]> gcc.gnu.org Git - gcc.git/blob - gcc/postreload.c
function.h (struct rtl_data): Remove struct and accessor macros.
[gcc.git] / gcc / postreload.c
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "hard-reg-set.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "obstack.h"
29 #include "insn-config.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "symtab.h"
33 #include "alias.h"
34 #include "tree.h"
35 #include "expmed.h"
36 #include "dojump.h"
37 #include "explow.h"
38 #include "calls.h"
39 #include "emit-rtl.h"
40 #include "varasm.h"
41 #include "stmt.h"
42 #include "expr.h"
43 #include "insn-codes.h"
44 #include "optabs.h"
45 #include "regs.h"
46 #include "predict.h"
47 #include "dominance.h"
48 #include "cfg.h"
49 #include "cfgrtl.h"
50 #include "cfgbuild.h"
51 #include "cfgcleanup.h"
52 #include "basic-block.h"
53 #include "reload.h"
54 #include "recog.h"
55 #include "alloc-pool.h"
56 #include "cselib.h"
57 #include "diagnostic-core.h"
58 #include "except.h"
59 #include "target.h"
60 #include "tree-pass.h"
61 #include "df.h"
62 #include "dbgcnt.h"
63
64 static int reload_cse_noop_set_p (rtx);
65 static bool reload_cse_simplify (rtx_insn *, rtx);
66 static void reload_cse_regs_1 (void);
67 static int reload_cse_simplify_set (rtx, rtx_insn *);
68 static int reload_cse_simplify_operands (rtx_insn *, rtx);
69
70 static void reload_combine (void);
71 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
72 static void reload_combine_note_store (rtx, const_rtx, void *);
73
74 static bool reload_cse_move2add (rtx_insn *);
75 static void move2add_note_store (rtx, const_rtx, void *);
76
77 /* Call cse / combine like post-reload optimization phases.
78 FIRST is the first instruction. */
79
80 static void
81 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
82 {
83 bool moves_converted;
84 reload_cse_regs_1 ();
85 reload_combine ();
86 moves_converted = reload_cse_move2add (first);
87 if (flag_expensive_optimizations)
88 {
89 if (moves_converted)
90 reload_combine ();
91 reload_cse_regs_1 ();
92 }
93 }
94
95 /* See whether a single set SET is a noop. */
96 static int
97 reload_cse_noop_set_p (rtx set)
98 {
99 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
100 return 0;
101
102 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
103 }
104
105 /* Try to simplify INSN. Return true if the CFG may have changed. */
106 static bool
107 reload_cse_simplify (rtx_insn *insn, rtx testreg)
108 {
109 rtx body = PATTERN (insn);
110 basic_block insn_bb = BLOCK_FOR_INSN (insn);
111 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
112
113 if (GET_CODE (body) == SET)
114 {
115 int count = 0;
116
117 /* Simplify even if we may think it is a no-op.
118 We may think a memory load of a value smaller than WORD_SIZE
119 is redundant because we haven't taken into account possible
120 implicit extension. reload_cse_simplify_set() will bring
121 this out, so it's safer to simplify before we delete. */
122 count += reload_cse_simplify_set (body, insn);
123
124 if (!count && reload_cse_noop_set_p (body))
125 {
126 rtx value = SET_DEST (body);
127 if (REG_P (value)
128 && ! REG_FUNCTION_VALUE_P (value))
129 value = 0;
130 if (check_for_inc_dec (insn))
131 delete_insn_and_edges (insn);
132 /* We're done with this insn. */
133 goto done;
134 }
135
136 if (count > 0)
137 apply_change_group ();
138 else
139 reload_cse_simplify_operands (insn, testreg);
140 }
141 else if (GET_CODE (body) == PARALLEL)
142 {
143 int i;
144 int count = 0;
145 rtx value = NULL_RTX;
146
147 /* Registers mentioned in the clobber list for an asm cannot be reused
148 within the body of the asm. Invalidate those registers now so that
149 we don't try to substitute values for them. */
150 if (asm_noperands (body) >= 0)
151 {
152 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
153 {
154 rtx part = XVECEXP (body, 0, i);
155 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
156 cselib_invalidate_rtx (XEXP (part, 0));
157 }
158 }
159
160 /* If every action in a PARALLEL is a noop, we can delete
161 the entire PARALLEL. */
162 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
163 {
164 rtx part = XVECEXP (body, 0, i);
165 if (GET_CODE (part) == SET)
166 {
167 if (! reload_cse_noop_set_p (part))
168 break;
169 if (REG_P (SET_DEST (part))
170 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
171 {
172 if (value)
173 break;
174 value = SET_DEST (part);
175 }
176 }
177 else if (GET_CODE (part) != CLOBBER)
178 break;
179 }
180
181 if (i < 0)
182 {
183 if (check_for_inc_dec (insn))
184 delete_insn_and_edges (insn);
185 /* We're done with this insn. */
186 goto done;
187 }
188
189 /* It's not a no-op, but we can try to simplify it. */
190 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
191 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
192 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
193
194 if (count > 0)
195 apply_change_group ();
196 else
197 reload_cse_simplify_operands (insn, testreg);
198 }
199
200 done:
201 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
202 }
203
204 /* Do a very simple CSE pass over the hard registers.
205
206 This function detects no-op moves where we happened to assign two
207 different pseudo-registers to the same hard register, and then
208 copied one to the other. Reload will generate a useless
209 instruction copying a register to itself.
210
211 This function also detects cases where we load a value from memory
212 into two different registers, and (if memory is more expensive than
213 registers) changes it to simply copy the first register into the
214 second register.
215
216 Another optimization is performed that scans the operands of each
217 instruction to see whether the value is already available in a
218 hard register. It then replaces the operand with the hard register
219 if possible, much like an optional reload would. */
220
221 static void
222 reload_cse_regs_1 (void)
223 {
224 bool cfg_changed = false;
225 basic_block bb;
226 rtx_insn *insn;
227 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
228
229 cselib_init (CSELIB_RECORD_MEMORY);
230 init_alias_analysis ();
231
232 FOR_EACH_BB_FN (bb, cfun)
233 FOR_BB_INSNS (bb, insn)
234 {
235 if (INSN_P (insn))
236 cfg_changed |= reload_cse_simplify (insn, testreg);
237
238 cselib_process_insn (insn);
239 }
240
241 /* Clean up. */
242 end_alias_analysis ();
243 cselib_finish ();
244 if (cfg_changed)
245 cleanup_cfg (0);
246 }
247
248 /* Try to simplify a single SET instruction. SET is the set pattern.
249 INSN is the instruction it came from.
250 This function only handles one case: if we set a register to a value
251 which is not a register, we try to find that value in some other register
252 and change the set into a register copy. */
253
254 static int
255 reload_cse_simplify_set (rtx set, rtx_insn *insn)
256 {
257 int did_change = 0;
258 int dreg;
259 rtx src;
260 reg_class_t dclass;
261 int old_cost;
262 cselib_val *val;
263 struct elt_loc_list *l;
264 #ifdef LOAD_EXTEND_OP
265 enum rtx_code extend_op = UNKNOWN;
266 #endif
267 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
268
269 dreg = true_regnum (SET_DEST (set));
270 if (dreg < 0)
271 return 0;
272
273 src = SET_SRC (set);
274 if (side_effects_p (src) || true_regnum (src) >= 0)
275 return 0;
276
277 dclass = REGNO_REG_CLASS (dreg);
278
279 #ifdef LOAD_EXTEND_OP
280 /* When replacing a memory with a register, we need to honor assumptions
281 that combine made wrt the contents of sign bits. We'll do this by
282 generating an extend instruction instead of a reg->reg copy. Thus
283 the destination must be a register that we can widen. */
284 if (MEM_P (src)
285 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
286 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
287 && !REG_P (SET_DEST (set)))
288 return 0;
289 #endif
290
291 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
292 if (! val)
293 return 0;
294
295 /* If memory loads are cheaper than register copies, don't change them. */
296 if (MEM_P (src))
297 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
298 else if (REG_P (src))
299 old_cost = register_move_cost (GET_MODE (src),
300 REGNO_REG_CLASS (REGNO (src)), dclass);
301 else
302 old_cost = set_src_cost (src, speed);
303
304 for (l = val->locs; l; l = l->next)
305 {
306 rtx this_rtx = l->loc;
307 int this_cost;
308
309 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
310 {
311 #ifdef LOAD_EXTEND_OP
312 if (extend_op != UNKNOWN)
313 {
314 wide_int result;
315
316 if (!CONST_SCALAR_INT_P (this_rtx))
317 continue;
318
319 switch (extend_op)
320 {
321 case ZERO_EXTEND:
322 result = wide_int::from (std::make_pair (this_rtx,
323 GET_MODE (src)),
324 BITS_PER_WORD, UNSIGNED);
325 break;
326 case SIGN_EXTEND:
327 result = wide_int::from (std::make_pair (this_rtx,
328 GET_MODE (src)),
329 BITS_PER_WORD, SIGNED);
330 break;
331 default:
332 gcc_unreachable ();
333 }
334 this_rtx = immed_wide_int_const (result, word_mode);
335 }
336 #endif
337 this_cost = set_src_cost (this_rtx, speed);
338 }
339 else if (REG_P (this_rtx))
340 {
341 #ifdef LOAD_EXTEND_OP
342 if (extend_op != UNKNOWN)
343 {
344 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
345 this_cost = set_src_cost (this_rtx, speed);
346 }
347 else
348 #endif
349 this_cost = register_move_cost (GET_MODE (this_rtx),
350 REGNO_REG_CLASS (REGNO (this_rtx)),
351 dclass);
352 }
353 else
354 continue;
355
356 /* If equal costs, prefer registers over anything else. That
357 tends to lead to smaller instructions on some machines. */
358 if (this_cost < old_cost
359 || (this_cost == old_cost
360 && REG_P (this_rtx)
361 && !REG_P (SET_SRC (set))))
362 {
363 #ifdef LOAD_EXTEND_OP
364 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
365 && extend_op != UNKNOWN
366 #ifdef CANNOT_CHANGE_MODE_CLASS
367 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
368 word_mode,
369 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
370 #endif
371 )
372 {
373 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
374 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
375 validate_change (insn, &SET_DEST (set), wide_dest, 1);
376 }
377 #endif
378
379 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
380 old_cost = this_cost, did_change = 1;
381 }
382 }
383
384 return did_change;
385 }
386
387 /* Try to replace operands in INSN with equivalent values that are already
388 in registers. This can be viewed as optional reloading.
389
390 For each non-register operand in the insn, see if any hard regs are
391 known to be equivalent to that operand. Record the alternatives which
392 can accept these hard registers. Among all alternatives, select the
393 ones which are better or equal to the one currently matching, where
394 "better" is in terms of '?' and '!' constraints. Among the remaining
395 alternatives, select the one which replaces most operands with
396 hard registers. */
397
398 static int
399 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
400 {
401 int i, j;
402
403 /* For each operand, all registers that are equivalent to it. */
404 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
405
406 const char *constraints[MAX_RECOG_OPERANDS];
407
408 /* Vector recording how bad an alternative is. */
409 int *alternative_reject;
410 /* Vector recording how many registers can be introduced by choosing
411 this alternative. */
412 int *alternative_nregs;
413 /* Array of vectors recording, for each operand and each alternative,
414 which hard register to substitute, or -1 if the operand should be
415 left as it is. */
416 int *op_alt_regno[MAX_RECOG_OPERANDS];
417 /* Array of alternatives, sorted in order of decreasing desirability. */
418 int *alternative_order;
419
420 extract_constrain_insn (insn);
421
422 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
423 return 0;
424
425 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
426 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
427 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
428 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
429 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
430
431 /* For each operand, find out which regs are equivalent. */
432 for (i = 0; i < recog_data.n_operands; i++)
433 {
434 cselib_val *v;
435 struct elt_loc_list *l;
436 rtx op;
437
438 CLEAR_HARD_REG_SET (equiv_regs[i]);
439
440 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
441 right, so avoid the problem here. Likewise if we have a constant
442 and the insn pattern doesn't tell us the mode we need. */
443 if (LABEL_P (recog_data.operand[i])
444 || (CONSTANT_P (recog_data.operand[i])
445 && recog_data.operand_mode[i] == VOIDmode))
446 continue;
447
448 op = recog_data.operand[i];
449 #ifdef LOAD_EXTEND_OP
450 if (MEM_P (op)
451 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
452 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
453 {
454 rtx set = single_set (insn);
455
456 /* We might have multiple sets, some of which do implicit
457 extension. Punt on this for now. */
458 if (! set)
459 continue;
460 /* If the destination is also a MEM or a STRICT_LOW_PART, no
461 extension applies.
462 Also, if there is an explicit extension, we don't have to
463 worry about an implicit one. */
464 else if (MEM_P (SET_DEST (set))
465 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
466 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
467 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
468 ; /* Continue ordinary processing. */
469 #ifdef CANNOT_CHANGE_MODE_CLASS
470 /* If the register cannot change mode to word_mode, it follows that
471 it cannot have been used in word_mode. */
472 else if (REG_P (SET_DEST (set))
473 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
474 word_mode,
475 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
476 ; /* Continue ordinary processing. */
477 #endif
478 /* If this is a straight load, make the extension explicit. */
479 else if (REG_P (SET_DEST (set))
480 && recog_data.n_operands == 2
481 && SET_SRC (set) == op
482 && SET_DEST (set) == recog_data.operand[1-i])
483 {
484 validate_change (insn, recog_data.operand_loc[i],
485 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
486 word_mode, op),
487 1);
488 validate_change (insn, recog_data.operand_loc[1-i],
489 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
490 1);
491 if (! apply_change_group ())
492 return 0;
493 return reload_cse_simplify_operands (insn, testreg);
494 }
495 else
496 /* ??? There might be arithmetic operations with memory that are
497 safe to optimize, but is it worth the trouble? */
498 continue;
499 }
500 #endif /* LOAD_EXTEND_OP */
501 if (side_effects_p (op))
502 continue;
503 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
504 if (! v)
505 continue;
506
507 for (l = v->locs; l; l = l->next)
508 if (REG_P (l->loc))
509 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
510 }
511
512 alternative_mask preferred = get_preferred_alternatives (insn);
513 for (i = 0; i < recog_data.n_operands; i++)
514 {
515 machine_mode mode;
516 int regno;
517 const char *p;
518
519 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
520 for (j = 0; j < recog_data.n_alternatives; j++)
521 op_alt_regno[i][j] = -1;
522
523 p = constraints[i] = recog_data.constraints[i];
524 mode = recog_data.operand_mode[i];
525
526 /* Add the reject values for each alternative given by the constraints
527 for this operand. */
528 j = 0;
529 while (*p != '\0')
530 {
531 char c = *p++;
532 if (c == ',')
533 j++;
534 else if (c == '?')
535 alternative_reject[j] += 3;
536 else if (c == '!')
537 alternative_reject[j] += 300;
538 }
539
540 /* We won't change operands which are already registers. We
541 also don't want to modify output operands. */
542 regno = true_regnum (recog_data.operand[i]);
543 if (regno >= 0
544 || constraints[i][0] == '='
545 || constraints[i][0] == '+')
546 continue;
547
548 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
549 {
550 enum reg_class rclass = NO_REGS;
551
552 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
553 continue;
554
555 set_mode_and_regno (testreg, mode, regno);
556
557 /* We found a register equal to this operand. Now look for all
558 alternatives that can accept this register and have not been
559 assigned a register they can use yet. */
560 j = 0;
561 p = constraints[i];
562 for (;;)
563 {
564 char c = *p;
565
566 switch (c)
567 {
568 case 'g':
569 rclass = reg_class_subunion[rclass][GENERAL_REGS];
570 break;
571
572 default:
573 rclass
574 = (reg_class_subunion
575 [rclass]
576 [reg_class_for_constraint (lookup_constraint (p))]);
577 break;
578
579 case ',': case '\0':
580 /* See if REGNO fits this alternative, and set it up as the
581 replacement register if we don't have one for this
582 alternative yet and the operand being replaced is not
583 a cheap CONST_INT. */
584 if (op_alt_regno[i][j] == -1
585 && TEST_BIT (preferred, j)
586 && reg_fits_class_p (testreg, rclass, 0, mode)
587 && (!CONST_INT_P (recog_data.operand[i])
588 || (set_src_cost (recog_data.operand[i],
589 optimize_bb_for_speed_p
590 (BLOCK_FOR_INSN (insn)))
591 > set_src_cost (testreg,
592 optimize_bb_for_speed_p
593 (BLOCK_FOR_INSN (insn))))))
594 {
595 alternative_nregs[j]++;
596 op_alt_regno[i][j] = regno;
597 }
598 j++;
599 rclass = NO_REGS;
600 break;
601 }
602 p += CONSTRAINT_LEN (c, p);
603
604 if (c == '\0')
605 break;
606 }
607 }
608 }
609
610 /* Record all alternatives which are better or equal to the currently
611 matching one in the alternative_order array. */
612 for (i = j = 0; i < recog_data.n_alternatives; i++)
613 if (alternative_reject[i] <= alternative_reject[which_alternative])
614 alternative_order[j++] = i;
615 recog_data.n_alternatives = j;
616
617 /* Sort it. Given a small number of alternatives, a dumb algorithm
618 won't hurt too much. */
619 for (i = 0; i < recog_data.n_alternatives - 1; i++)
620 {
621 int best = i;
622 int best_reject = alternative_reject[alternative_order[i]];
623 int best_nregs = alternative_nregs[alternative_order[i]];
624
625 for (j = i + 1; j < recog_data.n_alternatives; j++)
626 {
627 int this_reject = alternative_reject[alternative_order[j]];
628 int this_nregs = alternative_nregs[alternative_order[j]];
629
630 if (this_reject < best_reject
631 || (this_reject == best_reject && this_nregs > best_nregs))
632 {
633 best = j;
634 best_reject = this_reject;
635 best_nregs = this_nregs;
636 }
637 }
638
639 std::swap (alternative_order[best], alternative_order[i]);
640 }
641
642 /* Substitute the operands as determined by op_alt_regno for the best
643 alternative. */
644 j = alternative_order[0];
645
646 for (i = 0; i < recog_data.n_operands; i++)
647 {
648 machine_mode mode = recog_data.operand_mode[i];
649 if (op_alt_regno[i][j] == -1)
650 continue;
651
652 validate_change (insn, recog_data.operand_loc[i],
653 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
654 }
655
656 for (i = recog_data.n_dups - 1; i >= 0; i--)
657 {
658 int op = recog_data.dup_num[i];
659 machine_mode mode = recog_data.operand_mode[op];
660
661 if (op_alt_regno[op][j] == -1)
662 continue;
663
664 validate_change (insn, recog_data.dup_loc[i],
665 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
666 }
667
668 return apply_change_group ();
669 }
670 \f
671 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
672 addressing now.
673 This code might also be useful when reload gave up on reg+reg addressing
674 because of clashes between the return register and INDEX_REG_CLASS. */
675
676 /* The maximum number of uses of a register we can keep track of to
677 replace them with reg+reg addressing. */
678 #define RELOAD_COMBINE_MAX_USES 16
679
680 /* Describes a recorded use of a register. */
681 struct reg_use
682 {
683 /* The insn where a register has been used. */
684 rtx_insn *insn;
685 /* Points to the memory reference enclosing the use, if any, NULL_RTX
686 otherwise. */
687 rtx containing_mem;
688 /* Location of the register within INSN. */
689 rtx *usep;
690 /* The reverse uid of the insn. */
691 int ruid;
692 };
693
694 /* If the register is used in some unknown fashion, USE_INDEX is negative.
695 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
696 indicates where it is first set or clobbered.
697 Otherwise, USE_INDEX is the index of the last encountered use of the
698 register (which is first among these we have seen since we scan backwards).
699 USE_RUID indicates the first encountered, i.e. last, of these uses.
700 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
701 with a constant offset; OFFSET contains this constant in that case.
702 STORE_RUID is always meaningful if we only want to use a value in a
703 register in a different place: it denotes the next insn in the insn
704 stream (i.e. the last encountered) that sets or clobbers the register.
705 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
706 static struct
707 {
708 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
709 rtx offset;
710 int use_index;
711 int store_ruid;
712 int real_store_ruid;
713 int use_ruid;
714 bool all_offsets_match;
715 } reg_state[FIRST_PSEUDO_REGISTER];
716
717 /* Reverse linear uid. This is increased in reload_combine while scanning
718 the instructions from last to first. It is used to set last_label_ruid
719 and the store_ruid / use_ruid fields in reg_state. */
720 static int reload_combine_ruid;
721
722 /* The RUID of the last label we encountered in reload_combine. */
723 static int last_label_ruid;
724
725 /* The RUID of the last jump we encountered in reload_combine. */
726 static int last_jump_ruid;
727
728 /* The register numbers of the first and last index register. A value of
729 -1 in LAST_INDEX_REG indicates that we've previously computed these
730 values and found no suitable index registers. */
731 static int first_index_reg = -1;
732 static int last_index_reg;
733
734 #define LABEL_LIVE(LABEL) \
735 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
736
737 /* Subroutine of reload_combine_split_ruids, called to fix up a single
738 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
739
740 static inline void
741 reload_combine_split_one_ruid (int *pruid, int split_ruid)
742 {
743 if (*pruid > split_ruid)
744 (*pruid)++;
745 }
746
747 /* Called when we insert a new insn in a position we've already passed in
748 the scan. Examine all our state, increasing all ruids that are higher
749 than SPLIT_RUID by one in order to make room for a new insn. */
750
751 static void
752 reload_combine_split_ruids (int split_ruid)
753 {
754 unsigned i;
755
756 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
757 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
758 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
759
760 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
761 {
762 int j, idx = reg_state[i].use_index;
763 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
764 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
765 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
766 split_ruid);
767 if (idx < 0)
768 continue;
769 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
770 {
771 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
772 split_ruid);
773 }
774 }
775 }
776
777 /* Called when we are about to rescan a previously encountered insn with
778 reload_combine_note_use after modifying some part of it. This clears all
779 information about uses in that particular insn. */
780
781 static void
782 reload_combine_purge_insn_uses (rtx_insn *insn)
783 {
784 unsigned i;
785
786 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
787 {
788 int j, k, idx = reg_state[i].use_index;
789 if (idx < 0)
790 continue;
791 j = k = RELOAD_COMBINE_MAX_USES;
792 while (j-- > idx)
793 {
794 if (reg_state[i].reg_use[j].insn != insn)
795 {
796 k--;
797 if (k != j)
798 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
799 }
800 }
801 reg_state[i].use_index = k;
802 }
803 }
804
805 /* Called when we need to forget about all uses of REGNO after an insn
806 which is identified by RUID. */
807
808 static void
809 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
810 {
811 int j, k, idx = reg_state[regno].use_index;
812 if (idx < 0)
813 return;
814 j = k = RELOAD_COMBINE_MAX_USES;
815 while (j-- > idx)
816 {
817 if (reg_state[regno].reg_use[j].ruid >= ruid)
818 {
819 k--;
820 if (k != j)
821 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
822 }
823 }
824 reg_state[regno].use_index = k;
825 }
826
827 /* Find the use of REGNO with the ruid that is highest among those
828 lower than RUID_LIMIT, and return it if it is the only use of this
829 reg in the insn. Return NULL otherwise. */
830
831 static struct reg_use *
832 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
833 {
834 int i, best_ruid = 0;
835 int use_idx = reg_state[regno].use_index;
836 struct reg_use *retval;
837
838 if (use_idx < 0)
839 return NULL;
840 retval = NULL;
841 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
842 {
843 struct reg_use *use = reg_state[regno].reg_use + i;
844 int this_ruid = use->ruid;
845 if (this_ruid >= ruid_limit)
846 continue;
847 if (this_ruid > best_ruid)
848 {
849 best_ruid = this_ruid;
850 retval = use;
851 }
852 else if (this_ruid == best_ruid)
853 retval = NULL;
854 }
855 if (last_label_ruid >= best_ruid)
856 return NULL;
857 return retval;
858 }
859
860 /* After we've moved an add insn, fix up any debug insns that occur
861 between the old location of the add and the new location. REG is
862 the destination register of the add insn; REPLACEMENT is the
863 SET_SRC of the add. FROM and TO specify the range in which we
864 should make this change on debug insns. */
865
866 static void
867 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
868 {
869 rtx_insn *insn;
870 for (insn = from; insn != to; insn = NEXT_INSN (insn))
871 {
872 rtx t;
873
874 if (!DEBUG_INSN_P (insn))
875 continue;
876
877 t = INSN_VAR_LOCATION_LOC (insn);
878 t = simplify_replace_rtx (t, reg, replacement);
879 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
880 }
881 }
882
883 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
884 with SRC in the insn described by USE, taking costs into account. Return
885 true if we made the replacement. */
886
887 static bool
888 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
889 {
890 rtx_insn *use_insn = use->insn;
891 rtx mem = use->containing_mem;
892 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
893
894 if (mem != NULL_RTX)
895 {
896 addr_space_t as = MEM_ADDR_SPACE (mem);
897 rtx oldaddr = XEXP (mem, 0);
898 rtx newaddr = NULL_RTX;
899 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
900 int new_cost;
901
902 newaddr = simplify_replace_rtx (oldaddr, reg, src);
903 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
904 {
905 XEXP (mem, 0) = newaddr;
906 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
907 XEXP (mem, 0) = oldaddr;
908 if (new_cost <= old_cost
909 && validate_change (use_insn,
910 &XEXP (mem, 0), newaddr, 0))
911 return true;
912 }
913 }
914 else
915 {
916 rtx new_set = single_set (use_insn);
917 if (new_set
918 && REG_P (SET_DEST (new_set))
919 && GET_CODE (SET_SRC (new_set)) == PLUS
920 && REG_P (XEXP (SET_SRC (new_set), 0))
921 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
922 {
923 rtx new_src;
924 int old_cost = set_src_cost (SET_SRC (new_set), speed);
925
926 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
927 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
928
929 if (set_src_cost (new_src, speed) <= old_cost
930 && validate_change (use_insn, &SET_SRC (new_set),
931 new_src, 0))
932 return true;
933 }
934 }
935 return false;
936 }
937
938 /* Called by reload_combine when scanning INSN. This function tries to detect
939 patterns where a constant is added to a register, and the result is used
940 in an address.
941 Return true if no further processing is needed on INSN; false if it wasn't
942 recognized and should be handled normally. */
943
944 static bool
945 reload_combine_recognize_const_pattern (rtx_insn *insn)
946 {
947 int from_ruid = reload_combine_ruid;
948 rtx set, pat, reg, src, addreg;
949 unsigned int regno;
950 struct reg_use *use;
951 bool must_move_add;
952 rtx_insn *add_moved_after_insn = NULL;
953 int add_moved_after_ruid = 0;
954 int clobbered_regno = -1;
955
956 set = single_set (insn);
957 if (set == NULL_RTX)
958 return false;
959
960 reg = SET_DEST (set);
961 src = SET_SRC (set);
962 if (!REG_P (reg)
963 || REG_NREGS (reg) != 1
964 || GET_MODE (reg) != Pmode
965 || reg == stack_pointer_rtx)
966 return false;
967
968 regno = REGNO (reg);
969
970 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
971 uses of REG1 inside an address, or inside another add insn. If
972 possible and profitable, merge the addition into subsequent
973 uses. */
974 if (GET_CODE (src) != PLUS
975 || !REG_P (XEXP (src, 0))
976 || !CONSTANT_P (XEXP (src, 1)))
977 return false;
978
979 addreg = XEXP (src, 0);
980 must_move_add = rtx_equal_p (reg, addreg);
981
982 pat = PATTERN (insn);
983 if (must_move_add && set != pat)
984 {
985 /* We have to be careful when moving the add; apart from the
986 single_set there may also be clobbers. Recognize one special
987 case, that of one clobber alongside the set (likely a clobber
988 of the CC register). */
989 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
990 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
991 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
992 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
993 return false;
994 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
995 }
996
997 do
998 {
999 use = reload_combine_closest_single_use (regno, from_ruid);
1000
1001 if (use)
1002 /* Start the search for the next use from here. */
1003 from_ruid = use->ruid;
1004
1005 if (use && GET_MODE (*use->usep) == Pmode)
1006 {
1007 bool delete_add = false;
1008 rtx_insn *use_insn = use->insn;
1009 int use_ruid = use->ruid;
1010
1011 /* Avoid moving the add insn past a jump. */
1012 if (must_move_add && use_ruid <= last_jump_ruid)
1013 break;
1014
1015 /* If the add clobbers another hard reg in parallel, don't move
1016 it past a real set of this hard reg. */
1017 if (must_move_add && clobbered_regno >= 0
1018 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1019 break;
1020
1021 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1022 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
1023 break;
1024
1025 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1026 /* Avoid moving a use of ADDREG past a point where it is stored. */
1027 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1028 break;
1029
1030 /* We also must not move the addition past an insn that sets
1031 the same register, unless we can combine two add insns. */
1032 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1033 {
1034 if (use->containing_mem == NULL_RTX)
1035 delete_add = true;
1036 else
1037 break;
1038 }
1039
1040 if (try_replace_in_use (use, reg, src))
1041 {
1042 reload_combine_purge_insn_uses (use_insn);
1043 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1044 use_ruid, NULL_RTX);
1045
1046 if (delete_add)
1047 {
1048 fixup_debug_insns (reg, src, insn, use_insn);
1049 delete_insn (insn);
1050 return true;
1051 }
1052 if (must_move_add)
1053 {
1054 add_moved_after_insn = use_insn;
1055 add_moved_after_ruid = use_ruid;
1056 }
1057 continue;
1058 }
1059 }
1060 /* If we get here, we couldn't handle this use. */
1061 if (must_move_add)
1062 break;
1063 }
1064 while (use);
1065
1066 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1067 /* Process the add normally. */
1068 return false;
1069
1070 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1071
1072 reorder_insns (insn, insn, add_moved_after_insn);
1073 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1074 reload_combine_split_ruids (add_moved_after_ruid - 1);
1075 reload_combine_note_use (&PATTERN (insn), insn,
1076 add_moved_after_ruid, NULL_RTX);
1077 reg_state[regno].store_ruid = add_moved_after_ruid;
1078
1079 return true;
1080 }
1081
1082 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1083 can handle and improve. Return true if no further processing is needed on
1084 INSN; false if it wasn't recognized and should be handled normally. */
1085
1086 static bool
1087 reload_combine_recognize_pattern (rtx_insn *insn)
1088 {
1089 rtx set, reg, src;
1090 unsigned int regno;
1091
1092 set = single_set (insn);
1093 if (set == NULL_RTX)
1094 return false;
1095
1096 reg = SET_DEST (set);
1097 src = SET_SRC (set);
1098 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1099 return false;
1100
1101 regno = REGNO (reg);
1102
1103 /* Look for (set (REGX) (CONST_INT))
1104 (set (REGX) (PLUS (REGX) (REGY)))
1105 ...
1106 ... (MEM (REGX)) ...
1107 and convert it to
1108 (set (REGZ) (CONST_INT))
1109 ...
1110 ... (MEM (PLUS (REGZ) (REGY)))... .
1111
1112 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1113 and that we know all uses of REGX before it dies.
1114 Also, explicitly check that REGX != REGY; our life information
1115 does not yet show whether REGY changes in this insn. */
1116
1117 if (GET_CODE (src) == PLUS
1118 && reg_state[regno].all_offsets_match
1119 && last_index_reg != -1
1120 && REG_P (XEXP (src, 1))
1121 && rtx_equal_p (XEXP (src, 0), reg)
1122 && !rtx_equal_p (XEXP (src, 1), reg)
1123 && reg_state[regno].use_index >= 0
1124 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1125 && last_label_ruid < reg_state[regno].use_ruid)
1126 {
1127 rtx base = XEXP (src, 1);
1128 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1129 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1130 rtx index_reg = NULL_RTX;
1131 rtx reg_sum = NULL_RTX;
1132 int i;
1133
1134 /* Now we need to set INDEX_REG to an index register (denoted as
1135 REGZ in the illustration above) and REG_SUM to the expression
1136 register+register that we want to use to substitute uses of REG
1137 (typically in MEMs) with. First check REG and BASE for being
1138 index registers; we can use them even if they are not dead. */
1139 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1140 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1141 REGNO (base)))
1142 {
1143 index_reg = reg;
1144 reg_sum = src;
1145 }
1146 else
1147 {
1148 /* Otherwise, look for a free index register. Since we have
1149 checked above that neither REG nor BASE are index registers,
1150 if we find anything at all, it will be different from these
1151 two registers. */
1152 for (i = first_index_reg; i <= last_index_reg; i++)
1153 {
1154 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1155 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1156 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1157 && (call_used_regs[i] || df_regs_ever_live_p (i))
1158 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1159 && !fixed_regs[i] && !global_regs[i]
1160 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1161 && targetm.hard_regno_scratch_ok (i))
1162 {
1163 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1164 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1165 break;
1166 }
1167 }
1168 }
1169
1170 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1171 (REGY), i.e. BASE, is not clobbered before the last use we'll
1172 create. */
1173 if (reg_sum
1174 && prev_set
1175 && CONST_INT_P (SET_SRC (prev_set))
1176 && rtx_equal_p (SET_DEST (prev_set), reg)
1177 && (reg_state[REGNO (base)].store_ruid
1178 <= reg_state[regno].use_ruid))
1179 {
1180 /* Change destination register and, if necessary, the constant
1181 value in PREV, the constant loading instruction. */
1182 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1183 if (reg_state[regno].offset != const0_rtx)
1184 validate_change (prev,
1185 &SET_SRC (prev_set),
1186 GEN_INT (INTVAL (SET_SRC (prev_set))
1187 + INTVAL (reg_state[regno].offset)),
1188 1);
1189
1190 /* Now for every use of REG that we have recorded, replace REG
1191 with REG_SUM. */
1192 for (i = reg_state[regno].use_index;
1193 i < RELOAD_COMBINE_MAX_USES; i++)
1194 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1195 reg_state[regno].reg_use[i].usep,
1196 /* Each change must have its own
1197 replacement. */
1198 reg_sum, 1);
1199
1200 if (apply_change_group ())
1201 {
1202 struct reg_use *lowest_ruid = NULL;
1203
1204 /* For every new use of REG_SUM, we have to record the use
1205 of BASE therein, i.e. operand 1. */
1206 for (i = reg_state[regno].use_index;
1207 i < RELOAD_COMBINE_MAX_USES; i++)
1208 {
1209 struct reg_use *use = reg_state[regno].reg_use + i;
1210 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1211 use->ruid, use->containing_mem);
1212 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1213 lowest_ruid = use;
1214 }
1215
1216 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1217
1218 /* Delete the reg-reg addition. */
1219 delete_insn (insn);
1220
1221 if (reg_state[regno].offset != const0_rtx)
1222 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1223 are now invalid. */
1224 remove_reg_equal_equiv_notes (prev);
1225
1226 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1227 return true;
1228 }
1229 }
1230 }
1231 return false;
1232 }
1233
1234 static void
1235 reload_combine (void)
1236 {
1237 rtx_insn *insn, *prev;
1238 basic_block bb;
1239 unsigned int r;
1240 int min_labelno, n_labels;
1241 HARD_REG_SET ever_live_at_start, *label_live;
1242
1243 /* To avoid wasting too much time later searching for an index register,
1244 determine the minimum and maximum index register numbers. */
1245 if (INDEX_REG_CLASS == NO_REGS)
1246 last_index_reg = -1;
1247 else if (first_index_reg == -1 && last_index_reg == 0)
1248 {
1249 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1250 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1251 {
1252 if (first_index_reg == -1)
1253 first_index_reg = r;
1254
1255 last_index_reg = r;
1256 }
1257
1258 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1259 to -1 so we'll know to quit early the next time we get here. */
1260 if (first_index_reg == -1)
1261 {
1262 last_index_reg = -1;
1263 return;
1264 }
1265 }
1266
1267 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1268 information is a bit fuzzy immediately after reload, but it's
1269 still good enough to determine which registers are live at a jump
1270 destination. */
1271 min_labelno = get_first_label_num ();
1272 n_labels = max_label_num () - min_labelno;
1273 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1274 CLEAR_HARD_REG_SET (ever_live_at_start);
1275
1276 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1277 {
1278 insn = BB_HEAD (bb);
1279 if (LABEL_P (insn))
1280 {
1281 HARD_REG_SET live;
1282 bitmap live_in = df_get_live_in (bb);
1283
1284 REG_SET_TO_HARD_REG_SET (live, live_in);
1285 compute_use_by_pseudos (&live, live_in);
1286 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1287 IOR_HARD_REG_SET (ever_live_at_start, live);
1288 }
1289 }
1290
1291 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1292 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1293 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1294 {
1295 reg_state[r].store_ruid = 0;
1296 reg_state[r].real_store_ruid = 0;
1297 if (fixed_regs[r])
1298 reg_state[r].use_index = -1;
1299 else
1300 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1301 }
1302
1303 for (insn = get_last_insn (); insn; insn = prev)
1304 {
1305 bool control_flow_insn;
1306 rtx note;
1307
1308 prev = PREV_INSN (insn);
1309
1310 /* We cannot do our optimization across labels. Invalidating all the use
1311 information we have would be costly, so we just note where the label
1312 is and then later disable any optimization that would cross it. */
1313 if (LABEL_P (insn))
1314 last_label_ruid = reload_combine_ruid;
1315 else if (BARRIER_P (insn))
1316 {
1317 /* Crossing a barrier resets all the use information. */
1318 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1319 if (! fixed_regs[r])
1320 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1321 }
1322 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1323 /* Optimizations across insns being marked as volatile must be
1324 prevented. All the usage information is invalidated
1325 here. */
1326 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1327 if (! fixed_regs[r]
1328 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1329 reg_state[r].use_index = -1;
1330
1331 if (! NONDEBUG_INSN_P (insn))
1332 continue;
1333
1334 reload_combine_ruid++;
1335
1336 control_flow_insn = control_flow_insn_p (insn);
1337 if (control_flow_insn)
1338 last_jump_ruid = reload_combine_ruid;
1339
1340 if (reload_combine_recognize_const_pattern (insn)
1341 || reload_combine_recognize_pattern (insn))
1342 continue;
1343
1344 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1345
1346 if (CALL_P (insn))
1347 {
1348 rtx link;
1349 HARD_REG_SET used_regs;
1350
1351 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
1352
1353 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1354 if (TEST_HARD_REG_BIT (used_regs, r))
1355 {
1356 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1357 reg_state[r].store_ruid = reload_combine_ruid;
1358 }
1359
1360 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1361 link = XEXP (link, 1))
1362 {
1363 rtx setuse = XEXP (link, 0);
1364 rtx usage_rtx = XEXP (setuse, 0);
1365 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1366 && REG_P (usage_rtx))
1367 {
1368 unsigned int end_regno = END_REGNO (usage_rtx);
1369 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1370 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1371 {
1372 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1373 reg_state[i].store_ruid = reload_combine_ruid;
1374 }
1375 else
1376 reg_state[i].use_index = -1;
1377 }
1378 }
1379 }
1380
1381 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1382 {
1383 /* Non-spill registers might be used at the call destination in
1384 some unknown fashion, so we have to mark the unknown use. */
1385 HARD_REG_SET *live;
1386
1387 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1388 && JUMP_LABEL (insn))
1389 {
1390 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1391 live = NULL;
1392 else
1393 live = &LABEL_LIVE (JUMP_LABEL (insn));
1394 }
1395 else
1396 live = &ever_live_at_start;
1397
1398 if (live)
1399 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1400 if (TEST_HARD_REG_BIT (*live, r))
1401 reg_state[r].use_index = -1;
1402 }
1403
1404 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1405 NULL_RTX);
1406
1407 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1408 {
1409 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1410 {
1411 int regno = REGNO (XEXP (note, 0));
1412 reg_state[regno].store_ruid = reload_combine_ruid;
1413 reg_state[regno].real_store_ruid = reload_combine_ruid;
1414 reg_state[regno].use_index = -1;
1415 }
1416 }
1417 }
1418
1419 free (label_live);
1420 }
1421
1422 /* Check if DST is a register or a subreg of a register; if it is,
1423 update store_ruid, real_store_ruid and use_index in the reg_state
1424 structure accordingly. Called via note_stores from reload_combine. */
1425
1426 static void
1427 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1428 {
1429 int regno = 0;
1430 int i;
1431 machine_mode mode = GET_MODE (dst);
1432
1433 if (GET_CODE (dst) == SUBREG)
1434 {
1435 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1436 GET_MODE (SUBREG_REG (dst)),
1437 SUBREG_BYTE (dst),
1438 GET_MODE (dst));
1439 dst = SUBREG_REG (dst);
1440 }
1441
1442 /* Some targets do argument pushes without adding REG_INC notes. */
1443
1444 if (MEM_P (dst))
1445 {
1446 dst = XEXP (dst, 0);
1447 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1448 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1449 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1450 {
1451 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1452 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1453 {
1454 /* We could probably do better, but for now mark the register
1455 as used in an unknown fashion and set/clobbered at this
1456 insn. */
1457 reg_state[i].use_index = -1;
1458 reg_state[i].store_ruid = reload_combine_ruid;
1459 reg_state[i].real_store_ruid = reload_combine_ruid;
1460 }
1461 }
1462 else
1463 return;
1464 }
1465
1466 if (!REG_P (dst))
1467 return;
1468 regno += REGNO (dst);
1469
1470 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1471 careful with registers / register parts that are not full words.
1472 Similarly for ZERO_EXTRACT. */
1473 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1474 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1475 {
1476 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1477 {
1478 reg_state[i].use_index = -1;
1479 reg_state[i].store_ruid = reload_combine_ruid;
1480 reg_state[i].real_store_ruid = reload_combine_ruid;
1481 }
1482 }
1483 else
1484 {
1485 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1486 {
1487 reg_state[i].store_ruid = reload_combine_ruid;
1488 if (GET_CODE (set) == SET)
1489 reg_state[i].real_store_ruid = reload_combine_ruid;
1490 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1491 }
1492 }
1493 }
1494
1495 /* XP points to a piece of rtl that has to be checked for any uses of
1496 registers.
1497 *XP is the pattern of INSN, or a part of it.
1498 Called from reload_combine, and recursively by itself. */
1499 static void
1500 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1501 {
1502 rtx x = *xp;
1503 enum rtx_code code = x->code;
1504 const char *fmt;
1505 int i, j;
1506 rtx offset = const0_rtx; /* For the REG case below. */
1507
1508 switch (code)
1509 {
1510 case SET:
1511 if (REG_P (SET_DEST (x)))
1512 {
1513 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1514 return;
1515 }
1516 break;
1517
1518 case USE:
1519 /* If this is the USE of a return value, we can't change it. */
1520 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1521 {
1522 /* Mark the return register as used in an unknown fashion. */
1523 rtx reg = XEXP (x, 0);
1524 unsigned int end_regno = END_REGNO (reg);
1525 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1526 reg_state[regno].use_index = -1;
1527 return;
1528 }
1529 break;
1530
1531 case CLOBBER:
1532 if (REG_P (SET_DEST (x)))
1533 {
1534 /* No spurious CLOBBERs of pseudo registers may remain. */
1535 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1536 return;
1537 }
1538 break;
1539
1540 case PLUS:
1541 /* We are interested in (plus (reg) (const_int)) . */
1542 if (!REG_P (XEXP (x, 0))
1543 || !CONST_INT_P (XEXP (x, 1)))
1544 break;
1545 offset = XEXP (x, 1);
1546 x = XEXP (x, 0);
1547 /* Fall through. */
1548 case REG:
1549 {
1550 int regno = REGNO (x);
1551 int use_index;
1552 int nregs;
1553
1554 /* No spurious USEs of pseudo registers may remain. */
1555 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1556
1557 nregs = REG_NREGS (x);
1558
1559 /* We can't substitute into multi-hard-reg uses. */
1560 if (nregs > 1)
1561 {
1562 while (--nregs >= 0)
1563 reg_state[regno + nregs].use_index = -1;
1564 return;
1565 }
1566
1567 /* We may be called to update uses in previously seen insns.
1568 Don't add uses beyond the last store we saw. */
1569 if (ruid < reg_state[regno].store_ruid)
1570 return;
1571
1572 /* If this register is already used in some unknown fashion, we
1573 can't do anything.
1574 If we decrement the index from zero to -1, we can't store more
1575 uses, so this register becomes used in an unknown fashion. */
1576 use_index = --reg_state[regno].use_index;
1577 if (use_index < 0)
1578 return;
1579
1580 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1581 {
1582 /* This is the first use of this register we have seen since we
1583 marked it as dead. */
1584 reg_state[regno].offset = offset;
1585 reg_state[regno].all_offsets_match = true;
1586 reg_state[regno].use_ruid = ruid;
1587 }
1588 else
1589 {
1590 if (reg_state[regno].use_ruid > ruid)
1591 reg_state[regno].use_ruid = ruid;
1592
1593 if (! rtx_equal_p (offset, reg_state[regno].offset))
1594 reg_state[regno].all_offsets_match = false;
1595 }
1596
1597 reg_state[regno].reg_use[use_index].insn = insn;
1598 reg_state[regno].reg_use[use_index].ruid = ruid;
1599 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1600 reg_state[regno].reg_use[use_index].usep = xp;
1601 return;
1602 }
1603
1604 case MEM:
1605 containing_mem = x;
1606 break;
1607
1608 default:
1609 break;
1610 }
1611
1612 /* Recursively process the components of X. */
1613 fmt = GET_RTX_FORMAT (code);
1614 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1615 {
1616 if (fmt[i] == 'e')
1617 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1618 else if (fmt[i] == 'E')
1619 {
1620 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1621 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1622 containing_mem);
1623 }
1624 }
1625 }
1626 \f
1627 /* See if we can reduce the cost of a constant by replacing a move
1628 with an add. We track situations in which a register is set to a
1629 constant or to a register plus a constant. */
1630 /* We cannot do our optimization across labels. Invalidating all the
1631 information about register contents we have would be costly, so we
1632 use move2add_last_label_luid to note where the label is and then
1633 later disable any optimization that would cross it.
1634 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1635 are only valid if reg_set_luid[n] is greater than
1636 move2add_last_label_luid.
1637 For a set that established a new (potential) base register with
1638 non-constant value, we use move2add_luid from the place where the
1639 setting insn is encountered; registers based off that base then
1640 get the same reg_set_luid. Constants all get
1641 move2add_last_label_luid + 1 as their reg_set_luid. */
1642 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1643
1644 /* If reg_base_reg[n] is negative, register n has been set to
1645 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1646 If reg_base_reg[n] is non-negative, register n has been set to the
1647 sum of reg_offset[n] and the value of register reg_base_reg[n]
1648 before reg_set_luid[n], calculated in mode reg_mode[n] .
1649 For multi-hard-register registers, all but the first one are
1650 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1651 marks it as invalid. */
1652 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1653 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1654 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1655 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1656
1657 /* move2add_luid is linearly increased while scanning the instructions
1658 from first to last. It is used to set reg_set_luid in
1659 reload_cse_move2add and move2add_note_store. */
1660 static int move2add_luid;
1661
1662 /* move2add_last_label_luid is set whenever a label is found. Labels
1663 invalidate all previously collected reg_offset data. */
1664 static int move2add_last_label_luid;
1665
1666 /* ??? We don't know how zero / sign extension is handled, hence we
1667 can't go from a narrower to a wider mode. */
1668 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1669 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1670 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1671 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1672
1673 /* Record that REG is being set to a value with the mode of REG. */
1674
1675 static void
1676 move2add_record_mode (rtx reg)
1677 {
1678 int regno, nregs;
1679 machine_mode mode = GET_MODE (reg);
1680
1681 if (GET_CODE (reg) == SUBREG)
1682 {
1683 regno = subreg_regno (reg);
1684 nregs = subreg_nregs (reg);
1685 }
1686 else if (REG_P (reg))
1687 {
1688 regno = REGNO (reg);
1689 nregs = REG_NREGS (reg);
1690 }
1691 else
1692 gcc_unreachable ();
1693 for (int i = nregs - 1; i > 0; i--)
1694 reg_mode[regno + i] = BLKmode;
1695 reg_mode[regno] = mode;
1696 }
1697
1698 /* Record that REG is being set to the sum of SYM and OFF. */
1699
1700 static void
1701 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1702 {
1703 int regno = REGNO (reg);
1704
1705 move2add_record_mode (reg);
1706 reg_set_luid[regno] = move2add_luid;
1707 reg_base_reg[regno] = -1;
1708 reg_symbol_ref[regno] = sym;
1709 reg_offset[regno] = INTVAL (off);
1710 }
1711
1712 /* Check if REGNO contains a valid value in MODE. */
1713
1714 static bool
1715 move2add_valid_value_p (int regno, machine_mode mode)
1716 {
1717 if (reg_set_luid[regno] <= move2add_last_label_luid)
1718 return false;
1719
1720 if (mode != reg_mode[regno])
1721 {
1722 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1723 return false;
1724 /* The value loaded into regno in reg_mode[regno] is also valid in
1725 mode after truncation only if (REG:mode regno) is the lowpart of
1726 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1727 regno of the lowpart might be different. */
1728 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1729 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1730 if (s_off != 0)
1731 /* We could in principle adjust regno, check reg_mode[regno] to be
1732 BLKmode, and return s_off to the caller (vs. -1 for failure),
1733 but we currently have no callers that could make use of this
1734 information. */
1735 return false;
1736 }
1737
1738 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1739 if (reg_mode[regno + i] != BLKmode)
1740 return false;
1741 return true;
1742 }
1743
1744 /* This function is called with INSN that sets REG to (SYM + OFF),
1745 while REG is known to already have value (SYM + offset).
1746 This function tries to change INSN into an add instruction
1747 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1748 It also updates the information about REG's known value.
1749 Return true if we made a change. */
1750
1751 static bool
1752 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1753 {
1754 rtx pat = PATTERN (insn);
1755 rtx src = SET_SRC (pat);
1756 int regno = REGNO (reg);
1757 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1758 GET_MODE (reg));
1759 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1760 bool changed = false;
1761
1762 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1763 use (set (reg) (reg)) instead.
1764 We don't delete this insn, nor do we convert it into a
1765 note, to avoid losing register notes or the return
1766 value flag. jump2 already knows how to get rid of
1767 no-op moves. */
1768 if (new_src == const0_rtx)
1769 {
1770 /* If the constants are different, this is a
1771 truncation, that, if turned into (set (reg)
1772 (reg)), would be discarded. Maybe we should
1773 try a truncMN pattern? */
1774 if (INTVAL (off) == reg_offset [regno])
1775 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1776 }
1777 else
1778 {
1779 struct full_rtx_costs oldcst, newcst;
1780 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1781
1782 get_full_set_rtx_cost (pat, &oldcst);
1783 SET_SRC (pat) = tem;
1784 get_full_set_rtx_cost (pat, &newcst);
1785 SET_SRC (pat) = src;
1786
1787 if (costs_lt_p (&newcst, &oldcst, speed)
1788 && have_add2_insn (reg, new_src))
1789 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1790 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1791 {
1792 machine_mode narrow_mode;
1793 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1794 narrow_mode != VOIDmode
1795 && narrow_mode != GET_MODE (reg);
1796 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1797 {
1798 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1799 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1800 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1801 {
1802 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1803 rtx narrow_src = gen_int_mode (INTVAL (off),
1804 narrow_mode);
1805 rtx new_set
1806 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1807 narrow_reg),
1808 narrow_src);
1809 get_full_set_rtx_cost (new_set, &newcst);
1810 if (costs_lt_p (&newcst, &oldcst, speed))
1811 {
1812 changed = validate_change (insn, &PATTERN (insn),
1813 new_set, 0);
1814 if (changed)
1815 break;
1816 }
1817 }
1818 }
1819 }
1820 }
1821 move2add_record_sym_value (reg, sym, off);
1822 return changed;
1823 }
1824
1825
1826 /* This function is called with INSN that sets REG to (SYM + OFF),
1827 but REG doesn't have known value (SYM + offset). This function
1828 tries to find another register which is known to already have
1829 value (SYM + offset) and change INSN into an add instruction
1830 (set (REG) (plus (the found register) (OFF - offset))) if such
1831 a register is found. It also updates the information about
1832 REG's known value.
1833 Return true iff we made a change. */
1834
1835 static bool
1836 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1837 {
1838 rtx pat = PATTERN (insn);
1839 rtx src = SET_SRC (pat);
1840 int regno = REGNO (reg);
1841 int min_regno = 0;
1842 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1843 int i;
1844 bool changed = false;
1845 struct full_rtx_costs oldcst, newcst, mincst;
1846 rtx plus_expr;
1847
1848 init_costs_to_max (&mincst);
1849 get_full_set_rtx_cost (pat, &oldcst);
1850
1851 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1852 SET_SRC (pat) = plus_expr;
1853
1854 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1855 if (move2add_valid_value_p (i, GET_MODE (reg))
1856 && reg_base_reg[i] < 0
1857 && reg_symbol_ref[i] != NULL_RTX
1858 && rtx_equal_p (sym, reg_symbol_ref[i]))
1859 {
1860 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1861 GET_MODE (reg));
1862 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1863 use (set (reg) (reg)) instead.
1864 We don't delete this insn, nor do we convert it into a
1865 note, to avoid losing register notes or the return
1866 value flag. jump2 already knows how to get rid of
1867 no-op moves. */
1868 if (new_src == const0_rtx)
1869 {
1870 init_costs_to_zero (&mincst);
1871 min_regno = i;
1872 break;
1873 }
1874 else
1875 {
1876 XEXP (plus_expr, 1) = new_src;
1877 get_full_set_rtx_cost (pat, &newcst);
1878
1879 if (costs_lt_p (&newcst, &mincst, speed))
1880 {
1881 mincst = newcst;
1882 min_regno = i;
1883 }
1884 }
1885 }
1886 SET_SRC (pat) = src;
1887
1888 if (costs_lt_p (&mincst, &oldcst, speed))
1889 {
1890 rtx tem;
1891
1892 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1893 if (i != min_regno)
1894 {
1895 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1896 GET_MODE (reg));
1897 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1898 }
1899 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1900 changed = true;
1901 }
1902 reg_set_luid[regno] = move2add_luid;
1903 move2add_record_sym_value (reg, sym, off);
1904 return changed;
1905 }
1906
1907 /* Convert move insns with constant inputs to additions if they are cheaper.
1908 Return true if any changes were made. */
1909 static bool
1910 reload_cse_move2add (rtx_insn *first)
1911 {
1912 int i;
1913 rtx_insn *insn;
1914 bool changed = false;
1915
1916 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1917 {
1918 reg_set_luid[i] = 0;
1919 reg_offset[i] = 0;
1920 reg_base_reg[i] = 0;
1921 reg_symbol_ref[i] = NULL_RTX;
1922 reg_mode[i] = VOIDmode;
1923 }
1924
1925 move2add_last_label_luid = 0;
1926 move2add_luid = 2;
1927 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1928 {
1929 rtx pat, note;
1930
1931 if (LABEL_P (insn))
1932 {
1933 move2add_last_label_luid = move2add_luid;
1934 /* We're going to increment move2add_luid twice after a
1935 label, so that we can use move2add_last_label_luid + 1 as
1936 the luid for constants. */
1937 move2add_luid++;
1938 continue;
1939 }
1940 if (! INSN_P (insn))
1941 continue;
1942 pat = PATTERN (insn);
1943 /* For simplicity, we only perform this optimization on
1944 straightforward SETs. */
1945 if (GET_CODE (pat) == SET
1946 && REG_P (SET_DEST (pat)))
1947 {
1948 rtx reg = SET_DEST (pat);
1949 int regno = REGNO (reg);
1950 rtx src = SET_SRC (pat);
1951
1952 /* Check if we have valid information on the contents of this
1953 register in the mode of REG. */
1954 if (move2add_valid_value_p (regno, GET_MODE (reg))
1955 && dbg_cnt (cse2_move2add))
1956 {
1957 /* Try to transform (set (REGX) (CONST_INT A))
1958 ...
1959 (set (REGX) (CONST_INT B))
1960 to
1961 (set (REGX) (CONST_INT A))
1962 ...
1963 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1964 or
1965 (set (REGX) (CONST_INT A))
1966 ...
1967 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1968 */
1969
1970 if (CONST_INT_P (src)
1971 && reg_base_reg[regno] < 0
1972 && reg_symbol_ref[regno] == NULL_RTX)
1973 {
1974 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1975 continue;
1976 }
1977
1978 /* Try to transform (set (REGX) (REGY))
1979 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1980 ...
1981 (set (REGX) (REGY))
1982 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1983 to
1984 (set (REGX) (REGY))
1985 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1986 ...
1987 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1988 else if (REG_P (src)
1989 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1990 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1991 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
1992 {
1993 rtx_insn *next = next_nonnote_nondebug_insn (insn);
1994 rtx set = NULL_RTX;
1995 if (next)
1996 set = single_set (next);
1997 if (set
1998 && SET_DEST (set) == reg
1999 && GET_CODE (SET_SRC (set)) == PLUS
2000 && XEXP (SET_SRC (set), 0) == reg
2001 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
2002 {
2003 rtx src3 = XEXP (SET_SRC (set), 1);
2004 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
2005 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2006 HOST_WIDE_INT regno_offset = reg_offset[regno];
2007 rtx new_src =
2008 gen_int_mode (added_offset
2009 + base_offset
2010 - regno_offset,
2011 GET_MODE (reg));
2012 bool success = false;
2013 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2014
2015 if (new_src == const0_rtx)
2016 /* See above why we create (set (reg) (reg)) here. */
2017 success
2018 = validate_change (next, &SET_SRC (set), reg, 0);
2019 else
2020 {
2021 rtx old_src = SET_SRC (set);
2022 struct full_rtx_costs oldcst, newcst;
2023 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2024
2025 get_full_set_rtx_cost (set, &oldcst);
2026 SET_SRC (set) = tem;
2027 get_full_set_src_cost (tem, &newcst);
2028 SET_SRC (set) = old_src;
2029 costs_add_n_insns (&oldcst, 1);
2030
2031 if (costs_lt_p (&newcst, &oldcst, speed)
2032 && have_add2_insn (reg, new_src))
2033 {
2034 rtx newpat = gen_rtx_SET (reg, tem);
2035 success
2036 = validate_change (next, &PATTERN (next),
2037 newpat, 0);
2038 }
2039 }
2040 if (success)
2041 delete_insn (insn);
2042 changed |= success;
2043 insn = next;
2044 move2add_record_mode (reg);
2045 reg_offset[regno]
2046 = trunc_int_for_mode (added_offset + base_offset,
2047 GET_MODE (reg));
2048 continue;
2049 }
2050 }
2051 }
2052
2053 /* Try to transform
2054 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2055 ...
2056 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2057 to
2058 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2059 ...
2060 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2061 if ((GET_CODE (src) == SYMBOL_REF
2062 || (GET_CODE (src) == CONST
2063 && GET_CODE (XEXP (src, 0)) == PLUS
2064 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2065 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2066 && dbg_cnt (cse2_move2add))
2067 {
2068 rtx sym, off;
2069
2070 if (GET_CODE (src) == SYMBOL_REF)
2071 {
2072 sym = src;
2073 off = const0_rtx;
2074 }
2075 else
2076 {
2077 sym = XEXP (XEXP (src, 0), 0);
2078 off = XEXP (XEXP (src, 0), 1);
2079 }
2080
2081 /* If the reg already contains the value which is sum of
2082 sym and some constant value, we can use an add2 insn. */
2083 if (move2add_valid_value_p (regno, GET_MODE (reg))
2084 && reg_base_reg[regno] < 0
2085 && reg_symbol_ref[regno] != NULL_RTX
2086 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2087 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2088
2089 /* Otherwise, we have to find a register whose value is sum
2090 of sym and some constant value. */
2091 else
2092 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2093
2094 continue;
2095 }
2096 }
2097
2098 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2099 {
2100 if (REG_NOTE_KIND (note) == REG_INC
2101 && REG_P (XEXP (note, 0)))
2102 {
2103 /* Reset the information about this register. */
2104 int regno = REGNO (XEXP (note, 0));
2105 if (regno < FIRST_PSEUDO_REGISTER)
2106 {
2107 move2add_record_mode (XEXP (note, 0));
2108 reg_mode[regno] = VOIDmode;
2109 }
2110 }
2111 }
2112 note_stores (PATTERN (insn), move2add_note_store, insn);
2113
2114 /* If INSN is a conditional branch, we try to extract an
2115 implicit set out of it. */
2116 if (any_condjump_p (insn))
2117 {
2118 rtx cnd = fis_get_condition (insn);
2119
2120 if (cnd != NULL_RTX
2121 && GET_CODE (cnd) == NE
2122 && REG_P (XEXP (cnd, 0))
2123 && !reg_set_p (XEXP (cnd, 0), insn)
2124 /* The following two checks, which are also in
2125 move2add_note_store, are intended to reduce the
2126 number of calls to gen_rtx_SET to avoid memory
2127 allocation if possible. */
2128 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2129 && REG_NREGS (XEXP (cnd, 0)) == 1
2130 && CONST_INT_P (XEXP (cnd, 1)))
2131 {
2132 rtx implicit_set =
2133 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2134 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2135 }
2136 }
2137
2138 /* If this is a CALL_INSN, all call used registers are stored with
2139 unknown values. */
2140 if (CALL_P (insn))
2141 {
2142 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2143 {
2144 if (call_used_regs[i])
2145 /* Reset the information about this register. */
2146 reg_mode[i] = VOIDmode;
2147 }
2148 }
2149 }
2150 return changed;
2151 }
2152
2153 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2154 contains SET.
2155 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2156 Called from reload_cse_move2add via note_stores. */
2157
2158 static void
2159 move2add_note_store (rtx dst, const_rtx set, void *data)
2160 {
2161 rtx_insn *insn = (rtx_insn *) data;
2162 unsigned int regno = 0;
2163 machine_mode mode = GET_MODE (dst);
2164
2165 /* Some targets do argument pushes without adding REG_INC notes. */
2166
2167 if (MEM_P (dst))
2168 {
2169 dst = XEXP (dst, 0);
2170 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2171 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2172 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2173 return;
2174 }
2175
2176 if (GET_CODE (dst) == SUBREG)
2177 regno = subreg_regno (dst);
2178 else if (REG_P (dst))
2179 regno = REGNO (dst);
2180 else
2181 return;
2182
2183 if (SCALAR_INT_MODE_P (mode)
2184 && GET_CODE (set) == SET)
2185 {
2186 rtx note, sym = NULL_RTX;
2187 rtx off;
2188
2189 note = find_reg_equal_equiv_note (insn);
2190 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2191 {
2192 sym = XEXP (note, 0);
2193 off = const0_rtx;
2194 }
2195 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2196 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2197 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2198 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2199 {
2200 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2201 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2202 }
2203
2204 if (sym != NULL_RTX)
2205 {
2206 move2add_record_sym_value (dst, sym, off);
2207 return;
2208 }
2209 }
2210
2211 if (SCALAR_INT_MODE_P (mode)
2212 && GET_CODE (set) == SET
2213 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2214 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2215 {
2216 rtx src = SET_SRC (set);
2217 rtx base_reg;
2218 unsigned HOST_WIDE_INT offset;
2219 int base_regno;
2220
2221 switch (GET_CODE (src))
2222 {
2223 case PLUS:
2224 if (REG_P (XEXP (src, 0)))
2225 {
2226 base_reg = XEXP (src, 0);
2227
2228 if (CONST_INT_P (XEXP (src, 1)))
2229 offset = UINTVAL (XEXP (src, 1));
2230 else if (REG_P (XEXP (src, 1))
2231 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2232 {
2233 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2234 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2235 offset = reg_offset[REGNO (XEXP (src, 1))];
2236 /* Maybe the first register is known to be a
2237 constant. */
2238 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2239 && reg_base_reg[REGNO (base_reg)] < 0
2240 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2241 {
2242 offset = reg_offset[REGNO (base_reg)];
2243 base_reg = XEXP (src, 1);
2244 }
2245 else
2246 goto invalidate;
2247 }
2248 else
2249 goto invalidate;
2250
2251 break;
2252 }
2253
2254 goto invalidate;
2255
2256 case REG:
2257 base_reg = src;
2258 offset = 0;
2259 break;
2260
2261 case CONST_INT:
2262 /* Start tracking the register as a constant. */
2263 reg_base_reg[regno] = -1;
2264 reg_symbol_ref[regno] = NULL_RTX;
2265 reg_offset[regno] = INTVAL (SET_SRC (set));
2266 /* We assign the same luid to all registers set to constants. */
2267 reg_set_luid[regno] = move2add_last_label_luid + 1;
2268 move2add_record_mode (dst);
2269 return;
2270
2271 default:
2272 goto invalidate;
2273 }
2274
2275 base_regno = REGNO (base_reg);
2276 /* If information about the base register is not valid, set it
2277 up as a new base register, pretending its value is known
2278 starting from the current insn. */
2279 if (!move2add_valid_value_p (base_regno, mode))
2280 {
2281 reg_base_reg[base_regno] = base_regno;
2282 reg_symbol_ref[base_regno] = NULL_RTX;
2283 reg_offset[base_regno] = 0;
2284 reg_set_luid[base_regno] = move2add_luid;
2285 gcc_assert (GET_MODE (base_reg) == mode);
2286 move2add_record_mode (base_reg);
2287 }
2288
2289 /* Copy base information from our base register. */
2290 reg_set_luid[regno] = reg_set_luid[base_regno];
2291 reg_base_reg[regno] = reg_base_reg[base_regno];
2292 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2293
2294 /* Compute the sum of the offsets or constants. */
2295 reg_offset[regno]
2296 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2297
2298 move2add_record_mode (dst);
2299 }
2300 else
2301 {
2302 invalidate:
2303 /* Invalidate the contents of the register. */
2304 move2add_record_mode (dst);
2305 reg_mode[regno] = VOIDmode;
2306 }
2307 }
2308 \f
2309 namespace {
2310
2311 const pass_data pass_data_postreload_cse =
2312 {
2313 RTL_PASS, /* type */
2314 "postreload", /* name */
2315 OPTGROUP_NONE, /* optinfo_flags */
2316 TV_RELOAD_CSE_REGS, /* tv_id */
2317 0, /* properties_required */
2318 0, /* properties_provided */
2319 0, /* properties_destroyed */
2320 0, /* todo_flags_start */
2321 TODO_df_finish, /* todo_flags_finish */
2322 };
2323
2324 class pass_postreload_cse : public rtl_opt_pass
2325 {
2326 public:
2327 pass_postreload_cse (gcc::context *ctxt)
2328 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2329 {}
2330
2331 /* opt_pass methods: */
2332 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2333
2334 virtual unsigned int execute (function *);
2335
2336 }; // class pass_postreload_cse
2337
2338 unsigned int
2339 pass_postreload_cse::execute (function *fun)
2340 {
2341 if (!dbg_cnt (postreload_cse))
2342 return 0;
2343
2344 /* Do a very simple CSE pass over just the hard registers. */
2345 reload_cse_regs (get_insns ());
2346 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2347 Remove any EH edges associated with them. */
2348 if (fun->can_throw_non_call_exceptions
2349 && purge_all_dead_edges ())
2350 cleanup_cfg (0);
2351
2352 return 0;
2353 }
2354
2355 } // anon namespace
2356
2357 rtl_opt_pass *
2358 make_pass_postreload_cse (gcc::context *ctxt)
2359 {
2360 return new pass_postreload_cse (ctxt);
2361 }
This page took 0.137677 seconds and 5 git commands to generate.