))
5524 && ((*insn_data[icode].operand[1].predicate)
5525 (equiv, Pmode))))
5526 {
5527 /* We use the original pseudo for loc, so that
5528 emit_reload_insns() knows which pseudo this
5529 reload refers to and updates the pseudo rtx, not
5530 its equivalent memory location, as well as the
5531 corresponding entry in reg_last_reload_reg. */
5532 loc = &XEXP (x_orig, 0);
5533 x = XEXP (x, 0);
5534 reloadnum
5535 = push_reload (x, x, loc, loc,
5536 (context ? INDEX_REG_CLASS :
5537 MODE_BASE_REG_CLASS (mode)),
5538 GET_MODE (x), GET_MODE (x), 0, 0,
5539 opnum, RELOAD_OTHER);
5540 }
5541 else
5542 {
5543 reloadnum
5544 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5545 (context ? INDEX_REG_CLASS :
5546 MODE_BASE_REG_CLASS (mode)),
5547 GET_MODE (x), GET_MODE (x), 0, 0,
5548 opnum, type);
5549 rld[reloadnum].inc
5550 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5551
5552 value = 1;
5553 }
5554
5555 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5556 reloadnum);
5557 }
5558 return value;
5559 }
5560
5561 else if (GET_CODE (XEXP (x, 0)) == MEM)
5562 {
5563 /* This is probably the result of a substitution, by eliminate_regs,
5564 of an equivalent address for a pseudo that was not allocated to a
5565 hard register. Verify that the specified address is valid and
5566 reload it into a register. */
5567 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5568 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5569 rtx link;
5570 int reloadnum;
5571
5572 /* Since we know we are going to reload this item, don't decrement
5573 for the indirection level.
5574
5575 Note that this is actually conservative: it would be slightly
5576 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5577 reload1.c here. */
5578 /* We can't use ADDR_TYPE (type) here, because we need to
5579 write back the value after reading it, hence we actually
5580 need two registers. */
5581 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5582 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5583 opnum, type, ind_levels, insn);
5584
5585 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5586 (context ? INDEX_REG_CLASS :
5587 MODE_BASE_REG_CLASS (mode)),
5588 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5589 rld[reloadnum].inc
5590 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5591
5592 link = FIND_REG_INC_NOTE (this_insn, tem);
5593 if (link != 0)
5594 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5595
5596 return 1;
5597 }
5598 return 0;
5599
5600 case MEM:
5601 /* This is probably the result of a substitution, by eliminate_regs, of
5602 an equivalent address for a pseudo that was not allocated to a hard
5603 register. Verify that the specified address is valid and reload it
5604 into a register.
5605
5606 Since we know we are going to reload this item, don't decrement for
5607 the indirection level.
5608
5609 Note that this is actually conservative: it would be slightly more
5610 efficient to use the value of SPILL_INDIRECT_LEVELS from
5611 reload1.c here. */
5612
5613 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5614 opnum, ADDR_TYPE (type), ind_levels, insn);
5615 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5616 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5617 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5618 return 1;
5619
5620 case REG:
5621 {
5622 int regno = REGNO (x);
5623
5624 if (reg_equiv_constant[regno] != 0)
5625 {
5626 find_reloads_address_part (reg_equiv_constant[regno], loc,
5627 (context ? INDEX_REG_CLASS :
5628 MODE_BASE_REG_CLASS (mode)),
5629 GET_MODE (x), opnum, type, ind_levels);
5630 return 1;
5631 }
5632
5633 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5634 that feeds this insn. */
5635 if (reg_equiv_mem[regno] != 0)
5636 {
5637 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5638 (context ? INDEX_REG_CLASS :
5639 MODE_BASE_REG_CLASS (mode)),
5640 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5641 return 1;
5642 }
5643 #endif
5644
5645 if (reg_equiv_memory_loc[regno]
5646 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5647 {
5648 rtx tem = make_memloc (x, regno);
5649 if (reg_equiv_address[regno] != 0
5650 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5651 {
5652 x = tem;
5653 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5654 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5655 ind_levels, insn);
5656 }
5657 }
5658
5659 if (reg_renumber[regno] >= 0)
5660 regno = reg_renumber[regno];
5661
5662 if ((regno >= FIRST_PSEUDO_REGISTER
5663 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5664 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5665 {
5666 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5667 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5668 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5669 return 1;
5670 }
5671
5672 /* If a register appearing in an address is the subject of a CLOBBER
5673 in this insn, reload it into some other register to be safe.
5674 The CLOBBER is supposed to make the register unavailable
5675 from before this insn to after it. */
5676 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5677 {
5678 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5679 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5680 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5681 return 1;
5682 }
5683 }
5684 return 0;
5685
5686 case SUBREG:
5687 if (GET_CODE (SUBREG_REG (x)) == REG)
5688 {
5689 /* If this is a SUBREG of a hard register and the resulting register
5690 is of the wrong class, reload the whole SUBREG. This avoids
5691 needless copies if SUBREG_REG is multi-word. */
5692 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5693 {
5694 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5695
5696 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5697 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5698 {
5699 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5700 (context ? INDEX_REG_CLASS :
5701 MODE_BASE_REG_CLASS (mode)),
5702 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5703 return 1;
5704 }
5705 }
5706 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5707 is larger than the class size, then reload the whole SUBREG. */
5708 else
5709 {
5710 enum reg_class class = (context ? INDEX_REG_CLASS
5711 : MODE_BASE_REG_CLASS (mode));
5712 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5713 > reg_class_size[class])
5714 {
5715 x = find_reloads_subreg_address (x, 0, opnum, type,
5716 ind_levels, insn);
5717 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5718 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5719 return 1;
5720 }
5721 }
5722 }
5723 break;
5724
5725 default:
5726 break;
5727 }
5728
5729 {
5730 const char *fmt = GET_RTX_FORMAT (code);
5731 int i;
5732
5733 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5734 {
5735 if (fmt[i] == 'e')
5736 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5737 opnum, type, ind_levels, insn);
5738 }
5739 }
5740
5741 return 0;
5742 }
5743 \f
5744 /* X, which is found at *LOC, is a part of an address that needs to be
5745 reloaded into a register of class CLASS. If X is a constant, or if
5746 X is a PLUS that contains a constant, check that the constant is a
5747 legitimate operand and that we are supposed to be able to load
5748 it into the register.
5749
5750 If not, force the constant into memory and reload the MEM instead.
5751
5752 MODE is the mode to use, in case X is an integer constant.
5753
5754 OPNUM and TYPE describe the purpose of any reloads made.
5755
5756 IND_LEVELS says how many levels of indirect addressing this machine
5757 supports. */
5758
5759 static void
5760 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5761 rtx x;
5762 rtx *loc;
5763 enum reg_class class;
5764 enum machine_mode mode;
5765 int opnum;
5766 enum reload_type type;
5767 int ind_levels;
5768 {
5769 if (CONSTANT_P (x)
5770 && (! LEGITIMATE_CONSTANT_P (x)
5771 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5772 {
5773 rtx tem;
5774
5775 tem = x = force_const_mem (mode, x);
5776 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5777 opnum, type, ind_levels, 0);
5778 }
5779
5780 else if (GET_CODE (x) == PLUS
5781 && CONSTANT_P (XEXP (x, 1))
5782 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5783 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5784 {
5785 rtx tem;
5786
5787 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5788 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5789 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5790 opnum, type, ind_levels, 0);
5791 }
5792
5793 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5794 mode, VOIDmode, 0, 0, opnum, type);
5795 }
5796 \f
5797 /* X, a subreg of a pseudo, is a part of an address that needs to be
5798 reloaded.
5799
5800 If the pseudo is equivalent to a memory location that cannot be directly
5801 addressed, make the necessary address reloads.
5802
5803 If address reloads have been necessary, or if the address is changed
5804 by register elimination, return the rtx of the memory location;
5805 otherwise, return X.
5806
5807 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5808 memory location.
5809
5810 OPNUM and TYPE identify the purpose of the reload.
5811
5812 IND_LEVELS says how many levels of indirect addressing are
5813 supported at this point in the address.
5814
5815 INSN, if nonzero, is the insn in which we do the reload. It is used
5816 to determine where to put USEs for pseudos that we have to replace with
5817 stack slots. */
5818
5819 static rtx
5820 find_reloads_subreg_address (x, force_replace, opnum, type,
5821 ind_levels, insn)
5822 rtx x;
5823 int force_replace;
5824 int opnum;
5825 enum reload_type type;
5826 int ind_levels;
5827 rtx insn;
5828 {
5829 int regno = REGNO (SUBREG_REG (x));
5830
5831 if (reg_equiv_memory_loc[regno])
5832 {
5833 /* If the address is not directly addressable, or if the address is not
5834 offsettable, then it must be replaced. */
5835 if (! force_replace
5836 && (reg_equiv_address[regno]
5837 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5838 force_replace = 1;
5839
5840 if (force_replace || num_not_at_initial_offset)
5841 {
5842 rtx tem = make_memloc (SUBREG_REG (x), regno);
5843
5844 /* If the address changes because of register elimination, then
5845 it must be replaced. */
5846 if (force_replace
5847 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5848 {
5849 int offset = SUBREG_BYTE (x);
5850 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5851 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5852
5853 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5854 PUT_MODE (tem, GET_MODE (x));
5855
5856 /* If this was a paradoxical subreg that we replaced, the
5857 resulting memory must be sufficiently aligned to allow
5858 us to widen the mode of the memory. */
5859 if (outer_size > inner_size && STRICT_ALIGNMENT)
5860 {
5861 rtx base;
5862
5863 base = XEXP (tem, 0);
5864 if (GET_CODE (base) == PLUS)
5865 {
5866 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5867 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5868 return x;
5869 base = XEXP (base, 0);
5870 }
5871 if (GET_CODE (base) != REG
5872 || (REGNO_POINTER_ALIGN (REGNO (base))
5873 < outer_size * BITS_PER_UNIT))
5874 return x;
5875 }
5876
5877 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5878 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5879 ind_levels, insn);
5880
5881 /* If this is not a toplevel operand, find_reloads doesn't see
5882 this substitution. We have to emit a USE of the pseudo so
5883 that delete_output_reload can see it. */
5884 if (replace_reloads && recog_data.operand[opnum] != x)
5885 /* We mark the USE with QImode so that we recognize it
5886 as one that can be safely deleted at the end of
5887 reload. */
5888 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5889 SUBREG_REG (x)),
5890 insn), QImode);
5891 x = tem;
5892 }
5893 }
5894 }
5895 return x;
5896 }
5897 \f
5898 /* Substitute into the current INSN the registers into which we have reloaded
5899 the things that need reloading. The array `replacements'
5900 contains the locations of all pointers that must be changed
5901 and says what to replace them with.
5902
5903 Return the rtx that X translates into; usually X, but modified. */
5904
5905 void
5906 subst_reloads (insn)
5907 rtx insn;
5908 {
5909 int i;
5910
5911 for (i = 0; i < n_replacements; i++)
5912 {
5913 struct replacement *r = &replacements[i];
5914 rtx reloadreg = rld[r->what].reg_rtx;
5915 if (reloadreg)
5916 {
5917 #ifdef ENABLE_CHECKING
5918 /* Internal consistency test. Check that we don't modify
5919 anything in the equivalence arrays. Whenever something from
5920 those arrays needs to be reloaded, it must be unshared before
5921 being substituted into; the equivalence must not be modified.
5922 Otherwise, if the equivalence is used after that, it will
5923 have been modified, and the thing substituted (probably a
5924 register) is likely overwritten and not a usable equivalence. */
5925 int check_regno;
5926
5927 for (check_regno = 0; check_regno < max_regno; check_regno++)
5928 {
5929 #define CHECK_MODF(ARRAY) \
5930 if (ARRAY[check_regno] \
5931 && loc_mentioned_in_p (r->where, \
5932 ARRAY[check_regno])) \
5933 abort ()
5934
5935 CHECK_MODF (reg_equiv_constant);
5936 CHECK_MODF (reg_equiv_memory_loc);
5937 CHECK_MODF (reg_equiv_address);
5938 CHECK_MODF (reg_equiv_mem);
5939 #undef CHECK_MODF
5940 }
5941 #endif /* ENABLE_CHECKING */
5942
5943 /* If we're replacing a LABEL_REF with a register, add a
5944 REG_LABEL note to indicate to flow which label this
5945 register refers to. */
5946 if (GET_CODE (*r->where) == LABEL_REF
5947 && GET_CODE (insn) == JUMP_INSN)
5948 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5949 XEXP (*r->where, 0),
5950 REG_NOTES (insn));
5951
5952 /* Encapsulate RELOADREG so its machine mode matches what
5953 used to be there. Note that gen_lowpart_common will
5954 do the wrong thing if RELOADREG is multi-word. RELOADREG
5955 will always be a REG here. */
5956 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5957 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5958
5959 /* If we are putting this into a SUBREG and RELOADREG is a
5960 SUBREG, we would be making nested SUBREGs, so we have to fix
5961 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5962
5963 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5964 {
5965 if (GET_MODE (*r->subreg_loc)
5966 == GET_MODE (SUBREG_REG (reloadreg)))
5967 *r->subreg_loc = SUBREG_REG (reloadreg);
5968 else
5969 {
5970 int final_offset =
5971 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5972
5973 /* When working with SUBREGs the rule is that the byte
5974 offset must be a multiple of the SUBREG's mode. */
5975 final_offset = (final_offset /
5976 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5977 final_offset = (final_offset *
5978 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5979
5980 *r->where = SUBREG_REG (reloadreg);
5981 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5982 }
5983 }
5984 else
5985 *r->where = reloadreg;
5986 }
5987 /* If reload got no reg and isn't optional, something's wrong. */
5988 else if (! rld[r->what].optional)
5989 abort ();
5990 }
5991 }
5992 \f
5993 /* Make a copy of any replacements being done into X and move those
5994 copies to locations in Y, a copy of X. */
5995
5996 void
5997 copy_replacements (x, y)
5998 rtx x, y;
5999 {
6000 /* We can't support X being a SUBREG because we might then need to know its
6001 location if something inside it was replaced. */
6002 if (GET_CODE (x) == SUBREG)
6003 abort ();
6004
6005 copy_replacements_1 (&x, &y, n_replacements);
6006 }
6007
6008 static void
6009 copy_replacements_1 (px, py, orig_replacements)
6010 rtx *px;
6011 rtx *py;
6012 int orig_replacements;
6013 {
6014 int i, j;
6015 rtx x, y;
6016 struct replacement *r;
6017 enum rtx_code code;
6018 const char *fmt;
6019
6020 for (j = 0; j < orig_replacements; j++)
6021 {
6022 if (replacements[j].subreg_loc == px)
6023 {
6024 r = &replacements[n_replacements++];
6025 r->where = replacements[j].where;
6026 r->subreg_loc = py;
6027 r->what = replacements[j].what;
6028 r->mode = replacements[j].mode;
6029 }
6030 else if (replacements[j].where == px)
6031 {
6032 r = &replacements[n_replacements++];
6033 r->where = py;
6034 r->subreg_loc = 0;
6035 r->what = replacements[j].what;
6036 r->mode = replacements[j].mode;
6037 }
6038 }
6039
6040 x = *px;
6041 y = *py;
6042 code = GET_CODE (x);
6043 fmt = GET_RTX_FORMAT (code);
6044
6045 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6046 {
6047 if (fmt[i] == 'e')
6048 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6049 else if (fmt[i] == 'E')
6050 for (j = XVECLEN (x, i); --j >= 0; )
6051 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6052 orig_replacements);
6053 }
6054 }
6055
6056 /* Change any replacements being done to *X to be done to *Y. */
6057
6058 void
6059 move_replacements (x, y)
6060 rtx *x;
6061 rtx *y;
6062 {
6063 int i;
6064
6065 for (i = 0; i < n_replacements; i++)
6066 if (replacements[i].subreg_loc == x)
6067 replacements[i].subreg_loc = y;
6068 else if (replacements[i].where == x)
6069 {
6070 replacements[i].where = y;
6071 replacements[i].subreg_loc = 0;
6072 }
6073 }
6074 \f
6075 /* If LOC was scheduled to be replaced by something, return the replacement.
6076 Otherwise, return *LOC. */
6077
6078 rtx
6079 find_replacement (loc)
6080 rtx *loc;
6081 {
6082 struct replacement *r;
6083
6084 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6085 {
6086 rtx reloadreg = rld[r->what].reg_rtx;
6087
6088 if (reloadreg && r->where == loc)
6089 {
6090 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6091 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6092
6093 return reloadreg;
6094 }
6095 else if (reloadreg && r->subreg_loc == loc)
6096 {
6097 /* RELOADREG must be either a REG or a SUBREG.
6098
6099 ??? Is it actually still ever a SUBREG? If so, why? */
6100
6101 if (GET_CODE (reloadreg) == REG)
6102 return gen_rtx_REG (GET_MODE (*loc),
6103 (REGNO (reloadreg) +
6104 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6105 GET_MODE (SUBREG_REG (*loc)),
6106 SUBREG_BYTE (*loc),
6107 GET_MODE (*loc))));
6108 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6109 return reloadreg;
6110 else
6111 {
6112 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6113
6114 /* When working with SUBREGs the rule is that the byte
6115 offset must be a multiple of the SUBREG's mode. */
6116 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6117 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6118 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6119 final_offset);
6120 }
6121 }
6122 }
6123
6124 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6125 what's inside and make a new rtl if so. */
6126 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6127 || GET_CODE (*loc) == MULT)
6128 {
6129 rtx x = find_replacement (&XEXP (*loc, 0));
6130 rtx y = find_replacement (&XEXP (*loc, 1));
6131
6132 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6133 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6134 }
6135
6136 return *loc;
6137 }
6138 \f
6139 /* Return nonzero if register in range [REGNO, ENDREGNO)
6140 appears either explicitly or implicitly in X
6141 other than being stored into (except for earlyclobber operands).
6142
6143 References contained within the substructure at LOC do not count.
6144 LOC may be zero, meaning don't ignore anything.
6145
6146 This is similar to refers_to_regno_p in rtlanal.c except that we
6147 look at equivalences for pseudos that didn't get hard registers. */
6148
6149 int
6150 refers_to_regno_for_reload_p (regno, endregno, x, loc)
6151 unsigned int regno, endregno;
6152 rtx x;
6153 rtx *loc;
6154 {
6155 int i;
6156 unsigned int r;
6157 RTX_CODE code;
6158 const char *fmt;
6159
6160 if (x == 0)
6161 return 0;
6162
6163 repeat:
6164 code = GET_CODE (x);
6165
6166 switch (code)
6167 {
6168 case REG:
6169 r = REGNO (x);
6170
6171 /* If this is a pseudo, a hard register must not have been allocated.
6172 X must therefore either be a constant or be in memory. */
6173 if (r >= FIRST_PSEUDO_REGISTER)
6174 {
6175 if (reg_equiv_memory_loc[r])
6176 return refers_to_regno_for_reload_p (regno, endregno,
6177 reg_equiv_memory_loc[r],
6178 (rtx*) 0);
6179
6180 if (reg_equiv_constant[r])
6181 return 0;
6182
6183 abort ();
6184 }
6185
6186 return (endregno > r
6187 && regno < r + (r < FIRST_PSEUDO_REGISTER
6188 ? HARD_REGNO_NREGS (r, GET_MODE (x))
6189 : 1));
6190
6191 case SUBREG:
6192 /* If this is a SUBREG of a hard reg, we can see exactly which
6193 registers are being modified. Otherwise, handle normally. */
6194 if (GET_CODE (SUBREG_REG (x)) == REG
6195 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6196 {
6197 unsigned int inner_regno = subreg_regno (x);
6198 unsigned int inner_endregno
6199 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6200 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6201
6202 return endregno > inner_regno && regno < inner_endregno;
6203 }
6204 break;
6205
6206 case CLOBBER:
6207 case SET:
6208 if (&SET_DEST (x) != loc
6209 /* Note setting a SUBREG counts as referring to the REG it is in for
6210 a pseudo but not for hard registers since we can
6211 treat each word individually. */
6212 && ((GET_CODE (SET_DEST (x)) == SUBREG
6213 && loc != &SUBREG_REG (SET_DEST (x))
6214 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6215 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6216 && refers_to_regno_for_reload_p (regno, endregno,
6217 SUBREG_REG (SET_DEST (x)),
6218 loc))
6219 /* If the output is an earlyclobber operand, this is
6220 a conflict. */
6221 || ((GET_CODE (SET_DEST (x)) != REG
6222 || earlyclobber_operand_p (SET_DEST (x)))
6223 && refers_to_regno_for_reload_p (regno, endregno,
6224 SET_DEST (x), loc))))
6225 return 1;
6226
6227 if (code == CLOBBER || loc == &SET_SRC (x))
6228 return 0;
6229 x = SET_SRC (x);
6230 goto repeat;
6231
6232 default:
6233 break;
6234 }
6235
6236 /* X does not match, so try its subexpressions. */
6237
6238 fmt = GET_RTX_FORMAT (code);
6239 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6240 {
6241 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6242 {
6243 if (i == 0)
6244 {
6245 x = XEXP (x, 0);
6246 goto repeat;
6247 }
6248 else
6249 if (refers_to_regno_for_reload_p (regno, endregno,
6250 XEXP (x, i), loc))
6251 return 1;
6252 }
6253 else if (fmt[i] == 'E')
6254 {
6255 int j;
6256 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6257 if (loc != &XVECEXP (x, i, j)
6258 && refers_to_regno_for_reload_p (regno, endregno,
6259 XVECEXP (x, i, j), loc))
6260 return 1;
6261 }
6262 }
6263 return 0;
6264 }
6265
6266 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6267 we check if any register number in X conflicts with the relevant register
6268 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6269 contains a MEM (we don't bother checking for memory addresses that can't
6270 conflict because we expect this to be a rare case.
6271
6272 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6273 that we look at equivalences for pseudos that didn't get hard registers. */
6274
6275 int
6276 reg_overlap_mentioned_for_reload_p (x, in)
6277 rtx x, in;
6278 {
6279 int regno, endregno;
6280
6281 /* Overly conservative. */
6282 if (GET_CODE (x) == STRICT_LOW_PART
6283 || GET_RTX_CLASS (GET_CODE (x)) == 'a')
6284 x = XEXP (x, 0);
6285
6286 /* If either argument is a constant, then modifying X can not affect IN. */
6287 if (CONSTANT_P (x) || CONSTANT_P (in))
6288 return 0;
6289 else if (GET_CODE (x) == SUBREG)
6290 {
6291 regno = REGNO (SUBREG_REG (x));
6292 if (regno < FIRST_PSEUDO_REGISTER)
6293 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6294 GET_MODE (SUBREG_REG (x)),
6295 SUBREG_BYTE (x),
6296 GET_MODE (x));
6297 }
6298 else if (GET_CODE (x) == REG)
6299 {
6300 regno = REGNO (x);
6301
6302 /* If this is a pseudo, it must not have been assigned a hard register.
6303 Therefore, it must either be in memory or be a constant. */
6304
6305 if (regno >= FIRST_PSEUDO_REGISTER)
6306 {
6307 if (reg_equiv_memory_loc[regno])
6308 return refers_to_mem_for_reload_p (in);
6309 else if (reg_equiv_constant[regno])
6310 return 0;
6311 abort ();
6312 }
6313 }
6314 else if (GET_CODE (x) == MEM)
6315 return refers_to_mem_for_reload_p (in);
6316 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6317 || GET_CODE (x) == CC0)
6318 return reg_mentioned_p (x, in);
6319 else if (GET_CODE (x) == PLUS)
6320 return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6321 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6322 else
6323 abort ();
6324
6325 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6326 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6327
6328 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6329 }
6330
6331 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6332 registers. */
6333
6334 int
6335 refers_to_mem_for_reload_p (x)
6336 rtx x;
6337 {
6338 const char *fmt;
6339 int i;
6340
6341 if (GET_CODE (x) == MEM)
6342 return 1;
6343
6344 if (GET_CODE (x) == REG)
6345 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6346 && reg_equiv_memory_loc[REGNO (x)]);
6347
6348 fmt = GET_RTX_FORMAT (GET_CODE (x));
6349 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6350 if (fmt[i] == 'e'
6351 && (GET_CODE (XEXP (x, i)) == MEM
6352 || refers_to_mem_for_reload_p (XEXP (x, i))))
6353 return 1;
6354
6355 return 0;
6356 }
6357 \f
6358 /* Check the insns before INSN to see if there is a suitable register
6359 containing the same value as GOAL.
6360 If OTHER is -1, look for a register in class CLASS.
6361 Otherwise, just see if register number OTHER shares GOAL's value.
6362
6363 Return an rtx for the register found, or zero if none is found.
6364
6365 If RELOAD_REG_P is (short *)1,
6366 we reject any hard reg that appears in reload_reg_rtx
6367 because such a hard reg is also needed coming into this insn.
6368
6369 If RELOAD_REG_P is any other nonzero value,
6370 it is a vector indexed by hard reg number
6371 and we reject any hard reg whose element in the vector is nonnegative
6372 as well as any that appears in reload_reg_rtx.
6373
6374 If GOAL is zero, then GOALREG is a register number; we look
6375 for an equivalent for that register.
6376
6377 MODE is the machine mode of the value we want an equivalence for.
6378 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6379
6380 This function is used by jump.c as well as in the reload pass.
6381
6382 If GOAL is the sum of the stack pointer and a constant, we treat it
6383 as if it were a constant except that sp is required to be unchanging. */
6384
6385 rtx
6386 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6387 rtx goal;
6388 rtx insn;
6389 enum reg_class class;
6390 int other;
6391 short *reload_reg_p;
6392 int goalreg;
6393 enum machine_mode mode;
6394 {
6395 rtx p = insn;
6396 rtx goaltry, valtry, value, where;
6397 rtx pat;
6398 int regno = -1;
6399 int valueno;
6400 int goal_mem = 0;
6401 int goal_const = 0;
6402 int goal_mem_addr_varies = 0;
6403 int need_stable_sp = 0;
6404 int nregs;
6405 int valuenregs;
6406
6407 if (goal == 0)
6408 regno = goalreg;
6409 else if (GET_CODE (goal) == REG)
6410 regno = REGNO (goal);
6411 else if (GET_CODE (goal) == MEM)
6412 {
6413 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6414 if (MEM_VOLATILE_P (goal))
6415 return 0;
6416 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6417 return 0;
6418 /* An address with side effects must be reexecuted. */
6419 switch (code)
6420 {
6421 case POST_INC:
6422 case PRE_INC:
6423 case POST_DEC:
6424 case PRE_DEC:
6425 case POST_MODIFY:
6426 case PRE_MODIFY:
6427 return 0;
6428 default:
6429 break;
6430 }
6431 goal_mem = 1;
6432 }
6433 else if (CONSTANT_P (goal))
6434 goal_const = 1;
6435 else if (GET_CODE (goal) == PLUS
6436 && XEXP (goal, 0) == stack_pointer_rtx
6437 && CONSTANT_P (XEXP (goal, 1)))
6438 goal_const = need_stable_sp = 1;
6439 else if (GET_CODE (goal) == PLUS
6440 && XEXP (goal, 0) == frame_pointer_rtx
6441 && CONSTANT_P (XEXP (goal, 1)))
6442 goal_const = 1;
6443 else
6444 return 0;
6445
6446 /* Scan insns back from INSN, looking for one that copies
6447 a value into or out of GOAL.
6448 Stop and give up if we reach a label. */
6449
6450 while (1)
6451 {
6452 p = PREV_INSN (p);
6453 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6454 return 0;
6455
6456 if (GET_CODE (p) == INSN
6457 /* If we don't want spill regs ... */
6458 && (! (reload_reg_p != 0
6459 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6460 /* ... then ignore insns introduced by reload; they aren't
6461 useful and can cause results in reload_as_needed to be
6462 different from what they were when calculating the need for
6463 spills. If we notice an input-reload insn here, we will
6464 reject it below, but it might hide a usable equivalent.
6465 That makes bad code. It may even abort: perhaps no reg was
6466 spilled for this insn because it was assumed we would find
6467 that equivalent. */
6468 || INSN_UID (p) < reload_first_uid))
6469 {
6470 rtx tem;
6471 pat = single_set (p);
6472
6473 /* First check for something that sets some reg equal to GOAL. */
6474 if (pat != 0
6475 && ((regno >= 0
6476 && true_regnum (SET_SRC (pat)) == regno
6477 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6478 ||
6479 (regno >= 0
6480 && true_regnum (SET_DEST (pat)) == regno
6481 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6482 ||
6483 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6484 /* When looking for stack pointer + const,
6485 make sure we don't use a stack adjust. */
6486 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6487 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6488 || (goal_mem
6489 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6490 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6491 || (goal_mem
6492 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6493 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6494 /* If we are looking for a constant,
6495 and something equivalent to that constant was copied
6496 into a reg, we can use that reg. */
6497 || (goal_const && REG_NOTES (p) != 0
6498 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6499 && ((rtx_equal_p (XEXP (tem, 0), goal)
6500 && (valueno
6501 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6502 || (GET_CODE (SET_DEST (pat)) == REG
6503 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6504 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6505 == MODE_FLOAT)
6506 && GET_CODE (goal) == CONST_INT
6507 && 0 != (goaltry
6508 = operand_subword (XEXP (tem, 0), 0, 0,
6509 VOIDmode))
6510 && rtx_equal_p (goal, goaltry)
6511 && (valtry
6512 = operand_subword (SET_DEST (pat), 0, 0,
6513 VOIDmode))
6514 && (valueno = true_regnum (valtry)) >= 0)))
6515 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6516 NULL_RTX))
6517 && GET_CODE (SET_DEST (pat)) == REG
6518 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6519 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6520 == MODE_FLOAT)
6521 && GET_CODE (goal) == CONST_INT
6522 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6523 VOIDmode))
6524 && rtx_equal_p (goal, goaltry)
6525 && (valtry
6526 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6527 && (valueno = true_regnum (valtry)) >= 0)))
6528 {
6529 if (other >= 0)
6530 {
6531 if (valueno != other)
6532 continue;
6533 }
6534 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6535 continue;
6536 else
6537 {
6538 int i;
6539
6540 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6541 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6542 valueno + i))
6543 break;
6544 if (i >= 0)
6545 continue;
6546 }
6547 value = valtry;
6548 where = p;
6549 break;
6550 }
6551 }
6552 }
6553
6554 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6555 (or copying VALUE into GOAL, if GOAL is also a register).
6556 Now verify that VALUE is really valid. */
6557
6558 /* VALUENO is the register number of VALUE; a hard register. */
6559
6560 /* Don't try to re-use something that is killed in this insn. We want
6561 to be able to trust REG_UNUSED notes. */
6562 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6563 return 0;
6564
6565 /* If we propose to get the value from the stack pointer or if GOAL is
6566 a MEM based on the stack pointer, we need a stable SP. */
6567 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6568 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6569 goal)))
6570 need_stable_sp = 1;
6571
6572 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6573 if (GET_MODE (value) != mode)
6574 return 0;
6575
6576 /* Reject VALUE if it was loaded from GOAL
6577 and is also a register that appears in the address of GOAL. */
6578
6579 if (goal_mem && value == SET_DEST (single_set (where))
6580 && refers_to_regno_for_reload_p (valueno,
6581 (valueno
6582 + HARD_REGNO_NREGS (valueno, mode)),
6583 goal, (rtx*) 0))
6584 return 0;
6585
6586 /* Reject registers that overlap GOAL. */
6587
6588 if (!goal_mem && !goal_const
6589 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6590 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6591 return 0;
6592
6593 nregs = HARD_REGNO_NREGS (regno, mode);
6594 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6595
6596 /* Reject VALUE if it is one of the regs reserved for reloads.
6597 Reload1 knows how to reuse them anyway, and it would get
6598 confused if we allocated one without its knowledge.
6599 (Now that insns introduced by reload are ignored above,
6600 this case shouldn't happen, but I'm not positive.) */
6601
6602 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6603 {
6604 int i;
6605 for (i = 0; i < valuenregs; ++i)
6606 if (reload_reg_p[valueno + i] >= 0)
6607 return 0;
6608 }
6609
6610 /* Reject VALUE if it is a register being used for an input reload
6611 even if it is not one of those reserved. */
6612
6613 if (reload_reg_p != 0)
6614 {
6615 int i;
6616 for (i = 0; i < n_reloads; i++)
6617 if (rld[i].reg_rtx != 0 && rld[i].in)
6618 {
6619 int regno1 = REGNO (rld[i].reg_rtx);
6620 int nregs1 = HARD_REGNO_NREGS (regno1,
6621 GET_MODE (rld[i].reg_rtx));
6622 if (regno1 < valueno + valuenregs
6623 && regno1 + nregs1 > valueno)
6624 return 0;
6625 }
6626 }
6627
6628 if (goal_mem)
6629 /* We must treat frame pointer as varying here,
6630 since it can vary--in a nonlocal goto as generated by expand_goto. */
6631 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6632
6633 /* Now verify that the values of GOAL and VALUE remain unaltered
6634 until INSN is reached. */
6635
6636 p = insn;
6637 while (1)
6638 {
6639 p = PREV_INSN (p);
6640 if (p == where)
6641 return value;
6642
6643 /* Don't trust the conversion past a function call
6644 if either of the two is in a call-clobbered register, or memory. */
6645 if (GET_CODE (p) == CALL_INSN)
6646 {
6647 int i;
6648
6649 if (goal_mem || need_stable_sp)
6650 return 0;
6651
6652 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6653 for (i = 0; i < nregs; ++i)
6654 if (call_used_regs[regno + i])
6655 return 0;
6656
6657 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6658 for (i = 0; i < valuenregs; ++i)
6659 if (call_used_regs[valueno + i])
6660 return 0;
6661 #ifdef NON_SAVING_SETJMP
6662 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6663 return 0;
6664 #endif
6665 }
6666
6667 if (INSN_P (p))
6668 {
6669 pat = PATTERN (p);
6670
6671 /* Watch out for unspec_volatile, and volatile asms. */
6672 if (volatile_insn_p (pat))
6673 return 0;
6674
6675 /* If this insn P stores in either GOAL or VALUE, return 0.
6676 If GOAL is a memory ref and this insn writes memory, return 0.
6677 If GOAL is a memory ref and its address is not constant,
6678 and this insn P changes a register used in GOAL, return 0. */
6679
6680 if (GET_CODE (pat) == COND_EXEC)
6681 pat = COND_EXEC_CODE (pat);
6682 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6683 {
6684 rtx dest = SET_DEST (pat);
6685 while (GET_CODE (dest) == SUBREG
6686 || GET_CODE (dest) == ZERO_EXTRACT
6687 || GET_CODE (dest) == SIGN_EXTRACT
6688 || GET_CODE (dest) == STRICT_LOW_PART)
6689 dest = XEXP (dest, 0);
6690 if (GET_CODE (dest) == REG)
6691 {
6692 int xregno = REGNO (dest);
6693 int xnregs;
6694 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6695 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6696 else
6697 xnregs = 1;
6698 if (xregno < regno + nregs && xregno + xnregs > regno)
6699 return 0;
6700 if (xregno < valueno + valuenregs
6701 && xregno + xnregs > valueno)
6702 return 0;
6703 if (goal_mem_addr_varies
6704 && reg_overlap_mentioned_for_reload_p (dest, goal))
6705 return 0;
6706 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6707 return 0;
6708 }
6709 else if (goal_mem && GET_CODE (dest) == MEM
6710 && ! push_operand (dest, GET_MODE (dest)))
6711 return 0;
6712 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6713 && reg_equiv_memory_loc[regno] != 0)
6714 return 0;
6715 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6716 return 0;
6717 }
6718 else if (GET_CODE (pat) == PARALLEL)
6719 {
6720 int i;
6721 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6722 {
6723 rtx v1 = XVECEXP (pat, 0, i);
6724 if (GET_CODE (v1) == COND_EXEC)
6725 v1 = COND_EXEC_CODE (v1);
6726 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6727 {
6728 rtx dest = SET_DEST (v1);
6729 while (GET_CODE (dest) == SUBREG
6730 || GET_CODE (dest) == ZERO_EXTRACT
6731 || GET_CODE (dest) == SIGN_EXTRACT
6732 || GET_CODE (dest) == STRICT_LOW_PART)
6733 dest = XEXP (dest, 0);
6734 if (GET_CODE (dest) == REG)
6735 {
6736 int xregno = REGNO (dest);
6737 int xnregs;
6738 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6739 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6740 else
6741 xnregs = 1;
6742 if (xregno < regno + nregs
6743 && xregno + xnregs > regno)
6744 return 0;
6745 if (xregno < valueno + valuenregs
6746 && xregno + xnregs > valueno)
6747 return 0;
6748 if (goal_mem_addr_varies
6749 && reg_overlap_mentioned_for_reload_p (dest,
6750 goal))
6751 return 0;
6752 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6753 return 0;
6754 }
6755 else if (goal_mem && GET_CODE (dest) == MEM
6756 && ! push_operand (dest, GET_MODE (dest)))
6757 return 0;
6758 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6759 && reg_equiv_memory_loc[regno] != 0)
6760 return 0;
6761 else if (need_stable_sp
6762 && push_operand (dest, GET_MODE (dest)))
6763 return 0;
6764 }
6765 }
6766 }
6767
6768 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6769 {
6770 rtx link;
6771
6772 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6773 link = XEXP (link, 1))
6774 {
6775 pat = XEXP (link, 0);
6776 if (GET_CODE (pat) == CLOBBER)
6777 {
6778 rtx dest = SET_DEST (pat);
6779
6780 if (GET_CODE (dest) == REG)
6781 {
6782 int xregno = REGNO (dest);
6783 int xnregs
6784 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6785
6786 if (xregno < regno + nregs
6787 && xregno + xnregs > regno)
6788 return 0;
6789 else if (xregno < valueno + valuenregs
6790 && xregno + xnregs > valueno)
6791 return 0;
6792 else if (goal_mem_addr_varies
6793 && reg_overlap_mentioned_for_reload_p (dest,
6794 goal))
6795 return 0;
6796 }
6797
6798 else if (goal_mem && GET_CODE (dest) == MEM
6799 && ! push_operand (dest, GET_MODE (dest)))
6800 return 0;
6801 else if (need_stable_sp
6802 && push_operand (dest, GET_MODE (dest)))
6803 return 0;
6804 }
6805 }
6806 }
6807
6808 #ifdef AUTO_INC_DEC
6809 /* If this insn auto-increments or auto-decrements
6810 either regno or valueno, return 0 now.
6811 If GOAL is a memory ref and its address is not constant,
6812 and this insn P increments a register used in GOAL, return 0. */
6813 {
6814 rtx link;
6815
6816 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6817 if (REG_NOTE_KIND (link) == REG_INC
6818 && GET_CODE (XEXP (link, 0)) == REG)
6819 {
6820 int incno = REGNO (XEXP (link, 0));
6821 if (incno < regno + nregs && incno >= regno)
6822 return 0;
6823 if (incno < valueno + valuenregs && incno >= valueno)
6824 return 0;
6825 if (goal_mem_addr_varies
6826 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6827 goal))
6828 return 0;
6829 }
6830 }
6831 #endif
6832 }
6833 }
6834 }
6835 \f
6836 /* Find a place where INCED appears in an increment or decrement operator
6837 within X, and return the amount INCED is incremented or decremented by.
6838 The value is always positive. */
6839
6840 static int
6841 find_inc_amount (x, inced)
6842 rtx x, inced;
6843 {
6844 enum rtx_code code = GET_CODE (x);
6845 const char *fmt;
6846 int i;
6847
6848 if (code == MEM)
6849 {
6850 rtx addr = XEXP (x, 0);
6851 if ((GET_CODE (addr) == PRE_DEC
6852 || GET_CODE (addr) == POST_DEC
6853 || GET_CODE (addr) == PRE_INC
6854 || GET_CODE (addr) == POST_INC)
6855 && XEXP (addr, 0) == inced)
6856 return GET_MODE_SIZE (GET_MODE (x));
6857 else if ((GET_CODE (addr) == PRE_MODIFY
6858 || GET_CODE (addr) == POST_MODIFY)
6859 && GET_CODE (XEXP (addr, 1)) == PLUS
6860 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6861 && XEXP (addr, 0) == inced
6862 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6863 {
6864 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6865 return i < 0 ? -i : i;
6866 }
6867 }
6868
6869 fmt = GET_RTX_FORMAT (code);
6870 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6871 {
6872 if (fmt[i] == 'e')
6873 {
6874 int tem = find_inc_amount (XEXP (x, i), inced);
6875 if (tem != 0)
6876 return tem;
6877 }
6878 if (fmt[i] == 'E')
6879 {
6880 int j;
6881 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6882 {
6883 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6884 if (tem != 0)
6885 return tem;
6886 }
6887 }
6888 }
6889
6890 return 0;
6891 }
6892 \f
6893 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6894 If SETS is nonzero, also consider SETs. */
6895
6896 int
6897 regno_clobbered_p (regno, insn, mode, sets)
6898 unsigned int regno;
6899 rtx insn;
6900 enum machine_mode mode;
6901 int sets;
6902 {
6903 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6904 unsigned int endregno = regno + nregs;
6905
6906 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6907 || (sets && GET_CODE (PATTERN (insn)) == SET))
6908 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6909 {
6910 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6911
6912 return test >= regno && test < endregno;
6913 }
6914
6915 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6916 {
6917 int i = XVECLEN (PATTERN (insn), 0) - 1;
6918
6919 for (; i >= 0; i--)
6920 {
6921 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6922 if ((GET_CODE (elt) == CLOBBER
6923 || (sets && GET_CODE (PATTERN (insn)) == SET))
6924 && GET_CODE (XEXP (elt, 0)) == REG)
6925 {
6926 unsigned int test = REGNO (XEXP (elt, 0));
6927
6928 if (test >= regno && test < endregno)
6929 return 1;
6930 }
6931 }
6932 }
6933
6934 return 0;
6935 }
6936
6937 static const char *const reload_when_needed_name[] =
6938 {
6939 "RELOAD_FOR_INPUT",
6940 "RELOAD_FOR_OUTPUT",
6941 "RELOAD_FOR_INSN",
6942 "RELOAD_FOR_INPUT_ADDRESS",
6943 "RELOAD_FOR_INPADDR_ADDRESS",
6944 "RELOAD_FOR_OUTPUT_ADDRESS",
6945 "RELOAD_FOR_OUTADDR_ADDRESS",
6946 "RELOAD_FOR_OPERAND_ADDRESS",
6947 "RELOAD_FOR_OPADDR_ADDR",
6948 "RELOAD_OTHER",
6949 "RELOAD_FOR_OTHER_ADDRESS"
6950 };
6951
6952 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6953
6954 /* These functions are used to print the variables set by 'find_reloads' */
6955
6956 void
6957 debug_reload_to_stream (f)
6958 FILE *f;
6959 {
6960 int r;
6961 const char *prefix;
6962
6963 if (! f)
6964 f = stderr;
6965 for (r = 0; r < n_reloads; r++)
6966 {
6967 fprintf (f, "Reload %d: ", r);
6968
6969 if (rld[r].in != 0)
6970 {
6971 fprintf (f, "reload_in (%s) = ",
6972 GET_MODE_NAME (rld[r].inmode));
6973 print_inline_rtx (f, rld[r].in, 24);
6974 fprintf (f, "\n\t");
6975 }
6976
6977 if (rld[r].out != 0)
6978 {
6979 fprintf (f, "reload_out (%s) = ",
6980 GET_MODE_NAME (rld[r].outmode));
6981 print_inline_rtx (f, rld[r].out, 24);
6982 fprintf (f, "\n\t");
6983 }
6984
6985 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6986
6987 fprintf (f, "%s (opnum = %d)",
6988 reload_when_needed_name[(int) rld[r].when_needed],
6989 rld[r].opnum);
6990
6991 if (rld[r].optional)
6992 fprintf (f, ", optional");
6993
6994 if (rld[r].nongroup)
6995 fprintf (f, ", nongroup");
6996
6997 if (rld[r].inc != 0)
6998 fprintf (f, ", inc by %d", rld[r].inc);
6999
7000 if (rld[r].nocombine)
7001 fprintf (f, ", can't combine");
7002
7003 if (rld[r].secondary_p)
7004 fprintf (f, ", secondary_reload_p");
7005
7006 if (rld[r].in_reg != 0)
7007 {
7008 fprintf (f, "\n\treload_in_reg: ");
7009 print_inline_rtx (f, rld[r].in_reg, 24);
7010 }
7011
7012 if (rld[r].out_reg != 0)
7013 {
7014 fprintf (f, "\n\treload_out_reg: ");
7015 print_inline_rtx (f, rld[r].out_reg, 24);
7016 }
7017
7018 if (rld[r].reg_rtx != 0)
7019 {
7020 fprintf (f, "\n\treload_reg_rtx: ");
7021 print_inline_rtx (f, rld[r].reg_rtx, 24);
7022 }
7023
7024 prefix = "\n\t";
7025 if (rld[r].secondary_in_reload != -1)
7026 {
7027 fprintf (f, "%ssecondary_in_reload = %d",
7028 prefix, rld[r].secondary_in_reload);
7029 prefix = ", ";
7030 }
7031
7032 if (rld[r].secondary_out_reload != -1)
7033 fprintf (f, "%ssecondary_out_reload = %d\n",
7034 prefix, rld[r].secondary_out_reload);
7035
7036 prefix = "\n\t";
7037 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7038 {
7039 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7040 insn_data[rld[r].secondary_in_icode].name);
7041 prefix = ", ";
7042 }
7043
7044 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7045 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7046 insn_data[rld[r].secondary_out_icode].name);
7047
7048 fprintf (f, "\n");
7049 }
7050 }
7051
7052 void
7053 debug_reload ()
7054 {
7055 debug_reload_to_stream (stderr);
7056 }
This page took 0.390739 seconds and 6 git commands to generate.