]> gcc.gnu.org Git - gcc.git/blob - gcc/reload.c
Make it possible to prototype port-specific functions (and convert i386 to use this)
[gcc.git] / gcc / reload.c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57 NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
72
73
74 Using a reload register for several reloads in one insn:
75
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
79
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
83
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
87
88 #define REG_OK_STRICT
89
90 #include "config.h"
91 #include "system.h"
92 #include "rtl.h"
93 #include "tm_p.h"
94 #include "insn-config.h"
95 #include "insn-codes.h"
96 #include "recog.h"
97 #include "reload.h"
98 #include "regs.h"
99 #include "hard-reg-set.h"
100 #include "flags.h"
101 #include "real.h"
102 #include "output.h"
103 #include "function.h"
104 #include "expr.h"
105 #include "toplev.h"
106
107 #ifndef REGISTER_MOVE_COST
108 #define REGISTER_MOVE_COST(x, y) 2
109 #endif
110
111 #ifndef REGNO_MODE_OK_FOR_BASE_P
112 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
113 #endif
114
115 #ifndef REG_MODE_OK_FOR_BASE_P
116 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
117 #endif
118 \f
119 /* All reloads of the current insn are recorded here. See reload.h for
120 comments. */
121 int n_reloads;
122 struct reload rld[MAX_RELOADS];
123
124 /* All the "earlyclobber" operands of the current insn
125 are recorded here. */
126 int n_earlyclobbers;
127 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
128
129 int reload_n_operands;
130
131 /* Replacing reloads.
132
133 If `replace_reloads' is nonzero, then as each reload is recorded
134 an entry is made for it in the table `replacements'.
135 Then later `subst_reloads' can look through that table and
136 perform all the replacements needed. */
137
138 /* Nonzero means record the places to replace. */
139 static int replace_reloads;
140
141 /* Each replacement is recorded with a structure like this. */
142 struct replacement
143 {
144 rtx *where; /* Location to store in */
145 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
146 a SUBREG; 0 otherwise. */
147 int what; /* which reload this is for */
148 enum machine_mode mode; /* mode it must have */
149 };
150
151 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
152
153 /* Number of replacements currently recorded. */
154 static int n_replacements;
155
156 /* Used to track what is modified by an operand. */
157 struct decomposition
158 {
159 int reg_flag; /* Nonzero if referencing a register. */
160 int safe; /* Nonzero if this can't conflict with anything. */
161 rtx base; /* Base address for MEM. */
162 HOST_WIDE_INT start; /* Starting offset or register number. */
163 HOST_WIDE_INT end; /* Ending offset or register number. */
164 };
165
166 #ifdef SECONDARY_MEMORY_NEEDED
167
168 /* Save MEMs needed to copy from one class of registers to another. One MEM
169 is used per mode, but normally only one or two modes are ever used.
170
171 We keep two versions, before and after register elimination. The one
172 after register elimination is record separately for each operand. This
173 is done in case the address is not valid to be sure that we separately
174 reload each. */
175
176 static rtx secondary_memlocs[NUM_MACHINE_MODES];
177 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
178 #endif
179
180 /* The instruction we are doing reloads for;
181 so we can test whether a register dies in it. */
182 static rtx this_insn;
183
184 /* Nonzero if this instruction is a user-specified asm with operands. */
185 static int this_insn_is_asm;
186
187 /* If hard_regs_live_known is nonzero,
188 we can tell which hard regs are currently live,
189 at least enough to succeed in choosing dummy reloads. */
190 static int hard_regs_live_known;
191
192 /* Indexed by hard reg number,
193 element is nonnegative if hard reg has been spilled.
194 This vector is passed to `find_reloads' as an argument
195 and is not changed here. */
196 static short *static_reload_reg_p;
197
198 /* Set to 1 in subst_reg_equivs if it changes anything. */
199 static int subst_reg_equivs_changed;
200
201 /* On return from push_reload, holds the reload-number for the OUT
202 operand, which can be different for that from the input operand. */
203 static int output_reloadnum;
204
205 /* Compare two RTX's. */
206 #define MATCHES(x, y) \
207 (x == y || (x != 0 && (GET_CODE (x) == REG \
208 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
209 : rtx_equal_p (x, y) && ! side_effects_p (x))))
210
211 /* Indicates if two reloads purposes are for similar enough things that we
212 can merge their reloads. */
213 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
214 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
215 || ((when1) == (when2) && (op1) == (op2)) \
216 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
217 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
218 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
219 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
220 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
221
222 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
223 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
224 ((when1) != (when2) \
225 || ! ((op1) == (op2) \
226 || (when1) == RELOAD_FOR_INPUT \
227 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
228 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
229
230 /* If we are going to reload an address, compute the reload type to
231 use. */
232 #define ADDR_TYPE(type) \
233 ((type) == RELOAD_FOR_INPUT_ADDRESS \
234 ? RELOAD_FOR_INPADDR_ADDRESS \
235 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
236 ? RELOAD_FOR_OUTADDR_ADDRESS \
237 : (type)))
238
239 #ifdef HAVE_SECONDARY_RELOADS
240 static int push_secondary_reload PROTO((int, rtx, int, int, enum reg_class,
241 enum machine_mode, enum reload_type,
242 enum insn_code *));
243 #endif
244 static enum reg_class find_valid_class PROTO((enum machine_mode, int));
245 static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
246 enum machine_mode, enum machine_mode,
247 int, int, int, enum reload_type));
248 static void push_replacement PROTO((rtx *, int, enum machine_mode));
249 static void combine_reloads PROTO((void));
250 static int find_reusable_reload PROTO((rtx *, rtx, enum reg_class,
251 enum reload_type, int, int));
252 static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
253 enum machine_mode, enum machine_mode,
254 enum reg_class, int, int));
255 static int earlyclobber_operand_p PROTO((rtx));
256 static int hard_reg_set_here_p PROTO((int, int, rtx));
257 static struct decomposition decompose PROTO((rtx));
258 static int immune_p PROTO((rtx, rtx, struct decomposition));
259 static int alternative_allows_memconst PROTO((const char *, int));
260 static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int, rtx));
261 static rtx make_memloc PROTO((rtx, int));
262 static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
263 int, enum reload_type, int, rtx));
264 static rtx subst_reg_equivs PROTO((rtx, rtx));
265 static rtx subst_indexed_address PROTO((rtx));
266 static int find_reloads_address_1 PROTO((enum machine_mode, rtx, int, rtx *,
267 int, enum reload_type,int, rtx));
268 static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
269 enum machine_mode, int,
270 enum reload_type, int));
271 static rtx find_reloads_subreg_address PROTO((rtx, int, int, enum reload_type,
272 int, rtx));
273 static int find_inc_amount PROTO((rtx, rtx));
274 static int loc_mentioned_in_p PROTO((rtx *, rtx));
275 \f
276 #ifdef HAVE_SECONDARY_RELOADS
277
278 /* Determine if any secondary reloads are needed for loading (if IN_P is
279 non-zero) or storing (if IN_P is zero) X to or from a reload register of
280 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
281 are needed, push them.
282
283 Return the reload number of the secondary reload we made, or -1 if
284 we didn't need one. *PICODE is set to the insn_code to use if we do
285 need a secondary reload. */
286
287 static int
288 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
289 type, picode)
290 int in_p;
291 rtx x;
292 int opnum;
293 int optional;
294 enum reg_class reload_class;
295 enum machine_mode reload_mode;
296 enum reload_type type;
297 enum insn_code *picode;
298 {
299 enum reg_class class = NO_REGS;
300 enum machine_mode mode = reload_mode;
301 enum insn_code icode = CODE_FOR_nothing;
302 enum reg_class t_class = NO_REGS;
303 enum machine_mode t_mode = VOIDmode;
304 enum insn_code t_icode = CODE_FOR_nothing;
305 enum reload_type secondary_type;
306 int s_reload, t_reload = -1;
307
308 if (type == RELOAD_FOR_INPUT_ADDRESS
309 || type == RELOAD_FOR_OUTPUT_ADDRESS
310 || type == RELOAD_FOR_INPADDR_ADDRESS
311 || type == RELOAD_FOR_OUTADDR_ADDRESS)
312 secondary_type = type;
313 else
314 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
315
316 *picode = CODE_FOR_nothing;
317
318 /* If X is a paradoxical SUBREG, use the inner value to determine both the
319 mode and object being reloaded. */
320 if (GET_CODE (x) == SUBREG
321 && (GET_MODE_SIZE (GET_MODE (x))
322 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
323 {
324 x = SUBREG_REG (x);
325 reload_mode = GET_MODE (x);
326 }
327
328 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
329 is still a pseudo-register by now, it *must* have an equivalent MEM
330 but we don't want to assume that), use that equivalent when seeing if
331 a secondary reload is needed since whether or not a reload is needed
332 might be sensitive to the form of the MEM. */
333
334 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
335 && reg_equiv_mem[REGNO (x)] != 0)
336 x = reg_equiv_mem[REGNO (x)];
337
338 #ifdef SECONDARY_INPUT_RELOAD_CLASS
339 if (in_p)
340 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
341 #endif
342
343 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
344 if (! in_p)
345 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
346 #endif
347
348 /* If we don't need any secondary registers, done. */
349 if (class == NO_REGS)
350 return -1;
351
352 /* Get a possible insn to use. If the predicate doesn't accept X, don't
353 use the insn. */
354
355 icode = (in_p ? reload_in_optab[(int) reload_mode]
356 : reload_out_optab[(int) reload_mode]);
357
358 if (icode != CODE_FOR_nothing
359 && insn_data[(int) icode].operand[in_p].predicate
360 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
361 icode = CODE_FOR_nothing;
362
363 /* If we will be using an insn, see if it can directly handle the reload
364 register we will be using. If it can, the secondary reload is for a
365 scratch register. If it can't, we will use the secondary reload for
366 an intermediate register and require a tertiary reload for the scratch
367 register. */
368
369 if (icode != CODE_FOR_nothing)
370 {
371 /* If IN_P is non-zero, the reload register will be the output in
372 operand 0. If IN_P is zero, the reload register will be the input
373 in operand 1. Outputs should have an initial "=", which we must
374 skip. */
375
376 char insn_letter
377 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
378 enum reg_class insn_class
379 = (insn_letter == 'r' ? GENERAL_REGS
380 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
381
382 if (insn_class == NO_REGS
383 || (in_p
384 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
385 /* The scratch register's constraint must start with "=&". */
386 || insn_data[(int) icode].operand[2].constraint[0] != '='
387 || insn_data[(int) icode].operand[2].constraint[1] != '&')
388 abort ();
389
390 if (reg_class_subset_p (reload_class, insn_class))
391 mode = insn_data[(int) icode].operand[2].mode;
392 else
393 {
394 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
395 class = insn_class;
396 t_mode = insn_data[(int) icode].operand[2].mode;
397 t_class = (t_letter == 'r' ? GENERAL_REGS
398 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
399 t_icode = icode;
400 icode = CODE_FOR_nothing;
401 }
402 }
403
404 /* This case isn't valid, so fail. Reload is allowed to use the same
405 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
406 in the case of a secondary register, we actually need two different
407 registers for correct code. We fail here to prevent the possibility of
408 silently generating incorrect code later.
409
410 The convention is that secondary input reloads are valid only if the
411 secondary_class is different from class. If you have such a case, you
412 can not use secondary reloads, you must work around the problem some
413 other way.
414
415 Allow this when MODE is not reload_mode and assume that the generated
416 code handles this case (it does on the Alpha, which is the only place
417 this currently happens). */
418
419 if (in_p && class == reload_class && mode == reload_mode)
420 abort ();
421
422 /* If we need a tertiary reload, see if we have one we can reuse or else
423 make a new one. */
424
425 if (t_class != NO_REGS)
426 {
427 for (t_reload = 0; t_reload < n_reloads; t_reload++)
428 if (rld[t_reload].secondary_p
429 && (reg_class_subset_p (t_class, rld[t_reload].class)
430 || reg_class_subset_p (rld[t_reload].class, t_class))
431 && ((in_p && rld[t_reload].inmode == t_mode)
432 || (! in_p && rld[t_reload].outmode == t_mode))
433 && ((in_p && (rld[t_reload].secondary_in_icode
434 == CODE_FOR_nothing))
435 || (! in_p &&(rld[t_reload].secondary_out_icode
436 == CODE_FOR_nothing)))
437 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
438 && MERGABLE_RELOADS (secondary_type,
439 rld[t_reload].when_needed,
440 opnum, rld[t_reload].opnum))
441 {
442 if (in_p)
443 rld[t_reload].inmode = t_mode;
444 if (! in_p)
445 rld[t_reload].outmode = t_mode;
446
447 if (reg_class_subset_p (t_class, rld[t_reload].class))
448 rld[t_reload].class = t_class;
449
450 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
451 rld[t_reload].optional &= optional;
452 rld[t_reload].secondary_p = 1;
453 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
454 opnum, rld[t_reload].opnum))
455 rld[t_reload].when_needed = RELOAD_OTHER;
456 }
457
458 if (t_reload == n_reloads)
459 {
460 /* We need to make a new tertiary reload for this register class. */
461 rld[t_reload].in = rld[t_reload].out = 0;
462 rld[t_reload].class = t_class;
463 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
464 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
465 rld[t_reload].reg_rtx = 0;
466 rld[t_reload].optional = optional;
467 rld[t_reload].nongroup = 0;
468 rld[t_reload].inc = 0;
469 /* Maybe we could combine these, but it seems too tricky. */
470 rld[t_reload].nocombine = 1;
471 rld[t_reload].in_reg = 0;
472 rld[t_reload].out_reg = 0;
473 rld[t_reload].opnum = opnum;
474 rld[t_reload].when_needed = secondary_type;
475 rld[t_reload].secondary_in_reload = -1;
476 rld[t_reload].secondary_out_reload = -1;
477 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
478 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
479 rld[t_reload].secondary_p = 1;
480
481 n_reloads++;
482 }
483 }
484
485 /* See if we can reuse an existing secondary reload. */
486 for (s_reload = 0; s_reload < n_reloads; s_reload++)
487 if (rld[s_reload].secondary_p
488 && (reg_class_subset_p (class, rld[s_reload].class)
489 || reg_class_subset_p (rld[s_reload].class, class))
490 && ((in_p && rld[s_reload].inmode == mode)
491 || (! in_p && rld[s_reload].outmode == mode))
492 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
493 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
494 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
495 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
496 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
497 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
498 opnum, rld[s_reload].opnum))
499 {
500 if (in_p)
501 rld[s_reload].inmode = mode;
502 if (! in_p)
503 rld[s_reload].outmode = mode;
504
505 if (reg_class_subset_p (class, rld[s_reload].class))
506 rld[s_reload].class = class;
507
508 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
509 rld[s_reload].optional &= optional;
510 rld[s_reload].secondary_p = 1;
511 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
512 opnum, rld[s_reload].opnum))
513 rld[s_reload].when_needed = RELOAD_OTHER;
514 }
515
516 if (s_reload == n_reloads)
517 {
518 #ifdef SECONDARY_MEMORY_NEEDED
519 /* If we need a memory location to copy between the two reload regs,
520 set it up now. Note that we do the input case before making
521 the reload and the output case after. This is due to the
522 way reloads are output. */
523
524 if (in_p && icode == CODE_FOR_nothing
525 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
526 get_secondary_mem (x, reload_mode, opnum, type);
527 #endif
528
529 /* We need to make a new secondary reload for this register class. */
530 rld[s_reload].in = rld[s_reload].out = 0;
531 rld[s_reload].class = class;
532
533 rld[s_reload].inmode = in_p ? mode : VOIDmode;
534 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
535 rld[s_reload].reg_rtx = 0;
536 rld[s_reload].optional = optional;
537 rld[s_reload].nongroup = 0;
538 rld[s_reload].inc = 0;
539 /* Maybe we could combine these, but it seems too tricky. */
540 rld[s_reload].nocombine = 1;
541 rld[s_reload].in_reg = 0;
542 rld[s_reload].out_reg = 0;
543 rld[s_reload].opnum = opnum;
544 rld[s_reload].when_needed = secondary_type;
545 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
546 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
547 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
548 rld[s_reload].secondary_out_icode
549 = ! in_p ? t_icode : CODE_FOR_nothing;
550 rld[s_reload].secondary_p = 1;
551
552 n_reloads++;
553
554 #ifdef SECONDARY_MEMORY_NEEDED
555 if (! in_p && icode == CODE_FOR_nothing
556 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
557 get_secondary_mem (x, mode, opnum, type);
558 #endif
559 }
560
561 *picode = icode;
562 return s_reload;
563 }
564 #endif /* HAVE_SECONDARY_RELOADS */
565 \f
566 #ifdef SECONDARY_MEMORY_NEEDED
567
568 /* Return a memory location that will be used to copy X in mode MODE.
569 If we haven't already made a location for this mode in this insn,
570 call find_reloads_address on the location being returned. */
571
572 rtx
573 get_secondary_mem (x, mode, opnum, type)
574 rtx x;
575 enum machine_mode mode;
576 int opnum;
577 enum reload_type type;
578 {
579 rtx loc;
580 int mem_valid;
581
582 /* By default, if MODE is narrower than a word, widen it to a word.
583 This is required because most machines that require these memory
584 locations do not support short load and stores from all registers
585 (e.g., FP registers). */
586
587 #ifdef SECONDARY_MEMORY_NEEDED_MODE
588 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
589 #else
590 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
591 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
592 #endif
593
594 /* If we already have made a MEM for this operand in MODE, return it. */
595 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
596 return secondary_memlocs_elim[(int) mode][opnum];
597
598 /* If this is the first time we've tried to get a MEM for this mode,
599 allocate a new one. `something_changed' in reload will get set
600 by noticing that the frame size has changed. */
601
602 if (secondary_memlocs[(int) mode] == 0)
603 {
604 #ifdef SECONDARY_MEMORY_NEEDED_RTX
605 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
606 #else
607 secondary_memlocs[(int) mode]
608 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
609 #endif
610 }
611
612 /* Get a version of the address doing any eliminations needed. If that
613 didn't give us a new MEM, make a new one if it isn't valid. */
614
615 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
616 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
617
618 if (! mem_valid && loc == secondary_memlocs[(int) mode])
619 loc = copy_rtx (loc);
620
621 /* The only time the call below will do anything is if the stack
622 offset is too large. In that case IND_LEVELS doesn't matter, so we
623 can just pass a zero. Adjust the type to be the address of the
624 corresponding object. If the address was valid, save the eliminated
625 address. If it wasn't valid, we need to make a reload each time, so
626 don't save it. */
627
628 if (! mem_valid)
629 {
630 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
631 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
632 : RELOAD_OTHER);
633
634 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
635 opnum, type, 0, 0);
636 }
637
638 secondary_memlocs_elim[(int) mode][opnum] = loc;
639 return loc;
640 }
641
642 /* Clear any secondary memory locations we've made. */
643
644 void
645 clear_secondary_mem ()
646 {
647 bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
648 }
649 #endif /* SECONDARY_MEMORY_NEEDED */
650 \f
651 /* Find the largest class for which every register number plus N is valid in
652 M1 (if in range). Abort if no such class exists. */
653
654 static enum reg_class
655 find_valid_class (m1, n)
656 enum machine_mode m1;
657 int n;
658 {
659 int class;
660 int regno;
661 enum reg_class best_class;
662 int best_size = 0;
663
664 for (class = 1; class < N_REG_CLASSES; class++)
665 {
666 int bad = 0;
667 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
668 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
669 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
670 && ! HARD_REGNO_MODE_OK (regno + n, m1))
671 bad = 1;
672
673 if (! bad && reg_class_size[class] > best_size)
674 best_class = class, best_size = reg_class_size[class];
675 }
676
677 if (best_size == 0)
678 abort ();
679
680 return best_class;
681 }
682 \f
683 /* Return the number of a previously made reload that can be combined with
684 a new one, or n_reloads if none of the existing reloads can be used.
685 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
686 push_reload, they determine the kind of the new reload that we try to
687 combine. P_IN points to the corresponding value of IN, which can be
688 modified by this function.
689 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
690 static int
691 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
692 rtx *p_in, out;
693 enum reg_class class;
694 enum reload_type type;
695 int opnum, dont_share;
696 {
697 rtx in = *p_in;
698 int i;
699 /* We can't merge two reloads if the output of either one is
700 earlyclobbered. */
701
702 if (earlyclobber_operand_p (out))
703 return n_reloads;
704
705 /* We can use an existing reload if the class is right
706 and at least one of IN and OUT is a match
707 and the other is at worst neutral.
708 (A zero compared against anything is neutral.)
709
710 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
711 for the same thing since that can cause us to need more reload registers
712 than we otherwise would. */
713
714 for (i = 0; i < n_reloads; i++)
715 if ((reg_class_subset_p (class, rld[i].class)
716 || reg_class_subset_p (rld[i].class, class))
717 /* If the existing reload has a register, it must fit our class. */
718 && (rld[i].reg_rtx == 0
719 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
720 true_regnum (rld[i].reg_rtx)))
721 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
722 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
723 || (out != 0 && MATCHES (rld[i].out, out)
724 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
725 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
726 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
727 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
728 return i;
729
730 /* Reloading a plain reg for input can match a reload to postincrement
731 that reg, since the postincrement's value is the right value.
732 Likewise, it can match a preincrement reload, since we regard
733 the preincrementation as happening before any ref in this insn
734 to that register. */
735 for (i = 0; i < n_reloads; i++)
736 if ((reg_class_subset_p (class, rld[i].class)
737 || reg_class_subset_p (rld[i].class, class))
738 /* If the existing reload has a register, it must fit our
739 class. */
740 && (rld[i].reg_rtx == 0
741 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
742 true_regnum (rld[i].reg_rtx)))
743 && out == 0 && rld[i].out == 0 && rld[i].in != 0
744 && ((GET_CODE (in) == REG
745 && (GET_CODE (rld[i].in) == POST_INC
746 || GET_CODE (rld[i].in) == POST_DEC
747 || GET_CODE (rld[i].in) == PRE_INC
748 || GET_CODE (rld[i].in) == PRE_DEC)
749 && MATCHES (XEXP (rld[i].in, 0), in))
750 ||
751 (GET_CODE (rld[i].in) == REG
752 && (GET_CODE (in) == POST_INC
753 || GET_CODE (in) == POST_DEC
754 || GET_CODE (in) == PRE_INC
755 || GET_CODE (in) == PRE_DEC)
756 && MATCHES (XEXP (in, 0), rld[i].in)))
757 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
758 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
759 && MERGABLE_RELOADS (type, rld[i].when_needed,
760 opnum, rld[i].opnum))
761 {
762 /* Make sure reload_in ultimately has the increment,
763 not the plain register. */
764 if (GET_CODE (in) == REG)
765 *p_in = rld[i].in;
766 return i;
767 }
768 return n_reloads;
769 }
770
771 /* Record one reload that needs to be performed.
772 IN is an rtx saying where the data are to be found before this instruction.
773 OUT says where they must be stored after the instruction.
774 (IN is zero for data not read, and OUT is zero for data not written.)
775 INLOC and OUTLOC point to the places in the instructions where
776 IN and OUT were found.
777 If IN and OUT are both non-zero, it means the same register must be used
778 to reload both IN and OUT.
779
780 CLASS is a register class required for the reloaded data.
781 INMODE is the machine mode that the instruction requires
782 for the reg that replaces IN and OUTMODE is likewise for OUT.
783
784 If IN is zero, then OUT's location and mode should be passed as
785 INLOC and INMODE.
786
787 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
788
789 OPTIONAL nonzero means this reload does not need to be performed:
790 it can be discarded if that is more convenient.
791
792 OPNUM and TYPE say what the purpose of this reload is.
793
794 The return value is the reload-number for this reload.
795
796 If both IN and OUT are nonzero, in some rare cases we might
797 want to make two separate reloads. (Actually we never do this now.)
798 Therefore, the reload-number for OUT is stored in
799 output_reloadnum when we return; the return value applies to IN.
800 Usually (presently always), when IN and OUT are nonzero,
801 the two reload-numbers are equal, but the caller should be careful to
802 distinguish them. */
803
804 static int
805 push_reload (in, out, inloc, outloc, class,
806 inmode, outmode, strict_low, optional, opnum, type)
807 rtx in, out;
808 rtx *inloc, *outloc;
809 enum reg_class class;
810 enum machine_mode inmode, outmode;
811 int strict_low;
812 int optional;
813 int opnum;
814 enum reload_type type;
815 {
816 register int i;
817 int dont_share = 0;
818 int dont_remove_subreg = 0;
819 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
820 int secondary_in_reload = -1, secondary_out_reload = -1;
821 enum insn_code secondary_in_icode = CODE_FOR_nothing;
822 enum insn_code secondary_out_icode = CODE_FOR_nothing;
823
824 /* INMODE and/or OUTMODE could be VOIDmode if no mode
825 has been specified for the operand. In that case,
826 use the operand's mode as the mode to reload. */
827 if (inmode == VOIDmode && in != 0)
828 inmode = GET_MODE (in);
829 if (outmode == VOIDmode && out != 0)
830 outmode = GET_MODE (out);
831
832 /* If IN is a pseudo register everywhere-equivalent to a constant, and
833 it is not in a hard register, reload straight from the constant,
834 since we want to get rid of such pseudo registers.
835 Often this is done earlier, but not always in find_reloads_address. */
836 if (in != 0 && GET_CODE (in) == REG)
837 {
838 register int regno = REGNO (in);
839
840 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
841 && reg_equiv_constant[regno] != 0)
842 in = reg_equiv_constant[regno];
843 }
844
845 /* Likewise for OUT. Of course, OUT will never be equivalent to
846 an actual constant, but it might be equivalent to a memory location
847 (in the case of a parameter). */
848 if (out != 0 && GET_CODE (out) == REG)
849 {
850 register int regno = REGNO (out);
851
852 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
853 && reg_equiv_constant[regno] != 0)
854 out = reg_equiv_constant[regno];
855 }
856
857 /* If we have a read-write operand with an address side-effect,
858 change either IN or OUT so the side-effect happens only once. */
859 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
860 {
861 if (GET_CODE (XEXP (in, 0)) == POST_INC
862 || GET_CODE (XEXP (in, 0)) == POST_DEC)
863 in = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
864 if (GET_CODE (XEXP (in, 0)) == PRE_INC
865 || GET_CODE (XEXP (in, 0)) == PRE_DEC)
866 out = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
867 }
868
869 /* If we are reloading a (SUBREG constant ...), really reload just the
870 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
871 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
872 a pseudo and hence will become a MEM) with M1 wider than M2 and the
873 register is a pseudo, also reload the inside expression.
874 For machines that extend byte loads, do this for any SUBREG of a pseudo
875 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
876 M2 is an integral mode that gets extended when loaded.
877 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
878 either M1 is not valid for R or M2 is wider than a word but we only
879 need one word to store an M2-sized quantity in R.
880 (However, if OUT is nonzero, we need to reload the reg *and*
881 the subreg, so do nothing here, and let following statement handle it.)
882
883 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
884 we can't handle it here because CONST_INT does not indicate a mode.
885
886 Similarly, we must reload the inside expression if we have a
887 STRICT_LOW_PART (presumably, in == out in the cas).
888
889 Also reload the inner expression if it does not require a secondary
890 reload but the SUBREG does.
891
892 Finally, reload the inner expression if it is a register that is in
893 the class whose registers cannot be referenced in a different size
894 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
895 cannot reload just the inside since we might end up with the wrong
896 register class. But if it is inside a STRICT_LOW_PART, we have
897 no choice, so we hope we do get the right register class there. */
898
899 if (in != 0 && GET_CODE (in) == SUBREG
900 && (SUBREG_WORD (in) == 0 || strict_low)
901 #ifdef CLASS_CANNOT_CHANGE_SIZE
902 && class != CLASS_CANNOT_CHANGE_SIZE
903 #endif
904 && (CONSTANT_P (SUBREG_REG (in))
905 || GET_CODE (SUBREG_REG (in)) == PLUS
906 || strict_low
907 || (((GET_CODE (SUBREG_REG (in)) == REG
908 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
909 || GET_CODE (SUBREG_REG (in)) == MEM)
910 && ((GET_MODE_SIZE (inmode)
911 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
912 #ifdef LOAD_EXTEND_OP
913 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
914 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
915 <= UNITS_PER_WORD)
916 && (GET_MODE_SIZE (inmode)
917 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
918 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
919 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
920 #endif
921 #ifdef WORD_REGISTER_OPERATIONS
922 || ((GET_MODE_SIZE (inmode)
923 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
924 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
925 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
926 / UNITS_PER_WORD)))
927 #endif
928 ))
929 || (GET_CODE (SUBREG_REG (in)) == REG
930 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
931 /* The case where out is nonzero
932 is handled differently in the following statement. */
933 && (out == 0 || SUBREG_WORD (in) == 0)
934 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
935 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
936 > UNITS_PER_WORD)
937 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
938 / UNITS_PER_WORD)
939 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
940 GET_MODE (SUBREG_REG (in)))))
941 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
942 + SUBREG_WORD (in)),
943 inmode)))
944 #ifdef SECONDARY_INPUT_RELOAD_CLASS
945 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
946 && (SECONDARY_INPUT_RELOAD_CLASS (class,
947 GET_MODE (SUBREG_REG (in)),
948 SUBREG_REG (in))
949 == NO_REGS))
950 #endif
951 #ifdef CLASS_CANNOT_CHANGE_SIZE
952 || (GET_CODE (SUBREG_REG (in)) == REG
953 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
954 && (TEST_HARD_REG_BIT
955 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
956 REGNO (SUBREG_REG (in))))
957 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
958 != GET_MODE_SIZE (inmode)))
959 #endif
960 ))
961 {
962 in_subreg_loc = inloc;
963 inloc = &SUBREG_REG (in);
964 in = *inloc;
965 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
966 if (GET_CODE (in) == MEM)
967 /* This is supposed to happen only for paradoxical subregs made by
968 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
969 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
970 abort ();
971 #endif
972 inmode = GET_MODE (in);
973 }
974
975 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
976 either M1 is not valid for R or M2 is wider than a word but we only
977 need one word to store an M2-sized quantity in R.
978
979 However, we must reload the inner reg *as well as* the subreg in
980 that case. */
981
982 /* Similar issue for (SUBREG constant ...) if it was not handled by the
983 code above. This can happen if SUBREG_WORD != 0. */
984
985 if (in != 0 && GET_CODE (in) == SUBREG
986 && (CONSTANT_P (SUBREG_REG (in))
987 || (GET_CODE (SUBREG_REG (in)) == REG
988 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
989 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in))
990 + SUBREG_WORD (in),
991 inmode)
992 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
993 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
994 > UNITS_PER_WORD)
995 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
996 / UNITS_PER_WORD)
997 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
998 GET_MODE (SUBREG_REG (in)))))))))
999 {
1000 /* This relies on the fact that emit_reload_insns outputs the
1001 instructions for input reloads of type RELOAD_OTHER in the same
1002 order as the reloads. Thus if the outer reload is also of type
1003 RELOAD_OTHER, we are guaranteed that this inner reload will be
1004 output before the outer reload. */
1005 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
1006 find_valid_class (inmode, SUBREG_WORD (in)),
1007 VOIDmode, VOIDmode, 0, 0, opnum, type);
1008 dont_remove_subreg = 1;
1009 }
1010
1011 /* Similarly for paradoxical and problematical SUBREGs on the output.
1012 Note that there is no reason we need worry about the previous value
1013 of SUBREG_REG (out); even if wider than out,
1014 storing in a subreg is entitled to clobber it all
1015 (except in the case of STRICT_LOW_PART,
1016 and in that case the constraint should label it input-output.) */
1017 if (out != 0 && GET_CODE (out) == SUBREG
1018 && (SUBREG_WORD (out) == 0 || strict_low)
1019 #ifdef CLASS_CANNOT_CHANGE_SIZE
1020 && class != CLASS_CANNOT_CHANGE_SIZE
1021 #endif
1022 && (CONSTANT_P (SUBREG_REG (out))
1023 || strict_low
1024 || (((GET_CODE (SUBREG_REG (out)) == REG
1025 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1026 || GET_CODE (SUBREG_REG (out)) == MEM)
1027 && ((GET_MODE_SIZE (outmode)
1028 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1029 #ifdef WORD_REGISTER_OPERATIONS
1030 || ((GET_MODE_SIZE (outmode)
1031 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1032 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1033 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1034 / UNITS_PER_WORD)))
1035 #endif
1036 ))
1037 || (GET_CODE (SUBREG_REG (out)) == REG
1038 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1039 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1040 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1041 > UNITS_PER_WORD)
1042 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1043 / UNITS_PER_WORD)
1044 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1045 GET_MODE (SUBREG_REG (out)))))
1046 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
1047 + SUBREG_WORD (out)),
1048 outmode)))
1049 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1050 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1051 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1052 GET_MODE (SUBREG_REG (out)),
1053 SUBREG_REG (out))
1054 == NO_REGS))
1055 #endif
1056 #ifdef CLASS_CANNOT_CHANGE_SIZE
1057 || (GET_CODE (SUBREG_REG (out)) == REG
1058 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1059 && (TEST_HARD_REG_BIT
1060 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1061 REGNO (SUBREG_REG (out))))
1062 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1063 != GET_MODE_SIZE (outmode)))
1064 #endif
1065 ))
1066 {
1067 out_subreg_loc = outloc;
1068 outloc = &SUBREG_REG (out);
1069 out = *outloc;
1070 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1071 if (GET_CODE (out) == MEM
1072 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1073 abort ();
1074 #endif
1075 outmode = GET_MODE (out);
1076 }
1077
1078 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1079 either M1 is not valid for R or M2 is wider than a word but we only
1080 need one word to store an M2-sized quantity in R.
1081
1082 However, we must reload the inner reg *as well as* the subreg in
1083 that case. In this case, the inner reg is an in-out reload. */
1084
1085 if (out != 0 && GET_CODE (out) == SUBREG
1086 && GET_CODE (SUBREG_REG (out)) == REG
1087 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1088 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)) + SUBREG_WORD (out),
1089 outmode)
1090 || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1091 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1092 > UNITS_PER_WORD)
1093 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1094 / UNITS_PER_WORD)
1095 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1096 GET_MODE (SUBREG_REG (out)))))))
1097 {
1098 /* This relies on the fact that emit_reload_insns outputs the
1099 instructions for output reloads of type RELOAD_OTHER in reverse
1100 order of the reloads. Thus if the outer reload is also of type
1101 RELOAD_OTHER, we are guaranteed that this inner reload will be
1102 output after the outer reload. */
1103 dont_remove_subreg = 1;
1104 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1105 &SUBREG_REG (out),
1106 find_valid_class (outmode, SUBREG_WORD (out)),
1107 VOIDmode, VOIDmode, 0, 0,
1108 opnum, RELOAD_OTHER);
1109 }
1110
1111 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1112 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1113 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1114 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1115 dont_share = 1;
1116
1117 /* If IN is a SUBREG of a hard register, make a new REG. This
1118 simplifies some of the cases below. */
1119
1120 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1121 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1122 && ! dont_remove_subreg)
1123 in = gen_rtx_REG (GET_MODE (in),
1124 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
1125
1126 /* Similarly for OUT. */
1127 if (out != 0 && GET_CODE (out) == SUBREG
1128 && GET_CODE (SUBREG_REG (out)) == REG
1129 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1130 && ! dont_remove_subreg)
1131 out = gen_rtx_REG (GET_MODE (out),
1132 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
1133
1134 /* Narrow down the class of register wanted if that is
1135 desirable on this machine for efficiency. */
1136 if (in != 0)
1137 class = PREFERRED_RELOAD_CLASS (in, class);
1138
1139 /* Output reloads may need analogous treatment, different in detail. */
1140 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1141 if (out != 0)
1142 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1143 #endif
1144
1145 /* Make sure we use a class that can handle the actual pseudo
1146 inside any subreg. For example, on the 386, QImode regs
1147 can appear within SImode subregs. Although GENERAL_REGS
1148 can handle SImode, QImode needs a smaller class. */
1149 #ifdef LIMIT_RELOAD_CLASS
1150 if (in_subreg_loc)
1151 class = LIMIT_RELOAD_CLASS (inmode, class);
1152 else if (in != 0 && GET_CODE (in) == SUBREG)
1153 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1154
1155 if (out_subreg_loc)
1156 class = LIMIT_RELOAD_CLASS (outmode, class);
1157 if (out != 0 && GET_CODE (out) == SUBREG)
1158 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1159 #endif
1160
1161 /* Verify that this class is at least possible for the mode that
1162 is specified. */
1163 if (this_insn_is_asm)
1164 {
1165 enum machine_mode mode;
1166 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1167 mode = inmode;
1168 else
1169 mode = outmode;
1170 if (mode == VOIDmode)
1171 {
1172 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1173 mode = word_mode;
1174 if (in != 0)
1175 inmode = word_mode;
1176 if (out != 0)
1177 outmode = word_mode;
1178 }
1179 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1180 if (HARD_REGNO_MODE_OK (i, mode)
1181 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1182 {
1183 int nregs = HARD_REGNO_NREGS (i, mode);
1184
1185 int j;
1186 for (j = 1; j < nregs; j++)
1187 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1188 break;
1189 if (j == nregs)
1190 break;
1191 }
1192 if (i == FIRST_PSEUDO_REGISTER)
1193 {
1194 error_for_asm (this_insn, "impossible register constraint in `asm'");
1195 class = ALL_REGS;
1196 }
1197 }
1198
1199 /* Optional output reloads are always OK even if we have no register class,
1200 since the function of these reloads is only to have spill_reg_store etc.
1201 set, so that the storing insn can be deleted later. */
1202 if (class == NO_REGS
1203 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1204 abort ();
1205
1206 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1207
1208 if (i == n_reloads)
1209 {
1210 /* See if we need a secondary reload register to move between CLASS
1211 and IN or CLASS and OUT. Get the icode and push any required reloads
1212 needed for each of them if so. */
1213
1214 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1215 if (in != 0)
1216 secondary_in_reload
1217 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1218 &secondary_in_icode);
1219 #endif
1220
1221 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1222 if (out != 0 && GET_CODE (out) != SCRATCH)
1223 secondary_out_reload
1224 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1225 type, &secondary_out_icode);
1226 #endif
1227
1228 /* We found no existing reload suitable for re-use.
1229 So add an additional reload. */
1230
1231 #ifdef SECONDARY_MEMORY_NEEDED
1232 /* If a memory location is needed for the copy, make one. */
1233 if (in != 0 && GET_CODE (in) == REG
1234 && REGNO (in) < FIRST_PSEUDO_REGISTER
1235 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1236 class, inmode))
1237 get_secondary_mem (in, inmode, opnum, type);
1238 #endif
1239
1240 i = n_reloads;
1241 rld[i].in = in;
1242 rld[i].out = out;
1243 rld[i].class = class;
1244 rld[i].inmode = inmode;
1245 rld[i].outmode = outmode;
1246 rld[i].reg_rtx = 0;
1247 rld[i].optional = optional;
1248 rld[i].nongroup = 0;
1249 rld[i].inc = 0;
1250 rld[i].nocombine = 0;
1251 rld[i].in_reg = inloc ? *inloc : 0;
1252 rld[i].out_reg = outloc ? *outloc : 0;
1253 rld[i].opnum = opnum;
1254 rld[i].when_needed = type;
1255 rld[i].secondary_in_reload = secondary_in_reload;
1256 rld[i].secondary_out_reload = secondary_out_reload;
1257 rld[i].secondary_in_icode = secondary_in_icode;
1258 rld[i].secondary_out_icode = secondary_out_icode;
1259 rld[i].secondary_p = 0;
1260
1261 n_reloads++;
1262
1263 #ifdef SECONDARY_MEMORY_NEEDED
1264 if (out != 0 && GET_CODE (out) == REG
1265 && REGNO (out) < FIRST_PSEUDO_REGISTER
1266 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1267 outmode))
1268 get_secondary_mem (out, outmode, opnum, type);
1269 #endif
1270 }
1271 else
1272 {
1273 /* We are reusing an existing reload,
1274 but we may have additional information for it.
1275 For example, we may now have both IN and OUT
1276 while the old one may have just one of them. */
1277
1278 /* The modes can be different. If they are, we want to reload in
1279 the larger mode, so that the value is valid for both modes. */
1280 if (inmode != VOIDmode
1281 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1282 rld[i].inmode = inmode;
1283 if (outmode != VOIDmode
1284 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1285 rld[i].outmode = outmode;
1286 if (in != 0)
1287 {
1288 rtx in_reg = inloc ? *inloc : 0;
1289 /* If we merge reloads for two distinct rtl expressions that
1290 are identical in content, there might be duplicate address
1291 reloads. Remove the extra set now, so that if we later find
1292 that we can inherit this reload, we can get rid of the
1293 address reloads altogether.
1294
1295 Do not do this if both reloads are optional since the result
1296 would be an optional reload which could potentially leave
1297 unresolved address replacements.
1298
1299 It is not sufficient to call transfer_replacements since
1300 choose_reload_regs will remove the replacements for address
1301 reloads of inherited reloads which results in the same
1302 problem. */
1303 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1304 && ! (rld[i].optional && optional))
1305 {
1306 /* We must keep the address reload with the lower operand
1307 number alive. */
1308 if (opnum > rld[i].opnum)
1309 {
1310 remove_address_replacements (in);
1311 in = rld[i].in;
1312 in_reg = rld[i].in_reg;
1313 }
1314 else
1315 remove_address_replacements (rld[i].in);
1316 }
1317 rld[i].in = in;
1318 rld[i].in_reg = in_reg;
1319 }
1320 if (out != 0)
1321 {
1322 rld[i].out = out;
1323 rld[i].out_reg = outloc ? *outloc : 0;
1324 }
1325 if (reg_class_subset_p (class, rld[i].class))
1326 rld[i].class = class;
1327 rld[i].optional &= optional;
1328 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1329 opnum, rld[i].opnum))
1330 rld[i].when_needed = RELOAD_OTHER;
1331 rld[i].opnum = MIN (rld[i].opnum, opnum);
1332 }
1333
1334 /* If the ostensible rtx being reload differs from the rtx found
1335 in the location to substitute, this reload is not safe to combine
1336 because we cannot reliably tell whether it appears in the insn. */
1337
1338 if (in != 0 && in != *inloc)
1339 rld[i].nocombine = 1;
1340
1341 #if 0
1342 /* This was replaced by changes in find_reloads_address_1 and the new
1343 function inc_for_reload, which go with a new meaning of reload_inc. */
1344
1345 /* If this is an IN/OUT reload in an insn that sets the CC,
1346 it must be for an autoincrement. It doesn't work to store
1347 the incremented value after the insn because that would clobber the CC.
1348 So we must do the increment of the value reloaded from,
1349 increment it, store it back, then decrement again. */
1350 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1351 {
1352 out = 0;
1353 rld[i].out = 0;
1354 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1355 /* If we did not find a nonzero amount-to-increment-by,
1356 that contradicts the belief that IN is being incremented
1357 in an address in this insn. */
1358 if (rld[i].inc == 0)
1359 abort ();
1360 }
1361 #endif
1362
1363 /* If we will replace IN and OUT with the reload-reg,
1364 record where they are located so that substitution need
1365 not do a tree walk. */
1366
1367 if (replace_reloads)
1368 {
1369 if (inloc != 0)
1370 {
1371 register struct replacement *r = &replacements[n_replacements++];
1372 r->what = i;
1373 r->subreg_loc = in_subreg_loc;
1374 r->where = inloc;
1375 r->mode = inmode;
1376 }
1377 if (outloc != 0 && outloc != inloc)
1378 {
1379 register struct replacement *r = &replacements[n_replacements++];
1380 r->what = i;
1381 r->where = outloc;
1382 r->subreg_loc = out_subreg_loc;
1383 r->mode = outmode;
1384 }
1385 }
1386
1387 /* If this reload is just being introduced and it has both
1388 an incoming quantity and an outgoing quantity that are
1389 supposed to be made to match, see if either one of the two
1390 can serve as the place to reload into.
1391
1392 If one of them is acceptable, set rld[i].reg_rtx
1393 to that one. */
1394
1395 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1396 {
1397 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1398 inmode, outmode,
1399 rld[i].class, i,
1400 earlyclobber_operand_p (out));
1401
1402 /* If the outgoing register already contains the same value
1403 as the incoming one, we can dispense with loading it.
1404 The easiest way to tell the caller that is to give a phony
1405 value for the incoming operand (same as outgoing one). */
1406 if (rld[i].reg_rtx == out
1407 && (GET_CODE (in) == REG || CONSTANT_P (in))
1408 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1409 static_reload_reg_p, i, inmode))
1410 rld[i].in = out;
1411 }
1412
1413 /* If this is an input reload and the operand contains a register that
1414 dies in this insn and is used nowhere else, see if it is the right class
1415 to be used for this reload. Use it if so. (This occurs most commonly
1416 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1417 this if it is also an output reload that mentions the register unless
1418 the output is a SUBREG that clobbers an entire register.
1419
1420 Note that the operand might be one of the spill regs, if it is a
1421 pseudo reg and we are in a block where spilling has not taken place.
1422 But if there is no spilling in this block, that is OK.
1423 An explicitly used hard reg cannot be a spill reg. */
1424
1425 if (rld[i].reg_rtx == 0 && in != 0)
1426 {
1427 rtx note;
1428 int regno;
1429
1430 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1431 if (REG_NOTE_KIND (note) == REG_DEAD
1432 && GET_CODE (XEXP (note, 0)) == REG
1433 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1434 && reg_mentioned_p (XEXP (note, 0), in)
1435 && ! refers_to_regno_for_reload_p (regno,
1436 (regno
1437 + HARD_REGNO_NREGS (regno,
1438 inmode)),
1439 PATTERN (this_insn), inloc)
1440 /* If this is also an output reload, IN cannot be used as
1441 the reload register if it is set in this insn unless IN
1442 is also OUT. */
1443 && (out == 0 || in == out
1444 || ! hard_reg_set_here_p (regno,
1445 (regno
1446 + HARD_REGNO_NREGS (regno,
1447 inmode)),
1448 PATTERN (this_insn)))
1449 /* ??? Why is this code so different from the previous?
1450 Is there any simple coherent way to describe the two together?
1451 What's going on here. */
1452 && (in != out
1453 || (GET_CODE (in) == SUBREG
1454 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1455 / UNITS_PER_WORD)
1456 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1457 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1458 /* Make sure the operand fits in the reg that dies. */
1459 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1460 && HARD_REGNO_MODE_OK (regno, inmode)
1461 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1462 && HARD_REGNO_MODE_OK (regno, outmode)
1463 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
1464 && !fixed_regs[regno])
1465 {
1466 rld[i].reg_rtx = gen_rtx_REG (inmode, regno);
1467 break;
1468 }
1469 }
1470
1471 if (out)
1472 output_reloadnum = i;
1473
1474 return i;
1475 }
1476
1477 /* Record an additional place we must replace a value
1478 for which we have already recorded a reload.
1479 RELOADNUM is the value returned by push_reload
1480 when the reload was recorded.
1481 This is used in insn patterns that use match_dup. */
1482
1483 static void
1484 push_replacement (loc, reloadnum, mode)
1485 rtx *loc;
1486 int reloadnum;
1487 enum machine_mode mode;
1488 {
1489 if (replace_reloads)
1490 {
1491 register struct replacement *r = &replacements[n_replacements++];
1492 r->what = reloadnum;
1493 r->where = loc;
1494 r->subreg_loc = 0;
1495 r->mode = mode;
1496 }
1497 }
1498 \f
1499 /* Transfer all replacements that used to be in reload FROM to be in
1500 reload TO. */
1501
1502 void
1503 transfer_replacements (to, from)
1504 int to, from;
1505 {
1506 int i;
1507
1508 for (i = 0; i < n_replacements; i++)
1509 if (replacements[i].what == from)
1510 replacements[i].what = to;
1511 }
1512 \f
1513 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1514 or a subpart of it. If we have any replacements registered for IN_RTX,
1515 cancel the reloads that were supposed to load them.
1516 Return non-zero if we canceled any reloads. */
1517 int
1518 remove_address_replacements (in_rtx)
1519 rtx in_rtx;
1520 {
1521 int i, j;
1522 char reload_flags[MAX_RELOADS];
1523 int something_changed = 0;
1524
1525 bzero (reload_flags, sizeof reload_flags);
1526 for (i = 0, j = 0; i < n_replacements; i++)
1527 {
1528 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1529 reload_flags[replacements[i].what] |= 1;
1530 else
1531 {
1532 replacements[j++] = replacements[i];
1533 reload_flags[replacements[i].what] |= 2;
1534 }
1535 }
1536 /* Note that the following store must be done before the recursive calls. */
1537 n_replacements = j;
1538
1539 for (i = n_reloads - 1; i >= 0; i--)
1540 {
1541 if (reload_flags[i] == 1)
1542 {
1543 deallocate_reload_reg (i);
1544 remove_address_replacements (rld[i].in);
1545 rld[i].in = 0;
1546 something_changed = 1;
1547 }
1548 }
1549 return something_changed;
1550 }
1551
1552 /* Return non-zero if IN contains a piece of rtl that has the address LOC */
1553 static int
1554 loc_mentioned_in_p (loc, in)
1555 rtx *loc, in;
1556 {
1557 enum rtx_code code = GET_CODE (in);
1558 const char *fmt = GET_RTX_FORMAT (code);
1559 int i, j;
1560
1561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1562 {
1563 if (loc == &in->fld[i].rtx)
1564 return 1;
1565 if (fmt[i] == 'e')
1566 {
1567 if (loc_mentioned_in_p (loc, XEXP (in, i)))
1568 return 1;
1569 }
1570 else if (fmt[i] == 'E')
1571 for (j = XVECLEN (in, i) - 1; i >= 0; i--)
1572 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
1573 return 1;
1574 }
1575 return 0;
1576 }
1577 \f
1578 /* If there is only one output reload, and it is not for an earlyclobber
1579 operand, try to combine it with a (logically unrelated) input reload
1580 to reduce the number of reload registers needed.
1581
1582 This is safe if the input reload does not appear in
1583 the value being output-reloaded, because this implies
1584 it is not needed any more once the original insn completes.
1585
1586 If that doesn't work, see we can use any of the registers that
1587 die in this insn as a reload register. We can if it is of the right
1588 class and does not appear in the value being output-reloaded. */
1589
1590 static void
1591 combine_reloads ()
1592 {
1593 int i;
1594 int output_reload = -1;
1595 int secondary_out = -1;
1596 rtx note;
1597
1598 /* Find the output reload; return unless there is exactly one
1599 and that one is mandatory. */
1600
1601 for (i = 0; i < n_reloads; i++)
1602 if (rld[i].out != 0)
1603 {
1604 if (output_reload >= 0)
1605 return;
1606 output_reload = i;
1607 }
1608
1609 if (output_reload < 0 || rld[output_reload].optional)
1610 return;
1611
1612 /* An input-output reload isn't combinable. */
1613
1614 if (rld[output_reload].in != 0)
1615 return;
1616
1617 /* If this reload is for an earlyclobber operand, we can't do anything. */
1618 if (earlyclobber_operand_p (rld[output_reload].out))
1619 return;
1620
1621 /* Check each input reload; can we combine it? */
1622
1623 for (i = 0; i < n_reloads; i++)
1624 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1625 /* Life span of this reload must not extend past main insn. */
1626 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1627 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1628 && rld[i].when_needed != RELOAD_OTHER
1629 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1630 == CLASS_MAX_NREGS (rld[output_reload].class,
1631 rld[output_reload].outmode))
1632 && rld[i].inc == 0
1633 && rld[i].reg_rtx == 0
1634 #ifdef SECONDARY_MEMORY_NEEDED
1635 /* Don't combine two reloads with different secondary
1636 memory locations. */
1637 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1638 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1639 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1640 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1641 #endif
1642 && (SMALL_REGISTER_CLASSES
1643 ? (rld[i].class == rld[output_reload].class)
1644 : (reg_class_subset_p (rld[i].class,
1645 rld[output_reload].class)
1646 || reg_class_subset_p (rld[output_reload].class,
1647 rld[i].class)))
1648 && (MATCHES (rld[i].in, rld[output_reload].out)
1649 /* Args reversed because the first arg seems to be
1650 the one that we imagine being modified
1651 while the second is the one that might be affected. */
1652 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1653 rld[i].in)
1654 /* However, if the input is a register that appears inside
1655 the output, then we also can't share.
1656 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1657 If the same reload reg is used for both reg 69 and the
1658 result to be stored in memory, then that result
1659 will clobber the address of the memory ref. */
1660 && ! (GET_CODE (rld[i].in) == REG
1661 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1662 rld[output_reload].out))))
1663 && (reg_class_size[(int) rld[i].class]
1664 || SMALL_REGISTER_CLASSES)
1665 /* We will allow making things slightly worse by combining an
1666 input and an output, but no worse than that. */
1667 && (rld[i].when_needed == RELOAD_FOR_INPUT
1668 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1669 {
1670 int j;
1671
1672 /* We have found a reload to combine with! */
1673 rld[i].out = rld[output_reload].out;
1674 rld[i].out_reg = rld[output_reload].out_reg;
1675 rld[i].outmode = rld[output_reload].outmode;
1676 /* Mark the old output reload as inoperative. */
1677 rld[output_reload].out = 0;
1678 /* The combined reload is needed for the entire insn. */
1679 rld[i].when_needed = RELOAD_OTHER;
1680 /* If the output reload had a secondary reload, copy it. */
1681 if (rld[output_reload].secondary_out_reload != -1)
1682 {
1683 rld[i].secondary_out_reload
1684 = rld[output_reload].secondary_out_reload;
1685 rld[i].secondary_out_icode
1686 = rld[output_reload].secondary_out_icode;
1687 }
1688
1689 #ifdef SECONDARY_MEMORY_NEEDED
1690 /* Copy any secondary MEM. */
1691 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1692 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1693 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1694 #endif
1695 /* If required, minimize the register class. */
1696 if (reg_class_subset_p (rld[output_reload].class,
1697 rld[i].class))
1698 rld[i].class = rld[output_reload].class;
1699
1700 /* Transfer all replacements from the old reload to the combined. */
1701 for (j = 0; j < n_replacements; j++)
1702 if (replacements[j].what == output_reload)
1703 replacements[j].what = i;
1704
1705 return;
1706 }
1707
1708 /* If this insn has only one operand that is modified or written (assumed
1709 to be the first), it must be the one corresponding to this reload. It
1710 is safe to use anything that dies in this insn for that output provided
1711 that it does not occur in the output (we already know it isn't an
1712 earlyclobber. If this is an asm insn, give up. */
1713
1714 if (INSN_CODE (this_insn) == -1)
1715 return;
1716
1717 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1718 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1719 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1720 return;
1721
1722 /* See if some hard register that dies in this insn and is not used in
1723 the output is the right class. Only works if the register we pick
1724 up can fully hold our output reload. */
1725 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1726 if (REG_NOTE_KIND (note) == REG_DEAD
1727 && GET_CODE (XEXP (note, 0)) == REG
1728 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1729 rld[output_reload].out)
1730 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1731 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1732 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1733 REGNO (XEXP (note, 0)))
1734 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1735 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1736 /* Ensure that a secondary or tertiary reload for this output
1737 won't want this register. */
1738 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1739 || (! (TEST_HARD_REG_BIT
1740 (reg_class_contents[(int) rld[secondary_out].class],
1741 REGNO (XEXP (note, 0))))
1742 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1743 || ! (TEST_HARD_REG_BIT
1744 (reg_class_contents[(int) rld[secondary_out].class],
1745 REGNO (XEXP (note, 0)))))))
1746 && ! fixed_regs[REGNO (XEXP (note, 0))])
1747 {
1748 rld[output_reload].reg_rtx
1749 = gen_rtx_REG (rld[output_reload].outmode,
1750 REGNO (XEXP (note, 0)));
1751 return;
1752 }
1753 }
1754 \f
1755 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1756 See if one of IN and OUT is a register that may be used;
1757 this is desirable since a spill-register won't be needed.
1758 If so, return the register rtx that proves acceptable.
1759
1760 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1761 CLASS is the register class required for the reload.
1762
1763 If FOR_REAL is >= 0, it is the number of the reload,
1764 and in some cases when it can be discovered that OUT doesn't need
1765 to be computed, clear out rld[FOR_REAL].out.
1766
1767 If FOR_REAL is -1, this should not be done, because this call
1768 is just to see if a register can be found, not to find and install it.
1769
1770 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1771 puts an additional constraint on being able to use IN for OUT since
1772 IN must not appear elsewhere in the insn (it is assumed that IN itself
1773 is safe from the earlyclobber). */
1774
1775 static rtx
1776 find_dummy_reload (real_in, real_out, inloc, outloc,
1777 inmode, outmode, class, for_real, earlyclobber)
1778 rtx real_in, real_out;
1779 rtx *inloc, *outloc;
1780 enum machine_mode inmode, outmode;
1781 enum reg_class class;
1782 int for_real;
1783 int earlyclobber;
1784 {
1785 rtx in = real_in;
1786 rtx out = real_out;
1787 int in_offset = 0;
1788 int out_offset = 0;
1789 rtx value = 0;
1790
1791 /* If operands exceed a word, we can't use either of them
1792 unless they have the same size. */
1793 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1794 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1795 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1796 return 0;
1797
1798 /* Find the inside of any subregs. */
1799 while (GET_CODE (out) == SUBREG)
1800 {
1801 out_offset = SUBREG_WORD (out);
1802 out = SUBREG_REG (out);
1803 }
1804 while (GET_CODE (in) == SUBREG)
1805 {
1806 in_offset = SUBREG_WORD (in);
1807 in = SUBREG_REG (in);
1808 }
1809
1810 /* Narrow down the reg class, the same way push_reload will;
1811 otherwise we might find a dummy now, but push_reload won't. */
1812 class = PREFERRED_RELOAD_CLASS (in, class);
1813
1814 /* See if OUT will do. */
1815 if (GET_CODE (out) == REG
1816 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1817 {
1818 register int regno = REGNO (out) + out_offset;
1819 int nwords = HARD_REGNO_NREGS (regno, outmode);
1820 rtx saved_rtx;
1821
1822 /* When we consider whether the insn uses OUT,
1823 ignore references within IN. They don't prevent us
1824 from copying IN into OUT, because those refs would
1825 move into the insn that reloads IN.
1826
1827 However, we only ignore IN in its role as this reload.
1828 If the insn uses IN elsewhere and it contains OUT,
1829 that counts. We can't be sure it's the "same" operand
1830 so it might not go through this reload. */
1831 saved_rtx = *inloc;
1832 *inloc = const0_rtx;
1833
1834 if (regno < FIRST_PSEUDO_REGISTER
1835 /* A fixed reg that can overlap other regs better not be used
1836 for reloading in any way. */
1837 #ifdef OVERLAPPING_REGNO_P
1838 && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
1839 #endif
1840 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1841 PATTERN (this_insn), outloc))
1842 {
1843 int i;
1844 for (i = 0; i < nwords; i++)
1845 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1846 regno + i))
1847 break;
1848
1849 if (i == nwords)
1850 {
1851 if (GET_CODE (real_out) == REG)
1852 value = real_out;
1853 else
1854 value = gen_rtx_REG (outmode, regno);
1855 }
1856 }
1857
1858 *inloc = saved_rtx;
1859 }
1860
1861 /* Consider using IN if OUT was not acceptable
1862 or if OUT dies in this insn (like the quotient in a divmod insn).
1863 We can't use IN unless it is dies in this insn,
1864 which means we must know accurately which hard regs are live.
1865 Also, the result can't go in IN if IN is used within OUT,
1866 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1867 if (hard_regs_live_known
1868 && GET_CODE (in) == REG
1869 && REGNO (in) < FIRST_PSEUDO_REGISTER
1870 && (value == 0
1871 || find_reg_note (this_insn, REG_UNUSED, real_out))
1872 && find_reg_note (this_insn, REG_DEAD, real_in)
1873 && !fixed_regs[REGNO (in)]
1874 && HARD_REGNO_MODE_OK (REGNO (in),
1875 /* The only case where out and real_out might
1876 have different modes is where real_out
1877 is a subreg, and in that case, out
1878 has a real mode. */
1879 (GET_MODE (out) != VOIDmode
1880 ? GET_MODE (out) : outmode)))
1881 {
1882 register int regno = REGNO (in) + in_offset;
1883 int nwords = HARD_REGNO_NREGS (regno, inmode);
1884
1885 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
1886 && ! hard_reg_set_here_p (regno, regno + nwords,
1887 PATTERN (this_insn))
1888 && (! earlyclobber
1889 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1890 PATTERN (this_insn), inloc)))
1891 {
1892 int i;
1893 for (i = 0; i < nwords; i++)
1894 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1895 regno + i))
1896 break;
1897
1898 if (i == nwords)
1899 {
1900 /* If we were going to use OUT as the reload reg
1901 and changed our mind, it means OUT is a dummy that
1902 dies here. So don't bother copying value to it. */
1903 if (for_real >= 0 && value == real_out)
1904 rld[for_real].out = 0;
1905 if (GET_CODE (real_in) == REG)
1906 value = real_in;
1907 else
1908 value = gen_rtx_REG (inmode, regno);
1909 }
1910 }
1911 }
1912
1913 return value;
1914 }
1915 \f
1916 /* This page contains subroutines used mainly for determining
1917 whether the IN or an OUT of a reload can serve as the
1918 reload register. */
1919
1920 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1921
1922 static int
1923 earlyclobber_operand_p (x)
1924 rtx x;
1925 {
1926 int i;
1927
1928 for (i = 0; i < n_earlyclobbers; i++)
1929 if (reload_earlyclobbers[i] == x)
1930 return 1;
1931
1932 return 0;
1933 }
1934
1935 /* Return 1 if expression X alters a hard reg in the range
1936 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1937 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1938 X should be the body of an instruction. */
1939
1940 static int
1941 hard_reg_set_here_p (beg_regno, end_regno, x)
1942 register int beg_regno, end_regno;
1943 rtx x;
1944 {
1945 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1946 {
1947 register rtx op0 = SET_DEST (x);
1948 while (GET_CODE (op0) == SUBREG)
1949 op0 = SUBREG_REG (op0);
1950 if (GET_CODE (op0) == REG)
1951 {
1952 register int r = REGNO (op0);
1953 /* See if this reg overlaps range under consideration. */
1954 if (r < end_regno
1955 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1956 return 1;
1957 }
1958 }
1959 else if (GET_CODE (x) == PARALLEL)
1960 {
1961 register int i = XVECLEN (x, 0) - 1;
1962 for (; i >= 0; i--)
1963 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1964 return 1;
1965 }
1966
1967 return 0;
1968 }
1969
1970 /* Return 1 if ADDR is a valid memory address for mode MODE,
1971 and check that each pseudo reg has the proper kind of
1972 hard reg. */
1973
1974 int
1975 strict_memory_address_p (mode, addr)
1976 enum machine_mode mode;
1977 register rtx addr;
1978 {
1979 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1980 return 0;
1981
1982 win:
1983 return 1;
1984 }
1985 \f
1986 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1987 if they are the same hard reg, and has special hacks for
1988 autoincrement and autodecrement.
1989 This is specifically intended for find_reloads to use
1990 in determining whether two operands match.
1991 X is the operand whose number is the lower of the two.
1992
1993 The value is 2 if Y contains a pre-increment that matches
1994 a non-incrementing address in X. */
1995
1996 /* ??? To be completely correct, we should arrange to pass
1997 for X the output operand and for Y the input operand.
1998 For now, we assume that the output operand has the lower number
1999 because that is natural in (SET output (... input ...)). */
2000
2001 int
2002 operands_match_p (x, y)
2003 register rtx x, y;
2004 {
2005 register int i;
2006 register RTX_CODE code = GET_CODE (x);
2007 register const char *fmt;
2008 int success_2;
2009
2010 if (x == y)
2011 return 1;
2012 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2013 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2014 && GET_CODE (SUBREG_REG (y)) == REG)))
2015 {
2016 register int j;
2017
2018 if (code == SUBREG)
2019 {
2020 i = REGNO (SUBREG_REG (x));
2021 if (i >= FIRST_PSEUDO_REGISTER)
2022 goto slow;
2023 i += SUBREG_WORD (x);
2024 }
2025 else
2026 i = REGNO (x);
2027
2028 if (GET_CODE (y) == SUBREG)
2029 {
2030 j = REGNO (SUBREG_REG (y));
2031 if (j >= FIRST_PSEUDO_REGISTER)
2032 goto slow;
2033 j += SUBREG_WORD (y);
2034 }
2035 else
2036 j = REGNO (y);
2037
2038 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2039 multiple hard register group, so that for example (reg:DI 0) and
2040 (reg:SI 1) will be considered the same register. */
2041 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2042 && i < FIRST_PSEUDO_REGISTER)
2043 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2044 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2045 && j < FIRST_PSEUDO_REGISTER)
2046 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2047
2048 return i == j;
2049 }
2050 /* If two operands must match, because they are really a single
2051 operand of an assembler insn, then two postincrements are invalid
2052 because the assembler insn would increment only once.
2053 On the other hand, an postincrement matches ordinary indexing
2054 if the postincrement is the output operand. */
2055 if (code == POST_DEC || code == POST_INC)
2056 return operands_match_p (XEXP (x, 0), y);
2057 /* Two preincrements are invalid
2058 because the assembler insn would increment only once.
2059 On the other hand, an preincrement matches ordinary indexing
2060 if the preincrement is the input operand.
2061 In this case, return 2, since some callers need to do special
2062 things when this happens. */
2063 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
2064 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2065
2066 slow:
2067
2068 /* Now we have disposed of all the cases
2069 in which different rtx codes can match. */
2070 if (code != GET_CODE (y))
2071 return 0;
2072 if (code == LABEL_REF)
2073 return XEXP (x, 0) == XEXP (y, 0);
2074 if (code == SYMBOL_REF)
2075 return XSTR (x, 0) == XSTR (y, 0);
2076
2077 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2078
2079 if (GET_MODE (x) != GET_MODE (y))
2080 return 0;
2081
2082 /* Compare the elements. If any pair of corresponding elements
2083 fail to match, return 0 for the whole things. */
2084
2085 success_2 = 0;
2086 fmt = GET_RTX_FORMAT (code);
2087 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2088 {
2089 int val, j;
2090 switch (fmt[i])
2091 {
2092 case 'w':
2093 if (XWINT (x, i) != XWINT (y, i))
2094 return 0;
2095 break;
2096
2097 case 'i':
2098 if (XINT (x, i) != XINT (y, i))
2099 return 0;
2100 break;
2101
2102 case 'e':
2103 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2104 if (val == 0)
2105 return 0;
2106 /* If any subexpression returns 2,
2107 we should return 2 if we are successful. */
2108 if (val == 2)
2109 success_2 = 1;
2110 break;
2111
2112 case '0':
2113 break;
2114
2115 case 'E':
2116 if (XVECLEN (x, i) != XVECLEN (y, i))
2117 return 0;
2118 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2119 {
2120 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2121 if (val == 0)
2122 return 0;
2123 if (val == 2)
2124 success_2 = 1;
2125 }
2126 break;
2127
2128 /* It is believed that rtx's at this level will never
2129 contain anything but integers and other rtx's,
2130 except for within LABEL_REFs and SYMBOL_REFs. */
2131 default:
2132 abort ();
2133 }
2134 }
2135 return 1 + success_2;
2136 }
2137 \f
2138 /* Describe the range of registers or memory referenced by X.
2139 If X is a register, set REG_FLAG and put the first register
2140 number into START and the last plus one into END.
2141 If X is a memory reference, put a base address into BASE
2142 and a range of integer offsets into START and END.
2143 If X is pushing on the stack, we can assume it causes no trouble,
2144 so we set the SAFE field. */
2145
2146 static struct decomposition
2147 decompose (x)
2148 rtx x;
2149 {
2150 struct decomposition val;
2151 int all_const = 0;
2152
2153 val.reg_flag = 0;
2154 val.safe = 0;
2155 val.base = 0;
2156 if (GET_CODE (x) == MEM)
2157 {
2158 rtx base = NULL_RTX, offset = 0;
2159 rtx addr = XEXP (x, 0);
2160
2161 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2162 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2163 {
2164 val.base = XEXP (addr, 0);
2165 val.start = - GET_MODE_SIZE (GET_MODE (x));
2166 val.end = GET_MODE_SIZE (GET_MODE (x));
2167 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2168 return val;
2169 }
2170
2171 if (GET_CODE (addr) == CONST)
2172 {
2173 addr = XEXP (addr, 0);
2174 all_const = 1;
2175 }
2176 if (GET_CODE (addr) == PLUS)
2177 {
2178 if (CONSTANT_P (XEXP (addr, 0)))
2179 {
2180 base = XEXP (addr, 1);
2181 offset = XEXP (addr, 0);
2182 }
2183 else if (CONSTANT_P (XEXP (addr, 1)))
2184 {
2185 base = XEXP (addr, 0);
2186 offset = XEXP (addr, 1);
2187 }
2188 }
2189
2190 if (offset == 0)
2191 {
2192 base = addr;
2193 offset = const0_rtx;
2194 }
2195 if (GET_CODE (offset) == CONST)
2196 offset = XEXP (offset, 0);
2197 if (GET_CODE (offset) == PLUS)
2198 {
2199 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2200 {
2201 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2202 offset = XEXP (offset, 0);
2203 }
2204 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2205 {
2206 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2207 offset = XEXP (offset, 1);
2208 }
2209 else
2210 {
2211 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2212 offset = const0_rtx;
2213 }
2214 }
2215 else if (GET_CODE (offset) != CONST_INT)
2216 {
2217 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2218 offset = const0_rtx;
2219 }
2220
2221 if (all_const && GET_CODE (base) == PLUS)
2222 base = gen_rtx_CONST (GET_MODE (base), base);
2223
2224 if (GET_CODE (offset) != CONST_INT)
2225 abort ();
2226
2227 val.start = INTVAL (offset);
2228 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2229 val.base = base;
2230 return val;
2231 }
2232 else if (GET_CODE (x) == REG)
2233 {
2234 val.reg_flag = 1;
2235 val.start = true_regnum (x);
2236 if (val.start < 0)
2237 {
2238 /* A pseudo with no hard reg. */
2239 val.start = REGNO (x);
2240 val.end = val.start + 1;
2241 }
2242 else
2243 /* A hard reg. */
2244 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2245 }
2246 else if (GET_CODE (x) == SUBREG)
2247 {
2248 if (GET_CODE (SUBREG_REG (x)) != REG)
2249 /* This could be more precise, but it's good enough. */
2250 return decompose (SUBREG_REG (x));
2251 val.reg_flag = 1;
2252 val.start = true_regnum (x);
2253 if (val.start < 0)
2254 return decompose (SUBREG_REG (x));
2255 else
2256 /* A hard reg. */
2257 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2258 }
2259 else if (CONSTANT_P (x)
2260 /* This hasn't been assigned yet, so it can't conflict yet. */
2261 || GET_CODE (x) == SCRATCH)
2262 val.safe = 1;
2263 else
2264 abort ();
2265 return val;
2266 }
2267
2268 /* Return 1 if altering Y will not modify the value of X.
2269 Y is also described by YDATA, which should be decompose (Y). */
2270
2271 static int
2272 immune_p (x, y, ydata)
2273 rtx x, y;
2274 struct decomposition ydata;
2275 {
2276 struct decomposition xdata;
2277
2278 if (ydata.reg_flag)
2279 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
2280 if (ydata.safe)
2281 return 1;
2282
2283 if (GET_CODE (y) != MEM)
2284 abort ();
2285 /* If Y is memory and X is not, Y can't affect X. */
2286 if (GET_CODE (x) != MEM)
2287 return 1;
2288
2289 xdata = decompose (x);
2290
2291 if (! rtx_equal_p (xdata.base, ydata.base))
2292 {
2293 /* If bases are distinct symbolic constants, there is no overlap. */
2294 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2295 return 1;
2296 /* Constants and stack slots never overlap. */
2297 if (CONSTANT_P (xdata.base)
2298 && (ydata.base == frame_pointer_rtx
2299 || ydata.base == hard_frame_pointer_rtx
2300 || ydata.base == stack_pointer_rtx))
2301 return 1;
2302 if (CONSTANT_P (ydata.base)
2303 && (xdata.base == frame_pointer_rtx
2304 || xdata.base == hard_frame_pointer_rtx
2305 || xdata.base == stack_pointer_rtx))
2306 return 1;
2307 /* If either base is variable, we don't know anything. */
2308 return 0;
2309 }
2310
2311
2312 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2313 }
2314
2315 /* Similar, but calls decompose. */
2316
2317 int
2318 safe_from_earlyclobber (op, clobber)
2319 rtx op, clobber;
2320 {
2321 struct decomposition early_data;
2322
2323 early_data = decompose (clobber);
2324 return immune_p (op, clobber, early_data);
2325 }
2326 \f
2327 /* Main entry point of this file: search the body of INSN
2328 for values that need reloading and record them with push_reload.
2329 REPLACE nonzero means record also where the values occur
2330 so that subst_reloads can be used.
2331
2332 IND_LEVELS says how many levels of indirection are supported by this
2333 machine; a value of zero means that a memory reference is not a valid
2334 memory address.
2335
2336 LIVE_KNOWN says we have valid information about which hard
2337 regs are live at each point in the program; this is true when
2338 we are called from global_alloc but false when stupid register
2339 allocation has been done.
2340
2341 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2342 which is nonnegative if the reg has been commandeered for reloading into.
2343 It is copied into STATIC_RELOAD_REG_P and referenced from there
2344 by various subroutines.
2345
2346 Return TRUE if some operands need to be changed, because of swapping
2347 commutative operands, reg_equiv_address substitution, or whatever. */
2348
2349 int
2350 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2351 rtx insn;
2352 int replace, ind_levels;
2353 int live_known;
2354 short *reload_reg_p;
2355 {
2356 #ifdef REGISTER_CONSTRAINTS
2357
2358 register int insn_code_number;
2359 register int i, j;
2360 int noperands;
2361 /* These start out as the constraints for the insn
2362 and they are chewed up as we consider alternatives. */
2363 char *constraints[MAX_RECOG_OPERANDS];
2364 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2365 a register. */
2366 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2367 char pref_or_nothing[MAX_RECOG_OPERANDS];
2368 /* Nonzero for a MEM operand whose entire address needs a reload. */
2369 int address_reloaded[MAX_RECOG_OPERANDS];
2370 /* Value of enum reload_type to use for operand. */
2371 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2372 /* Value of enum reload_type to use within address of operand. */
2373 enum reload_type address_type[MAX_RECOG_OPERANDS];
2374 /* Save the usage of each operand. */
2375 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2376 int no_input_reloads = 0, no_output_reloads = 0;
2377 int n_alternatives;
2378 int this_alternative[MAX_RECOG_OPERANDS];
2379 char this_alternative_win[MAX_RECOG_OPERANDS];
2380 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2381 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2382 int this_alternative_matches[MAX_RECOG_OPERANDS];
2383 int swapped;
2384 int goal_alternative[MAX_RECOG_OPERANDS];
2385 int this_alternative_number;
2386 int goal_alternative_number;
2387 int operand_reloadnum[MAX_RECOG_OPERANDS];
2388 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2389 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2390 char goal_alternative_win[MAX_RECOG_OPERANDS];
2391 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2392 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2393 int goal_alternative_swapped;
2394 int best;
2395 int commutative;
2396 int changed;
2397 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2398 rtx substed_operand[MAX_RECOG_OPERANDS];
2399 rtx body = PATTERN (insn);
2400 rtx set = single_set (insn);
2401 int goal_earlyclobber, this_earlyclobber;
2402 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2403 int retval = 0;
2404
2405 this_insn = insn;
2406 n_reloads = 0;
2407 n_replacements = 0;
2408 n_earlyclobbers = 0;
2409 replace_reloads = replace;
2410 hard_regs_live_known = live_known;
2411 static_reload_reg_p = reload_reg_p;
2412
2413 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2414 neither are insns that SET cc0. Insns that use CC0 are not allowed
2415 to have any input reloads. */
2416 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2417 no_output_reloads = 1;
2418
2419 #ifdef HAVE_cc0
2420 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2421 no_input_reloads = 1;
2422 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2423 no_output_reloads = 1;
2424 #endif
2425
2426 #ifdef SECONDARY_MEMORY_NEEDED
2427 /* The eliminated forms of any secondary memory locations are per-insn, so
2428 clear them out here. */
2429
2430 bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
2431 #endif
2432
2433 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2434 is cheap to move between them. If it is not, there may not be an insn
2435 to do the copy, so we may need a reload. */
2436 if (GET_CODE (body) == SET
2437 && GET_CODE (SET_DEST (body)) == REG
2438 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2439 && GET_CODE (SET_SRC (body)) == REG
2440 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2441 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2442 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2443 return 0;
2444
2445 extract_insn (insn);
2446
2447 noperands = reload_n_operands = recog_data.n_operands;
2448 n_alternatives = recog_data.n_alternatives;
2449
2450 /* Just return "no reloads" if insn has no operands with constraints. */
2451 if (noperands == 0 || n_alternatives == 0)
2452 return 0;
2453
2454 insn_code_number = INSN_CODE (insn);
2455 this_insn_is_asm = insn_code_number < 0;
2456
2457 bcopy ((char *) recog_data.operand_mode, (char *) operand_mode,
2458 noperands * sizeof (enum machine_mode));
2459 bcopy ((char *) recog_data.constraints, (char *) constraints,
2460 noperands * sizeof (char *));
2461
2462 commutative = -1;
2463
2464 /* If we will need to know, later, whether some pair of operands
2465 are the same, we must compare them now and save the result.
2466 Reloading the base and index registers will clobber them
2467 and afterward they will fail to match. */
2468
2469 for (i = 0; i < noperands; i++)
2470 {
2471 register char *p;
2472 register int c;
2473
2474 substed_operand[i] = recog_data.operand[i];
2475 p = constraints[i];
2476
2477 modified[i] = RELOAD_READ;
2478
2479 /* Scan this operand's constraint to see if it is an output operand,
2480 an in-out operand, is commutative, or should match another. */
2481
2482 while ((c = *p++))
2483 {
2484 if (c == '=')
2485 modified[i] = RELOAD_WRITE;
2486 else if (c == '+')
2487 modified[i] = RELOAD_READ_WRITE;
2488 else if (c == '%')
2489 {
2490 /* The last operand should not be marked commutative. */
2491 if (i == noperands - 1)
2492 abort ();
2493
2494 commutative = i;
2495 }
2496 else if (c >= '0' && c <= '9')
2497 {
2498 c -= '0';
2499 operands_match[c][i]
2500 = operands_match_p (recog_data.operand[c],
2501 recog_data.operand[i]);
2502
2503 /* An operand may not match itself. */
2504 if (c == i)
2505 abort ();
2506
2507 /* If C can be commuted with C+1, and C might need to match I,
2508 then C+1 might also need to match I. */
2509 if (commutative >= 0)
2510 {
2511 if (c == commutative || c == commutative + 1)
2512 {
2513 int other = c + (c == commutative ? 1 : -1);
2514 operands_match[other][i]
2515 = operands_match_p (recog_data.operand[other],
2516 recog_data.operand[i]);
2517 }
2518 if (i == commutative || i == commutative + 1)
2519 {
2520 int other = i + (i == commutative ? 1 : -1);
2521 operands_match[c][other]
2522 = operands_match_p (recog_data.operand[c],
2523 recog_data.operand[other]);
2524 }
2525 /* Note that C is supposed to be less than I.
2526 No need to consider altering both C and I because in
2527 that case we would alter one into the other. */
2528 }
2529 }
2530 }
2531 }
2532
2533 /* Examine each operand that is a memory reference or memory address
2534 and reload parts of the addresses into index registers.
2535 Also here any references to pseudo regs that didn't get hard regs
2536 but are equivalent to constants get replaced in the insn itself
2537 with those constants. Nobody will ever see them again.
2538
2539 Finally, set up the preferred classes of each operand. */
2540
2541 for (i = 0; i < noperands; i++)
2542 {
2543 register RTX_CODE code = GET_CODE (recog_data.operand[i]);
2544
2545 address_reloaded[i] = 0;
2546 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2547 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2548 : RELOAD_OTHER);
2549 address_type[i]
2550 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2551 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2552 : RELOAD_OTHER);
2553
2554 if (*constraints[i] == 0)
2555 /* Ignore things like match_operator operands. */
2556 ;
2557 else if (constraints[i][0] == 'p')
2558 {
2559 find_reloads_address (VOIDmode, NULL_PTR,
2560 recog_data.operand[i],
2561 recog_data.operand_loc[i],
2562 i, operand_type[i], ind_levels, insn);
2563
2564 /* If we now have a simple operand where we used to have a
2565 PLUS or MULT, re-recognize and try again. */
2566 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2567 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2568 && (GET_CODE (recog_data.operand[i]) == MULT
2569 || GET_CODE (recog_data.operand[i]) == PLUS))
2570 {
2571 INSN_CODE (insn) = -1;
2572 retval = find_reloads (insn, replace, ind_levels, live_known,
2573 reload_reg_p);
2574 return retval;
2575 }
2576
2577 recog_data.operand[i] = *recog_data.operand_loc[i];
2578 substed_operand[i] = recog_data.operand[i];
2579 }
2580 else if (code == MEM)
2581 {
2582 address_reloaded[i]
2583 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2584 recog_data.operand_loc[i],
2585 XEXP (recog_data.operand[i], 0),
2586 &XEXP (recog_data.operand[i], 0),
2587 i, address_type[i], ind_levels, insn);
2588 recog_data.operand[i] = *recog_data.operand_loc[i];
2589 substed_operand[i] = recog_data.operand[i];
2590 }
2591 else if (code == SUBREG)
2592 {
2593 rtx reg = SUBREG_REG (recog_data.operand[i]);
2594 rtx op
2595 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2596 ind_levels,
2597 set != 0
2598 && &SET_DEST (set) == recog_data.operand_loc[i],
2599 insn);
2600
2601 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2602 that didn't get a hard register, emit a USE with a REG_EQUAL
2603 note in front so that we might inherit a previous, possibly
2604 wider reload. */
2605
2606 if (replace
2607 && GET_CODE (op) == MEM
2608 && GET_CODE (reg) == REG
2609 && (GET_MODE_SIZE (GET_MODE (reg))
2610 >= GET_MODE_SIZE (GET_MODE (op))))
2611 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, reg), insn))
2612 = gen_rtx_EXPR_LIST (REG_EQUAL,
2613 reg_equiv_memory_loc[REGNO (reg)], NULL_RTX);
2614
2615 substed_operand[i] = recog_data.operand[i] = op;
2616 }
2617 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2618 /* We can get a PLUS as an "operand" as a result of register
2619 elimination. See eliminate_regs and gen_reload. We handle
2620 a unary operator by reloading the operand. */
2621 substed_operand[i] = recog_data.operand[i]
2622 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2623 ind_levels, 0, insn);
2624 else if (code == REG)
2625 {
2626 /* This is equivalent to calling find_reloads_toplev.
2627 The code is duplicated for speed.
2628 When we find a pseudo always equivalent to a constant,
2629 we replace it by the constant. We must be sure, however,
2630 that we don't try to replace it in the insn in which it
2631 is being set. */
2632 register int regno = REGNO (recog_data.operand[i]);
2633 if (reg_equiv_constant[regno] != 0
2634 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2635 {
2636 /* Record the existing mode so that the check if constants are
2637 allowed will work when operand_mode isn't specified. */
2638
2639 if (operand_mode[i] == VOIDmode)
2640 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2641
2642 substed_operand[i] = recog_data.operand[i]
2643 = reg_equiv_constant[regno];
2644 }
2645 if (reg_equiv_memory_loc[regno] != 0
2646 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2647 /* We need not give a valid is_set_dest argument since the case
2648 of a constant equivalence was checked above. */
2649 substed_operand[i] = recog_data.operand[i]
2650 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2651 ind_levels, 0, insn);
2652 }
2653 /* If the operand is still a register (we didn't replace it with an
2654 equivalent), get the preferred class to reload it into. */
2655 code = GET_CODE (recog_data.operand[i]);
2656 preferred_class[i]
2657 = ((code == REG && REGNO (recog_data.operand[i])
2658 >= FIRST_PSEUDO_REGISTER)
2659 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2660 : NO_REGS);
2661 pref_or_nothing[i]
2662 = (code == REG
2663 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2664 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2665 }
2666
2667 #ifdef HAVE_cc0
2668 /* If we made any reloads for addresses, see if they violate a
2669 "no input reloads" requirement for this insn. */
2670 if (no_input_reloads)
2671 for (i = 0; i < n_reloads; i++)
2672 if (rld[i].in != 0)
2673 abort ();
2674 #endif
2675
2676 /* If this is simply a copy from operand 1 to operand 0, merge the
2677 preferred classes for the operands. */
2678 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2679 && recog_data.operand[1] == SET_SRC (set))
2680 {
2681 preferred_class[0] = preferred_class[1]
2682 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2683 pref_or_nothing[0] |= pref_or_nothing[1];
2684 pref_or_nothing[1] |= pref_or_nothing[0];
2685 }
2686
2687 /* Now see what we need for pseudo-regs that didn't get hard regs
2688 or got the wrong kind of hard reg. For this, we must consider
2689 all the operands together against the register constraints. */
2690
2691 best = MAX_RECOG_OPERANDS * 2 + 600;
2692
2693 swapped = 0;
2694 goal_alternative_swapped = 0;
2695 try_swapped:
2696
2697 /* The constraints are made of several alternatives.
2698 Each operand's constraint looks like foo,bar,... with commas
2699 separating the alternatives. The first alternatives for all
2700 operands go together, the second alternatives go together, etc.
2701
2702 First loop over alternatives. */
2703
2704 for (this_alternative_number = 0;
2705 this_alternative_number < n_alternatives;
2706 this_alternative_number++)
2707 {
2708 /* Loop over operands for one constraint alternative. */
2709 /* LOSERS counts those that don't fit this alternative
2710 and would require loading. */
2711 int losers = 0;
2712 /* BAD is set to 1 if it some operand can't fit this alternative
2713 even after reloading. */
2714 int bad = 0;
2715 /* REJECT is a count of how undesirable this alternative says it is
2716 if any reloading is required. If the alternative matches exactly
2717 then REJECT is ignored, but otherwise it gets this much
2718 counted against it in addition to the reloading needed. Each
2719 ? counts three times here since we want the disparaging caused by
2720 a bad register class to only count 1/3 as much. */
2721 int reject = 0;
2722
2723 this_earlyclobber = 0;
2724
2725 for (i = 0; i < noperands; i++)
2726 {
2727 register char *p = constraints[i];
2728 register int win = 0;
2729 /* 0 => this operand can be reloaded somehow for this alternative */
2730 int badop = 1;
2731 /* 0 => this operand can be reloaded if the alternative allows regs. */
2732 int winreg = 0;
2733 int c;
2734 register rtx operand = recog_data.operand[i];
2735 int offset = 0;
2736 /* Nonzero means this is a MEM that must be reloaded into a reg
2737 regardless of what the constraint says. */
2738 int force_reload = 0;
2739 int offmemok = 0;
2740 /* Nonzero if a constant forced into memory would be OK for this
2741 operand. */
2742 int constmemok = 0;
2743 int earlyclobber = 0;
2744
2745 /* If the predicate accepts a unary operator, it means that
2746 we need to reload the operand, but do not do this for
2747 match_operator and friends. */
2748 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2749 operand = XEXP (operand, 0);
2750
2751 /* If the operand is a SUBREG, extract
2752 the REG or MEM (or maybe even a constant) within.
2753 (Constants can occur as a result of reg_equiv_constant.) */
2754
2755 while (GET_CODE (operand) == SUBREG)
2756 {
2757 offset += SUBREG_WORD (operand);
2758 operand = SUBREG_REG (operand);
2759 /* Force reload if this is a constant or PLUS or if there may
2760 be a problem accessing OPERAND in the outer mode. */
2761 if (CONSTANT_P (operand)
2762 || GET_CODE (operand) == PLUS
2763 /* We must force a reload of paradoxical SUBREGs
2764 of a MEM because the alignment of the inner value
2765 may not be enough to do the outer reference. On
2766 big-endian machines, it may also reference outside
2767 the object.
2768
2769 On machines that extend byte operations and we have a
2770 SUBREG where both the inner and outer modes are no wider
2771 than a word and the inner mode is narrower, is integral,
2772 and gets extended when loaded from memory, combine.c has
2773 made assumptions about the behavior of the machine in such
2774 register access. If the data is, in fact, in memory we
2775 must always load using the size assumed to be in the
2776 register and let the insn do the different-sized
2777 accesses.
2778
2779 This is doubly true if WORD_REGISTER_OPERATIONS. In
2780 this case eliminate_regs has left non-paradoxical
2781 subregs for push_reloads to see. Make sure it does
2782 by forcing the reload.
2783
2784 ??? When is it right at this stage to have a subreg
2785 of a mem that is _not_ to be handled specialy? IMO
2786 those should have been reduced to just a mem. */
2787 || ((GET_CODE (operand) == MEM
2788 || (GET_CODE (operand)== REG
2789 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2790 #ifndef WORD_REGISTER_OPERATIONS
2791 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2792 < BIGGEST_ALIGNMENT)
2793 && (GET_MODE_SIZE (operand_mode[i])
2794 > GET_MODE_SIZE (GET_MODE (operand))))
2795 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2796 #ifdef LOAD_EXTEND_OP
2797 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2798 && (GET_MODE_SIZE (GET_MODE (operand))
2799 <= UNITS_PER_WORD)
2800 && (GET_MODE_SIZE (operand_mode[i])
2801 > GET_MODE_SIZE (GET_MODE (operand)))
2802 && INTEGRAL_MODE_P (GET_MODE (operand))
2803 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2804 #endif
2805 )
2806 #endif
2807 )
2808 /* Subreg of a hard reg which can't handle the subreg's mode
2809 or which would handle that mode in the wrong number of
2810 registers for subregging to work. */
2811 || (GET_CODE (operand) == REG
2812 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2813 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2814 && (GET_MODE_SIZE (GET_MODE (operand))
2815 > UNITS_PER_WORD)
2816 && ((GET_MODE_SIZE (GET_MODE (operand))
2817 / UNITS_PER_WORD)
2818 != HARD_REGNO_NREGS (REGNO (operand),
2819 GET_MODE (operand))))
2820 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2821 operand_mode[i]))))
2822 force_reload = 1;
2823 }
2824
2825 this_alternative[i] = (int) NO_REGS;
2826 this_alternative_win[i] = 0;
2827 this_alternative_offmemok[i] = 0;
2828 this_alternative_earlyclobber[i] = 0;
2829 this_alternative_matches[i] = -1;
2830
2831 /* An empty constraint or empty alternative
2832 allows anything which matched the pattern. */
2833 if (*p == 0 || *p == ',')
2834 win = 1, badop = 0;
2835
2836 /* Scan this alternative's specs for this operand;
2837 set WIN if the operand fits any letter in this alternative.
2838 Otherwise, clear BADOP if this operand could
2839 fit some letter after reloads,
2840 or set WINREG if this operand could fit after reloads
2841 provided the constraint allows some registers. */
2842
2843 while (*p && (c = *p++) != ',')
2844 switch (c)
2845 {
2846 case '=': case '+': case '*':
2847 break;
2848
2849 case '%':
2850 /* The last operand should not be marked commutative. */
2851 if (i != noperands - 1)
2852 commutative = i;
2853 break;
2854
2855 case '?':
2856 reject += 6;
2857 break;
2858
2859 case '!':
2860 reject = 600;
2861 break;
2862
2863 case '#':
2864 /* Ignore rest of this alternative as far as
2865 reloading is concerned. */
2866 while (*p && *p != ',') p++;
2867 break;
2868
2869 case '0': case '1': case '2': case '3': case '4':
2870 case '5': case '6': case '7': case '8': case '9':
2871
2872 c -= '0';
2873 this_alternative_matches[i] = c;
2874 /* We are supposed to match a previous operand.
2875 If we do, we win if that one did.
2876 If we do not, count both of the operands as losers.
2877 (This is too conservative, since most of the time
2878 only a single reload insn will be needed to make
2879 the two operands win. As a result, this alternative
2880 may be rejected when it is actually desirable.) */
2881 if ((swapped && (c != commutative || i != commutative + 1))
2882 /* If we are matching as if two operands were swapped,
2883 also pretend that operands_match had been computed
2884 with swapped.
2885 But if I is the second of those and C is the first,
2886 don't exchange them, because operands_match is valid
2887 only on one side of its diagonal. */
2888 ? (operands_match
2889 [(c == commutative || c == commutative + 1)
2890 ? 2*commutative + 1 - c : c]
2891 [(i == commutative || i == commutative + 1)
2892 ? 2*commutative + 1 - i : i])
2893 : operands_match[c][i])
2894 {
2895 /* If we are matching a non-offsettable address where an
2896 offsettable address was expected, then we must reject
2897 this combination, because we can't reload it. */
2898 if (this_alternative_offmemok[c]
2899 && GET_CODE (recog_data.operand[c]) == MEM
2900 && this_alternative[c] == (int) NO_REGS
2901 && ! this_alternative_win[c])
2902 bad = 1;
2903
2904 win = this_alternative_win[c];
2905 }
2906 else
2907 {
2908 /* Operands don't match. */
2909 rtx value;
2910 /* Retroactively mark the operand we had to match
2911 as a loser, if it wasn't already. */
2912 if (this_alternative_win[c])
2913 losers++;
2914 this_alternative_win[c] = 0;
2915 if (this_alternative[c] == (int) NO_REGS)
2916 bad = 1;
2917 /* But count the pair only once in the total badness of
2918 this alternative, if the pair can be a dummy reload. */
2919 value
2920 = find_dummy_reload (recog_data.operand[i],
2921 recog_data.operand[c],
2922 recog_data.operand_loc[i],
2923 recog_data.operand_loc[c],
2924 operand_mode[i], operand_mode[c],
2925 this_alternative[c], -1,
2926 this_alternative_earlyclobber[c]);
2927
2928 if (value != 0)
2929 losers--;
2930 }
2931 /* This can be fixed with reloads if the operand
2932 we are supposed to match can be fixed with reloads. */
2933 badop = 0;
2934 this_alternative[i] = this_alternative[c];
2935
2936 /* If we have to reload this operand and some previous
2937 operand also had to match the same thing as this
2938 operand, we don't know how to do that. So reject this
2939 alternative. */
2940 if (! win || force_reload)
2941 for (j = 0; j < i; j++)
2942 if (this_alternative_matches[j]
2943 == this_alternative_matches[i])
2944 badop = 1;
2945
2946 break;
2947
2948 case 'p':
2949 /* All necessary reloads for an address_operand
2950 were handled in find_reloads_address. */
2951 this_alternative[i] = (int) BASE_REG_CLASS;
2952 win = 1;
2953 break;
2954
2955 case 'm':
2956 if (force_reload)
2957 break;
2958 if (GET_CODE (operand) == MEM
2959 || (GET_CODE (operand) == REG
2960 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2961 && reg_renumber[REGNO (operand)] < 0))
2962 win = 1;
2963 if (CONSTANT_P (operand)
2964 /* force_const_mem does not accept HIGH. */
2965 && GET_CODE (operand) != HIGH)
2966 badop = 0;
2967 constmemok = 1;
2968 break;
2969
2970 case '<':
2971 if (GET_CODE (operand) == MEM
2972 && ! address_reloaded[i]
2973 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2974 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2975 win = 1;
2976 break;
2977
2978 case '>':
2979 if (GET_CODE (operand) == MEM
2980 && ! address_reloaded[i]
2981 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2982 || GET_CODE (XEXP (operand, 0)) == POST_INC))
2983 win = 1;
2984 break;
2985
2986 /* Memory operand whose address is not offsettable. */
2987 case 'V':
2988 if (force_reload)
2989 break;
2990 if (GET_CODE (operand) == MEM
2991 && ! (ind_levels ? offsettable_memref_p (operand)
2992 : offsettable_nonstrict_memref_p (operand))
2993 /* Certain mem addresses will become offsettable
2994 after they themselves are reloaded. This is important;
2995 we don't want our own handling of unoffsettables
2996 to override the handling of reg_equiv_address. */
2997 && !(GET_CODE (XEXP (operand, 0)) == REG
2998 && (ind_levels == 0
2999 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3000 win = 1;
3001 break;
3002
3003 /* Memory operand whose address is offsettable. */
3004 case 'o':
3005 if (force_reload)
3006 break;
3007 if ((GET_CODE (operand) == MEM
3008 /* If IND_LEVELS, find_reloads_address won't reload a
3009 pseudo that didn't get a hard reg, so we have to
3010 reject that case. */
3011 && ((ind_levels ? offsettable_memref_p (operand)
3012 : offsettable_nonstrict_memref_p (operand))
3013 /* A reloaded address is offsettable because it is now
3014 just a simple register indirect. */
3015 || address_reloaded[i]))
3016 || (GET_CODE (operand) == REG
3017 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3018 && reg_renumber[REGNO (operand)] < 0
3019 /* If reg_equiv_address is nonzero, we will be
3020 loading it into a register; hence it will be
3021 offsettable, but we cannot say that reg_equiv_mem
3022 is offsettable without checking. */
3023 && ((reg_equiv_mem[REGNO (operand)] != 0
3024 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3025 || (reg_equiv_address[REGNO (operand)] != 0))))
3026 win = 1;
3027 /* force_const_mem does not accept HIGH. */
3028 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3029 || GET_CODE (operand) == MEM)
3030 badop = 0;
3031 constmemok = 1;
3032 offmemok = 1;
3033 break;
3034
3035 case '&':
3036 /* Output operand that is stored before the need for the
3037 input operands (and their index registers) is over. */
3038 earlyclobber = 1, this_earlyclobber = 1;
3039 break;
3040
3041 case 'E':
3042 #ifndef REAL_ARITHMETIC
3043 /* Match any floating double constant, but only if
3044 we can examine the bits of it reliably. */
3045 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3046 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3047 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3048 break;
3049 #endif
3050 if (GET_CODE (operand) == CONST_DOUBLE)
3051 win = 1;
3052 break;
3053
3054 case 'F':
3055 if (GET_CODE (operand) == CONST_DOUBLE)
3056 win = 1;
3057 break;
3058
3059 case 'G':
3060 case 'H':
3061 if (GET_CODE (operand) == CONST_DOUBLE
3062 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3063 win = 1;
3064 break;
3065
3066 case 's':
3067 if (GET_CODE (operand) == CONST_INT
3068 || (GET_CODE (operand) == CONST_DOUBLE
3069 && GET_MODE (operand) == VOIDmode))
3070 break;
3071 case 'i':
3072 if (CONSTANT_P (operand)
3073 #ifdef LEGITIMATE_PIC_OPERAND_P
3074 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3075 #endif
3076 )
3077 win = 1;
3078 break;
3079
3080 case 'n':
3081 if (GET_CODE (operand) == CONST_INT
3082 || (GET_CODE (operand) == CONST_DOUBLE
3083 && GET_MODE (operand) == VOIDmode))
3084 win = 1;
3085 break;
3086
3087 case 'I':
3088 case 'J':
3089 case 'K':
3090 case 'L':
3091 case 'M':
3092 case 'N':
3093 case 'O':
3094 case 'P':
3095 if (GET_CODE (operand) == CONST_INT
3096 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3097 win = 1;
3098 break;
3099
3100 case 'X':
3101 win = 1;
3102 break;
3103
3104 case 'g':
3105 if (! force_reload
3106 /* A PLUS is never a valid operand, but reload can make
3107 it from a register when eliminating registers. */
3108 && GET_CODE (operand) != PLUS
3109 /* A SCRATCH is not a valid operand. */
3110 && GET_CODE (operand) != SCRATCH
3111 #ifdef LEGITIMATE_PIC_OPERAND_P
3112 && (! CONSTANT_P (operand)
3113 || ! flag_pic
3114 || LEGITIMATE_PIC_OPERAND_P (operand))
3115 #endif
3116 && (GENERAL_REGS == ALL_REGS
3117 || GET_CODE (operand) != REG
3118 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3119 && reg_renumber[REGNO (operand)] < 0)))
3120 win = 1;
3121 /* Drop through into 'r' case */
3122
3123 case 'r':
3124 this_alternative[i]
3125 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3126 goto reg;
3127
3128 #ifdef EXTRA_CONSTRAINT
3129 case 'Q':
3130 case 'R':
3131 case 'S':
3132 case 'T':
3133 case 'U':
3134 if (EXTRA_CONSTRAINT (operand, c))
3135 win = 1;
3136 break;
3137 #endif
3138
3139 default:
3140 this_alternative[i]
3141 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3142
3143 reg:
3144 if (GET_MODE (operand) == BLKmode)
3145 break;
3146 winreg = 1;
3147 if (GET_CODE (operand) == REG
3148 && reg_fits_class_p (operand, this_alternative[i],
3149 offset, GET_MODE (recog_data.operand[i])))
3150 win = 1;
3151 break;
3152 }
3153
3154 constraints[i] = p;
3155
3156 /* If this operand could be handled with a reg,
3157 and some reg is allowed, then this operand can be handled. */
3158 if (winreg && this_alternative[i] != (int) NO_REGS)
3159 badop = 0;
3160
3161 /* Record which operands fit this alternative. */
3162 this_alternative_earlyclobber[i] = earlyclobber;
3163 if (win && ! force_reload)
3164 this_alternative_win[i] = 1;
3165 else
3166 {
3167 int const_to_mem = 0;
3168
3169 this_alternative_offmemok[i] = offmemok;
3170 losers++;
3171 if (badop)
3172 bad = 1;
3173 /* Alternative loses if it has no regs for a reg operand. */
3174 if (GET_CODE (operand) == REG
3175 && this_alternative[i] == (int) NO_REGS
3176 && this_alternative_matches[i] < 0)
3177 bad = 1;
3178
3179 /* If this is a constant that is reloaded into the desired
3180 class by copying it to memory first, count that as another
3181 reload. This is consistent with other code and is
3182 required to avoid choosing another alternative when
3183 the constant is moved into memory by this function on
3184 an early reload pass. Note that the test here is
3185 precisely the same as in the code below that calls
3186 force_const_mem. */
3187 if (CONSTANT_P (operand)
3188 /* force_const_mem does not accept HIGH. */
3189 && GET_CODE (operand) != HIGH
3190 && ((PREFERRED_RELOAD_CLASS (operand,
3191 (enum reg_class) this_alternative[i])
3192 == NO_REGS)
3193 || no_input_reloads)
3194 && operand_mode[i] != VOIDmode)
3195 {
3196 const_to_mem = 1;
3197 if (this_alternative[i] != (int) NO_REGS)
3198 losers++;
3199 }
3200
3201 /* If we can't reload this value at all, reject this
3202 alternative. Note that we could also lose due to
3203 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3204 here. */
3205
3206 if (! CONSTANT_P (operand)
3207 && (enum reg_class) this_alternative[i] != NO_REGS
3208 && (PREFERRED_RELOAD_CLASS (operand,
3209 (enum reg_class) this_alternative[i])
3210 == NO_REGS))
3211 bad = 1;
3212
3213 /* Alternative loses if it requires a type of reload not
3214 permitted for this insn. We can always reload SCRATCH
3215 and objects with a REG_UNUSED note. */
3216 else if (GET_CODE (operand) != SCRATCH
3217 && modified[i] != RELOAD_READ && no_output_reloads
3218 && ! find_reg_note (insn, REG_UNUSED, operand))
3219 bad = 1;
3220 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3221 && ! const_to_mem)
3222 bad = 1;
3223
3224
3225 /* We prefer to reload pseudos over reloading other things,
3226 since such reloads may be able to be eliminated later.
3227 If we are reloading a SCRATCH, we won't be generating any
3228 insns, just using a register, so it is also preferred.
3229 So bump REJECT in other cases. Don't do this in the
3230 case where we are forcing a constant into memory and
3231 it will then win since we don't want to have a different
3232 alternative match then. */
3233 if (! (GET_CODE (operand) == REG
3234 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3235 && GET_CODE (operand) != SCRATCH
3236 && ! (const_to_mem && constmemok))
3237 reject += 2;
3238
3239 /* Input reloads can be inherited more often than output
3240 reloads can be removed, so penalize output reloads. */
3241 if (operand_type[i] != RELOAD_FOR_INPUT
3242 && GET_CODE (operand) != SCRATCH)
3243 reject++;
3244 }
3245
3246 /* If this operand is a pseudo register that didn't get a hard
3247 reg and this alternative accepts some register, see if the
3248 class that we want is a subset of the preferred class for this
3249 register. If not, but it intersects that class, use the
3250 preferred class instead. If it does not intersect the preferred
3251 class, show that usage of this alternative should be discouraged;
3252 it will be discouraged more still if the register is `preferred
3253 or nothing'. We do this because it increases the chance of
3254 reusing our spill register in a later insn and avoiding a pair
3255 of memory stores and loads.
3256
3257 Don't bother with this if this alternative will accept this
3258 operand.
3259
3260 Don't do this for a multiword operand, since it is only a
3261 small win and has the risk of requiring more spill registers,
3262 which could cause a large loss.
3263
3264 Don't do this if the preferred class has only one register
3265 because we might otherwise exhaust the class. */
3266
3267
3268 if (! win && this_alternative[i] != (int) NO_REGS
3269 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3270 && reg_class_size[(int) preferred_class[i]] > 1)
3271 {
3272 if (! reg_class_subset_p (this_alternative[i],
3273 preferred_class[i]))
3274 {
3275 /* Since we don't have a way of forming the intersection,
3276 we just do something special if the preferred class
3277 is a subset of the class we have; that's the most
3278 common case anyway. */
3279 if (reg_class_subset_p (preferred_class[i],
3280 this_alternative[i]))
3281 this_alternative[i] = (int) preferred_class[i];
3282 else
3283 reject += (2 + 2 * pref_or_nothing[i]);
3284 }
3285 }
3286 }
3287
3288 /* Now see if any output operands that are marked "earlyclobber"
3289 in this alternative conflict with any input operands
3290 or any memory addresses. */
3291
3292 for (i = 0; i < noperands; i++)
3293 if (this_alternative_earlyclobber[i]
3294 && this_alternative_win[i])
3295 {
3296 struct decomposition early_data;
3297
3298 early_data = decompose (recog_data.operand[i]);
3299
3300 if (modified[i] == RELOAD_READ)
3301 abort ();
3302
3303 if (this_alternative[i] == NO_REGS)
3304 {
3305 this_alternative_earlyclobber[i] = 0;
3306 if (this_insn_is_asm)
3307 error_for_asm (this_insn,
3308 "`&' constraint used with no register class");
3309 else
3310 abort ();
3311 }
3312
3313 for (j = 0; j < noperands; j++)
3314 /* Is this an input operand or a memory ref? */
3315 if ((GET_CODE (recog_data.operand[j]) == MEM
3316 || modified[j] != RELOAD_WRITE)
3317 && j != i
3318 /* Ignore things like match_operator operands. */
3319 && *recog_data.constraints[j] != 0
3320 /* Don't count an input operand that is constrained to match
3321 the early clobber operand. */
3322 && ! (this_alternative_matches[j] == i
3323 && rtx_equal_p (recog_data.operand[i],
3324 recog_data.operand[j]))
3325 /* Is it altered by storing the earlyclobber operand? */
3326 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3327 early_data))
3328 {
3329 /* If the output is in a single-reg class,
3330 it's costly to reload it, so reload the input instead. */
3331 if (reg_class_size[this_alternative[i]] == 1
3332 && (GET_CODE (recog_data.operand[j]) == REG
3333 || GET_CODE (recog_data.operand[j]) == SUBREG))
3334 {
3335 losers++;
3336 this_alternative_win[j] = 0;
3337 }
3338 else
3339 break;
3340 }
3341 /* If an earlyclobber operand conflicts with something,
3342 it must be reloaded, so request this and count the cost. */
3343 if (j != noperands)
3344 {
3345 losers++;
3346 this_alternative_win[i] = 0;
3347 for (j = 0; j < noperands; j++)
3348 if (this_alternative_matches[j] == i
3349 && this_alternative_win[j])
3350 {
3351 this_alternative_win[j] = 0;
3352 losers++;
3353 }
3354 }
3355 }
3356
3357 /* If one alternative accepts all the operands, no reload required,
3358 choose that alternative; don't consider the remaining ones. */
3359 if (losers == 0)
3360 {
3361 /* Unswap these so that they are never swapped at `finish'. */
3362 if (commutative >= 0)
3363 {
3364 recog_data.operand[commutative] = substed_operand[commutative];
3365 recog_data.operand[commutative + 1]
3366 = substed_operand[commutative + 1];
3367 }
3368 for (i = 0; i < noperands; i++)
3369 {
3370 goal_alternative_win[i] = 1;
3371 goal_alternative[i] = this_alternative[i];
3372 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3373 goal_alternative_matches[i] = this_alternative_matches[i];
3374 goal_alternative_earlyclobber[i]
3375 = this_alternative_earlyclobber[i];
3376 }
3377 goal_alternative_number = this_alternative_number;
3378 goal_alternative_swapped = swapped;
3379 goal_earlyclobber = this_earlyclobber;
3380 goto finish;
3381 }
3382
3383 /* REJECT, set by the ! and ? constraint characters and when a register
3384 would be reloaded into a non-preferred class, discourages the use of
3385 this alternative for a reload goal. REJECT is incremented by six
3386 for each ? and two for each non-preferred class. */
3387 losers = losers * 6 + reject;
3388
3389 /* If this alternative can be made to work by reloading,
3390 and it needs less reloading than the others checked so far,
3391 record it as the chosen goal for reloading. */
3392 if (! bad && best > losers)
3393 {
3394 for (i = 0; i < noperands; i++)
3395 {
3396 goal_alternative[i] = this_alternative[i];
3397 goal_alternative_win[i] = this_alternative_win[i];
3398 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3399 goal_alternative_matches[i] = this_alternative_matches[i];
3400 goal_alternative_earlyclobber[i]
3401 = this_alternative_earlyclobber[i];
3402 }
3403 goal_alternative_swapped = swapped;
3404 best = losers;
3405 goal_alternative_number = this_alternative_number;
3406 goal_earlyclobber = this_earlyclobber;
3407 }
3408 }
3409
3410 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3411 then we need to try each alternative twice,
3412 the second time matching those two operands
3413 as if we had exchanged them.
3414 To do this, really exchange them in operands.
3415
3416 If we have just tried the alternatives the second time,
3417 return operands to normal and drop through. */
3418
3419 if (commutative >= 0)
3420 {
3421 swapped = !swapped;
3422 if (swapped)
3423 {
3424 register enum reg_class tclass;
3425 register int t;
3426
3427 recog_data.operand[commutative] = substed_operand[commutative + 1];
3428 recog_data.operand[commutative + 1] = substed_operand[commutative];
3429
3430 tclass = preferred_class[commutative];
3431 preferred_class[commutative] = preferred_class[commutative + 1];
3432 preferred_class[commutative + 1] = tclass;
3433
3434 t = pref_or_nothing[commutative];
3435 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3436 pref_or_nothing[commutative + 1] = t;
3437
3438 bcopy ((char *) recog_data.constraints, (char *) constraints,
3439 noperands * sizeof (char *));
3440 goto try_swapped;
3441 }
3442 else
3443 {
3444 recog_data.operand[commutative] = substed_operand[commutative];
3445 recog_data.operand[commutative + 1]
3446 = substed_operand[commutative + 1];
3447 }
3448 }
3449
3450 /* The operands don't meet the constraints.
3451 goal_alternative describes the alternative
3452 that we could reach by reloading the fewest operands.
3453 Reload so as to fit it. */
3454
3455 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3456 {
3457 /* No alternative works with reloads?? */
3458 if (insn_code_number >= 0)
3459 fatal_insn ("Unable to generate reloads for:", insn);
3460 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3461 /* Avoid further trouble with this insn. */
3462 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3463 n_reloads = 0;
3464 return 0;
3465 }
3466
3467 /* Jump to `finish' from above if all operands are valid already.
3468 In that case, goal_alternative_win is all 1. */
3469 finish:
3470
3471 /* Right now, for any pair of operands I and J that are required to match,
3472 with I < J,
3473 goal_alternative_matches[J] is I.
3474 Set up goal_alternative_matched as the inverse function:
3475 goal_alternative_matched[I] = J. */
3476
3477 for (i = 0; i < noperands; i++)
3478 goal_alternative_matched[i] = -1;
3479
3480 for (i = 0; i < noperands; i++)
3481 if (! goal_alternative_win[i]
3482 && goal_alternative_matches[i] >= 0)
3483 goal_alternative_matched[goal_alternative_matches[i]] = i;
3484
3485 /* If the best alternative is with operands 1 and 2 swapped,
3486 consider them swapped before reporting the reloads. Update the
3487 operand numbers of any reloads already pushed. */
3488
3489 if (goal_alternative_swapped)
3490 {
3491 register rtx tem;
3492
3493 tem = substed_operand[commutative];
3494 substed_operand[commutative] = substed_operand[commutative + 1];
3495 substed_operand[commutative + 1] = tem;
3496 tem = recog_data.operand[commutative];
3497 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3498 recog_data.operand[commutative + 1] = tem;
3499 tem = *recog_data.operand_loc[commutative];
3500 *recog_data.operand_loc[commutative]
3501 = *recog_data.operand_loc[commutative + 1];
3502 *recog_data.operand_loc[commutative+1] = tem;
3503
3504 for (i = 0; i < n_reloads; i++)
3505 {
3506 if (rld[i].opnum == commutative)
3507 rld[i].opnum = commutative + 1;
3508 else if (rld[i].opnum == commutative + 1)
3509 rld[i].opnum = commutative;
3510 }
3511 }
3512
3513 for (i = 0; i < noperands; i++)
3514 {
3515 operand_reloadnum[i] = -1;
3516
3517 /* If this is an earlyclobber operand, we need to widen the scope.
3518 The reload must remain valid from the start of the insn being
3519 reloaded until after the operand is stored into its destination.
3520 We approximate this with RELOAD_OTHER even though we know that we
3521 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3522
3523 One special case that is worth checking is when we have an
3524 output that is earlyclobber but isn't used past the insn (typically
3525 a SCRATCH). In this case, we only need have the reload live
3526 through the insn itself, but not for any of our input or output
3527 reloads.
3528 But we must not accidentally narrow the scope of an existing
3529 RELOAD_OTHER reload - leave these alone.
3530
3531 In any case, anything needed to address this operand can remain
3532 however they were previously categorized. */
3533
3534 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3535 operand_type[i]
3536 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3537 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3538 }
3539
3540 /* Any constants that aren't allowed and can't be reloaded
3541 into registers are here changed into memory references. */
3542 for (i = 0; i < noperands; i++)
3543 if (! goal_alternative_win[i]
3544 && CONSTANT_P (recog_data.operand[i])
3545 /* force_const_mem does not accept HIGH. */
3546 && GET_CODE (recog_data.operand[i]) != HIGH
3547 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3548 (enum reg_class) goal_alternative[i])
3549 == NO_REGS)
3550 || no_input_reloads)
3551 && operand_mode[i] != VOIDmode)
3552 {
3553 substed_operand[i] = recog_data.operand[i]
3554 = find_reloads_toplev (force_const_mem (operand_mode[i],
3555 recog_data.operand[i]),
3556 i, address_type[i], ind_levels, 0, insn);
3557 if (alternative_allows_memconst (recog_data.constraints[i],
3558 goal_alternative_number))
3559 goal_alternative_win[i] = 1;
3560 }
3561
3562 /* Record the values of the earlyclobber operands for the caller. */
3563 if (goal_earlyclobber)
3564 for (i = 0; i < noperands; i++)
3565 if (goal_alternative_earlyclobber[i])
3566 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3567
3568 /* Now record reloads for all the operands that need them. */
3569 for (i = 0; i < noperands; i++)
3570 if (! goal_alternative_win[i])
3571 {
3572 /* Operands that match previous ones have already been handled. */
3573 if (goal_alternative_matches[i] >= 0)
3574 ;
3575 /* Handle an operand with a nonoffsettable address
3576 appearing where an offsettable address will do
3577 by reloading the address into a base register.
3578
3579 ??? We can also do this when the operand is a register and
3580 reg_equiv_mem is not offsettable, but this is a bit tricky,
3581 so we don't bother with it. It may not be worth doing. */
3582 else if (goal_alternative_matched[i] == -1
3583 && goal_alternative_offmemok[i]
3584 && GET_CODE (recog_data.operand[i]) == MEM)
3585 {
3586 operand_reloadnum[i]
3587 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3588 &XEXP (recog_data.operand[i], 0), NULL_PTR,
3589 BASE_REG_CLASS,
3590 GET_MODE (XEXP (recog_data.operand[i], 0)),
3591 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3592 rld[operand_reloadnum[i]].inc
3593 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3594
3595 /* If this operand is an output, we will have made any
3596 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3597 now we are treating part of the operand as an input, so
3598 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3599
3600 if (modified[i] == RELOAD_WRITE)
3601 {
3602 for (j = 0; j < n_reloads; j++)
3603 {
3604 if (rld[j].opnum == i)
3605 {
3606 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3607 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3608 else if (rld[j].when_needed
3609 == RELOAD_FOR_OUTADDR_ADDRESS)
3610 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3611 }
3612 }
3613 }
3614 }
3615 else if (goal_alternative_matched[i] == -1)
3616 {
3617 operand_reloadnum[i]
3618 = push_reload ((modified[i] != RELOAD_WRITE
3619 ? recog_data.operand[i] : 0),
3620 (modified[i] != RELOAD_READ
3621 ? recog_data.operand[i] : 0),
3622 (modified[i] != RELOAD_WRITE
3623 ? recog_data.operand_loc[i] : 0),
3624 (modified[i] != RELOAD_READ
3625 ? recog_data.operand_loc[i] : 0),
3626 (enum reg_class) goal_alternative[i],
3627 (modified[i] == RELOAD_WRITE
3628 ? VOIDmode : operand_mode[i]),
3629 (modified[i] == RELOAD_READ
3630 ? VOIDmode : operand_mode[i]),
3631 (insn_code_number < 0 ? 0
3632 : insn_data[insn_code_number].operand[i].strict_low),
3633 0, i, operand_type[i]);
3634 }
3635 /* In a matching pair of operands, one must be input only
3636 and the other must be output only.
3637 Pass the input operand as IN and the other as OUT. */
3638 else if (modified[i] == RELOAD_READ
3639 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3640 {
3641 operand_reloadnum[i]
3642 = push_reload (recog_data.operand[i],
3643 recog_data.operand[goal_alternative_matched[i]],
3644 recog_data.operand_loc[i],
3645 recog_data.operand_loc[goal_alternative_matched[i]],
3646 (enum reg_class) goal_alternative[i],
3647 operand_mode[i],
3648 operand_mode[goal_alternative_matched[i]],
3649 0, 0, i, RELOAD_OTHER);
3650 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3651 }
3652 else if (modified[i] == RELOAD_WRITE
3653 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3654 {
3655 operand_reloadnum[goal_alternative_matched[i]]
3656 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3657 recog_data.operand[i],
3658 recog_data.operand_loc[goal_alternative_matched[i]],
3659 recog_data.operand_loc[i],
3660 (enum reg_class) goal_alternative[i],
3661 operand_mode[goal_alternative_matched[i]],
3662 operand_mode[i],
3663 0, 0, i, RELOAD_OTHER);
3664 operand_reloadnum[i] = output_reloadnum;
3665 }
3666 else if (insn_code_number >= 0)
3667 abort ();
3668 else
3669 {
3670 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3671 /* Avoid further trouble with this insn. */
3672 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3673 n_reloads = 0;
3674 return 0;
3675 }
3676 }
3677 else if (goal_alternative_matched[i] < 0
3678 && goal_alternative_matches[i] < 0
3679 && optimize)
3680 {
3681 /* For each non-matching operand that's a MEM or a pseudo-register
3682 that didn't get a hard register, make an optional reload.
3683 This may get done even if the insn needs no reloads otherwise. */
3684
3685 rtx operand = recog_data.operand[i];
3686
3687 while (GET_CODE (operand) == SUBREG)
3688 operand = XEXP (operand, 0);
3689 if ((GET_CODE (operand) == MEM
3690 || (GET_CODE (operand) == REG
3691 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3692 /* If this is only for an output, the optional reload would not
3693 actually cause us to use a register now, just note that
3694 something is stored here. */
3695 && ((enum reg_class) goal_alternative[i] != NO_REGS
3696 || modified[i] == RELOAD_WRITE)
3697 && ! no_input_reloads
3698 /* An optional output reload might allow to delete INSN later.
3699 We mustn't make in-out reloads on insns that are not permitted
3700 output reloads.
3701 If this is an asm, we can't delete it; we must not even call
3702 push_reload for an optional output reload in this case,
3703 because we can't be sure that the constraint allows a register,
3704 and push_reload verifies the constraints for asms. */
3705 && (modified[i] == RELOAD_READ
3706 || (! no_output_reloads && ! this_insn_is_asm)))
3707 operand_reloadnum[i]
3708 = push_reload ((modified[i] != RELOAD_WRITE
3709 ? recog_data.operand[i] : 0),
3710 (modified[i] != RELOAD_READ
3711 ? recog_data.operand[i] : 0),
3712 (modified[i] != RELOAD_WRITE
3713 ? recog_data.operand_loc[i] : 0),
3714 (modified[i] != RELOAD_READ
3715 ? recog_data.operand_loc[i] : 0),
3716 (enum reg_class) goal_alternative[i],
3717 (modified[i] == RELOAD_WRITE
3718 ? VOIDmode : operand_mode[i]),
3719 (modified[i] == RELOAD_READ
3720 ? VOIDmode : operand_mode[i]),
3721 (insn_code_number < 0 ? 0
3722 : insn_data[insn_code_number].operand[i].strict_low),
3723 1, i, operand_type[i]);
3724 /* If a memory reference remains (either as a MEM or a pseudo that
3725 did not get a hard register), yet we can't make an optional
3726 reload, check if this is actually a pseudo register reference;
3727 we then need to emit a USE and/or a CLOBBER so that reload
3728 inheritance will do the right thing. */
3729 else if (replace
3730 && (GET_CODE (operand) == MEM
3731 || (GET_CODE (operand) == REG
3732 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3733 && reg_renumber [REGNO (operand)] < 0)))
3734 {
3735 operand = *recog_data.operand_loc[i];
3736
3737 while (GET_CODE (operand) == SUBREG)
3738 operand = XEXP (operand, 0);
3739 if (GET_CODE (operand) == REG)
3740 {
3741 if (modified[i] != RELOAD_WRITE)
3742 emit_insn_before (gen_rtx_USE (VOIDmode, operand), insn);
3743 if (modified[i] != RELOAD_READ)
3744 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3745 }
3746 }
3747 }
3748 else if (goal_alternative_matches[i] >= 0
3749 && goal_alternative_win[goal_alternative_matches[i]]
3750 && modified[i] == RELOAD_READ
3751 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3752 && ! no_input_reloads && ! no_output_reloads
3753 && optimize)
3754 {
3755 /* Similarly, make an optional reload for a pair of matching
3756 objects that are in MEM or a pseudo that didn't get a hard reg. */
3757
3758 rtx operand = recog_data.operand[i];
3759
3760 while (GET_CODE (operand) == SUBREG)
3761 operand = XEXP (operand, 0);
3762 if ((GET_CODE (operand) == MEM
3763 || (GET_CODE (operand) == REG
3764 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3765 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3766 != NO_REGS))
3767 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3768 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3769 recog_data.operand[i],
3770 recog_data.operand_loc[goal_alternative_matches[i]],
3771 recog_data.operand_loc[i],
3772 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3773 operand_mode[goal_alternative_matches[i]],
3774 operand_mode[i],
3775 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3776 }
3777
3778 /* Perform whatever substitutions on the operands we are supposed
3779 to make due to commutativity or replacement of registers
3780 with equivalent constants or memory slots. */
3781
3782 for (i = 0; i < noperands; i++)
3783 {
3784 /* We only do this on the last pass through reload, because it is
3785 possible for some data (like reg_equiv_address) to be changed during
3786 later passes. Moreover, we loose the opportunity to get a useful
3787 reload_{in,out}_reg when we do these replacements. */
3788
3789 if (replace)
3790 {
3791 rtx substitution = substed_operand[i];
3792
3793 *recog_data.operand_loc[i] = substitution;
3794
3795 /* If we're replacing an operand with a LABEL_REF, we need
3796 to make sure that there's a REG_LABEL note attached to
3797 this instruction. */
3798 if (GET_CODE (insn) != JUMP_INSN
3799 && GET_CODE (substitution) == LABEL_REF
3800 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3801 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL,
3802 XEXP (substitution, 0),
3803 REG_NOTES (insn));
3804 }
3805 else
3806 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3807 }
3808
3809 /* If this insn pattern contains any MATCH_DUP's, make sure that
3810 they will be substituted if the operands they match are substituted.
3811 Also do now any substitutions we already did on the operands.
3812
3813 Don't do this if we aren't making replacements because we might be
3814 propagating things allocated by frame pointer elimination into places
3815 it doesn't expect. */
3816
3817 if (insn_code_number >= 0 && replace)
3818 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3819 {
3820 int opno = recog_data.dup_num[i];
3821 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3822 if (operand_reloadnum[opno] >= 0)
3823 push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3824 insn_data[insn_code_number].operand[opno].mode);
3825 }
3826
3827 #if 0
3828 /* This loses because reloading of prior insns can invalidate the equivalence
3829 (or at least find_equiv_reg isn't smart enough to find it any more),
3830 causing this insn to need more reload regs than it needed before.
3831 It may be too late to make the reload regs available.
3832 Now this optimization is done safely in choose_reload_regs. */
3833
3834 /* For each reload of a reg into some other class of reg,
3835 search for an existing equivalent reg (same value now) in the right class.
3836 We can use it as long as we don't need to change its contents. */
3837 for (i = 0; i < n_reloads; i++)
3838 if (rld[i].reg_rtx == 0
3839 && rld[i].in != 0
3840 && GET_CODE (rld[i].in) == REG
3841 && rld[i].out == 0)
3842 {
3843 rld[i].reg_rtx
3844 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3845 static_reload_reg_p, 0, rld[i].inmode);
3846 /* Prevent generation of insn to load the value
3847 because the one we found already has the value. */
3848 if (rld[i].reg_rtx)
3849 rld[i].in = rld[i].reg_rtx;
3850 }
3851 #endif
3852
3853 /* Perhaps an output reload can be combined with another
3854 to reduce needs by one. */
3855 if (!goal_earlyclobber)
3856 combine_reloads ();
3857
3858 /* If we have a pair of reloads for parts of an address, they are reloading
3859 the same object, the operands themselves were not reloaded, and they
3860 are for two operands that are supposed to match, merge the reloads and
3861 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3862
3863 for (i = 0; i < n_reloads; i++)
3864 {
3865 int k;
3866
3867 for (j = i + 1; j < n_reloads; j++)
3868 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3869 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3870 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3871 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3872 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3873 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3874 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3875 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3876 && rtx_equal_p (rld[i].in, rld[j].in)
3877 && (operand_reloadnum[rld[i].opnum] < 0
3878 || rld[operand_reloadnum[rld[i].opnum]].optional)
3879 && (operand_reloadnum[rld[j].opnum] < 0
3880 || rld[operand_reloadnum[rld[j].opnum]].optional)
3881 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3882 || (goal_alternative_matches[rld[j].opnum]
3883 == rld[i].opnum)))
3884 {
3885 for (k = 0; k < n_replacements; k++)
3886 if (replacements[k].what == j)
3887 replacements[k].what = i;
3888
3889 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3890 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3891 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3892 else
3893 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3894 rld[j].in = 0;
3895 }
3896 }
3897
3898 /* Scan all the reloads and update their type.
3899 If a reload is for the address of an operand and we didn't reload
3900 that operand, change the type. Similarly, change the operand number
3901 of a reload when two operands match. If a reload is optional, treat it
3902 as though the operand isn't reloaded.
3903
3904 ??? This latter case is somewhat odd because if we do the optional
3905 reload, it means the object is hanging around. Thus we need only
3906 do the address reload if the optional reload was NOT done.
3907
3908 Change secondary reloads to be the address type of their operand, not
3909 the normal type.
3910
3911 If an operand's reload is now RELOAD_OTHER, change any
3912 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3913 RELOAD_FOR_OTHER_ADDRESS. */
3914
3915 for (i = 0; i < n_reloads; i++)
3916 {
3917 if (rld[i].secondary_p
3918 && rld[i].when_needed == operand_type[rld[i].opnum])
3919 rld[i].when_needed = address_type[rld[i].opnum];
3920
3921 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3922 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3923 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3924 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3925 && (operand_reloadnum[rld[i].opnum] < 0
3926 || rld[operand_reloadnum[rld[i].opnum]].optional))
3927 {
3928 /* If we have a secondary reload to go along with this reload,
3929 change its type to RELOAD_FOR_OPADDR_ADDR. */
3930
3931 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3932 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
3933 && rld[i].secondary_in_reload != -1)
3934 {
3935 int secondary_in_reload = rld[i].secondary_in_reload;
3936
3937 rld[secondary_in_reload].when_needed
3938 = RELOAD_FOR_OPADDR_ADDR;
3939
3940 /* If there's a tertiary reload we have to change it also. */
3941 if (secondary_in_reload > 0
3942 && rld[secondary_in_reload].secondary_in_reload != -1)
3943 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
3944 = RELOAD_FOR_OPADDR_ADDR;
3945 }
3946
3947 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3948 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3949 && rld[i].secondary_out_reload != -1)
3950 {
3951 int secondary_out_reload = rld[i].secondary_out_reload;
3952
3953 rld[secondary_out_reload].when_needed
3954 = RELOAD_FOR_OPADDR_ADDR;
3955
3956 /* If there's a tertiary reload we have to change it also. */
3957 if (secondary_out_reload
3958 && rld[secondary_out_reload].secondary_out_reload != -1)
3959 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
3960 = RELOAD_FOR_OPADDR_ADDR;
3961 }
3962
3963 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3964 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3965 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3966 else
3967 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3968 }
3969
3970 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3971 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
3972 && operand_reloadnum[rld[i].opnum] >= 0
3973 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
3974 == RELOAD_OTHER))
3975 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
3976
3977 if (goal_alternative_matches[rld[i].opnum] >= 0)
3978 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
3979 }
3980
3981 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
3982 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
3983 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
3984
3985 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
3986 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
3987 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
3988 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
3989 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
3990 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
3991 This is complicated by the fact that a single operand can have more
3992 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
3993 choose_reload_regs without affecting code quality, and cases that
3994 actually fail are extremely rare, so it turns out to be better to fix
3995 the problem here by not generating cases that choose_reload_regs will
3996 fail for. */
3997 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
3998 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
3999 a single operand.
4000 We can reduce the register pressure by exploiting that a
4001 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4002 does not conflict with any of them, if it is only used for the first of
4003 the RELOAD_FOR_X_ADDRESS reloads. */
4004 {
4005 int first_op_addr_num = -2;
4006 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4007 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4008 int need_change= 0;
4009 /* We use last_op_addr_reload and the contents of the above arrays
4010 first as flags - -2 means no instance encountered, -1 means exactly
4011 one instance encountered.
4012 If more than one instance has been encountered, we store the reload
4013 number of the first reload of the kind in question; reload numbers
4014 are known to be non-negative. */
4015 for (i = 0; i < noperands; i++)
4016 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4017 for (i = n_reloads - 1; i >= 0; i--)
4018 {
4019 switch (rld[i].when_needed)
4020 {
4021 case RELOAD_FOR_OPERAND_ADDRESS:
4022 if (++first_op_addr_num >= 0)
4023 {
4024 first_op_addr_num = i;
4025 need_change = 1;
4026 }
4027 break;
4028 case RELOAD_FOR_INPUT_ADDRESS:
4029 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4030 {
4031 first_inpaddr_num[rld[i].opnum] = i;
4032 need_change = 1;
4033 }
4034 break;
4035 case RELOAD_FOR_OUTPUT_ADDRESS:
4036 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4037 {
4038 first_outpaddr_num[rld[i].opnum] = i;
4039 need_change = 1;
4040 }
4041 break;
4042 default:
4043 break;
4044 }
4045 }
4046
4047 if (need_change)
4048 {
4049 for (i = 0; i < n_reloads; i++)
4050 {
4051 int first_num, type;
4052
4053 switch (rld[i].when_needed)
4054 {
4055 case RELOAD_FOR_OPADDR_ADDR:
4056 first_num = first_op_addr_num;
4057 type = RELOAD_FOR_OPERAND_ADDRESS;
4058 break;
4059 case RELOAD_FOR_INPADDR_ADDRESS:
4060 first_num = first_inpaddr_num[rld[i].opnum];
4061 type = RELOAD_FOR_INPUT_ADDRESS;
4062 break;
4063 case RELOAD_FOR_OUTADDR_ADDRESS:
4064 first_num = first_outpaddr_num[rld[i].opnum];
4065 type = RELOAD_FOR_OUTPUT_ADDRESS;
4066 break;
4067 default:
4068 continue;
4069 }
4070 if (first_num < 0)
4071 continue;
4072 else if (i > first_num)
4073 rld[i].when_needed = type;
4074 else
4075 {
4076 /* Check if the only TYPE reload that uses reload I is
4077 reload FIRST_NUM. */
4078 for (j = n_reloads - 1; j > first_num; j--)
4079 {
4080 if (rld[j].when_needed == type
4081 && (rld[i].secondary_p
4082 ? rld[j].secondary_in_reload == i
4083 : reg_mentioned_p (rld[i].in, rld[j].in)))
4084 {
4085 rld[i].when_needed = type;
4086 break;
4087 }
4088 }
4089 }
4090 }
4091 }
4092 }
4093
4094 /* See if we have any reloads that are now allowed to be merged
4095 because we've changed when the reload is needed to
4096 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4097 check for the most common cases. */
4098
4099 for (i = 0; i < n_reloads; i++)
4100 if (rld[i].in != 0 && rld[i].out == 0
4101 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4102 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4103 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4104 for (j = 0; j < n_reloads; j++)
4105 if (i != j && rld[j].in != 0 && rld[j].out == 0
4106 && rld[j].when_needed == rld[i].when_needed
4107 && MATCHES (rld[i].in, rld[j].in)
4108 && rld[i].class == rld[j].class
4109 && !rld[i].nocombine && !rld[j].nocombine
4110 && rld[i].reg_rtx == rld[j].reg_rtx)
4111 {
4112 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4113 transfer_replacements (i, j);
4114 rld[j].in = 0;
4115 }
4116
4117 /* Set which reloads must use registers not used in any group. Start
4118 with those that conflict with a group and then include ones that
4119 conflict with ones that are already known to conflict with a group. */
4120
4121 changed = 0;
4122 for (i = 0; i < n_reloads; i++)
4123 {
4124 enum machine_mode mode = rld[i].inmode;
4125 enum reg_class class = rld[i].class;
4126 int size;
4127
4128 if (GET_MODE_SIZE (rld[i].outmode) > GET_MODE_SIZE (mode))
4129 mode = rld[i].outmode;
4130 size = CLASS_MAX_NREGS (class, mode);
4131
4132 if (size == 1)
4133 for (j = 0; j < n_reloads; j++)
4134 if ((CLASS_MAX_NREGS (rld[j].class,
4135 (GET_MODE_SIZE (rld[j].outmode)
4136 > GET_MODE_SIZE (rld[j].inmode))
4137 ? rld[j].outmode : rld[j].inmode)
4138 > 1)
4139 && !rld[j].optional
4140 && (rld[j].in != 0 || rld[j].out != 0
4141 || rld[j].secondary_p)
4142 && reloads_conflict (i, j)
4143 && reg_classes_intersect_p (class, rld[j].class))
4144 {
4145 rld[i].nongroup = 1;
4146 changed = 1;
4147 break;
4148 }
4149 }
4150
4151 while (changed)
4152 {
4153 changed = 0;
4154
4155 for (i = 0; i < n_reloads; i++)
4156 {
4157 enum machine_mode mode = rld[i].inmode;
4158 enum reg_class class = rld[i].class;
4159 int size;
4160
4161 if (GET_MODE_SIZE (rld[i].outmode) > GET_MODE_SIZE (mode))
4162 mode = rld[i].outmode;
4163 size = CLASS_MAX_NREGS (class, mode);
4164
4165 if (! rld[i].nongroup && size == 1)
4166 for (j = 0; j < n_reloads; j++)
4167 if (rld[j].nongroup
4168 && reloads_conflict (i, j)
4169 && reg_classes_intersect_p (class, rld[j].class))
4170 {
4171 rld[i].nongroup = 1;
4172 changed = 1;
4173 break;
4174 }
4175 }
4176 }
4177
4178 #else /* no REGISTER_CONSTRAINTS */
4179 int noperands;
4180 int insn_code_number;
4181 int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
4182 register int i;
4183 rtx body = PATTERN (insn);
4184 int retval = 0;
4185
4186 n_reloads = 0;
4187 n_replacements = 0;
4188 n_earlyclobbers = 0;
4189 replace_reloads = replace;
4190 this_insn = insn;
4191
4192 extract_insn (insn);
4193
4194 noperands = reload_n_operands = recog_data.n_operands;
4195
4196 /* Return if the insn needs no reload processing. */
4197 if (noperands == 0)
4198 return;
4199
4200 for (i = 0; i < noperands; i++)
4201 {
4202 register RTX_CODE code = GET_CODE (recog_data.operand[i]);
4203 int is_set_dest = GET_CODE (body) == SET && (i == 0);
4204
4205 if (insn_code_number >= 0)
4206 if (insn_data[insn_code_number].operand[i].address_p)
4207 find_reloads_address (VOIDmode, NULL_PTR,
4208 recog_data.operand[i],
4209 recog_data.operand_loc[i],
4210 i, RELOAD_FOR_INPUT, ind_levels, insn);
4211
4212 /* In these cases, we can't tell if the operand is an input
4213 or an output, so be conservative. In practice it won't be
4214 problem. */
4215
4216 if (code == MEM)
4217 find_reloads_address (GET_MODE (recog_data.operand[i]),
4218 recog_data.operand_loc[i],
4219 XEXP (recog_data.operand[i], 0),
4220 &XEXP (recog_data.operand[i], 0),
4221 i, RELOAD_OTHER, ind_levels, insn);
4222 if (code == SUBREG)
4223 recog_data.operand[i] = *recog_data.operand_loc[i]
4224 = find_reloads_toplev (recog_data.operand[i], i, RELOAD_OTHER,
4225 ind_levels, is_set_dest);
4226 if (code == REG)
4227 {
4228 register int regno = REGNO (recog_data.operand[i]);
4229 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4230 recog_data.operand[i] = *recog_data.operand_loc[i]
4231 = reg_equiv_constant[regno];
4232 #if 0 /* This might screw code in reload1.c to delete prior output-reload
4233 that feeds this insn. */
4234 if (reg_equiv_mem[regno] != 0)
4235 recog_data.operand[i] = *recog_data.operand_loc[i]
4236 = reg_equiv_mem[regno];
4237 #endif
4238 }
4239 }
4240
4241 /* Perhaps an output reload can be combined with another
4242 to reduce needs by one. */
4243 if (!goal_earlyclobber)
4244 combine_reloads ();
4245 #endif /* no REGISTER_CONSTRAINTS */
4246 return retval;
4247 }
4248
4249 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4250 accepts a memory operand with constant address. */
4251
4252 static int
4253 alternative_allows_memconst (constraint, altnum)
4254 const char *constraint;
4255 int altnum;
4256 {
4257 register int c;
4258 /* Skip alternatives before the one requested. */
4259 while (altnum > 0)
4260 {
4261 while (*constraint++ != ',');
4262 altnum--;
4263 }
4264 /* Scan the requested alternative for 'm' or 'o'.
4265 If one of them is present, this alternative accepts memory constants. */
4266 while ((c = *constraint++) && c != ',' && c != '#')
4267 if (c == 'm' || c == 'o')
4268 return 1;
4269 return 0;
4270 }
4271 \f
4272 /* Scan X for memory references and scan the addresses for reloading.
4273 Also checks for references to "constant" regs that we want to eliminate
4274 and replaces them with the values they stand for.
4275 We may alter X destructively if it contains a reference to such.
4276 If X is just a constant reg, we return the equivalent value
4277 instead of X.
4278
4279 IND_LEVELS says how many levels of indirect addressing this machine
4280 supports.
4281
4282 OPNUM and TYPE identify the purpose of the reload.
4283
4284 IS_SET_DEST is true if X is the destination of a SET, which is not
4285 appropriate to be replaced by a constant.
4286
4287 INSN, if nonzero, is the insn in which we do the reload. It is used
4288 to determine if we may generate output reloads, and where to put USEs
4289 for pseudos that we have to replace with stack slots. */
4290
4291 static rtx
4292 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn)
4293 rtx x;
4294 int opnum;
4295 enum reload_type type;
4296 int ind_levels;
4297 int is_set_dest;
4298 rtx insn;
4299 {
4300 register RTX_CODE code = GET_CODE (x);
4301
4302 register const char *fmt = GET_RTX_FORMAT (code);
4303 register int i;
4304 int copied;
4305
4306 if (code == REG)
4307 {
4308 /* This code is duplicated for speed in find_reloads. */
4309 register int regno = REGNO (x);
4310 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4311 x = reg_equiv_constant[regno];
4312 #if 0
4313 /* This creates (subreg (mem...)) which would cause an unnecessary
4314 reload of the mem. */
4315 else if (reg_equiv_mem[regno] != 0)
4316 x = reg_equiv_mem[regno];
4317 #endif
4318 else if (reg_equiv_memory_loc[regno]
4319 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4320 {
4321 rtx mem = make_memloc (x, regno);
4322 if (reg_equiv_address[regno]
4323 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4324 {
4325 /* If this is not a toplevel operand, find_reloads doesn't see
4326 this substitution. We have to emit a USE of the pseudo so
4327 that delete_output_reload can see it. */
4328 if (replace_reloads && recog_data.operand[opnum] != x)
4329 emit_insn_before (gen_rtx_USE (VOIDmode, x), insn);
4330 x = mem;
4331 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4332 opnum, type, ind_levels, insn);
4333 }
4334 }
4335 return x;
4336 }
4337 if (code == MEM)
4338 {
4339 rtx tem = x;
4340 find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4341 opnum, type, ind_levels, insn);
4342 return tem;
4343 }
4344
4345 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4346 {
4347 /* Check for SUBREG containing a REG that's equivalent to a constant.
4348 If the constant has a known value, truncate it right now.
4349 Similarly if we are extracting a single-word of a multi-word
4350 constant. If the constant is symbolic, allow it to be substituted
4351 normally. push_reload will strip the subreg later. If the
4352 constant is VOIDmode, abort because we will lose the mode of
4353 the register (this should never happen because one of the cases
4354 above should handle it). */
4355
4356 register int regno = REGNO (SUBREG_REG (x));
4357 rtx tem;
4358
4359 if (subreg_lowpart_p (x)
4360 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4361 && reg_equiv_constant[regno] != 0
4362 && (tem = gen_lowpart_common (GET_MODE (x),
4363 reg_equiv_constant[regno])) != 0)
4364 return tem;
4365
4366 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4367 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4368 && reg_equiv_constant[regno] != 0
4369 && (tem = operand_subword (reg_equiv_constant[regno],
4370 SUBREG_WORD (x), 0,
4371 GET_MODE (SUBREG_REG (x)))) != 0)
4372 {
4373 /* TEM is now a word sized constant for the bits from X that
4374 we wanted. However, TEM may be the wrong representation.
4375
4376 Use gen_lowpart_common to convert a CONST_INT into a
4377 CONST_DOUBLE and vice versa as needed according to by the mode
4378 of the SUBREG. */
4379 tem = gen_lowpart_common (GET_MODE (x), tem);
4380 if (!tem)
4381 abort ();
4382 return tem;
4383 }
4384
4385 /* If the SUBREG is wider than a word, the above test will fail.
4386 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4387 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4388 a 32 bit target. We still can - and have to - handle this
4389 for non-paradoxical subregs of CONST_INTs. */
4390 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4391 && reg_equiv_constant[regno] != 0
4392 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4393 && (GET_MODE_SIZE (GET_MODE (x))
4394 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4395 {
4396 int shift = SUBREG_WORD (x) * BITS_PER_WORD;
4397 if (WORDS_BIG_ENDIAN)
4398 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4399 - GET_MODE_BITSIZE (GET_MODE (x))
4400 - shift);
4401 /* Here we use the knowledge that CONST_INTs have a
4402 HOST_WIDE_INT field. */
4403 if (shift >= HOST_BITS_PER_WIDE_INT)
4404 shift = HOST_BITS_PER_WIDE_INT - 1;
4405 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4406 }
4407
4408 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4409 && reg_equiv_constant[regno] != 0
4410 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4411 abort ();
4412
4413 /* If the subreg contains a reg that will be converted to a mem,
4414 convert the subreg to a narrower memref now.
4415 Otherwise, we would get (subreg (mem ...) ...),
4416 which would force reload of the mem.
4417
4418 We also need to do this if there is an equivalent MEM that is
4419 not offsettable. In that case, alter_subreg would produce an
4420 invalid address on big-endian machines.
4421
4422 For machines that extend byte loads, we must not reload using
4423 a wider mode if we have a paradoxical SUBREG. find_reloads will
4424 force a reload in that case. So we should not do anything here. */
4425
4426 else if (regno >= FIRST_PSEUDO_REGISTER
4427 #ifdef LOAD_EXTEND_OP
4428 && (GET_MODE_SIZE (GET_MODE (x))
4429 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4430 #endif
4431 && (reg_equiv_address[regno] != 0
4432 || (reg_equiv_mem[regno] != 0
4433 && (! strict_memory_address_p (GET_MODE (x),
4434 XEXP (reg_equiv_mem[regno], 0))
4435 || ! offsettable_memref_p (reg_equiv_mem[regno])
4436 || num_not_at_initial_offset))))
4437 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4438 insn);
4439 }
4440
4441 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4442 {
4443 if (fmt[i] == 'e')
4444 {
4445 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4446 ind_levels, is_set_dest, insn);
4447 /* If we have replaced a reg with it's equivalent memory loc -
4448 that can still be handled here e.g. if it's in a paradoxical
4449 subreg - we must make the change in a copy, rather than using
4450 a destructive change. This way, find_reloads can still elect
4451 not to do the change. */
4452 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4453 {
4454 x = shallow_copy_rtx (x);
4455 copied = 1;
4456 }
4457 XEXP (x, i) = new_part;
4458 }
4459 }
4460 return x;
4461 }
4462
4463 /* Return a mem ref for the memory equivalent of reg REGNO.
4464 This mem ref is not shared with anything. */
4465
4466 static rtx
4467 make_memloc (ad, regno)
4468 rtx ad;
4469 int regno;
4470 {
4471 /* We must rerun eliminate_regs, in case the elimination
4472 offsets have changed. */
4473 rtx tem
4474 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4475
4476 /* If TEM might contain a pseudo, we must copy it to avoid
4477 modifying it when we do the substitution for the reload. */
4478 if (rtx_varies_p (tem))
4479 tem = copy_rtx (tem);
4480
4481 tem = gen_rtx_MEM (GET_MODE (ad), tem);
4482 RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4483 return tem;
4484 }
4485
4486 /* Record all reloads needed for handling memory address AD
4487 which appears in *LOC in a memory reference to mode MODE
4488 which itself is found in location *MEMREFLOC.
4489 Note that we take shortcuts assuming that no multi-reg machine mode
4490 occurs as part of an address.
4491
4492 OPNUM and TYPE specify the purpose of this reload.
4493
4494 IND_LEVELS says how many levels of indirect addressing this machine
4495 supports.
4496
4497 INSN, if nonzero, is the insn in which we do the reload. It is used
4498 to determine if we may generate output reloads, and where to put USEs
4499 for pseudos that we have to replace with stack slots.
4500
4501 Value is nonzero if this address is reloaded or replaced as a whole.
4502 This is interesting to the caller if the address is an autoincrement.
4503
4504 Note that there is no verification that the address will be valid after
4505 this routine does its work. Instead, we rely on the fact that the address
4506 was valid when reload started. So we need only undo things that reload
4507 could have broken. These are wrong register types, pseudos not allocated
4508 to a hard register, and frame pointer elimination. */
4509
4510 static int
4511 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4512 enum machine_mode mode;
4513 rtx *memrefloc;
4514 rtx ad;
4515 rtx *loc;
4516 int opnum;
4517 enum reload_type type;
4518 int ind_levels;
4519 rtx insn;
4520 {
4521 register int regno;
4522 int removed_and = 0;
4523 rtx tem;
4524
4525 /* If the address is a register, see if it is a legitimate address and
4526 reload if not. We first handle the cases where we need not reload
4527 or where we must reload in a non-standard way. */
4528
4529 if (GET_CODE (ad) == REG)
4530 {
4531 regno = REGNO (ad);
4532
4533 if (reg_equiv_constant[regno] != 0
4534 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4535 {
4536 *loc = ad = reg_equiv_constant[regno];
4537 return 0;
4538 }
4539
4540 tem = reg_equiv_memory_loc[regno];
4541 if (tem != 0)
4542 {
4543 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4544 {
4545 tem = make_memloc (ad, regno);
4546 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4547 {
4548 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
4549 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4550 ind_levels, insn);
4551 }
4552 /* We can avoid a reload if the register's equivalent memory
4553 expression is valid as an indirect memory address.
4554 But not all addresses are valid in a mem used as an indirect
4555 address: only reg or reg+constant. */
4556
4557 if (ind_levels > 0
4558 && strict_memory_address_p (mode, tem)
4559 && (GET_CODE (XEXP (tem, 0)) == REG
4560 || (GET_CODE (XEXP (tem, 0)) == PLUS
4561 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4562 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4563 {
4564 /* TEM is not the same as what we'll be replacing the
4565 pseudo with after reload, put a USE in front of INSN
4566 in the final reload pass. */
4567 if (replace_reloads
4568 && num_not_at_initial_offset
4569 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4570 {
4571 *loc = tem;
4572 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4573 /* This doesn't really count as replacing the address
4574 as a whole, since it is still a memory access. */
4575 }
4576 return 0;
4577 }
4578 ad = tem;
4579 }
4580 }
4581
4582 /* The only remaining case where we can avoid a reload is if this is a
4583 hard register that is valid as a base register and which is not the
4584 subject of a CLOBBER in this insn. */
4585
4586 else if (regno < FIRST_PSEUDO_REGISTER
4587 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4588 && ! regno_clobbered_p (regno, this_insn))
4589 return 0;
4590
4591 /* If we do not have one of the cases above, we must do the reload. */
4592 push_reload (ad, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
4593 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4594 return 1;
4595 }
4596
4597 if (strict_memory_address_p (mode, ad))
4598 {
4599 /* The address appears valid, so reloads are not needed.
4600 But the address may contain an eliminable register.
4601 This can happen because a machine with indirect addressing
4602 may consider a pseudo register by itself a valid address even when
4603 it has failed to get a hard reg.
4604 So do a tree-walk to find and eliminate all such regs. */
4605
4606 /* But first quickly dispose of a common case. */
4607 if (GET_CODE (ad) == PLUS
4608 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4609 && GET_CODE (XEXP (ad, 0)) == REG
4610 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4611 return 0;
4612
4613 subst_reg_equivs_changed = 0;
4614 *loc = subst_reg_equivs (ad, insn);
4615
4616 if (! subst_reg_equivs_changed)
4617 return 0;
4618
4619 /* Check result for validity after substitution. */
4620 if (strict_memory_address_p (mode, ad))
4621 return 0;
4622 }
4623
4624 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4625 do
4626 {
4627 if (memrefloc)
4628 {
4629 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4630 ind_levels, win);
4631 }
4632 break;
4633 win:
4634 *memrefloc = copy_rtx (*memrefloc);
4635 XEXP (*memrefloc, 0) = ad;
4636 move_replacements (&ad, &XEXP (*memrefloc, 0));
4637 return 1;
4638 }
4639 while (0);
4640 #endif
4641
4642 /* The address is not valid. We have to figure out why. First see if
4643 we have an outer AND and remove it if so. Then analyze what's inside. */
4644
4645 if (GET_CODE (ad) == AND)
4646 {
4647 removed_and = 1;
4648 loc = &XEXP (ad, 0);
4649 ad = *loc;
4650 }
4651
4652 /* One possibility for why the address is invalid is that it is itself
4653 a MEM. This can happen when the frame pointer is being eliminated, a
4654 pseudo is not allocated to a hard register, and the offset between the
4655 frame and stack pointers is not its initial value. In that case the
4656 pseudo will have been replaced by a MEM referring to the
4657 stack pointer. */
4658 if (GET_CODE (ad) == MEM)
4659 {
4660 /* First ensure that the address in this MEM is valid. Then, unless
4661 indirect addresses are valid, reload the MEM into a register. */
4662 tem = ad;
4663 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4664 opnum, ADDR_TYPE (type),
4665 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4666
4667 /* If tem was changed, then we must create a new memory reference to
4668 hold it and store it back into memrefloc. */
4669 if (tem != ad && memrefloc)
4670 {
4671 *memrefloc = copy_rtx (*memrefloc);
4672 copy_replacements (tem, XEXP (*memrefloc, 0));
4673 loc = &XEXP (*memrefloc, 0);
4674 if (removed_and)
4675 loc = &XEXP (*loc, 0);
4676 }
4677
4678 /* Check similar cases as for indirect addresses as above except
4679 that we can allow pseudos and a MEM since they should have been
4680 taken care of above. */
4681
4682 if (ind_levels == 0
4683 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4684 || GET_CODE (XEXP (tem, 0)) == MEM
4685 || ! (GET_CODE (XEXP (tem, 0)) == REG
4686 || (GET_CODE (XEXP (tem, 0)) == PLUS
4687 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4688 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4689 {
4690 /* Must use TEM here, not AD, since it is the one that will
4691 have any subexpressions reloaded, if needed. */
4692 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4693 BASE_REG_CLASS, GET_MODE (tem),
4694 VOIDmode, 0,
4695 0, opnum, type);
4696 return ! removed_and;
4697 }
4698 else
4699 return 0;
4700 }
4701
4702 /* If we have address of a stack slot but it's not valid because the
4703 displacement is too large, compute the sum in a register.
4704 Handle all base registers here, not just fp/ap/sp, because on some
4705 targets (namely SH) we can also get too large displacements from
4706 big-endian corrections. */
4707 else if (GET_CODE (ad) == PLUS
4708 && GET_CODE (XEXP (ad, 0)) == REG
4709 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4710 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4711 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4712 {
4713 /* Unshare the MEM rtx so we can safely alter it. */
4714 if (memrefloc)
4715 {
4716 *memrefloc = copy_rtx (*memrefloc);
4717 loc = &XEXP (*memrefloc, 0);
4718 if (removed_and)
4719 loc = &XEXP (*loc, 0);
4720 }
4721
4722 if (double_reg_address_ok)
4723 {
4724 /* Unshare the sum as well. */
4725 *loc = ad = copy_rtx (ad);
4726
4727 /* Reload the displacement into an index reg.
4728 We assume the frame pointer or arg pointer is a base reg. */
4729 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4730 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4731 type, ind_levels);
4732 return 0;
4733 }
4734 else
4735 {
4736 /* If the sum of two regs is not necessarily valid,
4737 reload the sum into a base reg.
4738 That will at least work. */
4739 find_reloads_address_part (ad, loc, BASE_REG_CLASS,
4740 Pmode, opnum, type, ind_levels);
4741 }
4742 return ! removed_and;
4743 }
4744
4745 /* If we have an indexed stack slot, there are three possible reasons why
4746 it might be invalid: The index might need to be reloaded, the address
4747 might have been made by frame pointer elimination and hence have a
4748 constant out of range, or both reasons might apply.
4749
4750 We can easily check for an index needing reload, but even if that is the
4751 case, we might also have an invalid constant. To avoid making the
4752 conservative assumption and requiring two reloads, we see if this address
4753 is valid when not interpreted strictly. If it is, the only problem is
4754 that the index needs a reload and find_reloads_address_1 will take care
4755 of it.
4756
4757 There is still a case when we might generate an extra reload,
4758 however. In certain cases eliminate_regs will return a MEM for a REG
4759 (see the code there for details). In those cases, memory_address_p
4760 applied to our address will return 0 so we will think that our offset
4761 must be too large. But it might indeed be valid and the only problem
4762 is that a MEM is present where a REG should be. This case should be
4763 very rare and there doesn't seem to be any way to avoid it.
4764
4765 If we decide to do something here, it must be that
4766 `double_reg_address_ok' is true and that this address rtl was made by
4767 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4768 rework the sum so that the reload register will be added to the index.
4769 This is safe because we know the address isn't shared.
4770
4771 We check for fp/ap/sp as both the first and second operand of the
4772 innermost PLUS. */
4773
4774 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4775 && GET_CODE (XEXP (ad, 0)) == PLUS
4776 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4777 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4778 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4779 #endif
4780 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4781 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4782 #endif
4783 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4784 && ! memory_address_p (mode, ad))
4785 {
4786 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4787 plus_constant (XEXP (XEXP (ad, 0), 0),
4788 INTVAL (XEXP (ad, 1))),
4789 XEXP (XEXP (ad, 0), 1));
4790 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
4791 GET_MODE (ad), opnum, type, ind_levels);
4792 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4793 type, 0, insn);
4794
4795 return 0;
4796 }
4797
4798 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4799 && GET_CODE (XEXP (ad, 0)) == PLUS
4800 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4801 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4802 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4803 #endif
4804 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4805 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4806 #endif
4807 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4808 && ! memory_address_p (mode, ad))
4809 {
4810 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4811 XEXP (XEXP (ad, 0), 0),
4812 plus_constant (XEXP (XEXP (ad, 0), 1),
4813 INTVAL (XEXP (ad, 1))));
4814 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1), BASE_REG_CLASS,
4815 GET_MODE (ad), opnum, type, ind_levels);
4816 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4817 type, 0, insn);
4818
4819 return 0;
4820 }
4821
4822 /* See if address becomes valid when an eliminable register
4823 in a sum is replaced. */
4824
4825 tem = ad;
4826 if (GET_CODE (ad) == PLUS)
4827 tem = subst_indexed_address (ad);
4828 if (tem != ad && strict_memory_address_p (mode, tem))
4829 {
4830 /* Ok, we win that way. Replace any additional eliminable
4831 registers. */
4832
4833 subst_reg_equivs_changed = 0;
4834 tem = subst_reg_equivs (tem, insn);
4835
4836 /* Make sure that didn't make the address invalid again. */
4837
4838 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4839 {
4840 *loc = tem;
4841 return 0;
4842 }
4843 }
4844
4845 /* If constants aren't valid addresses, reload the constant address
4846 into a register. */
4847 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4848 {
4849 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4850 Unshare it so we can safely alter it. */
4851 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4852 && CONSTANT_POOL_ADDRESS_P (ad))
4853 {
4854 *memrefloc = copy_rtx (*memrefloc);
4855 loc = &XEXP (*memrefloc, 0);
4856 if (removed_and)
4857 loc = &XEXP (*loc, 0);
4858 }
4859
4860 find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
4861 ind_levels);
4862 return ! removed_and;
4863 }
4864
4865 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4866 insn);
4867 }
4868 \f
4869 /* Find all pseudo regs appearing in AD
4870 that are eliminable in favor of equivalent values
4871 and do not have hard regs; replace them by their equivalents.
4872 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4873 front of it for pseudos that we have to replace with stack slots. */
4874
4875 static rtx
4876 subst_reg_equivs (ad, insn)
4877 rtx ad;
4878 rtx insn;
4879 {
4880 register RTX_CODE code = GET_CODE (ad);
4881 register int i;
4882 register const char *fmt;
4883
4884 switch (code)
4885 {
4886 case HIGH:
4887 case CONST_INT:
4888 case CONST:
4889 case CONST_DOUBLE:
4890 case SYMBOL_REF:
4891 case LABEL_REF:
4892 case PC:
4893 case CC0:
4894 return ad;
4895
4896 case REG:
4897 {
4898 register int regno = REGNO (ad);
4899
4900 if (reg_equiv_constant[regno] != 0)
4901 {
4902 subst_reg_equivs_changed = 1;
4903 return reg_equiv_constant[regno];
4904 }
4905 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4906 {
4907 rtx mem = make_memloc (ad, regno);
4908 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4909 {
4910 subst_reg_equivs_changed = 1;
4911 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4912 return mem;
4913 }
4914 }
4915 }
4916 return ad;
4917
4918 case PLUS:
4919 /* Quickly dispose of a common case. */
4920 if (XEXP (ad, 0) == frame_pointer_rtx
4921 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4922 return ad;
4923 break;
4924
4925 default:
4926 break;
4927 }
4928
4929 fmt = GET_RTX_FORMAT (code);
4930 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4931 if (fmt[i] == 'e')
4932 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4933 return ad;
4934 }
4935 \f
4936 /* Compute the sum of X and Y, making canonicalizations assumed in an
4937 address, namely: sum constant integers, surround the sum of two
4938 constants with a CONST, put the constant as the second operand, and
4939 group the constant on the outermost sum.
4940
4941 This routine assumes both inputs are already in canonical form. */
4942
4943 rtx
4944 form_sum (x, y)
4945 rtx x, y;
4946 {
4947 rtx tem;
4948 enum machine_mode mode = GET_MODE (x);
4949
4950 if (mode == VOIDmode)
4951 mode = GET_MODE (y);
4952
4953 if (mode == VOIDmode)
4954 mode = Pmode;
4955
4956 if (GET_CODE (x) == CONST_INT)
4957 return plus_constant (y, INTVAL (x));
4958 else if (GET_CODE (y) == CONST_INT)
4959 return plus_constant (x, INTVAL (y));
4960 else if (CONSTANT_P (x))
4961 tem = x, x = y, y = tem;
4962
4963 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4964 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4965
4966 /* Note that if the operands of Y are specified in the opposite
4967 order in the recursive calls below, infinite recursion will occur. */
4968 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4969 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4970
4971 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4972 constant will have been placed second. */
4973 if (CONSTANT_P (x) && CONSTANT_P (y))
4974 {
4975 if (GET_CODE (x) == CONST)
4976 x = XEXP (x, 0);
4977 if (GET_CODE (y) == CONST)
4978 y = XEXP (y, 0);
4979
4980 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
4981 }
4982
4983 return gen_rtx_PLUS (mode, x, y);
4984 }
4985 \f
4986 /* If ADDR is a sum containing a pseudo register that should be
4987 replaced with a constant (from reg_equiv_constant),
4988 return the result of doing so, and also apply the associative
4989 law so that the result is more likely to be a valid address.
4990 (But it is not guaranteed to be one.)
4991
4992 Note that at most one register is replaced, even if more are
4993 replaceable. Also, we try to put the result into a canonical form
4994 so it is more likely to be a valid address.
4995
4996 In all other cases, return ADDR. */
4997
4998 static rtx
4999 subst_indexed_address (addr)
5000 rtx addr;
5001 {
5002 rtx op0 = 0, op1 = 0, op2 = 0;
5003 rtx tem;
5004 int regno;
5005
5006 if (GET_CODE (addr) == PLUS)
5007 {
5008 /* Try to find a register to replace. */
5009 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5010 if (GET_CODE (op0) == REG
5011 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5012 && reg_renumber[regno] < 0
5013 && reg_equiv_constant[regno] != 0)
5014 op0 = reg_equiv_constant[regno];
5015 else if (GET_CODE (op1) == REG
5016 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5017 && reg_renumber[regno] < 0
5018 && reg_equiv_constant[regno] != 0)
5019 op1 = reg_equiv_constant[regno];
5020 else if (GET_CODE (op0) == PLUS
5021 && (tem = subst_indexed_address (op0)) != op0)
5022 op0 = tem;
5023 else if (GET_CODE (op1) == PLUS
5024 && (tem = subst_indexed_address (op1)) != op1)
5025 op1 = tem;
5026 else
5027 return addr;
5028
5029 /* Pick out up to three things to add. */
5030 if (GET_CODE (op1) == PLUS)
5031 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5032 else if (GET_CODE (op0) == PLUS)
5033 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5034
5035 /* Compute the sum. */
5036 if (op2 != 0)
5037 op1 = form_sum (op1, op2);
5038 if (op1 != 0)
5039 op0 = form_sum (op0, op1);
5040
5041 return op0;
5042 }
5043 return addr;
5044 }
5045 \f
5046 /* Record the pseudo registers we must reload into hard registers in a
5047 subexpression of a would-be memory address, X referring to a value
5048 in mode MODE. (This function is not called if the address we find
5049 is strictly valid.)
5050
5051 CONTEXT = 1 means we are considering regs as index regs,
5052 = 0 means we are considering them as base regs.
5053
5054 OPNUM and TYPE specify the purpose of any reloads made.
5055
5056 IND_LEVELS says how many levels of indirect addressing are
5057 supported at this point in the address.
5058
5059 INSN, if nonzero, is the insn in which we do the reload. It is used
5060 to determine if we may generate output reloads.
5061
5062 We return nonzero if X, as a whole, is reloaded or replaced. */
5063
5064 /* Note that we take shortcuts assuming that no multi-reg machine mode
5065 occurs as part of an address.
5066 Also, this is not fully machine-customizable; it works for machines
5067 such as vaxes and 68000's and 32000's, but other possible machines
5068 could have addressing modes that this does not handle right. */
5069
5070 static int
5071 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5072 enum machine_mode mode;
5073 rtx x;
5074 int context;
5075 rtx *loc;
5076 int opnum;
5077 enum reload_type type;
5078 int ind_levels;
5079 rtx insn;
5080 {
5081 register RTX_CODE code = GET_CODE (x);
5082
5083 switch (code)
5084 {
5085 case PLUS:
5086 {
5087 register rtx orig_op0 = XEXP (x, 0);
5088 register rtx orig_op1 = XEXP (x, 1);
5089 register RTX_CODE code0 = GET_CODE (orig_op0);
5090 register RTX_CODE code1 = GET_CODE (orig_op1);
5091 register rtx op0 = orig_op0;
5092 register rtx op1 = orig_op1;
5093
5094 if (GET_CODE (op0) == SUBREG)
5095 {
5096 op0 = SUBREG_REG (op0);
5097 code0 = GET_CODE (op0);
5098 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5099 op0 = gen_rtx_REG (word_mode,
5100 REGNO (op0) + SUBREG_WORD (orig_op0));
5101 }
5102
5103 if (GET_CODE (op1) == SUBREG)
5104 {
5105 op1 = SUBREG_REG (op1);
5106 code1 = GET_CODE (op1);
5107 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5108 op1 = gen_rtx_REG (GET_MODE (op1),
5109 REGNO (op1) + SUBREG_WORD (orig_op1));
5110 }
5111
5112 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5113 || code0 == ZERO_EXTEND || code1 == MEM)
5114 {
5115 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5116 type, ind_levels, insn);
5117 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5118 type, ind_levels, insn);
5119 }
5120
5121 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5122 || code1 == ZERO_EXTEND || code0 == MEM)
5123 {
5124 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5125 type, ind_levels, insn);
5126 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5127 type, ind_levels, insn);
5128 }
5129
5130 else if (code0 == CONST_INT || code0 == CONST
5131 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5132 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5133 type, ind_levels, insn);
5134
5135 else if (code1 == CONST_INT || code1 == CONST
5136 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5137 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5138 type, ind_levels, insn);
5139
5140 else if (code0 == REG && code1 == REG)
5141 {
5142 if (REG_OK_FOR_INDEX_P (op0)
5143 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5144 return 0;
5145 else if (REG_OK_FOR_INDEX_P (op1)
5146 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5147 return 0;
5148 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5149 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5150 type, ind_levels, insn);
5151 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5152 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5153 type, ind_levels, insn);
5154 else if (REG_OK_FOR_INDEX_P (op1))
5155 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5156 type, ind_levels, insn);
5157 else if (REG_OK_FOR_INDEX_P (op0))
5158 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5159 type, ind_levels, insn);
5160 else
5161 {
5162 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5163 type, ind_levels, insn);
5164 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5165 type, ind_levels, insn);
5166 }
5167 }
5168
5169 else if (code0 == REG)
5170 {
5171 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5172 type, ind_levels, insn);
5173 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5174 type, ind_levels, insn);
5175 }
5176
5177 else if (code1 == REG)
5178 {
5179 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5180 type, ind_levels, insn);
5181 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5182 type, ind_levels, insn);
5183 }
5184 }
5185
5186 return 0;
5187
5188 case POST_INC:
5189 case POST_DEC:
5190 case PRE_INC:
5191 case PRE_DEC:
5192 if (GET_CODE (XEXP (x, 0)) == REG)
5193 {
5194 register int regno = REGNO (XEXP (x, 0));
5195 int value = 0;
5196 rtx x_orig = x;
5197
5198 /* A register that is incremented cannot be constant! */
5199 if (regno >= FIRST_PSEUDO_REGISTER
5200 && reg_equiv_constant[regno] != 0)
5201 abort ();
5202
5203 /* Handle a register that is equivalent to a memory location
5204 which cannot be addressed directly. */
5205 if (reg_equiv_memory_loc[regno] != 0
5206 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5207 {
5208 rtx tem = make_memloc (XEXP (x, 0), regno);
5209 if (reg_equiv_address[regno]
5210 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5211 {
5212 /* First reload the memory location's address.
5213 We can't use ADDR_TYPE (type) here, because we need to
5214 write back the value after reading it, hence we actually
5215 need two registers. */
5216 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5217 &XEXP (tem, 0), opnum, type,
5218 ind_levels, insn);
5219 /* Put this inside a new increment-expression. */
5220 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5221 /* Proceed to reload that, as if it contained a register. */
5222 }
5223 }
5224
5225 /* If we have a hard register that is ok as an index,
5226 don't make a reload. If an autoincrement of a nice register
5227 isn't "valid", it must be that no autoincrement is "valid".
5228 If that is true and something made an autoincrement anyway,
5229 this must be a special context where one is allowed.
5230 (For example, a "push" instruction.)
5231 We can't improve this address, so leave it alone. */
5232
5233 /* Otherwise, reload the autoincrement into a suitable hard reg
5234 and record how much to increment by. */
5235
5236 if (reg_renumber[regno] >= 0)
5237 regno = reg_renumber[regno];
5238 if ((regno >= FIRST_PSEUDO_REGISTER
5239 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5240 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5241 {
5242 #ifdef AUTO_INC_DEC
5243 register rtx link;
5244 #endif
5245 int reloadnum;
5246
5247 /* If we can output the register afterwards, do so, this
5248 saves the extra update.
5249 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5250 CALL_INSN - and it does not set CC0.
5251 But don't do this if we cannot directly address the
5252 memory location, since this will make it harder to
5253 reuse address reloads, and increases register pressure.
5254 Also don't do this if we can probably update x directly. */
5255 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5256 ? XEXP (x, 0)
5257 : reg_equiv_mem[regno]);
5258 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5259 if (insn && GET_CODE (insn) == INSN && equiv
5260 && memory_operand (equiv, GET_MODE (equiv))
5261 #ifdef HAVE_cc0
5262 && ! sets_cc0_p (PATTERN (insn))
5263 #endif
5264 && ! (icode != CODE_FOR_nothing
5265 && ((*insn_data[icode].operand[0].predicate)
5266 (equiv, Pmode))
5267 && ((*insn_data[icode].operand[1].predicate)
5268 (equiv, Pmode))))
5269 {
5270 loc = &XEXP (x, 0);
5271 x = XEXP (x, 0);
5272 reloadnum
5273 = push_reload (x, x, loc, loc,
5274 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5275 GET_MODE (x), GET_MODE (x), 0, 0,
5276 opnum, RELOAD_OTHER);
5277
5278 /* If we created a new MEM based on reg_equiv_mem[REGNO], then
5279 LOC above is part of the new MEM, not the MEM in INSN.
5280
5281 We must also replace the address of the MEM in INSN. */
5282 if (&XEXP (x_orig, 0) != loc)
5283 push_replacement (&XEXP (x_orig, 0), reloadnum, VOIDmode);
5284
5285 }
5286 else
5287 {
5288 reloadnum
5289 = push_reload (x, NULL_RTX, loc, NULL_PTR,
5290 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5291 GET_MODE (x), GET_MODE (x), 0, 0,
5292 opnum, type);
5293 rld[reloadnum].inc
5294 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5295
5296 value = 1;
5297 }
5298
5299 #ifdef AUTO_INC_DEC
5300 /* Update the REG_INC notes. */
5301
5302 for (link = REG_NOTES (this_insn);
5303 link; link = XEXP (link, 1))
5304 if (REG_NOTE_KIND (link) == REG_INC
5305 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
5306 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5307 #endif
5308 }
5309 return value;
5310 }
5311
5312 else if (GET_CODE (XEXP (x, 0)) == MEM)
5313 {
5314 /* This is probably the result of a substitution, by eliminate_regs,
5315 of an equivalent address for a pseudo that was not allocated to a
5316 hard register. Verify that the specified address is valid and
5317 reload it into a register. */
5318 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5319 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5320 register rtx link;
5321 int reloadnum;
5322
5323 /* Since we know we are going to reload this item, don't decrement
5324 for the indirection level.
5325
5326 Note that this is actually conservative: it would be slightly
5327 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5328 reload1.c here. */
5329 /* We can't use ADDR_TYPE (type) here, because we need to
5330 write back the value after reading it, hence we actually
5331 need two registers. */
5332 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5333 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5334 opnum, type, ind_levels, insn);
5335
5336 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
5337 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5338 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5339 rld[reloadnum].inc
5340 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5341
5342 link = FIND_REG_INC_NOTE (this_insn, tem);
5343 if (link != 0)
5344 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5345
5346 return 1;
5347 }
5348 return 0;
5349
5350 case MEM:
5351 /* This is probably the result of a substitution, by eliminate_regs, of
5352 an equivalent address for a pseudo that was not allocated to a hard
5353 register. Verify that the specified address is valid and reload it
5354 into a register.
5355
5356 Since we know we are going to reload this item, don't decrement for
5357 the indirection level.
5358
5359 Note that this is actually conservative: it would be slightly more
5360 efficient to use the value of SPILL_INDIRECT_LEVELS from
5361 reload1.c here. */
5362
5363 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5364 opnum, ADDR_TYPE (type), ind_levels, insn);
5365 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
5366 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5367 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5368 return 1;
5369
5370 case REG:
5371 {
5372 register int regno = REGNO (x);
5373
5374 if (reg_equiv_constant[regno] != 0)
5375 {
5376 find_reloads_address_part (reg_equiv_constant[regno], loc,
5377 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5378 GET_MODE (x), opnum, type, ind_levels);
5379 return 1;
5380 }
5381
5382 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5383 that feeds this insn. */
5384 if (reg_equiv_mem[regno] != 0)
5385 {
5386 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
5387 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5388 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5389 return 1;
5390 }
5391 #endif
5392
5393 if (reg_equiv_memory_loc[regno]
5394 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5395 {
5396 rtx tem = make_memloc (x, regno);
5397 if (reg_equiv_address[regno] != 0
5398 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5399 {
5400 x = tem;
5401 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5402 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5403 ind_levels, insn);
5404 }
5405 }
5406
5407 if (reg_renumber[regno] >= 0)
5408 regno = reg_renumber[regno];
5409
5410 if ((regno >= FIRST_PSEUDO_REGISTER
5411 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5412 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5413 {
5414 push_reload (x, NULL_RTX, loc, NULL_PTR,
5415 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5416 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5417 return 1;
5418 }
5419
5420 /* If a register appearing in an address is the subject of a CLOBBER
5421 in this insn, reload it into some other register to be safe.
5422 The CLOBBER is supposed to make the register unavailable
5423 from before this insn to after it. */
5424 if (regno_clobbered_p (regno, this_insn))
5425 {
5426 push_reload (x, NULL_RTX, loc, NULL_PTR,
5427 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5428 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5429 return 1;
5430 }
5431 }
5432 return 0;
5433
5434 case SUBREG:
5435 if (GET_CODE (SUBREG_REG (x)) == REG)
5436 {
5437 /* If this is a SUBREG of a hard register and the resulting register
5438 is of the wrong class, reload the whole SUBREG. This avoids
5439 needless copies if SUBREG_REG is multi-word. */
5440 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5441 {
5442 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5443
5444 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5445 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5446 {
5447 push_reload (x, NULL_RTX, loc, NULL_PTR,
5448 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5449 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5450 return 1;
5451 }
5452 }
5453 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5454 is larger than the class size, then reload the whole SUBREG. */
5455 else
5456 {
5457 enum reg_class class = (context ? INDEX_REG_CLASS
5458 : BASE_REG_CLASS);
5459 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5460 > reg_class_size[class])
5461 {
5462 x = find_reloads_subreg_address (x, 0, opnum, type,
5463 ind_levels, insn);
5464 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5465 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5466 return 1;
5467 }
5468 }
5469 }
5470 break;
5471
5472 default:
5473 break;
5474 }
5475
5476 {
5477 register const char *fmt = GET_RTX_FORMAT (code);
5478 register int i;
5479
5480 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5481 {
5482 if (fmt[i] == 'e')
5483 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5484 opnum, type, ind_levels, insn);
5485 }
5486 }
5487
5488 return 0;
5489 }
5490 \f
5491 /* X, which is found at *LOC, is a part of an address that needs to be
5492 reloaded into a register of class CLASS. If X is a constant, or if
5493 X is a PLUS that contains a constant, check that the constant is a
5494 legitimate operand and that we are supposed to be able to load
5495 it into the register.
5496
5497 If not, force the constant into memory and reload the MEM instead.
5498
5499 MODE is the mode to use, in case X is an integer constant.
5500
5501 OPNUM and TYPE describe the purpose of any reloads made.
5502
5503 IND_LEVELS says how many levels of indirect addressing this machine
5504 supports. */
5505
5506 static void
5507 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5508 rtx x;
5509 rtx *loc;
5510 enum reg_class class;
5511 enum machine_mode mode;
5512 int opnum;
5513 enum reload_type type;
5514 int ind_levels;
5515 {
5516 if (CONSTANT_P (x)
5517 && (! LEGITIMATE_CONSTANT_P (x)
5518 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5519 {
5520 rtx tem;
5521
5522 /* If this is a CONST_INT, it could have been created by a
5523 plus_constant call in eliminate_regs, which means it may be
5524 on the reload_obstack. reload_obstack will be freed later, so
5525 we can't allow such RTL to be put in the constant pool. There
5526 is code in force_const_mem to check for this case, but it doesn't
5527 work because we have already popped off the reload_obstack, so
5528 rtl_obstack == saveable_obstack is true at this point. */
5529 if (GET_CODE (x) == CONST_INT)
5530 tem = x = force_const_mem (mode, GEN_INT (INTVAL (x)));
5531 else
5532 tem = x = force_const_mem (mode, x);
5533
5534 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5535 opnum, type, ind_levels, 0);
5536 }
5537
5538 else if (GET_CODE (x) == PLUS
5539 && CONSTANT_P (XEXP (x, 1))
5540 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5541 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5542 {
5543 rtx tem;
5544
5545 /* See comment above. */
5546 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5547 tem = force_const_mem (GET_MODE (x), GEN_INT (INTVAL (XEXP (x, 1))));
5548 else
5549 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5550
5551 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5552 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5553 opnum, type, ind_levels, 0);
5554 }
5555
5556 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5557 mode, VOIDmode, 0, 0, opnum, type);
5558 }
5559 \f
5560 /* X, a subreg of a pseudo, is a part of an address that needs to be
5561 reloaded.
5562
5563 If the pseudo is equivalent to a memory location that cannot be directly
5564 addressed, make the necessary address reloads.
5565
5566 If address reloads have been necessary, or if the address is changed
5567 by register elimination, return the rtx of the memory location;
5568 otherwise, return X.
5569
5570 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5571 memory location.
5572
5573 OPNUM and TYPE identify the purpose of the reload.
5574
5575 IND_LEVELS says how many levels of indirect addressing are
5576 supported at this point in the address.
5577
5578 INSN, if nonzero, is the insn in which we do the reload. It is used
5579 to determine where to put USEs for pseudos that we have to replace with
5580 stack slots. */
5581
5582 static rtx
5583 find_reloads_subreg_address (x, force_replace, opnum, type,
5584 ind_levels, insn)
5585 rtx x;
5586 int force_replace;
5587 int opnum;
5588 enum reload_type type;
5589 int ind_levels;
5590 rtx insn;
5591 {
5592 int regno = REGNO (SUBREG_REG (x));
5593
5594 if (reg_equiv_memory_loc[regno])
5595 {
5596 /* If the address is not directly addressable, or if the address is not
5597 offsettable, then it must be replaced. */
5598 if (! force_replace
5599 && (reg_equiv_address[regno]
5600 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5601 force_replace = 1;
5602
5603 if (force_replace || num_not_at_initial_offset)
5604 {
5605 rtx tem = make_memloc (SUBREG_REG (x), regno);
5606
5607 /* If the address changes because of register elimination, then
5608 it must be replaced. */
5609 if (force_replace
5610 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5611 {
5612 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
5613
5614 if (BYTES_BIG_ENDIAN)
5615 {
5616 int size;
5617
5618 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5619 offset += MIN (size, UNITS_PER_WORD);
5620 size = GET_MODE_SIZE (GET_MODE (x));
5621 offset -= MIN (size, UNITS_PER_WORD);
5622 }
5623 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5624 PUT_MODE (tem, GET_MODE (x));
5625 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5626 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5627 ind_levels, insn);
5628 /* If this is not a toplevel operand, find_reloads doesn't see
5629 this substitution. We have to emit a USE of the pseudo so
5630 that delete_output_reload can see it. */
5631 if (replace_reloads && recog_data.operand[opnum] != x)
5632 emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn);
5633 x = tem;
5634 }
5635 }
5636 }
5637 return x;
5638 }
5639 \f
5640 /* Substitute into the current INSN the registers into which we have reloaded
5641 the things that need reloading. The array `replacements'
5642 says contains the locations of all pointers that must be changed
5643 and says what to replace them with.
5644
5645 Return the rtx that X translates into; usually X, but modified. */
5646
5647 void
5648 subst_reloads ()
5649 {
5650 register int i;
5651
5652 for (i = 0; i < n_replacements; i++)
5653 {
5654 register struct replacement *r = &replacements[i];
5655 register rtx reloadreg = rld[r->what].reg_rtx;
5656 if (reloadreg)
5657 {
5658 /* Encapsulate RELOADREG so its machine mode matches what
5659 used to be there. Note that gen_lowpart_common will
5660 do the wrong thing if RELOADREG is multi-word. RELOADREG
5661 will always be a REG here. */
5662 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5663 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5664
5665 /* If we are putting this into a SUBREG and RELOADREG is a
5666 SUBREG, we would be making nested SUBREGs, so we have to fix
5667 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5668
5669 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5670 {
5671 if (GET_MODE (*r->subreg_loc)
5672 == GET_MODE (SUBREG_REG (reloadreg)))
5673 *r->subreg_loc = SUBREG_REG (reloadreg);
5674 else
5675 {
5676 *r->where = SUBREG_REG (reloadreg);
5677 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5678 }
5679 }
5680 else
5681 *r->where = reloadreg;
5682 }
5683 /* If reload got no reg and isn't optional, something's wrong. */
5684 else if (! rld[r->what].optional)
5685 abort ();
5686 }
5687 }
5688 \f
5689 /* Make a copy of any replacements being done into X and move those copies
5690 to locations in Y, a copy of X. We only look at the highest level of
5691 the RTL. */
5692
5693 void
5694 copy_replacements (x, y)
5695 rtx x;
5696 rtx y;
5697 {
5698 int i, j;
5699 enum rtx_code code = GET_CODE (x);
5700 const char *fmt = GET_RTX_FORMAT (code);
5701 struct replacement *r;
5702
5703 /* We can't support X being a SUBREG because we might then need to know its
5704 location if something inside it was replaced. */
5705 if (code == SUBREG)
5706 abort ();
5707
5708 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5709 if (fmt[i] == 'e')
5710 for (j = 0; j < n_replacements; j++)
5711 {
5712 if (replacements[j].subreg_loc == &XEXP (x, i))
5713 {
5714 r = &replacements[n_replacements++];
5715 r->where = replacements[j].where;
5716 r->subreg_loc = &XEXP (y, i);
5717 r->what = replacements[j].what;
5718 r->mode = replacements[j].mode;
5719 }
5720 else if (replacements[j].where == &XEXP (x, i))
5721 {
5722 r = &replacements[n_replacements++];
5723 r->where = &XEXP (y, i);
5724 r->subreg_loc = 0;
5725 r->what = replacements[j].what;
5726 r->mode = replacements[j].mode;
5727 }
5728 }
5729 }
5730
5731 /* Change any replacements being done to *X to be done to *Y */
5732
5733 void
5734 move_replacements (x, y)
5735 rtx *x;
5736 rtx *y;
5737 {
5738 int i;
5739
5740 for (i = 0; i < n_replacements; i++)
5741 if (replacements[i].subreg_loc == x)
5742 replacements[i].subreg_loc = y;
5743 else if (replacements[i].where == x)
5744 {
5745 replacements[i].where = y;
5746 replacements[i].subreg_loc = 0;
5747 }
5748 }
5749 \f
5750 /* If LOC was scheduled to be replaced by something, return the replacement.
5751 Otherwise, return *LOC. */
5752
5753 rtx
5754 find_replacement (loc)
5755 rtx *loc;
5756 {
5757 struct replacement *r;
5758
5759 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5760 {
5761 rtx reloadreg = rld[r->what].reg_rtx;
5762
5763 if (reloadreg && r->where == loc)
5764 {
5765 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5766 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5767
5768 return reloadreg;
5769 }
5770 else if (reloadreg && r->subreg_loc == loc)
5771 {
5772 /* RELOADREG must be either a REG or a SUBREG.
5773
5774 ??? Is it actually still ever a SUBREG? If so, why? */
5775
5776 if (GET_CODE (reloadreg) == REG)
5777 return gen_rtx_REG (GET_MODE (*loc),
5778 REGNO (reloadreg) + SUBREG_WORD (*loc));
5779 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5780 return reloadreg;
5781 else
5782 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5783 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
5784 }
5785 }
5786
5787 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5788 what's inside and make a new rtl if so. */
5789 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5790 || GET_CODE (*loc) == MULT)
5791 {
5792 rtx x = find_replacement (&XEXP (*loc, 0));
5793 rtx y = find_replacement (&XEXP (*loc, 1));
5794
5795 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
5796 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
5797 }
5798
5799 return *loc;
5800 }
5801 \f
5802 /* Return nonzero if register in range [REGNO, ENDREGNO)
5803 appears either explicitly or implicitly in X
5804 other than being stored into (except for earlyclobber operands).
5805
5806 References contained within the substructure at LOC do not count.
5807 LOC may be zero, meaning don't ignore anything.
5808
5809 This is similar to refers_to_regno_p in rtlanal.c except that we
5810 look at equivalences for pseudos that didn't get hard registers. */
5811
5812 int
5813 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5814 int regno, endregno;
5815 rtx x;
5816 rtx *loc;
5817 {
5818 register int i;
5819 register RTX_CODE code;
5820 register const char *fmt;
5821
5822 if (x == 0)
5823 return 0;
5824
5825 repeat:
5826 code = GET_CODE (x);
5827
5828 switch (code)
5829 {
5830 case REG:
5831 i = REGNO (x);
5832
5833 /* If this is a pseudo, a hard register must not have been allocated.
5834 X must therefore either be a constant or be in memory. */
5835 if (i >= FIRST_PSEUDO_REGISTER)
5836 {
5837 if (reg_equiv_memory_loc[i])
5838 return refers_to_regno_for_reload_p (regno, endregno,
5839 reg_equiv_memory_loc[i],
5840 NULL_PTR);
5841
5842 if (reg_equiv_constant[i])
5843 return 0;
5844
5845 abort ();
5846 }
5847
5848 return (endregno > i
5849 && regno < i + (i < FIRST_PSEUDO_REGISTER
5850 ? HARD_REGNO_NREGS (i, GET_MODE (x))
5851 : 1));
5852
5853 case SUBREG:
5854 /* If this is a SUBREG of a hard reg, we can see exactly which
5855 registers are being modified. Otherwise, handle normally. */
5856 if (GET_CODE (SUBREG_REG (x)) == REG
5857 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5858 {
5859 int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5860 int inner_endregno
5861 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5862 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5863
5864 return endregno > inner_regno && regno < inner_endregno;
5865 }
5866 break;
5867
5868 case CLOBBER:
5869 case SET:
5870 if (&SET_DEST (x) != loc
5871 /* Note setting a SUBREG counts as referring to the REG it is in for
5872 a pseudo but not for hard registers since we can
5873 treat each word individually. */
5874 && ((GET_CODE (SET_DEST (x)) == SUBREG
5875 && loc != &SUBREG_REG (SET_DEST (x))
5876 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5877 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5878 && refers_to_regno_for_reload_p (regno, endregno,
5879 SUBREG_REG (SET_DEST (x)),
5880 loc))
5881 /* If the output is an earlyclobber operand, this is
5882 a conflict. */
5883 || ((GET_CODE (SET_DEST (x)) != REG
5884 || earlyclobber_operand_p (SET_DEST (x)))
5885 && refers_to_regno_for_reload_p (regno, endregno,
5886 SET_DEST (x), loc))))
5887 return 1;
5888
5889 if (code == CLOBBER || loc == &SET_SRC (x))
5890 return 0;
5891 x = SET_SRC (x);
5892 goto repeat;
5893
5894 default:
5895 break;
5896 }
5897
5898 /* X does not match, so try its subexpressions. */
5899
5900 fmt = GET_RTX_FORMAT (code);
5901 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5902 {
5903 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5904 {
5905 if (i == 0)
5906 {
5907 x = XEXP (x, 0);
5908 goto repeat;
5909 }
5910 else
5911 if (refers_to_regno_for_reload_p (regno, endregno,
5912 XEXP (x, i), loc))
5913 return 1;
5914 }
5915 else if (fmt[i] == 'E')
5916 {
5917 register int j;
5918 for (j = XVECLEN (x, i) - 1; j >=0; j--)
5919 if (loc != &XVECEXP (x, i, j)
5920 && refers_to_regno_for_reload_p (regno, endregno,
5921 XVECEXP (x, i, j), loc))
5922 return 1;
5923 }
5924 }
5925 return 0;
5926 }
5927
5928 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5929 we check if any register number in X conflicts with the relevant register
5930 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5931 contains a MEM (we don't bother checking for memory addresses that can't
5932 conflict because we expect this to be a rare case.
5933
5934 This function is similar to reg_overlap_mention_p in rtlanal.c except
5935 that we look at equivalences for pseudos that didn't get hard registers. */
5936
5937 int
5938 reg_overlap_mentioned_for_reload_p (x, in)
5939 rtx x, in;
5940 {
5941 int regno, endregno;
5942
5943 /* Overly conservative. */
5944 if (GET_CODE (x) == STRICT_LOW_PART)
5945 x = XEXP (x, 0);
5946
5947 /* If either argument is a constant, then modifying X can not affect IN. */
5948 if (CONSTANT_P (x) || CONSTANT_P (in))
5949 return 0;
5950 else if (GET_CODE (x) == SUBREG)
5951 {
5952 regno = REGNO (SUBREG_REG (x));
5953 if (regno < FIRST_PSEUDO_REGISTER)
5954 regno += SUBREG_WORD (x);
5955 }
5956 else if (GET_CODE (x) == REG)
5957 {
5958 regno = REGNO (x);
5959
5960 /* If this is a pseudo, it must not have been assigned a hard register.
5961 Therefore, it must either be in memory or be a constant. */
5962
5963 if (regno >= FIRST_PSEUDO_REGISTER)
5964 {
5965 if (reg_equiv_memory_loc[regno])
5966 return refers_to_mem_for_reload_p (in);
5967 else if (reg_equiv_constant[regno])
5968 return 0;
5969 abort ();
5970 }
5971 }
5972 else if (GET_CODE (x) == MEM)
5973 return refers_to_mem_for_reload_p (in);
5974 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
5975 || GET_CODE (x) == CC0)
5976 return reg_mentioned_p (x, in);
5977 else
5978 abort ();
5979
5980 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
5981 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5982
5983 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
5984 }
5985
5986 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
5987 registers. */
5988
5989 int
5990 refers_to_mem_for_reload_p (x)
5991 rtx x;
5992 {
5993 const char *fmt;
5994 int i;
5995
5996 if (GET_CODE (x) == MEM)
5997 return 1;
5998
5999 if (GET_CODE (x) == REG)
6000 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6001 && reg_equiv_memory_loc[REGNO (x)]);
6002
6003 fmt = GET_RTX_FORMAT (GET_CODE (x));
6004 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6005 if (fmt[i] == 'e'
6006 && (GET_CODE (XEXP (x, i)) == MEM
6007 || refers_to_mem_for_reload_p (XEXP (x, i))))
6008 return 1;
6009
6010 return 0;
6011 }
6012 \f
6013 /* Check the insns before INSN to see if there is a suitable register
6014 containing the same value as GOAL.
6015 If OTHER is -1, look for a register in class CLASS.
6016 Otherwise, just see if register number OTHER shares GOAL's value.
6017
6018 Return an rtx for the register found, or zero if none is found.
6019
6020 If RELOAD_REG_P is (short *)1,
6021 we reject any hard reg that appears in reload_reg_rtx
6022 because such a hard reg is also needed coming into this insn.
6023
6024 If RELOAD_REG_P is any other nonzero value,
6025 it is a vector indexed by hard reg number
6026 and we reject any hard reg whose element in the vector is nonnegative
6027 as well as any that appears in reload_reg_rtx.
6028
6029 If GOAL is zero, then GOALREG is a register number; we look
6030 for an equivalent for that register.
6031
6032 MODE is the machine mode of the value we want an equivalence for.
6033 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6034
6035 This function is used by jump.c as well as in the reload pass.
6036
6037 If GOAL is the sum of the stack pointer and a constant, we treat it
6038 as if it were a constant except that sp is required to be unchanging. */
6039
6040 rtx
6041 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6042 register rtx goal;
6043 rtx insn;
6044 enum reg_class class;
6045 register int other;
6046 short *reload_reg_p;
6047 int goalreg;
6048 enum machine_mode mode;
6049 {
6050 register rtx p = insn;
6051 rtx goaltry, valtry, value, where;
6052 register rtx pat;
6053 register int regno = -1;
6054 int valueno;
6055 int goal_mem = 0;
6056 int goal_const = 0;
6057 int goal_mem_addr_varies = 0;
6058 int need_stable_sp = 0;
6059 int nregs;
6060 int valuenregs;
6061
6062 if (goal == 0)
6063 regno = goalreg;
6064 else if (GET_CODE (goal) == REG)
6065 regno = REGNO (goal);
6066 else if (GET_CODE (goal) == MEM)
6067 {
6068 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6069 if (MEM_VOLATILE_P (goal))
6070 return 0;
6071 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6072 return 0;
6073 /* An address with side effects must be reexecuted. */
6074 switch (code)
6075 {
6076 case POST_INC:
6077 case PRE_INC:
6078 case POST_DEC:
6079 case PRE_DEC:
6080 return 0;
6081 default:
6082 break;
6083 }
6084 goal_mem = 1;
6085 }
6086 else if (CONSTANT_P (goal))
6087 goal_const = 1;
6088 else if (GET_CODE (goal) == PLUS
6089 && XEXP (goal, 0) == stack_pointer_rtx
6090 && CONSTANT_P (XEXP (goal, 1)))
6091 goal_const = need_stable_sp = 1;
6092 else if (GET_CODE (goal) == PLUS
6093 && XEXP (goal, 0) == frame_pointer_rtx
6094 && CONSTANT_P (XEXP (goal, 1)))
6095 goal_const = 1;
6096 else
6097 return 0;
6098
6099 /* On some machines, certain regs must always be rejected
6100 because they don't behave the way ordinary registers do. */
6101
6102 #ifdef OVERLAPPING_REGNO_P
6103 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
6104 && OVERLAPPING_REGNO_P (regno))
6105 return 0;
6106 #endif
6107
6108 /* Scan insns back from INSN, looking for one that copies
6109 a value into or out of GOAL.
6110 Stop and give up if we reach a label. */
6111
6112 while (1)
6113 {
6114 p = PREV_INSN (p);
6115 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6116 return 0;
6117 if (GET_CODE (p) == INSN
6118 /* If we don't want spill regs ... */
6119 && (! (reload_reg_p != 0
6120 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6121 /* ... then ignore insns introduced by reload; they aren't useful
6122 and can cause results in reload_as_needed to be different
6123 from what they were when calculating the need for spills.
6124 If we notice an input-reload insn here, we will reject it below,
6125 but it might hide a usable equivalent. That makes bad code.
6126 It may even abort: perhaps no reg was spilled for this insn
6127 because it was assumed we would find that equivalent. */
6128 || INSN_UID (p) < reload_first_uid))
6129 {
6130 rtx tem;
6131 pat = single_set (p);
6132 /* First check for something that sets some reg equal to GOAL. */
6133 if (pat != 0
6134 && ((regno >= 0
6135 && true_regnum (SET_SRC (pat)) == regno
6136 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6137 ||
6138 (regno >= 0
6139 && true_regnum (SET_DEST (pat)) == regno
6140 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6141 ||
6142 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6143 /* When looking for stack pointer + const,
6144 make sure we don't use a stack adjust. */
6145 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6146 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6147 || (goal_mem
6148 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6149 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6150 || (goal_mem
6151 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6152 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6153 /* If we are looking for a constant,
6154 and something equivalent to that constant was copied
6155 into a reg, we can use that reg. */
6156 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6157 NULL_RTX))
6158 && rtx_equal_p (XEXP (tem, 0), goal)
6159 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6160 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6161 NULL_RTX))
6162 && GET_CODE (SET_DEST (pat)) == REG
6163 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6164 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
6165 && GET_CODE (goal) == CONST_INT
6166 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
6167 VOIDmode))
6168 && rtx_equal_p (goal, goaltry)
6169 && (valtry = operand_subword (SET_DEST (pat), 0, 0,
6170 VOIDmode))
6171 && (valueno = true_regnum (valtry)) >= 0)
6172 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6173 NULL_RTX))
6174 && GET_CODE (SET_DEST (pat)) == REG
6175 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6176 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
6177 && GET_CODE (goal) == CONST_INT
6178 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6179 VOIDmode))
6180 && rtx_equal_p (goal, goaltry)
6181 && (valtry
6182 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6183 && (valueno = true_regnum (valtry)) >= 0)))
6184 if (other >= 0
6185 ? valueno == other
6186 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
6187 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6188 valueno)))
6189 {
6190 value = valtry;
6191 where = p;
6192 break;
6193 }
6194 }
6195 }
6196
6197 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6198 (or copying VALUE into GOAL, if GOAL is also a register).
6199 Now verify that VALUE is really valid. */
6200
6201 /* VALUENO is the register number of VALUE; a hard register. */
6202
6203 /* Don't try to re-use something that is killed in this insn. We want
6204 to be able to trust REG_UNUSED notes. */
6205 if (find_reg_note (where, REG_UNUSED, value))
6206 return 0;
6207
6208 /* If we propose to get the value from the stack pointer or if GOAL is
6209 a MEM based on the stack pointer, we need a stable SP. */
6210 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6211 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6212 goal)))
6213 need_stable_sp = 1;
6214
6215 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6216 if (GET_MODE (value) != mode)
6217 return 0;
6218
6219 /* Reject VALUE if it was loaded from GOAL
6220 and is also a register that appears in the address of GOAL. */
6221
6222 if (goal_mem && value == SET_DEST (single_set (where))
6223 && refers_to_regno_for_reload_p (valueno,
6224 (valueno
6225 + HARD_REGNO_NREGS (valueno, mode)),
6226 goal, NULL_PTR))
6227 return 0;
6228
6229 /* Reject registers that overlap GOAL. */
6230
6231 if (!goal_mem && !goal_const
6232 && regno + HARD_REGNO_NREGS (regno, mode) > valueno
6233 && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
6234 return 0;
6235
6236 /* Reject VALUE if it is one of the regs reserved for reloads.
6237 Reload1 knows how to reuse them anyway, and it would get
6238 confused if we allocated one without its knowledge.
6239 (Now that insns introduced by reload are ignored above,
6240 this case shouldn't happen, but I'm not positive.) */
6241
6242 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
6243 && reload_reg_p[valueno] >= 0)
6244 return 0;
6245
6246 /* On some machines, certain regs must always be rejected
6247 because they don't behave the way ordinary registers do. */
6248
6249 #ifdef OVERLAPPING_REGNO_P
6250 if (OVERLAPPING_REGNO_P (valueno))
6251 return 0;
6252 #endif
6253
6254 nregs = HARD_REGNO_NREGS (regno, mode);
6255 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6256
6257 /* Reject VALUE if it is a register being used for an input reload
6258 even if it is not one of those reserved. */
6259
6260 if (reload_reg_p != 0)
6261 {
6262 int i;
6263 for (i = 0; i < n_reloads; i++)
6264 if (rld[i].reg_rtx != 0 && rld[i].in)
6265 {
6266 int regno1 = REGNO (rld[i].reg_rtx);
6267 int nregs1 = HARD_REGNO_NREGS (regno1,
6268 GET_MODE (rld[i].reg_rtx));
6269 if (regno1 < valueno + valuenregs
6270 && regno1 + nregs1 > valueno)
6271 return 0;
6272 }
6273 }
6274
6275 if (goal_mem)
6276 /* We must treat frame pointer as varying here,
6277 since it can vary--in a nonlocal goto as generated by expand_goto. */
6278 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6279
6280 /* Now verify that the values of GOAL and VALUE remain unaltered
6281 until INSN is reached. */
6282
6283 p = insn;
6284 while (1)
6285 {
6286 p = PREV_INSN (p);
6287 if (p == where)
6288 return value;
6289
6290 /* Don't trust the conversion past a function call
6291 if either of the two is in a call-clobbered register, or memory. */
6292 if (GET_CODE (p) == CALL_INSN
6293 && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
6294 && call_used_regs[regno])
6295 ||
6296 (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
6297 && call_used_regs[valueno])
6298 ||
6299 goal_mem
6300 || need_stable_sp))
6301 return 0;
6302
6303 #ifdef NON_SAVING_SETJMP
6304 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
6305 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
6306 return 0;
6307 #endif
6308
6309 #ifdef INSN_CLOBBERS_REGNO_P
6310 if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
6311 && INSN_CLOBBERS_REGNO_P (p, valueno))
6312 || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
6313 && INSN_CLOBBERS_REGNO_P (p, regno)))
6314 return 0;
6315 #endif
6316
6317 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6318 {
6319 pat = PATTERN (p);
6320
6321 /* Watch out for unspec_volatile, and volatile asms. */
6322 if (volatile_insn_p (pat))
6323 return 0;
6324
6325 /* If this insn P stores in either GOAL or VALUE, return 0.
6326 If GOAL is a memory ref and this insn writes memory, return 0.
6327 If GOAL is a memory ref and its address is not constant,
6328 and this insn P changes a register used in GOAL, return 0. */
6329
6330 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6331 {
6332 register rtx dest = SET_DEST (pat);
6333 while (GET_CODE (dest) == SUBREG
6334 || GET_CODE (dest) == ZERO_EXTRACT
6335 || GET_CODE (dest) == SIGN_EXTRACT
6336 || GET_CODE (dest) == STRICT_LOW_PART)
6337 dest = XEXP (dest, 0);
6338 if (GET_CODE (dest) == REG)
6339 {
6340 register int xregno = REGNO (dest);
6341 int xnregs;
6342 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6343 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6344 else
6345 xnregs = 1;
6346 if (xregno < regno + nregs && xregno + xnregs > regno)
6347 return 0;
6348 if (xregno < valueno + valuenregs
6349 && xregno + xnregs > valueno)
6350 return 0;
6351 if (goal_mem_addr_varies
6352 && reg_overlap_mentioned_for_reload_p (dest, goal))
6353 return 0;
6354 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6355 return 0;
6356 }
6357 else if (goal_mem && GET_CODE (dest) == MEM
6358 && ! push_operand (dest, GET_MODE (dest)))
6359 return 0;
6360 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6361 && reg_equiv_memory_loc[regno] != 0)
6362 return 0;
6363 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6364 return 0;
6365 }
6366 else if (GET_CODE (pat) == PARALLEL)
6367 {
6368 register int i;
6369 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6370 {
6371 register rtx v1 = XVECEXP (pat, 0, i);
6372 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6373 {
6374 register rtx dest = SET_DEST (v1);
6375 while (GET_CODE (dest) == SUBREG
6376 || GET_CODE (dest) == ZERO_EXTRACT
6377 || GET_CODE (dest) == SIGN_EXTRACT
6378 || GET_CODE (dest) == STRICT_LOW_PART)
6379 dest = XEXP (dest, 0);
6380 if (GET_CODE (dest) == REG)
6381 {
6382 register int xregno = REGNO (dest);
6383 int xnregs;
6384 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6385 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6386 else
6387 xnregs = 1;
6388 if (xregno < regno + nregs
6389 && xregno + xnregs > regno)
6390 return 0;
6391 if (xregno < valueno + valuenregs
6392 && xregno + xnregs > valueno)
6393 return 0;
6394 if (goal_mem_addr_varies
6395 && reg_overlap_mentioned_for_reload_p (dest,
6396 goal))
6397 return 0;
6398 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6399 return 0;
6400 }
6401 else if (goal_mem && GET_CODE (dest) == MEM
6402 && ! push_operand (dest, GET_MODE (dest)))
6403 return 0;
6404 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6405 && reg_equiv_memory_loc[regno] != 0)
6406 return 0;
6407 else if (need_stable_sp
6408 && push_operand (dest, GET_MODE (dest)))
6409 return 0;
6410 }
6411 }
6412 }
6413
6414 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6415 {
6416 rtx link;
6417
6418 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6419 link = XEXP (link, 1))
6420 {
6421 pat = XEXP (link, 0);
6422 if (GET_CODE (pat) == CLOBBER)
6423 {
6424 register rtx dest = SET_DEST (pat);
6425 while (GET_CODE (dest) == SUBREG
6426 || GET_CODE (dest) == ZERO_EXTRACT
6427 || GET_CODE (dest) == SIGN_EXTRACT
6428 || GET_CODE (dest) == STRICT_LOW_PART)
6429 dest = XEXP (dest, 0);
6430 if (GET_CODE (dest) == REG)
6431 {
6432 register int xregno = REGNO (dest);
6433 int xnregs;
6434 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6435 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6436 else
6437 xnregs = 1;
6438 if (xregno < regno + nregs
6439 && xregno + xnregs > regno)
6440 return 0;
6441 if (xregno < valueno + valuenregs
6442 && xregno + xnregs > valueno)
6443 return 0;
6444 if (goal_mem_addr_varies
6445 && reg_overlap_mentioned_for_reload_p (dest,
6446 goal))
6447 return 0;
6448 }
6449 else if (goal_mem && GET_CODE (dest) == MEM
6450 && ! push_operand (dest, GET_MODE (dest)))
6451 return 0;
6452 else if (need_stable_sp
6453 && push_operand (dest, GET_MODE (dest)))
6454 return 0;
6455 }
6456 }
6457 }
6458
6459 #ifdef AUTO_INC_DEC
6460 /* If this insn auto-increments or auto-decrements
6461 either regno or valueno, return 0 now.
6462 If GOAL is a memory ref and its address is not constant,
6463 and this insn P increments a register used in GOAL, return 0. */
6464 {
6465 register rtx link;
6466
6467 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6468 if (REG_NOTE_KIND (link) == REG_INC
6469 && GET_CODE (XEXP (link, 0)) == REG)
6470 {
6471 register int incno = REGNO (XEXP (link, 0));
6472 if (incno < regno + nregs && incno >= regno)
6473 return 0;
6474 if (incno < valueno + valuenregs && incno >= valueno)
6475 return 0;
6476 if (goal_mem_addr_varies
6477 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6478 goal))
6479 return 0;
6480 }
6481 }
6482 #endif
6483 }
6484 }
6485 }
6486 \f
6487 /* Find a place where INCED appears in an increment or decrement operator
6488 within X, and return the amount INCED is incremented or decremented by.
6489 The value is always positive. */
6490
6491 static int
6492 find_inc_amount (x, inced)
6493 rtx x, inced;
6494 {
6495 register enum rtx_code code = GET_CODE (x);
6496 register const char *fmt;
6497 register int i;
6498
6499 if (code == MEM)
6500 {
6501 register rtx addr = XEXP (x, 0);
6502 if ((GET_CODE (addr) == PRE_DEC
6503 || GET_CODE (addr) == POST_DEC
6504 || GET_CODE (addr) == PRE_INC
6505 || GET_CODE (addr) == POST_INC)
6506 && XEXP (addr, 0) == inced)
6507 return GET_MODE_SIZE (GET_MODE (x));
6508 }
6509
6510 fmt = GET_RTX_FORMAT (code);
6511 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6512 {
6513 if (fmt[i] == 'e')
6514 {
6515 register int tem = find_inc_amount (XEXP (x, i), inced);
6516 if (tem != 0)
6517 return tem;
6518 }
6519 if (fmt[i] == 'E')
6520 {
6521 register int j;
6522 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6523 {
6524 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6525 if (tem != 0)
6526 return tem;
6527 }
6528 }
6529 }
6530
6531 return 0;
6532 }
6533 \f
6534 /* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6535
6536 int
6537 regno_clobbered_p (regno, insn)
6538 int regno;
6539 rtx insn;
6540 {
6541 if (GET_CODE (PATTERN (insn)) == CLOBBER
6542 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6543 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
6544
6545 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6546 {
6547 int i = XVECLEN (PATTERN (insn), 0) - 1;
6548
6549 for (; i >= 0; i--)
6550 {
6551 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6552 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
6553 && REGNO (XEXP (elt, 0)) == regno)
6554 return 1;
6555 }
6556 }
6557
6558 return 0;
6559 }
6560
6561 static const char *reload_when_needed_name[] =
6562 {
6563 "RELOAD_FOR_INPUT",
6564 "RELOAD_FOR_OUTPUT",
6565 "RELOAD_FOR_INSN",
6566 "RELOAD_FOR_INPUT_ADDRESS",
6567 "RELOAD_FOR_INPADDR_ADDRESS",
6568 "RELOAD_FOR_OUTPUT_ADDRESS",
6569 "RELOAD_FOR_OUTADDR_ADDRESS",
6570 "RELOAD_FOR_OPERAND_ADDRESS",
6571 "RELOAD_FOR_OPADDR_ADDR",
6572 "RELOAD_OTHER",
6573 "RELOAD_FOR_OTHER_ADDRESS"
6574 };
6575
6576 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6577
6578 /* These functions are used to print the variables set by 'find_reloads' */
6579
6580 void
6581 debug_reload_to_stream (f)
6582 FILE *f;
6583 {
6584 int r;
6585 const char *prefix;
6586
6587 if (! f)
6588 f = stderr;
6589 for (r = 0; r < n_reloads; r++)
6590 {
6591 fprintf (f, "Reload %d: ", r);
6592
6593 if (rld[r].in != 0)
6594 {
6595 fprintf (f, "reload_in (%s) = ",
6596 GET_MODE_NAME (rld[r].inmode));
6597 print_inline_rtx (f, rld[r].in, 24);
6598 fprintf (f, "\n\t");
6599 }
6600
6601 if (rld[r].out != 0)
6602 {
6603 fprintf (f, "reload_out (%s) = ",
6604 GET_MODE_NAME (rld[r].outmode));
6605 print_inline_rtx (f, rld[r].out, 24);
6606 fprintf (f, "\n\t");
6607 }
6608
6609 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6610
6611 fprintf (f, "%s (opnum = %d)",
6612 reload_when_needed_name[(int) rld[r].when_needed],
6613 rld[r].opnum);
6614
6615 if (rld[r].optional)
6616 fprintf (f, ", optional");
6617
6618 if (rld[r].nongroup)
6619 fprintf (stderr, ", nongroup");
6620
6621 if (rld[r].inc != 0)
6622 fprintf (f, ", inc by %d", rld[r].inc);
6623
6624 if (rld[r].nocombine)
6625 fprintf (f, ", can't combine");
6626
6627 if (rld[r].secondary_p)
6628 fprintf (f, ", secondary_reload_p");
6629
6630 if (rld[r].in_reg != 0)
6631 {
6632 fprintf (f, "\n\treload_in_reg: ");
6633 print_inline_rtx (f, rld[r].in_reg, 24);
6634 }
6635
6636 if (rld[r].out_reg != 0)
6637 {
6638 fprintf (f, "\n\treload_out_reg: ");
6639 print_inline_rtx (f, rld[r].out_reg, 24);
6640 }
6641
6642 if (rld[r].reg_rtx != 0)
6643 {
6644 fprintf (f, "\n\treload_reg_rtx: ");
6645 print_inline_rtx (f, rld[r].reg_rtx, 24);
6646 }
6647
6648 prefix = "\n\t";
6649 if (rld[r].secondary_in_reload != -1)
6650 {
6651 fprintf (f, "%ssecondary_in_reload = %d",
6652 prefix, rld[r].secondary_in_reload);
6653 prefix = ", ";
6654 }
6655
6656 if (rld[r].secondary_out_reload != -1)
6657 fprintf (f, "%ssecondary_out_reload = %d\n",
6658 prefix, rld[r].secondary_out_reload);
6659
6660 prefix = "\n\t";
6661 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6662 {
6663 fprintf (stderr, "%ssecondary_in_icode = %s", prefix,
6664 insn_data[rld[r].secondary_in_icode].name);
6665 prefix = ", ";
6666 }
6667
6668 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6669 fprintf (stderr, "%ssecondary_out_icode = %s", prefix,
6670 insn_data[rld[r].secondary_out_icode].name);
6671
6672 fprintf (f, "\n");
6673 }
6674 }
6675
6676 void
6677 debug_reload ()
6678 {
6679 debug_reload_to_stream (stderr);
6680 }
This page took 0.438304 seconds and 6 git commands to generate.