]> gcc.gnu.org Git - gcc.git/blob - gcc/regclass.c
emit-rtl.c (reg_attrs_htab): New static variable.
[gcc.git] / gcc / regclass.c
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "hard-reg-set.h"
32 #include "rtl.h"
33 #include "expr.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "basic-block.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "insn-config.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "real.h"
43 #include "toplev.h"
44 #include "output.h"
45 #include "ggc.h"
46
47 #ifndef REGISTER_MOVE_COST
48 #define REGISTER_MOVE_COST(m, x, y) 2
49 #endif
50
51 static void init_reg_sets_1 PARAMS ((void));
52 static void init_reg_modes PARAMS ((void));
53
54 /* If we have auto-increment or auto-decrement and we can have secondary
55 reloads, we are not allowed to use classes requiring secondary
56 reloads for pseudos auto-incremented since reload can't handle it. */
57
58 #ifdef AUTO_INC_DEC
59 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
60 #define FORBIDDEN_INC_DEC_CLASSES
61 #endif
62 #endif
63 \f
64 /* Register tables used by many passes. */
65
66 /* Indexed by hard register number, contains 1 for registers
67 that are fixed use (stack pointer, pc, frame pointer, etc.).
68 These are the registers that cannot be used to allocate
69 a pseudo reg for general use. */
70
71 char fixed_regs[FIRST_PSEUDO_REGISTER];
72
73 /* Same info as a HARD_REG_SET. */
74
75 HARD_REG_SET fixed_reg_set;
76
77 /* Data for initializing the above. */
78
79 static const char initial_fixed_regs[] = FIXED_REGISTERS;
80
81 /* Indexed by hard register number, contains 1 for registers
82 that are fixed use or are clobbered by function calls.
83 These are the registers that cannot be used to allocate
84 a pseudo reg whose life crosses calls unless we are able
85 to save/restore them across the calls. */
86
87 char call_used_regs[FIRST_PSEUDO_REGISTER];
88
89 /* Same info as a HARD_REG_SET. */
90
91 HARD_REG_SET call_used_reg_set;
92
93 /* HARD_REG_SET of registers we want to avoid caller saving. */
94 HARD_REG_SET losing_caller_save_reg_set;
95
96 /* Data for initializing the above. */
97
98 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
99
100 /* This is much like call_used_regs, except it doesn't have to
101 be a superset of FIXED_REGISTERS. This vector indicates
102 what is really call clobbered, and is used when defining
103 regs_invalidated_by_call. */
104
105 #ifdef CALL_REALLY_USED_REGISTERS
106 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
107 #endif
108
109 /* Indexed by hard register number, contains 1 for registers that are
110 fixed use or call used registers that cannot hold quantities across
111 calls even if we are willing to save and restore them. call fixed
112 registers are a subset of call used registers. */
113
114 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
115
116 /* The same info as a HARD_REG_SET. */
117
118 HARD_REG_SET call_fixed_reg_set;
119
120 /* Number of non-fixed registers. */
121
122 int n_non_fixed_regs;
123
124 /* Indexed by hard register number, contains 1 for registers
125 that are being used for global register decls.
126 These must be exempt from ordinary flow analysis
127 and are also considered fixed. */
128
129 char global_regs[FIRST_PSEUDO_REGISTER];
130
131 /* Contains 1 for registers that are set or clobbered by calls. */
132 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
133 for someone's bright idea to have call_used_regs strictly include
134 fixed_regs. Which leaves us guessing as to the set of fixed_regs
135 that are actually preserved. We know for sure that those associated
136 with the local stack frame are safe, but scant others. */
137
138 HARD_REG_SET regs_invalidated_by_call;
139
140 /* Table of register numbers in the order in which to try to use them. */
141 #ifdef REG_ALLOC_ORDER
142 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
143
144 /* The inverse of reg_alloc_order. */
145 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
146 #endif
147
148 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
149
150 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
151
152 /* The same information, but as an array of unsigned ints. We copy from
153 these unsigned ints to the table above. We do this so the tm.h files
154 do not have to be aware of the wordsize for machines with <= 64 regs.
155 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
156
157 #define N_REG_INTS \
158 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
159
160 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
161 = REG_CLASS_CONTENTS;
162
163 /* For each reg class, number of regs it contains. */
164
165 unsigned int reg_class_size[N_REG_CLASSES];
166
167 /* For each reg class, table listing all the containing classes. */
168
169 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
170
171 /* For each reg class, table listing all the classes contained in it. */
172
173 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
174
175 /* For each pair of reg classes,
176 a largest reg class contained in their union. */
177
178 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
179
180 /* For each pair of reg classes,
181 the smallest reg class containing their union. */
182
183 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
184
185 /* Array containing all of the register names. Unless
186 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
187
188 #ifdef DEBUG_REGISTER_NAMES
189 const char * reg_names[] = REGISTER_NAMES;
190 #endif
191
192 /* For each hard register, the widest mode object that it can contain.
193 This will be a MODE_INT mode if the register can hold integers. Otherwise
194 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
195 register. */
196
197 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
198
199 /* 1 if class does contain register of given mode. */
200
201 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
202
203 /* Maximum cost of moving from a register in one class to a register in
204 another class. Based on REGISTER_MOVE_COST. */
205
206 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
207
208 /* Similar, but here we don't have to move if the first index is a subset
209 of the second so in that case the cost is zero. */
210
211 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
212
213 /* Similar, but here we don't have to move if the first index is a superset
214 of the second so in that case the cost is zero. */
215
216 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
217
218 #ifdef FORBIDDEN_INC_DEC_CLASSES
219
220 /* These are the classes that regs which are auto-incremented or decremented
221 cannot be put in. */
222
223 static int forbidden_inc_dec_class[N_REG_CLASSES];
224
225 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
226 context. */
227
228 static char *in_inc_dec;
229
230 #endif /* FORBIDDEN_INC_DEC_CLASSES */
231
232 #ifdef CANNOT_CHANGE_MODE_CLASS
233 /* All registers that have been subreged. Indexed by mode, where each
234 entry is a regset of registers. */
235 regset_head subregs_of_mode [NUM_MACHINE_MODES];
236 #endif
237
238 /* Sample MEM values for use by memory_move_secondary_cost. */
239
240 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
241
242 /* Linked list of reg_info structures allocated for reg_n_info array.
243 Grouping all of the allocated structures together in one lump
244 means only one call to bzero to clear them, rather than n smaller
245 calls. */
246 struct reg_info_data {
247 struct reg_info_data *next; /* next set of reg_info structures */
248 size_t min_index; /* minimum index # */
249 size_t max_index; /* maximum index # */
250 char used_p; /* nonzero if this has been used previously */
251 reg_info data[1]; /* beginning of the reg_info data */
252 };
253
254 static struct reg_info_data *reg_info_head;
255
256 /* No more global register variables may be declared; true once
257 regclass has been initialized. */
258
259 static int no_global_reg_vars = 0;
260
261
262 /* Function called only once to initialize the above data on reg usage.
263 Once this is done, various switches may override. */
264
265 void
266 init_reg_sets ()
267 {
268 int i, j;
269
270 /* First copy the register information from the initial int form into
271 the regsets. */
272
273 for (i = 0; i < N_REG_CLASSES; i++)
274 {
275 CLEAR_HARD_REG_SET (reg_class_contents[i]);
276
277 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
278 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
279 if (int_reg_class_contents[i][j / 32]
280 & ((unsigned) 1 << (j % 32)))
281 SET_HARD_REG_BIT (reg_class_contents[i], j);
282 }
283
284 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
285 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
286 memset (global_regs, 0, sizeof global_regs);
287
288 /* Do any additional initialization regsets may need. */
289 INIT_ONCE_REG_SET ();
290
291 #ifdef REG_ALLOC_ORDER
292 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
293 inv_reg_alloc_order[reg_alloc_order[i]] = i;
294 #endif
295 }
296
297 /* After switches have been processed, which perhaps alter
298 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
299
300 static void
301 init_reg_sets_1 ()
302 {
303 unsigned int i, j;
304 unsigned int /* enum machine_mode */ m;
305 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
306
307 /* This macro allows the fixed or call-used registers
308 and the register classes to depend on target flags. */
309
310 #ifdef CONDITIONAL_REGISTER_USAGE
311 CONDITIONAL_REGISTER_USAGE;
312 #endif
313
314 /* Compute number of hard regs in each class. */
315
316 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
317 for (i = 0; i < N_REG_CLASSES; i++)
318 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
319 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
320 reg_class_size[i]++;
321
322 /* Initialize the table of subunions.
323 reg_class_subunion[I][J] gets the largest-numbered reg-class
324 that is contained in the union of classes I and J. */
325
326 for (i = 0; i < N_REG_CLASSES; i++)
327 {
328 for (j = 0; j < N_REG_CLASSES; j++)
329 {
330 #ifdef HARD_REG_SET
331 register /* Declare it register if it's a scalar. */
332 #endif
333 HARD_REG_SET c;
334 int k;
335
336 COPY_HARD_REG_SET (c, reg_class_contents[i]);
337 IOR_HARD_REG_SET (c, reg_class_contents[j]);
338 for (k = 0; k < N_REG_CLASSES; k++)
339 {
340 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
341 subclass1);
342 continue;
343
344 subclass1:
345 /* keep the largest subclass */ /* SPEE 900308 */
346 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
347 reg_class_contents[(int) reg_class_subunion[i][j]],
348 subclass2);
349 reg_class_subunion[i][j] = (enum reg_class) k;
350 subclass2:
351 ;
352 }
353 }
354 }
355
356 /* Initialize the table of superunions.
357 reg_class_superunion[I][J] gets the smallest-numbered reg-class
358 containing the union of classes I and J. */
359
360 for (i = 0; i < N_REG_CLASSES; i++)
361 {
362 for (j = 0; j < N_REG_CLASSES; j++)
363 {
364 #ifdef HARD_REG_SET
365 register /* Declare it register if it's a scalar. */
366 #endif
367 HARD_REG_SET c;
368 int k;
369
370 COPY_HARD_REG_SET (c, reg_class_contents[i]);
371 IOR_HARD_REG_SET (c, reg_class_contents[j]);
372 for (k = 0; k < N_REG_CLASSES; k++)
373 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
374
375 superclass:
376 reg_class_superunion[i][j] = (enum reg_class) k;
377 }
378 }
379
380 /* Initialize the tables of subclasses and superclasses of each reg class.
381 First clear the whole table, then add the elements as they are found. */
382
383 for (i = 0; i < N_REG_CLASSES; i++)
384 {
385 for (j = 0; j < N_REG_CLASSES; j++)
386 {
387 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
388 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
389 }
390 }
391
392 for (i = 0; i < N_REG_CLASSES; i++)
393 {
394 if (i == (int) NO_REGS)
395 continue;
396
397 for (j = i + 1; j < N_REG_CLASSES; j++)
398 {
399 enum reg_class *p;
400
401 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
402 subclass);
403 continue;
404 subclass:
405 /* Reg class I is a subclass of J.
406 Add J to the table of superclasses of I. */
407 p = &reg_class_superclasses[i][0];
408 while (*p != LIM_REG_CLASSES) p++;
409 *p = (enum reg_class) j;
410 /* Add I to the table of superclasses of J. */
411 p = &reg_class_subclasses[j][0];
412 while (*p != LIM_REG_CLASSES) p++;
413 *p = (enum reg_class) i;
414 }
415 }
416
417 /* Initialize "constant" tables. */
418
419 CLEAR_HARD_REG_SET (fixed_reg_set);
420 CLEAR_HARD_REG_SET (call_used_reg_set);
421 CLEAR_HARD_REG_SET (call_fixed_reg_set);
422 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
423
424 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
425
426 n_non_fixed_regs = 0;
427
428 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
429 {
430 if (fixed_regs[i])
431 SET_HARD_REG_BIT (fixed_reg_set, i);
432 else
433 n_non_fixed_regs++;
434
435 if (call_used_regs[i])
436 SET_HARD_REG_BIT (call_used_reg_set, i);
437 if (call_fixed_regs[i])
438 SET_HARD_REG_BIT (call_fixed_reg_set, i);
439 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
440 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
441
442 /* There are a couple of fixed registers that we know are safe to
443 exclude from being clobbered by calls:
444
445 The frame pointer is always preserved across calls. The arg pointer
446 is if it is fixed. The stack pointer usually is, unless
447 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
448 If we are generating PIC code, the PIC offset table register is
449 preserved across calls, though the target can override that. */
450
451 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
452 ;
453 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
454 else if (i == HARD_FRAME_POINTER_REGNUM)
455 ;
456 #endif
457 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
458 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
459 ;
460 #endif
461 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
462 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
463 ;
464 #endif
465 else if (0
466 #ifdef CALL_REALLY_USED_REGISTERS
467 || call_really_used_regs[i]
468 #else
469 || call_used_regs[i]
470 #endif
471 || global_regs[i])
472 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
473 }
474
475 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
476 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
477 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
478 for (i = 0; i < N_REG_CLASSES; i++)
479 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
480 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
481 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
482 && HARD_REGNO_MODE_OK (j, m))
483 {
484 contains_reg_of_mode [i][m] = 1;
485 allocatable_regs_of_mode [m] = 1;
486 break;
487 }
488
489 /* Initialize the move cost table. Find every subset of each class
490 and take the maximum cost of moving any subset to any other. */
491
492 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
493 if (allocatable_regs_of_mode [m])
494 {
495 for (i = 0; i < N_REG_CLASSES; i++)
496 if (contains_reg_of_mode [i][m])
497 for (j = 0; j < N_REG_CLASSES; j++)
498 {
499 int cost;
500 enum reg_class *p1, *p2;
501
502 if (!contains_reg_of_mode [j][m])
503 {
504 move_cost[m][i][j] = 65536;
505 may_move_in_cost[m][i][j] = 65536;
506 may_move_out_cost[m][i][j] = 65536;
507 }
508 else
509 {
510 cost = REGISTER_MOVE_COST (m, i, j);
511
512 for (p2 = &reg_class_subclasses[j][0];
513 *p2 != LIM_REG_CLASSES;
514 p2++)
515 if (*p2 != i && contains_reg_of_mode [*p2][m])
516 cost = MAX (cost, move_cost [m][i][*p2]);
517
518 for (p1 = &reg_class_subclasses[i][0];
519 *p1 != LIM_REG_CLASSES;
520 p1++)
521 if (*p1 != j && contains_reg_of_mode [*p1][m])
522 cost = MAX (cost, move_cost [m][*p1][j]);
523
524 move_cost[m][i][j] = cost;
525
526 if (reg_class_subset_p (i, j))
527 may_move_in_cost[m][i][j] = 0;
528 else
529 may_move_in_cost[m][i][j] = cost;
530
531 if (reg_class_subset_p (j, i))
532 may_move_out_cost[m][i][j] = 0;
533 else
534 may_move_out_cost[m][i][j] = cost;
535 }
536 }
537 else
538 for (j = 0; j < N_REG_CLASSES; j++)
539 {
540 move_cost[m][i][j] = 65536;
541 may_move_in_cost[m][i][j] = 65536;
542 may_move_out_cost[m][i][j] = 65536;
543 }
544 }
545 }
546
547 /* Compute the table of register modes.
548 These values are used to record death information for individual registers
549 (as opposed to a multi-register mode). */
550
551 static void
552 init_reg_modes ()
553 {
554 int i;
555
556 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
557 {
558 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
559
560 /* If we couldn't find a valid mode, just use the previous mode.
561 ??? One situation in which we need to do this is on the mips where
562 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
563 to use DF mode for the even registers and VOIDmode for the odd
564 (for the cpu models where the odd ones are inaccessible). */
565 if (reg_raw_mode[i] == VOIDmode)
566 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
567 }
568 }
569
570 /* Finish initializing the register sets and
571 initialize the register modes. */
572
573 void
574 init_regs ()
575 {
576 /* This finishes what was started by init_reg_sets, but couldn't be done
577 until after register usage was specified. */
578 init_reg_sets_1 ();
579
580 init_reg_modes ();
581 }
582
583 /* Initialize some fake stack-frame MEM references for use in
584 memory_move_secondary_cost. */
585
586 void
587 init_fake_stack_mems ()
588 {
589 #ifdef HAVE_SECONDARY_RELOADS
590 {
591 int i;
592
593 for (i = 0; i < MAX_MACHINE_MODE; i++)
594 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
595 }
596 #endif
597 }
598
599 #ifdef HAVE_SECONDARY_RELOADS
600
601 /* Compute extra cost of moving registers to/from memory due to reloads.
602 Only needed if secondary reloads are required for memory moves. */
603
604 int
605 memory_move_secondary_cost (mode, class, in)
606 enum machine_mode mode;
607 enum reg_class class;
608 int in;
609 {
610 enum reg_class altclass;
611 int partial_cost = 0;
612 /* We need a memory reference to feed to SECONDARY... macros. */
613 /* mem may be unused even if the SECONDARY_ macros are defined. */
614 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
615
616
617 if (in)
618 {
619 #ifdef SECONDARY_INPUT_RELOAD_CLASS
620 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
621 #else
622 altclass = NO_REGS;
623 #endif
624 }
625 else
626 {
627 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
628 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
629 #else
630 altclass = NO_REGS;
631 #endif
632 }
633
634 if (altclass == NO_REGS)
635 return 0;
636
637 if (in)
638 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
639 else
640 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
641
642 if (class == altclass)
643 /* This isn't simply a copy-to-temporary situation. Can't guess
644 what it is, so MEMORY_MOVE_COST really ought not to be calling
645 here in that case.
646
647 I'm tempted to put in an abort here, but returning this will
648 probably only give poor estimates, which is what we would've
649 had before this code anyways. */
650 return partial_cost;
651
652 /* Check if the secondary reload register will also need a
653 secondary reload. */
654 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
655 }
656 #endif
657
658 /* Return a machine mode that is legitimate for hard reg REGNO and large
659 enough to save nregs. If we can't find one, return VOIDmode. */
660
661 enum machine_mode
662 choose_hard_reg_mode (regno, nregs)
663 unsigned int regno ATTRIBUTE_UNUSED;
664 unsigned int nregs;
665 {
666 unsigned int /* enum machine_mode */ m;
667 enum machine_mode found_mode = VOIDmode, mode;
668
669 /* We first look for the largest integer mode that can be validly
670 held in REGNO. If none, we look for the largest floating-point mode.
671 If we still didn't find a valid mode, try CCmode. */
672
673 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
674 mode != VOIDmode;
675 mode = GET_MODE_WIDER_MODE (mode))
676 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
677 && HARD_REGNO_MODE_OK (regno, mode))
678 found_mode = mode;
679
680 if (found_mode != VOIDmode)
681 return found_mode;
682
683 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
684 mode != VOIDmode;
685 mode = GET_MODE_WIDER_MODE (mode))
686 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
687 && HARD_REGNO_MODE_OK (regno, mode))
688 found_mode = mode;
689
690 if (found_mode != VOIDmode)
691 return found_mode;
692
693 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
694 mode != VOIDmode;
695 mode = GET_MODE_WIDER_MODE (mode))
696 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
697 && HARD_REGNO_MODE_OK (regno, mode))
698 found_mode = mode;
699
700 if (found_mode != VOIDmode)
701 return found_mode;
702
703 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
704 mode != VOIDmode;
705 mode = GET_MODE_WIDER_MODE (mode))
706 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
707 && HARD_REGNO_MODE_OK (regno, mode))
708 found_mode = mode;
709
710 if (found_mode != VOIDmode)
711 return found_mode;
712
713 /* Iterate over all of the CCmodes. */
714 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
715 {
716 mode = (enum machine_mode) m;
717 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
718 && HARD_REGNO_MODE_OK (regno, mode))
719 return mode;
720 }
721
722 /* We can't find a mode valid for this register. */
723 return VOIDmode;
724 }
725
726 /* Specify the usage characteristics of the register named NAME.
727 It should be a fixed register if FIXED and a
728 call-used register if CALL_USED. */
729
730 void
731 fix_register (name, fixed, call_used)
732 const char *name;
733 int fixed, call_used;
734 {
735 int i;
736
737 /* Decode the name and update the primary form of
738 the register info. */
739
740 if ((i = decode_reg_name (name)) >= 0)
741 {
742 if ((i == STACK_POINTER_REGNUM
743 #ifdef HARD_FRAME_POINTER_REGNUM
744 || i == HARD_FRAME_POINTER_REGNUM
745 #else
746 || i == FRAME_POINTER_REGNUM
747 #endif
748 )
749 && (fixed == 0 || call_used == 0))
750 {
751 static const char * const what_option[2][2] = {
752 { "call-saved", "call-used" },
753 { "no-such-option", "fixed" }};
754
755 error ("can't use '%s' as a %s register", name,
756 what_option[fixed][call_used]);
757 }
758 else
759 {
760 fixed_regs[i] = fixed;
761 call_used_regs[i] = call_used;
762 #ifdef CALL_REALLY_USED_REGISTERS
763 if (fixed == 0)
764 call_really_used_regs[i] = call_used;
765 #endif
766 }
767 }
768 else
769 {
770 warning ("unknown register name: %s", name);
771 }
772 }
773
774 /* Mark register number I as global. */
775
776 void
777 globalize_reg (i)
778 int i;
779 {
780 if (fixed_regs[i] == 0 && no_global_reg_vars)
781 error ("global register variable follows a function definition");
782
783 if (global_regs[i])
784 {
785 warning ("register used for two global register variables");
786 return;
787 }
788
789 if (call_used_regs[i] && ! fixed_regs[i])
790 warning ("call-clobbered register used for global register variable");
791
792 global_regs[i] = 1;
793
794 /* If already fixed, nothing else to do. */
795 if (fixed_regs[i])
796 return;
797
798 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
799 n_non_fixed_regs--;
800
801 SET_HARD_REG_BIT (fixed_reg_set, i);
802 SET_HARD_REG_BIT (call_used_reg_set, i);
803 SET_HARD_REG_BIT (call_fixed_reg_set, i);
804 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
805 }
806 \f
807 /* Now the data and code for the `regclass' pass, which happens
808 just before local-alloc. */
809
810 /* The `costs' struct records the cost of using a hard register of each class
811 and of using memory for each pseudo. We use this data to set up
812 register class preferences. */
813
814 struct costs
815 {
816 int cost[N_REG_CLASSES];
817 int mem_cost;
818 };
819
820 /* Structure used to record preferences of given pseudo. */
821 struct reg_pref
822 {
823 /* (enum reg_class) prefclass is the preferred class. */
824 char prefclass;
825
826 /* altclass is a register class that we should use for allocating
827 pseudo if no register in the preferred class is available.
828 If no register in this class is available, memory is preferred.
829
830 It might appear to be more general to have a bitmask of classes here,
831 but since it is recommended that there be a class corresponding to the
832 union of most major pair of classes, that generality is not required. */
833 char altclass;
834 };
835
836 /* Record the cost of each class for each pseudo. */
837
838 static struct costs *costs;
839
840 /* Initialized once, and used to initialize cost values for each insn. */
841
842 static struct costs init_cost;
843
844 /* Record preferences of each pseudo.
845 This is available after `regclass' is run. */
846
847 static struct reg_pref *reg_pref;
848
849 /* Allocated buffers for reg_pref. */
850
851 static struct reg_pref *reg_pref_buffer;
852
853 /* Frequency of executions of current insn. */
854
855 static int frequency;
856
857 static rtx scan_one_insn PARAMS ((rtx, int));
858 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
859 static void dump_regclass PARAMS ((FILE *));
860 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
861 const char **, rtx,
862 struct costs *, struct reg_pref *));
863 static int copy_cost PARAMS ((rtx, enum machine_mode,
864 enum reg_class, int));
865 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
866 #ifdef FORBIDDEN_INC_DEC_CLASSES
867 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
868 #endif
869 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
870
871 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
872 This function is sometimes called before the info has been computed.
873 When that happens, just return GENERAL_REGS, which is innocuous. */
874
875 enum reg_class
876 reg_preferred_class (regno)
877 int regno;
878 {
879 if (reg_pref == 0)
880 return GENERAL_REGS;
881 return (enum reg_class) reg_pref[regno].prefclass;
882 }
883
884 enum reg_class
885 reg_alternate_class (regno)
886 int regno;
887 {
888 if (reg_pref == 0)
889 return ALL_REGS;
890
891 return (enum reg_class) reg_pref[regno].altclass;
892 }
893
894 /* Initialize some global data for this pass. */
895
896 void
897 regclass_init ()
898 {
899 int i;
900
901 init_cost.mem_cost = 10000;
902 for (i = 0; i < N_REG_CLASSES; i++)
903 init_cost.cost[i] = 10000;
904
905 /* This prevents dump_flow_info from losing if called
906 before regclass is run. */
907 reg_pref = NULL;
908
909 /* No more global register variables may be declared. */
910 no_global_reg_vars = 1;
911 }
912 \f
913 /* Dump register costs. */
914 static void
915 dump_regclass (dump)
916 FILE *dump;
917 {
918 static const char *const reg_class_names[] = REG_CLASS_NAMES;
919 int i;
920 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
921 {
922 int /* enum reg_class */ class;
923 if (REG_N_REFS (i))
924 {
925 fprintf (dump, " Register %i costs:", i);
926 for (class = 0; class < (int) N_REG_CLASSES; class++)
927 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
928 #ifdef FORBIDDEN_INC_DEC_CLASSES
929 && (!in_inc_dec[i]
930 || !forbidden_inc_dec_class[(enum reg_class) class])
931 #endif
932 #ifdef CANNOT_CHANGE_MODE_CLASS
933 && ! invalid_mode_change_p (i, (enum reg_class) class,
934 PSEUDO_REGNO_MODE (i))
935 #endif
936 )
937 fprintf (dump, " %s:%i", reg_class_names[class],
938 costs[i].cost[(enum reg_class) class]);
939 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
940 }
941 }
942 }
943 \f
944
945 /* Calculate the costs of insn operands. */
946
947 static void
948 record_operand_costs (insn, op_costs, reg_pref)
949 rtx insn;
950 struct costs *op_costs;
951 struct reg_pref *reg_pref;
952 {
953 const char *constraints[MAX_RECOG_OPERANDS];
954 enum machine_mode modes[MAX_RECOG_OPERANDS];
955 int i;
956
957 for (i = 0; i < recog_data.n_operands; i++)
958 {
959 constraints[i] = recog_data.constraints[i];
960 modes[i] = recog_data.operand_mode[i];
961 }
962
963 /* If we get here, we are set up to record the costs of all the
964 operands for this insn. Start by initializing the costs.
965 Then handle any address registers. Finally record the desired
966 classes for any pseudos, doing it twice if some pair of
967 operands are commutative. */
968
969 for (i = 0; i < recog_data.n_operands; i++)
970 {
971 op_costs[i] = init_cost;
972
973 if (GET_CODE (recog_data.operand[i]) == SUBREG)
974 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
975
976 if (GET_CODE (recog_data.operand[i]) == MEM)
977 record_address_regs (XEXP (recog_data.operand[i], 0),
978 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
979 else if (constraints[i][0] == 'p'
980 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
981 record_address_regs (recog_data.operand[i],
982 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
983 }
984
985 /* Check for commutative in a separate loop so everything will
986 have been initialized. We must do this even if one operand
987 is a constant--see addsi3 in m68k.md. */
988
989 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
990 if (constraints[i][0] == '%')
991 {
992 const char *xconstraints[MAX_RECOG_OPERANDS];
993 int j;
994
995 /* Handle commutative operands by swapping the constraints.
996 We assume the modes are the same. */
997
998 for (j = 0; j < recog_data.n_operands; j++)
999 xconstraints[j] = constraints[j];
1000
1001 xconstraints[i] = constraints[i+1];
1002 xconstraints[i+1] = constraints[i];
1003 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1004 recog_data.operand, modes,
1005 xconstraints, insn, op_costs, reg_pref);
1006 }
1007
1008 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1009 recog_data.operand, modes,
1010 constraints, insn, op_costs, reg_pref);
1011 }
1012 \f
1013 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1014 time it would save code to put a certain register in a certain class.
1015 PASS, when nonzero, inhibits some optimizations which need only be done
1016 once.
1017 Return the last insn processed, so that the scan can be continued from
1018 there. */
1019
1020 static rtx
1021 scan_one_insn (insn, pass)
1022 rtx insn;
1023 int pass;
1024 {
1025 enum rtx_code code = GET_CODE (insn);
1026 enum rtx_code pat_code;
1027 rtx set, note;
1028 int i, j;
1029 struct costs op_costs[MAX_RECOG_OPERANDS];
1030
1031 if (GET_RTX_CLASS (code) != 'i')
1032 return insn;
1033
1034 pat_code = GET_CODE (PATTERN (insn));
1035 if (pat_code == USE
1036 || pat_code == CLOBBER
1037 || pat_code == ASM_INPUT
1038 || pat_code == ADDR_VEC
1039 || pat_code == ADDR_DIFF_VEC)
1040 return insn;
1041
1042 set = single_set (insn);
1043 extract_insn (insn);
1044
1045 /* If this insn loads a parameter from its stack slot, then
1046 it represents a savings, rather than a cost, if the
1047 parameter is stored in memory. Record this fact. */
1048
1049 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1050 && GET_CODE (SET_SRC (set)) == MEM
1051 && (note = find_reg_note (insn, REG_EQUIV,
1052 NULL_RTX)) != 0
1053 && GET_CODE (XEXP (note, 0)) == MEM)
1054 {
1055 costs[REGNO (SET_DEST (set))].mem_cost
1056 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1057 GENERAL_REGS, 1)
1058 * frequency);
1059 record_address_regs (XEXP (SET_SRC (set), 0),
1060 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1061 return insn;
1062 }
1063
1064 /* Improve handling of two-address insns such as
1065 (set X (ashift CONST Y)) where CONST must be made to
1066 match X. Change it into two insns: (set X CONST)
1067 (set X (ashift X Y)). If we left this for reloading, it
1068 would probably get three insns because X and Y might go
1069 in the same place. This prevents X and Y from receiving
1070 the same hard reg.
1071
1072 We can only do this if the modes of operands 0 and 1
1073 (which might not be the same) are tieable and we only need
1074 do this during our first pass. */
1075
1076 if (pass == 0 && optimize
1077 && recog_data.n_operands >= 3
1078 && recog_data.constraints[1][0] == '0'
1079 && recog_data.constraints[1][1] == 0
1080 && CONSTANT_P (recog_data.operand[1])
1081 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1082 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1083 && GET_CODE (recog_data.operand[0]) == REG
1084 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1085 recog_data.operand_mode[1]))
1086 {
1087 rtx previnsn = prev_real_insn (insn);
1088 rtx dest
1089 = gen_lowpart (recog_data.operand_mode[1],
1090 recog_data.operand[0]);
1091 rtx newinsn
1092 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1093
1094 /* If this insn was the start of a basic block,
1095 include the new insn in that block.
1096 We need not check for code_label here;
1097 while a basic block can start with a code_label,
1098 INSN could not be at the beginning of that block. */
1099 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1100 {
1101 basic_block b;
1102 FOR_EACH_BB (b)
1103 if (insn == b->head)
1104 b->head = newinsn;
1105 }
1106
1107 /* This makes one more setting of new insns's dest. */
1108 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1109 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1110 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1111
1112 *recog_data.operand_loc[1] = recog_data.operand[0];
1113 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1114 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1115 for (i = recog_data.n_dups - 1; i >= 0; i--)
1116 if (recog_data.dup_num[i] == 1)
1117 {
1118 *recog_data.dup_loc[i] = recog_data.operand[0];
1119 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1120 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1121 }
1122
1123 return PREV_INSN (newinsn);
1124 }
1125
1126 record_operand_costs (insn, op_costs, reg_pref);
1127
1128 /* Now add the cost for each operand to the total costs for
1129 its register. */
1130
1131 for (i = 0; i < recog_data.n_operands; i++)
1132 if (GET_CODE (recog_data.operand[i]) == REG
1133 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1134 {
1135 int regno = REGNO (recog_data.operand[i]);
1136 struct costs *p = &costs[regno], *q = &op_costs[i];
1137
1138 p->mem_cost += q->mem_cost * frequency;
1139 for (j = 0; j < N_REG_CLASSES; j++)
1140 p->cost[j] += q->cost[j] * frequency;
1141 }
1142
1143 return insn;
1144 }
1145
1146 /* This is a pass of the compiler that scans all instructions
1147 and calculates the preferred class for each pseudo-register.
1148 This information can be accessed later by calling `reg_preferred_class'.
1149 This pass comes just before local register allocation. */
1150
1151 void
1152 regclass (f, nregs, dump)
1153 rtx f;
1154 int nregs;
1155 FILE *dump;
1156 {
1157 rtx insn;
1158 int i;
1159 int pass;
1160
1161 init_recog ();
1162
1163 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1164
1165 #ifdef FORBIDDEN_INC_DEC_CLASSES
1166
1167 in_inc_dec = (char *) xmalloc (nregs);
1168
1169 /* Initialize information about which register classes can be used for
1170 pseudos that are auto-incremented or auto-decremented. It would
1171 seem better to put this in init_reg_sets, but we need to be able
1172 to allocate rtx, which we can't do that early. */
1173
1174 for (i = 0; i < N_REG_CLASSES; i++)
1175 {
1176 rtx r = gen_rtx_REG (VOIDmode, 0);
1177 enum machine_mode m;
1178 int j;
1179
1180 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1181 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1182 {
1183 REGNO (r) = j;
1184
1185 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1186 m = (enum machine_mode) ((int) m + 1))
1187 if (HARD_REGNO_MODE_OK (j, m))
1188 {
1189 PUT_MODE (r, m);
1190
1191 /* If a register is not directly suitable for an
1192 auto-increment or decrement addressing mode and
1193 requires secondary reloads, disallow its class from
1194 being used in such addresses. */
1195
1196 if ((0
1197 #ifdef SECONDARY_RELOAD_CLASS
1198 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1199 != NO_REGS)
1200 #else
1201 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1202 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1203 != NO_REGS)
1204 #endif
1205 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1206 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1207 != NO_REGS)
1208 #endif
1209 #endif
1210 )
1211 && ! auto_inc_dec_reg_p (r, m))
1212 forbidden_inc_dec_class[i] = 1;
1213 }
1214 }
1215 }
1216 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1217
1218 /* Normally we scan the insns once and determine the best class to use for
1219 each register. However, if -fexpensive_optimizations are on, we do so
1220 twice, the second time using the tentative best classes to guide the
1221 selection. */
1222
1223 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1224 {
1225 basic_block bb;
1226
1227 if (dump)
1228 fprintf (dump, "\n\nPass %i\n\n",pass);
1229 /* Zero out our accumulation of the cost of each class for each reg. */
1230
1231 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1232
1233 #ifdef FORBIDDEN_INC_DEC_CLASSES
1234 memset (in_inc_dec, 0, nregs);
1235 #endif
1236
1237 /* Scan the instructions and record each time it would
1238 save code to put a certain register in a certain class. */
1239
1240 if (!optimize)
1241 {
1242 frequency = REG_FREQ_MAX;
1243 for (insn = f; insn; insn = NEXT_INSN (insn))
1244 insn = scan_one_insn (insn, pass);
1245 }
1246 else
1247 FOR_EACH_BB (bb)
1248 {
1249 /* Show that an insn inside a loop is likely to be executed three
1250 times more than insns outside a loop. This is much more
1251 aggressive than the assumptions made elsewhere and is being
1252 tried as an experiment. */
1253 frequency = REG_FREQ_FROM_BB (bb);
1254 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1255 {
1256 insn = scan_one_insn (insn, pass);
1257 if (insn == bb->end)
1258 break;
1259 }
1260 }
1261
1262 /* Now for each register look at how desirable each class is
1263 and find which class is preferred. Store that in
1264 `prefclass'. Record in `altclass' the largest register
1265 class any of whose registers is better than memory. */
1266
1267 if (pass == 0)
1268 reg_pref = reg_pref_buffer;
1269
1270 if (dump)
1271 {
1272 dump_regclass (dump);
1273 fprintf (dump,"\n");
1274 }
1275 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1276 {
1277 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1278 enum reg_class best = ALL_REGS, alt = NO_REGS;
1279 /* This is an enum reg_class, but we call it an int
1280 to save lots of casts. */
1281 int class;
1282 struct costs *p = &costs[i];
1283
1284 /* In non-optimizing compilation REG_N_REFS is not initialized
1285 yet. */
1286 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1287 continue;
1288
1289 for (class = (int) ALL_REGS - 1; class > 0; class--)
1290 {
1291 /* Ignore classes that are too small for this operand or
1292 invalid for an operand that was auto-incremented. */
1293 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1294 #ifdef FORBIDDEN_INC_DEC_CLASSES
1295 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1296 #endif
1297 #ifdef CANNOT_CHANGE_MODE_CLASS
1298 || invalid_mode_change_p (i, (enum reg_class) class,
1299 PSEUDO_REGNO_MODE (i))
1300 #endif
1301 )
1302 ;
1303 else if (p->cost[class] < best_cost)
1304 {
1305 best_cost = p->cost[class];
1306 best = (enum reg_class) class;
1307 }
1308 else if (p->cost[class] == best_cost)
1309 best = reg_class_subunion[(int) best][class];
1310 }
1311
1312 /* Record the alternate register class; i.e., a class for which
1313 every register in it is better than using memory. If adding a
1314 class would make a smaller class (i.e., no union of just those
1315 classes exists), skip that class. The major unions of classes
1316 should be provided as a register class. Don't do this if we
1317 will be doing it again later. */
1318
1319 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1320 for (class = 0; class < N_REG_CLASSES; class++)
1321 if (p->cost[class] < p->mem_cost
1322 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1323 > reg_class_size[(int) alt])
1324 #ifdef FORBIDDEN_INC_DEC_CLASSES
1325 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1326 #endif
1327 #ifdef CANNOT_CHANGE_MODE_CLASS
1328 && ! invalid_mode_change_p (i, (enum reg_class) class,
1329 PSEUDO_REGNO_MODE (i))
1330 #endif
1331 )
1332 alt = reg_class_subunion[(int) alt][class];
1333
1334 /* If we don't add any classes, nothing to try. */
1335 if (alt == best)
1336 alt = NO_REGS;
1337
1338 if (dump
1339 && (reg_pref[i].prefclass != (int) best
1340 || reg_pref[i].altclass != (int) alt))
1341 {
1342 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1343 fprintf (dump, " Register %i", i);
1344 if (alt == ALL_REGS || best == ALL_REGS)
1345 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1346 else if (alt == NO_REGS)
1347 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1348 else
1349 fprintf (dump, " pref %s, else %s\n",
1350 reg_class_names[(int) best],
1351 reg_class_names[(int) alt]);
1352 }
1353
1354 /* We cast to (int) because (char) hits bugs in some compilers. */
1355 reg_pref[i].prefclass = (int) best;
1356 reg_pref[i].altclass = (int) alt;
1357 }
1358 }
1359
1360 #ifdef FORBIDDEN_INC_DEC_CLASSES
1361 free (in_inc_dec);
1362 #endif
1363 free (costs);
1364 }
1365 \f
1366 /* Record the cost of using memory or registers of various classes for
1367 the operands in INSN.
1368
1369 N_ALTS is the number of alternatives.
1370
1371 N_OPS is the number of operands.
1372
1373 OPS is an array of the operands.
1374
1375 MODES are the modes of the operands, in case any are VOIDmode.
1376
1377 CONSTRAINTS are the constraints to use for the operands. This array
1378 is modified by this procedure.
1379
1380 This procedure works alternative by alternative. For each alternative
1381 we assume that we will be able to allocate all pseudos to their ideal
1382 register class and calculate the cost of using that alternative. Then
1383 we compute for each operand that is a pseudo-register, the cost of
1384 having the pseudo allocated to each register class and using it in that
1385 alternative. To this cost is added the cost of the alternative.
1386
1387 The cost of each class for this insn is its lowest cost among all the
1388 alternatives. */
1389
1390 static void
1391 record_reg_classes (n_alts, n_ops, ops, modes,
1392 constraints, insn, op_costs, reg_pref)
1393 int n_alts;
1394 int n_ops;
1395 rtx *ops;
1396 enum machine_mode *modes;
1397 const char **constraints;
1398 rtx insn;
1399 struct costs *op_costs;
1400 struct reg_pref *reg_pref;
1401 {
1402 int alt;
1403 int i, j;
1404 rtx set;
1405
1406 /* Process each alternative, each time minimizing an operand's cost with
1407 the cost for each operand in that alternative. */
1408
1409 for (alt = 0; alt < n_alts; alt++)
1410 {
1411 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1412 int alt_fail = 0;
1413 int alt_cost = 0;
1414 enum reg_class classes[MAX_RECOG_OPERANDS];
1415 int allows_mem[MAX_RECOG_OPERANDS];
1416 int class;
1417
1418 for (i = 0; i < n_ops; i++)
1419 {
1420 const char *p = constraints[i];
1421 rtx op = ops[i];
1422 enum machine_mode mode = modes[i];
1423 int allows_addr = 0;
1424 int win = 0;
1425 unsigned char c;
1426
1427 /* Initially show we know nothing about the register class. */
1428 classes[i] = NO_REGS;
1429 allows_mem[i] = 0;
1430
1431 /* If this operand has no constraints at all, we can conclude
1432 nothing about it since anything is valid. */
1433
1434 if (*p == 0)
1435 {
1436 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1437 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1438
1439 continue;
1440 }
1441
1442 /* If this alternative is only relevant when this operand
1443 matches a previous operand, we do different things depending
1444 on whether this operand is a pseudo-reg or not. We must process
1445 any modifiers for the operand before we can make this test. */
1446
1447 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1448 p++;
1449
1450 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1451 {
1452 /* Copy class and whether memory is allowed from the matching
1453 alternative. Then perform any needed cost computations
1454 and/or adjustments. */
1455 j = p[0] - '0';
1456 classes[i] = classes[j];
1457 allows_mem[i] = allows_mem[j];
1458
1459 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1460 {
1461 /* If this matches the other operand, we have no added
1462 cost and we win. */
1463 if (rtx_equal_p (ops[j], op))
1464 win = 1;
1465
1466 /* If we can put the other operand into a register, add to
1467 the cost of this alternative the cost to copy this
1468 operand to the register used for the other operand. */
1469
1470 else if (classes[j] != NO_REGS)
1471 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1472 }
1473 else if (GET_CODE (ops[j]) != REG
1474 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1475 {
1476 /* This op is a pseudo but the one it matches is not. */
1477
1478 /* If we can't put the other operand into a register, this
1479 alternative can't be used. */
1480
1481 if (classes[j] == NO_REGS)
1482 alt_fail = 1;
1483
1484 /* Otherwise, add to the cost of this alternative the cost
1485 to copy the other operand to the register used for this
1486 operand. */
1487
1488 else
1489 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1490 }
1491 else
1492 {
1493 /* The costs of this operand are not the same as the other
1494 operand since move costs are not symmetric. Moreover,
1495 if we cannot tie them, this alternative needs to do a
1496 copy, which is one instruction. */
1497
1498 struct costs *pp = &this_op_costs[i];
1499
1500 for (class = 0; class < N_REG_CLASSES; class++)
1501 pp->cost[class]
1502 = ((recog_data.operand_type[i] != OP_OUT
1503 ? may_move_in_cost[mode][class][(int) classes[i]]
1504 : 0)
1505 + (recog_data.operand_type[i] != OP_IN
1506 ? may_move_out_cost[mode][(int) classes[i]][class]
1507 : 0));
1508
1509 /* If the alternative actually allows memory, make things
1510 a bit cheaper since we won't need an extra insn to
1511 load it. */
1512
1513 pp->mem_cost
1514 = ((recog_data.operand_type[i] != OP_IN
1515 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1516 : 0)
1517 + (recog_data.operand_type[i] != OP_OUT
1518 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1519 : 0) - allows_mem[i]);
1520
1521 /* If we have assigned a class to this register in our
1522 first pass, add a cost to this alternative corresponding
1523 to what we would add if this register were not in the
1524 appropriate class. */
1525
1526 if (reg_pref)
1527 alt_cost
1528 += (may_move_in_cost[mode]
1529 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1530 [(int) classes[i]]);
1531
1532 if (REGNO (ops[i]) != REGNO (ops[j])
1533 && ! find_reg_note (insn, REG_DEAD, op))
1534 alt_cost += 2;
1535
1536 /* This is in place of ordinary cost computation
1537 for this operand, so skip to the end of the
1538 alternative (should be just one character). */
1539 while (*p && *p++ != ',')
1540 ;
1541
1542 constraints[i] = p;
1543 continue;
1544 }
1545 }
1546
1547 /* Scan all the constraint letters. See if the operand matches
1548 any of the constraints. Collect the valid register classes
1549 and see if this operand accepts memory. */
1550
1551 while ((c = *p))
1552 {
1553 switch (c)
1554 {
1555 case ',':
1556 break;
1557 case '*':
1558 /* Ignore the next letter for this pass. */
1559 c = *++p;
1560 break;
1561
1562 case '?':
1563 alt_cost += 2;
1564 case '!': case '#': case '&':
1565 case '0': case '1': case '2': case '3': case '4':
1566 case '5': case '6': case '7': case '8': case '9':
1567 break;
1568
1569 case 'p':
1570 allows_addr = 1;
1571 win = address_operand (op, GET_MODE (op));
1572 /* We know this operand is an address, so we want it to be
1573 allocated to a register that can be the base of an
1574 address, ie BASE_REG_CLASS. */
1575 classes[i]
1576 = reg_class_subunion[(int) classes[i]]
1577 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1578 break;
1579
1580 case 'm': case 'o': case 'V':
1581 /* It doesn't seem worth distinguishing between offsettable
1582 and non-offsettable addresses here. */
1583 allows_mem[i] = 1;
1584 if (GET_CODE (op) == MEM)
1585 win = 1;
1586 break;
1587
1588 case '<':
1589 if (GET_CODE (op) == MEM
1590 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1591 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1592 win = 1;
1593 break;
1594
1595 case '>':
1596 if (GET_CODE (op) == MEM
1597 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1598 || GET_CODE (XEXP (op, 0)) == POST_INC))
1599 win = 1;
1600 break;
1601
1602 case 'E':
1603 case 'F':
1604 if (GET_CODE (op) == CONST_DOUBLE
1605 || (GET_CODE (op) == CONST_VECTOR
1606 && (GET_MODE_CLASS (GET_MODE (op))
1607 == MODE_VECTOR_FLOAT)))
1608 win = 1;
1609 break;
1610
1611 case 'G':
1612 case 'H':
1613 if (GET_CODE (op) == CONST_DOUBLE
1614 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1615 win = 1;
1616 break;
1617
1618 case 's':
1619 if (GET_CODE (op) == CONST_INT
1620 || (GET_CODE (op) == CONST_DOUBLE
1621 && GET_MODE (op) == VOIDmode))
1622 break;
1623 case 'i':
1624 if (CONSTANT_P (op)
1625 #ifdef LEGITIMATE_PIC_OPERAND_P
1626 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1627 #endif
1628 )
1629 win = 1;
1630 break;
1631
1632 case 'n':
1633 if (GET_CODE (op) == CONST_INT
1634 || (GET_CODE (op) == CONST_DOUBLE
1635 && GET_MODE (op) == VOIDmode))
1636 win = 1;
1637 break;
1638
1639 case 'I':
1640 case 'J':
1641 case 'K':
1642 case 'L':
1643 case 'M':
1644 case 'N':
1645 case 'O':
1646 case 'P':
1647 if (GET_CODE (op) == CONST_INT
1648 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1649 win = 1;
1650 break;
1651
1652 case 'X':
1653 win = 1;
1654 break;
1655
1656 case 'g':
1657 if (GET_CODE (op) == MEM
1658 || (CONSTANT_P (op)
1659 #ifdef LEGITIMATE_PIC_OPERAND_P
1660 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1661 #endif
1662 ))
1663 win = 1;
1664 allows_mem[i] = 1;
1665 case 'r':
1666 classes[i]
1667 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1668 break;
1669
1670 default:
1671 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1672 classes[i]
1673 = reg_class_subunion[(int) classes[i]]
1674 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1675 #ifdef EXTRA_CONSTRAINT_STR
1676 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1677 win = 1;
1678
1679 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1680 {
1681 /* Every MEM can be reloaded to fit. */
1682 allows_mem[i] = 1;
1683 if (GET_CODE (op) == MEM)
1684 win = 1;
1685 }
1686 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1687 {
1688 /* Every address can be reloaded to fit. */
1689 allows_addr = 1;
1690 if (address_operand (op, GET_MODE (op)))
1691 win = 1;
1692 /* We know this operand is an address, so we want it to
1693 be allocated to a register that can be the base of an
1694 address, ie BASE_REG_CLASS. */
1695 classes[i]
1696 = reg_class_subunion[(int) classes[i]]
1697 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1698 }
1699 #endif
1700 break;
1701 }
1702 p += CONSTRAINT_LEN (c, p);
1703 if (c == ',')
1704 break;
1705 }
1706
1707 constraints[i] = p;
1708
1709 /* How we account for this operand now depends on whether it is a
1710 pseudo register or not. If it is, we first check if any
1711 register classes are valid. If not, we ignore this alternative,
1712 since we want to assume that all pseudos get allocated for
1713 register preferencing. If some register class is valid, compute
1714 the costs of moving the pseudo into that class. */
1715
1716 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1717 {
1718 if (classes[i] == NO_REGS)
1719 {
1720 /* We must always fail if the operand is a REG, but
1721 we did not find a suitable class.
1722
1723 Otherwise we may perform an uninitialized read
1724 from this_op_costs after the `continue' statement
1725 below. */
1726 alt_fail = 1;
1727 }
1728 else
1729 {
1730 struct costs *pp = &this_op_costs[i];
1731
1732 for (class = 0; class < N_REG_CLASSES; class++)
1733 pp->cost[class]
1734 = ((recog_data.operand_type[i] != OP_OUT
1735 ? may_move_in_cost[mode][class][(int) classes[i]]
1736 : 0)
1737 + (recog_data.operand_type[i] != OP_IN
1738 ? may_move_out_cost[mode][(int) classes[i]][class]
1739 : 0));
1740
1741 /* If the alternative actually allows memory, make things
1742 a bit cheaper since we won't need an extra insn to
1743 load it. */
1744
1745 pp->mem_cost
1746 = ((recog_data.operand_type[i] != OP_IN
1747 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1748 : 0)
1749 + (recog_data.operand_type[i] != OP_OUT
1750 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1751 : 0) - allows_mem[i]);
1752
1753 /* If we have assigned a class to this register in our
1754 first pass, add a cost to this alternative corresponding
1755 to what we would add if this register were not in the
1756 appropriate class. */
1757
1758 if (reg_pref)
1759 alt_cost
1760 += (may_move_in_cost[mode]
1761 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1762 [(int) classes[i]]);
1763 }
1764 }
1765
1766 /* Otherwise, if this alternative wins, either because we
1767 have already determined that or if we have a hard register of
1768 the proper class, there is no cost for this alternative. */
1769
1770 else if (win
1771 || (GET_CODE (op) == REG
1772 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1773 ;
1774
1775 /* If registers are valid, the cost of this alternative includes
1776 copying the object to and/or from a register. */
1777
1778 else if (classes[i] != NO_REGS)
1779 {
1780 if (recog_data.operand_type[i] != OP_OUT)
1781 alt_cost += copy_cost (op, mode, classes[i], 1);
1782
1783 if (recog_data.operand_type[i] != OP_IN)
1784 alt_cost += copy_cost (op, mode, classes[i], 0);
1785 }
1786
1787 /* The only other way this alternative can be used is if this is a
1788 constant that could be placed into memory. */
1789
1790 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1791 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1792 else
1793 alt_fail = 1;
1794 }
1795
1796 if (alt_fail)
1797 continue;
1798
1799 /* Finally, update the costs with the information we've calculated
1800 about this alternative. */
1801
1802 for (i = 0; i < n_ops; i++)
1803 if (GET_CODE (ops[i]) == REG
1804 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1805 {
1806 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1807 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1808
1809 pp->mem_cost = MIN (pp->mem_cost,
1810 (qq->mem_cost + alt_cost) * scale);
1811
1812 for (class = 0; class < N_REG_CLASSES; class++)
1813 pp->cost[class] = MIN (pp->cost[class],
1814 (qq->cost[class] + alt_cost) * scale);
1815 }
1816 }
1817
1818 /* If this insn is a single set copying operand 1 to operand 0
1819 and one operand is a pseudo with the other a hard reg or a pseudo
1820 that prefers a register that is in its own register class then
1821 we may want to adjust the cost of that register class to -1.
1822
1823 Avoid the adjustment if the source does not die to avoid stressing of
1824 register allocator by preferrencing two coliding registers into single
1825 class.
1826
1827 Also avoid the adjustment if a copy between registers of the class
1828 is expensive (ten times the cost of a default copy is considered
1829 arbitrarily expensive). This avoids losing when the preferred class
1830 is very expensive as the source of a copy instruction. */
1831
1832 if ((set = single_set (insn)) != 0
1833 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1834 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1835 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1836 for (i = 0; i <= 1; i++)
1837 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1838 {
1839 unsigned int regno = REGNO (ops[!i]);
1840 enum machine_mode mode = GET_MODE (ops[!i]);
1841 int class;
1842 unsigned int nr;
1843
1844 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1845 {
1846 enum reg_class pref = reg_pref[regno].prefclass;
1847
1848 if ((reg_class_size[(unsigned char) pref]
1849 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1850 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1851 op_costs[i].cost[(unsigned char) pref] = -1;
1852 }
1853 else if (regno < FIRST_PSEUDO_REGISTER)
1854 for (class = 0; class < N_REG_CLASSES; class++)
1855 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1856 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1857 {
1858 if (reg_class_size[class] == 1)
1859 op_costs[i].cost[class] = -1;
1860 else
1861 {
1862 for (nr = 0; nr < (unsigned) HARD_REGNO_NREGS (regno, mode); nr++)
1863 {
1864 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1865 regno + nr))
1866 break;
1867 }
1868
1869 if (nr == (unsigned) HARD_REGNO_NREGS (regno,mode))
1870 op_costs[i].cost[class] = -1;
1871 }
1872 }
1873 }
1874 }
1875 \f
1876 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1877 TO_P is zero) a register of class CLASS in mode MODE.
1878
1879 X must not be a pseudo. */
1880
1881 static int
1882 copy_cost (x, mode, class, to_p)
1883 rtx x;
1884 enum machine_mode mode ATTRIBUTE_UNUSED;
1885 enum reg_class class;
1886 int to_p ATTRIBUTE_UNUSED;
1887 {
1888 #ifdef HAVE_SECONDARY_RELOADS
1889 enum reg_class secondary_class = NO_REGS;
1890 #endif
1891
1892 /* If X is a SCRATCH, there is actually nothing to move since we are
1893 assuming optimal allocation. */
1894
1895 if (GET_CODE (x) == SCRATCH)
1896 return 0;
1897
1898 /* Get the class we will actually use for a reload. */
1899 class = PREFERRED_RELOAD_CLASS (x, class);
1900
1901 #ifdef HAVE_SECONDARY_RELOADS
1902 /* If we need a secondary reload (we assume here that we are using
1903 the secondary reload as an intermediate, not a scratch register), the
1904 cost is that to load the input into the intermediate register, then
1905 to copy them. We use a special value of TO_P to avoid recursion. */
1906
1907 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1908 if (to_p == 1)
1909 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1910 #endif
1911
1912 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1913 if (! to_p)
1914 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1915 #endif
1916
1917 if (secondary_class != NO_REGS)
1918 return (move_cost[mode][(int) secondary_class][(int) class]
1919 + copy_cost (x, mode, secondary_class, 2));
1920 #endif /* HAVE_SECONDARY_RELOADS */
1921
1922 /* For memory, use the memory move cost, for (hard) registers, use the
1923 cost to move between the register classes, and use 2 for everything
1924 else (constants). */
1925
1926 if (GET_CODE (x) == MEM || class == NO_REGS)
1927 return MEMORY_MOVE_COST (mode, class, to_p);
1928
1929 else if (GET_CODE (x) == REG)
1930 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1931
1932 else
1933 /* If this is a constant, we may eventually want to call rtx_cost here. */
1934 return COSTS_N_INSNS (1);
1935 }
1936 \f
1937 /* Record the pseudo registers we must reload into hard registers
1938 in a subexpression of a memory address, X.
1939
1940 CLASS is the class that the register needs to be in and is either
1941 BASE_REG_CLASS or INDEX_REG_CLASS.
1942
1943 SCALE is twice the amount to multiply the cost by (it is twice so we
1944 can represent half-cost adjustments). */
1945
1946 static void
1947 record_address_regs (x, class, scale)
1948 rtx x;
1949 enum reg_class class;
1950 int scale;
1951 {
1952 enum rtx_code code = GET_CODE (x);
1953
1954 switch (code)
1955 {
1956 case CONST_INT:
1957 case CONST:
1958 case CC0:
1959 case PC:
1960 case SYMBOL_REF:
1961 case LABEL_REF:
1962 return;
1963
1964 case PLUS:
1965 /* When we have an address that is a sum,
1966 we must determine whether registers are "base" or "index" regs.
1967 If there is a sum of two registers, we must choose one to be
1968 the "base". Luckily, we can use the REG_POINTER to make a good
1969 choice most of the time. We only need to do this on machines
1970 that can have two registers in an address and where the base
1971 and index register classes are different.
1972
1973 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1974 that seems bogus since it should only be set when we are sure
1975 the register is being used as a pointer. */
1976
1977 {
1978 rtx arg0 = XEXP (x, 0);
1979 rtx arg1 = XEXP (x, 1);
1980 enum rtx_code code0 = GET_CODE (arg0);
1981 enum rtx_code code1 = GET_CODE (arg1);
1982
1983 /* Look inside subregs. */
1984 if (code0 == SUBREG)
1985 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1986 if (code1 == SUBREG)
1987 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1988
1989 /* If this machine only allows one register per address, it must
1990 be in the first operand. */
1991
1992 if (MAX_REGS_PER_ADDRESS == 1)
1993 record_address_regs (arg0, class, scale);
1994
1995 /* If index and base registers are the same on this machine, just
1996 record registers in any non-constant operands. We assume here,
1997 as well as in the tests below, that all addresses are in
1998 canonical form. */
1999
2000 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
2001 {
2002 record_address_regs (arg0, class, scale);
2003 if (! CONSTANT_P (arg1))
2004 record_address_regs (arg1, class, scale);
2005 }
2006
2007 /* If the second operand is a constant integer, it doesn't change
2008 what class the first operand must be. */
2009
2010 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2011 record_address_regs (arg0, class, scale);
2012
2013 /* If the second operand is a symbolic constant, the first operand
2014 must be an index register. */
2015
2016 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2017 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2018
2019 /* If both operands are registers but one is already a hard register
2020 of index or base class, give the other the class that the hard
2021 register is not. */
2022
2023 #ifdef REG_OK_FOR_BASE_P
2024 else if (code0 == REG && code1 == REG
2025 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2026 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2027 record_address_regs (arg1,
2028 REG_OK_FOR_BASE_P (arg0)
2029 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2030 scale);
2031 else if (code0 == REG && code1 == REG
2032 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2033 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2034 record_address_regs (arg0,
2035 REG_OK_FOR_BASE_P (arg1)
2036 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2037 scale);
2038 #endif
2039
2040 /* If one operand is known to be a pointer, it must be the base
2041 with the other operand the index. Likewise if the other operand
2042 is a MULT. */
2043
2044 else if ((code0 == REG && REG_POINTER (arg0))
2045 || code1 == MULT)
2046 {
2047 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2048 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2049 }
2050 else if ((code1 == REG && REG_POINTER (arg1))
2051 || code0 == MULT)
2052 {
2053 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2054 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2055 }
2056
2057 /* Otherwise, count equal chances that each might be a base
2058 or index register. This case should be rare. */
2059
2060 else
2061 {
2062 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2063 scale / 2);
2064 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2065 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2066 scale / 2);
2067 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2068 }
2069 }
2070 break;
2071
2072 /* Double the importance of a pseudo register that is incremented
2073 or decremented, since it would take two extra insns
2074 if it ends up in the wrong place. */
2075 case POST_MODIFY:
2076 case PRE_MODIFY:
2077 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2078 2 * scale);
2079 if (REG_P (XEXP (XEXP (x, 1), 1)))
2080 record_address_regs (XEXP (XEXP (x, 1), 1),
2081 INDEX_REG_CLASS, 2 * scale);
2082 break;
2083
2084 case POST_INC:
2085 case PRE_INC:
2086 case POST_DEC:
2087 case PRE_DEC:
2088 /* Double the importance of a pseudo register that is incremented
2089 or decremented, since it would take two extra insns
2090 if it ends up in the wrong place. If the operand is a pseudo,
2091 show it is being used in an INC_DEC context. */
2092
2093 #ifdef FORBIDDEN_INC_DEC_CLASSES
2094 if (GET_CODE (XEXP (x, 0)) == REG
2095 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2096 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2097 #endif
2098
2099 record_address_regs (XEXP (x, 0), class, 2 * scale);
2100 break;
2101
2102 case REG:
2103 {
2104 struct costs *pp = &costs[REGNO (x)];
2105 int i;
2106
2107 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2108
2109 for (i = 0; i < N_REG_CLASSES; i++)
2110 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2111 }
2112 break;
2113
2114 default:
2115 {
2116 const char *fmt = GET_RTX_FORMAT (code);
2117 int i;
2118 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2119 if (fmt[i] == 'e')
2120 record_address_regs (XEXP (x, i), class, scale);
2121 }
2122 }
2123 }
2124 \f
2125 #ifdef FORBIDDEN_INC_DEC_CLASSES
2126
2127 /* Return 1 if REG is valid as an auto-increment memory reference
2128 to an object of MODE. */
2129
2130 static int
2131 auto_inc_dec_reg_p (reg, mode)
2132 rtx reg;
2133 enum machine_mode mode;
2134 {
2135 if (HAVE_POST_INCREMENT
2136 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2137 return 1;
2138
2139 if (HAVE_POST_DECREMENT
2140 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2141 return 1;
2142
2143 if (HAVE_PRE_INCREMENT
2144 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2145 return 1;
2146
2147 if (HAVE_PRE_DECREMENT
2148 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2149 return 1;
2150
2151 return 0;
2152 }
2153 #endif
2154 \f
2155 static short *renumber;
2156 static size_t regno_allocated;
2157 static unsigned int reg_n_max;
2158
2159 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2160 reg_scan and flow_analysis that are indexed by the register number. If
2161 NEW_P is nonzero, initialize all of the registers, otherwise only
2162 initialize the new registers allocated. The same table is kept from
2163 function to function, only reallocating it when we need more room. If
2164 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2165
2166 void
2167 allocate_reg_info (num_regs, new_p, renumber_p)
2168 size_t num_regs;
2169 int new_p;
2170 int renumber_p;
2171 {
2172 size_t size_info;
2173 size_t size_renumber;
2174 size_t min = (new_p) ? 0 : reg_n_max;
2175 struct reg_info_data *reg_data;
2176
2177 if (num_regs > regno_allocated)
2178 {
2179 size_t old_allocated = regno_allocated;
2180
2181 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2182 size_renumber = regno_allocated * sizeof (short);
2183
2184 if (!reg_n_info)
2185 {
2186 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2187 renumber = (short *) xmalloc (size_renumber);
2188 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2189 * sizeof (struct reg_pref));
2190 }
2191
2192 else
2193 {
2194 VARRAY_GROW (reg_n_info, regno_allocated);
2195
2196 if (new_p) /* if we're zapping everything, no need to realloc */
2197 {
2198 free ((char *) renumber);
2199 free ((char *) reg_pref);
2200 renumber = (short *) xmalloc (size_renumber);
2201 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2202 * sizeof (struct reg_pref));
2203 }
2204
2205 else
2206 {
2207 renumber = (short *) xrealloc ((char *) renumber, size_renumber);
2208 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *) reg_pref_buffer,
2209 regno_allocated
2210 * sizeof (struct reg_pref));
2211 }
2212 }
2213
2214 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2215 + sizeof (struct reg_info_data) - sizeof (reg_info);
2216 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2217 reg_data->min_index = old_allocated;
2218 reg_data->max_index = regno_allocated - 1;
2219 reg_data->next = reg_info_head;
2220 reg_info_head = reg_data;
2221 }
2222
2223 reg_n_max = num_regs;
2224 if (min < num_regs)
2225 {
2226 /* Loop through each of the segments allocated for the actual
2227 reg_info pages, and set up the pointers, zero the pages, etc. */
2228 for (reg_data = reg_info_head;
2229 reg_data && reg_data->max_index >= min;
2230 reg_data = reg_data->next)
2231 {
2232 size_t min_index = reg_data->min_index;
2233 size_t max_index = reg_data->max_index;
2234 size_t max = MIN (max_index, num_regs);
2235 size_t local_min = min - min_index;
2236 size_t i;
2237
2238 if (reg_data->min_index > num_regs)
2239 continue;
2240
2241 if (min < min_index)
2242 local_min = 0;
2243 if (!reg_data->used_p) /* page just allocated with calloc */
2244 reg_data->used_p = 1; /* no need to zero */
2245 else
2246 memset ((char *) &reg_data->data[local_min], 0,
2247 sizeof (reg_info) * (max - min_index - local_min + 1));
2248
2249 for (i = min_index+local_min; i <= max; i++)
2250 {
2251 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2252 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2253 renumber[i] = -1;
2254 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2255 reg_pref_buffer[i].altclass = (char) NO_REGS;
2256 }
2257 }
2258 }
2259
2260 /* If {pref,alt}class have already been allocated, update the pointers to
2261 the newly realloced ones. */
2262 if (reg_pref)
2263 reg_pref = reg_pref_buffer;
2264
2265 if (renumber_p)
2266 reg_renumber = renumber;
2267
2268 /* Tell the regset code about the new number of registers. */
2269 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2270 }
2271
2272 /* Free up the space allocated by allocate_reg_info. */
2273 void
2274 free_reg_info ()
2275 {
2276 if (reg_n_info)
2277 {
2278 struct reg_info_data *reg_data;
2279 struct reg_info_data *reg_next;
2280
2281 VARRAY_FREE (reg_n_info);
2282 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2283 {
2284 reg_next = reg_data->next;
2285 free ((char *) reg_data);
2286 }
2287
2288 free (reg_pref_buffer);
2289 reg_pref_buffer = (struct reg_pref *) 0;
2290 reg_info_head = (struct reg_info_data *) 0;
2291 renumber = (short *) 0;
2292 }
2293 regno_allocated = 0;
2294 reg_n_max = 0;
2295 }
2296 \f
2297 /* This is the `regscan' pass of the compiler, run just before cse
2298 and again just before loop.
2299
2300 It finds the first and last use of each pseudo-register
2301 and records them in the vectors regno_first_uid, regno_last_uid
2302 and counts the number of sets in the vector reg_n_sets.
2303
2304 REPEAT is nonzero the second time this is called. */
2305
2306 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2307 Always at least 3, since the combiner could put that many together
2308 and we want this to remain correct for all the remaining passes.
2309 This corresponds to the maximum number of times note_stores will call
2310 a function for any insn. */
2311
2312 int max_parallel;
2313
2314 /* Used as a temporary to record the largest number of registers in
2315 PARALLEL in a SET_DEST. This is added to max_parallel. */
2316
2317 static int max_set_parallel;
2318
2319 void
2320 reg_scan (f, nregs, repeat)
2321 rtx f;
2322 unsigned int nregs;
2323 int repeat ATTRIBUTE_UNUSED;
2324 {
2325 rtx insn;
2326
2327 allocate_reg_info (nregs, TRUE, FALSE);
2328 max_parallel = 3;
2329 max_set_parallel = 0;
2330
2331 for (insn = f; insn; insn = NEXT_INSN (insn))
2332 if (GET_CODE (insn) == INSN
2333 || GET_CODE (insn) == CALL_INSN
2334 || GET_CODE (insn) == JUMP_INSN)
2335 {
2336 if (GET_CODE (PATTERN (insn)) == PARALLEL
2337 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2338 max_parallel = XVECLEN (PATTERN (insn), 0);
2339 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2340
2341 if (REG_NOTES (insn))
2342 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2343 }
2344
2345 max_parallel += max_set_parallel;
2346 }
2347
2348 /* Update 'regscan' information by looking at the insns
2349 from FIRST to LAST. Some new REGs have been created,
2350 and any REG with number greater than OLD_MAX_REGNO is
2351 such a REG. We only update information for those. */
2352
2353 void
2354 reg_scan_update (first, last, old_max_regno)
2355 rtx first;
2356 rtx last;
2357 unsigned int old_max_regno;
2358 {
2359 rtx insn;
2360
2361 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2362
2363 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2364 if (GET_CODE (insn) == INSN
2365 || GET_CODE (insn) == CALL_INSN
2366 || GET_CODE (insn) == JUMP_INSN)
2367 {
2368 if (GET_CODE (PATTERN (insn)) == PARALLEL
2369 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2370 max_parallel = XVECLEN (PATTERN (insn), 0);
2371 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2372
2373 if (REG_NOTES (insn))
2374 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2375 }
2376 }
2377
2378 /* X is the expression to scan. INSN is the insn it appears in.
2379 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2380 We should only record information for REGs with numbers
2381 greater than or equal to MIN_REGNO. */
2382
2383 static void
2384 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2385 rtx x;
2386 rtx insn;
2387 int note_flag;
2388 unsigned int min_regno;
2389 {
2390 enum rtx_code code;
2391 rtx dest;
2392 rtx note;
2393
2394 if (!x)
2395 return;
2396 code = GET_CODE (x);
2397 switch (code)
2398 {
2399 case CONST:
2400 case CONST_INT:
2401 case CONST_DOUBLE:
2402 case CONST_VECTOR:
2403 case CC0:
2404 case PC:
2405 case SYMBOL_REF:
2406 case LABEL_REF:
2407 case ADDR_VEC:
2408 case ADDR_DIFF_VEC:
2409 return;
2410
2411 case REG:
2412 {
2413 unsigned int regno = REGNO (x);
2414
2415 if (regno >= min_regno)
2416 {
2417 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2418 if (!note_flag)
2419 REGNO_LAST_UID (regno) = INSN_UID (insn);
2420 if (REGNO_FIRST_UID (regno) == 0)
2421 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2422 /* If we are called by reg_scan_update() (indicated by min_regno
2423 being set), we also need to update the reference count. */
2424 if (min_regno)
2425 REG_N_REFS (regno)++;
2426 }
2427 }
2428 break;
2429
2430 case EXPR_LIST:
2431 if (XEXP (x, 0))
2432 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2433 if (XEXP (x, 1))
2434 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2435 break;
2436
2437 case INSN_LIST:
2438 if (XEXP (x, 1))
2439 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2440 break;
2441
2442 case CLOBBER:
2443 {
2444 rtx reg = XEXP (x, 0);
2445 if (REG_P (reg)
2446 && REGNO (reg) >= min_regno)
2447 {
2448 REG_N_SETS (REGNO (reg))++;
2449 REG_N_REFS (REGNO (reg))++;
2450 }
2451 }
2452 break;
2453
2454 case SET:
2455 /* Count a set of the destination if it is a register. */
2456 for (dest = SET_DEST (x);
2457 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2458 || GET_CODE (dest) == ZERO_EXTEND;
2459 dest = XEXP (dest, 0))
2460 ;
2461
2462 /* For a PARALLEL, record the number of things (less the usual one for a
2463 SET) that are set. */
2464 if (GET_CODE (dest) == PARALLEL)
2465 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2466
2467 if (GET_CODE (dest) == REG
2468 && REGNO (dest) >= min_regno)
2469 {
2470 REG_N_SETS (REGNO (dest))++;
2471 REG_N_REFS (REGNO (dest))++;
2472 }
2473
2474 /* If this is setting a pseudo from another pseudo or the sum of a
2475 pseudo and a constant integer and the other pseudo is known to be
2476 a pointer, set the destination to be a pointer as well.
2477
2478 Likewise if it is setting the destination from an address or from a
2479 value equivalent to an address or to the sum of an address and
2480 something else.
2481
2482 But don't do any of this if the pseudo corresponds to a user
2483 variable since it should have already been set as a pointer based
2484 on the type. */
2485
2486 if (GET_CODE (SET_DEST (x)) == REG
2487 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2488 && REGNO (SET_DEST (x)) >= min_regno
2489 /* If the destination pseudo is set more than once, then other
2490 sets might not be to a pointer value (consider access to a
2491 union in two threads of control in the presence of global
2492 optimizations). So only set REG_POINTER on the destination
2493 pseudo if this is the only set of that pseudo. */
2494 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2495 && ! REG_USERVAR_P (SET_DEST (x))
2496 && ! REG_POINTER (SET_DEST (x))
2497 && ((GET_CODE (SET_SRC (x)) == REG
2498 && REG_POINTER (SET_SRC (x)))
2499 || ((GET_CODE (SET_SRC (x)) == PLUS
2500 || GET_CODE (SET_SRC (x)) == LO_SUM)
2501 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2502 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2503 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2504 || GET_CODE (SET_SRC (x)) == CONST
2505 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2506 || GET_CODE (SET_SRC (x)) == LABEL_REF
2507 || (GET_CODE (SET_SRC (x)) == HIGH
2508 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2509 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2510 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2511 || ((GET_CODE (SET_SRC (x)) == PLUS
2512 || GET_CODE (SET_SRC (x)) == LO_SUM)
2513 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2514 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2515 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2516 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2517 && (GET_CODE (XEXP (note, 0)) == CONST
2518 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2519 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2520 REG_POINTER (SET_DEST (x)) = 1;
2521
2522 /* If this is setting a register from a register or from a simple
2523 conversion of a register, propagate REG_EXPR. */
2524 if (GET_CODE (dest) == REG)
2525 {
2526 rtx src = SET_SRC (x);
2527
2528 while (GET_CODE (src) == SIGN_EXTEND
2529 || GET_CODE (src) == ZERO_EXTEND
2530 || GET_CODE (src) == TRUNCATE
2531 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2532 src = XEXP (src, 0);
2533
2534 if (!REG_ATTRS (dest) && REG_P (src))
2535 REG_ATTRS (dest) = REG_ATTRS (src);
2536 if (!REG_ATTRS (dest) && GET_CODE (src) == MEM)
2537 set_reg_attrs_from_mem (dest, src);
2538 }
2539
2540 /* ... fall through ... */
2541
2542 default:
2543 {
2544 const char *fmt = GET_RTX_FORMAT (code);
2545 int i;
2546 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2547 {
2548 if (fmt[i] == 'e')
2549 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2550 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2551 {
2552 int j;
2553 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2554 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2555 }
2556 }
2557 }
2558 }
2559 }
2560 \f
2561 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2562 is also in C2. */
2563
2564 int
2565 reg_class_subset_p (c1, c2)
2566 enum reg_class c1;
2567 enum reg_class c2;
2568 {
2569 if (c1 == c2) return 1;
2570
2571 if (c2 == ALL_REGS)
2572 win:
2573 return 1;
2574 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2575 reg_class_contents[(int) c2],
2576 win);
2577 return 0;
2578 }
2579
2580 /* Return nonzero if there is a register that is in both C1 and C2. */
2581
2582 int
2583 reg_classes_intersect_p (c1, c2)
2584 enum reg_class c1;
2585 enum reg_class c2;
2586 {
2587 #ifdef HARD_REG_SET
2588 register
2589 #endif
2590 HARD_REG_SET c;
2591
2592 if (c1 == c2) return 1;
2593
2594 if (c1 == ALL_REGS || c2 == ALL_REGS)
2595 return 1;
2596
2597 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2598 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2599
2600 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2601 return 1;
2602
2603 lose:
2604 return 0;
2605 }
2606
2607 /* Release any memory allocated by register sets. */
2608
2609 void
2610 regset_release_memory ()
2611 {
2612 bitmap_release_memory ();
2613 }
2614
2615 #ifdef CANNOT_CHANGE_MODE_CLASS
2616 /* Set bits in *USED which correspond to registers which can't change
2617 their mode from FROM to any mode in which REGNO was encountered. */
2618
2619 void
2620 cannot_change_mode_set_regs (used, from, regno)
2621 HARD_REG_SET *used;
2622 enum machine_mode from;
2623 unsigned int regno;
2624 {
2625 enum machine_mode to;
2626 enum reg_class class;
2627
2628 for (to = VOIDmode; to < MAX_MACHINE_MODE; ++to)
2629 if (REGNO_REG_SET_P (&subregs_of_mode[to], regno))
2630 {
2631 class = CANNOT_CHANGE_MODE_CLASS (from, to);
2632 if (class != NO_REGS)
2633 IOR_HARD_REG_SET (*used, reg_class_contents [(int) class]);
2634 }
2635 }
2636
2637 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2638 mode. */
2639
2640 bool
2641 invalid_mode_change_p (regno, class, from_mode)
2642 unsigned int regno;
2643 enum reg_class class;
2644 enum machine_mode from_mode;
2645 {
2646 enum machine_mode to_mode;
2647
2648 for (to_mode = 0; to_mode < NUM_MACHINE_MODES; ++to_mode)
2649 if (REGNO_REG_SET_P (&subregs_of_mode[(int) to_mode], regno)
2650 && reg_classes_intersect_p
2651 (class, CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode)))
2652 return 1;
2653 return 0;
2654 }
2655 #endif /* CANNOT_CHANGE_MODE_CLASS */
2656
2657 #include "gt-regclass.h"
This page took 0.160198 seconds and 5 git commands to generate.