]> gcc.gnu.org Git - gcc.git/blob - gcc/regclass.c
alias.c (get_alias_set, [...]): Use MEM_P.
[gcc.git] / gcc / regclass.c
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23
24 /* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "rtl.h"
34 #include "expr.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "regs.h"
39 #include "function.h"
40 #include "insn-config.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "output.h"
46 #include "ggc.h"
47 #include "timevar.h"
48
49 static void init_reg_sets_1 (void);
50 static void init_reg_autoinc (void);
51
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
55
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
61 \f
62 /* Register tables used by many passes. */
63
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
68
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
70
71 /* Same info as a HARD_REG_SET. */
72
73 HARD_REG_SET fixed_reg_set;
74
75 /* Data for initializing the above. */
76
77 static const char initial_fixed_regs[] = FIXED_REGISTERS;
78
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
84
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
86
87 /* Same info as a HARD_REG_SET. */
88
89 HARD_REG_SET call_used_reg_set;
90
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
93
94 /* Data for initializing the above. */
95
96 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
97
98 /* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
100 what is really call clobbered, and is used when defining
101 regs_invalidated_by_call. */
102
103 #ifdef CALL_REALLY_USED_REGISTERS
104 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
105 #endif
106
107 /* Indexed by hard register number, contains 1 for registers that are
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
111
112 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
113
114 /* The same info as a HARD_REG_SET. */
115
116 HARD_REG_SET call_fixed_reg_set;
117
118 /* Number of non-fixed registers. */
119
120 int n_non_fixed_regs;
121
122 /* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
126
127 char global_regs[FIRST_PSEUDO_REGISTER];
128
129 /* Contains 1 for registers that are set or clobbered by calls. */
130 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
135
136 HARD_REG_SET regs_invalidated_by_call;
137
138 /* Table of register numbers in the order in which to try to use them. */
139 #ifdef REG_ALLOC_ORDER
140 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
141
142 /* The inverse of reg_alloc_order. */
143 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
144 #endif
145
146 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
147
148 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
149
150 /* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
154
155 #define N_REG_INTS \
156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
157
158 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
159 = REG_CLASS_CONTENTS;
160
161 /* For each reg class, number of regs it contains. */
162
163 unsigned int reg_class_size[N_REG_CLASSES];
164
165 /* For each reg class, table listing all the containing classes. */
166
167 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
168
169 /* For each reg class, table listing all the classes contained in it. */
170
171 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
172
173 /* For each pair of reg classes,
174 a largest reg class contained in their union. */
175
176 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
177
178 /* For each pair of reg classes,
179 the smallest reg class containing their union. */
180
181 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
182
183 /* Array containing all of the register names. */
184
185 const char * reg_names[] = REGISTER_NAMES;
186
187 /* For each hard register, the widest mode object that it can contain.
188 This will be a MODE_INT mode if the register can hold integers. Otherwise
189 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
190 register. */
191
192 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
193
194 /* 1 if class does contain register of given mode. */
195
196 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
197
198 /* Maximum cost of moving from a register in one class to a register in
199 another class. Based on REGISTER_MOVE_COST. */
200
201 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
202
203 /* Similar, but here we don't have to move if the first index is a subset
204 of the second so in that case the cost is zero. */
205
206 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
207
208 /* Similar, but here we don't have to move if the first index is a superset
209 of the second so in that case the cost is zero. */
210
211 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
212
213 #ifdef FORBIDDEN_INC_DEC_CLASSES
214
215 /* These are the classes that regs which are auto-incremented or decremented
216 cannot be put in. */
217
218 static int forbidden_inc_dec_class[N_REG_CLASSES];
219
220 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
221 context. */
222
223 static char *in_inc_dec;
224
225 #endif /* FORBIDDEN_INC_DEC_CLASSES */
226
227 #ifdef CANNOT_CHANGE_MODE_CLASS
228 /* All registers that have been subreged. Indexed by regno * MAX_MACHINE_MODE
229 + mode. */
230 bitmap_head subregs_of_mode;
231 #endif
232
233 /* Sample MEM values for use by memory_move_secondary_cost. */
234
235 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
236
237 /* Linked list of reg_info structures allocated for reg_n_info array.
238 Grouping all of the allocated structures together in one lump
239 means only one call to bzero to clear them, rather than n smaller
240 calls. */
241 struct reg_info_data {
242 struct reg_info_data *next; /* next set of reg_info structures */
243 size_t min_index; /* minimum index # */
244 size_t max_index; /* maximum index # */
245 char used_p; /* nonzero if this has been used previously */
246 reg_info data[1]; /* beginning of the reg_info data */
247 };
248
249 static struct reg_info_data *reg_info_head;
250
251 /* No more global register variables may be declared; true once
252 regclass has been initialized. */
253
254 static int no_global_reg_vars = 0;
255
256 /* Specify number of hard registers given machine mode occupy. */
257 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
258
259 /* Function called only once to initialize the above data on reg usage.
260 Once this is done, various switches may override. */
261
262 void
263 init_reg_sets (void)
264 {
265 int i, j;
266
267 /* First copy the register information from the initial int form into
268 the regsets. */
269
270 for (i = 0; i < N_REG_CLASSES; i++)
271 {
272 CLEAR_HARD_REG_SET (reg_class_contents[i]);
273
274 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
275 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
276 if (int_reg_class_contents[i][j / 32]
277 & ((unsigned) 1 << (j % 32)))
278 SET_HARD_REG_BIT (reg_class_contents[i], j);
279 }
280
281 /* Sanity check: make sure the target macros FIXED_REGISTERS and
282 CALL_USED_REGISTERS had the right number of initializers. */
283 if (sizeof fixed_regs != sizeof initial_fixed_regs
284 || sizeof call_used_regs != sizeof initial_call_used_regs)
285 abort();
286
287 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
288 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
289 memset (global_regs, 0, sizeof global_regs);
290
291 /* Do any additional initialization regsets may need. */
292 INIT_ONCE_REG_SET ();
293
294 #ifdef REG_ALLOC_ORDER
295 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
296 inv_reg_alloc_order[reg_alloc_order[i]] = i;
297 #endif
298 }
299
300 /* After switches have been processed, which perhaps alter
301 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
302
303 static void
304 init_reg_sets_1 (void)
305 {
306 unsigned int i, j;
307 unsigned int /* enum machine_mode */ m;
308 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
309
310 /* This macro allows the fixed or call-used registers
311 and the register classes to depend on target flags. */
312
313 #ifdef CONDITIONAL_REGISTER_USAGE
314 CONDITIONAL_REGISTER_USAGE;
315 #endif
316
317 /* Compute number of hard regs in each class. */
318
319 memset (reg_class_size, 0, sizeof reg_class_size);
320 for (i = 0; i < N_REG_CLASSES; i++)
321 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
322 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
323 reg_class_size[i]++;
324
325 /* Initialize the table of subunions.
326 reg_class_subunion[I][J] gets the largest-numbered reg-class
327 that is contained in the union of classes I and J. */
328
329 for (i = 0; i < N_REG_CLASSES; i++)
330 {
331 for (j = 0; j < N_REG_CLASSES; j++)
332 {
333 HARD_REG_SET c;
334 int k;
335
336 COPY_HARD_REG_SET (c, reg_class_contents[i]);
337 IOR_HARD_REG_SET (c, reg_class_contents[j]);
338 for (k = 0; k < N_REG_CLASSES; k++)
339 {
340 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
341 subclass1);
342 continue;
343
344 subclass1:
345 /* Keep the largest subclass. */ /* SPEE 900308 */
346 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
347 reg_class_contents[(int) reg_class_subunion[i][j]],
348 subclass2);
349 reg_class_subunion[i][j] = (enum reg_class) k;
350 subclass2:
351 ;
352 }
353 }
354 }
355
356 /* Initialize the table of superunions.
357 reg_class_superunion[I][J] gets the smallest-numbered reg-class
358 containing the union of classes I and J. */
359
360 for (i = 0; i < N_REG_CLASSES; i++)
361 {
362 for (j = 0; j < N_REG_CLASSES; j++)
363 {
364 HARD_REG_SET c;
365 int k;
366
367 COPY_HARD_REG_SET (c, reg_class_contents[i]);
368 IOR_HARD_REG_SET (c, reg_class_contents[j]);
369 for (k = 0; k < N_REG_CLASSES; k++)
370 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
371
372 superclass:
373 reg_class_superunion[i][j] = (enum reg_class) k;
374 }
375 }
376
377 /* Initialize the tables of subclasses and superclasses of each reg class.
378 First clear the whole table, then add the elements as they are found. */
379
380 for (i = 0; i < N_REG_CLASSES; i++)
381 {
382 for (j = 0; j < N_REG_CLASSES; j++)
383 {
384 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
385 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
386 }
387 }
388
389 for (i = 0; i < N_REG_CLASSES; i++)
390 {
391 if (i == (int) NO_REGS)
392 continue;
393
394 for (j = i + 1; j < N_REG_CLASSES; j++)
395 {
396 enum reg_class *p;
397
398 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
399 subclass);
400 continue;
401 subclass:
402 /* Reg class I is a subclass of J.
403 Add J to the table of superclasses of I. */
404 p = &reg_class_superclasses[i][0];
405 while (*p != LIM_REG_CLASSES) p++;
406 *p = (enum reg_class) j;
407 /* Add I to the table of superclasses of J. */
408 p = &reg_class_subclasses[j][0];
409 while (*p != LIM_REG_CLASSES) p++;
410 *p = (enum reg_class) i;
411 }
412 }
413
414 /* Initialize "constant" tables. */
415
416 CLEAR_HARD_REG_SET (fixed_reg_set);
417 CLEAR_HARD_REG_SET (call_used_reg_set);
418 CLEAR_HARD_REG_SET (call_fixed_reg_set);
419 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
420
421 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
422
423 n_non_fixed_regs = 0;
424
425 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
426 {
427 if (fixed_regs[i])
428 SET_HARD_REG_BIT (fixed_reg_set, i);
429 else
430 n_non_fixed_regs++;
431
432 if (call_used_regs[i])
433 SET_HARD_REG_BIT (call_used_reg_set, i);
434 if (call_fixed_regs[i])
435 SET_HARD_REG_BIT (call_fixed_reg_set, i);
436 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
437 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
438
439 /* There are a couple of fixed registers that we know are safe to
440 exclude from being clobbered by calls:
441
442 The frame pointer is always preserved across calls. The arg pointer
443 is if it is fixed. The stack pointer usually is, unless
444 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
445 If we are generating PIC code, the PIC offset table register is
446 preserved across calls, though the target can override that. */
447
448 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
449 ;
450 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
451 else if (i == HARD_FRAME_POINTER_REGNUM)
452 ;
453 #endif
454 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
455 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
456 ;
457 #endif
458 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
459 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
460 ;
461 #endif
462 else if (0
463 #ifdef CALL_REALLY_USED_REGISTERS
464 || call_really_used_regs[i]
465 #else
466 || call_used_regs[i]
467 #endif
468 || global_regs[i])
469 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
470 }
471
472 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
473 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
474 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
475 for (i = 0; i < N_REG_CLASSES; i++)
476 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
477 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
478 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
479 && HARD_REGNO_MODE_OK (j, m))
480 {
481 contains_reg_of_mode [i][m] = 1;
482 allocatable_regs_of_mode [m] = 1;
483 break;
484 }
485
486 /* Initialize the move cost table. Find every subset of each class
487 and take the maximum cost of moving any subset to any other. */
488
489 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
490 if (allocatable_regs_of_mode [m])
491 {
492 for (i = 0; i < N_REG_CLASSES; i++)
493 if (contains_reg_of_mode [i][m])
494 for (j = 0; j < N_REG_CLASSES; j++)
495 {
496 int cost;
497 enum reg_class *p1, *p2;
498
499 if (!contains_reg_of_mode [j][m])
500 {
501 move_cost[m][i][j] = 65536;
502 may_move_in_cost[m][i][j] = 65536;
503 may_move_out_cost[m][i][j] = 65536;
504 }
505 else
506 {
507 cost = REGISTER_MOVE_COST (m, i, j);
508
509 for (p2 = &reg_class_subclasses[j][0];
510 *p2 != LIM_REG_CLASSES;
511 p2++)
512 if (*p2 != i && contains_reg_of_mode [*p2][m])
513 cost = MAX (cost, move_cost [m][i][*p2]);
514
515 for (p1 = &reg_class_subclasses[i][0];
516 *p1 != LIM_REG_CLASSES;
517 p1++)
518 if (*p1 != j && contains_reg_of_mode [*p1][m])
519 cost = MAX (cost, move_cost [m][*p1][j]);
520
521 move_cost[m][i][j] = cost;
522
523 if (reg_class_subset_p (i, j))
524 may_move_in_cost[m][i][j] = 0;
525 else
526 may_move_in_cost[m][i][j] = cost;
527
528 if (reg_class_subset_p (j, i))
529 may_move_out_cost[m][i][j] = 0;
530 else
531 may_move_out_cost[m][i][j] = cost;
532 }
533 }
534 else
535 for (j = 0; j < N_REG_CLASSES; j++)
536 {
537 move_cost[m][i][j] = 65536;
538 may_move_in_cost[m][i][j] = 65536;
539 may_move_out_cost[m][i][j] = 65536;
540 }
541 }
542 }
543
544 /* Compute the table of register modes.
545 These values are used to record death information for individual registers
546 (as opposed to a multi-register mode). */
547
548 void
549 init_reg_modes_once (void)
550 {
551 int i, j;
552
553 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
554 for (j = 0; j < MAX_MACHINE_MODE; j++)
555 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
556
557 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
558 {
559 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
560
561 /* If we couldn't find a valid mode, just use the previous mode.
562 ??? One situation in which we need to do this is on the mips where
563 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
564 to use DF mode for the even registers and VOIDmode for the odd
565 (for the cpu models where the odd ones are inaccessible). */
566 if (reg_raw_mode[i] == VOIDmode)
567 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
568 }
569 }
570
571 /* Finish initializing the register sets and
572 initialize the register modes. */
573
574 void
575 init_regs (void)
576 {
577 /* This finishes what was started by init_reg_sets, but couldn't be done
578 until after register usage was specified. */
579 init_reg_sets_1 ();
580
581 init_reg_autoinc ();
582 }
583
584 /* Initialize some fake stack-frame MEM references for use in
585 memory_move_secondary_cost. */
586
587 void
588 init_fake_stack_mems (void)
589 {
590 #ifdef HAVE_SECONDARY_RELOADS
591 {
592 int i;
593
594 for (i = 0; i < MAX_MACHINE_MODE; i++)
595 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
596 }
597 #endif
598 }
599
600 #ifdef HAVE_SECONDARY_RELOADS
601
602 /* Compute extra cost of moving registers to/from memory due to reloads.
603 Only needed if secondary reloads are required for memory moves. */
604
605 int
606 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
607 {
608 enum reg_class altclass;
609 int partial_cost = 0;
610 /* We need a memory reference to feed to SECONDARY... macros. */
611 /* mem may be unused even if the SECONDARY_ macros are defined. */
612 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
613
614
615 if (in)
616 {
617 #ifdef SECONDARY_INPUT_RELOAD_CLASS
618 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
619 #else
620 altclass = NO_REGS;
621 #endif
622 }
623 else
624 {
625 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
626 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
627 #else
628 altclass = NO_REGS;
629 #endif
630 }
631
632 if (altclass == NO_REGS)
633 return 0;
634
635 if (in)
636 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
637 else
638 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
639
640 if (class == altclass)
641 /* This isn't simply a copy-to-temporary situation. Can't guess
642 what it is, so MEMORY_MOVE_COST really ought not to be calling
643 here in that case.
644
645 I'm tempted to put in an abort here, but returning this will
646 probably only give poor estimates, which is what we would've
647 had before this code anyways. */
648 return partial_cost;
649
650 /* Check if the secondary reload register will also need a
651 secondary reload. */
652 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
653 }
654 #endif
655
656 /* Return a machine mode that is legitimate for hard reg REGNO and large
657 enough to save nregs. If we can't find one, return VOIDmode.
658 If CALL_SAVED is true, only consider modes that are call saved. */
659
660 enum machine_mode
661 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
662 unsigned int nregs, bool call_saved)
663 {
664 unsigned int /* enum machine_mode */ m;
665 enum machine_mode found_mode = VOIDmode, mode;
666
667 /* We first look for the largest integer mode that can be validly
668 held in REGNO. If none, we look for the largest floating-point mode.
669 If we still didn't find a valid mode, try CCmode. */
670
671 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
672 mode != VOIDmode;
673 mode = GET_MODE_WIDER_MODE (mode))
674 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
675 && HARD_REGNO_MODE_OK (regno, mode)
676 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
677 found_mode = mode;
678
679 if (found_mode != VOIDmode)
680 return found_mode;
681
682 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
683 mode != VOIDmode;
684 mode = GET_MODE_WIDER_MODE (mode))
685 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
686 && HARD_REGNO_MODE_OK (regno, mode)
687 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
688 found_mode = mode;
689
690 if (found_mode != VOIDmode)
691 return found_mode;
692
693 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
694 mode != VOIDmode;
695 mode = GET_MODE_WIDER_MODE (mode))
696 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
697 && HARD_REGNO_MODE_OK (regno, mode)
698 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
699 found_mode = mode;
700
701 if (found_mode != VOIDmode)
702 return found_mode;
703
704 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
705 mode != VOIDmode;
706 mode = GET_MODE_WIDER_MODE (mode))
707 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
708 && HARD_REGNO_MODE_OK (regno, mode)
709 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
710 found_mode = mode;
711
712 if (found_mode != VOIDmode)
713 return found_mode;
714
715 /* Iterate over all of the CCmodes. */
716 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
717 {
718 mode = (enum machine_mode) m;
719 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
720 && HARD_REGNO_MODE_OK (regno, mode)
721 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
722 return mode;
723 }
724
725 /* We can't find a mode valid for this register. */
726 return VOIDmode;
727 }
728
729 /* Specify the usage characteristics of the register named NAME.
730 It should be a fixed register if FIXED and a
731 call-used register if CALL_USED. */
732
733 void
734 fix_register (const char *name, int fixed, int call_used)
735 {
736 int i;
737
738 /* Decode the name and update the primary form of
739 the register info. */
740
741 if ((i = decode_reg_name (name)) >= 0)
742 {
743 if ((i == STACK_POINTER_REGNUM
744 #ifdef HARD_FRAME_POINTER_REGNUM
745 || i == HARD_FRAME_POINTER_REGNUM
746 #else
747 || i == FRAME_POINTER_REGNUM
748 #endif
749 )
750 && (fixed == 0 || call_used == 0))
751 {
752 static const char * const what_option[2][2] = {
753 { "call-saved", "call-used" },
754 { "no-such-option", "fixed" }};
755
756 error ("can't use '%s' as a %s register", name,
757 what_option[fixed][call_used]);
758 }
759 else
760 {
761 fixed_regs[i] = fixed;
762 call_used_regs[i] = call_used;
763 #ifdef CALL_REALLY_USED_REGISTERS
764 if (fixed == 0)
765 call_really_used_regs[i] = call_used;
766 #endif
767 }
768 }
769 else
770 {
771 warning ("unknown register name: %s", name);
772 }
773 }
774
775 /* Mark register number I as global. */
776
777 void
778 globalize_reg (int i)
779 {
780 if (fixed_regs[i] == 0 && no_global_reg_vars)
781 error ("global register variable follows a function definition");
782
783 if (global_regs[i])
784 {
785 warning ("register used for two global register variables");
786 return;
787 }
788
789 if (call_used_regs[i] && ! fixed_regs[i])
790 warning ("call-clobbered register used for global register variable");
791
792 global_regs[i] = 1;
793
794 /* If already fixed, nothing else to do. */
795 if (fixed_regs[i])
796 return;
797
798 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
799 n_non_fixed_regs--;
800
801 SET_HARD_REG_BIT (fixed_reg_set, i);
802 SET_HARD_REG_BIT (call_used_reg_set, i);
803 SET_HARD_REG_BIT (call_fixed_reg_set, i);
804 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
805 }
806 \f
807 /* Now the data and code for the `regclass' pass, which happens
808 just before local-alloc. */
809
810 /* The `costs' struct records the cost of using a hard register of each class
811 and of using memory for each pseudo. We use this data to set up
812 register class preferences. */
813
814 struct costs
815 {
816 int cost[N_REG_CLASSES];
817 int mem_cost;
818 };
819
820 /* Structure used to record preferences of given pseudo. */
821 struct reg_pref
822 {
823 /* (enum reg_class) prefclass is the preferred class. */
824 char prefclass;
825
826 /* altclass is a register class that we should use for allocating
827 pseudo if no register in the preferred class is available.
828 If no register in this class is available, memory is preferred.
829
830 It might appear to be more general to have a bitmask of classes here,
831 but since it is recommended that there be a class corresponding to the
832 union of most major pair of classes, that generality is not required. */
833 char altclass;
834 };
835
836 /* Record the cost of each class for each pseudo. */
837
838 static struct costs *costs;
839
840 /* Initialized once, and used to initialize cost values for each insn. */
841
842 static struct costs init_cost;
843
844 /* Record preferences of each pseudo.
845 This is available after `regclass' is run. */
846
847 static struct reg_pref *reg_pref;
848
849 /* Allocated buffers for reg_pref. */
850
851 static struct reg_pref *reg_pref_buffer;
852
853 /* Frequency of executions of current insn. */
854
855 static int frequency;
856
857 static rtx scan_one_insn (rtx, int);
858 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
859 static void dump_regclass (FILE *);
860 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
861 const char **, rtx, struct costs *,
862 struct reg_pref *);
863 static int copy_cost (rtx, enum machine_mode, enum reg_class, int);
864 static void record_address_regs (rtx, enum reg_class, int);
865 #ifdef FORBIDDEN_INC_DEC_CLASSES
866 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
867 #endif
868 static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
869
870 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
871 This function is sometimes called before the info has been computed.
872 When that happens, just return GENERAL_REGS, which is innocuous. */
873
874 enum reg_class
875 reg_preferred_class (int regno)
876 {
877 if (reg_pref == 0)
878 return GENERAL_REGS;
879 return (enum reg_class) reg_pref[regno].prefclass;
880 }
881
882 enum reg_class
883 reg_alternate_class (int regno)
884 {
885 if (reg_pref == 0)
886 return ALL_REGS;
887
888 return (enum reg_class) reg_pref[regno].altclass;
889 }
890
891 /* Initialize some global data for this pass. */
892
893 void
894 regclass_init (void)
895 {
896 int i;
897
898 init_cost.mem_cost = 10000;
899 for (i = 0; i < N_REG_CLASSES; i++)
900 init_cost.cost[i] = 10000;
901
902 /* This prevents dump_flow_info from losing if called
903 before regclass is run. */
904 reg_pref = NULL;
905
906 /* No more global register variables may be declared. */
907 no_global_reg_vars = 1;
908 }
909 \f
910 /* Dump register costs. */
911 static void
912 dump_regclass (FILE *dump)
913 {
914 static const char *const reg_class_names[] = REG_CLASS_NAMES;
915 int i;
916 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
917 {
918 int /* enum reg_class */ class;
919 if (REG_N_REFS (i))
920 {
921 fprintf (dump, " Register %i costs:", i);
922 for (class = 0; class < (int) N_REG_CLASSES; class++)
923 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
924 #ifdef FORBIDDEN_INC_DEC_CLASSES
925 && (!in_inc_dec[i]
926 || !forbidden_inc_dec_class[(enum reg_class) class])
927 #endif
928 #ifdef CANNOT_CHANGE_MODE_CLASS
929 && ! invalid_mode_change_p (i, (enum reg_class) class,
930 PSEUDO_REGNO_MODE (i))
931 #endif
932 )
933 fprintf (dump, " %s:%i", reg_class_names[class],
934 costs[i].cost[(enum reg_class) class]);
935 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
936 }
937 }
938 }
939 \f
940
941 /* Calculate the costs of insn operands. */
942
943 static void
944 record_operand_costs (rtx insn, struct costs *op_costs,
945 struct reg_pref *reg_pref)
946 {
947 const char *constraints[MAX_RECOG_OPERANDS];
948 enum machine_mode modes[MAX_RECOG_OPERANDS];
949 int i;
950
951 for (i = 0; i < recog_data.n_operands; i++)
952 {
953 constraints[i] = recog_data.constraints[i];
954 modes[i] = recog_data.operand_mode[i];
955 }
956
957 /* If we get here, we are set up to record the costs of all the
958 operands for this insn. Start by initializing the costs.
959 Then handle any address registers. Finally record the desired
960 classes for any pseudos, doing it twice if some pair of
961 operands are commutative. */
962
963 for (i = 0; i < recog_data.n_operands; i++)
964 {
965 op_costs[i] = init_cost;
966
967 if (GET_CODE (recog_data.operand[i]) == SUBREG)
968 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
969
970 if (MEM_P (recog_data.operand[i]))
971 record_address_regs (XEXP (recog_data.operand[i], 0),
972 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
973 else if (constraints[i][0] == 'p'
974 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
975 record_address_regs (recog_data.operand[i],
976 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
977 }
978
979 /* Check for commutative in a separate loop so everything will
980 have been initialized. We must do this even if one operand
981 is a constant--see addsi3 in m68k.md. */
982
983 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
984 if (constraints[i][0] == '%')
985 {
986 const char *xconstraints[MAX_RECOG_OPERANDS];
987 int j;
988
989 /* Handle commutative operands by swapping the constraints.
990 We assume the modes are the same. */
991
992 for (j = 0; j < recog_data.n_operands; j++)
993 xconstraints[j] = constraints[j];
994
995 xconstraints[i] = constraints[i+1];
996 xconstraints[i+1] = constraints[i];
997 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
998 recog_data.operand, modes,
999 xconstraints, insn, op_costs, reg_pref);
1000 }
1001
1002 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1003 recog_data.operand, modes,
1004 constraints, insn, op_costs, reg_pref);
1005 }
1006 \f
1007 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1008 time it would save code to put a certain register in a certain class.
1009 PASS, when nonzero, inhibits some optimizations which need only be done
1010 once.
1011 Return the last insn processed, so that the scan can be continued from
1012 there. */
1013
1014 static rtx
1015 scan_one_insn (rtx insn, int pass)
1016 {
1017 enum rtx_code pat_code;
1018 rtx set, note;
1019 int i, j;
1020 struct costs op_costs[MAX_RECOG_OPERANDS];
1021
1022 if (!INSN_P (insn))
1023 return insn;
1024
1025 pat_code = GET_CODE (PATTERN (insn));
1026 if (pat_code == USE
1027 || pat_code == CLOBBER
1028 || pat_code == ASM_INPUT
1029 || pat_code == ADDR_VEC
1030 || pat_code == ADDR_DIFF_VEC)
1031 return insn;
1032
1033 set = single_set (insn);
1034 extract_insn (insn);
1035
1036 /* If this insn loads a parameter from its stack slot, then
1037 it represents a savings, rather than a cost, if the
1038 parameter is stored in memory. Record this fact. */
1039
1040 if (set != 0 && REG_P (SET_DEST (set))
1041 && MEM_P (SET_SRC (set))
1042 && (note = find_reg_note (insn, REG_EQUIV,
1043 NULL_RTX)) != 0
1044 && MEM_P (XEXP (note, 0)))
1045 {
1046 costs[REGNO (SET_DEST (set))].mem_cost
1047 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1048 GENERAL_REGS, 1)
1049 * frequency);
1050 record_address_regs (XEXP (SET_SRC (set), 0),
1051 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1052 return insn;
1053 }
1054
1055 /* Improve handling of two-address insns such as
1056 (set X (ashift CONST Y)) where CONST must be made to
1057 match X. Change it into two insns: (set X CONST)
1058 (set X (ashift X Y)). If we left this for reloading, it
1059 would probably get three insns because X and Y might go
1060 in the same place. This prevents X and Y from receiving
1061 the same hard reg.
1062
1063 We can only do this if the modes of operands 0 and 1
1064 (which might not be the same) are tieable and we only need
1065 do this during our first pass. */
1066
1067 if (pass == 0 && optimize
1068 && recog_data.n_operands >= 3
1069 && recog_data.constraints[1][0] == '0'
1070 && recog_data.constraints[1][1] == 0
1071 && CONSTANT_P (recog_data.operand[1])
1072 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1073 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1074 && REG_P (recog_data.operand[0])
1075 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1076 recog_data.operand_mode[1]))
1077 {
1078 rtx previnsn = prev_real_insn (insn);
1079 rtx dest
1080 = gen_lowpart (recog_data.operand_mode[1],
1081 recog_data.operand[0]);
1082 rtx newinsn
1083 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1084
1085 /* If this insn was the start of a basic block,
1086 include the new insn in that block.
1087 We need not check for code_label here;
1088 while a basic block can start with a code_label,
1089 INSN could not be at the beginning of that block. */
1090 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1091 {
1092 basic_block b;
1093 FOR_EACH_BB (b)
1094 if (insn == BB_HEAD (b))
1095 BB_HEAD (b) = newinsn;
1096 }
1097
1098 /* This makes one more setting of new insns's dest. */
1099 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1100 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1101 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1102
1103 *recog_data.operand_loc[1] = recog_data.operand[0];
1104 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1105 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1106 for (i = recog_data.n_dups - 1; i >= 0; i--)
1107 if (recog_data.dup_num[i] == 1)
1108 {
1109 *recog_data.dup_loc[i] = recog_data.operand[0];
1110 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1111 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1112 }
1113
1114 return PREV_INSN (newinsn);
1115 }
1116
1117 record_operand_costs (insn, op_costs, reg_pref);
1118
1119 /* Now add the cost for each operand to the total costs for
1120 its register. */
1121
1122 for (i = 0; i < recog_data.n_operands; i++)
1123 if (REG_P (recog_data.operand[i])
1124 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1125 {
1126 int regno = REGNO (recog_data.operand[i]);
1127 struct costs *p = &costs[regno], *q = &op_costs[i];
1128
1129 p->mem_cost += q->mem_cost * frequency;
1130 for (j = 0; j < N_REG_CLASSES; j++)
1131 p->cost[j] += q->cost[j] * frequency;
1132 }
1133
1134 return insn;
1135 }
1136
1137 /* Initialize information about which register classes can be used for
1138 pseudos that are auto-incremented or auto-decremented. */
1139
1140 static void
1141 init_reg_autoinc (void)
1142 {
1143 #ifdef FORBIDDEN_INC_DEC_CLASSES
1144 int i;
1145
1146 for (i = 0; i < N_REG_CLASSES; i++)
1147 {
1148 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1149 enum machine_mode m;
1150 int j;
1151
1152 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1153 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1154 {
1155 REGNO (r) = j;
1156
1157 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1158 m = (enum machine_mode) ((int) m + 1))
1159 if (HARD_REGNO_MODE_OK (j, m))
1160 {
1161 PUT_MODE (r, m);
1162
1163 /* If a register is not directly suitable for an
1164 auto-increment or decrement addressing mode and
1165 requires secondary reloads, disallow its class from
1166 being used in such addresses. */
1167
1168 if ((0
1169 #ifdef SECONDARY_RELOAD_CLASS
1170 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1171 != NO_REGS)
1172 #else
1173 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1174 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1175 != NO_REGS)
1176 #endif
1177 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1178 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1179 != NO_REGS)
1180 #endif
1181 #endif
1182 )
1183 && ! auto_inc_dec_reg_p (r, m))
1184 forbidden_inc_dec_class[i] = 1;
1185 }
1186 }
1187 }
1188 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1189 }
1190
1191 /* This is a pass of the compiler that scans all instructions
1192 and calculates the preferred class for each pseudo-register.
1193 This information can be accessed later by calling `reg_preferred_class'.
1194 This pass comes just before local register allocation. */
1195
1196 void
1197 regclass (rtx f, int nregs, FILE *dump)
1198 {
1199 rtx insn;
1200 int i;
1201 int pass;
1202
1203 init_recog ();
1204
1205 costs = xmalloc (nregs * sizeof (struct costs));
1206
1207 #ifdef FORBIDDEN_INC_DEC_CLASSES
1208
1209 in_inc_dec = xmalloc (nregs);
1210
1211 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1212
1213 /* Normally we scan the insns once and determine the best class to use for
1214 each register. However, if -fexpensive_optimizations are on, we do so
1215 twice, the second time using the tentative best classes to guide the
1216 selection. */
1217
1218 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1219 {
1220 basic_block bb;
1221
1222 if (dump)
1223 fprintf (dump, "\n\nPass %i\n\n",pass);
1224 /* Zero out our accumulation of the cost of each class for each reg. */
1225
1226 memset (costs, 0, nregs * sizeof (struct costs));
1227
1228 #ifdef FORBIDDEN_INC_DEC_CLASSES
1229 memset (in_inc_dec, 0, nregs);
1230 #endif
1231
1232 /* Scan the instructions and record each time it would
1233 save code to put a certain register in a certain class. */
1234
1235 if (!optimize)
1236 {
1237 frequency = REG_FREQ_MAX;
1238 for (insn = f; insn; insn = NEXT_INSN (insn))
1239 insn = scan_one_insn (insn, pass);
1240 }
1241 else
1242 FOR_EACH_BB (bb)
1243 {
1244 /* Show that an insn inside a loop is likely to be executed three
1245 times more than insns outside a loop. This is much more
1246 aggressive than the assumptions made elsewhere and is being
1247 tried as an experiment. */
1248 frequency = REG_FREQ_FROM_BB (bb);
1249 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1250 {
1251 insn = scan_one_insn (insn, pass);
1252 if (insn == BB_END (bb))
1253 break;
1254 }
1255 }
1256
1257 /* Now for each register look at how desirable each class is
1258 and find which class is preferred. Store that in
1259 `prefclass'. Record in `altclass' the largest register
1260 class any of whose registers is better than memory. */
1261
1262 if (pass == 0)
1263 reg_pref = reg_pref_buffer;
1264
1265 if (dump)
1266 {
1267 dump_regclass (dump);
1268 fprintf (dump,"\n");
1269 }
1270 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1271 {
1272 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1273 enum reg_class best = ALL_REGS, alt = NO_REGS;
1274 /* This is an enum reg_class, but we call it an int
1275 to save lots of casts. */
1276 int class;
1277 struct costs *p = &costs[i];
1278
1279 /* In non-optimizing compilation REG_N_REFS is not initialized
1280 yet. */
1281 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1282 continue;
1283
1284 for (class = (int) ALL_REGS - 1; class > 0; class--)
1285 {
1286 /* Ignore classes that are too small for this operand or
1287 invalid for an operand that was auto-incremented. */
1288 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1289 #ifdef FORBIDDEN_INC_DEC_CLASSES
1290 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1291 #endif
1292 #ifdef CANNOT_CHANGE_MODE_CLASS
1293 || invalid_mode_change_p (i, (enum reg_class) class,
1294 PSEUDO_REGNO_MODE (i))
1295 #endif
1296 )
1297 ;
1298 else if (p->cost[class] < best_cost)
1299 {
1300 best_cost = p->cost[class];
1301 best = (enum reg_class) class;
1302 }
1303 else if (p->cost[class] == best_cost)
1304 best = reg_class_subunion[(int) best][class];
1305 }
1306
1307 /* Record the alternate register class; i.e., a class for which
1308 every register in it is better than using memory. If adding a
1309 class would make a smaller class (i.e., no union of just those
1310 classes exists), skip that class. The major unions of classes
1311 should be provided as a register class. Don't do this if we
1312 will be doing it again later. */
1313
1314 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1315 for (class = 0; class < N_REG_CLASSES; class++)
1316 if (p->cost[class] < p->mem_cost
1317 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1318 > reg_class_size[(int) alt])
1319 #ifdef FORBIDDEN_INC_DEC_CLASSES
1320 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1321 #endif
1322 #ifdef CANNOT_CHANGE_MODE_CLASS
1323 && ! invalid_mode_change_p (i, (enum reg_class) class,
1324 PSEUDO_REGNO_MODE (i))
1325 #endif
1326 )
1327 alt = reg_class_subunion[(int) alt][class];
1328
1329 /* If we don't add any classes, nothing to try. */
1330 if (alt == best)
1331 alt = NO_REGS;
1332
1333 if (dump
1334 && (reg_pref[i].prefclass != (int) best
1335 || reg_pref[i].altclass != (int) alt))
1336 {
1337 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1338 fprintf (dump, " Register %i", i);
1339 if (alt == ALL_REGS || best == ALL_REGS)
1340 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1341 else if (alt == NO_REGS)
1342 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1343 else
1344 fprintf (dump, " pref %s, else %s\n",
1345 reg_class_names[(int) best],
1346 reg_class_names[(int) alt]);
1347 }
1348
1349 /* We cast to (int) because (char) hits bugs in some compilers. */
1350 reg_pref[i].prefclass = (int) best;
1351 reg_pref[i].altclass = (int) alt;
1352 }
1353 }
1354
1355 #ifdef FORBIDDEN_INC_DEC_CLASSES
1356 free (in_inc_dec);
1357 #endif
1358 free (costs);
1359 }
1360 \f
1361 /* Record the cost of using memory or registers of various classes for
1362 the operands in INSN.
1363
1364 N_ALTS is the number of alternatives.
1365
1366 N_OPS is the number of operands.
1367
1368 OPS is an array of the operands.
1369
1370 MODES are the modes of the operands, in case any are VOIDmode.
1371
1372 CONSTRAINTS are the constraints to use for the operands. This array
1373 is modified by this procedure.
1374
1375 This procedure works alternative by alternative. For each alternative
1376 we assume that we will be able to allocate all pseudos to their ideal
1377 register class and calculate the cost of using that alternative. Then
1378 we compute for each operand that is a pseudo-register, the cost of
1379 having the pseudo allocated to each register class and using it in that
1380 alternative. To this cost is added the cost of the alternative.
1381
1382 The cost of each class for this insn is its lowest cost among all the
1383 alternatives. */
1384
1385 static void
1386 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1387 enum machine_mode *modes, const char **constraints,
1388 rtx insn, struct costs *op_costs,
1389 struct reg_pref *reg_pref)
1390 {
1391 int alt;
1392 int i, j;
1393 rtx set;
1394
1395 /* Process each alternative, each time minimizing an operand's cost with
1396 the cost for each operand in that alternative. */
1397
1398 for (alt = 0; alt < n_alts; alt++)
1399 {
1400 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1401 int alt_fail = 0;
1402 int alt_cost = 0;
1403 enum reg_class classes[MAX_RECOG_OPERANDS];
1404 int allows_mem[MAX_RECOG_OPERANDS];
1405 int class;
1406
1407 for (i = 0; i < n_ops; i++)
1408 {
1409 const char *p = constraints[i];
1410 rtx op = ops[i];
1411 enum machine_mode mode = modes[i];
1412 int allows_addr = 0;
1413 int win = 0;
1414 unsigned char c;
1415
1416 /* Initially show we know nothing about the register class. */
1417 classes[i] = NO_REGS;
1418 allows_mem[i] = 0;
1419
1420 /* If this operand has no constraints at all, we can conclude
1421 nothing about it since anything is valid. */
1422
1423 if (*p == 0)
1424 {
1425 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1426 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1427
1428 continue;
1429 }
1430
1431 /* If this alternative is only relevant when this operand
1432 matches a previous operand, we do different things depending
1433 on whether this operand is a pseudo-reg or not. We must process
1434 any modifiers for the operand before we can make this test. */
1435
1436 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1437 p++;
1438
1439 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1440 {
1441 /* Copy class and whether memory is allowed from the matching
1442 alternative. Then perform any needed cost computations
1443 and/or adjustments. */
1444 j = p[0] - '0';
1445 classes[i] = classes[j];
1446 allows_mem[i] = allows_mem[j];
1447
1448 if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1449 {
1450 /* If this matches the other operand, we have no added
1451 cost and we win. */
1452 if (rtx_equal_p (ops[j], op))
1453 win = 1;
1454
1455 /* If we can put the other operand into a register, add to
1456 the cost of this alternative the cost to copy this
1457 operand to the register used for the other operand. */
1458
1459 else if (classes[j] != NO_REGS)
1460 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1461 }
1462 else if (!REG_P (ops[j])
1463 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1464 {
1465 /* This op is a pseudo but the one it matches is not. */
1466
1467 /* If we can't put the other operand into a register, this
1468 alternative can't be used. */
1469
1470 if (classes[j] == NO_REGS)
1471 alt_fail = 1;
1472
1473 /* Otherwise, add to the cost of this alternative the cost
1474 to copy the other operand to the register used for this
1475 operand. */
1476
1477 else
1478 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1479 }
1480 else
1481 {
1482 /* The costs of this operand are not the same as the other
1483 operand since move costs are not symmetric. Moreover,
1484 if we cannot tie them, this alternative needs to do a
1485 copy, which is one instruction. */
1486
1487 struct costs *pp = &this_op_costs[i];
1488
1489 for (class = 0; class < N_REG_CLASSES; class++)
1490 pp->cost[class]
1491 = ((recog_data.operand_type[i] != OP_OUT
1492 ? may_move_in_cost[mode][class][(int) classes[i]]
1493 : 0)
1494 + (recog_data.operand_type[i] != OP_IN
1495 ? may_move_out_cost[mode][(int) classes[i]][class]
1496 : 0));
1497
1498 /* If the alternative actually allows memory, make things
1499 a bit cheaper since we won't need an extra insn to
1500 load it. */
1501
1502 pp->mem_cost
1503 = ((recog_data.operand_type[i] != OP_IN
1504 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1505 : 0)
1506 + (recog_data.operand_type[i] != OP_OUT
1507 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1508 : 0) - allows_mem[i]);
1509
1510 /* If we have assigned a class to this register in our
1511 first pass, add a cost to this alternative corresponding
1512 to what we would add if this register were not in the
1513 appropriate class. */
1514
1515 if (reg_pref)
1516 alt_cost
1517 += (may_move_in_cost[mode]
1518 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1519 [(int) classes[i]]);
1520
1521 if (REGNO (ops[i]) != REGNO (ops[j])
1522 && ! find_reg_note (insn, REG_DEAD, op))
1523 alt_cost += 2;
1524
1525 /* This is in place of ordinary cost computation
1526 for this operand, so skip to the end of the
1527 alternative (should be just one character). */
1528 while (*p && *p++ != ',')
1529 ;
1530
1531 constraints[i] = p;
1532 continue;
1533 }
1534 }
1535
1536 /* Scan all the constraint letters. See if the operand matches
1537 any of the constraints. Collect the valid register classes
1538 and see if this operand accepts memory. */
1539
1540 while ((c = *p))
1541 {
1542 switch (c)
1543 {
1544 case ',':
1545 break;
1546 case '*':
1547 /* Ignore the next letter for this pass. */
1548 c = *++p;
1549 break;
1550
1551 case '?':
1552 alt_cost += 2;
1553 case '!': case '#': case '&':
1554 case '0': case '1': case '2': case '3': case '4':
1555 case '5': case '6': case '7': case '8': case '9':
1556 break;
1557
1558 case 'p':
1559 allows_addr = 1;
1560 win = address_operand (op, GET_MODE (op));
1561 /* We know this operand is an address, so we want it to be
1562 allocated to a register that can be the base of an
1563 address, ie BASE_REG_CLASS. */
1564 classes[i]
1565 = reg_class_subunion[(int) classes[i]]
1566 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1567 break;
1568
1569 case 'm': case 'o': case 'V':
1570 /* It doesn't seem worth distinguishing between offsettable
1571 and non-offsettable addresses here. */
1572 allows_mem[i] = 1;
1573 if (MEM_P (op))
1574 win = 1;
1575 break;
1576
1577 case '<':
1578 if (MEM_P (op)
1579 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1580 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1581 win = 1;
1582 break;
1583
1584 case '>':
1585 if (MEM_P (op)
1586 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1587 || GET_CODE (XEXP (op, 0)) == POST_INC))
1588 win = 1;
1589 break;
1590
1591 case 'E':
1592 case 'F':
1593 if (GET_CODE (op) == CONST_DOUBLE
1594 || (GET_CODE (op) == CONST_VECTOR
1595 && (GET_MODE_CLASS (GET_MODE (op))
1596 == MODE_VECTOR_FLOAT)))
1597 win = 1;
1598 break;
1599
1600 case 'G':
1601 case 'H':
1602 if (GET_CODE (op) == CONST_DOUBLE
1603 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1604 win = 1;
1605 break;
1606
1607 case 's':
1608 if (GET_CODE (op) == CONST_INT
1609 || (GET_CODE (op) == CONST_DOUBLE
1610 && GET_MODE (op) == VOIDmode))
1611 break;
1612 case 'i':
1613 if (CONSTANT_P (op)
1614 #ifdef LEGITIMATE_PIC_OPERAND_P
1615 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1616 #endif
1617 )
1618 win = 1;
1619 break;
1620
1621 case 'n':
1622 if (GET_CODE (op) == CONST_INT
1623 || (GET_CODE (op) == CONST_DOUBLE
1624 && GET_MODE (op) == VOIDmode))
1625 win = 1;
1626 break;
1627
1628 case 'I':
1629 case 'J':
1630 case 'K':
1631 case 'L':
1632 case 'M':
1633 case 'N':
1634 case 'O':
1635 case 'P':
1636 if (GET_CODE (op) == CONST_INT
1637 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1638 win = 1;
1639 break;
1640
1641 case 'X':
1642 win = 1;
1643 break;
1644
1645 case 'g':
1646 if (MEM_P (op)
1647 || (CONSTANT_P (op)
1648 #ifdef LEGITIMATE_PIC_OPERAND_P
1649 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1650 #endif
1651 ))
1652 win = 1;
1653 allows_mem[i] = 1;
1654 case 'r':
1655 classes[i]
1656 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1657 break;
1658
1659 default:
1660 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1661 classes[i]
1662 = reg_class_subunion[(int) classes[i]]
1663 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1664 #ifdef EXTRA_CONSTRAINT_STR
1665 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1666 win = 1;
1667
1668 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1669 {
1670 /* Every MEM can be reloaded to fit. */
1671 allows_mem[i] = 1;
1672 if (MEM_P (op))
1673 win = 1;
1674 }
1675 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1676 {
1677 /* Every address can be reloaded to fit. */
1678 allows_addr = 1;
1679 if (address_operand (op, GET_MODE (op)))
1680 win = 1;
1681 /* We know this operand is an address, so we want it to
1682 be allocated to a register that can be the base of an
1683 address, ie BASE_REG_CLASS. */
1684 classes[i]
1685 = reg_class_subunion[(int) classes[i]]
1686 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1687 }
1688 #endif
1689 break;
1690 }
1691 p += CONSTRAINT_LEN (c, p);
1692 if (c == ',')
1693 break;
1694 }
1695
1696 constraints[i] = p;
1697
1698 /* How we account for this operand now depends on whether it is a
1699 pseudo register or not. If it is, we first check if any
1700 register classes are valid. If not, we ignore this alternative,
1701 since we want to assume that all pseudos get allocated for
1702 register preferencing. If some register class is valid, compute
1703 the costs of moving the pseudo into that class. */
1704
1705 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1706 {
1707 if (classes[i] == NO_REGS)
1708 {
1709 /* We must always fail if the operand is a REG, but
1710 we did not find a suitable class.
1711
1712 Otherwise we may perform an uninitialized read
1713 from this_op_costs after the `continue' statement
1714 below. */
1715 alt_fail = 1;
1716 }
1717 else
1718 {
1719 struct costs *pp = &this_op_costs[i];
1720
1721 for (class = 0; class < N_REG_CLASSES; class++)
1722 pp->cost[class]
1723 = ((recog_data.operand_type[i] != OP_OUT
1724 ? may_move_in_cost[mode][class][(int) classes[i]]
1725 : 0)
1726 + (recog_data.operand_type[i] != OP_IN
1727 ? may_move_out_cost[mode][(int) classes[i]][class]
1728 : 0));
1729
1730 /* If the alternative actually allows memory, make things
1731 a bit cheaper since we won't need an extra insn to
1732 load it. */
1733
1734 pp->mem_cost
1735 = ((recog_data.operand_type[i] != OP_IN
1736 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1737 : 0)
1738 + (recog_data.operand_type[i] != OP_OUT
1739 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1740 : 0) - allows_mem[i]);
1741
1742 /* If we have assigned a class to this register in our
1743 first pass, add a cost to this alternative corresponding
1744 to what we would add if this register were not in the
1745 appropriate class. */
1746
1747 if (reg_pref)
1748 alt_cost
1749 += (may_move_in_cost[mode]
1750 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1751 [(int) classes[i]]);
1752 }
1753 }
1754
1755 /* Otherwise, if this alternative wins, either because we
1756 have already determined that or if we have a hard register of
1757 the proper class, there is no cost for this alternative. */
1758
1759 else if (win
1760 || (REG_P (op)
1761 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1762 ;
1763
1764 /* If registers are valid, the cost of this alternative includes
1765 copying the object to and/or from a register. */
1766
1767 else if (classes[i] != NO_REGS)
1768 {
1769 if (recog_data.operand_type[i] != OP_OUT)
1770 alt_cost += copy_cost (op, mode, classes[i], 1);
1771
1772 if (recog_data.operand_type[i] != OP_IN)
1773 alt_cost += copy_cost (op, mode, classes[i], 0);
1774 }
1775
1776 /* The only other way this alternative can be used is if this is a
1777 constant that could be placed into memory. */
1778
1779 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1780 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1781 else
1782 alt_fail = 1;
1783 }
1784
1785 if (alt_fail)
1786 continue;
1787
1788 /* Finally, update the costs with the information we've calculated
1789 about this alternative. */
1790
1791 for (i = 0; i < n_ops; i++)
1792 if (REG_P (ops[i])
1793 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1794 {
1795 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1796 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1797
1798 pp->mem_cost = MIN (pp->mem_cost,
1799 (qq->mem_cost + alt_cost) * scale);
1800
1801 for (class = 0; class < N_REG_CLASSES; class++)
1802 pp->cost[class] = MIN (pp->cost[class],
1803 (qq->cost[class] + alt_cost) * scale);
1804 }
1805 }
1806
1807 /* If this insn is a single set copying operand 1 to operand 0
1808 and one operand is a pseudo with the other a hard reg or a pseudo
1809 that prefers a register that is in its own register class then
1810 we may want to adjust the cost of that register class to -1.
1811
1812 Avoid the adjustment if the source does not die to avoid stressing of
1813 register allocator by preferrencing two colliding registers into single
1814 class.
1815
1816 Also avoid the adjustment if a copy between registers of the class
1817 is expensive (ten times the cost of a default copy is considered
1818 arbitrarily expensive). This avoids losing when the preferred class
1819 is very expensive as the source of a copy instruction. */
1820
1821 if ((set = single_set (insn)) != 0
1822 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1823 && REG_P (ops[0]) && REG_P (ops[1])
1824 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1825 for (i = 0; i <= 1; i++)
1826 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1827 {
1828 unsigned int regno = REGNO (ops[!i]);
1829 enum machine_mode mode = GET_MODE (ops[!i]);
1830 int class;
1831 unsigned int nr;
1832
1833 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1834 {
1835 enum reg_class pref = reg_pref[regno].prefclass;
1836
1837 if ((reg_class_size[(unsigned char) pref]
1838 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1839 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1840 op_costs[i].cost[(unsigned char) pref] = -1;
1841 }
1842 else if (regno < FIRST_PSEUDO_REGISTER)
1843 for (class = 0; class < N_REG_CLASSES; class++)
1844 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1845 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1846 {
1847 if (reg_class_size[class] == 1)
1848 op_costs[i].cost[class] = -1;
1849 else
1850 {
1851 for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
1852 {
1853 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1854 regno + nr))
1855 break;
1856 }
1857
1858 if (nr == (unsigned) hard_regno_nregs[regno][mode])
1859 op_costs[i].cost[class] = -1;
1860 }
1861 }
1862 }
1863 }
1864 \f
1865 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1866 TO_P is zero) a register of class CLASS in mode MODE.
1867
1868 X must not be a pseudo. */
1869
1870 static int
1871 copy_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1872 enum reg_class class, int to_p ATTRIBUTE_UNUSED)
1873 {
1874 #ifdef HAVE_SECONDARY_RELOADS
1875 enum reg_class secondary_class = NO_REGS;
1876 #endif
1877
1878 /* If X is a SCRATCH, there is actually nothing to move since we are
1879 assuming optimal allocation. */
1880
1881 if (GET_CODE (x) == SCRATCH)
1882 return 0;
1883
1884 /* Get the class we will actually use for a reload. */
1885 class = PREFERRED_RELOAD_CLASS (x, class);
1886
1887 #ifdef HAVE_SECONDARY_RELOADS
1888 /* If we need a secondary reload (we assume here that we are using
1889 the secondary reload as an intermediate, not a scratch register), the
1890 cost is that to load the input into the intermediate register, then
1891 to copy them. We use a special value of TO_P to avoid recursion. */
1892
1893 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1894 if (to_p == 1)
1895 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1896 #endif
1897
1898 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1899 if (! to_p)
1900 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1901 #endif
1902
1903 if (secondary_class != NO_REGS)
1904 return (move_cost[mode][(int) secondary_class][(int) class]
1905 + copy_cost (x, mode, secondary_class, 2));
1906 #endif /* HAVE_SECONDARY_RELOADS */
1907
1908 /* For memory, use the memory move cost, for (hard) registers, use the
1909 cost to move between the register classes, and use 2 for everything
1910 else (constants). */
1911
1912 if (MEM_P (x) || class == NO_REGS)
1913 return MEMORY_MOVE_COST (mode, class, to_p);
1914
1915 else if (REG_P (x))
1916 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1917
1918 else
1919 /* If this is a constant, we may eventually want to call rtx_cost here. */
1920 return COSTS_N_INSNS (1);
1921 }
1922 \f
1923 /* Record the pseudo registers we must reload into hard registers
1924 in a subexpression of a memory address, X.
1925
1926 CLASS is the class that the register needs to be in and is either
1927 BASE_REG_CLASS or INDEX_REG_CLASS.
1928
1929 SCALE is twice the amount to multiply the cost by (it is twice so we
1930 can represent half-cost adjustments). */
1931
1932 static void
1933 record_address_regs (rtx x, enum reg_class class, int scale)
1934 {
1935 enum rtx_code code = GET_CODE (x);
1936
1937 switch (code)
1938 {
1939 case CONST_INT:
1940 case CONST:
1941 case CC0:
1942 case PC:
1943 case SYMBOL_REF:
1944 case LABEL_REF:
1945 return;
1946
1947 case PLUS:
1948 /* When we have an address that is a sum,
1949 we must determine whether registers are "base" or "index" regs.
1950 If there is a sum of two registers, we must choose one to be
1951 the "base". Luckily, we can use the REG_POINTER to make a good
1952 choice most of the time. We only need to do this on machines
1953 that can have two registers in an address and where the base
1954 and index register classes are different.
1955
1956 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1957 that seems bogus since it should only be set when we are sure
1958 the register is being used as a pointer. */
1959
1960 {
1961 rtx arg0 = XEXP (x, 0);
1962 rtx arg1 = XEXP (x, 1);
1963 enum rtx_code code0 = GET_CODE (arg0);
1964 enum rtx_code code1 = GET_CODE (arg1);
1965
1966 /* Look inside subregs. */
1967 if (code0 == SUBREG)
1968 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1969 if (code1 == SUBREG)
1970 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1971
1972 /* If this machine only allows one register per address, it must
1973 be in the first operand. */
1974
1975 if (MAX_REGS_PER_ADDRESS == 1)
1976 record_address_regs (arg0, class, scale);
1977
1978 /* If index and base registers are the same on this machine, just
1979 record registers in any non-constant operands. We assume here,
1980 as well as in the tests below, that all addresses are in
1981 canonical form. */
1982
1983 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
1984 {
1985 record_address_regs (arg0, class, scale);
1986 if (! CONSTANT_P (arg1))
1987 record_address_regs (arg1, class, scale);
1988 }
1989
1990 /* If the second operand is a constant integer, it doesn't change
1991 what class the first operand must be. */
1992
1993 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1994 record_address_regs (arg0, class, scale);
1995
1996 /* If the second operand is a symbolic constant, the first operand
1997 must be an index register. */
1998
1999 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2000 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2001
2002 /* If both operands are registers but one is already a hard register
2003 of index or base class, give the other the class that the hard
2004 register is not. */
2005
2006 #ifdef REG_OK_FOR_BASE_P
2007 else if (code0 == REG && code1 == REG
2008 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2009 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2010 record_address_regs (arg1,
2011 REG_OK_FOR_BASE_P (arg0)
2012 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2013 scale);
2014 else if (code0 == REG && code1 == REG
2015 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2016 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2017 record_address_regs (arg0,
2018 REG_OK_FOR_BASE_P (arg1)
2019 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2020 scale);
2021 #endif
2022
2023 /* If one operand is known to be a pointer, it must be the base
2024 with the other operand the index. Likewise if the other operand
2025 is a MULT. */
2026
2027 else if ((code0 == REG && REG_POINTER (arg0))
2028 || code1 == MULT)
2029 {
2030 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2031 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2032 }
2033 else if ((code1 == REG && REG_POINTER (arg1))
2034 || code0 == MULT)
2035 {
2036 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2037 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2038 }
2039
2040 /* Otherwise, count equal chances that each might be a base
2041 or index register. This case should be rare. */
2042
2043 else
2044 {
2045 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2046 scale / 2);
2047 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2048 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2049 scale / 2);
2050 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2051 }
2052 }
2053 break;
2054
2055 /* Double the importance of a pseudo register that is incremented
2056 or decremented, since it would take two extra insns
2057 if it ends up in the wrong place. */
2058 case POST_MODIFY:
2059 case PRE_MODIFY:
2060 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2061 2 * scale);
2062 if (REG_P (XEXP (XEXP (x, 1), 1)))
2063 record_address_regs (XEXP (XEXP (x, 1), 1),
2064 INDEX_REG_CLASS, 2 * scale);
2065 break;
2066
2067 case POST_INC:
2068 case PRE_INC:
2069 case POST_DEC:
2070 case PRE_DEC:
2071 /* Double the importance of a pseudo register that is incremented
2072 or decremented, since it would take two extra insns
2073 if it ends up in the wrong place. If the operand is a pseudo,
2074 show it is being used in an INC_DEC context. */
2075
2076 #ifdef FORBIDDEN_INC_DEC_CLASSES
2077 if (REG_P (XEXP (x, 0))
2078 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2079 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2080 #endif
2081
2082 record_address_regs (XEXP (x, 0), class, 2 * scale);
2083 break;
2084
2085 case REG:
2086 {
2087 struct costs *pp = &costs[REGNO (x)];
2088 int i;
2089
2090 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2091
2092 for (i = 0; i < N_REG_CLASSES; i++)
2093 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2094 }
2095 break;
2096
2097 default:
2098 {
2099 const char *fmt = GET_RTX_FORMAT (code);
2100 int i;
2101 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2102 if (fmt[i] == 'e')
2103 record_address_regs (XEXP (x, i), class, scale);
2104 }
2105 }
2106 }
2107 \f
2108 #ifdef FORBIDDEN_INC_DEC_CLASSES
2109
2110 /* Return 1 if REG is valid as an auto-increment memory reference
2111 to an object of MODE. */
2112
2113 static int
2114 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2115 {
2116 if (HAVE_POST_INCREMENT
2117 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2118 return 1;
2119
2120 if (HAVE_POST_DECREMENT
2121 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2122 return 1;
2123
2124 if (HAVE_PRE_INCREMENT
2125 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2126 return 1;
2127
2128 if (HAVE_PRE_DECREMENT
2129 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2130 return 1;
2131
2132 return 0;
2133 }
2134 #endif
2135 \f
2136 static short *renumber;
2137 static size_t regno_allocated;
2138 static unsigned int reg_n_max;
2139
2140 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2141 reg_scan and flow_analysis that are indexed by the register number. If
2142 NEW_P is nonzero, initialize all of the registers, otherwise only
2143 initialize the new registers allocated. The same table is kept from
2144 function to function, only reallocating it when we need more room. If
2145 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2146
2147 void
2148 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2149 {
2150 size_t size_info;
2151 size_t size_renumber;
2152 size_t min = (new_p) ? 0 : reg_n_max;
2153 struct reg_info_data *reg_data;
2154
2155 if (num_regs > regno_allocated)
2156 {
2157 size_t old_allocated = regno_allocated;
2158
2159 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
2160 size_renumber = regno_allocated * sizeof (short);
2161
2162 if (!reg_n_info)
2163 {
2164 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2165 renumber = xmalloc (size_renumber);
2166 reg_pref_buffer = xmalloc (regno_allocated
2167 * sizeof (struct reg_pref));
2168 }
2169
2170 else
2171 {
2172 VARRAY_GROW (reg_n_info, regno_allocated);
2173
2174 if (new_p) /* If we're zapping everything, no need to realloc. */
2175 {
2176 free ((char *) renumber);
2177 free ((char *) reg_pref);
2178 renumber = xmalloc (size_renumber);
2179 reg_pref_buffer = xmalloc (regno_allocated
2180 * sizeof (struct reg_pref));
2181 }
2182
2183 else
2184 {
2185 renumber = xrealloc (renumber, size_renumber);
2186 reg_pref_buffer = xrealloc (reg_pref_buffer,
2187 regno_allocated
2188 * sizeof (struct reg_pref));
2189 }
2190 }
2191
2192 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2193 + sizeof (struct reg_info_data) - sizeof (reg_info);
2194 reg_data = xcalloc (size_info, 1);
2195 reg_data->min_index = old_allocated;
2196 reg_data->max_index = regno_allocated - 1;
2197 reg_data->next = reg_info_head;
2198 reg_info_head = reg_data;
2199 }
2200
2201 reg_n_max = num_regs;
2202 if (min < num_regs)
2203 {
2204 /* Loop through each of the segments allocated for the actual
2205 reg_info pages, and set up the pointers, zero the pages, etc. */
2206 for (reg_data = reg_info_head;
2207 reg_data && reg_data->max_index >= min;
2208 reg_data = reg_data->next)
2209 {
2210 size_t min_index = reg_data->min_index;
2211 size_t max_index = reg_data->max_index;
2212 size_t max = MIN (max_index, num_regs);
2213 size_t local_min = min - min_index;
2214 size_t i;
2215
2216 if (reg_data->min_index > num_regs)
2217 continue;
2218
2219 if (min < min_index)
2220 local_min = 0;
2221 if (!reg_data->used_p) /* page just allocated with calloc */
2222 reg_data->used_p = 1; /* no need to zero */
2223 else
2224 memset (&reg_data->data[local_min], 0,
2225 sizeof (reg_info) * (max - min_index - local_min + 1));
2226
2227 for (i = min_index+local_min; i <= max; i++)
2228 {
2229 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2230 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2231 renumber[i] = -1;
2232 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2233 reg_pref_buffer[i].altclass = (char) NO_REGS;
2234 }
2235 }
2236 }
2237
2238 /* If {pref,alt}class have already been allocated, update the pointers to
2239 the newly realloced ones. */
2240 if (reg_pref)
2241 reg_pref = reg_pref_buffer;
2242
2243 if (renumber_p)
2244 reg_renumber = renumber;
2245
2246 /* Tell the regset code about the new number of registers. */
2247 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2248 }
2249
2250 /* Free up the space allocated by allocate_reg_info. */
2251 void
2252 free_reg_info (void)
2253 {
2254 if (reg_n_info)
2255 {
2256 struct reg_info_data *reg_data;
2257 struct reg_info_data *reg_next;
2258
2259 VARRAY_FREE (reg_n_info);
2260 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2261 {
2262 reg_next = reg_data->next;
2263 free ((char *) reg_data);
2264 }
2265
2266 free (reg_pref_buffer);
2267 reg_pref_buffer = (struct reg_pref *) 0;
2268 reg_info_head = (struct reg_info_data *) 0;
2269 renumber = (short *) 0;
2270 }
2271 regno_allocated = 0;
2272 reg_n_max = 0;
2273 }
2274 \f
2275 /* This is the `regscan' pass of the compiler, run just before cse
2276 and again just before loop.
2277
2278 It finds the first and last use of each pseudo-register
2279 and records them in the vectors regno_first_uid, regno_last_uid
2280 and counts the number of sets in the vector reg_n_sets.
2281
2282 REPEAT is nonzero the second time this is called. */
2283
2284 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2285 Always at least 3, since the combiner could put that many together
2286 and we want this to remain correct for all the remaining passes.
2287 This corresponds to the maximum number of times note_stores will call
2288 a function for any insn. */
2289
2290 int max_parallel;
2291
2292 /* Used as a temporary to record the largest number of registers in
2293 PARALLEL in a SET_DEST. This is added to max_parallel. */
2294
2295 static int max_set_parallel;
2296
2297 void
2298 reg_scan (rtx f, unsigned int nregs, int repeat ATTRIBUTE_UNUSED)
2299 {
2300 rtx insn;
2301
2302 timevar_push (TV_REG_SCAN);
2303
2304 allocate_reg_info (nregs, TRUE, FALSE);
2305 max_parallel = 3;
2306 max_set_parallel = 0;
2307
2308 for (insn = f; insn; insn = NEXT_INSN (insn))
2309 if (INSN_P (insn))
2310 {
2311 rtx pat = PATTERN (insn);
2312 if (GET_CODE (pat) == PARALLEL
2313 && XVECLEN (pat, 0) > max_parallel)
2314 max_parallel = XVECLEN (pat, 0);
2315 reg_scan_mark_refs (pat, insn, 0, 0);
2316
2317 if (REG_NOTES (insn))
2318 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2319 }
2320
2321 max_parallel += max_set_parallel;
2322
2323 timevar_pop (TV_REG_SCAN);
2324 }
2325
2326 /* Update 'regscan' information by looking at the insns
2327 from FIRST to LAST. Some new REGs have been created,
2328 and any REG with number greater than OLD_MAX_REGNO is
2329 such a REG. We only update information for those. */
2330
2331 void
2332 reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2333 {
2334 rtx insn;
2335
2336 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2337
2338 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2339 if (INSN_P (insn))
2340 {
2341 rtx pat = PATTERN (insn);
2342 if (GET_CODE (pat) == PARALLEL
2343 && XVECLEN (pat, 0) > max_parallel)
2344 max_parallel = XVECLEN (pat, 0);
2345 reg_scan_mark_refs (pat, insn, 0, old_max_regno);
2346
2347 if (REG_NOTES (insn))
2348 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2349 }
2350 }
2351
2352 /* X is the expression to scan. INSN is the insn it appears in.
2353 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2354 We should only record information for REGs with numbers
2355 greater than or equal to MIN_REGNO. */
2356
2357 static void
2358 reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2359 {
2360 enum rtx_code code;
2361 rtx dest;
2362 rtx note;
2363
2364 if (!x)
2365 return;
2366 code = GET_CODE (x);
2367 switch (code)
2368 {
2369 case CONST:
2370 case CONST_INT:
2371 case CONST_DOUBLE:
2372 case CONST_VECTOR:
2373 case CC0:
2374 case PC:
2375 case SYMBOL_REF:
2376 case LABEL_REF:
2377 case ADDR_VEC:
2378 case ADDR_DIFF_VEC:
2379 return;
2380
2381 case REG:
2382 {
2383 unsigned int regno = REGNO (x);
2384
2385 if (regno >= min_regno)
2386 {
2387 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2388 if (!note_flag)
2389 REGNO_LAST_UID (regno) = INSN_UID (insn);
2390 if (REGNO_FIRST_UID (regno) == 0)
2391 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2392 /* If we are called by reg_scan_update() (indicated by min_regno
2393 being set), we also need to update the reference count. */
2394 if (min_regno)
2395 REG_N_REFS (regno)++;
2396 }
2397 }
2398 break;
2399
2400 case EXPR_LIST:
2401 if (XEXP (x, 0))
2402 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2403 if (XEXP (x, 1))
2404 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2405 break;
2406
2407 case INSN_LIST:
2408 if (XEXP (x, 1))
2409 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2410 break;
2411
2412 case CLOBBER:
2413 {
2414 rtx reg = XEXP (x, 0);
2415 if (REG_P (reg)
2416 && REGNO (reg) >= min_regno)
2417 {
2418 REG_N_SETS (REGNO (reg))++;
2419 REG_N_REFS (REGNO (reg))++;
2420 }
2421 else if (MEM_P (reg))
2422 reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag, min_regno);
2423 }
2424 break;
2425
2426 case SET:
2427 /* Count a set of the destination if it is a register. */
2428 for (dest = SET_DEST (x);
2429 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2430 || GET_CODE (dest) == ZERO_EXTEND;
2431 dest = XEXP (dest, 0))
2432 ;
2433
2434 /* For a PARALLEL, record the number of things (less the usual one for a
2435 SET) that are set. */
2436 if (GET_CODE (dest) == PARALLEL)
2437 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2438
2439 if (REG_P (dest)
2440 && REGNO (dest) >= min_regno)
2441 {
2442 REG_N_SETS (REGNO (dest))++;
2443 REG_N_REFS (REGNO (dest))++;
2444 }
2445
2446 /* If this is setting a pseudo from another pseudo or the sum of a
2447 pseudo and a constant integer and the other pseudo is known to be
2448 a pointer, set the destination to be a pointer as well.
2449
2450 Likewise if it is setting the destination from an address or from a
2451 value equivalent to an address or to the sum of an address and
2452 something else.
2453
2454 But don't do any of this if the pseudo corresponds to a user
2455 variable since it should have already been set as a pointer based
2456 on the type. */
2457
2458 if (REG_P (SET_DEST (x))
2459 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2460 && REGNO (SET_DEST (x)) >= min_regno
2461 /* If the destination pseudo is set more than once, then other
2462 sets might not be to a pointer value (consider access to a
2463 union in two threads of control in the presence of global
2464 optimizations). So only set REG_POINTER on the destination
2465 pseudo if this is the only set of that pseudo. */
2466 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2467 && ! REG_USERVAR_P (SET_DEST (x))
2468 && ! REG_POINTER (SET_DEST (x))
2469 && ((REG_P (SET_SRC (x))
2470 && REG_POINTER (SET_SRC (x)))
2471 || ((GET_CODE (SET_SRC (x)) == PLUS
2472 || GET_CODE (SET_SRC (x)) == LO_SUM)
2473 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2474 && REG_P (XEXP (SET_SRC (x), 0))
2475 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2476 || GET_CODE (SET_SRC (x)) == CONST
2477 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2478 || GET_CODE (SET_SRC (x)) == LABEL_REF
2479 || (GET_CODE (SET_SRC (x)) == HIGH
2480 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2481 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2482 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2483 || ((GET_CODE (SET_SRC (x)) == PLUS
2484 || GET_CODE (SET_SRC (x)) == LO_SUM)
2485 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2486 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2487 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2488 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2489 && (GET_CODE (XEXP (note, 0)) == CONST
2490 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2491 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2492 REG_POINTER (SET_DEST (x)) = 1;
2493
2494 /* If this is setting a register from a register or from a simple
2495 conversion of a register, propagate REG_EXPR. */
2496 if (REG_P (dest))
2497 {
2498 rtx src = SET_SRC (x);
2499
2500 while (GET_CODE (src) == SIGN_EXTEND
2501 || GET_CODE (src) == ZERO_EXTEND
2502 || GET_CODE (src) == TRUNCATE
2503 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2504 src = XEXP (src, 0);
2505
2506 if (!REG_ATTRS (dest) && REG_P (src))
2507 REG_ATTRS (dest) = REG_ATTRS (src);
2508 if (!REG_ATTRS (dest) && MEM_P (src))
2509 set_reg_attrs_from_mem (dest, src);
2510 }
2511
2512 /* ... fall through ... */
2513
2514 default:
2515 {
2516 const char *fmt = GET_RTX_FORMAT (code);
2517 int i;
2518 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2519 {
2520 if (fmt[i] == 'e')
2521 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2522 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2523 {
2524 int j;
2525 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2526 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2527 }
2528 }
2529 }
2530 }
2531 }
2532 \f
2533 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2534 is also in C2. */
2535
2536 int
2537 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2538 {
2539 if (c1 == c2) return 1;
2540
2541 if (c2 == ALL_REGS)
2542 win:
2543 return 1;
2544 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2545 reg_class_contents[(int) c2],
2546 win);
2547 return 0;
2548 }
2549
2550 /* Return nonzero if there is a register that is in both C1 and C2. */
2551
2552 int
2553 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2554 {
2555 HARD_REG_SET c;
2556
2557 if (c1 == c2) return 1;
2558
2559 if (c1 == ALL_REGS || c2 == ALL_REGS)
2560 return 1;
2561
2562 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2563 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2564
2565 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2566 return 1;
2567
2568 lose:
2569 return 0;
2570 }
2571
2572 /* Release any memory allocated by register sets. */
2573
2574 void
2575 regset_release_memory (void)
2576 {
2577 bitmap_release_memory ();
2578 }
2579
2580 #ifdef CANNOT_CHANGE_MODE_CLASS
2581 /* Set bits in *USED which correspond to registers which can't change
2582 their mode from FROM to any mode in which REGNO was encountered. */
2583
2584 void
2585 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2586 unsigned int regno)
2587 {
2588 enum machine_mode to;
2589 int n, i;
2590 int start = regno * MAX_MACHINE_MODE;
2591
2592 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2593 if (n >= MAX_MACHINE_MODE + start)
2594 return;
2595 to = n - start;
2596 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2597 if (! TEST_HARD_REG_BIT (*used, i)
2598 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2599 SET_HARD_REG_BIT (*used, i);
2600 );
2601 }
2602
2603 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2604 mode. */
2605
2606 bool
2607 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2608 enum machine_mode from_mode)
2609 {
2610 enum machine_mode to_mode;
2611 int n;
2612 int start = regno * MAX_MACHINE_MODE;
2613
2614 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2615 if (n >= MAX_MACHINE_MODE + start)
2616 return 0;
2617 to_mode = n - start;
2618 if (CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode, class))
2619 return 1;
2620 );
2621 return 0;
2622 }
2623 #endif /* CANNOT_CHANGE_MODE_CLASS */
2624
2625 #include "gt-regclass.h"
This page took 0.152713 seconds and 5 git commands to generate.