]> gcc.gnu.org Git - gcc.git/blob - gcc/recog.c
decl.c: Do not undefine IN_GCC_FRONTEND and do not include expr.h.
[gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "basic-block.h"
39 #include "output.h"
40 #include "reload.h"
41 #include "target.h"
42 #include "timevar.h"
43 #include "tree-pass.h"
44 #include "df.h"
45 #include "toplev.h" /* exact_log2 may be used by targets */
46
47 #ifndef STACK_PUSH_CODE
48 #ifdef STACK_GROWS_DOWNWARD
49 #define STACK_PUSH_CODE PRE_DEC
50 #else
51 #define STACK_PUSH_CODE PRE_INC
52 #endif
53 #endif
54
55 #ifndef STACK_POP_CODE
56 #ifdef STACK_GROWS_DOWNWARD
57 #define STACK_POP_CODE POST_INC
58 #else
59 #define STACK_POP_CODE POST_DEC
60 #endif
61 #endif
62
63 #ifndef HAVE_ATTR_enabled
64 static inline bool
65 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
66 {
67 return true;
68 }
69 #endif
70
71 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
72 static void validate_replace_src_1 (rtx *, void *);
73 static rtx split_insn (rtx);
74
75 /* Nonzero means allow operands to be volatile.
76 This should be 0 if you are generating rtl, such as if you are calling
77 the functions in optabs.c and expmed.c (most of the time).
78 This should be 1 if all valid insns need to be recognized,
79 such as in reginfo.c and final.c and reload.c.
80
81 init_recog and init_recog_no_volatile are responsible for setting this. */
82
83 int volatile_ok;
84
85 struct recog_data recog_data;
86
87 /* Contains a vector of operand_alternative structures for every operand.
88 Set up by preprocess_constraints. */
89 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
90
91 /* On return from `constrain_operands', indicate which alternative
92 was satisfied. */
93
94 int which_alternative;
95
96 /* Nonzero after end of reload pass.
97 Set to 1 or 0 by toplev.c.
98 Controls the significance of (SUBREG (MEM)). */
99
100 int reload_completed;
101
102 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
103 int epilogue_completed;
104
105 /* Initialize data used by the function `recog'.
106 This must be called once in the compilation of a function
107 before any insn recognition may be done in the function. */
108
109 void
110 init_recog_no_volatile (void)
111 {
112 volatile_ok = 0;
113 }
114
115 void
116 init_recog (void)
117 {
118 volatile_ok = 1;
119 }
120
121 \f
122 /* Check that X is an insn-body for an `asm' with operands
123 and that the operands mentioned in it are legitimate. */
124
125 int
126 check_asm_operands (rtx x)
127 {
128 int noperands;
129 rtx *operands;
130 const char **constraints;
131 int i;
132
133 /* Post-reload, be more strict with things. */
134 if (reload_completed)
135 {
136 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
137 extract_insn (make_insn_raw (x));
138 constrain_operands (1);
139 return which_alternative >= 0;
140 }
141
142 noperands = asm_noperands (x);
143 if (noperands < 0)
144 return 0;
145 if (noperands == 0)
146 return 1;
147
148 operands = XALLOCAVEC (rtx, noperands);
149 constraints = XALLOCAVEC (const char *, noperands);
150
151 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
152
153 for (i = 0; i < noperands; i++)
154 {
155 const char *c = constraints[i];
156 if (c[0] == '%')
157 c++;
158 if (! asm_operand_ok (operands[i], c, constraints))
159 return 0;
160 }
161
162 return 1;
163 }
164 \f
165 /* Static data for the next two routines. */
166
167 typedef struct change_t
168 {
169 rtx object;
170 int old_code;
171 rtx *loc;
172 rtx old;
173 bool unshare;
174 } change_t;
175
176 static change_t *changes;
177 static int changes_allocated;
178
179 static int num_changes = 0;
180
181 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
182 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
183 the change is simply made.
184
185 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
186 will be called with the address and mode as parameters. If OBJECT is
187 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
188 the change in place.
189
190 IN_GROUP is nonzero if this is part of a group of changes that must be
191 performed as a group. In that case, the changes will be stored. The
192 function `apply_change_group' will validate and apply the changes.
193
194 If IN_GROUP is zero, this is a single change. Try to recognize the insn
195 or validate the memory reference with the change applied. If the result
196 is not valid for the machine, suppress the change and return zero.
197 Otherwise, perform the change and return 1. */
198
199 static bool
200 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
201 {
202 rtx old = *loc;
203
204 if (old == new_rtx || rtx_equal_p (old, new_rtx))
205 return 1;
206
207 gcc_assert (in_group != 0 || num_changes == 0);
208
209 *loc = new_rtx;
210
211 /* Save the information describing this change. */
212 if (num_changes >= changes_allocated)
213 {
214 if (changes_allocated == 0)
215 /* This value allows for repeated substitutions inside complex
216 indexed addresses, or changes in up to 5 insns. */
217 changes_allocated = MAX_RECOG_OPERANDS * 5;
218 else
219 changes_allocated *= 2;
220
221 changes = XRESIZEVEC (change_t, changes, changes_allocated);
222 }
223
224 changes[num_changes].object = object;
225 changes[num_changes].loc = loc;
226 changes[num_changes].old = old;
227 changes[num_changes].unshare = unshare;
228
229 if (object && !MEM_P (object))
230 {
231 /* Set INSN_CODE to force rerecognition of insn. Save old code in
232 case invalid. */
233 changes[num_changes].old_code = INSN_CODE (object);
234 INSN_CODE (object) = -1;
235 }
236
237 num_changes++;
238
239 /* If we are making a group of changes, return 1. Otherwise, validate the
240 change group we made. */
241
242 if (in_group)
243 return 1;
244 else
245 return apply_change_group ();
246 }
247
248 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
249 UNSHARE to false. */
250
251 bool
252 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
253 {
254 return validate_change_1 (object, loc, new_rtx, in_group, false);
255 }
256
257 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
258 UNSHARE to true. */
259
260 bool
261 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
262 {
263 return validate_change_1 (object, loc, new_rtx, in_group, true);
264 }
265
266
267 /* Keep X canonicalized if some changes have made it non-canonical; only
268 modifies the operands of X, not (for example) its code. Simplifications
269 are not the job of this routine.
270
271 Return true if anything was changed. */
272 bool
273 canonicalize_change_group (rtx insn, rtx x)
274 {
275 if (COMMUTATIVE_P (x)
276 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
277 {
278 /* Oops, the caller has made X no longer canonical.
279 Let's redo the changes in the correct order. */
280 rtx tem = XEXP (x, 0);
281 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
282 validate_change (insn, &XEXP (x, 1), tem, 1);
283 return true;
284 }
285 else
286 return false;
287 }
288
289
290 /* This subroutine of apply_change_group verifies whether the changes to INSN
291 were valid; i.e. whether INSN can still be recognized. */
292
293 int
294 insn_invalid_p (rtx insn)
295 {
296 rtx pat = PATTERN (insn);
297 int num_clobbers = 0;
298 /* If we are before reload and the pattern is a SET, see if we can add
299 clobbers. */
300 int icode = recog (pat, insn,
301 (GET_CODE (pat) == SET
302 && ! reload_completed && ! reload_in_progress)
303 ? &num_clobbers : 0);
304 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
305
306
307 /* If this is an asm and the operand aren't legal, then fail. Likewise if
308 this is not an asm and the insn wasn't recognized. */
309 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
310 || (!is_asm && icode < 0))
311 return 1;
312
313 /* If we have to add CLOBBERs, fail if we have to add ones that reference
314 hard registers since our callers can't know if they are live or not.
315 Otherwise, add them. */
316 if (num_clobbers > 0)
317 {
318 rtx newpat;
319
320 if (added_clobbers_hard_reg_p (icode))
321 return 1;
322
323 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
324 XVECEXP (newpat, 0, 0) = pat;
325 add_clobbers (newpat, icode);
326 PATTERN (insn) = pat = newpat;
327 }
328
329 /* After reload, verify that all constraints are satisfied. */
330 if (reload_completed)
331 {
332 extract_insn (insn);
333
334 if (! constrain_operands (1))
335 return 1;
336 }
337
338 INSN_CODE (insn) = icode;
339 return 0;
340 }
341
342 /* Return number of changes made and not validated yet. */
343 int
344 num_changes_pending (void)
345 {
346 return num_changes;
347 }
348
349 /* Tentatively apply the changes numbered NUM and up.
350 Return 1 if all changes are valid, zero otherwise. */
351
352 int
353 verify_changes (int num)
354 {
355 int i;
356 rtx last_validated = NULL_RTX;
357
358 /* The changes have been applied and all INSN_CODEs have been reset to force
359 rerecognition.
360
361 The changes are valid if we aren't given an object, or if we are
362 given a MEM and it still is a valid address, or if this is in insn
363 and it is recognized. In the latter case, if reload has completed,
364 we also require that the operands meet the constraints for
365 the insn. */
366
367 for (i = num; i < num_changes; i++)
368 {
369 rtx object = changes[i].object;
370
371 /* If there is no object to test or if it is the same as the one we
372 already tested, ignore it. */
373 if (object == 0 || object == last_validated)
374 continue;
375
376 if (MEM_P (object))
377 {
378 if (! memory_address_addr_space_p (GET_MODE (object),
379 XEXP (object, 0),
380 MEM_ADDR_SPACE (object)))
381 break;
382 }
383 else if (REG_P (changes[i].old)
384 && asm_noperands (PATTERN (object)) > 0
385 && REG_EXPR (changes[i].old) != NULL_TREE
386 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
387 && DECL_REGISTER (REG_EXPR (changes[i].old)))
388 {
389 /* Don't allow changes of hard register operands to inline
390 assemblies if they have been defined as register asm ("x"). */
391 break;
392 }
393 else if (DEBUG_INSN_P (object))
394 continue;
395 else if (insn_invalid_p (object))
396 {
397 rtx pat = PATTERN (object);
398
399 /* Perhaps we couldn't recognize the insn because there were
400 extra CLOBBERs at the end. If so, try to re-recognize
401 without the last CLOBBER (later iterations will cause each of
402 them to be eliminated, in turn). But don't do this if we
403 have an ASM_OPERAND. */
404 if (GET_CODE (pat) == PARALLEL
405 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
406 && asm_noperands (PATTERN (object)) < 0)
407 {
408 rtx newpat;
409
410 if (XVECLEN (pat, 0) == 2)
411 newpat = XVECEXP (pat, 0, 0);
412 else
413 {
414 int j;
415
416 newpat
417 = gen_rtx_PARALLEL (VOIDmode,
418 rtvec_alloc (XVECLEN (pat, 0) - 1));
419 for (j = 0; j < XVECLEN (newpat, 0); j++)
420 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
421 }
422
423 /* Add a new change to this group to replace the pattern
424 with this new pattern. Then consider this change
425 as having succeeded. The change we added will
426 cause the entire call to fail if things remain invalid.
427
428 Note that this can lose if a later change than the one
429 we are processing specified &XVECEXP (PATTERN (object), 0, X)
430 but this shouldn't occur. */
431
432 validate_change (object, &PATTERN (object), newpat, 1);
433 continue;
434 }
435 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
436 || GET_CODE (pat) == VAR_LOCATION)
437 /* If this insn is a CLOBBER or USE, it is always valid, but is
438 never recognized. */
439 continue;
440 else
441 break;
442 }
443 last_validated = object;
444 }
445
446 return (i == num_changes);
447 }
448
449 /* A group of changes has previously been issued with validate_change
450 and verified with verify_changes. Call df_insn_rescan for each of
451 the insn changed and clear num_changes. */
452
453 void
454 confirm_change_group (void)
455 {
456 int i;
457 rtx last_object = NULL;
458
459 for (i = 0; i < num_changes; i++)
460 {
461 rtx object = changes[i].object;
462
463 if (changes[i].unshare)
464 *changes[i].loc = copy_rtx (*changes[i].loc);
465
466 /* Avoid unnecessary rescanning when multiple changes to same instruction
467 are made. */
468 if (object)
469 {
470 if (object != last_object && last_object && INSN_P (last_object))
471 df_insn_rescan (last_object);
472 last_object = object;
473 }
474 }
475
476 if (last_object && INSN_P (last_object))
477 df_insn_rescan (last_object);
478 num_changes = 0;
479 }
480
481 /* Apply a group of changes previously issued with `validate_change'.
482 If all changes are valid, call confirm_change_group and return 1,
483 otherwise, call cancel_changes and return 0. */
484
485 int
486 apply_change_group (void)
487 {
488 if (verify_changes (0))
489 {
490 confirm_change_group ();
491 return 1;
492 }
493 else
494 {
495 cancel_changes (0);
496 return 0;
497 }
498 }
499
500
501 /* Return the number of changes so far in the current group. */
502
503 int
504 num_validated_changes (void)
505 {
506 return num_changes;
507 }
508
509 /* Retract the changes numbered NUM and up. */
510
511 void
512 cancel_changes (int num)
513 {
514 int i;
515
516 /* Back out all the changes. Do this in the opposite order in which
517 they were made. */
518 for (i = num_changes - 1; i >= num; i--)
519 {
520 *changes[i].loc = changes[i].old;
521 if (changes[i].object && !MEM_P (changes[i].object))
522 INSN_CODE (changes[i].object) = changes[i].old_code;
523 }
524 num_changes = num;
525 }
526
527 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
528 rtx. */
529
530 static void
531 simplify_while_replacing (rtx *loc, rtx to, rtx object,
532 enum machine_mode op0_mode)
533 {
534 rtx x = *loc;
535 enum rtx_code code = GET_CODE (x);
536 rtx new_rtx;
537
538 if (SWAPPABLE_OPERANDS_P (x)
539 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
540 {
541 validate_unshare_change (object, loc,
542 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
543 : swap_condition (code),
544 GET_MODE (x), XEXP (x, 1),
545 XEXP (x, 0)), 1);
546 x = *loc;
547 code = GET_CODE (x);
548 }
549
550 switch (code)
551 {
552 case PLUS:
553 /* If we have a PLUS whose second operand is now a CONST_INT, use
554 simplify_gen_binary to try to simplify it.
555 ??? We may want later to remove this, once simplification is
556 separated from this function. */
557 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
558 validate_change (object, loc,
559 simplify_gen_binary
560 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
561 break;
562 case MINUS:
563 if (CONST_INT_P (XEXP (x, 1))
564 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
565 validate_change (object, loc,
566 simplify_gen_binary
567 (PLUS, GET_MODE (x), XEXP (x, 0),
568 simplify_gen_unary (NEG,
569 GET_MODE (x), XEXP (x, 1),
570 GET_MODE (x))), 1);
571 break;
572 case ZERO_EXTEND:
573 case SIGN_EXTEND:
574 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
575 {
576 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
577 op0_mode);
578 /* If any of the above failed, substitute in something that
579 we know won't be recognized. */
580 if (!new_rtx)
581 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
582 validate_change (object, loc, new_rtx, 1);
583 }
584 break;
585 case SUBREG:
586 /* All subregs possible to simplify should be simplified. */
587 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
588 SUBREG_BYTE (x));
589
590 /* Subregs of VOIDmode operands are incorrect. */
591 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
592 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
593 if (new_rtx)
594 validate_change (object, loc, new_rtx, 1);
595 break;
596 case ZERO_EXTRACT:
597 case SIGN_EXTRACT:
598 /* If we are replacing a register with memory, try to change the memory
599 to be the mode required for memory in extract operations (this isn't
600 likely to be an insertion operation; if it was, nothing bad will
601 happen, we might just fail in some cases). */
602
603 if (MEM_P (XEXP (x, 0))
604 && CONST_INT_P (XEXP (x, 1))
605 && CONST_INT_P (XEXP (x, 2))
606 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
607 && !MEM_VOLATILE_P (XEXP (x, 0)))
608 {
609 enum machine_mode wanted_mode = VOIDmode;
610 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
611 int pos = INTVAL (XEXP (x, 2));
612
613 if (GET_CODE (x) == ZERO_EXTRACT)
614 {
615 enum machine_mode new_mode
616 = mode_for_extraction (EP_extzv, 1);
617 if (new_mode != MAX_MACHINE_MODE)
618 wanted_mode = new_mode;
619 }
620 else if (GET_CODE (x) == SIGN_EXTRACT)
621 {
622 enum machine_mode new_mode
623 = mode_for_extraction (EP_extv, 1);
624 if (new_mode != MAX_MACHINE_MODE)
625 wanted_mode = new_mode;
626 }
627
628 /* If we have a narrower mode, we can do something. */
629 if (wanted_mode != VOIDmode
630 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
631 {
632 int offset = pos / BITS_PER_UNIT;
633 rtx newmem;
634
635 /* If the bytes and bits are counted differently, we
636 must adjust the offset. */
637 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
638 offset =
639 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
640 offset);
641
642 pos %= GET_MODE_BITSIZE (wanted_mode);
643
644 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
645
646 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
647 validate_change (object, &XEXP (x, 0), newmem, 1);
648 }
649 }
650
651 break;
652
653 default:
654 break;
655 }
656 }
657
658 /* Replace every occurrence of FROM in X with TO. Mark each change with
659 validate_change passing OBJECT. */
660
661 static void
662 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
663 bool simplify)
664 {
665 int i, j;
666 const char *fmt;
667 rtx x = *loc;
668 enum rtx_code code;
669 enum machine_mode op0_mode = VOIDmode;
670 int prev_changes = num_changes;
671
672 if (!x)
673 return;
674
675 code = GET_CODE (x);
676 fmt = GET_RTX_FORMAT (code);
677 if (fmt[0] == 'e')
678 op0_mode = GET_MODE (XEXP (x, 0));
679
680 /* X matches FROM if it is the same rtx or they are both referring to the
681 same register in the same mode. Avoid calling rtx_equal_p unless the
682 operands look similar. */
683
684 if (x == from
685 || (REG_P (x) && REG_P (from)
686 && GET_MODE (x) == GET_MODE (from)
687 && REGNO (x) == REGNO (from))
688 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
689 && rtx_equal_p (x, from)))
690 {
691 validate_unshare_change (object, loc, to, 1);
692 return;
693 }
694
695 /* Call ourself recursively to perform the replacements.
696 We must not replace inside already replaced expression, otherwise we
697 get infinite recursion for replacements like (reg X)->(subreg (reg X))
698 done by regmove, so we must special case shared ASM_OPERANDS. */
699
700 if (GET_CODE (x) == PARALLEL)
701 {
702 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
703 {
704 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
705 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
706 {
707 /* Verify that operands are really shared. */
708 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
709 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
710 (x, 0, j))));
711 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
712 from, to, object, simplify);
713 }
714 else
715 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
716 simplify);
717 }
718 }
719 else
720 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
721 {
722 if (fmt[i] == 'e')
723 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
724 else if (fmt[i] == 'E')
725 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
726 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
727 simplify);
728 }
729
730 /* If we didn't substitute, there is nothing more to do. */
731 if (num_changes == prev_changes)
732 return;
733
734 /* Allow substituted expression to have different mode. This is used by
735 regmove to change mode of pseudo register. */
736 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
737 op0_mode = GET_MODE (XEXP (x, 0));
738
739 /* Do changes needed to keep rtx consistent. Don't do any other
740 simplifications, as it is not our job. */
741 if (simplify)
742 simplify_while_replacing (loc, to, object, op0_mode);
743 }
744
745 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
746 with TO. After all changes have been made, validate by seeing
747 if INSN is still valid. */
748
749 int
750 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
751 {
752 validate_replace_rtx_1 (loc, from, to, insn, true);
753 return apply_change_group ();
754 }
755
756 /* Try replacing every occurrence of FROM in INSN with TO. After all
757 changes have been made, validate by seeing if INSN is still valid. */
758
759 int
760 validate_replace_rtx (rtx from, rtx to, rtx insn)
761 {
762 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
763 return apply_change_group ();
764 }
765
766 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
767 is a part of INSN. After all changes have been made, validate by seeing if
768 INSN is still valid.
769 validate_replace_rtx (from, to, insn) is equivalent to
770 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
771
772 int
773 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
774 {
775 validate_replace_rtx_1 (where, from, to, insn, true);
776 return apply_change_group ();
777 }
778
779 /* Same as above, but do not simplify rtx afterwards. */
780 int
781 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
782 rtx insn)
783 {
784 validate_replace_rtx_1 (where, from, to, insn, false);
785 return apply_change_group ();
786
787 }
788
789 /* Try replacing every occurrence of FROM in INSN with TO. This also
790 will replace in REG_EQUAL and REG_EQUIV notes. */
791
792 void
793 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
794 {
795 rtx note;
796 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
797 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
798 if (REG_NOTE_KIND (note) == REG_EQUAL
799 || REG_NOTE_KIND (note) == REG_EQUIV)
800 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
801 }
802
803 /* Function called by note_uses to replace used subexpressions. */
804 struct validate_replace_src_data
805 {
806 rtx from; /* Old RTX */
807 rtx to; /* New RTX */
808 rtx insn; /* Insn in which substitution is occurring. */
809 };
810
811 static void
812 validate_replace_src_1 (rtx *x, void *data)
813 {
814 struct validate_replace_src_data *d
815 = (struct validate_replace_src_data *) data;
816
817 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
818 }
819
820 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
821 SET_DESTs. */
822
823 void
824 validate_replace_src_group (rtx from, rtx to, rtx insn)
825 {
826 struct validate_replace_src_data d;
827
828 d.from = from;
829 d.to = to;
830 d.insn = insn;
831 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
832 }
833
834 /* Try simplify INSN.
835 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
836 pattern and return true if something was simplified. */
837
838 bool
839 validate_simplify_insn (rtx insn)
840 {
841 int i;
842 rtx pat = NULL;
843 rtx newpat = NULL;
844
845 pat = PATTERN (insn);
846
847 if (GET_CODE (pat) == SET)
848 {
849 newpat = simplify_rtx (SET_SRC (pat));
850 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
851 validate_change (insn, &SET_SRC (pat), newpat, 1);
852 newpat = simplify_rtx (SET_DEST (pat));
853 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
854 validate_change (insn, &SET_DEST (pat), newpat, 1);
855 }
856 else if (GET_CODE (pat) == PARALLEL)
857 for (i = 0; i < XVECLEN (pat, 0); i++)
858 {
859 rtx s = XVECEXP (pat, 0, i);
860
861 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
862 {
863 newpat = simplify_rtx (SET_SRC (s));
864 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
865 validate_change (insn, &SET_SRC (s), newpat, 1);
866 newpat = simplify_rtx (SET_DEST (s));
867 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
868 validate_change (insn, &SET_DEST (s), newpat, 1);
869 }
870 }
871 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
872 }
873 \f
874 #ifdef HAVE_cc0
875 /* Return 1 if the insn using CC0 set by INSN does not contain
876 any ordered tests applied to the condition codes.
877 EQ and NE tests do not count. */
878
879 int
880 next_insn_tests_no_inequality (rtx insn)
881 {
882 rtx next = next_cc0_user (insn);
883
884 /* If there is no next insn, we have to take the conservative choice. */
885 if (next == 0)
886 return 0;
887
888 return (INSN_P (next)
889 && ! inequality_comparisons_p (PATTERN (next)));
890 }
891 #endif
892 \f
893 /* Return 1 if OP is a valid general operand for machine mode MODE.
894 This is either a register reference, a memory reference,
895 or a constant. In the case of a memory reference, the address
896 is checked for general validity for the target machine.
897
898 Register and memory references must have mode MODE in order to be valid,
899 but some constants have no machine mode and are valid for any mode.
900
901 If MODE is VOIDmode, OP is checked for validity for whatever mode
902 it has.
903
904 The main use of this function is as a predicate in match_operand
905 expressions in the machine description.
906
907 For an explanation of this function's behavior for registers of
908 class NO_REGS, see the comment for `register_operand'. */
909
910 int
911 general_operand (rtx op, enum machine_mode mode)
912 {
913 enum rtx_code code = GET_CODE (op);
914
915 if (mode == VOIDmode)
916 mode = GET_MODE (op);
917
918 /* Don't accept CONST_INT or anything similar
919 if the caller wants something floating. */
920 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
921 && GET_MODE_CLASS (mode) != MODE_INT
922 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
923 return 0;
924
925 if (CONST_INT_P (op)
926 && mode != VOIDmode
927 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
928 return 0;
929
930 if (CONSTANT_P (op))
931 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
932 || mode == VOIDmode)
933 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
934 && LEGITIMATE_CONSTANT_P (op));
935
936 /* Except for certain constants with VOIDmode, already checked for,
937 OP's mode must match MODE if MODE specifies a mode. */
938
939 if (GET_MODE (op) != mode)
940 return 0;
941
942 if (code == SUBREG)
943 {
944 rtx sub = SUBREG_REG (op);
945
946 #ifdef INSN_SCHEDULING
947 /* On machines that have insn scheduling, we want all memory
948 reference to be explicit, so outlaw paradoxical SUBREGs.
949 However, we must allow them after reload so that they can
950 get cleaned up by cleanup_subreg_operands. */
951 if (!reload_completed && MEM_P (sub)
952 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
953 return 0;
954 #endif
955 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
956 may result in incorrect reference. We should simplify all valid
957 subregs of MEM anyway. But allow this after reload because we
958 might be called from cleanup_subreg_operands.
959
960 ??? This is a kludge. */
961 if (!reload_completed && SUBREG_BYTE (op) != 0
962 && MEM_P (sub))
963 return 0;
964
965 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
966 create such rtl, and we must reject it. */
967 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
968 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
969 return 0;
970
971 op = sub;
972 code = GET_CODE (op);
973 }
974
975 if (code == REG)
976 /* A register whose class is NO_REGS is not a general operand. */
977 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
978 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
979
980 if (code == MEM)
981 {
982 rtx y = XEXP (op, 0);
983
984 if (! volatile_ok && MEM_VOLATILE_P (op))
985 return 0;
986
987 /* Use the mem's mode, since it will be reloaded thus. */
988 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
989 return 1;
990 }
991
992 return 0;
993 }
994 \f
995 /* Return 1 if OP is a valid memory address for a memory reference
996 of mode MODE.
997
998 The main use of this function is as a predicate in match_operand
999 expressions in the machine description. */
1000
1001 int
1002 address_operand (rtx op, enum machine_mode mode)
1003 {
1004 return memory_address_p (mode, op);
1005 }
1006
1007 /* Return 1 if OP is a register reference of mode MODE.
1008 If MODE is VOIDmode, accept a register in any mode.
1009
1010 The main use of this function is as a predicate in match_operand
1011 expressions in the machine description.
1012
1013 As a special exception, registers whose class is NO_REGS are
1014 not accepted by `register_operand'. The reason for this change
1015 is to allow the representation of special architecture artifacts
1016 (such as a condition code register) without extending the rtl
1017 definitions. Since registers of class NO_REGS cannot be used
1018 as registers in any case where register classes are examined,
1019 it is most consistent to keep this function from accepting them. */
1020
1021 int
1022 register_operand (rtx op, enum machine_mode mode)
1023 {
1024 if (GET_MODE (op) != mode && mode != VOIDmode)
1025 return 0;
1026
1027 if (GET_CODE (op) == SUBREG)
1028 {
1029 rtx sub = SUBREG_REG (op);
1030
1031 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1032 because it is guaranteed to be reloaded into one.
1033 Just make sure the MEM is valid in itself.
1034 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1035 but currently it does result from (SUBREG (REG)...) where the
1036 reg went on the stack.) */
1037 if (! reload_completed && MEM_P (sub))
1038 return general_operand (op, mode);
1039
1040 #ifdef CANNOT_CHANGE_MODE_CLASS
1041 if (REG_P (sub)
1042 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1043 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1044 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1045 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1046 return 0;
1047 #endif
1048
1049 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1050 create such rtl, and we must reject it. */
1051 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1052 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1053 return 0;
1054
1055 op = sub;
1056 }
1057
1058 /* We don't consider registers whose class is NO_REGS
1059 to be a register operand. */
1060 return (REG_P (op)
1061 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1062 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1063 }
1064
1065 /* Return 1 for a register in Pmode; ignore the tested mode. */
1066
1067 int
1068 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1069 {
1070 return register_operand (op, Pmode);
1071 }
1072
1073 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1074 or a hard register. */
1075
1076 int
1077 scratch_operand (rtx op, enum machine_mode mode)
1078 {
1079 if (GET_MODE (op) != mode && mode != VOIDmode)
1080 return 0;
1081
1082 return (GET_CODE (op) == SCRATCH
1083 || (REG_P (op)
1084 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1085 }
1086
1087 /* Return 1 if OP is a valid immediate operand for mode MODE.
1088
1089 The main use of this function is as a predicate in match_operand
1090 expressions in the machine description. */
1091
1092 int
1093 immediate_operand (rtx op, enum machine_mode mode)
1094 {
1095 /* Don't accept CONST_INT or anything similar
1096 if the caller wants something floating. */
1097 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1098 && GET_MODE_CLASS (mode) != MODE_INT
1099 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1100 return 0;
1101
1102 if (CONST_INT_P (op)
1103 && mode != VOIDmode
1104 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1105 return 0;
1106
1107 return (CONSTANT_P (op)
1108 && (GET_MODE (op) == mode || mode == VOIDmode
1109 || GET_MODE (op) == VOIDmode)
1110 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1111 && LEGITIMATE_CONSTANT_P (op));
1112 }
1113
1114 /* Returns 1 if OP is an operand that is a CONST_INT. */
1115
1116 int
1117 const_int_operand (rtx op, enum machine_mode mode)
1118 {
1119 if (!CONST_INT_P (op))
1120 return 0;
1121
1122 if (mode != VOIDmode
1123 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1124 return 0;
1125
1126 return 1;
1127 }
1128
1129 /* Returns 1 if OP is an operand that is a constant integer or constant
1130 floating-point number. */
1131
1132 int
1133 const_double_operand (rtx op, enum machine_mode mode)
1134 {
1135 /* Don't accept CONST_INT or anything similar
1136 if the caller wants something floating. */
1137 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1138 && GET_MODE_CLASS (mode) != MODE_INT
1139 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1140 return 0;
1141
1142 return ((GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op))
1143 && (mode == VOIDmode || GET_MODE (op) == mode
1144 || GET_MODE (op) == VOIDmode));
1145 }
1146
1147 /* Return 1 if OP is a general operand that is not an immediate operand. */
1148
1149 int
1150 nonimmediate_operand (rtx op, enum machine_mode mode)
1151 {
1152 return (general_operand (op, mode) && ! CONSTANT_P (op));
1153 }
1154
1155 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1156
1157 int
1158 nonmemory_operand (rtx op, enum machine_mode mode)
1159 {
1160 if (CONSTANT_P (op))
1161 {
1162 /* Don't accept CONST_INT or anything similar
1163 if the caller wants something floating. */
1164 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1165 && GET_MODE_CLASS (mode) != MODE_INT
1166 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1167 return 0;
1168
1169 if (CONST_INT_P (op)
1170 && mode != VOIDmode
1171 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1172 return 0;
1173
1174 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1175 || mode == VOIDmode)
1176 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1177 && LEGITIMATE_CONSTANT_P (op));
1178 }
1179
1180 if (GET_MODE (op) != mode && mode != VOIDmode)
1181 return 0;
1182
1183 if (GET_CODE (op) == SUBREG)
1184 {
1185 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1186 because it is guaranteed to be reloaded into one.
1187 Just make sure the MEM is valid in itself.
1188 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1189 but currently it does result from (SUBREG (REG)...) where the
1190 reg went on the stack.) */
1191 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1192 return general_operand (op, mode);
1193 op = SUBREG_REG (op);
1194 }
1195
1196 /* We don't consider registers whose class is NO_REGS
1197 to be a register operand. */
1198 return (REG_P (op)
1199 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1200 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1201 }
1202
1203 /* Return 1 if OP is a valid operand that stands for pushing a
1204 value of mode MODE onto the stack.
1205
1206 The main use of this function is as a predicate in match_operand
1207 expressions in the machine description. */
1208
1209 int
1210 push_operand (rtx op, enum machine_mode mode)
1211 {
1212 unsigned int rounded_size = GET_MODE_SIZE (mode);
1213
1214 #ifdef PUSH_ROUNDING
1215 rounded_size = PUSH_ROUNDING (rounded_size);
1216 #endif
1217
1218 if (!MEM_P (op))
1219 return 0;
1220
1221 if (mode != VOIDmode && GET_MODE (op) != mode)
1222 return 0;
1223
1224 op = XEXP (op, 0);
1225
1226 if (rounded_size == GET_MODE_SIZE (mode))
1227 {
1228 if (GET_CODE (op) != STACK_PUSH_CODE)
1229 return 0;
1230 }
1231 else
1232 {
1233 if (GET_CODE (op) != PRE_MODIFY
1234 || GET_CODE (XEXP (op, 1)) != PLUS
1235 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1236 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1237 #ifdef STACK_GROWS_DOWNWARD
1238 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1239 #else
1240 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1241 #endif
1242 )
1243 return 0;
1244 }
1245
1246 return XEXP (op, 0) == stack_pointer_rtx;
1247 }
1248
1249 /* Return 1 if OP is a valid operand that stands for popping a
1250 value of mode MODE off the stack.
1251
1252 The main use of this function is as a predicate in match_operand
1253 expressions in the machine description. */
1254
1255 int
1256 pop_operand (rtx op, enum machine_mode mode)
1257 {
1258 if (!MEM_P (op))
1259 return 0;
1260
1261 if (mode != VOIDmode && GET_MODE (op) != mode)
1262 return 0;
1263
1264 op = XEXP (op, 0);
1265
1266 if (GET_CODE (op) != STACK_POP_CODE)
1267 return 0;
1268
1269 return XEXP (op, 0) == stack_pointer_rtx;
1270 }
1271
1272 /* Return 1 if ADDR is a valid memory address
1273 for mode MODE in address space AS. */
1274
1275 int
1276 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1277 rtx addr, addr_space_t as)
1278 {
1279 #ifdef GO_IF_LEGITIMATE_ADDRESS
1280 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1281 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1282 return 0;
1283
1284 win:
1285 return 1;
1286 #else
1287 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1288 #endif
1289 }
1290
1291 /* Return 1 if OP is a valid memory reference with mode MODE,
1292 including a valid address.
1293
1294 The main use of this function is as a predicate in match_operand
1295 expressions in the machine description. */
1296
1297 int
1298 memory_operand (rtx op, enum machine_mode mode)
1299 {
1300 rtx inner;
1301
1302 if (! reload_completed)
1303 /* Note that no SUBREG is a memory operand before end of reload pass,
1304 because (SUBREG (MEM...)) forces reloading into a register. */
1305 return MEM_P (op) && general_operand (op, mode);
1306
1307 if (mode != VOIDmode && GET_MODE (op) != mode)
1308 return 0;
1309
1310 inner = op;
1311 if (GET_CODE (inner) == SUBREG)
1312 inner = SUBREG_REG (inner);
1313
1314 return (MEM_P (inner) && general_operand (op, mode));
1315 }
1316
1317 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1318 that is, a memory reference whose address is a general_operand. */
1319
1320 int
1321 indirect_operand (rtx op, enum machine_mode mode)
1322 {
1323 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1324 if (! reload_completed
1325 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1326 {
1327 int offset = SUBREG_BYTE (op);
1328 rtx inner = SUBREG_REG (op);
1329
1330 if (mode != VOIDmode && GET_MODE (op) != mode)
1331 return 0;
1332
1333 /* The only way that we can have a general_operand as the resulting
1334 address is if OFFSET is zero and the address already is an operand
1335 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1336 operand. */
1337
1338 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1339 || (GET_CODE (XEXP (inner, 0)) == PLUS
1340 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1341 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1342 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1343 }
1344
1345 return (MEM_P (op)
1346 && memory_operand (op, mode)
1347 && general_operand (XEXP (op, 0), Pmode));
1348 }
1349
1350 /* Return 1 if this is an ordered comparison operator (not including
1351 ORDERED and UNORDERED). */
1352
1353 int
1354 ordered_comparison_operator (rtx op, enum machine_mode mode)
1355 {
1356 if (mode != VOIDmode && GET_MODE (op) != mode)
1357 return false;
1358 switch (GET_CODE (op))
1359 {
1360 case EQ:
1361 case NE:
1362 case LT:
1363 case LTU:
1364 case LE:
1365 case LEU:
1366 case GT:
1367 case GTU:
1368 case GE:
1369 case GEU:
1370 return true;
1371 default:
1372 return false;
1373 }
1374 }
1375
1376 /* Return 1 if this is a comparison operator. This allows the use of
1377 MATCH_OPERATOR to recognize all the branch insns. */
1378
1379 int
1380 comparison_operator (rtx op, enum machine_mode mode)
1381 {
1382 return ((mode == VOIDmode || GET_MODE (op) == mode)
1383 && COMPARISON_P (op));
1384 }
1385 \f
1386 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1387
1388 rtx
1389 extract_asm_operands (rtx body)
1390 {
1391 rtx tmp;
1392 switch (GET_CODE (body))
1393 {
1394 case ASM_OPERANDS:
1395 return body;
1396
1397 case SET:
1398 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1399 tmp = SET_SRC (body);
1400 if (GET_CODE (tmp) == ASM_OPERANDS)
1401 return tmp;
1402 break;
1403
1404 case PARALLEL:
1405 tmp = XVECEXP (body, 0, 0);
1406 if (GET_CODE (tmp) == ASM_OPERANDS)
1407 return tmp;
1408 if (GET_CODE (tmp) == SET)
1409 {
1410 tmp = SET_SRC (tmp);
1411 if (GET_CODE (tmp) == ASM_OPERANDS)
1412 return tmp;
1413 }
1414 break;
1415
1416 default:
1417 break;
1418 }
1419 return NULL;
1420 }
1421
1422 /* If BODY is an insn body that uses ASM_OPERANDS,
1423 return the number of operands (both input and output) in the insn.
1424 Otherwise return -1. */
1425
1426 int
1427 asm_noperands (const_rtx body)
1428 {
1429 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1430 int n_sets = 0;
1431
1432 if (asm_op == NULL)
1433 return -1;
1434
1435 if (GET_CODE (body) == SET)
1436 n_sets = 1;
1437 else if (GET_CODE (body) == PARALLEL)
1438 {
1439 int i;
1440 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1441 {
1442 /* Multiple output operands, or 1 output plus some clobbers:
1443 body is
1444 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1445 /* Count backwards through CLOBBERs to determine number of SETs. */
1446 for (i = XVECLEN (body, 0); i > 0; i--)
1447 {
1448 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1449 break;
1450 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1451 return -1;
1452 }
1453
1454 /* N_SETS is now number of output operands. */
1455 n_sets = i;
1456
1457 /* Verify that all the SETs we have
1458 came from a single original asm_operands insn
1459 (so that invalid combinations are blocked). */
1460 for (i = 0; i < n_sets; i++)
1461 {
1462 rtx elt = XVECEXP (body, 0, i);
1463 if (GET_CODE (elt) != SET)
1464 return -1;
1465 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1466 return -1;
1467 /* If these ASM_OPERANDS rtx's came from different original insns
1468 then they aren't allowed together. */
1469 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1470 != ASM_OPERANDS_INPUT_VEC (asm_op))
1471 return -1;
1472 }
1473 }
1474 else
1475 {
1476 /* 0 outputs, but some clobbers:
1477 body is [(asm_operands ...) (clobber (reg ...))...]. */
1478 /* Make sure all the other parallel things really are clobbers. */
1479 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1480 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1481 return -1;
1482 }
1483 }
1484
1485 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1486 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1487 }
1488
1489 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1490 copy its operands (both input and output) into the vector OPERANDS,
1491 the locations of the operands within the insn into the vector OPERAND_LOCS,
1492 and the constraints for the operands into CONSTRAINTS.
1493 Write the modes of the operands into MODES.
1494 Return the assembler-template.
1495
1496 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1497 we don't store that info. */
1498
1499 const char *
1500 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1501 const char **constraints, enum machine_mode *modes,
1502 location_t *loc)
1503 {
1504 int nbase = 0, n, i;
1505 rtx asmop;
1506
1507 switch (GET_CODE (body))
1508 {
1509 case ASM_OPERANDS:
1510 /* Zero output asm: BODY is (asm_operands ...). */
1511 asmop = body;
1512 break;
1513
1514 case SET:
1515 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1516 asmop = SET_SRC (body);
1517
1518 /* The output is in the SET.
1519 Its constraint is in the ASM_OPERANDS itself. */
1520 if (operands)
1521 operands[0] = SET_DEST (body);
1522 if (operand_locs)
1523 operand_locs[0] = &SET_DEST (body);
1524 if (constraints)
1525 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1526 if (modes)
1527 modes[0] = GET_MODE (SET_DEST (body));
1528 nbase = 1;
1529 break;
1530
1531 case PARALLEL:
1532 {
1533 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1534
1535 asmop = XVECEXP (body, 0, 0);
1536 if (GET_CODE (asmop) == SET)
1537 {
1538 asmop = SET_SRC (asmop);
1539
1540 /* At least one output, plus some CLOBBERs. The outputs are in
1541 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1542 for (i = 0; i < nparallel; i++)
1543 {
1544 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1545 break; /* Past last SET */
1546 if (operands)
1547 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1548 if (operand_locs)
1549 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1550 if (constraints)
1551 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1552 if (modes)
1553 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1554 }
1555 nbase = i;
1556 }
1557 break;
1558 }
1559
1560 default:
1561 gcc_unreachable ();
1562 }
1563
1564 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1565 for (i = 0; i < n; i++)
1566 {
1567 if (operand_locs)
1568 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1569 if (operands)
1570 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1571 if (constraints)
1572 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1573 if (modes)
1574 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1575 }
1576 nbase += n;
1577
1578 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1579 for (i = 0; i < n; i++)
1580 {
1581 if (operand_locs)
1582 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1583 if (operands)
1584 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1585 if (constraints)
1586 constraints[nbase + i] = "";
1587 if (modes)
1588 modes[nbase + i] = Pmode;
1589 }
1590
1591 if (loc)
1592 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1593
1594 return ASM_OPERANDS_TEMPLATE (asmop);
1595 }
1596
1597 /* Check if an asm_operand matches its constraints.
1598 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1599
1600 int
1601 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1602 {
1603 int result = 0;
1604 #ifdef AUTO_INC_DEC
1605 bool incdec_ok = false;
1606 #endif
1607
1608 /* Use constrain_operands after reload. */
1609 gcc_assert (!reload_completed);
1610
1611 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1612 many alternatives as required to match the other operands. */
1613 if (*constraint == '\0')
1614 result = 1;
1615
1616 while (*constraint)
1617 {
1618 char c = *constraint;
1619 int len;
1620 switch (c)
1621 {
1622 case ',':
1623 constraint++;
1624 continue;
1625 case '=':
1626 case '+':
1627 case '*':
1628 case '%':
1629 case '!':
1630 case '#':
1631 case '&':
1632 case '?':
1633 break;
1634
1635 case '0': case '1': case '2': case '3': case '4':
1636 case '5': case '6': case '7': case '8': case '9':
1637 /* If caller provided constraints pointer, look up
1638 the maching constraint. Otherwise, our caller should have
1639 given us the proper matching constraint, but we can't
1640 actually fail the check if they didn't. Indicate that
1641 results are inconclusive. */
1642 if (constraints)
1643 {
1644 char *end;
1645 unsigned long match;
1646
1647 match = strtoul (constraint, &end, 10);
1648 if (!result)
1649 result = asm_operand_ok (op, constraints[match], NULL);
1650 constraint = (const char *) end;
1651 }
1652 else
1653 {
1654 do
1655 constraint++;
1656 while (ISDIGIT (*constraint));
1657 if (! result)
1658 result = -1;
1659 }
1660 continue;
1661
1662 case 'p':
1663 if (address_operand (op, VOIDmode))
1664 result = 1;
1665 break;
1666
1667 case TARGET_MEM_CONSTRAINT:
1668 case 'V': /* non-offsettable */
1669 if (memory_operand (op, VOIDmode))
1670 result = 1;
1671 break;
1672
1673 case 'o': /* offsettable */
1674 if (offsettable_nonstrict_memref_p (op))
1675 result = 1;
1676 break;
1677
1678 case '<':
1679 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1680 excepting those that expand_call created. Further, on some
1681 machines which do not have generalized auto inc/dec, an inc/dec
1682 is not a memory_operand.
1683
1684 Match any memory and hope things are resolved after reload. */
1685
1686 if (MEM_P (op)
1687 && (1
1688 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1689 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1690 result = 1;
1691 #ifdef AUTO_INC_DEC
1692 incdec_ok = true;
1693 #endif
1694 break;
1695
1696 case '>':
1697 if (MEM_P (op)
1698 && (1
1699 || GET_CODE (XEXP (op, 0)) == PRE_INC
1700 || GET_CODE (XEXP (op, 0)) == POST_INC))
1701 result = 1;
1702 #ifdef AUTO_INC_DEC
1703 incdec_ok = true;
1704 #endif
1705 break;
1706
1707 case 'E':
1708 case 'F':
1709 if (GET_CODE (op) == CONST_DOUBLE
1710 || (GET_CODE (op) == CONST_VECTOR
1711 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1712 result = 1;
1713 break;
1714
1715 case 'G':
1716 if (GET_CODE (op) == CONST_DOUBLE
1717 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1718 result = 1;
1719 break;
1720 case 'H':
1721 if (GET_CODE (op) == CONST_DOUBLE
1722 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1723 result = 1;
1724 break;
1725
1726 case 's':
1727 if (CONST_INT_P (op)
1728 || (GET_CODE (op) == CONST_DOUBLE
1729 && GET_MODE (op) == VOIDmode))
1730 break;
1731 /* Fall through. */
1732
1733 case 'i':
1734 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1735 result = 1;
1736 break;
1737
1738 case 'n':
1739 if (CONST_INT_P (op)
1740 || (GET_CODE (op) == CONST_DOUBLE
1741 && GET_MODE (op) == VOIDmode))
1742 result = 1;
1743 break;
1744
1745 case 'I':
1746 if (CONST_INT_P (op)
1747 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1748 result = 1;
1749 break;
1750 case 'J':
1751 if (CONST_INT_P (op)
1752 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1753 result = 1;
1754 break;
1755 case 'K':
1756 if (CONST_INT_P (op)
1757 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1758 result = 1;
1759 break;
1760 case 'L':
1761 if (CONST_INT_P (op)
1762 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1763 result = 1;
1764 break;
1765 case 'M':
1766 if (CONST_INT_P (op)
1767 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1768 result = 1;
1769 break;
1770 case 'N':
1771 if (CONST_INT_P (op)
1772 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1773 result = 1;
1774 break;
1775 case 'O':
1776 if (CONST_INT_P (op)
1777 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1778 result = 1;
1779 break;
1780 case 'P':
1781 if (CONST_INT_P (op)
1782 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1783 result = 1;
1784 break;
1785
1786 case 'X':
1787 result = 1;
1788 break;
1789
1790 case 'g':
1791 if (general_operand (op, VOIDmode))
1792 result = 1;
1793 break;
1794
1795 default:
1796 /* For all other letters, we first check for a register class,
1797 otherwise it is an EXTRA_CONSTRAINT. */
1798 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1799 {
1800 case 'r':
1801 if (GET_MODE (op) == BLKmode)
1802 break;
1803 if (register_operand (op, VOIDmode))
1804 result = 1;
1805 }
1806 #ifdef EXTRA_CONSTRAINT_STR
1807 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1808 /* Every memory operand can be reloaded to fit. */
1809 result = result || memory_operand (op, VOIDmode);
1810 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1811 /* Every address operand can be reloaded to fit. */
1812 result = result || address_operand (op, VOIDmode);
1813 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1814 result = 1;
1815 #endif
1816 break;
1817 }
1818 len = CONSTRAINT_LEN (c, constraint);
1819 do
1820 constraint++;
1821 while (--len && *constraint);
1822 if (len)
1823 return 0;
1824 }
1825
1826 #ifdef AUTO_INC_DEC
1827 /* For operands without < or > constraints reject side-effects. */
1828 if (!incdec_ok && result && MEM_P (op))
1829 switch (GET_CODE (XEXP (op, 0)))
1830 {
1831 case PRE_INC:
1832 case POST_INC:
1833 case PRE_DEC:
1834 case POST_DEC:
1835 case PRE_MODIFY:
1836 case POST_MODIFY:
1837 return 0;
1838 default:
1839 break;
1840 }
1841 #endif
1842
1843 return result;
1844 }
1845 \f
1846 /* Given an rtx *P, if it is a sum containing an integer constant term,
1847 return the location (type rtx *) of the pointer to that constant term.
1848 Otherwise, return a null pointer. */
1849
1850 rtx *
1851 find_constant_term_loc (rtx *p)
1852 {
1853 rtx *tem;
1854 enum rtx_code code = GET_CODE (*p);
1855
1856 /* If *P IS such a constant term, P is its location. */
1857
1858 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1859 || code == CONST)
1860 return p;
1861
1862 /* Otherwise, if not a sum, it has no constant term. */
1863
1864 if (GET_CODE (*p) != PLUS)
1865 return 0;
1866
1867 /* If one of the summands is constant, return its location. */
1868
1869 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1870 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1871 return p;
1872
1873 /* Otherwise, check each summand for containing a constant term. */
1874
1875 if (XEXP (*p, 0) != 0)
1876 {
1877 tem = find_constant_term_loc (&XEXP (*p, 0));
1878 if (tem != 0)
1879 return tem;
1880 }
1881
1882 if (XEXP (*p, 1) != 0)
1883 {
1884 tem = find_constant_term_loc (&XEXP (*p, 1));
1885 if (tem != 0)
1886 return tem;
1887 }
1888
1889 return 0;
1890 }
1891 \f
1892 /* Return 1 if OP is a memory reference
1893 whose address contains no side effects
1894 and remains valid after the addition
1895 of a positive integer less than the
1896 size of the object being referenced.
1897
1898 We assume that the original address is valid and do not check it.
1899
1900 This uses strict_memory_address_p as a subroutine, so
1901 don't use it before reload. */
1902
1903 int
1904 offsettable_memref_p (rtx op)
1905 {
1906 return ((MEM_P (op))
1907 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1908 MEM_ADDR_SPACE (op)));
1909 }
1910
1911 /* Similar, but don't require a strictly valid mem ref:
1912 consider pseudo-regs valid as index or base regs. */
1913
1914 int
1915 offsettable_nonstrict_memref_p (rtx op)
1916 {
1917 return ((MEM_P (op))
1918 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1919 MEM_ADDR_SPACE (op)));
1920 }
1921
1922 /* Return 1 if Y is a memory address which contains no side effects
1923 and would remain valid for address space AS after the addition of
1924 a positive integer less than the size of that mode.
1925
1926 We assume that the original address is valid and do not check it.
1927 We do check that it is valid for narrower modes.
1928
1929 If STRICTP is nonzero, we require a strictly valid address,
1930 for the sake of use in reload.c. */
1931
1932 int
1933 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1934 addr_space_t as)
1935 {
1936 enum rtx_code ycode = GET_CODE (y);
1937 rtx z;
1938 rtx y1 = y;
1939 rtx *y2;
1940 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1941 (strictp ? strict_memory_address_addr_space_p
1942 : memory_address_addr_space_p);
1943 unsigned int mode_sz = GET_MODE_SIZE (mode);
1944
1945 if (CONSTANT_ADDRESS_P (y))
1946 return 1;
1947
1948 /* Adjusting an offsettable address involves changing to a narrower mode.
1949 Make sure that's OK. */
1950
1951 if (mode_dependent_address_p (y))
1952 return 0;
1953
1954 /* ??? How much offset does an offsettable BLKmode reference need?
1955 Clearly that depends on the situation in which it's being used.
1956 However, the current situation in which we test 0xffffffff is
1957 less than ideal. Caveat user. */
1958 if (mode_sz == 0)
1959 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1960
1961 /* If the expression contains a constant term,
1962 see if it remains valid when max possible offset is added. */
1963
1964 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1965 {
1966 int good;
1967
1968 y1 = *y2;
1969 *y2 = plus_constant (*y2, mode_sz - 1);
1970 /* Use QImode because an odd displacement may be automatically invalid
1971 for any wider mode. But it should be valid for a single byte. */
1972 good = (*addressp) (QImode, y, as);
1973
1974 /* In any case, restore old contents of memory. */
1975 *y2 = y1;
1976 return good;
1977 }
1978
1979 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1980 return 0;
1981
1982 /* The offset added here is chosen as the maximum offset that
1983 any instruction could need to add when operating on something
1984 of the specified mode. We assume that if Y and Y+c are
1985 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1986 go inside a LO_SUM here, so we do so as well. */
1987 if (GET_CODE (y) == LO_SUM
1988 && mode != BLKmode
1989 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1990 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1991 plus_constant (XEXP (y, 1), mode_sz - 1));
1992 else
1993 z = plus_constant (y, mode_sz - 1);
1994
1995 /* Use QImode because an odd displacement may be automatically invalid
1996 for any wider mode. But it should be valid for a single byte. */
1997 return (*addressp) (QImode, z, as);
1998 }
1999
2000 /* Return 1 if ADDR is an address-expression whose effect depends
2001 on the mode of the memory reference it is used in.
2002
2003 Autoincrement addressing is a typical example of mode-dependence
2004 because the amount of the increment depends on the mode. */
2005
2006 bool
2007 mode_dependent_address_p (rtx addr)
2008 {
2009 /* Auto-increment addressing with anything other than post_modify
2010 or pre_modify always introduces a mode dependency. Catch such
2011 cases now instead of deferring to the target. */
2012 if (GET_CODE (addr) == PRE_INC
2013 || GET_CODE (addr) == POST_INC
2014 || GET_CODE (addr) == PRE_DEC
2015 || GET_CODE (addr) == POST_DEC)
2016 return true;
2017
2018 return targetm.mode_dependent_address_p (addr);
2019 }
2020 \f
2021 /* Like extract_insn, but save insn extracted and don't extract again, when
2022 called again for the same insn expecting that recog_data still contain the
2023 valid information. This is used primary by gen_attr infrastructure that
2024 often does extract insn again and again. */
2025 void
2026 extract_insn_cached (rtx insn)
2027 {
2028 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2029 return;
2030 extract_insn (insn);
2031 recog_data.insn = insn;
2032 }
2033
2034 /* Do cached extract_insn, constrain_operands and complain about failures.
2035 Used by insn_attrtab. */
2036 void
2037 extract_constrain_insn_cached (rtx insn)
2038 {
2039 extract_insn_cached (insn);
2040 if (which_alternative == -1
2041 && !constrain_operands (reload_completed))
2042 fatal_insn_not_found (insn);
2043 }
2044
2045 /* Do cached constrain_operands and complain about failures. */
2046 int
2047 constrain_operands_cached (int strict)
2048 {
2049 if (which_alternative == -1)
2050 return constrain_operands (strict);
2051 else
2052 return 1;
2053 }
2054 \f
2055 /* Analyze INSN and fill in recog_data. */
2056
2057 void
2058 extract_insn (rtx insn)
2059 {
2060 int i;
2061 int icode;
2062 int noperands;
2063 rtx body = PATTERN (insn);
2064
2065 recog_data.n_operands = 0;
2066 recog_data.n_alternatives = 0;
2067 recog_data.n_dups = 0;
2068 recog_data.is_asm = false;
2069
2070 switch (GET_CODE (body))
2071 {
2072 case USE:
2073 case CLOBBER:
2074 case ASM_INPUT:
2075 case ADDR_VEC:
2076 case ADDR_DIFF_VEC:
2077 case VAR_LOCATION:
2078 return;
2079
2080 case SET:
2081 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2082 goto asm_insn;
2083 else
2084 goto normal_insn;
2085 case PARALLEL:
2086 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2087 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2088 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2089 goto asm_insn;
2090 else
2091 goto normal_insn;
2092 case ASM_OPERANDS:
2093 asm_insn:
2094 recog_data.n_operands = noperands = asm_noperands (body);
2095 if (noperands >= 0)
2096 {
2097 /* This insn is an `asm' with operands. */
2098
2099 /* expand_asm_operands makes sure there aren't too many operands. */
2100 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2101
2102 /* Now get the operand values and constraints out of the insn. */
2103 decode_asm_operands (body, recog_data.operand,
2104 recog_data.operand_loc,
2105 recog_data.constraints,
2106 recog_data.operand_mode, NULL);
2107 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2108 if (noperands > 0)
2109 {
2110 const char *p = recog_data.constraints[0];
2111 recog_data.n_alternatives = 1;
2112 while (*p)
2113 recog_data.n_alternatives += (*p++ == ',');
2114 }
2115 recog_data.is_asm = true;
2116 break;
2117 }
2118 fatal_insn_not_found (insn);
2119
2120 default:
2121 normal_insn:
2122 /* Ordinary insn: recognize it, get the operands via insn_extract
2123 and get the constraints. */
2124
2125 icode = recog_memoized (insn);
2126 if (icode < 0)
2127 fatal_insn_not_found (insn);
2128
2129 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2130 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2131 recog_data.n_dups = insn_data[icode].n_dups;
2132
2133 insn_extract (insn);
2134
2135 for (i = 0; i < noperands; i++)
2136 {
2137 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2138 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2139 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2140 /* VOIDmode match_operands gets mode from their real operand. */
2141 if (recog_data.operand_mode[i] == VOIDmode)
2142 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2143 }
2144 }
2145 for (i = 0; i < noperands; i++)
2146 recog_data.operand_type[i]
2147 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2148 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2149 : OP_IN);
2150
2151 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2152
2153 if (INSN_CODE (insn) < 0)
2154 for (i = 0; i < recog_data.n_alternatives; i++)
2155 recog_data.alternative_enabled_p[i] = true;
2156 else
2157 {
2158 recog_data.insn = insn;
2159 for (i = 0; i < recog_data.n_alternatives; i++)
2160 {
2161 which_alternative = i;
2162 recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2163 }
2164 }
2165
2166 recog_data.insn = NULL;
2167 which_alternative = -1;
2168 }
2169
2170 /* After calling extract_insn, you can use this function to extract some
2171 information from the constraint strings into a more usable form.
2172 The collected data is stored in recog_op_alt. */
2173 void
2174 preprocess_constraints (void)
2175 {
2176 int i;
2177
2178 for (i = 0; i < recog_data.n_operands; i++)
2179 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2180 * sizeof (struct operand_alternative)));
2181
2182 for (i = 0; i < recog_data.n_operands; i++)
2183 {
2184 int j;
2185 struct operand_alternative *op_alt;
2186 const char *p = recog_data.constraints[i];
2187
2188 op_alt = recog_op_alt[i];
2189
2190 for (j = 0; j < recog_data.n_alternatives; j++)
2191 {
2192 op_alt[j].cl = NO_REGS;
2193 op_alt[j].constraint = p;
2194 op_alt[j].matches = -1;
2195 op_alt[j].matched = -1;
2196
2197 if (!recog_data.alternative_enabled_p[j])
2198 {
2199 p = skip_alternative (p);
2200 continue;
2201 }
2202
2203 if (*p == '\0' || *p == ',')
2204 {
2205 op_alt[j].anything_ok = 1;
2206 continue;
2207 }
2208
2209 for (;;)
2210 {
2211 char c = *p;
2212 if (c == '#')
2213 do
2214 c = *++p;
2215 while (c != ',' && c != '\0');
2216 if (c == ',' || c == '\0')
2217 {
2218 p++;
2219 break;
2220 }
2221
2222 switch (c)
2223 {
2224 case '=': case '+': case '*': case '%':
2225 case 'E': case 'F': case 'G': case 'H':
2226 case 's': case 'i': case 'n':
2227 case 'I': case 'J': case 'K': case 'L':
2228 case 'M': case 'N': case 'O': case 'P':
2229 /* These don't say anything we care about. */
2230 break;
2231
2232 case '?':
2233 op_alt[j].reject += 6;
2234 break;
2235 case '!':
2236 op_alt[j].reject += 600;
2237 break;
2238 case '&':
2239 op_alt[j].earlyclobber = 1;
2240 break;
2241
2242 case '0': case '1': case '2': case '3': case '4':
2243 case '5': case '6': case '7': case '8': case '9':
2244 {
2245 char *end;
2246 op_alt[j].matches = strtoul (p, &end, 10);
2247 recog_op_alt[op_alt[j].matches][j].matched = i;
2248 p = end;
2249 }
2250 continue;
2251
2252 case TARGET_MEM_CONSTRAINT:
2253 op_alt[j].memory_ok = 1;
2254 break;
2255 case '<':
2256 op_alt[j].decmem_ok = 1;
2257 break;
2258 case '>':
2259 op_alt[j].incmem_ok = 1;
2260 break;
2261 case 'V':
2262 op_alt[j].nonoffmem_ok = 1;
2263 break;
2264 case 'o':
2265 op_alt[j].offmem_ok = 1;
2266 break;
2267 case 'X':
2268 op_alt[j].anything_ok = 1;
2269 break;
2270
2271 case 'p':
2272 op_alt[j].is_address = 1;
2273 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2274 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
2275 break;
2276
2277 case 'g':
2278 case 'r':
2279 op_alt[j].cl =
2280 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2281 break;
2282
2283 default:
2284 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2285 {
2286 op_alt[j].memory_ok = 1;
2287 break;
2288 }
2289 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2290 {
2291 op_alt[j].is_address = 1;
2292 op_alt[j].cl
2293 = (reg_class_subunion
2294 [(int) op_alt[j].cl]
2295 [(int) base_reg_class (VOIDmode, ADDRESS,
2296 SCRATCH)]);
2297 break;
2298 }
2299
2300 op_alt[j].cl
2301 = (reg_class_subunion
2302 [(int) op_alt[j].cl]
2303 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2304 break;
2305 }
2306 p += CONSTRAINT_LEN (c, p);
2307 }
2308 }
2309 }
2310 }
2311
2312 /* Check the operands of an insn against the insn's operand constraints
2313 and return 1 if they are valid.
2314 The information about the insn's operands, constraints, operand modes
2315 etc. is obtained from the global variables set up by extract_insn.
2316
2317 WHICH_ALTERNATIVE is set to a number which indicates which
2318 alternative of constraints was matched: 0 for the first alternative,
2319 1 for the next, etc.
2320
2321 In addition, when two operands are required to match
2322 and it happens that the output operand is (reg) while the
2323 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2324 make the output operand look like the input.
2325 This is because the output operand is the one the template will print.
2326
2327 This is used in final, just before printing the assembler code and by
2328 the routines that determine an insn's attribute.
2329
2330 If STRICT is a positive nonzero value, it means that we have been
2331 called after reload has been completed. In that case, we must
2332 do all checks strictly. If it is zero, it means that we have been called
2333 before reload has completed. In that case, we first try to see if we can
2334 find an alternative that matches strictly. If not, we try again, this
2335 time assuming that reload will fix up the insn. This provides a "best
2336 guess" for the alternative and is used to compute attributes of insns prior
2337 to reload. A negative value of STRICT is used for this internal call. */
2338
2339 struct funny_match
2340 {
2341 int this_op, other;
2342 };
2343
2344 int
2345 constrain_operands (int strict)
2346 {
2347 const char *constraints[MAX_RECOG_OPERANDS];
2348 int matching_operands[MAX_RECOG_OPERANDS];
2349 int earlyclobber[MAX_RECOG_OPERANDS];
2350 int c;
2351
2352 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2353 int funny_match_index;
2354
2355 which_alternative = 0;
2356 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2357 return 1;
2358
2359 for (c = 0; c < recog_data.n_operands; c++)
2360 {
2361 constraints[c] = recog_data.constraints[c];
2362 matching_operands[c] = -1;
2363 }
2364
2365 do
2366 {
2367 int seen_earlyclobber_at = -1;
2368 int opno;
2369 int lose = 0;
2370 funny_match_index = 0;
2371
2372 if (!recog_data.alternative_enabled_p[which_alternative])
2373 {
2374 int i;
2375
2376 for (i = 0; i < recog_data.n_operands; i++)
2377 constraints[i] = skip_alternative (constraints[i]);
2378
2379 which_alternative++;
2380 continue;
2381 }
2382
2383 for (opno = 0; opno < recog_data.n_operands; opno++)
2384 {
2385 rtx op = recog_data.operand[opno];
2386 enum machine_mode mode = GET_MODE (op);
2387 const char *p = constraints[opno];
2388 int offset = 0;
2389 int win = 0;
2390 int val;
2391 int len;
2392
2393 earlyclobber[opno] = 0;
2394
2395 /* A unary operator may be accepted by the predicate, but it
2396 is irrelevant for matching constraints. */
2397 if (UNARY_P (op))
2398 op = XEXP (op, 0);
2399
2400 if (GET_CODE (op) == SUBREG)
2401 {
2402 if (REG_P (SUBREG_REG (op))
2403 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2404 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2405 GET_MODE (SUBREG_REG (op)),
2406 SUBREG_BYTE (op),
2407 GET_MODE (op));
2408 op = SUBREG_REG (op);
2409 }
2410
2411 /* An empty constraint or empty alternative
2412 allows anything which matched the pattern. */
2413 if (*p == 0 || *p == ',')
2414 win = 1;
2415
2416 do
2417 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2418 {
2419 case '\0':
2420 len = 0;
2421 break;
2422 case ',':
2423 c = '\0';
2424 break;
2425
2426 case '?': case '!': case '*': case '%':
2427 case '=': case '+':
2428 break;
2429
2430 case '#':
2431 /* Ignore rest of this alternative as far as
2432 constraint checking is concerned. */
2433 do
2434 p++;
2435 while (*p && *p != ',');
2436 len = 0;
2437 break;
2438
2439 case '&':
2440 earlyclobber[opno] = 1;
2441 if (seen_earlyclobber_at < 0)
2442 seen_earlyclobber_at = opno;
2443 break;
2444
2445 case '0': case '1': case '2': case '3': case '4':
2446 case '5': case '6': case '7': case '8': case '9':
2447 {
2448 /* This operand must be the same as a previous one.
2449 This kind of constraint is used for instructions such
2450 as add when they take only two operands.
2451
2452 Note that the lower-numbered operand is passed first.
2453
2454 If we are not testing strictly, assume that this
2455 constraint will be satisfied. */
2456
2457 char *end;
2458 int match;
2459
2460 match = strtoul (p, &end, 10);
2461 p = end;
2462
2463 if (strict < 0)
2464 val = 1;
2465 else
2466 {
2467 rtx op1 = recog_data.operand[match];
2468 rtx op2 = recog_data.operand[opno];
2469
2470 /* A unary operator may be accepted by the predicate,
2471 but it is irrelevant for matching constraints. */
2472 if (UNARY_P (op1))
2473 op1 = XEXP (op1, 0);
2474 if (UNARY_P (op2))
2475 op2 = XEXP (op2, 0);
2476
2477 val = operands_match_p (op1, op2);
2478 }
2479
2480 matching_operands[opno] = match;
2481 matching_operands[match] = opno;
2482
2483 if (val != 0)
2484 win = 1;
2485
2486 /* If output is *x and input is *--x, arrange later
2487 to change the output to *--x as well, since the
2488 output op is the one that will be printed. */
2489 if (val == 2 && strict > 0)
2490 {
2491 funny_match[funny_match_index].this_op = opno;
2492 funny_match[funny_match_index++].other = match;
2493 }
2494 }
2495 len = 0;
2496 break;
2497
2498 case 'p':
2499 /* p is used for address_operands. When we are called by
2500 gen_reload, no one will have checked that the address is
2501 strictly valid, i.e., that all pseudos requiring hard regs
2502 have gotten them. */
2503 if (strict <= 0
2504 || (strict_memory_address_p (recog_data.operand_mode[opno],
2505 op)))
2506 win = 1;
2507 break;
2508
2509 /* No need to check general_operand again;
2510 it was done in insn-recog.c. Well, except that reload
2511 doesn't check the validity of its replacements, but
2512 that should only matter when there's a bug. */
2513 case 'g':
2514 /* Anything goes unless it is a REG and really has a hard reg
2515 but the hard reg is not in the class GENERAL_REGS. */
2516 if (REG_P (op))
2517 {
2518 if (strict < 0
2519 || GENERAL_REGS == ALL_REGS
2520 || (reload_in_progress
2521 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2522 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2523 win = 1;
2524 }
2525 else if (strict < 0 || general_operand (op, mode))
2526 win = 1;
2527 break;
2528
2529 case 'X':
2530 /* This is used for a MATCH_SCRATCH in the cases when
2531 we don't actually need anything. So anything goes
2532 any time. */
2533 win = 1;
2534 break;
2535
2536 case TARGET_MEM_CONSTRAINT:
2537 /* Memory operands must be valid, to the extent
2538 required by STRICT. */
2539 if (MEM_P (op))
2540 {
2541 if (strict > 0
2542 && !strict_memory_address_addr_space_p
2543 (GET_MODE (op), XEXP (op, 0),
2544 MEM_ADDR_SPACE (op)))
2545 break;
2546 if (strict == 0
2547 && !memory_address_addr_space_p
2548 (GET_MODE (op), XEXP (op, 0),
2549 MEM_ADDR_SPACE (op)))
2550 break;
2551 win = 1;
2552 }
2553 /* Before reload, accept what reload can turn into mem. */
2554 else if (strict < 0 && CONSTANT_P (op))
2555 win = 1;
2556 /* During reload, accept a pseudo */
2557 else if (reload_in_progress && REG_P (op)
2558 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2559 win = 1;
2560 break;
2561
2562 case '<':
2563 if (MEM_P (op)
2564 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2565 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2566 win = 1;
2567 break;
2568
2569 case '>':
2570 if (MEM_P (op)
2571 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2572 || GET_CODE (XEXP (op, 0)) == POST_INC))
2573 win = 1;
2574 break;
2575
2576 case 'E':
2577 case 'F':
2578 if (GET_CODE (op) == CONST_DOUBLE
2579 || (GET_CODE (op) == CONST_VECTOR
2580 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2581 win = 1;
2582 break;
2583
2584 case 'G':
2585 case 'H':
2586 if (GET_CODE (op) == CONST_DOUBLE
2587 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2588 win = 1;
2589 break;
2590
2591 case 's':
2592 if (CONST_INT_P (op)
2593 || (GET_CODE (op) == CONST_DOUBLE
2594 && GET_MODE (op) == VOIDmode))
2595 break;
2596 case 'i':
2597 if (CONSTANT_P (op))
2598 win = 1;
2599 break;
2600
2601 case 'n':
2602 if (CONST_INT_P (op)
2603 || (GET_CODE (op) == CONST_DOUBLE
2604 && GET_MODE (op) == VOIDmode))
2605 win = 1;
2606 break;
2607
2608 case 'I':
2609 case 'J':
2610 case 'K':
2611 case 'L':
2612 case 'M':
2613 case 'N':
2614 case 'O':
2615 case 'P':
2616 if (CONST_INT_P (op)
2617 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2618 win = 1;
2619 break;
2620
2621 case 'V':
2622 if (MEM_P (op)
2623 && ((strict > 0 && ! offsettable_memref_p (op))
2624 || (strict < 0
2625 && !(CONSTANT_P (op) || MEM_P (op)))
2626 || (reload_in_progress
2627 && !(REG_P (op)
2628 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2629 win = 1;
2630 break;
2631
2632 case 'o':
2633 if ((strict > 0 && offsettable_memref_p (op))
2634 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2635 /* Before reload, accept what reload can handle. */
2636 || (strict < 0
2637 && (CONSTANT_P (op) || MEM_P (op)))
2638 /* During reload, accept a pseudo */
2639 || (reload_in_progress && REG_P (op)
2640 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2641 win = 1;
2642 break;
2643
2644 default:
2645 {
2646 enum reg_class cl;
2647
2648 cl = (c == 'r'
2649 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2650 if (cl != NO_REGS)
2651 {
2652 if (strict < 0
2653 || (strict == 0
2654 && REG_P (op)
2655 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2656 || (strict == 0 && GET_CODE (op) == SCRATCH)
2657 || (REG_P (op)
2658 && reg_fits_class_p (op, cl, offset, mode)))
2659 win = 1;
2660 }
2661 #ifdef EXTRA_CONSTRAINT_STR
2662 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2663 win = 1;
2664
2665 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2666 /* Every memory operand can be reloaded to fit. */
2667 && ((strict < 0 && MEM_P (op))
2668 /* Before reload, accept what reload can turn
2669 into mem. */
2670 || (strict < 0 && CONSTANT_P (op))
2671 /* During reload, accept a pseudo */
2672 || (reload_in_progress && REG_P (op)
2673 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2674 win = 1;
2675 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2676 /* Every address operand can be reloaded to fit. */
2677 && strict < 0)
2678 win = 1;
2679 #endif
2680 break;
2681 }
2682 }
2683 while (p += len, c);
2684
2685 constraints[opno] = p;
2686 /* If this operand did not win somehow,
2687 this alternative loses. */
2688 if (! win)
2689 lose = 1;
2690 }
2691 /* This alternative won; the operands are ok.
2692 Change whichever operands this alternative says to change. */
2693 if (! lose)
2694 {
2695 int opno, eopno;
2696
2697 /* See if any earlyclobber operand conflicts with some other
2698 operand. */
2699
2700 if (strict > 0 && seen_earlyclobber_at >= 0)
2701 for (eopno = seen_earlyclobber_at;
2702 eopno < recog_data.n_operands;
2703 eopno++)
2704 /* Ignore earlyclobber operands now in memory,
2705 because we would often report failure when we have
2706 two memory operands, one of which was formerly a REG. */
2707 if (earlyclobber[eopno]
2708 && REG_P (recog_data.operand[eopno]))
2709 for (opno = 0; opno < recog_data.n_operands; opno++)
2710 if ((MEM_P (recog_data.operand[opno])
2711 || recog_data.operand_type[opno] != OP_OUT)
2712 && opno != eopno
2713 /* Ignore things like match_operator operands. */
2714 && *recog_data.constraints[opno] != 0
2715 && ! (matching_operands[opno] == eopno
2716 && operands_match_p (recog_data.operand[opno],
2717 recog_data.operand[eopno]))
2718 && ! safe_from_earlyclobber (recog_data.operand[opno],
2719 recog_data.operand[eopno]))
2720 lose = 1;
2721
2722 if (! lose)
2723 {
2724 while (--funny_match_index >= 0)
2725 {
2726 recog_data.operand[funny_match[funny_match_index].other]
2727 = recog_data.operand[funny_match[funny_match_index].this_op];
2728 }
2729
2730 #ifdef AUTO_INC_DEC
2731 /* For operands without < or > constraints reject side-effects. */
2732 if (recog_data.is_asm)
2733 {
2734 for (opno = 0; opno < recog_data.n_operands; opno++)
2735 if (MEM_P (recog_data.operand[opno]))
2736 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2737 {
2738 case PRE_INC:
2739 case POST_INC:
2740 case PRE_DEC:
2741 case POST_DEC:
2742 case PRE_MODIFY:
2743 case POST_MODIFY:
2744 if (strchr (recog_data.constraints[opno], '<') == NULL
2745 && strchr (recog_data.constraints[opno], '>')
2746 == NULL)
2747 return 0;
2748 break;
2749 default:
2750 break;
2751 }
2752 }
2753 #endif
2754 return 1;
2755 }
2756 }
2757
2758 which_alternative++;
2759 }
2760 while (which_alternative < recog_data.n_alternatives);
2761
2762 which_alternative = -1;
2763 /* If we are about to reject this, but we are not to test strictly,
2764 try a very loose test. Only return failure if it fails also. */
2765 if (strict == 0)
2766 return constrain_operands (-1);
2767 else
2768 return 0;
2769 }
2770
2771 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2772 is a hard reg in class CLASS when its regno is offset by OFFSET
2773 and changed to mode MODE.
2774 If REG occupies multiple hard regs, all of them must be in CLASS. */
2775
2776 int
2777 reg_fits_class_p (rtx operand, enum reg_class cl, int offset,
2778 enum machine_mode mode)
2779 {
2780 int regno = REGNO (operand);
2781
2782 if (cl == NO_REGS)
2783 return 0;
2784
2785 return (regno < FIRST_PSEUDO_REGISTER
2786 && in_hard_reg_set_p (reg_class_contents[(int) cl],
2787 mode, regno + offset));
2788 }
2789 \f
2790 /* Split single instruction. Helper function for split_all_insns and
2791 split_all_insns_noflow. Return last insn in the sequence if successful,
2792 or NULL if unsuccessful. */
2793
2794 static rtx
2795 split_insn (rtx insn)
2796 {
2797 /* Split insns here to get max fine-grain parallelism. */
2798 rtx first = PREV_INSN (insn);
2799 rtx last = try_split (PATTERN (insn), insn, 1);
2800 rtx insn_set, last_set, note;
2801
2802 if (last == insn)
2803 return NULL_RTX;
2804
2805 /* If the original instruction was a single set that was known to be
2806 equivalent to a constant, see if we can say the same about the last
2807 instruction in the split sequence. The two instructions must set
2808 the same destination. */
2809 insn_set = single_set (insn);
2810 if (insn_set)
2811 {
2812 last_set = single_set (last);
2813 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2814 {
2815 note = find_reg_equal_equiv_note (insn);
2816 if (note && CONSTANT_P (XEXP (note, 0)))
2817 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2818 else if (CONSTANT_P (SET_SRC (insn_set)))
2819 set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set));
2820 }
2821 }
2822
2823 /* try_split returns the NOTE that INSN became. */
2824 SET_INSN_DELETED (insn);
2825
2826 /* ??? Coddle to md files that generate subregs in post-reload
2827 splitters instead of computing the proper hard register. */
2828 if (reload_completed && first != last)
2829 {
2830 first = NEXT_INSN (first);
2831 for (;;)
2832 {
2833 if (INSN_P (first))
2834 cleanup_subreg_operands (first);
2835 if (first == last)
2836 break;
2837 first = NEXT_INSN (first);
2838 }
2839 }
2840
2841 return last;
2842 }
2843
2844 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2845
2846 void
2847 split_all_insns (void)
2848 {
2849 sbitmap blocks;
2850 bool changed;
2851 basic_block bb;
2852
2853 blocks = sbitmap_alloc (last_basic_block);
2854 sbitmap_zero (blocks);
2855 changed = false;
2856
2857 FOR_EACH_BB_REVERSE (bb)
2858 {
2859 rtx insn, next;
2860 bool finish = false;
2861
2862 rtl_profile_for_bb (bb);
2863 for (insn = BB_HEAD (bb); !finish ; insn = next)
2864 {
2865 /* Can't use `next_real_insn' because that might go across
2866 CODE_LABELS and short-out basic blocks. */
2867 next = NEXT_INSN (insn);
2868 finish = (insn == BB_END (bb));
2869 if (INSN_P (insn))
2870 {
2871 rtx set = single_set (insn);
2872
2873 /* Don't split no-op move insns. These should silently
2874 disappear later in final. Splitting such insns would
2875 break the code that handles LIBCALL blocks. */
2876 if (set && set_noop_p (set))
2877 {
2878 /* Nops get in the way while scheduling, so delete them
2879 now if register allocation has already been done. It
2880 is too risky to try to do this before register
2881 allocation, and there are unlikely to be very many
2882 nops then anyways. */
2883 if (reload_completed)
2884 delete_insn_and_edges (insn);
2885 }
2886 else
2887 {
2888 rtx last = split_insn (insn);
2889 if (last)
2890 {
2891 /* The split sequence may include barrier, but the
2892 BB boundary we are interested in will be set to
2893 previous one. */
2894
2895 while (BARRIER_P (last))
2896 last = PREV_INSN (last);
2897 SET_BIT (blocks, bb->index);
2898 changed = true;
2899 }
2900 }
2901 }
2902 }
2903 }
2904
2905 default_rtl_profile ();
2906 if (changed)
2907 find_many_sub_basic_blocks (blocks);
2908
2909 #ifdef ENABLE_CHECKING
2910 verify_flow_info ();
2911 #endif
2912
2913 sbitmap_free (blocks);
2914 }
2915
2916 /* Same as split_all_insns, but do not expect CFG to be available.
2917 Used by machine dependent reorg passes. */
2918
2919 unsigned int
2920 split_all_insns_noflow (void)
2921 {
2922 rtx next, insn;
2923
2924 for (insn = get_insns (); insn; insn = next)
2925 {
2926 next = NEXT_INSN (insn);
2927 if (INSN_P (insn))
2928 {
2929 /* Don't split no-op move insns. These should silently
2930 disappear later in final. Splitting such insns would
2931 break the code that handles LIBCALL blocks. */
2932 rtx set = single_set (insn);
2933 if (set && set_noop_p (set))
2934 {
2935 /* Nops get in the way while scheduling, so delete them
2936 now if register allocation has already been done. It
2937 is too risky to try to do this before register
2938 allocation, and there are unlikely to be very many
2939 nops then anyways.
2940
2941 ??? Should we use delete_insn when the CFG isn't valid? */
2942 if (reload_completed)
2943 delete_insn_and_edges (insn);
2944 }
2945 else
2946 split_insn (insn);
2947 }
2948 }
2949 return 0;
2950 }
2951 \f
2952 #ifdef HAVE_peephole2
2953 struct peep2_insn_data
2954 {
2955 rtx insn;
2956 regset live_before;
2957 };
2958
2959 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2960 static int peep2_current;
2961
2962 static bool peep2_do_rebuild_jump_labels;
2963 static bool peep2_do_cleanup_cfg;
2964
2965 /* The number of instructions available to match a peep2. */
2966 int peep2_current_count;
2967
2968 /* A non-insn marker indicating the last insn of the block.
2969 The live_before regset for this element is correct, indicating
2970 DF_LIVE_OUT for the block. */
2971 #define PEEP2_EOB pc_rtx
2972
2973 /* Wrap N to fit into the peep2_insn_data buffer. */
2974
2975 static int
2976 peep2_buf_position (int n)
2977 {
2978 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2979 n -= MAX_INSNS_PER_PEEP2 + 1;
2980 return n;
2981 }
2982
2983 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2984 does not exist. Used by the recognizer to find the next insn to match
2985 in a multi-insn pattern. */
2986
2987 rtx
2988 peep2_next_insn (int n)
2989 {
2990 gcc_assert (n <= peep2_current_count);
2991
2992 n = peep2_buf_position (peep2_current + n);
2993
2994 return peep2_insn_data[n].insn;
2995 }
2996
2997 /* Return true if REGNO is dead before the Nth non-note insn
2998 after `current'. */
2999
3000 int
3001 peep2_regno_dead_p (int ofs, int regno)
3002 {
3003 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3004
3005 ofs = peep2_buf_position (peep2_current + ofs);
3006
3007 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3008
3009 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3010 }
3011
3012 /* Similarly for a REG. */
3013
3014 int
3015 peep2_reg_dead_p (int ofs, rtx reg)
3016 {
3017 int regno, n;
3018
3019 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3020
3021 ofs = peep2_buf_position (peep2_current + ofs);
3022
3023 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3024
3025 regno = REGNO (reg);
3026 n = hard_regno_nregs[regno][GET_MODE (reg)];
3027 while (--n >= 0)
3028 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3029 return 0;
3030 return 1;
3031 }
3032
3033 /* Try to find a hard register of mode MODE, matching the register class in
3034 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3035 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3036 in which case the only condition is that the register must be available
3037 before CURRENT_INSN.
3038 Registers that already have bits set in REG_SET will not be considered.
3039
3040 If an appropriate register is available, it will be returned and the
3041 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3042 returned. */
3043
3044 rtx
3045 peep2_find_free_register (int from, int to, const char *class_str,
3046 enum machine_mode mode, HARD_REG_SET *reg_set)
3047 {
3048 static int search_ofs;
3049 enum reg_class cl;
3050 HARD_REG_SET live;
3051 int i;
3052
3053 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3054 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3055
3056 from = peep2_buf_position (peep2_current + from);
3057 to = peep2_buf_position (peep2_current + to);
3058
3059 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3060 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3061
3062 while (from != to)
3063 {
3064 HARD_REG_SET this_live;
3065
3066 from = peep2_buf_position (from + 1);
3067 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3068 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
3069 IOR_HARD_REG_SET (live, this_live);
3070 }
3071
3072 cl = (class_str[0] == 'r' ? GENERAL_REGS
3073 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3074
3075 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3076 {
3077 int raw_regno, regno, success, j;
3078
3079 /* Distribute the free registers as much as possible. */
3080 raw_regno = search_ofs + i;
3081 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3082 raw_regno -= FIRST_PSEUDO_REGISTER;
3083 #ifdef REG_ALLOC_ORDER
3084 regno = reg_alloc_order[raw_regno];
3085 #else
3086 regno = raw_regno;
3087 #endif
3088
3089 /* Don't allocate fixed registers. */
3090 if (fixed_regs[regno])
3091 continue;
3092 /* Don't allocate global registers. */
3093 if (global_regs[regno])
3094 continue;
3095 /* Make sure the register is of the right class. */
3096 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3097 continue;
3098 /* And can support the mode we need. */
3099 if (! HARD_REGNO_MODE_OK (regno, mode))
3100 continue;
3101 /* And that we don't create an extra save/restore. */
3102 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3103 continue;
3104 if (! targetm.hard_regno_scratch_ok (regno))
3105 continue;
3106
3107 /* And we don't clobber traceback for noreturn functions. */
3108 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3109 && (! reload_completed || frame_pointer_needed))
3110 continue;
3111
3112 success = 1;
3113 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3114 {
3115 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3116 || TEST_HARD_REG_BIT (live, regno + j))
3117 {
3118 success = 0;
3119 break;
3120 }
3121 }
3122 if (success)
3123 {
3124 add_to_hard_reg_set (reg_set, mode, regno);
3125
3126 /* Start the next search with the next register. */
3127 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3128 raw_regno = 0;
3129 search_ofs = raw_regno;
3130
3131 return gen_rtx_REG (mode, regno);
3132 }
3133 }
3134
3135 search_ofs = 0;
3136 return NULL_RTX;
3137 }
3138
3139 /* Forget all currently tracked instructions, only remember current
3140 LIVE regset. */
3141
3142 static void
3143 peep2_reinit_state (regset live)
3144 {
3145 int i;
3146
3147 /* Indicate that all slots except the last holds invalid data. */
3148 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3149 peep2_insn_data[i].insn = NULL_RTX;
3150 peep2_current_count = 0;
3151
3152 /* Indicate that the last slot contains live_after data. */
3153 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3154 peep2_current = MAX_INSNS_PER_PEEP2;
3155
3156 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3157 }
3158
3159 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3160 starting at INSN. Perform the replacement, removing the old insns and
3161 replacing them with ATTEMPT. Returns the last insn emitted. */
3162
3163 static rtx
3164 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3165 {
3166 int i;
3167 rtx last, note, before_try, x;
3168 bool was_call = false;
3169
3170 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3171 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3172 cfg-related call notes. */
3173 for (i = 0; i <= match_len; ++i)
3174 {
3175 int j;
3176 rtx old_insn, new_insn, note;
3177
3178 j = peep2_buf_position (peep2_current + i);
3179 old_insn = peep2_insn_data[j].insn;
3180 if (!CALL_P (old_insn))
3181 continue;
3182 was_call = true;
3183
3184 new_insn = attempt;
3185 while (new_insn != NULL_RTX)
3186 {
3187 if (CALL_P (new_insn))
3188 break;
3189 new_insn = NEXT_INSN (new_insn);
3190 }
3191
3192 gcc_assert (new_insn != NULL_RTX);
3193
3194 CALL_INSN_FUNCTION_USAGE (new_insn)
3195 = CALL_INSN_FUNCTION_USAGE (old_insn);
3196
3197 for (note = REG_NOTES (old_insn);
3198 note;
3199 note = XEXP (note, 1))
3200 switch (REG_NOTE_KIND (note))
3201 {
3202 case REG_NORETURN:
3203 case REG_SETJMP:
3204 add_reg_note (new_insn, REG_NOTE_KIND (note),
3205 XEXP (note, 0));
3206 break;
3207 default:
3208 /* Discard all other reg notes. */
3209 break;
3210 }
3211
3212 /* Croak if there is another call in the sequence. */
3213 while (++i <= match_len)
3214 {
3215 j = peep2_buf_position (peep2_current + i);
3216 old_insn = peep2_insn_data[j].insn;
3217 gcc_assert (!CALL_P (old_insn));
3218 }
3219 break;
3220 }
3221
3222 i = peep2_buf_position (peep2_current + match_len);
3223
3224 note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3225
3226 /* Replace the old sequence with the new. */
3227 last = emit_insn_after_setloc (attempt,
3228 peep2_insn_data[i].insn,
3229 INSN_LOCATOR (peep2_insn_data[i].insn));
3230 before_try = PREV_INSN (insn);
3231 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3232
3233 /* Re-insert the EH_REGION notes. */
3234 if (note || (was_call && nonlocal_goto_handler_labels))
3235 {
3236 edge eh_edge;
3237 edge_iterator ei;
3238
3239 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3240 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3241 break;
3242
3243 if (note)
3244 copy_reg_eh_region_note_backward (note, last, before_try);
3245
3246 if (eh_edge)
3247 for (x = last; x != before_try; x = PREV_INSN (x))
3248 if (x != BB_END (bb)
3249 && (can_throw_internal (x)
3250 || can_nonlocal_goto (x)))
3251 {
3252 edge nfte, nehe;
3253 int flags;
3254
3255 nfte = split_block (bb, x);
3256 flags = (eh_edge->flags
3257 & (EDGE_EH | EDGE_ABNORMAL));
3258 if (CALL_P (x))
3259 flags |= EDGE_ABNORMAL_CALL;
3260 nehe = make_edge (nfte->src, eh_edge->dest,
3261 flags);
3262
3263 nehe->probability = eh_edge->probability;
3264 nfte->probability
3265 = REG_BR_PROB_BASE - nehe->probability;
3266
3267 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3268 bb = nfte->src;
3269 eh_edge = nehe;
3270 }
3271
3272 /* Converting possibly trapping insn to non-trapping is
3273 possible. Zap dummy outgoing edges. */
3274 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3275 }
3276
3277 /* If we generated a jump instruction, it won't have
3278 JUMP_LABEL set. Recompute after we're done. */
3279 for (x = last; x != before_try; x = PREV_INSN (x))
3280 if (JUMP_P (x))
3281 {
3282 peep2_do_rebuild_jump_labels = true;
3283 break;
3284 }
3285
3286 return last;
3287 }
3288
3289 /* After performing a replacement in basic block BB, fix up the life
3290 information in our buffer. LAST is the last of the insns that we
3291 emitted as a replacement. PREV is the insn before the start of
3292 the replacement. MATCH_LEN is the number of instructions that were
3293 matched, and which now need to be replaced in the buffer. */
3294
3295 static void
3296 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3297 {
3298 int i = peep2_buf_position (peep2_current + match_len + 1);
3299 rtx x;
3300 regset_head live;
3301
3302 INIT_REG_SET (&live);
3303 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3304
3305 gcc_assert (peep2_current_count >= match_len + 1);
3306 peep2_current_count -= match_len + 1;
3307
3308 x = last;
3309 do
3310 {
3311 if (INSN_P (x))
3312 {
3313 df_insn_rescan (x);
3314 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3315 {
3316 peep2_current_count++;
3317 if (--i < 0)
3318 i = MAX_INSNS_PER_PEEP2;
3319 peep2_insn_data[i].insn = x;
3320 df_simulate_one_insn_backwards (bb, x, &live);
3321 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3322 }
3323 }
3324 x = PREV_INSN (x);
3325 }
3326 while (x != prev);
3327 CLEAR_REG_SET (&live);
3328
3329 peep2_current = i;
3330 }
3331
3332 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3333 Return true if we added it, false otherwise. The caller will try to match
3334 peepholes against the buffer if we return false; otherwise it will try to
3335 add more instructions to the buffer. */
3336
3337 static bool
3338 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3339 {
3340 int pos;
3341
3342 /* Once we have filled the maximum number of insns the buffer can hold,
3343 allow the caller to match the insns against peepholes. We wait until
3344 the buffer is full in case the target has similar peepholes of different
3345 length; we always want to match the longest if possible. */
3346 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3347 return false;
3348
3349 /* If an insn has RTX_FRAME_RELATED_P set, peephole substitution would lose
3350 the REG_FRAME_RELATED_EXPR that is attached. */
3351 if (RTX_FRAME_RELATED_P (insn))
3352 {
3353 /* Let the buffer drain first. */
3354 if (peep2_current_count > 0)
3355 return false;
3356 /* Step over the insn then return true without adding the insn
3357 to the buffer; this will cause us to process the next
3358 insn. */
3359 df_simulate_one_insn_forwards (bb, insn, live);
3360 return true;
3361 }
3362
3363 pos = peep2_buf_position (peep2_current + peep2_current_count);
3364 peep2_insn_data[pos].insn = insn;
3365 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3366 peep2_current_count++;
3367
3368 df_simulate_one_insn_forwards (bb, insn, live);
3369 return true;
3370 }
3371
3372 /* Perform the peephole2 optimization pass. */
3373
3374 static void
3375 peephole2_optimize (void)
3376 {
3377 rtx insn;
3378 bitmap live;
3379 int i;
3380 basic_block bb;
3381
3382 peep2_do_cleanup_cfg = false;
3383 peep2_do_rebuild_jump_labels = false;
3384
3385 df_set_flags (DF_LR_RUN_DCE);
3386 df_note_add_problem ();
3387 df_analyze ();
3388
3389 /* Initialize the regsets we're going to use. */
3390 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3391 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3392 live = BITMAP_ALLOC (&reg_obstack);
3393
3394 FOR_EACH_BB_REVERSE (bb)
3395 {
3396 bool past_end = false;
3397 int pos;
3398
3399 rtl_profile_for_bb (bb);
3400
3401 /* Start up propagation. */
3402 bitmap_copy (live, DF_LR_IN (bb));
3403 df_simulate_initialize_forwards (bb, live);
3404 peep2_reinit_state (live);
3405
3406 insn = BB_HEAD (bb);
3407 for (;;)
3408 {
3409 rtx attempt, head;
3410 int match_len;
3411
3412 if (!past_end && !NONDEBUG_INSN_P (insn))
3413 {
3414 next_insn:
3415 insn = NEXT_INSN (insn);
3416 if (insn == NEXT_INSN (BB_END (bb)))
3417 past_end = true;
3418 continue;
3419 }
3420 if (!past_end && peep2_fill_buffer (bb, insn, live))
3421 goto next_insn;
3422
3423 /* If we did not fill an empty buffer, it signals the end of the
3424 block. */
3425 if (peep2_current_count == 0)
3426 break;
3427
3428 /* The buffer filled to the current maximum, so try to match. */
3429
3430 pos = peep2_buf_position (peep2_current + peep2_current_count);
3431 peep2_insn_data[pos].insn = PEEP2_EOB;
3432 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3433
3434 /* Match the peephole. */
3435 head = peep2_insn_data[peep2_current].insn;
3436 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3437 if (attempt != NULL)
3438 {
3439 rtx last;
3440 last = peep2_attempt (bb, head, match_len, attempt);
3441 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3442 }
3443 else
3444 {
3445 /* If no match, advance the buffer by one insn. */
3446 peep2_current = peep2_buf_position (peep2_current + 1);
3447 peep2_current_count--;
3448 }
3449 }
3450 }
3451
3452 default_rtl_profile ();
3453 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3454 BITMAP_FREE (peep2_insn_data[i].live_before);
3455 BITMAP_FREE (live);
3456 if (peep2_do_rebuild_jump_labels)
3457 rebuild_jump_labels (get_insns ());
3458 }
3459 #endif /* HAVE_peephole2 */
3460
3461 /* Common predicates for use with define_bypass. */
3462
3463 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3464 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3465 must be either a single_set or a PARALLEL with SETs inside. */
3466
3467 int
3468 store_data_bypass_p (rtx out_insn, rtx in_insn)
3469 {
3470 rtx out_set, in_set;
3471 rtx out_pat, in_pat;
3472 rtx out_exp, in_exp;
3473 int i, j;
3474
3475 in_set = single_set (in_insn);
3476 if (in_set)
3477 {
3478 if (!MEM_P (SET_DEST (in_set)))
3479 return false;
3480
3481 out_set = single_set (out_insn);
3482 if (out_set)
3483 {
3484 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3485 return false;
3486 }
3487 else
3488 {
3489 out_pat = PATTERN (out_insn);
3490
3491 if (GET_CODE (out_pat) != PARALLEL)
3492 return false;
3493
3494 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3495 {
3496 out_exp = XVECEXP (out_pat, 0, i);
3497
3498 if (GET_CODE (out_exp) == CLOBBER)
3499 continue;
3500
3501 gcc_assert (GET_CODE (out_exp) == SET);
3502
3503 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3504 return false;
3505 }
3506 }
3507 }
3508 else
3509 {
3510 in_pat = PATTERN (in_insn);
3511 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3512
3513 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3514 {
3515 in_exp = XVECEXP (in_pat, 0, i);
3516
3517 if (GET_CODE (in_exp) == CLOBBER)
3518 continue;
3519
3520 gcc_assert (GET_CODE (in_exp) == SET);
3521
3522 if (!MEM_P (SET_DEST (in_exp)))
3523 return false;
3524
3525 out_set = single_set (out_insn);
3526 if (out_set)
3527 {
3528 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3529 return false;
3530 }
3531 else
3532 {
3533 out_pat = PATTERN (out_insn);
3534 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3535
3536 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3537 {
3538 out_exp = XVECEXP (out_pat, 0, j);
3539
3540 if (GET_CODE (out_exp) == CLOBBER)
3541 continue;
3542
3543 gcc_assert (GET_CODE (out_exp) == SET);
3544
3545 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3546 return false;
3547 }
3548 }
3549 }
3550 }
3551
3552 return true;
3553 }
3554
3555 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3556 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3557 or multiple set; IN_INSN should be single_set for truth, but for convenience
3558 of insn categorization may be any JUMP or CALL insn. */
3559
3560 int
3561 if_test_bypass_p (rtx out_insn, rtx in_insn)
3562 {
3563 rtx out_set, in_set;
3564
3565 in_set = single_set (in_insn);
3566 if (! in_set)
3567 {
3568 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3569 return false;
3570 }
3571
3572 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3573 return false;
3574 in_set = SET_SRC (in_set);
3575
3576 out_set = single_set (out_insn);
3577 if (out_set)
3578 {
3579 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3580 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3581 return false;
3582 }
3583 else
3584 {
3585 rtx out_pat;
3586 int i;
3587
3588 out_pat = PATTERN (out_insn);
3589 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3590
3591 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3592 {
3593 rtx exp = XVECEXP (out_pat, 0, i);
3594
3595 if (GET_CODE (exp) == CLOBBER)
3596 continue;
3597
3598 gcc_assert (GET_CODE (exp) == SET);
3599
3600 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3601 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3602 return false;
3603 }
3604 }
3605
3606 return true;
3607 }
3608 \f
3609 static bool
3610 gate_handle_peephole2 (void)
3611 {
3612 return (optimize > 0 && flag_peephole2);
3613 }
3614
3615 static unsigned int
3616 rest_of_handle_peephole2 (void)
3617 {
3618 #ifdef HAVE_peephole2
3619 peephole2_optimize ();
3620 #endif
3621 return 0;
3622 }
3623
3624 struct rtl_opt_pass pass_peephole2 =
3625 {
3626 {
3627 RTL_PASS,
3628 "peephole2", /* name */
3629 gate_handle_peephole2, /* gate */
3630 rest_of_handle_peephole2, /* execute */
3631 NULL, /* sub */
3632 NULL, /* next */
3633 0, /* static_pass_number */
3634 TV_PEEPHOLE2, /* tv_id */
3635 0, /* properties_required */
3636 0, /* properties_provided */
3637 0, /* properties_destroyed */
3638 0, /* todo_flags_start */
3639 TODO_df_finish | TODO_verify_rtl_sharing |
3640 TODO_dump_func /* todo_flags_finish */
3641 }
3642 };
3643
3644 static unsigned int
3645 rest_of_handle_split_all_insns (void)
3646 {
3647 split_all_insns ();
3648 return 0;
3649 }
3650
3651 struct rtl_opt_pass pass_split_all_insns =
3652 {
3653 {
3654 RTL_PASS,
3655 "split1", /* name */
3656 NULL, /* gate */
3657 rest_of_handle_split_all_insns, /* execute */
3658 NULL, /* sub */
3659 NULL, /* next */
3660 0, /* static_pass_number */
3661 TV_NONE, /* tv_id */
3662 0, /* properties_required */
3663 0, /* properties_provided */
3664 0, /* properties_destroyed */
3665 0, /* todo_flags_start */
3666 TODO_dump_func /* todo_flags_finish */
3667 }
3668 };
3669
3670 static unsigned int
3671 rest_of_handle_split_after_reload (void)
3672 {
3673 /* If optimizing, then go ahead and split insns now. */
3674 #ifndef STACK_REGS
3675 if (optimize > 0)
3676 #endif
3677 split_all_insns ();
3678 return 0;
3679 }
3680
3681 struct rtl_opt_pass pass_split_after_reload =
3682 {
3683 {
3684 RTL_PASS,
3685 "split2", /* name */
3686 NULL, /* gate */
3687 rest_of_handle_split_after_reload, /* execute */
3688 NULL, /* sub */
3689 NULL, /* next */
3690 0, /* static_pass_number */
3691 TV_NONE, /* tv_id */
3692 0, /* properties_required */
3693 0, /* properties_provided */
3694 0, /* properties_destroyed */
3695 0, /* todo_flags_start */
3696 TODO_dump_func /* todo_flags_finish */
3697 }
3698 };
3699
3700 static bool
3701 gate_handle_split_before_regstack (void)
3702 {
3703 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3704 /* If flow2 creates new instructions which need splitting
3705 and scheduling after reload is not done, they might not be
3706 split until final which doesn't allow splitting
3707 if HAVE_ATTR_length. */
3708 # ifdef INSN_SCHEDULING
3709 return (optimize && !flag_schedule_insns_after_reload);
3710 # else
3711 return (optimize);
3712 # endif
3713 #else
3714 return 0;
3715 #endif
3716 }
3717
3718 static unsigned int
3719 rest_of_handle_split_before_regstack (void)
3720 {
3721 split_all_insns ();
3722 return 0;
3723 }
3724
3725 struct rtl_opt_pass pass_split_before_regstack =
3726 {
3727 {
3728 RTL_PASS,
3729 "split3", /* name */
3730 gate_handle_split_before_regstack, /* gate */
3731 rest_of_handle_split_before_regstack, /* execute */
3732 NULL, /* sub */
3733 NULL, /* next */
3734 0, /* static_pass_number */
3735 TV_NONE, /* tv_id */
3736 0, /* properties_required */
3737 0, /* properties_provided */
3738 0, /* properties_destroyed */
3739 0, /* todo_flags_start */
3740 TODO_dump_func /* todo_flags_finish */
3741 }
3742 };
3743
3744 static bool
3745 gate_handle_split_before_sched2 (void)
3746 {
3747 #ifdef INSN_SCHEDULING
3748 return optimize > 0 && flag_schedule_insns_after_reload;
3749 #else
3750 return 0;
3751 #endif
3752 }
3753
3754 static unsigned int
3755 rest_of_handle_split_before_sched2 (void)
3756 {
3757 #ifdef INSN_SCHEDULING
3758 split_all_insns ();
3759 #endif
3760 return 0;
3761 }
3762
3763 struct rtl_opt_pass pass_split_before_sched2 =
3764 {
3765 {
3766 RTL_PASS,
3767 "split4", /* name */
3768 gate_handle_split_before_sched2, /* gate */
3769 rest_of_handle_split_before_sched2, /* execute */
3770 NULL, /* sub */
3771 NULL, /* next */
3772 0, /* static_pass_number */
3773 TV_NONE, /* tv_id */
3774 0, /* properties_required */
3775 0, /* properties_provided */
3776 0, /* properties_destroyed */
3777 0, /* todo_flags_start */
3778 TODO_verify_flow |
3779 TODO_dump_func /* todo_flags_finish */
3780 }
3781 };
3782
3783 /* The placement of the splitting that we do for shorten_branches
3784 depends on whether regstack is used by the target or not. */
3785 static bool
3786 gate_do_final_split (void)
3787 {
3788 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3789 return 1;
3790 #else
3791 return 0;
3792 #endif
3793 }
3794
3795 struct rtl_opt_pass pass_split_for_shorten_branches =
3796 {
3797 {
3798 RTL_PASS,
3799 "split5", /* name */
3800 gate_do_final_split, /* gate */
3801 split_all_insns_noflow, /* execute */
3802 NULL, /* sub */
3803 NULL, /* next */
3804 0, /* static_pass_number */
3805 TV_NONE, /* tv_id */
3806 0, /* properties_required */
3807 0, /* properties_provided */
3808 0, /* properties_destroyed */
3809 0, /* todo_flags_start */
3810 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
3811 }
3812 };
This page took 0.203504 seconds and 5 git commands to generate.