]> gcc.gnu.org Git - gcc.git/blob - gcc/regclass.c
(store_expr): Call size_binop instead of doing the same thing with
[gcc.git] / gcc / regclass.c
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* This file contains two passes of the compiler: reg_scan and reg_class.
22 It also defines some tables of information about the hardware registers
23 and a function init_reg_sets to initialize the tables. */
24
25 #include "config.h"
26 #include "rtl.h"
27 #include "hard-reg-set.h"
28 #include "flags.h"
29 #include "basic-block.h"
30 #include "regs.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "reload.h"
34 #include "real.h"
35
36 #ifndef REGISTER_MOVE_COST
37 #define REGISTER_MOVE_COST(x, y) 2
38 #endif
39
40 #ifndef MEMORY_MOVE_COST
41 #define MEMORY_MOVE_COST(x) 4
42 #endif
43
44 /* If we have auto-increment or auto-decrement and we can have secondary
45 reloads, we are not allowed to use classes requiring secondary
46 reloads for psuedos auto-incremented since reload can't handle it. */
47
48 #ifdef AUTO_INC_DEC
49 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
50 #define FORBIDDEN_INC_DEC_CLASSES
51 #endif
52 #endif
53 \f
54 /* Register tables used by many passes. */
55
56 /* Indexed by hard register number, contains 1 for registers
57 that are fixed use (stack pointer, pc, frame pointer, etc.).
58 These are the registers that cannot be used to allocate
59 a pseudo reg whose life does not cross calls. */
60
61 char fixed_regs[FIRST_PSEUDO_REGISTER];
62
63 /* Same info as a HARD_REG_SET. */
64
65 HARD_REG_SET fixed_reg_set;
66
67 /* Data for initializing the above. */
68
69 static char initial_fixed_regs[] = FIXED_REGISTERS;
70
71 /* Indexed by hard register number, contains 1 for registers
72 that are fixed use or are clobbered by function calls.
73 These are the registers that cannot be used to allocate
74 a pseudo reg whose life crosses calls. */
75
76 char call_used_regs[FIRST_PSEUDO_REGISTER];
77
78 /* Same info as a HARD_REG_SET. */
79
80 HARD_REG_SET call_used_reg_set;
81
82 /* Data for initializing the above. */
83
84 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
85
86 /* Indexed by hard register number, contains 1 for registers that are
87 fixed use -- i.e. in fixed_regs -- or a function value return register
88 or STRUCT_VALUE_REGNUM or STATIC_CHAIN_REGNUM. These are the
89 registers that cannot hold quantities across calls even if we are
90 willing to save and restore them. */
91
92 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
93
94 /* The same info as a HARD_REG_SET. */
95
96 HARD_REG_SET call_fixed_reg_set;
97
98 /* Number of non-fixed registers. */
99
100 int n_non_fixed_regs;
101
102 /* Indexed by hard register number, contains 1 for registers
103 that are being used for global register decls.
104 These must be exempt from ordinary flow analysis
105 and are also considered fixed. */
106
107 char global_regs[FIRST_PSEUDO_REGISTER];
108
109 /* Table of register numbers in the order in which to try to use them. */
110 #ifdef REG_ALLOC_ORDER
111 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
112 #endif
113
114 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
115
116 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
117
118 /* The same information, but as an array of unsigned ints. We copy from
119 these unsigned ints to the table above. We do this so the tm.h files
120 do not have to be aware of the wordsize for machines with <= 64 regs. */
121
122 #define N_REG_INTS \
123 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
124
125 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
126 = REG_CLASS_CONTENTS;
127
128 /* For each reg class, number of regs it contains. */
129
130 int reg_class_size[N_REG_CLASSES];
131
132 /* For each reg class, table listing all the containing classes. */
133
134 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
135
136 /* For each reg class, table listing all the classes contained in it. */
137
138 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
139
140 /* For each pair of reg classes,
141 a largest reg class contained in their union. */
142
143 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
144
145 /* For each pair of reg classes,
146 the smallest reg class containing their union. */
147
148 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
149
150 /* Array containing all of the register names */
151
152 char *reg_names[] = REGISTER_NAMES;
153
154 /* Indexed by n, gives number of times (REG n) is set or clobbered.
155 This information remains valid for the rest of the compilation
156 of the current function; it is used to control register allocation.
157
158 This information applies to both hard registers and pseudo registers,
159 unlike much of the information above. */
160
161 short *reg_n_sets;
162
163 /* Maximum cost of moving from a register in one class to a register in
164 another class. Based on REGISTER_MOVE_COST. */
165
166 static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
167
168 /* Similar, but here we don't have to move if the first index is a subset
169 of the second so in that case the cost is zero. */
170
171 static int may_move_cost[N_REG_CLASSES][N_REG_CLASSES];
172
173 #ifdef FORBIDDEN_INC_DEC_CLASSES
174
175 /* These are the classes that regs which are auto-incremented or decremented
176 cannot be put in. */
177
178 static int forbidden_inc_dec_class[N_REG_CLASSES];
179
180 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
181 context. */
182
183 static char *in_inc_dec;
184
185 #endif /* FORBIDDEN_INC_DEC_CLASSES */
186
187 /* Function called only once to initialize the above data on reg usage.
188 Once this is done, various switches may override. */
189
190 void
191 init_reg_sets ()
192 {
193 register int i, j;
194
195 /* First copy the register information from the initial int form into
196 the regsets. */
197
198 for (i = 0; i < N_REG_CLASSES; i++)
199 {
200 CLEAR_HARD_REG_SET (reg_class_contents[i]);
201
202 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
203 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
204 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
205 SET_HARD_REG_BIT (reg_class_contents[i], j);
206 }
207
208 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
209 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
210 bzero (global_regs, sizeof global_regs);
211
212 /* Compute number of hard regs in each class. */
213
214 bzero (reg_class_size, sizeof reg_class_size);
215 for (i = 0; i < N_REG_CLASSES; i++)
216 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
217 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
218 reg_class_size[i]++;
219
220 /* Initialize the table of subunions.
221 reg_class_subunion[I][J] gets the largest-numbered reg-class
222 that is contained in the union of classes I and J. */
223
224 for (i = 0; i < N_REG_CLASSES; i++)
225 {
226 for (j = 0; j < N_REG_CLASSES; j++)
227 {
228 #ifdef HARD_REG_SET
229 register /* Declare it register if it's a scalar. */
230 #endif
231 HARD_REG_SET c;
232 register int k;
233
234 COPY_HARD_REG_SET (c, reg_class_contents[i]);
235 IOR_HARD_REG_SET (c, reg_class_contents[j]);
236 for (k = 0; k < N_REG_CLASSES; k++)
237 {
238 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
239 subclass1);
240 continue;
241
242 subclass1:
243 /* keep the largest subclass */ /* SPEE 900308 */
244 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
245 reg_class_contents[(int) reg_class_subunion[i][j]],
246 subclass2);
247 reg_class_subunion[i][j] = (enum reg_class) k;
248 subclass2:
249 ;
250 }
251 }
252 }
253
254 /* Initialize the table of superunions.
255 reg_class_superunion[I][J] gets the smallest-numbered reg-class
256 containing the union of classes I and J. */
257
258 for (i = 0; i < N_REG_CLASSES; i++)
259 {
260 for (j = 0; j < N_REG_CLASSES; j++)
261 {
262 #ifdef HARD_REG_SET
263 register /* Declare it register if it's a scalar. */
264 #endif
265 HARD_REG_SET c;
266 register int k;
267
268 COPY_HARD_REG_SET (c, reg_class_contents[i]);
269 IOR_HARD_REG_SET (c, reg_class_contents[j]);
270 for (k = 0; k < N_REG_CLASSES; k++)
271 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
272
273 superclass:
274 reg_class_superunion[i][j] = (enum reg_class) k;
275 }
276 }
277
278 /* Initialize the tables of subclasses and superclasses of each reg class.
279 First clear the whole table, then add the elements as they are found. */
280
281 for (i = 0; i < N_REG_CLASSES; i++)
282 {
283 for (j = 0; j < N_REG_CLASSES; j++)
284 {
285 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
286 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
287 }
288 }
289
290 for (i = 0; i < N_REG_CLASSES; i++)
291 {
292 if (i == (int) NO_REGS)
293 continue;
294
295 for (j = i + 1; j < N_REG_CLASSES; j++)
296 {
297 enum reg_class *p;
298
299 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
300 subclass);
301 continue;
302 subclass:
303 /* Reg class I is a subclass of J.
304 Add J to the table of superclasses of I. */
305 p = &reg_class_superclasses[i][0];
306 while (*p != LIM_REG_CLASSES) p++;
307 *p = (enum reg_class) j;
308 /* Add I to the table of superclasses of J. */
309 p = &reg_class_subclasses[j][0];
310 while (*p != LIM_REG_CLASSES) p++;
311 *p = (enum reg_class) i;
312 }
313 }
314
315 /* Initialize the move cost table. Find every subset of each class
316 and take the maximum cost of moving any subset to any other. */
317
318 for (i = 0; i < N_REG_CLASSES; i++)
319 for (j = 0; j < N_REG_CLASSES; j++)
320 {
321 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
322 enum reg_class *p1, *p2;
323
324 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
325 if (*p2 != i)
326 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
327
328 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
329 {
330 if (*p1 != j)
331 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
332
333 for (p2 = &reg_class_subclasses[j][0];
334 *p2 != LIM_REG_CLASSES; p2++)
335 if (*p1 != *p2)
336 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
337 }
338
339 move_cost[i][j] = cost;
340
341 if (reg_class_subset_p (i, j))
342 cost = 0;
343
344 may_move_cost[i][j] = cost;
345 }
346 }
347
348 /* After switches have been processed, which perhaps alter
349 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
350
351 void
352 init_reg_sets_1 ()
353 {
354 register int i;
355
356 /* This macro allows the fixed or call-used registers
357 to depend on target flags. */
358
359 #ifdef CONDITIONAL_REGISTER_USAGE
360 CONDITIONAL_REGISTER_USAGE;
361 #endif
362
363 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
364 if (global_regs[i])
365 {
366 if (call_used_regs[i] && ! fixed_regs[i])
367 warning ("call-clobbered register used for global register variable");
368 fixed_regs[i] = 1;
369 /* Prevent saving/restoring of this reg. */
370 call_used_regs[i] = 1;
371 }
372
373 /* Initialize "constant" tables. */
374
375 CLEAR_HARD_REG_SET (fixed_reg_set);
376 CLEAR_HARD_REG_SET (call_used_reg_set);
377 CLEAR_HARD_REG_SET (call_fixed_reg_set);
378
379 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
380 #ifdef STRUCT_VALUE_REGNUM
381 call_fixed_regs[STRUCT_VALUE_REGNUM] = 1;
382 #endif
383 #ifdef STATIC_CHAIN_REGNUM
384 call_fixed_regs[STATIC_CHAIN_REGNUM] = 1;
385 #endif
386
387 n_non_fixed_regs = 0;
388
389 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
390 {
391 if (FUNCTION_VALUE_REGNO_P (i))
392 call_fixed_regs[i] = 1;
393 if (fixed_regs[i])
394 SET_HARD_REG_BIT (fixed_reg_set, i);
395 else
396 n_non_fixed_regs++;
397
398 if (call_used_regs[i])
399 SET_HARD_REG_BIT (call_used_reg_set, i);
400 if (call_fixed_regs[i])
401 SET_HARD_REG_BIT (call_fixed_reg_set, i);
402 }
403 }
404
405 /* Specify the usage characteristics of the register named NAME.
406 It should be a fixed register if FIXED and a
407 call-used register if CALL_USED. */
408
409 void
410 fix_register (name, fixed, call_used)
411 char *name;
412 int fixed, call_used;
413 {
414 int i;
415
416 /* Decode the name and update the primary form of
417 the register info. */
418
419 if ((i = decode_reg_name (name)) >= 0)
420 {
421 fixed_regs[i] = fixed;
422 call_used_regs[i] = call_used;
423 }
424 else
425 {
426 warning ("unknown register name: %s", name);
427 }
428 }
429 \f
430 /* Now the data and code for the `regclass' pass, which happens
431 just before local-alloc. */
432
433 /* The `costs' struct records the cost of using a hard register of each class
434 and of using memory for each pseudo. We use this data to set up
435 register class preferences. */
436
437 struct costs
438 {
439 int cost[N_REG_CLASSES];
440 int mem_cost;
441 };
442
443 /* Record the cost of each class for each pseudo. */
444
445 static struct costs *costs;
446
447 /* Record the same data by operand number, accumulated for each alternative
448 in an insn. The contribution to a pseudo is that of the minimum-cost
449 alternative. */
450
451 static struct costs op_costs[MAX_RECOG_OPERANDS];
452
453 /* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
454 This is available after `regclass' is run. */
455
456 static char *prefclass;
457
458 /* altclass[R] is a register class that we should use for allocating
459 pseudo number R if no register in the preferred class is available.
460 If no register in this class is available, memory is preferred.
461
462 It might appear to be more general to have a bitmask of classes here,
463 but since it is recommended that there be a class corresponding to the
464 union of most major pair of classes, that generality is not required.
465
466 This is available after `regclass' is run. */
467
468 static char *altclass;
469
470 /* Record the depth of loops that we are in. */
471
472 static int loop_depth;
473
474 /* Account for the fact that insns within a loop are executed very commonly,
475 but don't keep doing this as loops go too deep. */
476
477 static int loop_cost;
478
479 static int copy_cost ();
480 static void record_reg_classes ();
481 static void record_address_regs ();
482
483
484 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
485 This function is sometimes called before the info has been computed.
486 When that happens, just return GENERAL_REGS, which is innocuous. */
487
488 enum reg_class
489 reg_preferred_class (regno)
490 int regno;
491 {
492 if (prefclass == 0)
493 return GENERAL_REGS;
494 return (enum reg_class) prefclass[regno];
495 }
496
497 enum reg_class
498 reg_alternate_class (regno)
499 {
500 if (prefclass == 0)
501 return ALL_REGS;
502
503 return (enum reg_class) altclass[regno];
504 }
505
506 /* This prevents dump_flow_info from losing if called
507 before regclass is run. */
508
509 void
510 regclass_init ()
511 {
512 prefclass = 0;
513 }
514 \f
515 /* This is a pass of the compiler that scans all instructions
516 and calculates the preferred class for each pseudo-register.
517 This information can be accessed later by calling `reg_preferred_class'.
518 This pass comes just before local register allocation. */
519
520 void
521 regclass (f, nregs)
522 rtx f;
523 int nregs;
524 {
525 #ifdef REGISTER_CONSTRAINTS
526 register rtx insn;
527 register int i, j;
528 struct costs init_cost;
529 rtx set;
530 int pass;
531
532 init_recog ();
533
534 costs = (struct costs *) alloca (nregs * sizeof (struct costs));
535
536 #ifdef FORBIDDEN_INC_DEC_CLASSES
537
538 in_inc_dec = (char *) alloca (nregs);
539
540 /* Initialize information about which register classes can be used for
541 pseudos that are auto-incremented or auto-decremented. It would
542 seem better to put this in init_reg_sets, but we need to be able
543 to allocate rtx, which we can't do that early. */
544
545 for (i = 0; i < N_REG_CLASSES; i++)
546 {
547 rtx r = gen_rtx (REG, VOIDmode, 0);
548 enum machine_mode m;
549
550 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
551 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
552 {
553 REGNO (r) = j;
554
555 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
556 m = (enum machine_mode) ((int) m) + 1)
557 if (HARD_REGNO_MODE_OK (j, m))
558 {
559 PUT_MODE (r, m);
560 if (0
561 #ifdef SECONDARY_INPUT_RELOAD_CLASS
562 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
563 != NO_REGS)
564 #endif
565 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
566 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
567 != NO_REGS)
568 #endif
569 )
570 forbidden_inc_dec_class[i] = 1;
571 }
572 }
573 }
574 #endif /* FORBIDDEN_INC_DEC_CLASSES */
575
576 init_cost.mem_cost = 10000;
577 for (i = 0; i < N_REG_CLASSES; i++)
578 init_cost.cost[i] = 10000;
579
580 /* Normally we scan the insns once and determine the best class to use for
581 each register. However, if -fexpensive_optimizations are on, we do so
582 twice, the second time using the tentative best classes to guide the
583 selection. */
584
585 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
586 {
587 /* Zero out our accumulation of the cost of each class for each reg. */
588
589 bzero (costs, nregs * sizeof (struct costs));
590
591 #ifdef FORBIDDEN_INC_DEC_CLASSES
592 bzero (in_inc_dec, nregs);
593 #endif
594
595 loop_depth = 0, loop_cost = 1;
596
597 /* Scan the instructions and record each time it would
598 save code to put a certain register in a certain class. */
599
600 for (insn = f; insn; insn = NEXT_INSN (insn))
601 {
602 char *constraints[MAX_RECOG_OPERANDS];
603 enum machine_mode modes[MAX_RECOG_OPERANDS];
604 int nalternatives;
605 int noperands;
606
607 /* Show that an insn inside a loop is likely to be executed three
608 times more than insns outside a loop. This is much more aggressive
609 than the assumptions made elsewhere and is being tried as an
610 experiment. */
611
612 if (GET_CODE (insn) == NOTE
613 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
614 loop_depth++, loop_cost = 1 << (2 * MIN (loop_depth, 5));
615 else if (GET_CODE (insn) == NOTE
616 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
617 loop_depth--, loop_cost = 1 << (2 * MIN (loop_depth, 5));
618
619 else if ((GET_CODE (insn) == INSN
620 && GET_CODE (PATTERN (insn)) != USE
621 && GET_CODE (PATTERN (insn)) != CLOBBER
622 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
623 || (GET_CODE (insn) == JUMP_INSN
624 && GET_CODE (PATTERN (insn)) != ADDR_VEC
625 && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
626 || GET_CODE (insn) == CALL_INSN)
627 {
628 if (GET_CODE (insn) == INSN
629 && (noperands = asm_noperands (PATTERN (insn))) >= 0)
630 {
631 decode_asm_operands (PATTERN (insn), recog_operand, NULL_PTR,
632 constraints, modes);
633 nalternatives = (noperands == 0 ? 0
634 : n_occurrences (',', constraints[0]) + 1);
635 }
636 else
637 {
638 int insn_code_number = recog_memoized (insn);
639 rtx note;
640
641 set = single_set (insn);
642 insn_extract (insn);
643
644 nalternatives = insn_n_alternatives[insn_code_number];
645 noperands = insn_n_operands[insn_code_number];
646
647 /* If this insn loads a parameter from its stack slot, then
648 it represents a savings, rather than a cost, if the
649 parameter is stored in memory. Record this fact. */
650
651 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
652 && GET_CODE (SET_SRC (set)) == MEM
653 && (note = find_reg_note (insn, REG_EQUIV,
654 NULL_RTX)) != 0
655 && GET_CODE (XEXP (note, 0)) == MEM)
656 {
657 costs[REGNO (SET_DEST (set))].mem_cost
658 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)))
659 * loop_cost);
660 record_address_regs (XEXP (SET_SRC (set), 0),
661 BASE_REG_CLASS, loop_cost * 2);
662 continue;
663 }
664
665 /* Improve handling of two-address insns such as
666 (set X (ashift CONST Y)) where CONST must be made to
667 match X. Change it into two insns: (set X CONST)
668 (set X (ashift X Y)). If we left this for reloading, it
669 would probably get three insns because X and Y might go
670 in the same place. This prevents X and Y from receiving
671 the same hard reg.
672
673 We can only do this if the modes of operands 0 and 1
674 (which might not be the same) are tieable and we only need
675 do this during our first pass. */
676
677 if (pass == 0 && optimize
678 && noperands >= 3
679 && insn_operand_constraint[insn_code_number][1][0] == '0'
680 && insn_operand_constraint[insn_code_number][1][1] == 0
681 && CONSTANT_P (recog_operand[1])
682 && ! rtx_equal_p (recog_operand[0], recog_operand[1])
683 && ! rtx_equal_p (recog_operand[0], recog_operand[2])
684 && GET_CODE (recog_operand[0]) == REG
685 && MODES_TIEABLE_P (GET_MODE (recog_operand[0]),
686 insn_operand_mode[insn_code_number][1]))
687 {
688 rtx previnsn = prev_real_insn (insn);
689 rtx dest
690 = gen_lowpart (insn_operand_mode[insn_code_number][1],
691 recog_operand[0]);
692 rtx newinsn
693 = emit_insn_before (gen_move_insn (dest,
694 recog_operand[1]),
695 insn);
696
697 /* If this insn was the start of a basic block,
698 include the new insn in that block.
699 We need not check for code_label here;
700 while a basic block can start with a code_label,
701 INSN could not be at the beginning of that block. */
702 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
703 {
704 int b;
705 for (b = 0; b < n_basic_blocks; b++)
706 if (insn == basic_block_head[b])
707 basic_block_head[b] = newinsn;
708 }
709
710 /* This makes one more setting of new insns's dest. */
711 reg_n_sets[REGNO (recog_operand[0])]++;
712
713 *recog_operand_loc[1] = recog_operand[0];
714 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
715 if (recog_dup_num[i] == 1)
716 *recog_dup_loc[i] = recog_operand[0];
717
718 insn = PREV_INSN (newinsn);
719 continue;
720 }
721
722 for (i = 0; i < noperands; i++)
723 {
724 constraints[i]
725 = insn_operand_constraint[insn_code_number][i];
726 modes[i] = insn_operand_mode[insn_code_number][i];
727 }
728 }
729
730 /* If we get here, we are set up to record the costs of all the
731 operands for this insn. Start by initializing the costs.
732 Then handle any address registers. Finally record the desired
733 classes for any pseudos, doing it twice if some pair of
734 operands are commutative. */
735
736 for (i = 0; i < noperands; i++)
737 {
738 op_costs[i] = init_cost;
739
740 if (GET_CODE (recog_operand[i]) == SUBREG)
741 recog_operand[i] = SUBREG_REG (recog_operand[i]);
742
743 if (GET_CODE (recog_operand[i]) == MEM)
744 record_address_regs (XEXP (recog_operand[i], 0),
745 BASE_REG_CLASS, loop_cost * 2);
746 else if (constraints[i][0] == 'p')
747 record_address_regs (recog_operand[i],
748 BASE_REG_CLASS, loop_cost * 2);
749 }
750
751 /* Check for commutative in a separate loop so everything will
752 have been initialized. Don't bother doing anything if the
753 second operand is a constant since that is the case
754 for which the constraints should have been written. */
755
756 for (i = 0; i < noperands - 1; i++)
757 if (constraints[i][0] == '%'
758 && ! CONSTANT_P (recog_operand[i+1]))
759 {
760 char *xconstraints[MAX_RECOG_OPERANDS];
761 int j;
762
763 /* Handle commutative operands by swapping the constraints.
764 We assume the modes are the same. */
765
766 for (j = 0; j < noperands; j++)
767 xconstraints[j] = constraints[j];
768
769 xconstraints[i] = constraints[i+1];
770 xconstraints[i+1] = constraints[i];
771 record_reg_classes (nalternatives, noperands,
772 recog_operand, modes, xconstraints,
773 insn);
774 }
775
776 record_reg_classes (nalternatives, noperands, recog_operand,
777 modes, constraints, insn);
778
779 /* Now add the cost for each operand to the total costs for
780 its register. */
781
782 for (i = 0; i < noperands; i++)
783 if (GET_CODE (recog_operand[i]) == REG
784 && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
785 {
786 int regno = REGNO (recog_operand[i]);
787 struct costs *p = &costs[regno], *q = &op_costs[i];
788
789 p->mem_cost += q->mem_cost * loop_cost;
790 for (j = 0; j < N_REG_CLASSES; j++)
791 p->cost[j] += q->cost[j] * loop_cost;
792 }
793 }
794 }
795
796 /* Now for each register look at how desirable each class is
797 and find which class is preferred. Store that in
798 `prefclass[REGNO]'. Record in `altclass[REGNO]' the largest register
799 class any of whose registers is better than memory. */
800
801 if (pass == 0)
802 {
803 prefclass = (char *) oballoc (nregs);
804 altclass = (char *) oballoc (nregs);
805 }
806
807 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
808 {
809 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
810 enum reg_class best = ALL_REGS, alt = NO_REGS;
811 /* This is an enum reg_class, but we call it an int
812 to save lots of casts. */
813 register int class;
814 register struct costs *p = &costs[i];
815
816 for (class = (int) ALL_REGS - 1; class > 0; class--)
817 {
818 /* Ignore classes that are too small for this operand or
819 invalid for a operand that was auto-incremented. */
820 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
821 > reg_class_size[class]
822 #ifdef FORBIDDEN_INC_DEC_CLASSES
823 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
824 #endif
825 )
826 ;
827 else if (p->cost[class] < best_cost)
828 {
829 best_cost = p->cost[class];
830 best = (enum reg_class) class;
831 }
832 else if (p->cost[class] == best_cost)
833 best = reg_class_subunion[(int)best][class];
834 }
835
836 /* Record the alternate register class; i.e., a class for which
837 every register in it is better than using memory. If adding a
838 class would make a smaller class (i.e., no union of just those
839 classes exists), skip that class. The major unions of classes
840 should be provided as a register class. Don't do this if we
841 will be doing it again later. */
842
843 if (pass == 1 || ! flag_expensive_optimizations)
844 for (class = 0; class < N_REG_CLASSES; class++)
845 if (p->cost[class] < p->mem_cost
846 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
847 > reg_class_size[(int) alt])
848 #ifdef FORBIDDEN_INC_DEC_CLASSES
849 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
850 #endif
851 )
852 alt = reg_class_subunion[(int) alt][class];
853
854 /* If we don't add any classes, nothing to try. */
855 if (alt == best)
856 alt = (int) NO_REGS;
857
858 /* We cast to (int) because (char) hits bugs in some compilers. */
859 prefclass[i] = (int) best;
860 altclass[i] = (int) alt;
861 }
862 }
863 #endif /* REGISTER_CONSTRAINTS */
864 }
865 \f
866 #ifdef REGISTER_CONSTRAINTS
867
868 /* Record the cost of using memory or registers of various classes for
869 the operands in INSN.
870
871 N_ALTS is the number of alternatives.
872
873 N_OPS is the number of operands.
874
875 OPS is an array of the operands.
876
877 MODES are the modes of the operands, in case any are VOIDmode.
878
879 CONSTRAINTS are the constraints to use for the operands. This array
880 is modified by this procedure.
881
882 This procedure works alternative by alternative. For each alternative
883 we assume that we will be able to allocate all pseudos to their ideal
884 register class and calculate the cost of using that alternative. Then
885 we compute for each operand that is a pseudo-register, the cost of
886 having the pseudo allocated to each register class and using it in that
887 alternative. To this cost is added the cost of the alternative.
888
889 The cost of each class for this insn is its lowest cost among all the
890 alternatives. */
891
892 static void
893 record_reg_classes (n_alts, n_ops, ops, modes, constraints, insn)
894 int n_alts;
895 int n_ops;
896 rtx *ops;
897 enum machine_mode *modes;
898 char **constraints;
899 rtx insn;
900 {
901 int alt;
902 enum op_type {OP_READ, OP_WRITE, OP_READ_WRITE} op_types[MAX_RECOG_OPERANDS];
903 int i, j;
904
905 /* By default, each operand is an input operand. */
906
907 for (i = 0; i < n_ops; i++)
908 op_types[i] = OP_READ;
909
910 /* Process each alternative, each time minimizing an operand's cost with
911 the cost for each operand in that alternative. */
912
913 for (alt = 0; alt < n_alts; alt++)
914 {
915 struct costs this_op_costs[MAX_RECOG_OPERANDS];
916 int alt_fail = 0;
917 int alt_cost = 0;
918 enum reg_class classes[MAX_RECOG_OPERANDS];
919 int class;
920
921 for (i = 0; i < n_ops; i++)
922 {
923 char *p = constraints[i];
924 rtx op = ops[i];
925 enum machine_mode mode = modes[i];
926 int allows_mem = 0;
927 int win = 0;
928 char c;
929
930 /* If this operand has no constraints at all, we can conclude
931 nothing about it since anything is valid. */
932
933 if (*p == 0)
934 {
935 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
936 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
937
938 continue;
939 }
940
941 if (*p == '%')
942 p++;
943
944 /* If this alternative is only relevant when this operand
945 matches a previous operand, we do different things depending
946 on whether this operand is a pseudo-reg or not. */
947
948 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
949 {
950 j = p[0] - '0';
951 classes[i] = classes[j];
952
953 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
954 {
955 /* If this matches the other operand, we have no added
956 cost. */
957 if (rtx_equal_p (ops[j], op))
958 ;
959
960 /* If we can put the other operand into a register, add to
961 the cost of this alternative the cost to copy this
962 operand to the register used for the other operand. */
963
964 if (classes[j] != NO_REGS)
965 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
966 }
967 else if (GET_CODE (ops[j]) != REG
968 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
969 {
970 /* This op is a pseudo but the one it matches is not. */
971
972 /* If we can't put the other operand into a register, this
973 alternative can't be used. */
974
975 if (classes[j] == NO_REGS)
976 alt_fail = 1;
977
978 /* Otherwise, add to the cost of this alternative the cost
979 to copy the other operand to the register used for this
980 operand. */
981
982 else
983 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
984 }
985 else
986 {
987 /* The costs of this operand are the same as that of the
988 other operand. However, if we cannot tie them, this
989 alternative needs to do a copy, which is one
990 instruction. */
991
992 this_op_costs[i] = this_op_costs[j];
993 if (! find_reg_note (insn, REG_DEAD, op))
994 alt_cost += 2;
995
996 /* This is in place of ordinary cost computation
997 for this operand. */
998 continue;
999 }
1000 }
1001
1002 /* Scan all the constraint letters. See if the operand matches
1003 any of the constraints. Collect the valid register classes
1004 and see if this operand accepts memory. */
1005
1006 classes[i] = NO_REGS;
1007 while (*p && (c = *p++) != ',')
1008 switch (c)
1009 {
1010 case '=':
1011 op_types[i] = OP_WRITE;
1012 break;
1013
1014 case '+':
1015 op_types[i] = OP_READ_WRITE;
1016 break;
1017
1018 case '*':
1019 /* Ignore the next letter for this pass. */
1020 p++;
1021 break;
1022
1023 case '%':
1024 case '?': case '!': case '#':
1025 case '&':
1026 case '0': case '1': case '2': case '3': case '4':
1027 case 'p':
1028 break;
1029
1030 case 'm': case 'o': case 'V':
1031 /* It doesn't seem worth distinguishing between offsettable
1032 and non-offsettable addresses here. */
1033 allows_mem = 1;
1034 if (GET_CODE (op) == MEM)
1035 win = 1;
1036 break;
1037
1038 case '<':
1039 if (GET_CODE (op) == MEM
1040 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1041 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1042 win = 1;
1043 break;
1044
1045 case '>':
1046 if (GET_CODE (op) == MEM
1047 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1048 || GET_CODE (XEXP (op, 0)) == POST_INC))
1049 win = 1;
1050 break;
1051
1052 case 'E':
1053 /* Match any floating double constant, but only if
1054 we can examine the bits of it reliably. */
1055 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1056 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1057 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1058 break;
1059 if (GET_CODE (op) == CONST_DOUBLE)
1060 win = 1;
1061 break;
1062
1063 case 'F':
1064 if (GET_CODE (op) == CONST_DOUBLE)
1065 win = 1;
1066 break;
1067
1068 case 'G':
1069 case 'H':
1070 if (GET_CODE (op) == CONST_DOUBLE
1071 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1072 win = 1;
1073 break;
1074
1075 case 's':
1076 if (GET_CODE (op) == CONST_INT
1077 || (GET_CODE (op) == CONST_DOUBLE
1078 && GET_MODE (op) == VOIDmode))
1079 break;
1080 case 'i':
1081 if (CONSTANT_P (op)
1082 #ifdef LEGITIMATE_PIC_OPERAND_P
1083 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1084 #endif
1085 )
1086 win = 1;
1087 break;
1088
1089 case 'n':
1090 if (GET_CODE (op) == CONST_INT
1091 || (GET_CODE (op) == CONST_DOUBLE
1092 && GET_MODE (op) == VOIDmode))
1093 win = 1;
1094 break;
1095
1096 case 'I':
1097 case 'J':
1098 case 'K':
1099 case 'L':
1100 case 'M':
1101 case 'N':
1102 case 'O':
1103 case 'P':
1104 if (GET_CODE (op) == CONST_INT
1105 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1106 win = 1;
1107 break;
1108
1109 case 'X':
1110 win = 1;
1111 break;
1112
1113 #ifdef EXTRA_CONSTRAINT
1114 case 'Q':
1115 case 'R':
1116 case 'S':
1117 case 'T':
1118 case 'U':
1119 if (EXTRA_CONSTRAINT (op, c))
1120 win = 1;
1121 break;
1122 #endif
1123
1124 case 'g':
1125 if (GET_CODE (op) == MEM
1126 || (CONSTANT_P (op)
1127 #ifdef LEGITIMATE_PIC_OPERAND_P
1128 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1129 #endif
1130 ))
1131 win = 1;
1132 allows_mem = 1;
1133 case 'r':
1134 classes[i]
1135 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1136 break;
1137
1138 default:
1139 classes[i]
1140 = reg_class_subunion[(int) classes[i]]
1141 [(int) REG_CLASS_FROM_LETTER (c)];
1142 }
1143
1144 constraints[i] = p;
1145
1146 /* How we account for this operand now depends on whether it is a
1147 pseudo register or not. If it is, we first check if any
1148 register classes are valid. If not, we ignore this alternative,
1149 since we want to assume that all pseudos get allocated for
1150 register preferencing. If some register class is valid, compute
1151 the costs of moving the pseudo into that class. */
1152
1153 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1154 {
1155 if (classes[i] == NO_REGS)
1156 alt_fail = 1;
1157 else
1158 {
1159 struct costs *pp = &this_op_costs[i];
1160
1161 for (class = 0; class < N_REG_CLASSES; class++)
1162 pp->cost[class] = may_move_cost[class][(int) classes[i]];
1163
1164 /* If the alternative actually allows memory, make things
1165 a bit cheaper since we won't need an extra insn to
1166 load it. */
1167
1168 pp->mem_cost = MEMORY_MOVE_COST (mode) - allows_mem;
1169
1170 /* If we have assigned a class to this register in our
1171 first pass, add a cost to this alternative corresponding
1172 to what we would add if this register were not in the
1173 appropriate class. */
1174
1175 if (prefclass)
1176 alt_cost
1177 += may_move_cost[prefclass[REGNO (op)]][(int) classes[i]];
1178 }
1179 }
1180
1181 /* Otherwise, if this alternative wins, either because we
1182 have already determined that or if we have a hard register of
1183 the proper class, there is no cost for this alternative. */
1184
1185 else if (win
1186 || (GET_CODE (op) == REG
1187 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1188 ;
1189
1190 /* If registers are valid, the cost of this alternative includes
1191 copying the object to and/or from a register. */
1192
1193 else if (classes[i] != NO_REGS)
1194 {
1195 if (op_types[i] != OP_WRITE)
1196 alt_cost += copy_cost (op, mode, classes[i], 1);
1197
1198 if (op_types[i] != OP_READ)
1199 alt_cost += copy_cost (op, mode, classes[i], 0);
1200 }
1201
1202 /* The only other way this alternative can be used is if this is a
1203 constant that could be placed into memory. */
1204
1205 else if (CONSTANT_P (op) && allows_mem)
1206 alt_cost += MEMORY_MOVE_COST (mode);
1207 else
1208 alt_fail = 1;
1209 }
1210
1211 if (alt_fail)
1212 continue;
1213
1214 /* Finally, update the costs with the information we've calculated
1215 about this alternative. */
1216
1217 for (i = 0; i < n_ops; i++)
1218 if (GET_CODE (ops[i]) == REG
1219 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1220 {
1221 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1222 int scale = 1 + (op_types[i] == OP_READ_WRITE);
1223
1224 pp->mem_cost = MIN (pp->mem_cost,
1225 (qq->mem_cost + alt_cost) * scale);
1226
1227 for (class = 0; class < N_REG_CLASSES; class++)
1228 pp->cost[class] = MIN (pp->cost[class],
1229 (qq->cost[class] + alt_cost) * scale);
1230 }
1231 }
1232 }
1233 \f
1234 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1235 TO_P is zero) a register of class CLASS in mode MODE.
1236
1237 X must not be a pseudo. */
1238
1239 static int
1240 copy_cost (x, mode, class, to_p)
1241 rtx x;
1242 enum machine_mode mode;
1243 enum reg_class class;
1244 int to_p;
1245 {
1246 enum reg_class secondary_class = NO_REGS;
1247
1248 /* If X is a SCRATCH, there is actually nothing to move since we are
1249 assuming optimal allocation. */
1250
1251 if (GET_CODE (x) == SCRATCH)
1252 return 0;
1253
1254 /* Get the class we will actually use for a reload. */
1255 class = PREFERRED_RELOAD_CLASS (x, class);
1256
1257 #ifdef HAVE_SECONDARY_RELOADS
1258 /* If we need a secondary reload (we assume here that we are using
1259 the secondary reload as an intermediate, not a scratch register), the
1260 cost is that to load the input into the intermediate register, then
1261 to copy them. We use a special value of TO_P to avoid recursion. */
1262
1263 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1264 if (to_p == 1)
1265 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1266 #endif
1267
1268 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1269 if (! to_p)
1270 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1271 #endif
1272
1273 if (secondary_class != NO_REGS)
1274 return (move_cost[(int) secondary_class][(int) class]
1275 + copy_cost (x, mode, secondary_class, 2));
1276 #endif /* HAVE_SECONDARY_RELOADS */
1277
1278 /* For memory, use the memory move cost, for (hard) registers, use the
1279 cost to move between the register classes, and use 2 for everything
1280 else (constants). */
1281
1282 if (GET_CODE (x) == MEM || class == NO_REGS)
1283 return MEMORY_MOVE_COST (mode);
1284
1285 else if (GET_CODE (x) == REG)
1286 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1287
1288 else
1289 /* If this is a constant, we may eventually want to call rtx_cost here. */
1290 return 2;
1291 }
1292 \f
1293 /* Record the pseudo registers we must reload into hard registers
1294 in a subexpression of a memory address, X.
1295
1296 CLASS is the class that the register needs to be in and is either
1297 BASE_REG_CLASS or INDEX_REG_CLASS.
1298
1299 SCALE is twice the amount to multiply the cost by (it is twice so we
1300 can represent half-cost adjustments). */
1301
1302 static void
1303 record_address_regs (x, class, scale)
1304 rtx x;
1305 enum reg_class class;
1306 int scale;
1307 {
1308 register enum rtx_code code = GET_CODE (x);
1309
1310 switch (code)
1311 {
1312 case CONST_INT:
1313 case CONST:
1314 case CC0:
1315 case PC:
1316 case SYMBOL_REF:
1317 case LABEL_REF:
1318 return;
1319
1320 case PLUS:
1321 /* When we have an address that is a sum,
1322 we must determine whether registers are "base" or "index" regs.
1323 If there is a sum of two registers, we must choose one to be
1324 the "base". Luckily, we can use the REGNO_POINTER_FLAG
1325 to make a good choice most of the time. We only need to do this
1326 on machines that can have two registers in an address and where
1327 the base and index register classes are different.
1328
1329 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1330 that seems bogus since it should only be set when we are sure
1331 the register is being used as a pointer. */
1332
1333 {
1334 rtx arg0 = XEXP (x, 0);
1335 rtx arg1 = XEXP (x, 1);
1336 register enum rtx_code code0 = GET_CODE (arg0);
1337 register enum rtx_code code1 = GET_CODE (arg1);
1338
1339 /* Look inside subregs. */
1340 if (code0 == SUBREG)
1341 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1342 if (code1 == SUBREG)
1343 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1344
1345 /* If this machine only allows one register per address, it must
1346 be in the first operand. */
1347
1348 if (MAX_REGS_PER_ADDRESS == 1)
1349 record_address_regs (arg0, class, scale);
1350
1351 /* If index and base registers are the same on this machine, just
1352 record registers in any non-constant operands. We assume here,
1353 as well as in the tests below, that all addresses are in
1354 canonical form. */
1355
1356 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1357 {
1358 record_address_regs (arg0, class, scale);
1359 if (! CONSTANT_P (arg1))
1360 record_address_regs (arg1, class, scale);
1361 }
1362
1363 /* If the second operand is a constant integer, it doesn't change
1364 what class the first operand must be. */
1365
1366 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1367 record_address_regs (arg0, class, scale);
1368
1369 /* If the second operand is a symbolic constant, the first operand
1370 must be an index register. */
1371
1372 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1373 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1374
1375 /* If this the sum of two registers where the first is known to be a
1376 pointer, it must be a base register with the second an index. */
1377
1378 else if (code0 == REG && code1 == REG
1379 && REGNO_POINTER_FLAG (REGNO (arg0)))
1380 {
1381 record_address_regs (arg0, BASE_REG_CLASS, scale);
1382 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1383 }
1384
1385 /* If this is the sum of two registers and neither is known to
1386 be a pointer, count equal chances that each might be a base
1387 or index register. This case should be rare. */
1388
1389 else if (code0 == REG && code1 == REG
1390 && ! REGNO_POINTER_FLAG (REGNO (arg0))
1391 && ! REGNO_POINTER_FLAG (REGNO (arg1)))
1392 {
1393 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1394 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1395 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1396 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1397 }
1398
1399 /* In all other cases, the first operand is an index and the
1400 second is the base. */
1401
1402 else
1403 {
1404 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1405 record_address_regs (arg1, BASE_REG_CLASS, scale);
1406 }
1407 }
1408 break;
1409
1410 case POST_INC:
1411 case PRE_INC:
1412 case POST_DEC:
1413 case PRE_DEC:
1414 /* Double the importance of a pseudo register that is incremented
1415 or decremented, since it would take two extra insns
1416 if it ends up in the wrong place. If the operand is a pseudo,
1417 show it is being used in an INC_DEC context. */
1418
1419 #ifdef FORBIDDEN_INC_DEC_CLASSES
1420 if (GET_CODE (XEXP (x, 0)) == REG
1421 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1422 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1423 #endif
1424
1425 record_address_regs (XEXP (x, 0), class, 2 * scale);
1426 break;
1427
1428 case REG:
1429 {
1430 register struct costs *pp = &costs[REGNO (x)];
1431 register int i;
1432
1433 pp->mem_cost += (MEMORY_MOVE_COST (Pmode) * scale) / 2;
1434
1435 for (i = 0; i < N_REG_CLASSES; i++)
1436 pp->cost[i] += (may_move_cost[i][(int) class] * scale) / 2;
1437 }
1438 break;
1439
1440 default:
1441 {
1442 register char *fmt = GET_RTX_FORMAT (code);
1443 register int i;
1444 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1445 if (fmt[i] == 'e')
1446 record_address_regs (XEXP (x, i), class, scale);
1447 }
1448 }
1449 }
1450 #endif /* REGISTER_CONSTRAINTS */
1451 \f
1452 /* This is the `regscan' pass of the compiler, run just before cse
1453 and again just before loop.
1454
1455 It finds the first and last use of each pseudo-register
1456 and records them in the vectors regno_first_uid, regno_last_uid
1457 and counts the number of sets in the vector reg_n_sets.
1458
1459 REPEAT is nonzero the second time this is called. */
1460
1461 /* Indexed by pseudo register number, gives uid of first insn using the reg
1462 (as of the time reg_scan is called). */
1463
1464 int *regno_first_uid;
1465
1466 /* Indexed by pseudo register number, gives uid of last insn using the reg
1467 (as of the time reg_scan is called). */
1468
1469 int *regno_last_uid;
1470
1471 /* Record the number of registers we used when we allocated the above two
1472 tables. If we are called again with more than this, we must re-allocate
1473 the tables. */
1474
1475 static int highest_regno_in_uid_map;
1476
1477 /* Maximum number of parallel sets and clobbers in any insn in this fn.
1478 Always at least 3, since the combiner could put that many togetherm
1479 and we want this to remain correct for all the remaining passes. */
1480
1481 int max_parallel;
1482
1483 void reg_scan_mark_refs ();
1484
1485 void
1486 reg_scan (f, nregs, repeat)
1487 rtx f;
1488 int nregs;
1489 int repeat;
1490 {
1491 register rtx insn;
1492
1493 if (!repeat || nregs > highest_regno_in_uid_map)
1494 {
1495 /* Leave some spare space in case more regs are allocated. */
1496 highest_regno_in_uid_map = nregs + nregs / 20;
1497 regno_first_uid
1498 = (int *) oballoc (highest_regno_in_uid_map * sizeof (int));
1499 regno_last_uid
1500 = (int *) oballoc (highest_regno_in_uid_map * sizeof (int));
1501 reg_n_sets
1502 = (short *) oballoc (highest_regno_in_uid_map * sizeof (short));
1503 }
1504
1505 bzero (regno_first_uid, highest_regno_in_uid_map * sizeof (int));
1506 bzero (regno_last_uid, highest_regno_in_uid_map * sizeof (int));
1507 bzero (reg_n_sets, highest_regno_in_uid_map * sizeof (short));
1508
1509 max_parallel = 3;
1510
1511 for (insn = f; insn; insn = NEXT_INSN (insn))
1512 if (GET_CODE (insn) == INSN
1513 || GET_CODE (insn) == CALL_INSN
1514 || GET_CODE (insn) == JUMP_INSN)
1515 {
1516 if (GET_CODE (PATTERN (insn)) == PARALLEL
1517 && XVECLEN (PATTERN (insn), 0) > max_parallel)
1518 max_parallel = XVECLEN (PATTERN (insn), 0);
1519 reg_scan_mark_refs (PATTERN (insn), insn);
1520 }
1521 }
1522
1523 void
1524 reg_scan_mark_refs (x, insn)
1525 rtx x;
1526 rtx insn;
1527 {
1528 register enum rtx_code code = GET_CODE (x);
1529 register rtx dest;
1530 register rtx note;
1531
1532 switch (code)
1533 {
1534 case CONST_INT:
1535 case CONST:
1536 case CONST_DOUBLE:
1537 case CC0:
1538 case PC:
1539 case SYMBOL_REF:
1540 case LABEL_REF:
1541 case ADDR_VEC:
1542 case ADDR_DIFF_VEC:
1543 return;
1544
1545 case REG:
1546 {
1547 register int regno = REGNO (x);
1548
1549 regno_last_uid[regno] = INSN_UID (insn);
1550 if (regno_first_uid[regno] == 0)
1551 regno_first_uid[regno] = INSN_UID (insn);
1552 }
1553 break;
1554
1555 case SET:
1556 /* Count a set of the destination if it is a register. */
1557 for (dest = SET_DEST (x);
1558 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1559 || GET_CODE (dest) == ZERO_EXTEND;
1560 dest = XEXP (dest, 0))
1561 ;
1562
1563 if (GET_CODE (dest) == REG)
1564 reg_n_sets[REGNO (dest)]++;
1565
1566 /* If this is setting a pseudo from another pseudo or the sum of a
1567 pseudo and a constant integer and the other pseudo is known to be
1568 a pointer, set the destination to be a pointer as well.
1569
1570 Likewise if it is setting the destination from an address or from a
1571 value equivalent to an address or to the sum of an address and
1572 something else.
1573
1574 But don't do any of this if the pseudo corresponds to a user
1575 variable since it should have already been set as a pointer based
1576 on the type. */
1577
1578 if (GET_CODE (SET_DEST (x)) == REG
1579 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1580 && ! REG_USERVAR_P (SET_DEST (x))
1581 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
1582 && ((GET_CODE (SET_SRC (x)) == REG
1583 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
1584 || ((GET_CODE (SET_SRC (x)) == PLUS
1585 || GET_CODE (SET_SRC (x)) == LO_SUM)
1586 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1587 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
1588 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
1589 || GET_CODE (SET_SRC (x)) == CONST
1590 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1591 || GET_CODE (SET_SRC (x)) == LABEL_REF
1592 || (GET_CODE (SET_SRC (x)) == HIGH
1593 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1594 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1595 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1596 || ((GET_CODE (SET_SRC (x)) == PLUS
1597 || GET_CODE (SET_SRC (x)) == LO_SUM)
1598 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1599 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1600 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1601 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1602 && (GET_CODE (XEXP (note, 0)) == CONST
1603 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1604 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1605 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
1606
1607 /* ... fall through ... */
1608
1609 default:
1610 {
1611 register char *fmt = GET_RTX_FORMAT (code);
1612 register int i;
1613 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1614 {
1615 if (fmt[i] == 'e')
1616 reg_scan_mark_refs (XEXP (x, i), insn);
1617 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1618 {
1619 register int j;
1620 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1621 reg_scan_mark_refs (XVECEXP (x, i, j), insn);
1622 }
1623 }
1624 }
1625 }
1626 }
1627 \f
1628 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1629 is also in C2. */
1630
1631 int
1632 reg_class_subset_p (c1, c2)
1633 register enum reg_class c1;
1634 register enum reg_class c2;
1635 {
1636 if (c1 == c2) return 1;
1637
1638 if (c2 == ALL_REGS)
1639 win:
1640 return 1;
1641 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
1642 reg_class_contents[(int)c2],
1643 win);
1644 return 0;
1645 }
1646
1647 /* Return nonzero if there is a register that is in both C1 and C2. */
1648
1649 int
1650 reg_classes_intersect_p (c1, c2)
1651 register enum reg_class c1;
1652 register enum reg_class c2;
1653 {
1654 #ifdef HARD_REG_SET
1655 register
1656 #endif
1657 HARD_REG_SET c;
1658
1659 if (c1 == c2) return 1;
1660
1661 if (c1 == ALL_REGS || c2 == ALL_REGS)
1662 return 1;
1663
1664 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
1665 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
1666
1667 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
1668 return 1;
1669
1670 lose:
1671 return 0;
1672 }
1673
This page took 0.110771 seconds and 5 git commands to generate.