1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 88, 89, 92, 93, 94, 1995 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
93 #include "insn-config.h"
94 #include "insn-codes.h"
98 #include "hard-reg-set.h"
102 #ifndef REGISTER_MOVE_COST
103 #define REGISTER_MOVE_COST(x, y) 2
106 /* The variables set up by `find_reloads' are:
108 n_reloads number of distinct reloads needed; max reload # + 1
109 tables indexed by reload number
110 reload_in rtx for value to reload from
111 reload_out rtx for where to store reload-reg afterward if nec
112 (often the same as reload_in)
113 reload_reg_class enum reg_class, saying what regs to reload into
114 reload_inmode enum machine_mode; mode this operand should have
115 when reloaded, on input.
116 reload_outmode enum machine_mode; mode this operand should have
117 when reloaded, on output.
118 reload_optional char, nonzero for an optional reload.
119 Optional reloads are ignored unless the
120 value is already sitting in a register.
121 reload_inc int, positive amount to increment or decrement by if
122 reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
123 Ignored otherwise (don't assume it is zero).
124 reload_in_reg rtx. A reg for which reload_in is the equivalent.
125 If reload_in is a symbol_ref which came from
126 reg_equiv_constant, then this is the pseudo
127 which has that symbol_ref as equivalent.
128 reload_reg_rtx rtx. This is the register to reload into.
129 If it is zero when `find_reloads' returns,
130 you must find a suitable register in the class
131 specified by reload_reg_class, and store here
132 an rtx for that register with mode from
133 reload_inmode or reload_outmode.
134 reload_nocombine char, nonzero if this reload shouldn't be
135 combined with another reload.
136 reload_opnum int, operand number being reloaded. This is
137 used to group related reloads and need not always
138 be equal to the actual operand number in the insn,
139 though it current will be; for in-out operands, it
140 is one of the two operand numbers.
141 reload_when_needed enum, classifies reload as needed either for
142 addressing an input reload, addressing an output,
143 for addressing a non-reloaded mem ref,
144 or for unspecified purposes (i.e., more than one
146 reload_secondary_p int, 1 if this is a secondary register for one
148 reload_secondary_in_reload
149 reload_secondary_out_reload
150 int, gives the reload number of a secondary
151 reload, when needed; otherwise -1
152 reload_secondary_in_icode
153 reload_secondary_out_icode
154 enum insn_code, if a secondary reload is required,
155 gives the INSN_CODE that uses the secondary
156 reload as a scratch register, or CODE_FOR_nothing
157 if the secondary reload register is to be an
158 intermediate register. */
161 rtx reload_in
[MAX_RELOADS
];
162 rtx reload_out
[MAX_RELOADS
];
163 enum reg_class reload_reg_class
[MAX_RELOADS
];
164 enum machine_mode reload_inmode
[MAX_RELOADS
];
165 enum machine_mode reload_outmode
[MAX_RELOADS
];
166 rtx reload_reg_rtx
[MAX_RELOADS
];
167 char reload_optional
[MAX_RELOADS
];
168 int reload_inc
[MAX_RELOADS
];
169 rtx reload_in_reg
[MAX_RELOADS
];
170 char reload_nocombine
[MAX_RELOADS
];
171 int reload_opnum
[MAX_RELOADS
];
172 enum reload_type reload_when_needed
[MAX_RELOADS
];
173 int reload_secondary_p
[MAX_RELOADS
];
174 int reload_secondary_in_reload
[MAX_RELOADS
];
175 int reload_secondary_out_reload
[MAX_RELOADS
];
176 enum insn_code reload_secondary_in_icode
[MAX_RELOADS
];
177 enum insn_code reload_secondary_out_icode
[MAX_RELOADS
];
179 /* All the "earlyclobber" operands of the current insn
180 are recorded here. */
182 rtx reload_earlyclobbers
[MAX_RECOG_OPERANDS
];
184 int reload_n_operands
;
186 /* Replacing reloads.
188 If `replace_reloads' is nonzero, then as each reload is recorded
189 an entry is made for it in the table `replacements'.
190 Then later `subst_reloads' can look through that table and
191 perform all the replacements needed. */
193 /* Nonzero means record the places to replace. */
194 static int replace_reloads
;
196 /* Each replacement is recorded with a structure like this. */
199 rtx
*where
; /* Location to store in */
200 rtx
*subreg_loc
; /* Location of SUBREG if WHERE is inside
201 a SUBREG; 0 otherwise. */
202 int what
; /* which reload this is for */
203 enum machine_mode mode
; /* mode it must have */
206 static struct replacement replacements
[MAX_RECOG_OPERANDS
* ((MAX_REGS_PER_ADDRESS
* 2) + 1)];
208 /* Number of replacements currently recorded. */
209 static int n_replacements
;
211 /* Used to track what is modified by an operand. */
214 int reg_flag
; /* Nonzero if referencing a register. */
215 int safe
; /* Nonzero if this can't conflict with anything. */
216 rtx base
; /* Base address for MEM. */
217 HOST_WIDE_INT start
; /* Starting offset or register number. */
218 HOST_WIDE_INT end
; /* Ending offset or register number. */
221 /* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
222 (see reg_equiv_address). */
223 static rtx memlocs
[MAX_RECOG_OPERANDS
* ((MAX_REGS_PER_ADDRESS
* 2) + 1)];
224 static int n_memlocs
;
226 #ifdef SECONDARY_MEMORY_NEEDED
228 /* Save MEMs needed to copy from one class of registers to another. One MEM
229 is used per mode, but normally only one or two modes are ever used.
231 We keep two versions, before and after register elimination. The one
232 after register elimination is record separately for each operand. This
233 is done in case the address is not valid to be sure that we separately
236 static rtx secondary_memlocs
[NUM_MACHINE_MODES
];
237 static rtx secondary_memlocs_elim
[NUM_MACHINE_MODES
][MAX_RECOG_OPERANDS
];
240 /* The instruction we are doing reloads for;
241 so we can test whether a register dies in it. */
242 static rtx this_insn
;
244 /* Nonzero if this instruction is a user-specified asm with operands. */
245 static int this_insn_is_asm
;
247 /* If hard_regs_live_known is nonzero,
248 we can tell which hard regs are currently live,
249 at least enough to succeed in choosing dummy reloads. */
250 static int hard_regs_live_known
;
252 /* Indexed by hard reg number,
253 element is nonegative if hard reg has been spilled.
254 This vector is passed to `find_reloads' as an argument
255 and is not changed here. */
256 static short *static_reload_reg_p
;
258 /* Set to 1 in subst_reg_equivs if it changes anything. */
259 static int subst_reg_equivs_changed
;
261 /* On return from push_reload, holds the reload-number for the OUT
262 operand, which can be different for that from the input operand. */
263 static int output_reloadnum
;
265 /* Compare two RTX's. */
266 #define MATCHES(x, y) \
267 (x == y || (x != 0 && (GET_CODE (x) == REG \
268 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
269 : rtx_equal_p (x, y) && ! side_effects_p (x))))
271 /* Indicates if two reloads purposes are for similar enough things that we
272 can merge their reloads. */
273 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
274 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
275 || ((when1) == (when2) && (op1) == (op2)) \
276 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
277 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
278 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
279 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
280 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
282 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
283 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
284 ((when1) != (when2) \
285 || ! ((op1) == (op2) \
286 || (when1) == RELOAD_FOR_INPUT \
287 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
288 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
290 static int push_secondary_reload
PROTO((int, rtx
, int, int, enum reg_class
,
291 enum machine_mode
, enum reload_type
,
293 static int push_reload
PROTO((rtx
, rtx
, rtx
*, rtx
*, enum reg_class
,
294 enum machine_mode
, enum machine_mode
,
295 int, int, int, enum reload_type
));
296 static void push_replacement
PROTO((rtx
*, int, enum machine_mode
));
297 static void combine_reloads
PROTO((void));
298 static rtx find_dummy_reload
PROTO((rtx
, rtx
, rtx
*, rtx
*,
299 enum machine_mode
, enum machine_mode
,
300 enum reg_class
, int));
301 static int earlyclobber_operand_p
PROTO((rtx
));
302 static int hard_reg_set_here_p
PROTO((int, int, rtx
));
303 static struct decomposition decompose
PROTO((rtx
));
304 static int immune_p
PROTO((rtx
, rtx
, struct decomposition
));
305 static int alternative_allows_memconst
PROTO((char *, int));
306 static rtx find_reloads_toplev
PROTO((rtx
, int, enum reload_type
, int, int));
307 static rtx make_memloc
PROTO((rtx
, int));
308 static int find_reloads_address
PROTO((enum machine_mode
, rtx
*, rtx
, rtx
*,
309 int, enum reload_type
, int));
310 static rtx subst_reg_equivs
PROTO((rtx
));
311 static rtx subst_indexed_address
PROTO((rtx
));
312 static int find_reloads_address_1
PROTO((rtx
, int, rtx
*, int,
313 enum reload_type
,int));
314 static void find_reloads_address_part
PROTO((rtx
, rtx
*, enum reg_class
,
315 enum machine_mode
, int,
316 enum reload_type
, int));
317 static int find_inc_amount
PROTO((rtx
, rtx
));
319 #ifdef HAVE_SECONDARY_RELOADS
321 /* Determine if any secondary reloads are needed for loading (if IN_P is
322 non-zero) or storing (if IN_P is zero) X to or from a reload register of
323 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
324 are needed, push them.
326 Return the reload number of the secondary reload we made, or -1 if
327 we didn't need one. *PICODE is set to the insn_code to use if we do
328 need a secondary reload. */
331 push_secondary_reload (in_p
, x
, opnum
, optional
, reload_class
, reload_mode
,
337 enum reg_class reload_class
;
338 enum machine_mode reload_mode
;
339 enum reload_type type
;
340 enum insn_code
*picode
;
342 enum reg_class
class = NO_REGS
;
343 enum machine_mode mode
= reload_mode
;
344 enum insn_code icode
= CODE_FOR_nothing
;
345 enum reg_class t_class
= NO_REGS
;
346 enum machine_mode t_mode
= VOIDmode
;
347 enum insn_code t_icode
= CODE_FOR_nothing
;
348 enum reload_type secondary_type
;
350 int s_reload
, t_reload
= -1;
352 if (type
== RELOAD_FOR_INPUT_ADDRESS
|| type
== RELOAD_FOR_OUTPUT_ADDRESS
)
353 secondary_type
= type
;
355 secondary_type
= in_p
? RELOAD_FOR_INPUT_ADDRESS
: RELOAD_FOR_OUTPUT_ADDRESS
;
357 *picode
= CODE_FOR_nothing
;
359 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
360 is still a pseudo-register by now, it *must* have an equivalent MEM
361 but we don't want to assume that), use that equivalent when seeing if
362 a secondary reload is needed since whether or not a reload is needed
363 might be sensitive to the form of the MEM. */
365 if (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
366 && reg_equiv_mem
[REGNO (x
)] != 0)
367 x
= reg_equiv_mem
[REGNO (x
)];
369 #ifdef SECONDARY_INPUT_RELOAD_CLASS
371 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class
, reload_mode
, x
);
374 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
376 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class
, reload_mode
, x
);
379 /* If we don't need any secondary registers, done. */
380 if (class == NO_REGS
)
383 /* Get a possible insn to use. If the predicate doesn't accept X, don't
386 icode
= (in_p
? reload_in_optab
[(int) reload_mode
]
387 : reload_out_optab
[(int) reload_mode
]);
389 if (icode
!= CODE_FOR_nothing
390 && insn_operand_predicate
[(int) icode
][in_p
]
391 && (! (insn_operand_predicate
[(int) icode
][in_p
]) (x
, reload_mode
)))
392 icode
= CODE_FOR_nothing
;
394 /* If we will be using an insn, see if it can directly handle the reload
395 register we will be using. If it can, the secondary reload is for a
396 scratch register. If it can't, we will use the secondary reload for
397 an intermediate register and require a tertiary reload for the scratch
400 if (icode
!= CODE_FOR_nothing
)
402 /* If IN_P is non-zero, the reload register will be the output in
403 operand 0. If IN_P is zero, the reload register will be the input
404 in operand 1. Outputs should have an initial "=", which we must
407 char insn_letter
= insn_operand_constraint
[(int) icode
][!in_p
][in_p
];
408 enum reg_class insn_class
409 = (insn_letter
== 'r' ? GENERAL_REGS
410 : REG_CLASS_FROM_LETTER (insn_letter
));
412 if (insn_class
== NO_REGS
413 || (in_p
&& insn_operand_constraint
[(int) icode
][!in_p
][0] != '=')
414 /* The scratch register's constraint must start with "=&". */
415 || insn_operand_constraint
[(int) icode
][2][0] != '='
416 || insn_operand_constraint
[(int) icode
][2][1] != '&')
419 if (reg_class_subset_p (reload_class
, insn_class
))
420 mode
= insn_operand_mode
[(int) icode
][2];
423 char t_letter
= insn_operand_constraint
[(int) icode
][2][2];
425 t_mode
= insn_operand_mode
[(int) icode
][2];
426 t_class
= (t_letter
== 'r' ? GENERAL_REGS
427 : REG_CLASS_FROM_LETTER (t_letter
));
429 icode
= CODE_FOR_nothing
;
433 /* This case isn't valid, so fail. Reload is allowed to use the same
434 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
435 in the case of a secondary register, we actually need two different
436 registers for correct code. We fail here to prevent the possibility of
437 silently generating incorrect code later.
439 The convention is that secondary input reloads are valid only if the
440 secondary_class is different from class. If you have such a case, you
441 can not use secondary reloads, you must work around the problem some
444 Allow this when MODE is not reload_mode and assume that the generated
445 code handles this case (it does on the Alpha, which is the only place
446 this currently happens). */
448 if (in_p
&& class == reload_class
&& mode
== reload_mode
)
451 /* If we need a tertiary reload, see if we have one we can reuse or else
454 if (t_class
!= NO_REGS
)
456 for (t_reload
= 0; t_reload
< n_reloads
; t_reload
++)
457 if (reload_secondary_p
[t_reload
]
458 && (reg_class_subset_p (t_class
, reload_reg_class
[t_reload
])
459 || reg_class_subset_p (reload_reg_class
[t_reload
], t_class
))
460 && ((in_p
&& reload_inmode
[t_reload
] == t_mode
)
461 || (! in_p
&& reload_outmode
[t_reload
] == t_mode
))
462 && ((in_p
&& (reload_secondary_in_icode
[t_reload
]
463 == CODE_FOR_nothing
))
464 || (! in_p
&&(reload_secondary_out_icode
[t_reload
]
465 == CODE_FOR_nothing
)))
466 && (reg_class_size
[(int) t_class
] == 1
467 #ifdef SMALL_REGISTER_CLASSES
471 && MERGABLE_RELOADS (secondary_type
,
472 reload_when_needed
[t_reload
],
473 opnum
, reload_opnum
[t_reload
]))
476 reload_inmode
[t_reload
] = t_mode
;
478 reload_outmode
[t_reload
] = t_mode
;
480 if (reg_class_subset_p (t_class
, reload_reg_class
[t_reload
]))
481 reload_reg_class
[t_reload
] = t_class
;
483 reload_opnum
[t_reload
] = MIN (reload_opnum
[t_reload
], opnum
);
484 reload_optional
[t_reload
] &= optional
;
485 reload_secondary_p
[t_reload
] = 1;
486 if (MERGE_TO_OTHER (secondary_type
, reload_when_needed
[t_reload
],
487 opnum
, reload_opnum
[t_reload
]))
488 reload_when_needed
[t_reload
] = RELOAD_OTHER
;
491 if (t_reload
== n_reloads
)
493 /* We need to make a new tertiary reload for this register class. */
494 reload_in
[t_reload
] = reload_out
[t_reload
] = 0;
495 reload_reg_class
[t_reload
] = t_class
;
496 reload_inmode
[t_reload
] = in_p
? t_mode
: VOIDmode
;
497 reload_outmode
[t_reload
] = ! in_p
? t_mode
: VOIDmode
;
498 reload_reg_rtx
[t_reload
] = 0;
499 reload_optional
[t_reload
] = optional
;
500 reload_inc
[t_reload
] = 0;
501 /* Maybe we could combine these, but it seems too tricky. */
502 reload_nocombine
[t_reload
] = 1;
503 reload_in_reg
[t_reload
] = 0;
504 reload_opnum
[t_reload
] = opnum
;
505 reload_when_needed
[t_reload
] = secondary_type
;
506 reload_secondary_in_reload
[t_reload
] = -1;
507 reload_secondary_out_reload
[t_reload
] = -1;
508 reload_secondary_in_icode
[t_reload
] = CODE_FOR_nothing
;
509 reload_secondary_out_icode
[t_reload
] = CODE_FOR_nothing
;
510 reload_secondary_p
[t_reload
] = 1;
516 /* See if we can reuse an existing secondary reload. */
517 for (s_reload
= 0; s_reload
< n_reloads
; s_reload
++)
518 if (reload_secondary_p
[s_reload
]
519 && (reg_class_subset_p (class, reload_reg_class
[s_reload
])
520 || reg_class_subset_p (reload_reg_class
[s_reload
], class))
521 && ((in_p
&& reload_inmode
[s_reload
] == mode
)
522 || (! in_p
&& reload_outmode
[s_reload
] == mode
))
523 && ((in_p
&& reload_secondary_in_reload
[s_reload
] == t_reload
)
524 || (! in_p
&& reload_secondary_out_reload
[s_reload
] == t_reload
))
525 && ((in_p
&& reload_secondary_in_icode
[s_reload
] == t_icode
)
526 || (! in_p
&& reload_secondary_out_icode
[s_reload
] == t_icode
))
527 && (reg_class_size
[(int) class] == 1
528 #ifdef SMALL_REGISTER_CLASSES
532 && MERGABLE_RELOADS (secondary_type
, reload_when_needed
[s_reload
],
533 opnum
, reload_opnum
[s_reload
]))
536 reload_inmode
[s_reload
] = mode
;
538 reload_outmode
[s_reload
] = mode
;
540 if (reg_class_subset_p (class, reload_reg_class
[s_reload
]))
541 reload_reg_class
[s_reload
] = class;
543 reload_opnum
[s_reload
] = MIN (reload_opnum
[s_reload
], opnum
);
544 reload_optional
[s_reload
] &= optional
;
545 reload_secondary_p
[s_reload
] = 1;
546 if (MERGE_TO_OTHER (secondary_type
, reload_when_needed
[s_reload
],
547 opnum
, reload_opnum
[s_reload
]))
548 reload_when_needed
[s_reload
] = RELOAD_OTHER
;
551 if (s_reload
== n_reloads
)
553 /* We need to make a new secondary reload for this register class. */
554 reload_in
[s_reload
] = reload_out
[s_reload
] = 0;
555 reload_reg_class
[s_reload
] = class;
557 reload_inmode
[s_reload
] = in_p
? mode
: VOIDmode
;
558 reload_outmode
[s_reload
] = ! in_p
? mode
: VOIDmode
;
559 reload_reg_rtx
[s_reload
] = 0;
560 reload_optional
[s_reload
] = optional
;
561 reload_inc
[s_reload
] = 0;
562 /* Maybe we could combine these, but it seems too tricky. */
563 reload_nocombine
[s_reload
] = 1;
564 reload_in_reg
[s_reload
] = 0;
565 reload_opnum
[s_reload
] = opnum
;
566 reload_when_needed
[s_reload
] = secondary_type
;
567 reload_secondary_in_reload
[s_reload
] = in_p
? t_reload
: -1;
568 reload_secondary_out_reload
[s_reload
] = ! in_p
? t_reload
: -1;
569 reload_secondary_in_icode
[s_reload
] = in_p
? t_icode
: CODE_FOR_nothing
;
570 reload_secondary_out_icode
[s_reload
]
571 = ! in_p
? t_icode
: CODE_FOR_nothing
;
572 reload_secondary_p
[s_reload
] = 1;
576 #ifdef SECONDARY_MEMORY_NEEDED
577 /* If we need a memory location to copy between the two reload regs,
580 if (in_p
&& icode
== CODE_FOR_nothing
581 && SECONDARY_MEMORY_NEEDED (class, reload_class
, reload_mode
))
582 get_secondary_mem (x
, reload_mode
, opnum
, type
);
584 if (! in_p
&& icode
== CODE_FOR_nothing
585 && SECONDARY_MEMORY_NEEDED (reload_class
, class, reload_mode
))
586 get_secondary_mem (x
, reload_mode
, opnum
, type
);
593 #endif /* HAVE_SECONDARY_RELOADS */
595 #ifdef SECONDARY_MEMORY_NEEDED
597 /* Return a memory location that will be used to copy X in mode MODE.
598 If we haven't already made a location for this mode in this insn,
599 call find_reloads_address on the location being returned. */
602 get_secondary_mem (x
, mode
, opnum
, type
)
604 enum machine_mode mode
;
606 enum reload_type type
;
611 /* By default, if MODE is narrower than a word, widen it to a word.
612 This is required because most machines that require these memory
613 locations do not support short load and stores from all registers
614 (e.g., FP registers). */
616 #ifdef SECONDARY_MEMORY_NEEDED_MODE
617 mode
= SECONDARY_MEMORY_NEEDED_MODE (mode
);
619 if (GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
)
620 mode
= mode_for_size (BITS_PER_WORD
, GET_MODE_CLASS (mode
), 0);
623 /* If we already have made a MEM for this operand in MODE, return it. */
624 if (secondary_memlocs_elim
[(int) mode
][opnum
] != 0)
625 return secondary_memlocs_elim
[(int) mode
][opnum
];
627 /* If this is the first time we've tried to get a MEM for this mode,
628 allocate a new one. `something_changed' in reload will get set
629 by noticing that the frame size has changed. */
631 if (secondary_memlocs
[(int) mode
] == 0)
633 #ifdef SECONDARY_MEMORY_NEEDED_RTX
634 secondary_memlocs
[(int) mode
] = SECONDARY_MEMORY_NEEDED_RTX (mode
);
636 secondary_memlocs
[(int) mode
]
637 = assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
641 /* Get a version of the address doing any eliminations needed. If that
642 didn't give us a new MEM, make a new one if it isn't valid. */
644 loc
= eliminate_regs (secondary_memlocs
[(int) mode
], VOIDmode
, NULL_RTX
);
645 mem_valid
= strict_memory_address_p (mode
, XEXP (loc
, 0));
647 if (! mem_valid
&& loc
== secondary_memlocs
[(int) mode
])
648 loc
= copy_rtx (loc
);
650 /* The only time the call below will do anything is if the stack
651 offset is too large. In that case IND_LEVELS doesn't matter, so we
652 can just pass a zero. Adjust the type to be the address of the
653 corresponding object. If the address was valid, save the eliminated
654 address. If it wasn't valid, we need to make a reload each time, so
659 type
= (type
== RELOAD_FOR_INPUT
? RELOAD_FOR_INPUT_ADDRESS
660 : type
== RELOAD_FOR_OUTPUT
? RELOAD_FOR_OUTPUT_ADDRESS
663 find_reloads_address (mode
, NULL_PTR
, XEXP (loc
, 0), &XEXP (loc
, 0),
667 secondary_memlocs_elim
[(int) mode
][opnum
] = loc
;
671 /* Clear any secondary memory locations we've made. */
674 clear_secondary_mem ()
676 bzero ((char *) secondary_memlocs
, sizeof secondary_memlocs
);
678 #endif /* SECONDARY_MEMORY_NEEDED */
680 /* Record one reload that needs to be performed.
681 IN is an rtx saying where the data are to be found before this instruction.
682 OUT says where they must be stored after the instruction.
683 (IN is zero for data not read, and OUT is zero for data not written.)
684 INLOC and OUTLOC point to the places in the instructions where
685 IN and OUT were found.
686 If IN and OUT are both non-zero, it means the same register must be used
687 to reload both IN and OUT.
689 CLASS is a register class required for the reloaded data.
690 INMODE is the machine mode that the instruction requires
691 for the reg that replaces IN and OUTMODE is likewise for OUT.
693 If IN is zero, then OUT's location and mode should be passed as
696 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
698 OPTIONAL nonzero means this reload does not need to be performed:
699 it can be discarded if that is more convenient.
701 OPNUM and TYPE say what the purpose of this reload is.
703 The return value is the reload-number for this reload.
705 If both IN and OUT are nonzero, in some rare cases we might
706 want to make two separate reloads. (Actually we never do this now.)
707 Therefore, the reload-number for OUT is stored in
708 output_reloadnum when we return; the return value applies to IN.
709 Usually (presently always), when IN and OUT are nonzero,
710 the two reload-numbers are equal, but the caller should be careful to
714 push_reload (in
, out
, inloc
, outloc
, class,
715 inmode
, outmode
, strict_low
, optional
, opnum
, type
)
716 register rtx in
, out
;
718 enum reg_class
class;
719 enum machine_mode inmode
, outmode
;
723 enum reload_type type
;
727 rtx
*in_subreg_loc
= 0, *out_subreg_loc
= 0;
728 int secondary_in_reload
= -1, secondary_out_reload
= -1;
729 enum insn_code secondary_in_icode
= CODE_FOR_nothing
;
730 enum insn_code secondary_out_icode
= CODE_FOR_nothing
;
732 /* INMODE and/or OUTMODE could be VOIDmode if no mode
733 has been specified for the operand. In that case,
734 use the operand's mode as the mode to reload. */
735 if (inmode
== VOIDmode
&& in
!= 0)
736 inmode
= GET_MODE (in
);
737 if (outmode
== VOIDmode
&& out
!= 0)
738 outmode
= GET_MODE (out
);
740 /* If IN is a pseudo register everywhere-equivalent to a constant, and
741 it is not in a hard register, reload straight from the constant,
742 since we want to get rid of such pseudo registers.
743 Often this is done earlier, but not always in find_reloads_address. */
744 if (in
!= 0 && GET_CODE (in
) == REG
)
746 register int regno
= REGNO (in
);
748 if (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
749 && reg_equiv_constant
[regno
] != 0)
750 in
= reg_equiv_constant
[regno
];
753 /* Likewise for OUT. Of course, OUT will never be equivalent to
754 an actual constant, but it might be equivalent to a memory location
755 (in the case of a parameter). */
756 if (out
!= 0 && GET_CODE (out
) == REG
)
758 register int regno
= REGNO (out
);
760 if (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
761 && reg_equiv_constant
[regno
] != 0)
762 out
= reg_equiv_constant
[regno
];
765 /* If we have a read-write operand with an address side-effect,
766 change either IN or OUT so the side-effect happens only once. */
767 if (in
!= 0 && out
!= 0 && GET_CODE (in
) == MEM
&& rtx_equal_p (in
, out
))
769 if (GET_CODE (XEXP (in
, 0)) == POST_INC
770 || GET_CODE (XEXP (in
, 0)) == POST_DEC
)
771 in
= gen_rtx (MEM
, GET_MODE (in
), XEXP (XEXP (in
, 0), 0));
772 if (GET_CODE (XEXP (in
, 0)) == PRE_INC
773 || GET_CODE (XEXP (in
, 0)) == PRE_DEC
)
774 out
= gen_rtx (MEM
, GET_MODE (out
), XEXP (XEXP (out
, 0), 0));
777 /* If we are reloading a (SUBREG constant ...), really reload just the
778 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
779 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
780 a pseudo and hence will become a MEM) with M1 wider than M2 and the
781 register is a pseudo, also reload the inside expression.
782 For machines that extend byte loads, do this for any SUBREG of a pseudo
783 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
784 M2 is an integral mode that gets extended when loaded.
785 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
786 either M1 is not valid for R or M2 is wider than a word but we only
787 need one word to store an M2-sized quantity in R.
788 (However, if OUT is nonzero, we need to reload the reg *and*
789 the subreg, so do nothing here, and let following statement handle it.)
791 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
792 we can't handle it here because CONST_INT does not indicate a mode.
794 Similarly, we must reload the inside expression if we have a
795 STRICT_LOW_PART (presumably, in == out in the cas).
797 Also reload the inner expression if it does not require a secondary
798 reload but the SUBREG does.
800 Finally, reload the inner expression if it is a register that is in
801 the class whose registers cannot be referenced in a different size
802 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
803 cannot reload just the inside since we might end up with the wrong
806 if (in
!= 0 && GET_CODE (in
) == SUBREG
&& SUBREG_WORD (in
) == 0
807 #ifdef CLASS_CANNOT_CHANGE_SIZE
808 && class != CLASS_CANNOT_CHANGE_SIZE
810 && (CONSTANT_P (SUBREG_REG (in
))
811 || GET_CODE (SUBREG_REG (in
)) == PLUS
813 || (((GET_CODE (SUBREG_REG (in
)) == REG
814 && REGNO (SUBREG_REG (in
)) >= FIRST_PSEUDO_REGISTER
)
815 || GET_CODE (SUBREG_REG (in
)) == MEM
)
816 && ((GET_MODE_SIZE (inmode
)
817 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))))
818 #ifdef LOAD_EXTEND_OP
819 || (GET_MODE_SIZE (inmode
) <= UNITS_PER_WORD
820 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
822 && (GET_MODE_SIZE (inmode
)
823 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))))
824 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in
)))
825 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in
))) != NIL
)
828 || (GET_CODE (SUBREG_REG (in
)) == REG
829 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
830 /* The case where out is nonzero
831 is handled differently in the following statement. */
832 && (out
== 0 || SUBREG_WORD (in
) == 0)
833 && ((GET_MODE_SIZE (inmode
) <= UNITS_PER_WORD
834 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
836 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
838 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in
)),
839 GET_MODE (SUBREG_REG (in
)))))
840 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in
))
843 #ifdef SECONDARY_INPUT_RELOAD_CLASS
844 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode
, in
) != NO_REGS
845 && (SECONDARY_INPUT_RELOAD_CLASS (class,
846 GET_MODE (SUBREG_REG (in
)),
850 #ifdef CLASS_CANNOT_CHANGE_SIZE
851 || (GET_CODE (SUBREG_REG (in
)) == REG
852 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
853 && (TEST_HARD_REG_BIT
854 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_SIZE
],
855 REGNO (SUBREG_REG (in
))))
856 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
857 != GET_MODE_SIZE (inmode
)))
861 in_subreg_loc
= inloc
;
862 inloc
= &SUBREG_REG (in
);
864 #ifndef LOAD_EXTEND_OP
865 if (GET_CODE (in
) == MEM
)
866 /* This is supposed to happen only for paradoxical subregs made by
867 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
868 if (GET_MODE_SIZE (GET_MODE (in
)) > GET_MODE_SIZE (inmode
))
871 inmode
= GET_MODE (in
);
874 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
875 either M1 is not valid for R or M2 is wider than a word but we only
876 need one word to store an M2-sized quantity in R.
878 However, we must reload the inner reg *as well as* the subreg in
881 if (in
!= 0 && GET_CODE (in
) == SUBREG
882 && GET_CODE (SUBREG_REG (in
)) == REG
883 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
884 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in
)), inmode
)
885 || (GET_MODE_SIZE (inmode
) <= UNITS_PER_WORD
886 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
888 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
890 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in
)),
891 GET_MODE (SUBREG_REG (in
)))))))
893 push_reload (SUBREG_REG (in
), NULL_RTX
, &SUBREG_REG (in
), NULL_PTR
,
894 GENERAL_REGS
, VOIDmode
, VOIDmode
, 0, 0, opnum
, type
);
898 /* Similarly for paradoxical and problematical SUBREGs on the output.
899 Note that there is no reason we need worry about the previous value
900 of SUBREG_REG (out); even if wider than out,
901 storing in a subreg is entitled to clobber it all
902 (except in the case of STRICT_LOW_PART,
903 and in that case the constraint should label it input-output.) */
904 if (out
!= 0 && GET_CODE (out
) == SUBREG
&& SUBREG_WORD (out
) == 0
905 #ifdef CLASS_CANNOT_CHANGE_SIZE
906 && class != CLASS_CANNOT_CHANGE_SIZE
908 && (CONSTANT_P (SUBREG_REG (out
))
910 || (((GET_CODE (SUBREG_REG (out
)) == REG
911 && REGNO (SUBREG_REG (out
)) >= FIRST_PSEUDO_REGISTER
)
912 || GET_CODE (SUBREG_REG (out
)) == MEM
)
913 && ((GET_MODE_SIZE (outmode
)
914 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
))))))
915 || (GET_CODE (SUBREG_REG (out
)) == REG
916 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
917 && ((GET_MODE_SIZE (outmode
) <= UNITS_PER_WORD
918 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
920 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
922 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out
)),
923 GET_MODE (SUBREG_REG (out
)))))
924 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out
))
925 + SUBREG_WORD (out
)),
927 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
928 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode
, out
) != NO_REGS
929 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
930 GET_MODE (SUBREG_REG (out
)),
934 #ifdef CLASS_CANNOT_CHANGE_SIZE
935 || (GET_CODE (SUBREG_REG (out
)) == REG
936 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
937 && (TEST_HARD_REG_BIT
938 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_SIZE
],
939 REGNO (SUBREG_REG (out
))))
940 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
941 != GET_MODE_SIZE (outmode
)))
945 out_subreg_loc
= outloc
;
946 outloc
= &SUBREG_REG (out
);
948 #ifndef LOAD_EXTEND_OP
949 if (GET_CODE (out
) == MEM
950 && GET_MODE_SIZE (GET_MODE (out
)) > GET_MODE_SIZE (outmode
))
953 outmode
= GET_MODE (out
);
956 /* If IN appears in OUT, we can't share any input-only reload for IN. */
957 if (in
!= 0 && out
!= 0 && GET_CODE (out
) == MEM
958 && (GET_CODE (in
) == REG
|| GET_CODE (in
) == MEM
)
959 && reg_overlap_mentioned_for_reload_p (in
, XEXP (out
, 0)))
962 /* If IN is a SUBREG of a hard register, make a new REG. This
963 simplifies some of the cases below. */
965 if (in
!= 0 && GET_CODE (in
) == SUBREG
&& GET_CODE (SUBREG_REG (in
)) == REG
966 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
)
967 in
= gen_rtx (REG
, GET_MODE (in
),
968 REGNO (SUBREG_REG (in
)) + SUBREG_WORD (in
));
970 /* Similarly for OUT. */
971 if (out
!= 0 && GET_CODE (out
) == SUBREG
972 && GET_CODE (SUBREG_REG (out
)) == REG
973 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
)
974 out
= gen_rtx (REG
, GET_MODE (out
),
975 REGNO (SUBREG_REG (out
)) + SUBREG_WORD (out
));
977 /* Narrow down the class of register wanted if that is
978 desirable on this machine for efficiency. */
980 class = PREFERRED_RELOAD_CLASS (in
, class);
982 /* Output reloads may need analogous treatment, different in detail. */
983 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
985 class = PREFERRED_OUTPUT_RELOAD_CLASS (out
, class);
988 /* Make sure we use a class that can handle the actual pseudo
989 inside any subreg. For example, on the 386, QImode regs
990 can appear within SImode subregs. Although GENERAL_REGS
991 can handle SImode, QImode needs a smaller class. */
992 #ifdef LIMIT_RELOAD_CLASS
994 class = LIMIT_RELOAD_CLASS (inmode
, class);
995 else if (in
!= 0 && GET_CODE (in
) == SUBREG
)
996 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in
)), class);
999 class = LIMIT_RELOAD_CLASS (outmode
, class);
1000 if (out
!= 0 && GET_CODE (out
) == SUBREG
)
1001 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out
)), class);
1004 /* Verify that this class is at least possible for the mode that
1006 if (this_insn_is_asm
)
1008 enum machine_mode mode
;
1009 if (GET_MODE_SIZE (inmode
) > GET_MODE_SIZE (outmode
))
1013 if (mode
== VOIDmode
)
1015 error_for_asm (this_insn
, "cannot reload integer constant operand in `asm'");
1020 outmode
= word_mode
;
1022 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1023 if (HARD_REGNO_MODE_OK (i
, mode
)
1024 && TEST_HARD_REG_BIT (reg_class_contents
[(int) class], i
))
1026 int nregs
= HARD_REGNO_NREGS (i
, mode
);
1029 for (j
= 1; j
< nregs
; j
++)
1030 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class], i
+ j
))
1035 if (i
== FIRST_PSEUDO_REGISTER
)
1037 error_for_asm (this_insn
, "impossible register constraint in `asm'");
1042 if (class == NO_REGS
)
1045 /* We can use an existing reload if the class is right
1046 and at least one of IN and OUT is a match
1047 and the other is at worst neutral.
1048 (A zero compared against anything is neutral.)
1050 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
1051 for the same thing since that can cause us to need more reload registers
1052 than we otherwise would. */
1054 for (i
= 0; i
< n_reloads
; i
++)
1055 if ((reg_class_subset_p (class, reload_reg_class
[i
])
1056 || reg_class_subset_p (reload_reg_class
[i
], class))
1057 /* If the existing reload has a register, it must fit our class. */
1058 && (reload_reg_rtx
[i
] == 0
1059 || TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
1060 true_regnum (reload_reg_rtx
[i
])))
1061 && ((in
!= 0 && MATCHES (reload_in
[i
], in
) && ! dont_share
1062 && (out
== 0 || reload_out
[i
] == 0 || MATCHES (reload_out
[i
], out
)))
1064 (out
!= 0 && MATCHES (reload_out
[i
], out
)
1065 && (in
== 0 || reload_in
[i
] == 0 || MATCHES (reload_in
[i
], in
))))
1066 && (reg_class_size
[(int) class] == 1
1067 #ifdef SMALL_REGISTER_CLASSES
1071 && MERGABLE_RELOADS (type
, reload_when_needed
[i
],
1072 opnum
, reload_opnum
[i
]))
1075 /* Reloading a plain reg for input can match a reload to postincrement
1076 that reg, since the postincrement's value is the right value.
1077 Likewise, it can match a preincrement reload, since we regard
1078 the preincrementation as happening before any ref in this insn
1079 to that register. */
1081 for (i
= 0; i
< n_reloads
; i
++)
1082 if ((reg_class_subset_p (class, reload_reg_class
[i
])
1083 || reg_class_subset_p (reload_reg_class
[i
], class))
1084 /* If the existing reload has a register, it must fit our class. */
1085 && (reload_reg_rtx
[i
] == 0
1086 || TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
1087 true_regnum (reload_reg_rtx
[i
])))
1088 && out
== 0 && reload_out
[i
] == 0 && reload_in
[i
] != 0
1089 && ((GET_CODE (in
) == REG
1090 && (GET_CODE (reload_in
[i
]) == POST_INC
1091 || GET_CODE (reload_in
[i
]) == POST_DEC
1092 || GET_CODE (reload_in
[i
]) == PRE_INC
1093 || GET_CODE (reload_in
[i
]) == PRE_DEC
)
1094 && MATCHES (XEXP (reload_in
[i
], 0), in
))
1096 (GET_CODE (reload_in
[i
]) == REG
1097 && (GET_CODE (in
) == POST_INC
1098 || GET_CODE (in
) == POST_DEC
1099 || GET_CODE (in
) == PRE_INC
1100 || GET_CODE (in
) == PRE_DEC
)
1101 && MATCHES (XEXP (in
, 0), reload_in
[i
])))
1102 && (reg_class_size
[(int) class] == 1
1103 #ifdef SMALL_REGISTER_CLASSES
1107 && MERGABLE_RELOADS (type
, reload_when_needed
[i
],
1108 opnum
, reload_opnum
[i
]))
1110 /* Make sure reload_in ultimately has the increment,
1111 not the plain register. */
1112 if (GET_CODE (in
) == REG
)
1119 /* See if we need a secondary reload register to move between CLASS
1120 and IN or CLASS and OUT. Get the icode and push any required reloads
1121 needed for each of them if so. */
1123 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1126 = push_secondary_reload (1, in
, opnum
, optional
, class, inmode
, type
,
1127 &secondary_in_icode
);
1130 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1131 if (out
!= 0 && GET_CODE (out
) != SCRATCH
)
1132 secondary_out_reload
1133 = push_secondary_reload (0, out
, opnum
, optional
, class, outmode
,
1134 type
, &secondary_out_icode
);
1137 /* We found no existing reload suitable for re-use.
1138 So add an additional reload. */
1142 reload_out
[i
] = out
;
1143 reload_reg_class
[i
] = class;
1144 reload_inmode
[i
] = inmode
;
1145 reload_outmode
[i
] = outmode
;
1146 reload_reg_rtx
[i
] = 0;
1147 reload_optional
[i
] = optional
;
1149 reload_nocombine
[i
] = 0;
1150 reload_in_reg
[i
] = inloc
? *inloc
: 0;
1151 reload_opnum
[i
] = opnum
;
1152 reload_when_needed
[i
] = type
;
1153 reload_secondary_in_reload
[i
] = secondary_in_reload
;
1154 reload_secondary_out_reload
[i
] = secondary_out_reload
;
1155 reload_secondary_in_icode
[i
] = secondary_in_icode
;
1156 reload_secondary_out_icode
[i
] = secondary_out_icode
;
1157 reload_secondary_p
[i
] = 0;
1161 #ifdef SECONDARY_MEMORY_NEEDED
1162 /* If a memory location is needed for the copy, make one. */
1163 if (in
!= 0 && GET_CODE (in
) == REG
1164 && REGNO (in
) < FIRST_PSEUDO_REGISTER
1165 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in
)),
1167 get_secondary_mem (in
, inmode
, opnum
, type
);
1169 if (out
!= 0 && GET_CODE (out
) == REG
1170 && REGNO (out
) < FIRST_PSEUDO_REGISTER
1171 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out
)),
1173 get_secondary_mem (out
, outmode
, opnum
, type
);
1178 /* We are reusing an existing reload,
1179 but we may have additional information for it.
1180 For example, we may now have both IN and OUT
1181 while the old one may have just one of them. */
1183 if (inmode
!= VOIDmode
)
1184 reload_inmode
[i
] = inmode
;
1185 if (outmode
!= VOIDmode
)
1186 reload_outmode
[i
] = outmode
;
1190 reload_out
[i
] = out
;
1191 if (reg_class_subset_p (class, reload_reg_class
[i
]))
1192 reload_reg_class
[i
] = class;
1193 reload_optional
[i
] &= optional
;
1194 if (MERGE_TO_OTHER (type
, reload_when_needed
[i
],
1195 opnum
, reload_opnum
[i
]))
1196 reload_when_needed
[i
] = RELOAD_OTHER
;
1197 reload_opnum
[i
] = MIN (reload_opnum
[i
], opnum
);
1200 /* If the ostensible rtx being reload differs from the rtx found
1201 in the location to substitute, this reload is not safe to combine
1202 because we cannot reliably tell whether it appears in the insn. */
1204 if (in
!= 0 && in
!= *inloc
)
1205 reload_nocombine
[i
] = 1;
1208 /* This was replaced by changes in find_reloads_address_1 and the new
1209 function inc_for_reload, which go with a new meaning of reload_inc. */
1211 /* If this is an IN/OUT reload in an insn that sets the CC,
1212 it must be for an autoincrement. It doesn't work to store
1213 the incremented value after the insn because that would clobber the CC.
1214 So we must do the increment of the value reloaded from,
1215 increment it, store it back, then decrement again. */
1216 if (out
!= 0 && sets_cc0_p (PATTERN (this_insn
)))
1220 reload_inc
[i
] = find_inc_amount (PATTERN (this_insn
), in
);
1221 /* If we did not find a nonzero amount-to-increment-by,
1222 that contradicts the belief that IN is being incremented
1223 in an address in this insn. */
1224 if (reload_inc
[i
] == 0)
1229 /* If we will replace IN and OUT with the reload-reg,
1230 record where they are located so that substitution need
1231 not do a tree walk. */
1233 if (replace_reloads
)
1237 register struct replacement
*r
= &replacements
[n_replacements
++];
1239 r
->subreg_loc
= in_subreg_loc
;
1243 if (outloc
!= 0 && outloc
!= inloc
)
1245 register struct replacement
*r
= &replacements
[n_replacements
++];
1248 r
->subreg_loc
= out_subreg_loc
;
1253 /* If this reload is just being introduced and it has both
1254 an incoming quantity and an outgoing quantity that are
1255 supposed to be made to match, see if either one of the two
1256 can serve as the place to reload into.
1258 If one of them is acceptable, set reload_reg_rtx[i]
1261 if (in
!= 0 && out
!= 0 && in
!= out
&& reload_reg_rtx
[i
] == 0)
1263 reload_reg_rtx
[i
] = find_dummy_reload (in
, out
, inloc
, outloc
,
1265 reload_reg_class
[i
], i
);
1267 /* If the outgoing register already contains the same value
1268 as the incoming one, we can dispense with loading it.
1269 The easiest way to tell the caller that is to give a phony
1270 value for the incoming operand (same as outgoing one). */
1271 if (reload_reg_rtx
[i
] == out
1272 && (GET_CODE (in
) == REG
|| CONSTANT_P (in
))
1273 && 0 != find_equiv_reg (in
, this_insn
, 0, REGNO (out
),
1274 static_reload_reg_p
, i
, inmode
))
1278 /* If this is an input reload and the operand contains a register that
1279 dies in this insn and is used nowhere else, see if it is the right class
1280 to be used for this reload. Use it if so. (This occurs most commonly
1281 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1282 this if it is also an output reload that mentions the register unless
1283 the output is a SUBREG that clobbers an entire register.
1285 Note that the operand might be one of the spill regs, if it is a
1286 pseudo reg and we are in a block where spilling has not taken place.
1287 But if there is no spilling in this block, that is OK.
1288 An explicitly used hard reg cannot be a spill reg. */
1290 if (reload_reg_rtx
[i
] == 0 && in
!= 0)
1295 for (note
= REG_NOTES (this_insn
); note
; note
= XEXP (note
, 1))
1296 if (REG_NOTE_KIND (note
) == REG_DEAD
1297 && GET_CODE (XEXP (note
, 0)) == REG
1298 && (regno
= REGNO (XEXP (note
, 0))) < FIRST_PSEUDO_REGISTER
1299 && reg_mentioned_p (XEXP (note
, 0), in
)
1300 && ! refers_to_regno_for_reload_p (regno
,
1302 + HARD_REGNO_NREGS (regno
,
1304 PATTERN (this_insn
), inloc
)
1305 /* If this is also an output reload, IN cannot be used as
1306 the reload register if it is set in this insn unless IN
1308 && (out
== 0 || in
== out
1309 || ! hard_reg_set_here_p (regno
,
1311 + HARD_REGNO_NREGS (regno
,
1313 PATTERN (this_insn
)))
1314 /* ??? Why is this code so different from the previous?
1315 Is there any simple coherent way to describe the two together?
1316 What's going on here. */
1318 || (GET_CODE (in
) == SUBREG
1319 && (((GET_MODE_SIZE (GET_MODE (in
)) + (UNITS_PER_WORD
- 1))
1321 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
1322 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
1323 /* Make sure the operand fits in the reg that dies. */
1324 && GET_MODE_SIZE (inmode
) <= GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
1325 && HARD_REGNO_MODE_OK (regno
, inmode
)
1326 && GET_MODE_SIZE (outmode
) <= GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
1327 && HARD_REGNO_MODE_OK (regno
, outmode
)
1328 && TEST_HARD_REG_BIT (reg_class_contents
[(int) class], regno
)
1329 && !fixed_regs
[regno
])
1331 reload_reg_rtx
[i
] = gen_rtx (REG
, inmode
, regno
);
1337 output_reloadnum
= i
;
1342 /* Record an additional place we must replace a value
1343 for which we have already recorded a reload.
1344 RELOADNUM is the value returned by push_reload
1345 when the reload was recorded.
1346 This is used in insn patterns that use match_dup. */
1349 push_replacement (loc
, reloadnum
, mode
)
1352 enum machine_mode mode
;
1354 if (replace_reloads
)
1356 register struct replacement
*r
= &replacements
[n_replacements
++];
1357 r
->what
= reloadnum
;
1364 /* Transfer all replacements that used to be in reload FROM to be in
1368 transfer_replacements (to
, from
)
1373 for (i
= 0; i
< n_replacements
; i
++)
1374 if (replacements
[i
].what
== from
)
1375 replacements
[i
].what
= to
;
1378 /* If there is only one output reload, and it is not for an earlyclobber
1379 operand, try to combine it with a (logically unrelated) input reload
1380 to reduce the number of reload registers needed.
1382 This is safe if the input reload does not appear in
1383 the value being output-reloaded, because this implies
1384 it is not needed any more once the original insn completes.
1386 If that doesn't work, see we can use any of the registers that
1387 die in this insn as a reload register. We can if it is of the right
1388 class and does not appear in the value being output-reloaded. */
1394 int output_reload
= -1;
1395 int secondary_out
= -1;
1398 /* Find the output reload; return unless there is exactly one
1399 and that one is mandatory. */
1401 for (i
= 0; i
< n_reloads
; i
++)
1402 if (reload_out
[i
] != 0)
1404 if (output_reload
>= 0)
1409 if (output_reload
< 0 || reload_optional
[output_reload
])
1412 /* An input-output reload isn't combinable. */
1414 if (reload_in
[output_reload
] != 0)
1417 /* If this reload is for an earlyclobber operand, we can't do anything. */
1418 if (earlyclobber_operand_p (reload_out
[output_reload
]))
1421 /* Check each input reload; can we combine it? */
1423 for (i
= 0; i
< n_reloads
; i
++)
1424 if (reload_in
[i
] && ! reload_optional
[i
] && ! reload_nocombine
[i
]
1425 /* Life span of this reload must not extend past main insn. */
1426 && reload_when_needed
[i
] != RELOAD_FOR_OUTPUT_ADDRESS
1427 && reload_when_needed
[i
] != RELOAD_OTHER
1428 && (CLASS_MAX_NREGS (reload_reg_class
[i
], reload_inmode
[i
])
1429 == CLASS_MAX_NREGS (reload_reg_class
[output_reload
],
1430 reload_outmode
[output_reload
]))
1431 && reload_inc
[i
] == 0
1432 && reload_reg_rtx
[i
] == 0
1433 #ifdef SECONDARY_MEMORY_NEEDED
1434 /* Don't combine two reloads with different secondary
1435 memory locations. */
1436 && (secondary_memlocs_elim
[(int) reload_outmode
[output_reload
]][reload_opnum
[i
]] == 0
1437 || secondary_memlocs_elim
[(int) reload_outmode
[output_reload
]][reload_opnum
[output_reload
]] == 0
1438 || rtx_equal_p (secondary_memlocs_elim
[(int) reload_outmode
[output_reload
]][reload_opnum
[i
]],
1439 secondary_memlocs_elim
[(int) reload_outmode
[output_reload
]][reload_opnum
[output_reload
]]))
1441 #ifdef SMALL_REGISTER_CLASSES
1442 && reload_reg_class
[i
] == reload_reg_class
[output_reload
]
1444 && (reg_class_subset_p (reload_reg_class
[i
],
1445 reload_reg_class
[output_reload
])
1446 || reg_class_subset_p (reload_reg_class
[output_reload
],
1447 reload_reg_class
[i
]))
1449 && (MATCHES (reload_in
[i
], reload_out
[output_reload
])
1450 /* Args reversed because the first arg seems to be
1451 the one that we imagine being modified
1452 while the second is the one that might be affected. */
1453 || (! reg_overlap_mentioned_for_reload_p (reload_out
[output_reload
],
1455 /* However, if the input is a register that appears inside
1456 the output, then we also can't share.
1457 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1458 If the same reload reg is used for both reg 69 and the
1459 result to be stored in memory, then that result
1460 will clobber the address of the memory ref. */
1461 && ! (GET_CODE (reload_in
[i
]) == REG
1462 && reg_overlap_mentioned_for_reload_p (reload_in
[i
],
1463 reload_out
[output_reload
]))))
1464 && (reg_class_size
[(int) reload_reg_class
[i
]]
1465 #ifdef SMALL_REGISTER_CLASSES
1469 /* We will allow making things slightly worse by combining an
1470 input and an output, but no worse than that. */
1471 && (reload_when_needed
[i
] == RELOAD_FOR_INPUT
1472 || reload_when_needed
[i
] == RELOAD_FOR_OUTPUT
))
1476 /* We have found a reload to combine with! */
1477 reload_out
[i
] = reload_out
[output_reload
];
1478 reload_outmode
[i
] = reload_outmode
[output_reload
];
1479 /* Mark the old output reload as inoperative. */
1480 reload_out
[output_reload
] = 0;
1481 /* The combined reload is needed for the entire insn. */
1482 reload_when_needed
[i
] = RELOAD_OTHER
;
1483 /* If the output reload had a secondary reload, copy it. */
1484 if (reload_secondary_out_reload
[output_reload
] != -1)
1486 reload_secondary_out_reload
[i
]
1487 = reload_secondary_out_reload
[output_reload
];
1488 reload_secondary_out_icode
[i
]
1489 = reload_secondary_out_icode
[output_reload
];
1492 #ifdef SECONDARY_MEMORY_NEEDED
1493 /* Copy any secondary MEM. */
1494 if (secondary_memlocs_elim
[(int) reload_outmode
[output_reload
]][reload_opnum
[output_reload
]] != 0)
1495 secondary_memlocs_elim
[(int) reload_outmode
[output_reload
]][reload_opnum
[i
]]
1496 = secondary_memlocs_elim
[(int) reload_outmode
[output_reload
]][reload_opnum
[output_reload
]];
1498 /* If required, minimize the register class. */
1499 if (reg_class_subset_p (reload_reg_class
[output_reload
],
1500 reload_reg_class
[i
]))
1501 reload_reg_class
[i
] = reload_reg_class
[output_reload
];
1503 /* Transfer all replacements from the old reload to the combined. */
1504 for (j
= 0; j
< n_replacements
; j
++)
1505 if (replacements
[j
].what
== output_reload
)
1506 replacements
[j
].what
= i
;
1511 /* If this insn has only one operand that is modified or written (assumed
1512 to be the first), it must be the one corresponding to this reload. It
1513 is safe to use anything that dies in this insn for that output provided
1514 that it does not occur in the output (we already know it isn't an
1515 earlyclobber. If this is an asm insn, give up. */
1517 if (INSN_CODE (this_insn
) == -1)
1520 for (i
= 1; i
< insn_n_operands
[INSN_CODE (this_insn
)]; i
++)
1521 if (insn_operand_constraint
[INSN_CODE (this_insn
)][i
][0] == '='
1522 || insn_operand_constraint
[INSN_CODE (this_insn
)][i
][0] == '+')
1525 /* See if some hard register that dies in this insn and is not used in
1526 the output is the right class. Only works if the register we pick
1527 up can fully hold our output reload. */
1528 for (note
= REG_NOTES (this_insn
); note
; note
= XEXP (note
, 1))
1529 if (REG_NOTE_KIND (note
) == REG_DEAD
1530 && GET_CODE (XEXP (note
, 0)) == REG
1531 && ! reg_overlap_mentioned_for_reload_p (XEXP (note
, 0),
1532 reload_out
[output_reload
])
1533 && REGNO (XEXP (note
, 0)) < FIRST_PSEUDO_REGISTER
1534 && HARD_REGNO_MODE_OK (REGNO (XEXP (note
, 0)), reload_outmode
[output_reload
])
1535 && TEST_HARD_REG_BIT (reg_class_contents
[(int) reload_reg_class
[output_reload
]],
1536 REGNO (XEXP (note
, 0)))
1537 && (HARD_REGNO_NREGS (REGNO (XEXP (note
, 0)), reload_outmode
[output_reload
])
1538 <= HARD_REGNO_NREGS (REGNO (XEXP (note
, 0)), GET_MODE (XEXP (note
, 0))))
1539 /* Ensure that a secondary or tertiary reload for this output
1540 won't want this register. */
1541 && ((secondary_out
= reload_secondary_out_reload
[output_reload
]) == -1
1542 || (! (TEST_HARD_REG_BIT
1543 (reg_class_contents
[(int) reload_reg_class
[secondary_out
]],
1544 REGNO (XEXP (note
, 0))))
1545 && ((secondary_out
= reload_secondary_out_reload
[secondary_out
]) == -1
1546 || ! (TEST_HARD_REG_BIT
1547 (reg_class_contents
[(int) reload_reg_class
[secondary_out
]],
1548 REGNO (XEXP (note
, 0)))))))
1549 && ! fixed_regs
[REGNO (XEXP (note
, 0))])
1551 reload_reg_rtx
[output_reload
] = gen_rtx (REG
,
1552 reload_outmode
[output_reload
],
1553 REGNO (XEXP (note
, 0)));
1558 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1559 See if one of IN and OUT is a register that may be used;
1560 this is desirable since a spill-register won't be needed.
1561 If so, return the register rtx that proves acceptable.
1563 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1564 CLASS is the register class required for the reload.
1566 If FOR_REAL is >= 0, it is the number of the reload,
1567 and in some cases when it can be discovered that OUT doesn't need
1568 to be computed, clear out reload_out[FOR_REAL].
1570 If FOR_REAL is -1, this should not be done, because this call
1571 is just to see if a register can be found, not to find and install it. */
1574 find_dummy_reload (real_in
, real_out
, inloc
, outloc
,
1575 inmode
, outmode
, class, for_real
)
1576 rtx real_in
, real_out
;
1577 rtx
*inloc
, *outloc
;
1578 enum machine_mode inmode
, outmode
;
1579 enum reg_class
class;
1588 /* If operands exceed a word, we can't use either of them
1589 unless they have the same size. */
1590 if (GET_MODE_SIZE (outmode
) != GET_MODE_SIZE (inmode
)
1591 && (GET_MODE_SIZE (outmode
) > UNITS_PER_WORD
1592 || GET_MODE_SIZE (inmode
) > UNITS_PER_WORD
))
1595 /* Find the inside of any subregs. */
1596 while (GET_CODE (out
) == SUBREG
)
1598 out_offset
= SUBREG_WORD (out
);
1599 out
= SUBREG_REG (out
);
1601 while (GET_CODE (in
) == SUBREG
)
1603 in_offset
= SUBREG_WORD (in
);
1604 in
= SUBREG_REG (in
);
1607 /* Narrow down the reg class, the same way push_reload will;
1608 otherwise we might find a dummy now, but push_reload won't. */
1609 class = PREFERRED_RELOAD_CLASS (in
, class);
1611 /* See if OUT will do. */
1612 if (GET_CODE (out
) == REG
1613 && REGNO (out
) < FIRST_PSEUDO_REGISTER
)
1615 register int regno
= REGNO (out
) + out_offset
;
1616 int nwords
= HARD_REGNO_NREGS (regno
, outmode
);
1619 /* When we consider whether the insn uses OUT,
1620 ignore references within IN. They don't prevent us
1621 from copying IN into OUT, because those refs would
1622 move into the insn that reloads IN.
1624 However, we only ignore IN in its role as this reload.
1625 If the insn uses IN elsewhere and it contains OUT,
1626 that counts. We can't be sure it's the "same" operand
1627 so it might not go through this reload. */
1629 *inloc
= const0_rtx
;
1631 if (regno
< FIRST_PSEUDO_REGISTER
1632 /* A fixed reg that can overlap other regs better not be used
1633 for reloading in any way. */
1634 #ifdef OVERLAPPING_REGNO_P
1635 && ! (fixed_regs
[regno
] && OVERLAPPING_REGNO_P (regno
))
1637 && ! refers_to_regno_for_reload_p (regno
, regno
+ nwords
,
1638 PATTERN (this_insn
), outloc
))
1641 for (i
= 0; i
< nwords
; i
++)
1642 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
1648 if (GET_CODE (real_out
) == REG
)
1651 value
= gen_rtx (REG
, outmode
, regno
);
1658 /* Consider using IN if OUT was not acceptable
1659 or if OUT dies in this insn (like the quotient in a divmod insn).
1660 We can't use IN unless it is dies in this insn,
1661 which means we must know accurately which hard regs are live.
1662 Also, the result can't go in IN if IN is used within OUT. */
1663 if (hard_regs_live_known
1664 && GET_CODE (in
) == REG
1665 && REGNO (in
) < FIRST_PSEUDO_REGISTER
1667 || find_reg_note (this_insn
, REG_UNUSED
, real_out
))
1668 && find_reg_note (this_insn
, REG_DEAD
, real_in
)
1669 && !fixed_regs
[REGNO (in
)]
1670 && HARD_REGNO_MODE_OK (REGNO (in
),
1671 /* The only case where out and real_out might
1672 have different modes is where real_out
1673 is a subreg, and in that case, out
1675 (GET_MODE (out
) != VOIDmode
1676 ? GET_MODE (out
) : outmode
)))
1678 register int regno
= REGNO (in
) + in_offset
;
1679 int nwords
= HARD_REGNO_NREGS (regno
, inmode
);
1681 if (! refers_to_regno_for_reload_p (regno
, regno
+ nwords
, out
, NULL_PTR
)
1682 && ! hard_reg_set_here_p (regno
, regno
+ nwords
,
1683 PATTERN (this_insn
)))
1686 for (i
= 0; i
< nwords
; i
++)
1687 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
1693 /* If we were going to use OUT as the reload reg
1694 and changed our mind, it means OUT is a dummy that
1695 dies here. So don't bother copying value to it. */
1696 if (for_real
>= 0 && value
== real_out
)
1697 reload_out
[for_real
] = 0;
1698 if (GET_CODE (real_in
) == REG
)
1701 value
= gen_rtx (REG
, inmode
, regno
);
1709 /* This page contains subroutines used mainly for determining
1710 whether the IN or an OUT of a reload can serve as the
1713 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1716 earlyclobber_operand_p (x
)
1721 for (i
= 0; i
< n_earlyclobbers
; i
++)
1722 if (reload_earlyclobbers
[i
] == x
)
1728 /* Return 1 if expression X alters a hard reg in the range
1729 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1730 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1731 X should be the body of an instruction. */
1734 hard_reg_set_here_p (beg_regno
, end_regno
, x
)
1735 register int beg_regno
, end_regno
;
1738 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1740 register rtx op0
= SET_DEST (x
);
1741 while (GET_CODE (op0
) == SUBREG
)
1742 op0
= SUBREG_REG (op0
);
1743 if (GET_CODE (op0
) == REG
)
1745 register int r
= REGNO (op0
);
1746 /* See if this reg overlaps range under consideration. */
1748 && r
+ HARD_REGNO_NREGS (r
, GET_MODE (op0
)) > beg_regno
)
1752 else if (GET_CODE (x
) == PARALLEL
)
1754 register int i
= XVECLEN (x
, 0) - 1;
1756 if (hard_reg_set_here_p (beg_regno
, end_regno
, XVECEXP (x
, 0, i
)))
1763 /* Return 1 if ADDR is a valid memory address for mode MODE,
1764 and check that each pseudo reg has the proper kind of
1768 strict_memory_address_p (mode
, addr
)
1769 enum machine_mode mode
;
1772 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1779 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1780 if they are the same hard reg, and has special hacks for
1781 autoincrement and autodecrement.
1782 This is specifically intended for find_reloads to use
1783 in determining whether two operands match.
1784 X is the operand whose number is the lower of the two.
1786 The value is 2 if Y contains a pre-increment that matches
1787 a non-incrementing address in X. */
1789 /* ??? To be completely correct, we should arrange to pass
1790 for X the output operand and for Y the input operand.
1791 For now, we assume that the output operand has the lower number
1792 because that is natural in (SET output (... input ...)). */
1795 operands_match_p (x
, y
)
1799 register RTX_CODE code
= GET_CODE (x
);
1805 if ((code
== REG
|| (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
))
1806 && (GET_CODE (y
) == REG
|| (GET_CODE (y
) == SUBREG
1807 && GET_CODE (SUBREG_REG (y
)) == REG
)))
1813 i
= REGNO (SUBREG_REG (x
));
1814 if (i
>= FIRST_PSEUDO_REGISTER
)
1816 i
+= SUBREG_WORD (x
);
1821 if (GET_CODE (y
) == SUBREG
)
1823 j
= REGNO (SUBREG_REG (y
));
1824 if (j
>= FIRST_PSEUDO_REGISTER
)
1826 j
+= SUBREG_WORD (y
);
1831 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
1832 multiple hard register group, so that for example (reg:DI 0) and
1833 (reg:SI 1) will be considered the same register. */
1834 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (GET_MODE (x
)) > UNITS_PER_WORD
1835 && i
< FIRST_PSEUDO_REGISTER
)
1836 i
+= (GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
) - 1;
1837 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (GET_MODE (y
)) > UNITS_PER_WORD
1838 && j
< FIRST_PSEUDO_REGISTER
)
1839 j
+= (GET_MODE_SIZE (GET_MODE (y
)) / UNITS_PER_WORD
) - 1;
1843 /* If two operands must match, because they are really a single
1844 operand of an assembler insn, then two postincrements are invalid
1845 because the assembler insn would increment only once.
1846 On the other hand, an postincrement matches ordinary indexing
1847 if the postincrement is the output operand. */
1848 if (code
== POST_DEC
|| code
== POST_INC
)
1849 return operands_match_p (XEXP (x
, 0), y
);
1850 /* Two preincrements are invalid
1851 because the assembler insn would increment only once.
1852 On the other hand, an preincrement matches ordinary indexing
1853 if the preincrement is the input operand.
1854 In this case, return 2, since some callers need to do special
1855 things when this happens. */
1856 if (GET_CODE (y
) == PRE_DEC
|| GET_CODE (y
) == PRE_INC
)
1857 return operands_match_p (x
, XEXP (y
, 0)) ? 2 : 0;
1861 /* Now we have disposed of all the cases
1862 in which different rtx codes can match. */
1863 if (code
!= GET_CODE (y
))
1865 if (code
== LABEL_REF
)
1866 return XEXP (x
, 0) == XEXP (y
, 0);
1867 if (code
== SYMBOL_REF
)
1868 return XSTR (x
, 0) == XSTR (y
, 0);
1870 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1872 if (GET_MODE (x
) != GET_MODE (y
))
1875 /* Compare the elements. If any pair of corresponding elements
1876 fail to match, return 0 for the whole things. */
1879 fmt
= GET_RTX_FORMAT (code
);
1880 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1886 if (XWINT (x
, i
) != XWINT (y
, i
))
1891 if (XINT (x
, i
) != XINT (y
, i
))
1896 val
= operands_match_p (XEXP (x
, i
), XEXP (y
, i
));
1899 /* If any subexpression returns 2,
1900 we should return 2 if we are successful. */
1908 /* It is believed that rtx's at this level will never
1909 contain anything but integers and other rtx's,
1910 except for within LABEL_REFs and SYMBOL_REFs. */
1915 return 1 + success_2
;
1918 /* Return the number of times character C occurs in string S. */
1921 n_occurrences (c
, s
)
1931 /* Describe the range of registers or memory referenced by X.
1932 If X is a register, set REG_FLAG and put the first register
1933 number into START and the last plus one into END.
1934 If X is a memory reference, put a base address into BASE
1935 and a range of integer offsets into START and END.
1936 If X is pushing on the stack, we can assume it causes no trouble,
1937 so we set the SAFE field. */
1939 static struct decomposition
1943 struct decomposition val
;
1948 if (GET_CODE (x
) == MEM
)
1950 rtx base
, offset
= 0;
1951 rtx addr
= XEXP (x
, 0);
1953 if (GET_CODE (addr
) == PRE_DEC
|| GET_CODE (addr
) == PRE_INC
1954 || GET_CODE (addr
) == POST_DEC
|| GET_CODE (addr
) == POST_INC
)
1956 val
.base
= XEXP (addr
, 0);
1957 val
.start
= - GET_MODE_SIZE (GET_MODE (x
));
1958 val
.end
= GET_MODE_SIZE (GET_MODE (x
));
1959 val
.safe
= REGNO (val
.base
) == STACK_POINTER_REGNUM
;
1963 if (GET_CODE (addr
) == CONST
)
1965 addr
= XEXP (addr
, 0);
1968 if (GET_CODE (addr
) == PLUS
)
1970 if (CONSTANT_P (XEXP (addr
, 0)))
1972 base
= XEXP (addr
, 1);
1973 offset
= XEXP (addr
, 0);
1975 else if (CONSTANT_P (XEXP (addr
, 1)))
1977 base
= XEXP (addr
, 0);
1978 offset
= XEXP (addr
, 1);
1985 offset
= const0_rtx
;
1987 if (GET_CODE (offset
) == CONST
)
1988 offset
= XEXP (offset
, 0);
1989 if (GET_CODE (offset
) == PLUS
)
1991 if (GET_CODE (XEXP (offset
, 0)) == CONST_INT
)
1993 base
= gen_rtx (PLUS
, GET_MODE (base
), base
, XEXP (offset
, 1));
1994 offset
= XEXP (offset
, 0);
1996 else if (GET_CODE (XEXP (offset
, 1)) == CONST_INT
)
1998 base
= gen_rtx (PLUS
, GET_MODE (base
), base
, XEXP (offset
, 0));
1999 offset
= XEXP (offset
, 1);
2003 base
= gen_rtx (PLUS
, GET_MODE (base
), base
, offset
);
2004 offset
= const0_rtx
;
2007 else if (GET_CODE (offset
) != CONST_INT
)
2009 base
= gen_rtx (PLUS
, GET_MODE (base
), base
, offset
);
2010 offset
= const0_rtx
;
2013 if (all_const
&& GET_CODE (base
) == PLUS
)
2014 base
= gen_rtx (CONST
, GET_MODE (base
), base
);
2016 if (GET_CODE (offset
) != CONST_INT
)
2019 val
.start
= INTVAL (offset
);
2020 val
.end
= val
.start
+ GET_MODE_SIZE (GET_MODE (x
));
2024 else if (GET_CODE (x
) == REG
)
2027 val
.start
= true_regnum (x
);
2030 /* A pseudo with no hard reg. */
2031 val
.start
= REGNO (x
);
2032 val
.end
= val
.start
+ 1;
2036 val
.end
= val
.start
+ HARD_REGNO_NREGS (val
.start
, GET_MODE (x
));
2038 else if (GET_CODE (x
) == SUBREG
)
2040 if (GET_CODE (SUBREG_REG (x
)) != REG
)
2041 /* This could be more precise, but it's good enough. */
2042 return decompose (SUBREG_REG (x
));
2044 val
.start
= true_regnum (x
);
2046 return decompose (SUBREG_REG (x
));
2049 val
.end
= val
.start
+ HARD_REGNO_NREGS (val
.start
, GET_MODE (x
));
2051 else if (CONSTANT_P (x
)
2052 /* This hasn't been assigned yet, so it can't conflict yet. */
2053 || GET_CODE (x
) == SCRATCH
)
2060 /* Return 1 if altering Y will not modify the value of X.
2061 Y is also described by YDATA, which should be decompose (Y). */
2064 immune_p (x
, y
, ydata
)
2066 struct decomposition ydata
;
2068 struct decomposition xdata
;
2071 return !refers_to_regno_for_reload_p (ydata
.start
, ydata
.end
, x
, NULL_PTR
);
2075 if (GET_CODE (y
) != MEM
)
2077 /* If Y is memory and X is not, Y can't affect X. */
2078 if (GET_CODE (x
) != MEM
)
2081 xdata
= decompose (x
);
2083 if (! rtx_equal_p (xdata
.base
, ydata
.base
))
2085 /* If bases are distinct symbolic constants, there is no overlap. */
2086 if (CONSTANT_P (xdata
.base
) && CONSTANT_P (ydata
.base
))
2088 /* Constants and stack slots never overlap. */
2089 if (CONSTANT_P (xdata
.base
)
2090 && (ydata
.base
== frame_pointer_rtx
2091 || ydata
.base
== hard_frame_pointer_rtx
2092 || ydata
.base
== stack_pointer_rtx
))
2094 if (CONSTANT_P (ydata
.base
)
2095 && (xdata
.base
== frame_pointer_rtx
2096 || xdata
.base
== hard_frame_pointer_rtx
2097 || xdata
.base
== stack_pointer_rtx
))
2099 /* If either base is variable, we don't know anything. */
2104 return (xdata
.start
>= ydata
.end
|| ydata
.start
>= xdata
.end
);
2107 /* Similar, but calls decompose. */
2110 safe_from_earlyclobber (op
, clobber
)
2113 struct decomposition early_data
;
2115 early_data
= decompose (clobber
);
2116 return immune_p (op
, clobber
, early_data
);
2119 /* Main entry point of this file: search the body of INSN
2120 for values that need reloading and record them with push_reload.
2121 REPLACE nonzero means record also where the values occur
2122 so that subst_reloads can be used.
2124 IND_LEVELS says how many levels of indirection are supported by this
2125 machine; a value of zero means that a memory reference is not a valid
2128 LIVE_KNOWN says we have valid information about which hard
2129 regs are live at each point in the program; this is true when
2130 we are called from global_alloc but false when stupid register
2131 allocation has been done.
2133 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2134 which is nonnegative if the reg has been commandeered for reloading into.
2135 It is copied into STATIC_RELOAD_REG_P and referenced from there
2136 by various subroutines. */
2139 find_reloads (insn
, replace
, ind_levels
, live_known
, reload_reg_p
)
2141 int replace
, ind_levels
;
2143 short *reload_reg_p
;
2145 #ifdef REGISTER_CONSTRAINTS
2147 register int insn_code_number
;
2150 /* These are the constraints for the insn. We don't change them. */
2151 char *constraints1
[MAX_RECOG_OPERANDS
];
2152 /* These start out as the constraints for the insn
2153 and they are chewed up as we consider alternatives. */
2154 char *constraints
[MAX_RECOG_OPERANDS
];
2155 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2157 enum reg_class preferred_class
[MAX_RECOG_OPERANDS
];
2158 char pref_or_nothing
[MAX_RECOG_OPERANDS
];
2159 /* Nonzero for a MEM operand whose entire address needs a reload. */
2160 int address_reloaded
[MAX_RECOG_OPERANDS
];
2161 /* Value of enum reload_type to use for operand. */
2162 enum reload_type operand_type
[MAX_RECOG_OPERANDS
];
2163 /* Value of enum reload_type to use within address of operand. */
2164 enum reload_type address_type
[MAX_RECOG_OPERANDS
];
2165 /* Save the usage of each operand. */
2166 enum reload_usage
{ RELOAD_READ
, RELOAD_READ_WRITE
, RELOAD_WRITE
} modified
[MAX_RECOG_OPERANDS
];
2167 int no_input_reloads
= 0, no_output_reloads
= 0;
2169 int this_alternative
[MAX_RECOG_OPERANDS
];
2170 char this_alternative_win
[MAX_RECOG_OPERANDS
];
2171 char this_alternative_offmemok
[MAX_RECOG_OPERANDS
];
2172 char this_alternative_earlyclobber
[MAX_RECOG_OPERANDS
];
2173 int this_alternative_matches
[MAX_RECOG_OPERANDS
];
2175 int goal_alternative
[MAX_RECOG_OPERANDS
];
2176 int this_alternative_number
;
2177 int goal_alternative_number
;
2178 int operand_reloadnum
[MAX_RECOG_OPERANDS
];
2179 int goal_alternative_matches
[MAX_RECOG_OPERANDS
];
2180 int goal_alternative_matched
[MAX_RECOG_OPERANDS
];
2181 char goal_alternative_win
[MAX_RECOG_OPERANDS
];
2182 char goal_alternative_offmemok
[MAX_RECOG_OPERANDS
];
2183 char goal_alternative_earlyclobber
[MAX_RECOG_OPERANDS
];
2184 int goal_alternative_swapped
;
2187 char operands_match
[MAX_RECOG_OPERANDS
][MAX_RECOG_OPERANDS
];
2188 rtx substed_operand
[MAX_RECOG_OPERANDS
];
2189 rtx body
= PATTERN (insn
);
2190 rtx set
= single_set (insn
);
2191 int goal_earlyclobber
, this_earlyclobber
;
2192 enum machine_mode operand_mode
[MAX_RECOG_OPERANDS
];
2195 this_insn_is_asm
= 0; /* Tentative. */
2199 n_earlyclobbers
= 0;
2200 replace_reloads
= replace
;
2201 hard_regs_live_known
= live_known
;
2202 static_reload_reg_p
= reload_reg_p
;
2204 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2205 neither are insns that SET cc0. Insns that use CC0 are not allowed
2206 to have any input reloads. */
2207 if (GET_CODE (insn
) == JUMP_INSN
|| GET_CODE (insn
) == CALL_INSN
)
2208 no_output_reloads
= 1;
2211 if (reg_referenced_p (cc0_rtx
, PATTERN (insn
)))
2212 no_input_reloads
= 1;
2213 if (reg_set_p (cc0_rtx
, PATTERN (insn
)))
2214 no_output_reloads
= 1;
2217 #ifdef SECONDARY_MEMORY_NEEDED
2218 /* The eliminated forms of any secondary memory locations are per-insn, so
2219 clear them out here. */
2221 bzero ((char *) secondary_memlocs_elim
, sizeof secondary_memlocs_elim
);
2224 /* Find what kind of insn this is. NOPERANDS gets number of operands.
2225 Make OPERANDS point to a vector of operand values.
2226 Make OPERAND_LOCS point to a vector of pointers to
2227 where the operands were found.
2228 Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
2229 constraint-strings for this insn.
2230 Return if the insn needs no reload processing. */
2232 switch (GET_CODE (body
))
2242 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2243 is cheap to move between them. If it is not, there may not be an insn
2244 to do the copy, so we may need a reload. */
2245 if (GET_CODE (SET_DEST (body
)) == REG
2246 && REGNO (SET_DEST (body
)) < FIRST_PSEUDO_REGISTER
2247 && GET_CODE (SET_SRC (body
)) == REG
2248 && REGNO (SET_SRC (body
)) < FIRST_PSEUDO_REGISTER
2249 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body
))),
2250 REGNO_REG_CLASS (REGNO (SET_DEST (body
)))) == 2)
2254 reload_n_operands
= noperands
= asm_noperands (body
);
2257 /* This insn is an `asm' with operands. */
2259 insn_code_number
= -1;
2260 this_insn_is_asm
= 1;
2262 /* expand_asm_operands makes sure there aren't too many operands. */
2263 if (noperands
> MAX_RECOG_OPERANDS
)
2266 /* Now get the operand values and constraints out of the insn. */
2268 decode_asm_operands (body
, recog_operand
, recog_operand_loc
,
2269 constraints
, operand_mode
);
2272 bcopy ((char *) constraints
, (char *) constraints1
,
2273 noperands
* sizeof (char *));
2274 n_alternatives
= n_occurrences (',', constraints
[0]) + 1;
2275 for (i
= 1; i
< noperands
; i
++)
2276 if (n_alternatives
!= n_occurrences (',', constraints
[i
]) + 1)
2278 error_for_asm (insn
, "operand constraints differ in number of alternatives");
2279 /* Avoid further trouble with this insn. */
2280 PATTERN (insn
) = gen_rtx (USE
, VOIDmode
, const0_rtx
);
2289 /* Ordinary insn: recognize it, get the operands via insn_extract
2290 and get the constraints. */
2292 insn_code_number
= recog_memoized (insn
);
2293 if (insn_code_number
< 0)
2294 fatal_insn_not_found (insn
);
2296 reload_n_operands
= noperands
= insn_n_operands
[insn_code_number
];
2297 n_alternatives
= insn_n_alternatives
[insn_code_number
];
2298 /* Just return "no reloads" if insn has no operands with constraints. */
2299 if (n_alternatives
== 0)
2301 insn_extract (insn
);
2302 for (i
= 0; i
< noperands
; i
++)
2304 constraints
[i
] = constraints1
[i
]
2305 = insn_operand_constraint
[insn_code_number
][i
];
2306 operand_mode
[i
] = insn_operand_mode
[insn_code_number
][i
];
2315 /* If we will need to know, later, whether some pair of operands
2316 are the same, we must compare them now and save the result.
2317 Reloading the base and index registers will clobber them
2318 and afterward they will fail to match. */
2320 for (i
= 0; i
< noperands
; i
++)
2325 substed_operand
[i
] = recog_operand
[i
];
2328 modified
[i
] = RELOAD_READ
;
2330 /* Scan this operand's constraint to see if it is an output operand,
2331 an in-out operand, is commutative, or should match another. */
2336 modified
[i
] = RELOAD_WRITE
;
2338 modified
[i
] = RELOAD_READ_WRITE
;
2341 /* The last operand should not be marked commutative. */
2342 if (i
== noperands
- 1)
2344 if (this_insn_is_asm
)
2345 warning_for_asm (this_insn
,
2346 "`%%' constraint used with last operand");
2353 else if (c
>= '0' && c
<= '9')
2356 operands_match
[c
][i
]
2357 = operands_match_p (recog_operand
[c
], recog_operand
[i
]);
2359 /* An operand may not match itself. */
2362 if (this_insn_is_asm
)
2363 warning_for_asm (this_insn
,
2364 "operand %d has constraint %d", i
, c
);
2369 /* If C can be commuted with C+1, and C might need to match I,
2370 then C+1 might also need to match I. */
2371 if (commutative
>= 0)
2373 if (c
== commutative
|| c
== commutative
+ 1)
2375 int other
= c
+ (c
== commutative
? 1 : -1);
2376 operands_match
[other
][i
]
2377 = operands_match_p (recog_operand
[other
], recog_operand
[i
]);
2379 if (i
== commutative
|| i
== commutative
+ 1)
2381 int other
= i
+ (i
== commutative
? 1 : -1);
2382 operands_match
[c
][other
]
2383 = operands_match_p (recog_operand
[c
], recog_operand
[other
]);
2385 /* Note that C is supposed to be less than I.
2386 No need to consider altering both C and I because in
2387 that case we would alter one into the other. */
2393 /* Examine each operand that is a memory reference or memory address
2394 and reload parts of the addresses into index registers.
2395 Also here any references to pseudo regs that didn't get hard regs
2396 but are equivalent to constants get replaced in the insn itself
2397 with those constants. Nobody will ever see them again.
2399 Finally, set up the preferred classes of each operand. */
2401 for (i
= 0; i
< noperands
; i
++)
2403 register RTX_CODE code
= GET_CODE (recog_operand
[i
]);
2405 address_reloaded
[i
] = 0;
2406 operand_type
[i
] = (modified
[i
] == RELOAD_READ
? RELOAD_FOR_INPUT
2407 : modified
[i
] == RELOAD_WRITE
? RELOAD_FOR_OUTPUT
2410 = (modified
[i
] == RELOAD_READ
? RELOAD_FOR_INPUT_ADDRESS
2411 : modified
[i
] == RELOAD_WRITE
? RELOAD_FOR_OUTPUT_ADDRESS
2414 if (*constraints
[i
] == 0)
2415 /* Ignore things like match_operator operands. */
2417 else if (constraints
[i
][0] == 'p')
2419 find_reloads_address (VOIDmode
, NULL_PTR
,
2420 recog_operand
[i
], recog_operand_loc
[i
],
2421 i
, operand_type
[i
], ind_levels
);
2422 substed_operand
[i
] = recog_operand
[i
] = *recog_operand_loc
[i
];
2424 else if (code
== MEM
)
2426 if (find_reloads_address (GET_MODE (recog_operand
[i
]),
2427 recog_operand_loc
[i
],
2428 XEXP (recog_operand
[i
], 0),
2429 &XEXP (recog_operand
[i
], 0),
2430 i
, address_type
[i
], ind_levels
))
2431 address_reloaded
[i
] = 1;
2432 substed_operand
[i
] = recog_operand
[i
] = *recog_operand_loc
[i
];
2434 else if (code
== SUBREG
)
2435 substed_operand
[i
] = recog_operand
[i
] = *recog_operand_loc
[i
]
2436 = find_reloads_toplev (recog_operand
[i
], i
, address_type
[i
],
2439 && &SET_DEST (set
) == recog_operand_loc
[i
]);
2440 else if (code
== PLUS
)
2441 /* We can get a PLUS as an "operand" as a result of
2442 register elimination. See eliminate_regs and gen_reload. */
2443 substed_operand
[i
] = recog_operand
[i
] = *recog_operand_loc
[i
]
2444 = find_reloads_toplev (recog_operand
[i
], i
, address_type
[i
],
2446 else if (code
== REG
)
2448 /* This is equivalent to calling find_reloads_toplev.
2449 The code is duplicated for speed.
2450 When we find a pseudo always equivalent to a constant,
2451 we replace it by the constant. We must be sure, however,
2452 that we don't try to replace it in the insn in which it
2454 register int regno
= REGNO (recog_operand
[i
]);
2455 if (reg_equiv_constant
[regno
] != 0
2456 && (set
== 0 || &SET_DEST (set
) != recog_operand_loc
[i
]))
2457 substed_operand
[i
] = recog_operand
[i
]
2458 = reg_equiv_constant
[regno
];
2459 #if 0 /* This might screw code in reload1.c to delete prior output-reload
2460 that feeds this insn. */
2461 if (reg_equiv_mem
[regno
] != 0)
2462 substed_operand
[i
] = recog_operand
[i
]
2463 = reg_equiv_mem
[regno
];
2465 if (reg_equiv_address
[regno
] != 0)
2467 /* If reg_equiv_address is not a constant address, copy it,
2468 since it may be shared. */
2469 /* We must rerun eliminate_regs, in case the elimination
2470 offsets have changed. */
2471 rtx address
= XEXP (eliminate_regs (reg_equiv_memory_loc
[regno
],
2475 if (rtx_varies_p (address
))
2476 address
= copy_rtx (address
);
2478 /* If this is an output operand, we must output a CLOBBER
2479 after INSN so find_equiv_reg knows REGNO is being written.
2480 Mark this insn specially, do we can put our output reloads
2483 if (modified
[i
] != RELOAD_READ
)
2484 PUT_MODE (emit_insn_after (gen_rtx (CLOBBER
, VOIDmode
,
2489 *recog_operand_loc
[i
] = recog_operand
[i
]
2490 = gen_rtx (MEM
, GET_MODE (recog_operand
[i
]), address
);
2491 RTX_UNCHANGING_P (recog_operand
[i
])
2492 = RTX_UNCHANGING_P (regno_reg_rtx
[regno
]);
2493 find_reloads_address (GET_MODE (recog_operand
[i
]),
2494 recog_operand_loc
[i
],
2495 XEXP (recog_operand
[i
], 0),
2496 &XEXP (recog_operand
[i
], 0),
2497 i
, address_type
[i
], ind_levels
);
2498 substed_operand
[i
] = recog_operand
[i
] = *recog_operand_loc
[i
];
2501 /* If the operand is still a register (we didn't replace it with an
2502 equivalent), get the preferred class to reload it into. */
2503 code
= GET_CODE (recog_operand
[i
]);
2505 = ((code
== REG
&& REGNO (recog_operand
[i
]) >= FIRST_PSEUDO_REGISTER
)
2506 ? reg_preferred_class (REGNO (recog_operand
[i
])) : NO_REGS
);
2508 = (code
== REG
&& REGNO (recog_operand
[i
]) >= FIRST_PSEUDO_REGISTER
2509 && reg_alternate_class (REGNO (recog_operand
[i
])) == NO_REGS
);
2512 /* If this is simply a copy from operand 1 to operand 0, merge the
2513 preferred classes for the operands. */
2514 if (set
!= 0 && noperands
>= 2 && recog_operand
[0] == SET_DEST (set
)
2515 && recog_operand
[1] == SET_SRC (set
))
2517 preferred_class
[0] = preferred_class
[1]
2518 = reg_class_subunion
[(int) preferred_class
[0]][(int) preferred_class
[1]];
2519 pref_or_nothing
[0] |= pref_or_nothing
[1];
2520 pref_or_nothing
[1] |= pref_or_nothing
[0];
2523 /* Now see what we need for pseudo-regs that didn't get hard regs
2524 or got the wrong kind of hard reg. For this, we must consider
2525 all the operands together against the register constraints. */
2527 best
= MAX_RECOG_OPERANDS
+ 300;
2530 goal_alternative_swapped
= 0;
2533 /* The constraints are made of several alternatives.
2534 Each operand's constraint looks like foo,bar,... with commas
2535 separating the alternatives. The first alternatives for all
2536 operands go together, the second alternatives go together, etc.
2538 First loop over alternatives. */
2540 for (this_alternative_number
= 0;
2541 this_alternative_number
< n_alternatives
;
2542 this_alternative_number
++)
2544 /* Loop over operands for one constraint alternative. */
2545 /* LOSERS counts those that don't fit this alternative
2546 and would require loading. */
2548 /* BAD is set to 1 if it some operand can't fit this alternative
2549 even after reloading. */
2551 /* REJECT is a count of how undesirable this alternative says it is
2552 if any reloading is required. If the alternative matches exactly
2553 then REJECT is ignored, but otherwise it gets this much
2554 counted against it in addition to the reloading needed. Each
2555 ? counts three times here since we want the disparaging caused by
2556 a bad register class to only count 1/3 as much. */
2559 this_earlyclobber
= 0;
2561 for (i
= 0; i
< noperands
; i
++)
2563 register char *p
= constraints
[i
];
2564 register int win
= 0;
2565 /* 0 => this operand can be reloaded somehow for this alternative */
2567 /* 0 => this operand can be reloaded if the alternative allows regs. */
2570 register rtx operand
= recog_operand
[i
];
2572 /* Nonzero means this is a MEM that must be reloaded into a reg
2573 regardless of what the constraint says. */
2574 int force_reload
= 0;
2576 /* Nonzero if a constant forced into memory would be OK for this
2579 int earlyclobber
= 0;
2581 /* If the operand is a SUBREG, extract
2582 the REG or MEM (or maybe even a constant) within.
2583 (Constants can occur as a result of reg_equiv_constant.) */
2585 while (GET_CODE (operand
) == SUBREG
)
2587 offset
+= SUBREG_WORD (operand
);
2588 operand
= SUBREG_REG (operand
);
2589 /* Force reload if this is a constant or PLUS or if there may may
2590 be a problem accessing OPERAND in the outer mode. */
2591 if (CONSTANT_P (operand
)
2592 || GET_CODE (operand
) == PLUS
2593 /* We must force a reload of paradoxical SUBREGs
2594 of a MEM because the alignment of the inner value
2595 may not be enough to do the outer reference. On
2596 big-endian machines, it may also reference outside
2599 On machines that extend byte operations and we have a
2600 SUBREG where both the inner and outer modes are no wider
2601 than a word and the inner mode is narrower, is integral,
2602 and gets extended when loaded from memory, combine.c has
2603 made assumptions about the behavior of the machine in such
2604 register access. If the data is, in fact, in memory we
2605 must always load using the size assumed to be in the
2606 register and let the insn do the different-sized
2608 || ((GET_CODE (operand
) == MEM
2609 || (GET_CODE (operand
)== REG
2610 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
2611 && (((GET_MODE_BITSIZE (GET_MODE (operand
))
2612 < BIGGEST_ALIGNMENT
)
2613 && (GET_MODE_SIZE (operand_mode
[i
])
2614 > GET_MODE_SIZE (GET_MODE (operand
))))
2615 || (GET_CODE (operand
) == MEM
&& BYTES_BIG_ENDIAN
)
2616 #ifdef LOAD_EXTEND_OP
2617 || (GET_MODE_SIZE (operand_mode
[i
]) <= UNITS_PER_WORD
2618 && (GET_MODE_SIZE (GET_MODE (operand
))
2620 && (GET_MODE_SIZE (operand_mode
[i
])
2621 > GET_MODE_SIZE (GET_MODE (operand
)))
2622 && INTEGRAL_MODE_P (GET_MODE (operand
))
2623 && LOAD_EXTEND_OP (GET_MODE (operand
)) != NIL
)
2626 /* Subreg of a hard reg which can't handle the subreg's mode
2627 or which would handle that mode in the wrong number of
2628 registers for subregging to work. */
2629 || (GET_CODE (operand
) == REG
2630 && REGNO (operand
) < FIRST_PSEUDO_REGISTER
2631 && ((GET_MODE_SIZE (operand_mode
[i
]) <= UNITS_PER_WORD
2632 && (GET_MODE_SIZE (GET_MODE (operand
))
2634 && ((GET_MODE_SIZE (GET_MODE (operand
))
2636 != HARD_REGNO_NREGS (REGNO (operand
),
2637 GET_MODE (operand
))))
2638 || ! HARD_REGNO_MODE_OK (REGNO (operand
) + offset
,
2643 this_alternative
[i
] = (int) NO_REGS
;
2644 this_alternative_win
[i
] = 0;
2645 this_alternative_offmemok
[i
] = 0;
2646 this_alternative_earlyclobber
[i
] = 0;
2647 this_alternative_matches
[i
] = -1;
2649 /* An empty constraint or empty alternative
2650 allows anything which matched the pattern. */
2651 if (*p
== 0 || *p
== ',')
2654 /* Scan this alternative's specs for this operand;
2655 set WIN if the operand fits any letter in this alternative.
2656 Otherwise, clear BADOP if this operand could
2657 fit some letter after reloads,
2658 or set WINREG if this operand could fit after reloads
2659 provided the constraint allows some registers. */
2661 while (*p
&& (c
= *p
++) != ',')
2670 /* The last operand should not be marked commutative. */
2671 if (i
!= noperands
- 1)
2684 /* Ignore rest of this alternative as far as
2685 reloading is concerned. */
2686 while (*p
&& *p
!= ',') p
++;
2695 this_alternative_matches
[i
] = c
;
2696 /* We are supposed to match a previous operand.
2697 If we do, we win if that one did.
2698 If we do not, count both of the operands as losers.
2699 (This is too conservative, since most of the time
2700 only a single reload insn will be needed to make
2701 the two operands win. As a result, this alternative
2702 may be rejected when it is actually desirable.) */
2703 if ((swapped
&& (c
!= commutative
|| i
!= commutative
+ 1))
2704 /* If we are matching as if two operands were swapped,
2705 also pretend that operands_match had been computed
2707 But if I is the second of those and C is the first,
2708 don't exchange them, because operands_match is valid
2709 only on one side of its diagonal. */
2711 [(c
== commutative
|| c
== commutative
+ 1)
2712 ? 2*commutative
+ 1 - c
: c
]
2713 [(i
== commutative
|| i
== commutative
+ 1)
2714 ? 2*commutative
+ 1 - i
: i
])
2715 : operands_match
[c
][i
])
2716 win
= this_alternative_win
[c
];
2719 /* Operands don't match. */
2721 /* Retroactively mark the operand we had to match
2722 as a loser, if it wasn't already. */
2723 if (this_alternative_win
[c
])
2725 this_alternative_win
[c
] = 0;
2726 if (this_alternative
[c
] == (int) NO_REGS
)
2728 /* But count the pair only once in the total badness of
2729 this alternative, if the pair can be a dummy reload. */
2731 = find_dummy_reload (recog_operand
[i
], recog_operand
[c
],
2732 recog_operand_loc
[i
], recog_operand_loc
[c
],
2733 operand_mode
[i
], operand_mode
[c
],
2734 this_alternative
[c
], -1);
2739 /* This can be fixed with reloads if the operand
2740 we are supposed to match can be fixed with reloads. */
2742 this_alternative
[i
] = this_alternative
[c
];
2744 /* If we have to reload this operand and some previous
2745 operand also had to match the same thing as this
2746 operand, we don't know how to do that. So reject this
2748 if (! win
|| force_reload
)
2749 for (j
= 0; j
< i
; j
++)
2750 if (this_alternative_matches
[j
]
2751 == this_alternative_matches
[i
])
2757 /* All necessary reloads for an address_operand
2758 were handled in find_reloads_address. */
2759 this_alternative
[i
] = (int) BASE_REG_CLASS
;
2766 if (GET_CODE (operand
) == MEM
2767 || (GET_CODE (operand
) == REG
2768 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
2769 && reg_renumber
[REGNO (operand
)] < 0))
2771 if (CONSTANT_P (operand
))
2777 if (GET_CODE (operand
) == MEM
2778 && ! address_reloaded
[i
]
2779 && (GET_CODE (XEXP (operand
, 0)) == PRE_DEC
2780 || GET_CODE (XEXP (operand
, 0)) == POST_DEC
))
2785 if (GET_CODE (operand
) == MEM
2786 && ! address_reloaded
[i
]
2787 && (GET_CODE (XEXP (operand
, 0)) == PRE_INC
2788 || GET_CODE (XEXP (operand
, 0)) == POST_INC
))
2792 /* Memory operand whose address is not offsettable. */
2796 if (GET_CODE (operand
) == MEM
2797 && ! (ind_levels
? offsettable_memref_p (operand
)
2798 : offsettable_nonstrict_memref_p (operand
))
2799 /* Certain mem addresses will become offsettable
2800 after they themselves are reloaded. This is important;
2801 we don't want our own handling of unoffsettables
2802 to override the handling of reg_equiv_address. */
2803 && !(GET_CODE (XEXP (operand
, 0)) == REG
2805 || reg_equiv_address
[REGNO (XEXP (operand
, 0))] != 0)))
2809 /* Memory operand whose address is offsettable. */
2813 if ((GET_CODE (operand
) == MEM
2814 /* If IND_LEVELS, find_reloads_address won't reload a
2815 pseudo that didn't get a hard reg, so we have to
2816 reject that case. */
2817 && (ind_levels
? offsettable_memref_p (operand
)
2818 : offsettable_nonstrict_memref_p (operand
)))
2819 /* A reloaded auto-increment address is offsettable,
2820 because it is now just a simple register indirect. */
2821 || (GET_CODE (operand
) == MEM
2822 && address_reloaded
[i
]
2823 && (GET_CODE (XEXP (operand
, 0)) == PRE_INC
2824 || GET_CODE (XEXP (operand
, 0)) == PRE_DEC
2825 || GET_CODE (XEXP (operand
, 0)) == POST_INC
2826 || GET_CODE (XEXP (operand
, 0)) == POST_DEC
))
2827 /* Certain mem addresses will become offsettable
2828 after they themselves are reloaded. This is important;
2829 we don't want our own handling of unoffsettables
2830 to override the handling of reg_equiv_address. */
2831 || (GET_CODE (operand
) == MEM
2832 && GET_CODE (XEXP (operand
, 0)) == REG
2834 || reg_equiv_address
[REGNO (XEXP (operand
, 0))] != 0))
2835 || (GET_CODE (operand
) == REG
2836 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
2837 && reg_renumber
[REGNO (operand
)] < 0
2838 /* If reg_equiv_address is nonzero, we will be
2839 loading it into a register; hence it will be
2840 offsettable, but we cannot say that reg_equiv_mem
2841 is offsettable without checking. */
2842 && ((reg_equiv_mem
[REGNO (operand
)] != 0
2843 && offsettable_memref_p (reg_equiv_mem
[REGNO (operand
)]))
2844 || (reg_equiv_address
[REGNO (operand
)] != 0))))
2846 if (CONSTANT_P (operand
) || GET_CODE (operand
) == MEM
)
2853 /* Output operand that is stored before the need for the
2854 input operands (and their index registers) is over. */
2855 earlyclobber
= 1, this_earlyclobber
= 1;
2859 #ifndef REAL_ARITHMETIC
2860 /* Match any floating double constant, but only if
2861 we can examine the bits of it reliably. */
2862 if ((HOST_FLOAT_FORMAT
!= TARGET_FLOAT_FORMAT
2863 || HOST_BITS_PER_WIDE_INT
!= BITS_PER_WORD
)
2864 && GET_MODE (operand
) != VOIDmode
&& ! flag_pretend_float
)
2867 if (GET_CODE (operand
) == CONST_DOUBLE
)
2872 if (GET_CODE (operand
) == CONST_DOUBLE
)
2878 if (GET_CODE (operand
) == CONST_DOUBLE
2879 && CONST_DOUBLE_OK_FOR_LETTER_P (operand
, c
))
2884 if (GET_CODE (operand
) == CONST_INT
2885 || (GET_CODE (operand
) == CONST_DOUBLE
2886 && GET_MODE (operand
) == VOIDmode
))
2889 if (CONSTANT_P (operand
)
2890 #ifdef LEGITIMATE_PIC_OPERAND_P
2891 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (operand
))
2898 if (GET_CODE (operand
) == CONST_INT
2899 || (GET_CODE (operand
) == CONST_DOUBLE
2900 && GET_MODE (operand
) == VOIDmode
))
2912 if (GET_CODE (operand
) == CONST_INT
2913 && CONST_OK_FOR_LETTER_P (INTVAL (operand
), c
))
2923 /* A PLUS is never a valid operand, but reload can make
2924 it from a register when eliminating registers. */
2925 && GET_CODE (operand
) != PLUS
2926 /* A SCRATCH is not a valid operand. */
2927 && GET_CODE (operand
) != SCRATCH
2928 #ifdef LEGITIMATE_PIC_OPERAND_P
2929 && (! CONSTANT_P (operand
)
2931 || LEGITIMATE_PIC_OPERAND_P (operand
))
2933 && (GENERAL_REGS
== ALL_REGS
2934 || GET_CODE (operand
) != REG
2935 || (REGNO (operand
) >= FIRST_PSEUDO_REGISTER
2936 && reg_renumber
[REGNO (operand
)] < 0)))
2938 /* Drop through into 'r' case */
2942 = (int) reg_class_subunion
[this_alternative
[i
]][(int) GENERAL_REGS
];
2945 #ifdef EXTRA_CONSTRAINT
2951 if (EXTRA_CONSTRAINT (operand
, c
))
2958 = (int) reg_class_subunion
[this_alternative
[i
]][(int) REG_CLASS_FROM_LETTER (c
)];
2961 if (GET_MODE (operand
) == BLKmode
)
2964 if (GET_CODE (operand
) == REG
2965 && reg_fits_class_p (operand
, this_alternative
[i
],
2966 offset
, GET_MODE (recog_operand
[i
])))
2973 /* If this operand could be handled with a reg,
2974 and some reg is allowed, then this operand can be handled. */
2975 if (winreg
&& this_alternative
[i
] != (int) NO_REGS
)
2978 /* Record which operands fit this alternative. */
2979 this_alternative_earlyclobber
[i
] = earlyclobber
;
2980 if (win
&& ! force_reload
)
2981 this_alternative_win
[i
] = 1;
2984 int const_to_mem
= 0;
2986 this_alternative_offmemok
[i
] = offmemok
;
2990 /* Alternative loses if it has no regs for a reg operand. */
2991 if (GET_CODE (operand
) == REG
2992 && this_alternative
[i
] == (int) NO_REGS
2993 && this_alternative_matches
[i
] < 0)
2996 /* Alternative loses if it requires a type of reload not
2997 permitted for this insn. We can always reload SCRATCH
2998 and objects with a REG_UNUSED note. */
2999 if (GET_CODE (operand
) != SCRATCH
3000 && modified
[i
] != RELOAD_READ
&& no_output_reloads
3001 && ! find_reg_note (insn
, REG_UNUSED
, operand
))
3003 else if (modified
[i
] != RELOAD_WRITE
&& no_input_reloads
)
3006 /* If this is a constant that is reloaded into the desired
3007 class by copying it to memory first, count that as another
3008 reload. This is consistent with other code and is
3009 required to avoid choosing another alternative when
3010 the constant is moved into memory by this function on
3011 an early reload pass. Note that the test here is
3012 precisely the same as in the code below that calls
3014 if (CONSTANT_P (operand
)
3015 /* force_const_mem does not accept HIGH. */
3016 && GET_CODE (operand
) != HIGH
3017 && (PREFERRED_RELOAD_CLASS (operand
,
3018 (enum reg_class
) this_alternative
[i
])
3020 && operand_mode
[i
] != VOIDmode
)
3023 if (this_alternative
[i
] != (int) NO_REGS
)
3027 /* If we can't reload this value at all, reject this
3028 alternative. Note that we could also lose due to
3029 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3032 if (! CONSTANT_P (operand
)
3033 && (enum reg_class
) this_alternative
[i
] != NO_REGS
3034 && (PREFERRED_RELOAD_CLASS (operand
,
3035 (enum reg_class
) this_alternative
[i
])
3039 /* We prefer to reload pseudos over reloading other things,
3040 since such reloads may be able to be eliminated later.
3041 If we are reloading a SCRATCH, we won't be generating any
3042 insns, just using a register, so it is also preferred.
3043 So bump REJECT in other cases. Don't do this in the
3044 case where we are forcing a constant into memory and
3045 it will then win since we don't want to have a different
3046 alternative match then. */
3047 if (! (GET_CODE (operand
) == REG
3048 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
)
3049 && GET_CODE (operand
) != SCRATCH
3050 && ! (const_to_mem
&& constmemok
))
3054 /* If this operand is a pseudo register that didn't get a hard
3055 reg and this alternative accepts some register, see if the
3056 class that we want is a subset of the preferred class for this
3057 register. If not, but it intersects that class, use the
3058 preferred class instead. If it does not intersect the preferred
3059 class, show that usage of this alternative should be discouraged;
3060 it will be discouraged more still if the register is `preferred
3061 or nothing'. We do this because it increases the chance of
3062 reusing our spill register in a later insn and avoiding a pair
3063 of memory stores and loads.
3065 Don't bother with this if this alternative will accept this
3068 Don't do this for a multiword operand, since it is only a
3069 small win and has the risk of requiring more spill registers,
3070 which could cause a large loss.
3072 Don't do this if the preferred class has only one register
3073 because we might otherwise exhaust the class. */
3076 if (! win
&& this_alternative
[i
] != (int) NO_REGS
3077 && GET_MODE_SIZE (operand_mode
[i
]) <= UNITS_PER_WORD
3078 && reg_class_size
[(int) preferred_class
[i
]] > 1)
3080 if (! reg_class_subset_p (this_alternative
[i
],
3081 preferred_class
[i
]))
3083 /* Since we don't have a way of forming the intersection,
3084 we just do something special if the preferred class
3085 is a subset of the class we have; that's the most
3086 common case anyway. */
3087 if (reg_class_subset_p (preferred_class
[i
],
3088 this_alternative
[i
]))
3089 this_alternative
[i
] = (int) preferred_class
[i
];
3091 reject
+= (1 + pref_or_nothing
[i
]);
3096 /* Now see if any output operands that are marked "earlyclobber"
3097 in this alternative conflict with any input operands
3098 or any memory addresses. */
3100 for (i
= 0; i
< noperands
; i
++)
3101 if (this_alternative_earlyclobber
[i
]
3102 && this_alternative_win
[i
])
3104 struct decomposition early_data
;
3106 early_data
= decompose (recog_operand
[i
]);
3108 if (modified
[i
] == RELOAD_READ
)
3110 if (this_insn_is_asm
)
3111 warning_for_asm (this_insn
,
3112 "`&' constraint used with input operand");
3118 if (this_alternative
[i
] == NO_REGS
)
3120 this_alternative_earlyclobber
[i
] = 0;
3121 if (this_insn_is_asm
)
3122 error_for_asm (this_insn
,
3123 "`&' constraint used with no register class");
3128 for (j
= 0; j
< noperands
; j
++)
3129 /* Is this an input operand or a memory ref? */
3130 if ((GET_CODE (recog_operand
[j
]) == MEM
3131 || modified
[j
] != RELOAD_WRITE
)
3133 /* Ignore things like match_operator operands. */
3134 && *constraints1
[j
] != 0
3135 /* Don't count an input operand that is constrained to match
3136 the early clobber operand. */
3137 && ! (this_alternative_matches
[j
] == i
3138 && rtx_equal_p (recog_operand
[i
], recog_operand
[j
]))
3139 /* Is it altered by storing the earlyclobber operand? */
3140 && !immune_p (recog_operand
[j
], recog_operand
[i
], early_data
))
3142 /* If the output is in a single-reg class,
3143 it's costly to reload it, so reload the input instead. */
3144 if (reg_class_size
[this_alternative
[i
]] == 1
3145 && (GET_CODE (recog_operand
[j
]) == REG
3146 || GET_CODE (recog_operand
[j
]) == SUBREG
))
3149 this_alternative_win
[j
] = 0;
3154 /* If an earlyclobber operand conflicts with something,
3155 it must be reloaded, so request this and count the cost. */
3159 this_alternative_win
[i
] = 0;
3160 for (j
= 0; j
< noperands
; j
++)
3161 if (this_alternative_matches
[j
] == i
3162 && this_alternative_win
[j
])
3164 this_alternative_win
[j
] = 0;
3170 /* If one alternative accepts all the operands, no reload required,
3171 choose that alternative; don't consider the remaining ones. */
3174 /* Unswap these so that they are never swapped at `finish'. */
3175 if (commutative
>= 0)
3177 recog_operand
[commutative
] = substed_operand
[commutative
];
3178 recog_operand
[commutative
+ 1]
3179 = substed_operand
[commutative
+ 1];
3181 for (i
= 0; i
< noperands
; i
++)
3183 goal_alternative_win
[i
] = 1;
3184 goal_alternative
[i
] = this_alternative
[i
];
3185 goal_alternative_offmemok
[i
] = this_alternative_offmemok
[i
];
3186 goal_alternative_matches
[i
] = this_alternative_matches
[i
];
3187 goal_alternative_earlyclobber
[i
]
3188 = this_alternative_earlyclobber
[i
];
3190 goal_alternative_number
= this_alternative_number
;
3191 goal_alternative_swapped
= swapped
;
3192 goal_earlyclobber
= this_earlyclobber
;
3196 /* REJECT, set by the ! and ? constraint characters and when a register
3197 would be reloaded into a non-preferred class, discourages the use of
3198 this alternative for a reload goal. REJECT is incremented by three
3199 for each ? and one for each non-preferred class. */
3200 losers
= losers
* 3 + reject
;
3202 /* If this alternative can be made to work by reloading,
3203 and it needs less reloading than the others checked so far,
3204 record it as the chosen goal for reloading. */
3205 if (! bad
&& best
> losers
)
3207 for (i
= 0; i
< noperands
; i
++)
3209 goal_alternative
[i
] = this_alternative
[i
];
3210 goal_alternative_win
[i
] = this_alternative_win
[i
];
3211 goal_alternative_offmemok
[i
] = this_alternative_offmemok
[i
];
3212 goal_alternative_matches
[i
] = this_alternative_matches
[i
];
3213 goal_alternative_earlyclobber
[i
]
3214 = this_alternative_earlyclobber
[i
];
3216 goal_alternative_swapped
= swapped
;
3218 goal_alternative_number
= this_alternative_number
;
3219 goal_earlyclobber
= this_earlyclobber
;
3223 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3224 then we need to try each alternative twice,
3225 the second time matching those two operands
3226 as if we had exchanged them.
3227 To do this, really exchange them in operands.
3229 If we have just tried the alternatives the second time,
3230 return operands to normal and drop through. */
3232 if (commutative
>= 0)
3237 register enum reg_class tclass
;
3240 recog_operand
[commutative
] = substed_operand
[commutative
+ 1];
3241 recog_operand
[commutative
+ 1] = substed_operand
[commutative
];
3243 tclass
= preferred_class
[commutative
];
3244 preferred_class
[commutative
] = preferred_class
[commutative
+ 1];
3245 preferred_class
[commutative
+ 1] = tclass
;
3247 t
= pref_or_nothing
[commutative
];
3248 pref_or_nothing
[commutative
] = pref_or_nothing
[commutative
+ 1];
3249 pref_or_nothing
[commutative
+ 1] = t
;
3251 bcopy ((char *) constraints1
, (char *) constraints
,
3252 noperands
* sizeof (char *));
3257 recog_operand
[commutative
] = substed_operand
[commutative
];
3258 recog_operand
[commutative
+ 1] = substed_operand
[commutative
+ 1];
3262 /* The operands don't meet the constraints.
3263 goal_alternative describes the alternative
3264 that we could reach by reloading the fewest operands.
3265 Reload so as to fit it. */
3267 if (best
== MAX_RECOG_OPERANDS
+ 300)
3269 /* No alternative works with reloads?? */
3270 if (insn_code_number
>= 0)
3272 error_for_asm (insn
, "inconsistent operand constraints in an `asm'");
3273 /* Avoid further trouble with this insn. */
3274 PATTERN (insn
) = gen_rtx (USE
, VOIDmode
, const0_rtx
);
3279 /* Jump to `finish' from above if all operands are valid already.
3280 In that case, goal_alternative_win is all 1. */
3283 /* Right now, for any pair of operands I and J that are required to match,
3285 goal_alternative_matches[J] is I.
3286 Set up goal_alternative_matched as the inverse function:
3287 goal_alternative_matched[I] = J. */
3289 for (i
= 0; i
< noperands
; i
++)
3290 goal_alternative_matched
[i
] = -1;
3292 for (i
= 0; i
< noperands
; i
++)
3293 if (! goal_alternative_win
[i
]
3294 && goal_alternative_matches
[i
] >= 0)
3295 goal_alternative_matched
[goal_alternative_matches
[i
]] = i
;
3297 /* If the best alternative is with operands 1 and 2 swapped,
3298 consider them swapped before reporting the reloads. Update the
3299 operand numbers of any reloads already pushed. */
3301 if (goal_alternative_swapped
)
3305 tem
= substed_operand
[commutative
];
3306 substed_operand
[commutative
] = substed_operand
[commutative
+ 1];
3307 substed_operand
[commutative
+ 1] = tem
;
3308 tem
= recog_operand
[commutative
];
3309 recog_operand
[commutative
] = recog_operand
[commutative
+ 1];
3310 recog_operand
[commutative
+ 1] = tem
;
3312 for (i
= 0; i
< n_reloads
; i
++)
3314 if (reload_opnum
[i
] == commutative
)
3315 reload_opnum
[i
] = commutative
+ 1;
3316 else if (reload_opnum
[i
] == commutative
+ 1)
3317 reload_opnum
[i
] = commutative
;
3321 /* Perform whatever substitutions on the operands we are supposed
3322 to make due to commutativity or replacement of registers
3323 with equivalent constants or memory slots. */
3325 for (i
= 0; i
< noperands
; i
++)
3327 *recog_operand_loc
[i
] = substed_operand
[i
];
3328 /* While we are looping on operands, initialize this. */
3329 operand_reloadnum
[i
] = -1;
3331 /* If this is an earlyclobber operand, we need to widen the scope.
3332 The reload must remain valid from the start of the insn being
3333 reloaded until after the operand is stored into its destination.
3334 We approximate this with RELOAD_OTHER even though we know that we
3335 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3337 One special case that is worth checking is when we have an
3338 output that is earlyclobber but isn't used past the insn (typically
3339 a SCRATCH). In this case, we only need have the reload live
3340 through the insn itself, but not for any of our input or output
3343 In any case, anything needed to address this operand can remain
3344 however they were previously categorized. */
3346 if (goal_alternative_earlyclobber
[i
])
3348 = (find_reg_note (insn
, REG_UNUSED
, recog_operand
[i
])
3349 ? RELOAD_FOR_INSN
: RELOAD_OTHER
);
3352 /* Any constants that aren't allowed and can't be reloaded
3353 into registers are here changed into memory references. */
3354 for (i
= 0; i
< noperands
; i
++)
3355 if (! goal_alternative_win
[i
]
3356 && CONSTANT_P (recog_operand
[i
])
3357 /* force_const_mem does not accept HIGH. */
3358 && GET_CODE (recog_operand
[i
]) != HIGH
3359 && (PREFERRED_RELOAD_CLASS (recog_operand
[i
],
3360 (enum reg_class
) goal_alternative
[i
])
3362 && operand_mode
[i
] != VOIDmode
)
3364 *recog_operand_loc
[i
] = recog_operand
[i
]
3365 = find_reloads_toplev (force_const_mem (operand_mode
[i
],
3367 i
, address_type
[i
], ind_levels
, 0);
3368 if (alternative_allows_memconst (constraints1
[i
],
3369 goal_alternative_number
))
3370 goal_alternative_win
[i
] = 1;
3373 /* Record the values of the earlyclobber operands for the caller. */
3374 if (goal_earlyclobber
)
3375 for (i
= 0; i
< noperands
; i
++)
3376 if (goal_alternative_earlyclobber
[i
])
3377 reload_earlyclobbers
[n_earlyclobbers
++] = recog_operand
[i
];
3379 /* Now record reloads for all the operands that need them. */
3380 for (i
= 0; i
< noperands
; i
++)
3381 if (! goal_alternative_win
[i
])
3383 /* Operands that match previous ones have already been handled. */
3384 if (goal_alternative_matches
[i
] >= 0)
3386 /* Handle an operand with a nonoffsettable address
3387 appearing where an offsettable address will do
3388 by reloading the address into a base register.
3390 ??? We can also do this when the operand is a register and
3391 reg_equiv_mem is not offsettable, but this is a bit tricky,
3392 so we don't bother with it. It may not be worth doing. */
3393 else if (goal_alternative_matched
[i
] == -1
3394 && goal_alternative_offmemok
[i
]
3395 && GET_CODE (recog_operand
[i
]) == MEM
)
3397 operand_reloadnum
[i
]
3398 = push_reload (XEXP (recog_operand
[i
], 0), NULL_RTX
,
3399 &XEXP (recog_operand
[i
], 0), NULL_PTR
,
3400 BASE_REG_CLASS
, GET_MODE (XEXP (recog_operand
[i
], 0)),
3401 VOIDmode
, 0, 0, i
, RELOAD_FOR_INPUT
);
3402 reload_inc
[operand_reloadnum
[i
]]
3403 = GET_MODE_SIZE (GET_MODE (recog_operand
[i
]));
3405 /* If this operand is an output, we will have made any
3406 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3407 now we are treating part of the operand as an input, so
3408 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3410 if (modified
[i
] == RELOAD_WRITE
)
3411 for (j
= 0; j
< n_reloads
; j
++)
3412 if (reload_opnum
[j
] == i
3413 && reload_when_needed
[j
] == RELOAD_FOR_OUTPUT_ADDRESS
)
3414 reload_when_needed
[j
] = RELOAD_FOR_INPUT_ADDRESS
;
3416 else if (goal_alternative_matched
[i
] == -1)
3417 operand_reloadnum
[i
] =
3418 push_reload (modified
[i
] != RELOAD_WRITE
? recog_operand
[i
] : 0,
3419 modified
[i
] != RELOAD_READ
? recog_operand
[i
] : 0,
3420 (modified
[i
] != RELOAD_WRITE
?
3421 recog_operand_loc
[i
] : 0),
3422 modified
[i
] != RELOAD_READ
? recog_operand_loc
[i
] : 0,
3423 (enum reg_class
) goal_alternative
[i
],
3424 (modified
[i
] == RELOAD_WRITE
3425 ? VOIDmode
: operand_mode
[i
]),
3426 (modified
[i
] == RELOAD_READ
3427 ? VOIDmode
: operand_mode
[i
]),
3428 (insn_code_number
< 0 ? 0
3429 : insn_operand_strict_low
[insn_code_number
][i
]),
3430 0, i
, operand_type
[i
]);
3431 /* In a matching pair of operands, one must be input only
3432 and the other must be output only.
3433 Pass the input operand as IN and the other as OUT. */
3434 else if (modified
[i
] == RELOAD_READ
3435 && modified
[goal_alternative_matched
[i
]] == RELOAD_WRITE
)
3437 operand_reloadnum
[i
]
3438 = push_reload (recog_operand
[i
],
3439 recog_operand
[goal_alternative_matched
[i
]],
3440 recog_operand_loc
[i
],
3441 recog_operand_loc
[goal_alternative_matched
[i
]],
3442 (enum reg_class
) goal_alternative
[i
],
3444 operand_mode
[goal_alternative_matched
[i
]],
3445 0, 0, i
, RELOAD_OTHER
);
3446 operand_reloadnum
[goal_alternative_matched
[i
]] = output_reloadnum
;
3448 else if (modified
[i
] == RELOAD_WRITE
3449 && modified
[goal_alternative_matched
[i
]] == RELOAD_READ
)
3451 operand_reloadnum
[goal_alternative_matched
[i
]]
3452 = push_reload (recog_operand
[goal_alternative_matched
[i
]],
3454 recog_operand_loc
[goal_alternative_matched
[i
]],
3455 recog_operand_loc
[i
],
3456 (enum reg_class
) goal_alternative
[i
],
3457 operand_mode
[goal_alternative_matched
[i
]],
3459 0, 0, i
, RELOAD_OTHER
);
3460 operand_reloadnum
[i
] = output_reloadnum
;
3462 else if (insn_code_number
>= 0)
3466 error_for_asm (insn
, "inconsistent operand constraints in an `asm'");
3467 /* Avoid further trouble with this insn. */
3468 PATTERN (insn
) = gen_rtx (USE
, VOIDmode
, const0_rtx
);
3473 else if (goal_alternative_matched
[i
] < 0
3474 && goal_alternative_matches
[i
] < 0
3477 /* For each non-matching operand that's a MEM or a pseudo-register
3478 that didn't get a hard register, make an optional reload.
3479 This may get done even if the insn needs no reloads otherwise. */
3481 rtx operand
= recog_operand
[i
];
3483 while (GET_CODE (operand
) == SUBREG
)
3484 operand
= XEXP (operand
, 0);
3485 if ((GET_CODE (operand
) == MEM
3486 || (GET_CODE (operand
) == REG
3487 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
3488 && (enum reg_class
) goal_alternative
[i
] != NO_REGS
3489 && ! no_input_reloads
3490 /* Optional output reloads don't do anything and we mustn't
3491 make in-out reloads on insns that are not permitted output
3493 && (modified
[i
] == RELOAD_READ
3494 || (modified
[i
] == RELOAD_READ_WRITE
&& ! no_output_reloads
)))
3495 operand_reloadnum
[i
]
3496 = push_reload (modified
[i
] != RELOAD_WRITE
? recog_operand
[i
] : 0,
3497 modified
[i
] != RELOAD_READ
? recog_operand
[i
] : 0,
3498 (modified
[i
] != RELOAD_WRITE
3499 ? recog_operand_loc
[i
] : 0),
3500 (modified
[i
] != RELOAD_READ
3501 ? recog_operand_loc
[i
] : 0),
3502 (enum reg_class
) goal_alternative
[i
],
3503 (modified
[i
] == RELOAD_WRITE
3504 ? VOIDmode
: operand_mode
[i
]),
3505 (modified
[i
] == RELOAD_READ
3506 ? VOIDmode
: operand_mode
[i
]),
3507 (insn_code_number
< 0 ? 0
3508 : insn_operand_strict_low
[insn_code_number
][i
]),
3509 1, i
, operand_type
[i
]);
3511 else if (goal_alternative_matches
[i
] >= 0
3512 && goal_alternative_win
[goal_alternative_matches
[i
]]
3513 && modified
[i
] == RELOAD_READ
3514 && modified
[goal_alternative_matches
[i
]] == RELOAD_WRITE
3515 && ! no_input_reloads
&& ! no_output_reloads
3518 /* Similarly, make an optional reload for a pair of matching
3519 objects that are in MEM or a pseudo that didn't get a hard reg. */
3521 rtx operand
= recog_operand
[i
];
3523 while (GET_CODE (operand
) == SUBREG
)
3524 operand
= XEXP (operand
, 0);
3525 if ((GET_CODE (operand
) == MEM
3526 || (GET_CODE (operand
) == REG
3527 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
3528 && ((enum reg_class
) goal_alternative
[goal_alternative_matches
[i
]]
3530 operand_reloadnum
[i
] = operand_reloadnum
[goal_alternative_matches
[i
]]
3531 = push_reload (recog_operand
[goal_alternative_matches
[i
]],
3533 recog_operand_loc
[goal_alternative_matches
[i
]],
3534 recog_operand_loc
[i
],
3535 (enum reg_class
) goal_alternative
[goal_alternative_matches
[i
]],
3536 operand_mode
[goal_alternative_matches
[i
]],
3538 0, 1, goal_alternative_matches
[i
], RELOAD_OTHER
);
3541 /* If this insn pattern contains any MATCH_DUP's, make sure that
3542 they will be substituted if the operands they match are substituted.
3543 Also do now any substitutions we already did on the operands.
3545 Don't do this if we aren't making replacements because we might be
3546 propagating things allocated by frame pointer elimination into places
3547 it doesn't expect. */
3549 if (insn_code_number
>= 0 && replace
)
3550 for (i
= insn_n_dups
[insn_code_number
] - 1; i
>= 0; i
--)
3552 int opno
= recog_dup_num
[i
];
3553 *recog_dup_loc
[i
] = *recog_operand_loc
[opno
];
3554 if (operand_reloadnum
[opno
] >= 0)
3555 push_replacement (recog_dup_loc
[i
], operand_reloadnum
[opno
],
3556 insn_operand_mode
[insn_code_number
][opno
]);
3560 /* This loses because reloading of prior insns can invalidate the equivalence
3561 (or at least find_equiv_reg isn't smart enough to find it any more),
3562 causing this insn to need more reload regs than it needed before.
3563 It may be too late to make the reload regs available.
3564 Now this optimization is done safely in choose_reload_regs. */
3566 /* For each reload of a reg into some other class of reg,
3567 search for an existing equivalent reg (same value now) in the right class.
3568 We can use it as long as we don't need to change its contents. */
3569 for (i
= 0; i
< n_reloads
; i
++)
3570 if (reload_reg_rtx
[i
] == 0
3571 && reload_in
[i
] != 0
3572 && GET_CODE (reload_in
[i
]) == REG
3573 && reload_out
[i
] == 0)
3576 = find_equiv_reg (reload_in
[i
], insn
, reload_reg_class
[i
], -1,
3577 static_reload_reg_p
, 0, reload_inmode
[i
]);
3578 /* Prevent generation of insn to load the value
3579 because the one we found already has the value. */
3580 if (reload_reg_rtx
[i
])
3581 reload_in
[i
] = reload_reg_rtx
[i
];
3585 /* Perhaps an output reload can be combined with another
3586 to reduce needs by one. */
3587 if (!goal_earlyclobber
)
3590 /* If we have a pair of reloads for parts of an address, they are reloading
3591 the same object, the operands themselves were not reloaded, and they
3592 are for two operands that are supposed to match, merge the reloads and
3593 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3595 for (i
= 0; i
< n_reloads
; i
++)
3599 for (j
= i
+ 1; j
< n_reloads
; j
++)
3600 if ((reload_when_needed
[i
] == RELOAD_FOR_INPUT_ADDRESS
3601 || reload_when_needed
[i
] == RELOAD_FOR_OUTPUT_ADDRESS
)
3602 && (reload_when_needed
[j
] == RELOAD_FOR_INPUT_ADDRESS
3603 || reload_when_needed
[j
] == RELOAD_FOR_OUTPUT_ADDRESS
)
3604 && rtx_equal_p (reload_in
[i
], reload_in
[j
])
3605 && (operand_reloadnum
[reload_opnum
[i
]] < 0
3606 || reload_optional
[operand_reloadnum
[reload_opnum
[i
]]])
3607 && (operand_reloadnum
[reload_opnum
[j
]] < 0
3608 || reload_optional
[operand_reloadnum
[reload_opnum
[j
]]])
3609 && (goal_alternative_matches
[reload_opnum
[i
]] == reload_opnum
[j
]
3610 || (goal_alternative_matches
[reload_opnum
[j
]]
3611 == reload_opnum
[i
])))
3613 for (k
= 0; k
< n_replacements
; k
++)
3614 if (replacements
[k
].what
== j
)
3615 replacements
[k
].what
= i
;
3617 reload_when_needed
[i
] = RELOAD_FOR_OPERAND_ADDRESS
;
3622 /* Scan all the reloads and update their type.
3623 If a reload is for the address of an operand and we didn't reload
3624 that operand, change the type. Similarly, change the operand number
3625 of a reload when two operands match. If a reload is optional, treat it
3626 as though the operand isn't reloaded.
3628 ??? This latter case is somewhat odd because if we do the optional
3629 reload, it means the object is hanging around. Thus we need only
3630 do the address reload if the optional reload was NOT done.
3632 Change secondary reloads to be the address type of their operand, not
3635 If an operand's reload is now RELOAD_OTHER, change any
3636 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3637 RELOAD_FOR_OTHER_ADDRESS. */
3639 for (i
= 0; i
< n_reloads
; i
++)
3641 if (reload_secondary_p
[i
]
3642 && reload_when_needed
[i
] == operand_type
[reload_opnum
[i
]])
3643 reload_when_needed
[i
] = address_type
[reload_opnum
[i
]];
3645 if ((reload_when_needed
[i
] == RELOAD_FOR_INPUT_ADDRESS
3646 || reload_when_needed
[i
] == RELOAD_FOR_OUTPUT_ADDRESS
)
3647 && (operand_reloadnum
[reload_opnum
[i
]] < 0
3648 || reload_optional
[operand_reloadnum
[reload_opnum
[i
]]]))
3650 /* If we have a secondary reload to go along with this reload,
3651 change its type to RELOAD_FOR_OPADDR_ADDR. */
3653 if (reload_when_needed
[i
] == RELOAD_FOR_INPUT_ADDRESS
3654 && reload_secondary_in_reload
[i
] != -1)
3656 int secondary_in_reload
= reload_secondary_in_reload
[i
];
3658 reload_when_needed
[secondary_in_reload
] =
3659 RELOAD_FOR_OPADDR_ADDR
;
3661 /* If there's a tertiary reload we have to change it also. */
3662 if (secondary_in_reload
> 0
3663 && reload_secondary_in_reload
[secondary_in_reload
] != -1)
3664 reload_when_needed
[reload_secondary_in_reload
[secondary_in_reload
]]
3665 = RELOAD_FOR_OPADDR_ADDR
;
3668 if (reload_when_needed
[i
] == RELOAD_FOR_OUTPUT_ADDRESS
3669 && reload_secondary_out_reload
[i
] != -1)
3671 int secondary_out_reload
= reload_secondary_out_reload
[i
];
3673 reload_when_needed
[secondary_out_reload
] =
3674 RELOAD_FOR_OPADDR_ADDR
;
3676 /* If there's a tertiary reload we have to change it also. */
3677 if (secondary_out_reload
3678 && reload_secondary_out_reload
[secondary_out_reload
] != -1)
3679 reload_when_needed
[reload_secondary_out_reload
[secondary_out_reload
]]
3680 = RELOAD_FOR_OPADDR_ADDR
;
3682 reload_when_needed
[i
] = RELOAD_FOR_OPERAND_ADDRESS
;
3685 if (reload_when_needed
[i
] == RELOAD_FOR_INPUT_ADDRESS
3686 && operand_reloadnum
[reload_opnum
[i
]] >= 0
3687 && (reload_when_needed
[operand_reloadnum
[reload_opnum
[i
]]]
3689 reload_when_needed
[i
] = RELOAD_FOR_OTHER_ADDRESS
;
3691 if (goal_alternative_matches
[reload_opnum
[i
]] >= 0)
3692 reload_opnum
[i
] = goal_alternative_matches
[reload_opnum
[i
]];
3695 /* See if we have any reloads that are now allowed to be merged
3696 because we've changed when the reload is needed to
3697 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
3698 check for the most common cases. */
3700 for (i
= 0; i
< n_reloads
; i
++)
3701 if (reload_in
[i
] != 0 && reload_out
[i
] == 0
3702 && (reload_when_needed
[i
] == RELOAD_FOR_OPERAND_ADDRESS
3703 || reload_when_needed
[i
] == RELOAD_FOR_OTHER_ADDRESS
))
3704 for (j
= 0; j
< n_reloads
; j
++)
3705 if (i
!= j
&& reload_in
[j
] != 0 && reload_out
[j
] == 0
3706 && reload_when_needed
[j
] == reload_when_needed
[i
]
3707 && MATCHES (reload_in
[i
], reload_in
[j
])
3708 && reload_reg_class
[i
] == reload_reg_class
[j
]
3709 && !reload_nocombine
[i
] && !reload_nocombine
[j
]
3710 && reload_reg_rtx
[i
] == reload_reg_rtx
[j
])
3712 reload_opnum
[i
] = MIN (reload_opnum
[i
], reload_opnum
[j
]);
3713 transfer_replacements (i
, j
);
3717 #else /* no REGISTER_CONSTRAINTS */
3719 int insn_code_number
;
3720 int goal_earlyclobber
= 0; /* Always 0, to make combine_reloads happen. */
3722 rtx body
= PATTERN (insn
);
3726 n_earlyclobbers
= 0;
3727 replace_reloads
= replace
;
3730 /* Find what kind of insn this is. NOPERANDS gets number of operands.
3731 Store the operand values in RECOG_OPERAND and the locations
3732 of the words in the insn that point to them in RECOG_OPERAND_LOC.
3733 Return if the insn needs no reload processing. */
3735 switch (GET_CODE (body
))
3746 noperands
= asm_noperands (body
);
3749 /* This insn is an `asm' with operands.
3750 First, find out how many operands, and allocate space. */
3752 insn_code_number
= -1;
3753 /* ??? This is a bug! ???
3754 Give up and delete this insn if it has too many operands. */
3755 if (noperands
> MAX_RECOG_OPERANDS
)
3758 /* Now get the operand values out of the insn. */
3760 decode_asm_operands (body
, recog_operand
, recog_operand_loc
,
3761 NULL_PTR
, NULL_PTR
);
3766 /* Ordinary insn: recognize it, allocate space for operands and
3767 constraints, and get them out via insn_extract. */
3769 insn_code_number
= recog_memoized (insn
);
3770 noperands
= insn_n_operands
[insn_code_number
];
3771 insn_extract (insn
);
3777 for (i
= 0; i
< noperands
; i
++)
3779 register RTX_CODE code
= GET_CODE (recog_operand
[i
]);
3780 int is_set_dest
= GET_CODE (body
) == SET
&& (i
== 0);
3782 if (insn_code_number
>= 0)
3783 if (insn_operand_address_p
[insn_code_number
][i
])
3784 find_reloads_address (VOIDmode
, NULL_PTR
,
3785 recog_operand
[i
], recog_operand_loc
[i
],
3786 i
, RELOAD_FOR_INPUT
, ind_levels
);
3788 /* In these cases, we can't tell if the operand is an input
3789 or an output, so be conservative. In practice it won't be
3793 find_reloads_address (GET_MODE (recog_operand
[i
]),
3794 recog_operand_loc
[i
],
3795 XEXP (recog_operand
[i
], 0),
3796 &XEXP (recog_operand
[i
], 0),
3797 i
, RELOAD_OTHER
, ind_levels
);
3799 recog_operand
[i
] = *recog_operand_loc
[i
]
3800 = find_reloads_toplev (recog_operand
[i
], i
, RELOAD_OTHER
,
3801 ind_levels
, is_set_dest
);
3804 register int regno
= REGNO (recog_operand
[i
]);
3805 if (reg_equiv_constant
[regno
] != 0 && !is_set_dest
)
3806 recog_operand
[i
] = *recog_operand_loc
[i
]
3807 = reg_equiv_constant
[regno
];
3808 #if 0 /* This might screw code in reload1.c to delete prior output-reload
3809 that feeds this insn. */
3810 if (reg_equiv_mem
[regno
] != 0)
3811 recog_operand
[i
] = *recog_operand_loc
[i
]
3812 = reg_equiv_mem
[regno
];
3817 /* Perhaps an output reload can be combined with another
3818 to reduce needs by one. */
3819 if (!goal_earlyclobber
)
3821 #endif /* no REGISTER_CONSTRAINTS */
3824 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
3825 accepts a memory operand with constant address. */
3828 alternative_allows_memconst (constraint
, altnum
)
3833 /* Skip alternatives before the one requested. */
3836 while (*constraint
++ != ',');
3839 /* Scan the requested alternative for 'm' or 'o'.
3840 If one of them is present, this alternative accepts memory constants. */
3841 while ((c
= *constraint
++) && c
!= ',' && c
!= '#')
3842 if (c
== 'm' || c
== 'o')
3847 /* Scan X for memory references and scan the addresses for reloading.
3848 Also checks for references to "constant" regs that we want to eliminate
3849 and replaces them with the values they stand for.
3850 We may alter X destructively if it contains a reference to such.
3851 If X is just a constant reg, we return the equivalent value
3854 IND_LEVELS says how many levels of indirect addressing this machine
3857 OPNUM and TYPE identify the purpose of the reload.
3859 IS_SET_DEST is true if X is the destination of a SET, which is not
3860 appropriate to be replaced by a constant. */
3863 find_reloads_toplev (x
, opnum
, type
, ind_levels
, is_set_dest
)
3866 enum reload_type type
;
3870 register RTX_CODE code
= GET_CODE (x
);
3872 register char *fmt
= GET_RTX_FORMAT (code
);
3877 /* This code is duplicated for speed in find_reloads. */
3878 register int regno
= REGNO (x
);
3879 if (reg_equiv_constant
[regno
] != 0 && !is_set_dest
)
3880 x
= reg_equiv_constant
[regno
];
3882 /* This creates (subreg (mem...)) which would cause an unnecessary
3883 reload of the mem. */
3884 else if (reg_equiv_mem
[regno
] != 0)
3885 x
= reg_equiv_mem
[regno
];
3887 else if (reg_equiv_address
[regno
] != 0)
3889 /* If reg_equiv_address varies, it may be shared, so copy it. */
3890 /* We must rerun eliminate_regs, in case the elimination
3891 offsets have changed. */
3892 rtx addr
= XEXP (eliminate_regs (reg_equiv_memory_loc
[regno
], 0,
3896 if (rtx_varies_p (addr
))
3897 addr
= copy_rtx (addr
);
3899 x
= gen_rtx (MEM
, GET_MODE (x
), addr
);
3900 RTX_UNCHANGING_P (x
) = RTX_UNCHANGING_P (regno_reg_rtx
[regno
]);
3901 find_reloads_address (GET_MODE (x
), NULL_PTR
,
3903 &XEXP (x
, 0), opnum
, type
, ind_levels
);
3910 find_reloads_address (GET_MODE (x
), &tem
, XEXP (x
, 0), &XEXP (x
, 0),
3911 opnum
, type
, ind_levels
);
3915 if (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
)
3917 /* Check for SUBREG containing a REG that's equivalent to a constant.
3918 If the constant has a known value, truncate it right now.
3919 Similarly if we are extracting a single-word of a multi-word
3920 constant. If the constant is symbolic, allow it to be substituted
3921 normally. push_reload will strip the subreg later. If the
3922 constant is VOIDmode, abort because we will lose the mode of
3923 the register (this should never happen because one of the cases
3924 above should handle it). */
3926 register int regno
= REGNO (SUBREG_REG (x
));
3929 if (subreg_lowpart_p (x
)
3930 && regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
3931 && reg_equiv_constant
[regno
] != 0
3932 && (tem
= gen_lowpart_common (GET_MODE (x
),
3933 reg_equiv_constant
[regno
])) != 0)
3936 if (GET_MODE_BITSIZE (GET_MODE (x
)) == BITS_PER_WORD
3937 && regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
3938 && reg_equiv_constant
[regno
] != 0
3939 && (tem
= operand_subword (reg_equiv_constant
[regno
],
3941 GET_MODE (SUBREG_REG (x
)))) != 0)
3944 if (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
3945 && reg_equiv_constant
[regno
] != 0
3946 && GET_MODE (reg_equiv_constant
[regno
]) == VOIDmode
)
3949 /* If the subreg contains a reg that will be converted to a mem,
3950 convert the subreg to a narrower memref now.
3951 Otherwise, we would get (subreg (mem ...) ...),
3952 which would force reload of the mem.
3954 We also need to do this if there is an equivalent MEM that is
3955 not offsettable. In that case, alter_subreg would produce an
3956 invalid address on big-endian machines.
3958 For machines that extend byte loads, we must not reload using
3959 a wider mode if we have a paradoxical SUBREG. find_reloads will
3960 force a reload in that case. So we should not do anything here. */
3962 else if (regno
>= FIRST_PSEUDO_REGISTER
3963 #ifdef LOAD_EXTEND_OP
3964 && (GET_MODE_SIZE (GET_MODE (x
))
3965 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
3967 && (reg_equiv_address
[regno
] != 0
3968 || (reg_equiv_mem
[regno
] != 0
3969 && (! strict_memory_address_p (GET_MODE (x
),
3970 XEXP (reg_equiv_mem
[regno
], 0))
3971 || ! offsettable_memref_p (reg_equiv_mem
[regno
])))))
3973 int offset
= SUBREG_WORD (x
) * UNITS_PER_WORD
;
3974 /* We must rerun eliminate_regs, in case the elimination
3975 offsets have changed. */
3976 rtx addr
= XEXP (eliminate_regs (reg_equiv_memory_loc
[regno
], 0,
3979 if (BYTES_BIG_ENDIAN
)
3982 size
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)));
3983 offset
+= MIN (size
, UNITS_PER_WORD
);
3984 size
= GET_MODE_SIZE (GET_MODE (x
));
3985 offset
-= MIN (size
, UNITS_PER_WORD
);
3987 addr
= plus_constant (addr
, offset
);
3988 x
= gen_rtx (MEM
, GET_MODE (x
), addr
);
3989 RTX_UNCHANGING_P (x
) = RTX_UNCHANGING_P (regno_reg_rtx
[regno
]);
3990 find_reloads_address (GET_MODE (x
), NULL_PTR
,
3992 &XEXP (x
, 0), opnum
, type
, ind_levels
);
3997 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4000 XEXP (x
, i
) = find_reloads_toplev (XEXP (x
, i
), opnum
, type
,
4001 ind_levels
, is_set_dest
);
4006 /* Return a mem ref for the memory equivalent of reg REGNO.
4007 This mem ref is not shared with anything. */
4010 make_memloc (ad
, regno
)
4015 /* We must rerun eliminate_regs, in case the elimination
4016 offsets have changed. */
4017 rtx tem
= XEXP (eliminate_regs (reg_equiv_memory_loc
[regno
], 0, NULL_RTX
),
4020 #if 0 /* We cannot safely reuse a memloc made here;
4021 if the pseudo appears twice, and its mem needs a reload,
4022 it gets two separate reloads assigned, but it only
4023 gets substituted with the second of them;
4024 then it can get used before that reload reg gets loaded up. */
4025 for (i
= 0; i
< n_memlocs
; i
++)
4026 if (rtx_equal_p (tem
, XEXP (memlocs
[i
], 0)))
4030 /* If TEM might contain a pseudo, we must copy it to avoid
4031 modifying it when we do the substitution for the reload. */
4032 if (rtx_varies_p (tem
))
4033 tem
= copy_rtx (tem
);
4035 tem
= gen_rtx (MEM
, GET_MODE (ad
), tem
);
4036 RTX_UNCHANGING_P (tem
) = RTX_UNCHANGING_P (regno_reg_rtx
[regno
]);
4037 memlocs
[n_memlocs
++] = tem
;
4041 /* Record all reloads needed for handling memory address AD
4042 which appears in *LOC in a memory reference to mode MODE
4043 which itself is found in location *MEMREFLOC.
4044 Note that we take shortcuts assuming that no multi-reg machine mode
4045 occurs as part of an address.
4047 OPNUM and TYPE specify the purpose of this reload.
4049 IND_LEVELS says how many levels of indirect addressing this machine
4052 Value is nonzero if this address is reloaded or replaced as a whole.
4053 This is interesting to the caller if the address is an autoincrement.
4055 Note that there is no verification that the address will be valid after
4056 this routine does its work. Instead, we rely on the fact that the address
4057 was valid when reload started. So we need only undo things that reload
4058 could have broken. These are wrong register types, pseudos not allocated
4059 to a hard register, and frame pointer elimination. */
4062 find_reloads_address (mode
, memrefloc
, ad
, loc
, opnum
, type
, ind_levels
)
4063 enum machine_mode mode
;
4068 enum reload_type type
;
4074 /* If the address is a register, see if it is a legitimate address and
4075 reload if not. We first handle the cases where we need not reload
4076 or where we must reload in a non-standard way. */
4078 if (GET_CODE (ad
) == REG
)
4082 if (reg_equiv_constant
[regno
] != 0
4083 && strict_memory_address_p (mode
, reg_equiv_constant
[regno
]))
4085 *loc
= ad
= reg_equiv_constant
[regno
];
4089 else if (reg_equiv_address
[regno
] != 0)
4091 tem
= make_memloc (ad
, regno
);
4092 find_reloads_address (GET_MODE (tem
), NULL_PTR
, XEXP (tem
, 0),
4093 &XEXP (tem
, 0), opnum
, type
, ind_levels
);
4094 push_reload (tem
, NULL_RTX
, loc
, NULL_PTR
, BASE_REG_CLASS
,
4095 GET_MODE (ad
), VOIDmode
, 0, 0,
4100 /* We can avoid a reload if the register's equivalent memory expression
4101 is valid as an indirect memory address.
4102 But not all addresses are valid in a mem used as an indirect address:
4103 only reg or reg+constant. */
4105 else if (reg_equiv_mem
[regno
] != 0 && ind_levels
> 0
4106 && strict_memory_address_p (mode
, reg_equiv_mem
[regno
])
4107 && (GET_CODE (XEXP (reg_equiv_mem
[regno
], 0)) == REG
4108 || (GET_CODE (XEXP (reg_equiv_mem
[regno
], 0)) == PLUS
4109 && GET_CODE (XEXP (XEXP (reg_equiv_mem
[regno
], 0), 0)) == REG
4110 && CONSTANT_P (XEXP (XEXP (reg_equiv_mem
[regno
], 0), 1)))))
4113 /* The only remaining case where we can avoid a reload is if this is a
4114 hard register that is valid as a base register and which is not the
4115 subject of a CLOBBER in this insn. */
4117 else if (regno
< FIRST_PSEUDO_REGISTER
&& REGNO_OK_FOR_BASE_P (regno
)
4118 && ! regno_clobbered_p (regno
, this_insn
))
4121 /* If we do not have one of the cases above, we must do the reload. */
4122 push_reload (ad
, NULL_RTX
, loc
, NULL_PTR
, BASE_REG_CLASS
,
4123 GET_MODE (ad
), VOIDmode
, 0, 0, opnum
, type
);
4127 if (strict_memory_address_p (mode
, ad
))
4129 /* The address appears valid, so reloads are not needed.
4130 But the address may contain an eliminable register.
4131 This can happen because a machine with indirect addressing
4132 may consider a pseudo register by itself a valid address even when
4133 it has failed to get a hard reg.
4134 So do a tree-walk to find and eliminate all such regs. */
4136 /* But first quickly dispose of a common case. */
4137 if (GET_CODE (ad
) == PLUS
4138 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
4139 && GET_CODE (XEXP (ad
, 0)) == REG
4140 && reg_equiv_constant
[REGNO (XEXP (ad
, 0))] == 0)
4143 subst_reg_equivs_changed
= 0;
4144 *loc
= subst_reg_equivs (ad
);
4146 if (! subst_reg_equivs_changed
)
4149 /* Check result for validity after substitution. */
4150 if (strict_memory_address_p (mode
, ad
))
4154 /* The address is not valid. We have to figure out why. One possibility
4155 is that it is itself a MEM. This can happen when the frame pointer is
4156 being eliminated, a pseudo is not allocated to a hard register, and the
4157 offset between the frame and stack pointers is not its initial value.
4158 In that case the pseudo will have been replaced by a MEM referring to
4159 the stack pointer. */
4160 if (GET_CODE (ad
) == MEM
)
4162 /* First ensure that the address in this MEM is valid. Then, unless
4163 indirect addresses are valid, reload the MEM into a register. */
4165 find_reloads_address (GET_MODE (ad
), &tem
, XEXP (ad
, 0), &XEXP (ad
, 0),
4166 opnum
, type
, ind_levels
== 0 ? 0 : ind_levels
- 1);
4168 /* If tem was changed, then we must create a new memory reference to
4169 hold it and store it back into memrefloc. */
4170 if (tem
!= ad
&& memrefloc
)
4172 *memrefloc
= copy_rtx (*memrefloc
);
4173 copy_replacements (tem
, XEXP (*memrefloc
, 0));
4174 loc
= &XEXP (*memrefloc
, 0);
4177 /* Check similar cases as for indirect addresses as above except
4178 that we can allow pseudos and a MEM since they should have been
4179 taken care of above. */
4182 || (GET_CODE (XEXP (tem
, 0)) == SYMBOL_REF
&& ! indirect_symref_ok
)
4183 || GET_CODE (XEXP (tem
, 0)) == MEM
4184 || ! (GET_CODE (XEXP (tem
, 0)) == REG
4185 || (GET_CODE (XEXP (tem
, 0)) == PLUS
4186 && GET_CODE (XEXP (XEXP (tem
, 0), 0)) == REG
4187 && GET_CODE (XEXP (XEXP (tem
, 0), 1)) == CONST_INT
)))
4189 /* Must use TEM here, not AD, since it is the one that will
4190 have any subexpressions reloaded, if needed. */
4191 push_reload (tem
, NULL_RTX
, loc
, NULL_PTR
,
4192 BASE_REG_CLASS
, GET_MODE (tem
), VOIDmode
, 0,
4200 /* If we have address of a stack slot but it's not valid
4201 (displacement is too large), compute the sum in a register. */
4202 else if (GET_CODE (ad
) == PLUS
4203 && (XEXP (ad
, 0) == frame_pointer_rtx
4204 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4205 || XEXP (ad
, 0) == hard_frame_pointer_rtx
4207 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4208 || XEXP (ad
, 0) == arg_pointer_rtx
4210 || XEXP (ad
, 0) == stack_pointer_rtx
)
4211 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
)
4213 /* Unshare the MEM rtx so we can safely alter it. */
4216 *memrefloc
= copy_rtx (*memrefloc
);
4217 loc
= &XEXP (*memrefloc
, 0);
4219 if (double_reg_address_ok
)
4221 /* Unshare the sum as well. */
4222 *loc
= ad
= copy_rtx (ad
);
4223 /* Reload the displacement into an index reg.
4224 We assume the frame pointer or arg pointer is a base reg. */
4225 find_reloads_address_part (XEXP (ad
, 1), &XEXP (ad
, 1),
4226 INDEX_REG_CLASS
, GET_MODE (ad
), opnum
,
4231 /* If the sum of two regs is not necessarily valid,
4232 reload the sum into a base reg.
4233 That will at least work. */
4234 find_reloads_address_part (ad
, loc
, BASE_REG_CLASS
, Pmode
,
4235 opnum
, type
, ind_levels
);
4240 /* If we have an indexed stack slot, there are three possible reasons why
4241 it might be invalid: The index might need to be reloaded, the address
4242 might have been made by frame pointer elimination and hence have a
4243 constant out of range, or both reasons might apply.
4245 We can easily check for an index needing reload, but even if that is the
4246 case, we might also have an invalid constant. To avoid making the
4247 conservative assumption and requiring two reloads, we see if this address
4248 is valid when not interpreted strictly. If it is, the only problem is
4249 that the index needs a reload and find_reloads_address_1 will take care
4252 There is still a case when we might generate an extra reload,
4253 however. In certain cases eliminate_regs will return a MEM for a REG
4254 (see the code there for details). In those cases, memory_address_p
4255 applied to our address will return 0 so we will think that our offset
4256 must be too large. But it might indeed be valid and the only problem
4257 is that a MEM is present where a REG should be. This case should be
4258 very rare and there doesn't seem to be any way to avoid it.
4260 If we decide to do something here, it must be that
4261 `double_reg_address_ok' is true and that this address rtl was made by
4262 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4263 rework the sum so that the reload register will be added to the index.
4264 This is safe because we know the address isn't shared.
4266 We check for fp/ap/sp as both the first and second operand of the
4269 else if (GET_CODE (ad
) == PLUS
&& GET_CODE (XEXP (ad
, 1)) == CONST_INT
4270 && GET_CODE (XEXP (ad
, 0)) == PLUS
4271 && (XEXP (XEXP (ad
, 0), 0) == frame_pointer_rtx
4272 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4273 || XEXP (XEXP (ad
, 0), 0) == hard_frame_pointer_rtx
4275 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4276 || XEXP (XEXP (ad
, 0), 0) == arg_pointer_rtx
4278 || XEXP (XEXP (ad
, 0), 0) == stack_pointer_rtx
)
4279 && ! memory_address_p (mode
, ad
))
4281 *loc
= ad
= gen_rtx (PLUS
, GET_MODE (ad
),
4282 plus_constant (XEXP (XEXP (ad
, 0), 0),
4283 INTVAL (XEXP (ad
, 1))),
4284 XEXP (XEXP (ad
, 0), 1));
4285 find_reloads_address_part (XEXP (ad
, 0), &XEXP (ad
, 0), BASE_REG_CLASS
,
4286 GET_MODE (ad
), opnum
, type
, ind_levels
);
4287 find_reloads_address_1 (XEXP (ad
, 1), 1, &XEXP (ad
, 1), opnum
, type
, 0);
4292 else if (GET_CODE (ad
) == PLUS
&& GET_CODE (XEXP (ad
, 1)) == CONST_INT
4293 && GET_CODE (XEXP (ad
, 0)) == PLUS
4294 && (XEXP (XEXP (ad
, 0), 1) == frame_pointer_rtx
4295 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4296 || XEXP (XEXP (ad
, 0), 1) == hard_frame_pointer_rtx
4298 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4299 || XEXP (XEXP (ad
, 0), 1) == arg_pointer_rtx
4301 || XEXP (XEXP (ad
, 0), 1) == stack_pointer_rtx
)
4302 && ! memory_address_p (mode
, ad
))
4304 *loc
= ad
= gen_rtx (PLUS
, GET_MODE (ad
),
4305 XEXP (XEXP (ad
, 0), 0),
4306 plus_constant (XEXP (XEXP (ad
, 0), 1),
4307 INTVAL (XEXP (ad
, 1))));
4308 find_reloads_address_part (XEXP (ad
, 1), &XEXP (ad
, 1), BASE_REG_CLASS
,
4309 GET_MODE (ad
), opnum
, type
, ind_levels
);
4310 find_reloads_address_1 (XEXP (ad
, 0), 1, &XEXP (ad
, 0), opnum
, type
, 0);
4315 /* See if address becomes valid when an eliminable register
4316 in a sum is replaced. */
4319 if (GET_CODE (ad
) == PLUS
)
4320 tem
= subst_indexed_address (ad
);
4321 if (tem
!= ad
&& strict_memory_address_p (mode
, tem
))
4323 /* Ok, we win that way. Replace any additional eliminable
4326 subst_reg_equivs_changed
= 0;
4327 tem
= subst_reg_equivs (tem
);
4329 /* Make sure that didn't make the address invalid again. */
4331 if (! subst_reg_equivs_changed
|| strict_memory_address_p (mode
, tem
))
4338 /* If constants aren't valid addresses, reload the constant address
4340 if (CONSTANT_P (ad
) && ! strict_memory_address_p (mode
, ad
))
4342 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4343 Unshare it so we can safely alter it. */
4344 if (memrefloc
&& GET_CODE (ad
) == SYMBOL_REF
4345 && CONSTANT_POOL_ADDRESS_P (ad
))
4347 *memrefloc
= copy_rtx (*memrefloc
);
4348 loc
= &XEXP (*memrefloc
, 0);
4351 find_reloads_address_part (ad
, loc
, BASE_REG_CLASS
, Pmode
, opnum
, type
,
4356 return find_reloads_address_1 (ad
, 0, loc
, opnum
, type
, ind_levels
);
4359 /* Find all pseudo regs appearing in AD
4360 that are eliminable in favor of equivalent values
4361 and do not have hard regs; replace them by their equivalents. */
4364 subst_reg_equivs (ad
)
4367 register RTX_CODE code
= GET_CODE (ad
);
4385 register int regno
= REGNO (ad
);
4387 if (reg_equiv_constant
[regno
] != 0)
4389 subst_reg_equivs_changed
= 1;
4390 return reg_equiv_constant
[regno
];
4396 /* Quickly dispose of a common case. */
4397 if (XEXP (ad
, 0) == frame_pointer_rtx
4398 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
)
4402 fmt
= GET_RTX_FORMAT (code
);
4403 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4405 XEXP (ad
, i
) = subst_reg_equivs (XEXP (ad
, i
));
4409 /* Compute the sum of X and Y, making canonicalizations assumed in an
4410 address, namely: sum constant integers, surround the sum of two
4411 constants with a CONST, put the constant as the second operand, and
4412 group the constant on the outermost sum.
4414 This routine assumes both inputs are already in canonical form. */
4421 enum machine_mode mode
= GET_MODE (x
);
4423 if (mode
== VOIDmode
)
4424 mode
= GET_MODE (y
);
4426 if (mode
== VOIDmode
)
4429 if (GET_CODE (x
) == CONST_INT
)
4430 return plus_constant (y
, INTVAL (x
));
4431 else if (GET_CODE (y
) == CONST_INT
)
4432 return plus_constant (x
, INTVAL (y
));
4433 else if (CONSTANT_P (x
))
4434 tem
= x
, x
= y
, y
= tem
;
4436 if (GET_CODE (x
) == PLUS
&& CONSTANT_P (XEXP (x
, 1)))
4437 return form_sum (XEXP (x
, 0), form_sum (XEXP (x
, 1), y
));
4439 /* Note that if the operands of Y are specified in the opposite
4440 order in the recursive calls below, infinite recursion will occur. */
4441 if (GET_CODE (y
) == PLUS
&& CONSTANT_P (XEXP (y
, 1)))
4442 return form_sum (form_sum (x
, XEXP (y
, 0)), XEXP (y
, 1));
4444 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4445 constant will have been placed second. */
4446 if (CONSTANT_P (x
) && CONSTANT_P (y
))
4448 if (GET_CODE (x
) == CONST
)
4450 if (GET_CODE (y
) == CONST
)
4453 return gen_rtx (CONST
, VOIDmode
, gen_rtx (PLUS
, mode
, x
, y
));
4456 return gen_rtx (PLUS
, mode
, x
, y
);
4459 /* If ADDR is a sum containing a pseudo register that should be
4460 replaced with a constant (from reg_equiv_constant),
4461 return the result of doing so, and also apply the associative
4462 law so that the result is more likely to be a valid address.
4463 (But it is not guaranteed to be one.)
4465 Note that at most one register is replaced, even if more are
4466 replaceable. Also, we try to put the result into a canonical form
4467 so it is more likely to be a valid address.
4469 In all other cases, return ADDR. */
4472 subst_indexed_address (addr
)
4475 rtx op0
= 0, op1
= 0, op2
= 0;
4479 if (GET_CODE (addr
) == PLUS
)
4481 /* Try to find a register to replace. */
4482 op0
= XEXP (addr
, 0), op1
= XEXP (addr
, 1), op2
= 0;
4483 if (GET_CODE (op0
) == REG
4484 && (regno
= REGNO (op0
)) >= FIRST_PSEUDO_REGISTER
4485 && reg_renumber
[regno
] < 0
4486 && reg_equiv_constant
[regno
] != 0)
4487 op0
= reg_equiv_constant
[regno
];
4488 else if (GET_CODE (op1
) == REG
4489 && (regno
= REGNO (op1
)) >= FIRST_PSEUDO_REGISTER
4490 && reg_renumber
[regno
] < 0
4491 && reg_equiv_constant
[regno
] != 0)
4492 op1
= reg_equiv_constant
[regno
];
4493 else if (GET_CODE (op0
) == PLUS
4494 && (tem
= subst_indexed_address (op0
)) != op0
)
4496 else if (GET_CODE (op1
) == PLUS
4497 && (tem
= subst_indexed_address (op1
)) != op1
)
4502 /* Pick out up to three things to add. */
4503 if (GET_CODE (op1
) == PLUS
)
4504 op2
= XEXP (op1
, 1), op1
= XEXP (op1
, 0);
4505 else if (GET_CODE (op0
) == PLUS
)
4506 op2
= op1
, op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
4508 /* Compute the sum. */
4510 op1
= form_sum (op1
, op2
);
4512 op0
= form_sum (op0
, op1
);
4519 /* Record the pseudo registers we must reload into hard registers
4520 in a subexpression of a would-be memory address, X.
4521 (This function is not called if the address we find is strictly valid.)
4522 CONTEXT = 1 means we are considering regs as index regs,
4523 = 0 means we are considering them as base regs.
4525 OPNUM and TYPE specify the purpose of any reloads made.
4527 IND_LEVELS says how many levels of indirect addressing are
4528 supported at this point in the address.
4530 We return nonzero if X, as a whole, is reloaded or replaced. */
4532 /* Note that we take shortcuts assuming that no multi-reg machine mode
4533 occurs as part of an address.
4534 Also, this is not fully machine-customizable; it works for machines
4535 such as vaxes and 68000's and 32000's, but other possible machines
4536 could have addressing modes that this does not handle right. */
4539 find_reloads_address_1 (x
, context
, loc
, opnum
, type
, ind_levels
)
4544 enum reload_type type
;
4547 register RTX_CODE code
= GET_CODE (x
);
4553 register rtx orig_op0
= XEXP (x
, 0);
4554 register rtx orig_op1
= XEXP (x
, 1);
4555 register RTX_CODE code0
= GET_CODE (orig_op0
);
4556 register RTX_CODE code1
= GET_CODE (orig_op1
);
4557 register rtx op0
= orig_op0
;
4558 register rtx op1
= orig_op1
;
4560 if (GET_CODE (op0
) == SUBREG
)
4562 op0
= SUBREG_REG (op0
);
4563 code0
= GET_CODE (op0
);
4566 if (GET_CODE (op1
) == SUBREG
)
4568 op1
= SUBREG_REG (op1
);
4569 code1
= GET_CODE (op1
);
4572 if (code0
== MULT
|| code0
== SIGN_EXTEND
|| code0
== TRUNCATE
4573 || code0
== ZERO_EXTEND
|| code1
== MEM
)
4575 find_reloads_address_1 (orig_op0
, 1, &XEXP (x
, 0), opnum
, type
,
4577 find_reloads_address_1 (orig_op1
, 0, &XEXP (x
, 1), opnum
, type
,
4581 else if (code1
== MULT
|| code1
== SIGN_EXTEND
|| code1
== TRUNCATE
4582 || code1
== ZERO_EXTEND
|| code0
== MEM
)
4584 find_reloads_address_1 (orig_op0
, 0, &XEXP (x
, 0), opnum
, type
,
4586 find_reloads_address_1 (orig_op1
, 1, &XEXP (x
, 1), opnum
, type
,
4590 else if (code0
== CONST_INT
|| code0
== CONST
4591 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
4592 find_reloads_address_1 (orig_op1
, 0, &XEXP (x
, 1), opnum
, type
,
4595 else if (code1
== CONST_INT
|| code1
== CONST
4596 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
4597 find_reloads_address_1 (orig_op0
, 0, &XEXP (x
, 0), opnum
, type
,
4600 else if (code0
== REG
&& code1
== REG
)
4602 if (REG_OK_FOR_INDEX_P (op0
)
4603 && REG_OK_FOR_BASE_P (op1
))
4605 else if (REG_OK_FOR_INDEX_P (op1
)
4606 && REG_OK_FOR_BASE_P (op0
))
4608 else if (REG_OK_FOR_BASE_P (op1
))
4609 find_reloads_address_1 (orig_op0
, 1, &XEXP (x
, 0), opnum
, type
,
4611 else if (REG_OK_FOR_BASE_P (op0
))
4612 find_reloads_address_1 (orig_op1
, 1, &XEXP (x
, 1), opnum
, type
,
4614 else if (REG_OK_FOR_INDEX_P (op1
))
4615 find_reloads_address_1 (orig_op0
, 0, &XEXP (x
, 0), opnum
, type
,
4617 else if (REG_OK_FOR_INDEX_P (op0
))
4618 find_reloads_address_1 (orig_op1
, 0, &XEXP (x
, 1), opnum
, type
,
4622 find_reloads_address_1 (orig_op0
, 1, &XEXP (x
, 0), opnum
, type
,
4624 find_reloads_address_1 (orig_op1
, 0, &XEXP (x
, 1), opnum
, type
,
4629 else if (code0
== REG
)
4631 find_reloads_address_1 (orig_op0
, 1, &XEXP (x
, 0), opnum
, type
,
4633 find_reloads_address_1 (orig_op1
, 0, &XEXP (x
, 1), opnum
, type
,
4637 else if (code1
== REG
)
4639 find_reloads_address_1 (orig_op1
, 1, &XEXP (x
, 1), opnum
, type
,
4641 find_reloads_address_1 (orig_op0
, 0, &XEXP (x
, 0), opnum
, type
,
4652 if (GET_CODE (XEXP (x
, 0)) == REG
)
4654 register int regno
= REGNO (XEXP (x
, 0));
4658 /* A register that is incremented cannot be constant! */
4659 if (regno
>= FIRST_PSEUDO_REGISTER
4660 && reg_equiv_constant
[regno
] != 0)
4663 /* Handle a register that is equivalent to a memory location
4664 which cannot be addressed directly. */
4665 if (reg_equiv_address
[regno
] != 0)
4667 rtx tem
= make_memloc (XEXP (x
, 0), regno
);
4668 /* First reload the memory location's address. */
4669 find_reloads_address (GET_MODE (tem
), 0, XEXP (tem
, 0),
4670 &XEXP (tem
, 0), opnum
, type
, ind_levels
);
4671 /* Put this inside a new increment-expression. */
4672 x
= gen_rtx (GET_CODE (x
), GET_MODE (x
), tem
);
4673 /* Proceed to reload that, as if it contained a register. */
4676 /* If we have a hard register that is ok as an index,
4677 don't make a reload. If an autoincrement of a nice register
4678 isn't "valid", it must be that no autoincrement is "valid".
4679 If that is true and something made an autoincrement anyway,
4680 this must be a special context where one is allowed.
4681 (For example, a "push" instruction.)
4682 We can't improve this address, so leave it alone. */
4684 /* Otherwise, reload the autoincrement into a suitable hard reg
4685 and record how much to increment by. */
4687 if (reg_renumber
[regno
] >= 0)
4688 regno
= reg_renumber
[regno
];
4689 if ((regno
>= FIRST_PSEUDO_REGISTER
4690 || !(context
? REGNO_OK_FOR_INDEX_P (regno
)
4691 : REGNO_OK_FOR_BASE_P (regno
))))
4696 = push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
4697 context
? INDEX_REG_CLASS
: BASE_REG_CLASS
,
4698 GET_MODE (x
), GET_MODE (x
), VOIDmode
, 0,
4700 reload_inc
[reloadnum
]
4701 = find_inc_amount (PATTERN (this_insn
), XEXP (x_orig
, 0));
4706 /* Update the REG_INC notes. */
4708 for (link
= REG_NOTES (this_insn
);
4709 link
; link
= XEXP (link
, 1))
4710 if (REG_NOTE_KIND (link
) == REG_INC
4711 && REGNO (XEXP (link
, 0)) == REGNO (XEXP (x_orig
, 0)))
4712 push_replacement (&XEXP (link
, 0), reloadnum
, VOIDmode
);
4718 else if (GET_CODE (XEXP (x
, 0)) == MEM
)
4720 /* This is probably the result of a substitution, by eliminate_regs,
4721 of an equivalent address for a pseudo that was not allocated to a
4722 hard register. Verify that the specified address is valid and
4723 reload it into a register. */
4724 rtx tem
= XEXP (x
, 0);
4728 /* Since we know we are going to reload this item, don't decrement
4729 for the indirection level.
4731 Note that this is actually conservative: it would be slightly
4732 more efficient to use the value of SPILL_INDIRECT_LEVELS from
4734 find_reloads_address (GET_MODE (x
), &XEXP (x
, 0),
4735 XEXP (XEXP (x
, 0), 0), &XEXP (XEXP (x
, 0), 0),
4736 opnum
, type
, ind_levels
);
4738 reloadnum
= push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
4739 context
? INDEX_REG_CLASS
: BASE_REG_CLASS
,
4740 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
4741 reload_inc
[reloadnum
]
4742 = find_inc_amount (PATTERN (this_insn
), XEXP (x
, 0));
4744 link
= FIND_REG_INC_NOTE (this_insn
, tem
);
4746 push_replacement (&XEXP (link
, 0), reloadnum
, VOIDmode
);
4753 /* This is probably the result of a substitution, by eliminate_regs, of
4754 an equivalent address for a pseudo that was not allocated to a hard
4755 register. Verify that the specified address is valid and reload it
4758 Since we know we are going to reload this item, don't decrement for
4759 the indirection level.
4761 Note that this is actually conservative: it would be slightly more
4762 efficient to use the value of SPILL_INDIRECT_LEVELS from
4765 find_reloads_address (GET_MODE (x
), loc
, XEXP (x
, 0), &XEXP (x
, 0),
4766 opnum
, type
, ind_levels
);
4767 push_reload (*loc
, NULL_RTX
, loc
, NULL_PTR
,
4768 context
? INDEX_REG_CLASS
: BASE_REG_CLASS
,
4769 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
4774 register int regno
= REGNO (x
);
4776 if (reg_equiv_constant
[regno
] != 0)
4778 find_reloads_address_part (reg_equiv_constant
[regno
], loc
,
4779 (context
? INDEX_REG_CLASS
4781 GET_MODE (x
), opnum
, type
, ind_levels
);
4785 #if 0 /* This might screw code in reload1.c to delete prior output-reload
4786 that feeds this insn. */
4787 if (reg_equiv_mem
[regno
] != 0)
4789 push_reload (reg_equiv_mem
[regno
], NULL_RTX
, loc
, NULL_PTR
,
4790 context
? INDEX_REG_CLASS
: BASE_REG_CLASS
,
4791 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
4796 if (reg_equiv_address
[regno
] != 0)
4798 x
= make_memloc (x
, regno
);
4799 find_reloads_address (GET_MODE (x
), 0, XEXP (x
, 0), &XEXP (x
, 0),
4800 opnum
, type
, ind_levels
);
4803 if (reg_renumber
[regno
] >= 0)
4804 regno
= reg_renumber
[regno
];
4806 if ((regno
>= FIRST_PSEUDO_REGISTER
4807 || !(context
? REGNO_OK_FOR_INDEX_P (regno
)
4808 : REGNO_OK_FOR_BASE_P (regno
))))
4810 push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
4811 context
? INDEX_REG_CLASS
: BASE_REG_CLASS
,
4812 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
4816 /* If a register appearing in an address is the subject of a CLOBBER
4817 in this insn, reload it into some other register to be safe.
4818 The CLOBBER is supposed to make the register unavailable
4819 from before this insn to after it. */
4820 if (regno_clobbered_p (regno
, this_insn
))
4822 push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
4823 context
? INDEX_REG_CLASS
: BASE_REG_CLASS
,
4824 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
4831 /* If this is a SUBREG of a hard register and the resulting register is
4832 of the wrong class, reload the whole SUBREG. This avoids needless
4833 copies if SUBREG_REG is multi-word. */
4834 if (GET_CODE (SUBREG_REG (x
)) == REG
4835 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
4837 int regno
= REGNO (SUBREG_REG (x
)) + SUBREG_WORD (x
);
4839 if (! (context
? REGNO_OK_FOR_INDEX_P (regno
)
4840 : REGNO_OK_FOR_BASE_P (regno
)))
4842 push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
4843 context
? INDEX_REG_CLASS
: BASE_REG_CLASS
,
4844 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
4852 register char *fmt
= GET_RTX_FORMAT (code
);
4855 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4858 find_reloads_address_1 (XEXP (x
, i
), context
, &XEXP (x
, i
),
4859 opnum
, type
, ind_levels
);
4866 /* X, which is found at *LOC, is a part of an address that needs to be
4867 reloaded into a register of class CLASS. If X is a constant, or if
4868 X is a PLUS that contains a constant, check that the constant is a
4869 legitimate operand and that we are supposed to be able to load
4870 it into the register.
4872 If not, force the constant into memory and reload the MEM instead.
4874 MODE is the mode to use, in case X is an integer constant.
4876 OPNUM and TYPE describe the purpose of any reloads made.
4878 IND_LEVELS says how many levels of indirect addressing this machine
4882 find_reloads_address_part (x
, loc
, class, mode
, opnum
, type
, ind_levels
)
4885 enum reg_class
class;
4886 enum machine_mode mode
;
4888 enum reload_type type
;
4892 && (! LEGITIMATE_CONSTANT_P (x
)
4893 || PREFERRED_RELOAD_CLASS (x
, class) == NO_REGS
))
4895 rtx tem
= x
= force_const_mem (mode
, x
);
4896 find_reloads_address (mode
, &tem
, XEXP (tem
, 0), &XEXP (tem
, 0),
4897 opnum
, type
, ind_levels
);
4900 else if (GET_CODE (x
) == PLUS
4901 && CONSTANT_P (XEXP (x
, 1))
4902 && (! LEGITIMATE_CONSTANT_P (XEXP (x
, 1))
4903 || PREFERRED_RELOAD_CLASS (XEXP (x
, 1), class) == NO_REGS
))
4905 rtx tem
= force_const_mem (GET_MODE (x
), XEXP (x
, 1));
4907 x
= gen_rtx (PLUS
, GET_MODE (x
), XEXP (x
, 0), tem
);
4908 find_reloads_address (mode
, &tem
, XEXP (tem
, 0), &XEXP (tem
, 0),
4909 opnum
, type
, ind_levels
);
4912 push_reload (x
, NULL_RTX
, loc
, NULL_PTR
, class,
4913 mode
, VOIDmode
, 0, 0, opnum
, type
);
4916 /* Substitute into the current INSN the registers into which we have reloaded
4917 the things that need reloading. The array `replacements'
4918 says contains the locations of all pointers that must be changed
4919 and says what to replace them with.
4921 Return the rtx that X translates into; usually X, but modified. */
4928 for (i
= 0; i
< n_replacements
; i
++)
4930 register struct replacement
*r
= &replacements
[i
];
4931 register rtx reloadreg
= reload_reg_rtx
[r
->what
];
4934 /* Encapsulate RELOADREG so its machine mode matches what
4935 used to be there. Note that gen_lowpart_common will
4936 do the wrong thing if RELOADREG is multi-word. RELOADREG
4937 will always be a REG here. */
4938 if (GET_MODE (reloadreg
) != r
->mode
&& r
->mode
!= VOIDmode
)
4939 reloadreg
= gen_rtx (REG
, r
->mode
, REGNO (reloadreg
));
4941 /* If we are putting this into a SUBREG and RELOADREG is a
4942 SUBREG, we would be making nested SUBREGs, so we have to fix
4943 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
4945 if (r
->subreg_loc
!= 0 && GET_CODE (reloadreg
) == SUBREG
)
4947 if (GET_MODE (*r
->subreg_loc
)
4948 == GET_MODE (SUBREG_REG (reloadreg
)))
4949 *r
->subreg_loc
= SUBREG_REG (reloadreg
);
4952 *r
->where
= SUBREG_REG (reloadreg
);
4953 SUBREG_WORD (*r
->subreg_loc
) += SUBREG_WORD (reloadreg
);
4957 *r
->where
= reloadreg
;
4959 /* If reload got no reg and isn't optional, something's wrong. */
4960 else if (! reload_optional
[r
->what
])
4965 /* Make a copy of any replacements being done into X and move those copies
4966 to locations in Y, a copy of X. We only look at the highest level of
4970 copy_replacements (x
, y
)
4975 enum rtx_code code
= GET_CODE (x
);
4976 char *fmt
= GET_RTX_FORMAT (code
);
4977 struct replacement
*r
;
4979 /* We can't support X being a SUBREG because we might then need to know its
4980 location if something inside it was replaced. */
4984 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4986 for (j
= 0; j
< n_replacements
; j
++)
4988 if (replacements
[j
].subreg_loc
== &XEXP (x
, i
))
4990 r
= &replacements
[n_replacements
++];
4991 r
->where
= replacements
[j
].where
;
4992 r
->subreg_loc
= &XEXP (y
, i
);
4993 r
->what
= replacements
[j
].what
;
4994 r
->mode
= replacements
[j
].mode
;
4996 else if (replacements
[j
].where
== &XEXP (x
, i
))
4998 r
= &replacements
[n_replacements
++];
4999 r
->where
= &XEXP (y
, i
);
5001 r
->what
= replacements
[j
].what
;
5002 r
->mode
= replacements
[j
].mode
;
5007 /* If LOC was scheduled to be replaced by something, return the replacement.
5008 Otherwise, return *LOC. */
5011 find_replacement (loc
)
5014 struct replacement
*r
;
5016 for (r
= &replacements
[0]; r
< &replacements
[n_replacements
]; r
++)
5018 rtx reloadreg
= reload_reg_rtx
[r
->what
];
5020 if (reloadreg
&& r
->where
== loc
)
5022 if (r
->mode
!= VOIDmode
&& GET_MODE (reloadreg
) != r
->mode
)
5023 reloadreg
= gen_rtx (REG
, r
->mode
, REGNO (reloadreg
));
5027 else if (reloadreg
&& r
->subreg_loc
== loc
)
5029 /* RELOADREG must be either a REG or a SUBREG.
5031 ??? Is it actually still ever a SUBREG? If so, why? */
5033 if (GET_CODE (reloadreg
) == REG
)
5034 return gen_rtx (REG
, GET_MODE (*loc
),
5035 REGNO (reloadreg
) + SUBREG_WORD (*loc
));
5036 else if (GET_MODE (reloadreg
) == GET_MODE (*loc
))
5039 return gen_rtx (SUBREG
, GET_MODE (*loc
), SUBREG_REG (reloadreg
),
5040 SUBREG_WORD (reloadreg
) + SUBREG_WORD (*loc
));
5047 /* Return nonzero if register in range [REGNO, ENDREGNO)
5048 appears either explicitly or implicitly in X
5049 other than being stored into (except for earlyclobber operands).
5051 References contained within the substructure at LOC do not count.
5052 LOC may be zero, meaning don't ignore anything.
5054 This is similar to refers_to_regno_p in rtlanal.c except that we
5055 look at equivalences for pseudos that didn't get hard registers. */
5058 refers_to_regno_for_reload_p (regno
, endregno
, x
, loc
)
5059 int regno
, endregno
;
5064 register RTX_CODE code
;
5071 code
= GET_CODE (x
);
5078 /* If this is a pseudo, a hard register must not have been allocated.
5079 X must therefore either be a constant or be in memory. */
5080 if (i
>= FIRST_PSEUDO_REGISTER
)
5082 if (reg_equiv_memory_loc
[i
])
5083 return refers_to_regno_for_reload_p (regno
, endregno
,
5084 reg_equiv_memory_loc
[i
],
5087 if (reg_equiv_constant
[i
])
5093 return (endregno
> i
5094 && regno
< i
+ (i
< FIRST_PSEUDO_REGISTER
5095 ? HARD_REGNO_NREGS (i
, GET_MODE (x
))
5099 /* If this is a SUBREG of a hard reg, we can see exactly which
5100 registers are being modified. Otherwise, handle normally. */
5101 if (GET_CODE (SUBREG_REG (x
)) == REG
5102 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
5104 int inner_regno
= REGNO (SUBREG_REG (x
)) + SUBREG_WORD (x
);
5106 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
5107 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
5109 return endregno
> inner_regno
&& regno
< inner_endregno
;
5115 if (&SET_DEST (x
) != loc
5116 /* Note setting a SUBREG counts as referring to the REG it is in for
5117 a pseudo but not for hard registers since we can
5118 treat each word individually. */
5119 && ((GET_CODE (SET_DEST (x
)) == SUBREG
5120 && loc
!= &SUBREG_REG (SET_DEST (x
))
5121 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
5122 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
5123 && refers_to_regno_for_reload_p (regno
, endregno
,
5124 SUBREG_REG (SET_DEST (x
)),
5126 /* If the ouput is an earlyclobber operand, this is
5128 || ((GET_CODE (SET_DEST (x
)) != REG
5129 || earlyclobber_operand_p (SET_DEST (x
)))
5130 && refers_to_regno_for_reload_p (regno
, endregno
,
5131 SET_DEST (x
), loc
))))
5134 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
5140 /* X does not match, so try its subexpressions. */
5142 fmt
= GET_RTX_FORMAT (code
);
5143 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5145 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
5153 if (refers_to_regno_for_reload_p (regno
, endregno
,
5157 else if (fmt
[i
] == 'E')
5160 for (j
= XVECLEN (x
, i
) - 1; j
>=0; j
--)
5161 if (loc
!= &XVECEXP (x
, i
, j
)
5162 && refers_to_regno_for_reload_p (regno
, endregno
,
5163 XVECEXP (x
, i
, j
), loc
))
5170 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5171 we check if any register number in X conflicts with the relevant register
5172 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5173 contains a MEM (we don't bother checking for memory addresses that can't
5174 conflict because we expect this to be a rare case.
5176 This function is similar to reg_overlap_mention_p in rtlanal.c except
5177 that we look at equivalences for pseudos that didn't get hard registers. */
5180 reg_overlap_mentioned_for_reload_p (x
, in
)
5183 int regno
, endregno
;
5185 if (GET_CODE (x
) == SUBREG
)
5187 regno
= REGNO (SUBREG_REG (x
));
5188 if (regno
< FIRST_PSEUDO_REGISTER
)
5189 regno
+= SUBREG_WORD (x
);
5191 else if (GET_CODE (x
) == REG
)
5195 /* If this is a pseudo, it must not have been assigned a hard register.
5196 Therefore, it must either be in memory or be a constant. */
5198 if (regno
>= FIRST_PSEUDO_REGISTER
)
5200 if (reg_equiv_memory_loc
[regno
])
5201 return refers_to_mem_for_reload_p (in
);
5202 else if (reg_equiv_constant
[regno
])
5207 else if (CONSTANT_P (x
))
5209 else if (GET_CODE (x
) == MEM
)
5210 return refers_to_mem_for_reload_p (in
);
5211 else if (GET_CODE (x
) == SCRATCH
|| GET_CODE (x
) == PC
5212 || GET_CODE (x
) == CC0
)
5213 return reg_mentioned_p (x
, in
);
5217 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
5218 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
5220 return refers_to_regno_for_reload_p (regno
, endregno
, in
, NULL_PTR
);
5223 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
5227 refers_to_mem_for_reload_p (x
)
5233 if (GET_CODE (x
) == MEM
)
5236 if (GET_CODE (x
) == REG
)
5237 return (REGNO (x
) >= FIRST_PSEUDO_REGISTER
5238 && reg_equiv_memory_loc
[REGNO (x
)]);
5240 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5241 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
5243 && (GET_CODE (XEXP (x
, i
)) == MEM
5244 || refers_to_mem_for_reload_p (XEXP (x
, i
))))
5250 /* Check the insns before INSN to see if there is a suitable register
5251 containing the same value as GOAL.
5252 If OTHER is -1, look for a register in class CLASS.
5253 Otherwise, just see if register number OTHER shares GOAL's value.
5255 Return an rtx for the register found, or zero if none is found.
5257 If RELOAD_REG_P is (short *)1,
5258 we reject any hard reg that appears in reload_reg_rtx
5259 because such a hard reg is also needed coming into this insn.
5261 If RELOAD_REG_P is any other nonzero value,
5262 it is a vector indexed by hard reg number
5263 and we reject any hard reg whose element in the vector is nonnegative
5264 as well as any that appears in reload_reg_rtx.
5266 If GOAL is zero, then GOALREG is a register number; we look
5267 for an equivalent for that register.
5269 MODE is the machine mode of the value we want an equivalence for.
5270 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5272 This function is used by jump.c as well as in the reload pass.
5274 If GOAL is the sum of the stack pointer and a constant, we treat it
5275 as if it were a constant except that sp is required to be unchanging. */
5278 find_equiv_reg (goal
, insn
, class, other
, reload_reg_p
, goalreg
, mode
)
5281 enum reg_class
class;
5283 short *reload_reg_p
;
5285 enum machine_mode mode
;
5287 register rtx p
= insn
;
5288 rtx goaltry
, valtry
, value
, where
;
5290 register int regno
= -1;
5294 int goal_mem_addr_varies
= 0;
5295 int need_stable_sp
= 0;
5301 else if (GET_CODE (goal
) == REG
)
5302 regno
= REGNO (goal
);
5303 else if (GET_CODE (goal
) == MEM
)
5305 enum rtx_code code
= GET_CODE (XEXP (goal
, 0));
5306 if (MEM_VOLATILE_P (goal
))
5308 if (flag_float_store
&& GET_MODE_CLASS (GET_MODE (goal
)) == MODE_FLOAT
)
5310 /* An address with side effects must be reexecuted. */
5321 else if (CONSTANT_P (goal
))
5323 else if (GET_CODE (goal
) == PLUS
5324 && XEXP (goal
, 0) == stack_pointer_rtx
5325 && CONSTANT_P (XEXP (goal
, 1)))
5326 goal_const
= need_stable_sp
= 1;
5330 /* On some machines, certain regs must always be rejected
5331 because they don't behave the way ordinary registers do. */
5333 #ifdef OVERLAPPING_REGNO_P
5334 if (regno
>= 0 && regno
< FIRST_PSEUDO_REGISTER
5335 && OVERLAPPING_REGNO_P (regno
))
5339 /* Scan insns back from INSN, looking for one that copies
5340 a value into or out of GOAL.
5341 Stop and give up if we reach a label. */
5346 if (p
== 0 || GET_CODE (p
) == CODE_LABEL
)
5348 if (GET_CODE (p
) == INSN
5349 /* If we don't want spill regs ... */
5350 && (! (reload_reg_p
!= 0
5351 && reload_reg_p
!= (short *) (HOST_WIDE_INT
) 1)
5352 /* ... then ignore insns introduced by reload; they aren't useful
5353 and can cause results in reload_as_needed to be different
5354 from what they were when calculating the need for spills.
5355 If we notice an input-reload insn here, we will reject it below,
5356 but it might hide a usable equivalent. That makes bad code.
5357 It may even abort: perhaps no reg was spilled for this insn
5358 because it was assumed we would find that equivalent. */
5359 || INSN_UID (p
) < reload_first_uid
))
5362 pat
= single_set (p
);
5363 /* First check for something that sets some reg equal to GOAL. */
5366 && true_regnum (SET_SRC (pat
)) == regno
5367 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0)
5370 && true_regnum (SET_DEST (pat
)) == regno
5371 && (valueno
= true_regnum (valtry
= SET_SRC (pat
))) >= 0)
5373 (goal_const
&& rtx_equal_p (SET_SRC (pat
), goal
)
5374 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0)
5376 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0
5377 && rtx_renumbered_equal_p (goal
, SET_SRC (pat
)))
5379 && (valueno
= true_regnum (valtry
= SET_SRC (pat
))) >= 0
5380 && rtx_renumbered_equal_p (goal
, SET_DEST (pat
)))
5381 /* If we are looking for a constant,
5382 and something equivalent to that constant was copied
5383 into a reg, we can use that reg. */
5384 || (goal_const
&& (tem
= find_reg_note (p
, REG_EQUIV
,
5386 && rtx_equal_p (XEXP (tem
, 0), goal
)
5387 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0)
5388 || (goal_const
&& (tem
= find_reg_note (p
, REG_EQUIV
,
5390 && GET_CODE (SET_DEST (pat
)) == REG
5391 && GET_CODE (XEXP (tem
, 0)) == CONST_DOUBLE
5392 && GET_MODE_CLASS (GET_MODE (XEXP (tem
, 0))) == MODE_FLOAT
5393 && GET_CODE (goal
) == CONST_INT
5394 && 0 != (goaltry
= operand_subword (XEXP (tem
, 0), 0, 0,
5396 && rtx_equal_p (goal
, goaltry
)
5397 && (valtry
= operand_subword (SET_DEST (pat
), 0, 0,
5399 && (valueno
= true_regnum (valtry
)) >= 0)
5400 || (goal_const
&& (tem
= find_reg_note (p
, REG_EQUIV
,
5402 && GET_CODE (SET_DEST (pat
)) == REG
5403 && GET_CODE (XEXP (tem
, 0)) == CONST_DOUBLE
5404 && GET_MODE_CLASS (GET_MODE (XEXP (tem
, 0))) == MODE_FLOAT
5405 && GET_CODE (goal
) == CONST_INT
5406 && 0 != (goaltry
= operand_subword (XEXP (tem
, 0), 1, 0,
5408 && rtx_equal_p (goal
, goaltry
)
5410 = operand_subword (SET_DEST (pat
), 1, 0, VOIDmode
))
5411 && (valueno
= true_regnum (valtry
)) >= 0)))
5414 : ((unsigned) valueno
< FIRST_PSEUDO_REGISTER
5415 && TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
5425 /* We found a previous insn copying GOAL into a suitable other reg VALUE
5426 (or copying VALUE into GOAL, if GOAL is also a register).
5427 Now verify that VALUE is really valid. */
5429 /* VALUENO is the register number of VALUE; a hard register. */
5431 /* Don't try to re-use something that is killed in this insn. We want
5432 to be able to trust REG_UNUSED notes. */
5433 if (find_reg_note (where
, REG_UNUSED
, value
))
5436 /* If we propose to get the value from the stack pointer or if GOAL is
5437 a MEM based on the stack pointer, we need a stable SP. */
5438 if (valueno
== STACK_POINTER_REGNUM
5439 || (goal_mem
&& reg_overlap_mentioned_for_reload_p (stack_pointer_rtx
,
5443 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
5444 if (GET_MODE (value
) != mode
)
5447 /* Reject VALUE if it was loaded from GOAL
5448 and is also a register that appears in the address of GOAL. */
5450 if (goal_mem
&& value
== SET_DEST (PATTERN (where
))
5451 && refers_to_regno_for_reload_p (valueno
,
5453 + HARD_REGNO_NREGS (valueno
, mode
)),
5457 /* Reject registers that overlap GOAL. */
5459 if (!goal_mem
&& !goal_const
5460 && regno
+ HARD_REGNO_NREGS (regno
, mode
) > valueno
5461 && regno
< valueno
+ HARD_REGNO_NREGS (valueno
, mode
))
5464 /* Reject VALUE if it is one of the regs reserved for reloads.
5465 Reload1 knows how to reuse them anyway, and it would get
5466 confused if we allocated one without its knowledge.
5467 (Now that insns introduced by reload are ignored above,
5468 this case shouldn't happen, but I'm not positive.) */
5470 if (reload_reg_p
!= 0 && reload_reg_p
!= (short *) (HOST_WIDE_INT
) 1
5471 && reload_reg_p
[valueno
] >= 0)
5474 /* On some machines, certain regs must always be rejected
5475 because they don't behave the way ordinary registers do. */
5477 #ifdef OVERLAPPING_REGNO_P
5478 if (OVERLAPPING_REGNO_P (valueno
))
5482 nregs
= HARD_REGNO_NREGS (regno
, mode
);
5483 valuenregs
= HARD_REGNO_NREGS (valueno
, mode
);
5485 /* Reject VALUE if it is a register being used for an input reload
5486 even if it is not one of those reserved. */
5488 if (reload_reg_p
!= 0)
5491 for (i
= 0; i
< n_reloads
; i
++)
5492 if (reload_reg_rtx
[i
] != 0 && reload_in
[i
])
5494 int regno1
= REGNO (reload_reg_rtx
[i
]);
5495 int nregs1
= HARD_REGNO_NREGS (regno1
,
5496 GET_MODE (reload_reg_rtx
[i
]));
5497 if (regno1
< valueno
+ valuenregs
5498 && regno1
+ nregs1
> valueno
)
5504 /* We must treat frame pointer as varying here,
5505 since it can vary--in a nonlocal goto as generated by expand_goto. */
5506 goal_mem_addr_varies
= !CONSTANT_ADDRESS_P (XEXP (goal
, 0));
5508 /* Now verify that the values of GOAL and VALUE remain unaltered
5509 until INSN is reached. */
5518 /* Don't trust the conversion past a function call
5519 if either of the two is in a call-clobbered register, or memory. */
5520 if (GET_CODE (p
) == CALL_INSN
5521 && ((regno
>= 0 && regno
< FIRST_PSEUDO_REGISTER
5522 && call_used_regs
[regno
])
5524 (valueno
>= 0 && valueno
< FIRST_PSEUDO_REGISTER
5525 && call_used_regs
[valueno
])
5531 #ifdef INSN_CLOBBERS_REGNO_P
5532 if ((valueno
>= 0 && valueno
< FIRST_PSEUDO_REGISTER
5533 && INSN_CLOBBERS_REGNO_P (p
, valueno
))
5534 || (regno
>= 0 && regno
< FIRST_PSEUDO_REGISTER
5535 && INSN_CLOBBERS_REGNO_P (p
, regno
)))
5539 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i')
5541 /* If this insn P stores in either GOAL or VALUE, return 0.
5542 If GOAL is a memory ref and this insn writes memory, return 0.
5543 If GOAL is a memory ref and its address is not constant,
5544 and this insn P changes a register used in GOAL, return 0. */
5547 if (GET_CODE (pat
) == SET
|| GET_CODE (pat
) == CLOBBER
)
5549 register rtx dest
= SET_DEST (pat
);
5550 while (GET_CODE (dest
) == SUBREG
5551 || GET_CODE (dest
) == ZERO_EXTRACT
5552 || GET_CODE (dest
) == SIGN_EXTRACT
5553 || GET_CODE (dest
) == STRICT_LOW_PART
)
5554 dest
= XEXP (dest
, 0);
5555 if (GET_CODE (dest
) == REG
)
5557 register int xregno
= REGNO (dest
);
5559 if (REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
5560 xnregs
= HARD_REGNO_NREGS (xregno
, GET_MODE (dest
));
5563 if (xregno
< regno
+ nregs
&& xregno
+ xnregs
> regno
)
5565 if (xregno
< valueno
+ valuenregs
5566 && xregno
+ xnregs
> valueno
)
5568 if (goal_mem_addr_varies
5569 && reg_overlap_mentioned_for_reload_p (dest
, goal
))
5572 else if (goal_mem
&& GET_CODE (dest
) == MEM
5573 && ! push_operand (dest
, GET_MODE (dest
)))
5575 else if (GET_CODE (dest
) == MEM
&& regno
>= FIRST_PSEUDO_REGISTER
5576 && reg_equiv_memory_loc
[regno
] != 0)
5578 else if (need_stable_sp
&& push_operand (dest
, GET_MODE (dest
)))
5581 else if (GET_CODE (pat
) == PARALLEL
)
5584 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
5586 register rtx v1
= XVECEXP (pat
, 0, i
);
5587 if (GET_CODE (v1
) == SET
|| GET_CODE (v1
) == CLOBBER
)
5589 register rtx dest
= SET_DEST (v1
);
5590 while (GET_CODE (dest
) == SUBREG
5591 || GET_CODE (dest
) == ZERO_EXTRACT
5592 || GET_CODE (dest
) == SIGN_EXTRACT
5593 || GET_CODE (dest
) == STRICT_LOW_PART
)
5594 dest
= XEXP (dest
, 0);
5595 if (GET_CODE (dest
) == REG
)
5597 register int xregno
= REGNO (dest
);
5599 if (REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
5600 xnregs
= HARD_REGNO_NREGS (xregno
, GET_MODE (dest
));
5603 if (xregno
< regno
+ nregs
5604 && xregno
+ xnregs
> regno
)
5606 if (xregno
< valueno
+ valuenregs
5607 && xregno
+ xnregs
> valueno
)
5609 if (goal_mem_addr_varies
5610 && reg_overlap_mentioned_for_reload_p (dest
,
5614 else if (goal_mem
&& GET_CODE (dest
) == MEM
5615 && ! push_operand (dest
, GET_MODE (dest
)))
5617 else if (need_stable_sp
5618 && push_operand (dest
, GET_MODE (dest
)))
5624 if (GET_CODE (p
) == CALL_INSN
&& CALL_INSN_FUNCTION_USAGE (p
))
5628 for (link
= CALL_INSN_FUNCTION_USAGE (p
); XEXP (link
, 1) != 0;
5629 link
= XEXP (link
, 1))
5631 pat
= XEXP (link
, 0);
5632 if (GET_CODE (pat
) == CLOBBER
)
5634 register rtx dest
= SET_DEST (pat
);
5635 while (GET_CODE (dest
) == SUBREG
5636 || GET_CODE (dest
) == ZERO_EXTRACT
5637 || GET_CODE (dest
) == SIGN_EXTRACT
5638 || GET_CODE (dest
) == STRICT_LOW_PART
)
5639 dest
= XEXP (dest
, 0);
5640 if (GET_CODE (dest
) == REG
)
5642 register int xregno
= REGNO (dest
);
5644 if (REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
5645 xnregs
= HARD_REGNO_NREGS (xregno
, GET_MODE (dest
));
5648 if (xregno
< regno
+ nregs
5649 && xregno
+ xnregs
> regno
)
5651 if (xregno
< valueno
+ valuenregs
5652 && xregno
+ xnregs
> valueno
)
5654 if (goal_mem_addr_varies
5655 && reg_overlap_mentioned_for_reload_p (dest
,
5659 else if (goal_mem
&& GET_CODE (dest
) == MEM
5660 && ! push_operand (dest
, GET_MODE (dest
)))
5662 else if (need_stable_sp
5663 && push_operand (dest
, GET_MODE (dest
)))
5670 /* If this insn auto-increments or auto-decrements
5671 either regno or valueno, return 0 now.
5672 If GOAL is a memory ref and its address is not constant,
5673 and this insn P increments a register used in GOAL, return 0. */
5677 for (link
= REG_NOTES (p
); link
; link
= XEXP (link
, 1))
5678 if (REG_NOTE_KIND (link
) == REG_INC
5679 && GET_CODE (XEXP (link
, 0)) == REG
)
5681 register int incno
= REGNO (XEXP (link
, 0));
5682 if (incno
< regno
+ nregs
&& incno
>= regno
)
5684 if (incno
< valueno
+ valuenregs
&& incno
>= valueno
)
5686 if (goal_mem_addr_varies
5687 && reg_overlap_mentioned_for_reload_p (XEXP (link
, 0),
5697 /* Find a place where INCED appears in an increment or decrement operator
5698 within X, and return the amount INCED is incremented or decremented by.
5699 The value is always positive. */
5702 find_inc_amount (x
, inced
)
5705 register enum rtx_code code
= GET_CODE (x
);
5711 register rtx addr
= XEXP (x
, 0);
5712 if ((GET_CODE (addr
) == PRE_DEC
5713 || GET_CODE (addr
) == POST_DEC
5714 || GET_CODE (addr
) == PRE_INC
5715 || GET_CODE (addr
) == POST_INC
)
5716 && XEXP (addr
, 0) == inced
)
5717 return GET_MODE_SIZE (GET_MODE (x
));
5720 fmt
= GET_RTX_FORMAT (code
);
5721 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5725 register int tem
= find_inc_amount (XEXP (x
, i
), inced
);
5732 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5734 register int tem
= find_inc_amount (XVECEXP (x
, i
, j
), inced
);
5744 /* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
5747 regno_clobbered_p (regno
, insn
)
5751 if (GET_CODE (PATTERN (insn
)) == CLOBBER
5752 && GET_CODE (XEXP (PATTERN (insn
), 0)) == REG
)
5753 return REGNO (XEXP (PATTERN (insn
), 0)) == regno
;
5755 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
5757 int i
= XVECLEN (PATTERN (insn
), 0) - 1;
5761 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
5762 if (GET_CODE (elt
) == CLOBBER
&& GET_CODE (XEXP (elt
, 0)) == REG
5763 && REGNO (XEXP (elt
, 0)) == regno
)
5771 static char *reload_when_needed_name
[] =
5774 "RELOAD_FOR_OUTPUT",
5776 "RELOAD_FOR_INPUT_ADDRESS",
5777 "RELOAD_FOR_OUTPUT_ADDRESS",
5778 "RELOAD_FOR_OPERAND_ADDRESS",
5779 "RELOAD_FOR_OPADDR_ADDR",
5781 "RELOAD_FOR_OTHER_ADDRESS"
5784 static char *reg_class_names
[] = REG_CLASS_NAMES
;
5786 /* This function is used to print the variables set by 'find_reloads' */
5793 fprintf (stderr
, "\nn_reloads = %d\n", n_reloads
);
5795 for (r
= 0; r
< n_reloads
; r
++)
5797 fprintf (stderr
, "\nRELOAD %d\n", r
);
5801 fprintf (stderr
, "\nreload_in (%s) = ",
5802 GET_MODE_NAME (reload_inmode
[r
]));
5803 debug_rtx (reload_in
[r
]);
5808 fprintf (stderr
, "\nreload_out (%s) = ",
5809 GET_MODE_NAME (reload_outmode
[r
]));
5810 debug_rtx (reload_out
[r
]);
5813 fprintf (stderr
, "%s, ", reg_class_names
[(int) reload_reg_class
[r
]]);
5815 fprintf (stderr
, "%s (opnum = %d)",
5816 reload_when_needed_name
[(int)reload_when_needed
[r
]],
5819 if (reload_optional
[r
])
5820 fprintf (stderr
, ", optional");
5823 fprintf (stderr
, ", inc by %d\n", reload_inc
[r
]);
5825 if (reload_nocombine
[r
])
5826 fprintf (stderr
, ", can combine", reload_nocombine
[r
]);
5828 if (reload_secondary_p
[r
])
5829 fprintf (stderr
, ", secondary_reload_p");
5831 if (reload_in_reg
[r
])
5833 fprintf (stderr
, "\nreload_in_reg:\t\t\t");
5834 debug_rtx (reload_in_reg
[r
]);
5837 if (reload_reg_rtx
[r
])
5839 fprintf (stderr
, "\nreload_reg_rtx:\t\t\t");
5840 debug_rtx (reload_reg_rtx
[r
]);
5843 if (reload_secondary_in_reload
[r
] != -1)
5845 fprintf (stderr
, "\nsecondary_in_reload = ");
5846 fprintf (stderr
, "%d ", reload_secondary_in_reload
[r
]);
5849 if (reload_secondary_out_reload
[r
] != -1)
5851 if (reload_secondary_in_reload
[r
] != -1)
5852 fprintf (stderr
, ", secondary_out_reload = ");
5854 fprintf (stderr
, "\nsecondary_out_reload = ");
5856 fprintf (stderr
, "%d", reload_secondary_out_reload
[r
]);
5860 if (reload_secondary_in_icode
[r
] != CODE_FOR_nothing
)
5862 fprintf (stderr
, "\nsecondary_in_icode = ");
5863 fprintf (stderr
, "%s", insn_name
[r
]);
5866 if (reload_secondary_out_icode
[r
] != CODE_FOR_nothing
)
5868 if (reload_secondary_in_icode
[r
] != CODE_FOR_nothing
)
5869 fprintf (stderr
, ", secondary_out_icode = ");
5871 fprintf (stderr
, "\nsecondary_out_icode = ");
5873 fprintf (stderr
, "%s ", insn_name
[r
]);
5875 fprintf (stderr
, "\n");
5878 fprintf (stderr
, "\n");