]> gcc.gnu.org Git - gcc.git/blob - gcc/optabs.c
Update FSF address.
[gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 88, 92, 93, 94, 1995 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include "config.h"
23 #include "rtl.h"
24 #include "tree.h"
25 #include "flags.h"
26 #include "insn-flags.h"
27 #include "insn-codes.h"
28 #include "expr.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "reload.h"
32 #include <ctype.h>
33
34 /* Each optab contains info on how this target machine
35 can perform a particular operation
36 for all sizes and kinds of operands.
37
38 The operation to be performed is often specified
39 by passing one of these optabs as an argument.
40
41 See expr.h for documentation of these optabs. */
42
43 optab add_optab;
44 optab sub_optab;
45 optab smul_optab;
46 optab smul_highpart_optab;
47 optab umul_highpart_optab;
48 optab smul_widen_optab;
49 optab umul_widen_optab;
50 optab sdiv_optab;
51 optab sdivmod_optab;
52 optab udiv_optab;
53 optab udivmod_optab;
54 optab smod_optab;
55 optab umod_optab;
56 optab flodiv_optab;
57 optab ftrunc_optab;
58 optab and_optab;
59 optab ior_optab;
60 optab xor_optab;
61 optab ashl_optab;
62 optab lshr_optab;
63 optab ashr_optab;
64 optab rotl_optab;
65 optab rotr_optab;
66 optab smin_optab;
67 optab smax_optab;
68 optab umin_optab;
69 optab umax_optab;
70
71 optab mov_optab;
72 optab movstrict_optab;
73
74 optab neg_optab;
75 optab abs_optab;
76 optab one_cmpl_optab;
77 optab ffs_optab;
78 optab sqrt_optab;
79 optab sin_optab;
80 optab cos_optab;
81
82 optab cmp_optab;
83 optab ucmp_optab; /* Used only for libcalls for unsigned comparisons. */
84 optab tst_optab;
85
86 optab strlen_optab;
87
88 /* Tables of patterns for extending one integer mode to another. */
89 enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
90
91 /* Tables of patterns for converting between fixed and floating point. */
92 enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
93 enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
94 enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
95
96 /* Contains the optab used for each rtx code. */
97 optab code_to_optab[NUM_RTX_CODE + 1];
98
99 /* SYMBOL_REF rtx's for the library functions that are called
100 implicitly and not via optabs. */
101
102 rtx extendsfdf2_libfunc;
103 rtx extendsfxf2_libfunc;
104 rtx extendsftf2_libfunc;
105 rtx extenddfxf2_libfunc;
106 rtx extenddftf2_libfunc;
107
108 rtx truncdfsf2_libfunc;
109 rtx truncxfsf2_libfunc;
110 rtx trunctfsf2_libfunc;
111 rtx truncxfdf2_libfunc;
112 rtx trunctfdf2_libfunc;
113
114 rtx memcpy_libfunc;
115 rtx bcopy_libfunc;
116 rtx memcmp_libfunc;
117 rtx bcmp_libfunc;
118 rtx memset_libfunc;
119 rtx bzero_libfunc;
120
121 rtx eqhf2_libfunc;
122 rtx nehf2_libfunc;
123 rtx gthf2_libfunc;
124 rtx gehf2_libfunc;
125 rtx lthf2_libfunc;
126 rtx lehf2_libfunc;
127
128 rtx eqsf2_libfunc;
129 rtx nesf2_libfunc;
130 rtx gtsf2_libfunc;
131 rtx gesf2_libfunc;
132 rtx ltsf2_libfunc;
133 rtx lesf2_libfunc;
134
135 rtx eqdf2_libfunc;
136 rtx nedf2_libfunc;
137 rtx gtdf2_libfunc;
138 rtx gedf2_libfunc;
139 rtx ltdf2_libfunc;
140 rtx ledf2_libfunc;
141
142 rtx eqxf2_libfunc;
143 rtx nexf2_libfunc;
144 rtx gtxf2_libfunc;
145 rtx gexf2_libfunc;
146 rtx ltxf2_libfunc;
147 rtx lexf2_libfunc;
148
149 rtx eqtf2_libfunc;
150 rtx netf2_libfunc;
151 rtx gttf2_libfunc;
152 rtx getf2_libfunc;
153 rtx lttf2_libfunc;
154 rtx letf2_libfunc;
155
156 rtx floatsisf_libfunc;
157 rtx floatdisf_libfunc;
158 rtx floattisf_libfunc;
159
160 rtx floatsidf_libfunc;
161 rtx floatdidf_libfunc;
162 rtx floattidf_libfunc;
163
164 rtx floatsixf_libfunc;
165 rtx floatdixf_libfunc;
166 rtx floattixf_libfunc;
167
168 rtx floatsitf_libfunc;
169 rtx floatditf_libfunc;
170 rtx floattitf_libfunc;
171
172 rtx fixsfsi_libfunc;
173 rtx fixsfdi_libfunc;
174 rtx fixsfti_libfunc;
175
176 rtx fixdfsi_libfunc;
177 rtx fixdfdi_libfunc;
178 rtx fixdfti_libfunc;
179
180 rtx fixxfsi_libfunc;
181 rtx fixxfdi_libfunc;
182 rtx fixxfti_libfunc;
183
184 rtx fixtfsi_libfunc;
185 rtx fixtfdi_libfunc;
186 rtx fixtfti_libfunc;
187
188 rtx fixunssfsi_libfunc;
189 rtx fixunssfdi_libfunc;
190 rtx fixunssfti_libfunc;
191
192 rtx fixunsdfsi_libfunc;
193 rtx fixunsdfdi_libfunc;
194 rtx fixunsdfti_libfunc;
195
196 rtx fixunsxfsi_libfunc;
197 rtx fixunsxfdi_libfunc;
198 rtx fixunsxfti_libfunc;
199
200 rtx fixunstfsi_libfunc;
201 rtx fixunstfdi_libfunc;
202 rtx fixunstfti_libfunc;
203
204 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
205 gives the gen_function to make a branch to test that condition. */
206
207 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
208
209 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
210 gives the insn code to make a store-condition insn
211 to test that condition. */
212
213 enum insn_code setcc_gen_code[NUM_RTX_CODE];
214
215 #ifdef HAVE_conditional_move
216 /* Indexed by the machine mode, gives the insn code to make a conditional
217 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
218 setcc_gen_code to cut down on the number of named patterns. Consider a day
219 when a lot more rtx codes are conditional (eg: for the ARM). */
220
221 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
222 #endif
223
224 static int add_equal_note PROTO((rtx, rtx, enum rtx_code, rtx, rtx));
225 static rtx widen_operand PROTO((rtx, enum machine_mode,
226 enum machine_mode, int, int));
227 static enum insn_code can_fix_p PROTO((enum machine_mode, enum machine_mode,
228 int, int *));
229 static enum insn_code can_float_p PROTO((enum machine_mode, enum machine_mode,
230 int));
231 static rtx ftruncify PROTO((rtx));
232 static optab init_optab PROTO((enum rtx_code));
233 static void init_libfuncs PROTO((optab, int, int, char *, int));
234 static void init_integral_libfuncs PROTO((optab, char *, int));
235 static void init_floating_libfuncs PROTO((optab, char *, int));
236 static void init_complex_libfuncs PROTO((optab, char *, int));
237 \f
238 /* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
239 the result of operation CODE applied to OP0 (and OP1 if it is a binary
240 operation).
241
242 If the last insn does not set TARGET, don't do anything, but return 1.
243
244 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
245 don't add the REG_EQUAL note but return 0. Our caller can then try
246 again, ensuring that TARGET is not one of the operands. */
247
248 static int
249 add_equal_note (seq, target, code, op0, op1)
250 rtx seq;
251 rtx target;
252 enum rtx_code code;
253 rtx op0, op1;
254 {
255 rtx set;
256 int i;
257 rtx note;
258
259 if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
260 && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
261 || GET_CODE (seq) != SEQUENCE
262 || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0
263 || GET_CODE (target) == ZERO_EXTRACT
264 || (! rtx_equal_p (SET_DEST (set), target)
265 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
266 SUBREG. */
267 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
268 || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
269 target))))
270 return 1;
271
272 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
273 besides the last insn. */
274 if (reg_overlap_mentioned_p (target, op0)
275 || (op1 && reg_overlap_mentioned_p (target, op1)))
276 for (i = XVECLEN (seq, 0) - 2; i >= 0; i--)
277 if (reg_set_p (target, XVECEXP (seq, 0, i)))
278 return 0;
279
280 if (GET_RTX_CLASS (code) == '1')
281 note = gen_rtx (code, GET_MODE (target), copy_rtx (op0));
282 else
283 note = gen_rtx (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
284
285 REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))
286 = gen_rtx (EXPR_LIST, REG_EQUAL, note,
287 REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1)));
288
289 return 1;
290 }
291 \f
292 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
293 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
294 not actually do a sign-extend or zero-extend, but can leave the
295 higher-order bits of the result rtx undefined, for example, in the case
296 of logical operations, but not right shifts. */
297
298 static rtx
299 widen_operand (op, mode, oldmode, unsignedp, no_extend)
300 rtx op;
301 enum machine_mode mode, oldmode;
302 int unsignedp;
303 int no_extend;
304 {
305 rtx result;
306
307 /* If we must extend do so. If OP is either a constant or a SUBREG
308 for a promoted object, also extend since it will be more efficient to
309 do so. */
310 if (! no_extend
311 || GET_MODE (op) == VOIDmode
312 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)))
313 return convert_modes (mode, oldmode, op, unsignedp);
314
315 /* If MODE is no wider than a single word, we return a paradoxical
316 SUBREG. */
317 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
318 return gen_rtx (SUBREG, mode, force_reg (GET_MODE (op), op), 0);
319
320 /* Otherwise, get an object of MODE, clobber it, and set the low-order
321 part to OP. */
322
323 result = gen_reg_rtx (mode);
324 emit_insn (gen_rtx (CLOBBER, VOIDmode, result));
325 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
326 return result;
327 }
328 \f
329 /* Generate code to perform an operation specified by BINOPTAB
330 on operands OP0 and OP1, with result having machine-mode MODE.
331
332 UNSIGNEDP is for the case where we have to widen the operands
333 to perform the operation. It says to use zero-extension.
334
335 If TARGET is nonzero, the value
336 is generated there, if it is convenient to do so.
337 In all cases an rtx is returned for the locus of the value;
338 this may or may not be TARGET. */
339
340 rtx
341 expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
342 enum machine_mode mode;
343 optab binoptab;
344 rtx op0, op1;
345 rtx target;
346 int unsignedp;
347 enum optab_methods methods;
348 {
349 enum optab_methods next_methods
350 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
351 ? OPTAB_WIDEN : methods);
352 enum mode_class class;
353 enum machine_mode wider_mode;
354 register rtx temp;
355 int commutative_op = 0;
356 int shift_op = (binoptab->code == ASHIFT
357 || binoptab->code == ASHIFTRT
358 || binoptab->code == LSHIFTRT
359 || binoptab->code == ROTATE
360 || binoptab->code == ROTATERT);
361 rtx entry_last = get_last_insn ();
362 rtx last;
363
364 class = GET_MODE_CLASS (mode);
365
366 op0 = protect_from_queue (op0, 0);
367 op1 = protect_from_queue (op1, 0);
368 if (target)
369 target = protect_from_queue (target, 1);
370
371 if (flag_force_mem)
372 {
373 op0 = force_not_mem (op0);
374 op1 = force_not_mem (op1);
375 }
376
377 /* If subtracting an integer constant, convert this into an addition of
378 the negated constant. */
379
380 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
381 {
382 op1 = negate_rtx (mode, op1);
383 binoptab = add_optab;
384 }
385
386 /* If we are inside an appropriately-short loop and one operand is an
387 expensive constant, force it into a register. */
388 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
389 && rtx_cost (op0, binoptab->code) > 2)
390 op0 = force_reg (mode, op0);
391
392 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
393 && ! shift_op && rtx_cost (op1, binoptab->code) > 2)
394 op1 = force_reg (mode, op1);
395
396 /* Record where to delete back to if we backtrack. */
397 last = get_last_insn ();
398
399 /* If operation is commutative,
400 try to make the first operand a register.
401 Even better, try to make it the same as the target.
402 Also try to make the last operand a constant. */
403 if (GET_RTX_CLASS (binoptab->code) == 'c'
404 || binoptab == smul_widen_optab
405 || binoptab == umul_widen_optab
406 || binoptab == smul_highpart_optab
407 || binoptab == umul_highpart_optab)
408 {
409 commutative_op = 1;
410
411 if (((target == 0 || GET_CODE (target) == REG)
412 ? ((GET_CODE (op1) == REG
413 && GET_CODE (op0) != REG)
414 || target == op1)
415 : rtx_equal_p (op1, target))
416 || GET_CODE (op0) == CONST_INT)
417 {
418 temp = op1;
419 op1 = op0;
420 op0 = temp;
421 }
422 }
423
424 /* If we can do it with a three-operand insn, do so. */
425
426 if (methods != OPTAB_MUST_WIDEN
427 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
428 {
429 int icode = (int) binoptab->handlers[(int) mode].insn_code;
430 enum machine_mode mode0 = insn_operand_mode[icode][1];
431 enum machine_mode mode1 = insn_operand_mode[icode][2];
432 rtx pat;
433 rtx xop0 = op0, xop1 = op1;
434
435 if (target)
436 temp = target;
437 else
438 temp = gen_reg_rtx (mode);
439
440 /* If it is a commutative operator and the modes would match
441 if we would swap the operands, we can save the conversions. */
442 if (commutative_op)
443 {
444 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
445 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
446 {
447 register rtx tmp;
448
449 tmp = op0; op0 = op1; op1 = tmp;
450 tmp = xop0; xop0 = xop1; xop1 = tmp;
451 }
452 }
453
454 /* In case the insn wants input operands in modes different from
455 the result, convert the operands. */
456
457 if (GET_MODE (op0) != VOIDmode
458 && GET_MODE (op0) != mode0
459 && mode0 != VOIDmode)
460 xop0 = convert_to_mode (mode0, xop0, unsignedp);
461
462 if (GET_MODE (xop1) != VOIDmode
463 && GET_MODE (xop1) != mode1
464 && mode1 != VOIDmode)
465 xop1 = convert_to_mode (mode1, xop1, unsignedp);
466
467 /* Now, if insn's predicates don't allow our operands, put them into
468 pseudo regs. */
469
470 if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)
471 && mode0 != VOIDmode)
472 xop0 = copy_to_mode_reg (mode0, xop0);
473
474 if (! (*insn_operand_predicate[icode][2]) (xop1, mode1)
475 && mode1 != VOIDmode)
476 xop1 = copy_to_mode_reg (mode1, xop1);
477
478 if (! (*insn_operand_predicate[icode][0]) (temp, mode))
479 temp = gen_reg_rtx (mode);
480
481 pat = GEN_FCN (icode) (temp, xop0, xop1);
482 if (pat)
483 {
484 /* If PAT is a multi-insn sequence, try to add an appropriate
485 REG_EQUAL note to it. If we can't because TEMP conflicts with an
486 operand, call ourselves again, this time without a target. */
487 if (GET_CODE (pat) == SEQUENCE
488 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
489 {
490 delete_insns_since (last);
491 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
492 unsignedp, methods);
493 }
494
495 emit_insn (pat);
496 return temp;
497 }
498 else
499 delete_insns_since (last);
500 }
501
502 /* If this is a multiply, see if we can do a widening operation that
503 takes operands of this mode and makes a wider mode. */
504
505 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
506 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
507 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
508 != CODE_FOR_nothing))
509 {
510 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
511 unsignedp ? umul_widen_optab : smul_widen_optab,
512 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
513
514 if (temp != 0)
515 {
516 if (GET_MODE_CLASS (mode) == MODE_INT)
517 return gen_lowpart (mode, temp);
518 else
519 return convert_to_mode (mode, temp, unsignedp);
520 }
521 }
522
523 /* Look for a wider mode of the same class for which we think we
524 can open-code the operation. Check for a widening multiply at the
525 wider mode as well. */
526
527 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
528 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
529 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
530 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
531 {
532 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
533 || (binoptab == smul_optab
534 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
535 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
536 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
537 != CODE_FOR_nothing)))
538 {
539 rtx xop0 = op0, xop1 = op1;
540 int no_extend = 0;
541
542 /* For certain integer operations, we need not actually extend
543 the narrow operands, as long as we will truncate
544 the results to the same narrowness. */
545
546 if ((binoptab == ior_optab || binoptab == and_optab
547 || binoptab == xor_optab
548 || binoptab == add_optab || binoptab == sub_optab
549 || binoptab == smul_optab || binoptab == ashl_optab)
550 && class == MODE_INT)
551 no_extend = 1;
552
553 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
554
555 /* The second operand of a shift must always be extended. */
556 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
557 no_extend && binoptab != ashl_optab);
558
559 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
560 unsignedp, OPTAB_DIRECT);
561 if (temp)
562 {
563 if (class != MODE_INT)
564 {
565 if (target == 0)
566 target = gen_reg_rtx (mode);
567 convert_move (target, temp, 0);
568 return target;
569 }
570 else
571 return gen_lowpart (mode, temp);
572 }
573 else
574 delete_insns_since (last);
575 }
576 }
577
578 /* These can be done a word at a time. */
579 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
580 && class == MODE_INT
581 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
582 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
583 {
584 int i;
585 rtx insns;
586 rtx equiv_value;
587
588 /* If TARGET is the same as one of the operands, the REG_EQUAL note
589 won't be accurate, so use a new target. */
590 if (target == 0 || target == op0 || target == op1)
591 target = gen_reg_rtx (mode);
592
593 start_sequence ();
594
595 /* Do the actual arithmetic. */
596 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
597 {
598 rtx target_piece = operand_subword (target, i, 1, mode);
599 rtx x = expand_binop (word_mode, binoptab,
600 operand_subword_force (op0, i, mode),
601 operand_subword_force (op1, i, mode),
602 target_piece, unsignedp, next_methods);
603
604 if (x == 0)
605 break;
606
607 if (target_piece != x)
608 emit_move_insn (target_piece, x);
609 }
610
611 insns = get_insns ();
612 end_sequence ();
613
614 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
615 {
616 if (binoptab->code != UNKNOWN)
617 equiv_value
618 = gen_rtx (binoptab->code, mode, copy_rtx (op0), copy_rtx (op1));
619 else
620 equiv_value = 0;
621
622 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
623 return target;
624 }
625 }
626
627 /* Synthesize double word shifts from single word shifts. */
628 if ((binoptab == lshr_optab || binoptab == ashl_optab
629 || binoptab == ashr_optab)
630 && class == MODE_INT
631 && GET_CODE (op1) == CONST_INT
632 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
633 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
634 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
635 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
636 {
637 rtx insns, inter, equiv_value;
638 rtx into_target, outof_target;
639 rtx into_input, outof_input;
640 int shift_count, left_shift, outof_word;
641
642 /* If TARGET is the same as one of the operands, the REG_EQUAL note
643 won't be accurate, so use a new target. */
644 if (target == 0 || target == op0 || target == op1)
645 target = gen_reg_rtx (mode);
646
647 start_sequence ();
648
649 shift_count = INTVAL (op1);
650
651 /* OUTOF_* is the word we are shifting bits away from, and
652 INTO_* is the word that we are shifting bits towards, thus
653 they differ depending on the direction of the shift and
654 WORDS_BIG_ENDIAN. */
655
656 left_shift = binoptab == ashl_optab;
657 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
658
659 outof_target = operand_subword (target, outof_word, 1, mode);
660 into_target = operand_subword (target, 1 - outof_word, 1, mode);
661
662 outof_input = operand_subword_force (op0, outof_word, mode);
663 into_input = operand_subword_force (op0, 1 - outof_word, mode);
664
665 if (shift_count >= BITS_PER_WORD)
666 {
667 inter = expand_binop (word_mode, binoptab,
668 outof_input,
669 GEN_INT (shift_count - BITS_PER_WORD),
670 into_target, unsignedp, next_methods);
671
672 if (inter != 0 && inter != into_target)
673 emit_move_insn (into_target, inter);
674
675 /* For a signed right shift, we must fill the word we are shifting
676 out of with copies of the sign bit. Otherwise it is zeroed. */
677 if (inter != 0 && binoptab != ashr_optab)
678 inter = CONST0_RTX (word_mode);
679 else if (inter != 0)
680 inter = expand_binop (word_mode, binoptab,
681 outof_input,
682 GEN_INT (BITS_PER_WORD - 1),
683 outof_target, unsignedp, next_methods);
684
685 if (inter != 0 && inter != outof_target)
686 emit_move_insn (outof_target, inter);
687 }
688 else
689 {
690 rtx carries;
691 optab reverse_unsigned_shift, unsigned_shift;
692
693 /* For a shift of less then BITS_PER_WORD, to compute the carry,
694 we must do a logical shift in the opposite direction of the
695 desired shift. */
696
697 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
698
699 /* For a shift of less than BITS_PER_WORD, to compute the word
700 shifted towards, we need to unsigned shift the orig value of
701 that word. */
702
703 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
704
705 carries = expand_binop (word_mode, reverse_unsigned_shift,
706 outof_input,
707 GEN_INT (BITS_PER_WORD - shift_count),
708 0, unsignedp, next_methods);
709
710 if (carries == 0)
711 inter = 0;
712 else
713 inter = expand_binop (word_mode, unsigned_shift, into_input,
714 op1, 0, unsignedp, next_methods);
715
716 if (inter != 0)
717 inter = expand_binop (word_mode, ior_optab, carries, inter,
718 into_target, unsignedp, next_methods);
719
720 if (inter != 0 && inter != into_target)
721 emit_move_insn (into_target, inter);
722
723 if (inter != 0)
724 inter = expand_binop (word_mode, binoptab, outof_input,
725 op1, outof_target, unsignedp, next_methods);
726
727 if (inter != 0 && inter != outof_target)
728 emit_move_insn (outof_target, inter);
729 }
730
731 insns = get_insns ();
732 end_sequence ();
733
734 if (inter != 0)
735 {
736 if (binoptab->code != UNKNOWN)
737 equiv_value = gen_rtx (binoptab->code, mode, op0, op1);
738 else
739 equiv_value = 0;
740
741 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
742 return target;
743 }
744 }
745
746 /* Synthesize double word rotates from single word shifts. */
747 if ((binoptab == rotl_optab || binoptab == rotr_optab)
748 && class == MODE_INT
749 && GET_CODE (op1) == CONST_INT
750 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
751 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
752 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
753 {
754 rtx insns, equiv_value;
755 rtx into_target, outof_target;
756 rtx into_input, outof_input;
757 rtx inter;
758 int shift_count, left_shift, outof_word;
759
760 /* If TARGET is the same as one of the operands, the REG_EQUAL note
761 won't be accurate, so use a new target. */
762 if (target == 0 || target == op0 || target == op1)
763 target = gen_reg_rtx (mode);
764
765 start_sequence ();
766
767 shift_count = INTVAL (op1);
768
769 /* OUTOF_* is the word we are shifting bits away from, and
770 INTO_* is the word that we are shifting bits towards, thus
771 they differ depending on the direction of the shift and
772 WORDS_BIG_ENDIAN. */
773
774 left_shift = (binoptab == rotl_optab);
775 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
776
777 outof_target = operand_subword (target, outof_word, 1, mode);
778 into_target = operand_subword (target, 1 - outof_word, 1, mode);
779
780 outof_input = operand_subword_force (op0, outof_word, mode);
781 into_input = operand_subword_force (op0, 1 - outof_word, mode);
782
783 if (shift_count == BITS_PER_WORD)
784 {
785 /* This is just a word swap. */
786 emit_move_insn (outof_target, into_input);
787 emit_move_insn (into_target, outof_input);
788 inter = const0_rtx;
789 }
790 else
791 {
792 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
793 rtx first_shift_count, second_shift_count;
794 optab reverse_unsigned_shift, unsigned_shift;
795
796 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
797 ? lshr_optab : ashl_optab);
798
799 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
800 ? ashl_optab : lshr_optab);
801
802 if (shift_count > BITS_PER_WORD)
803 {
804 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
805 second_shift_count = GEN_INT (2*BITS_PER_WORD - shift_count);
806 }
807 else
808 {
809 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
810 second_shift_count = GEN_INT (shift_count);
811 }
812
813 into_temp1 = expand_binop (word_mode, unsigned_shift,
814 outof_input, first_shift_count,
815 NULL_RTX, unsignedp, next_methods);
816 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
817 into_input, second_shift_count,
818 into_target, unsignedp, next_methods);
819
820 if (into_temp1 != 0 && into_temp2 != 0)
821 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
822 into_target, unsignedp, next_methods);
823 else
824 inter = 0;
825
826 if (inter != 0 && inter != into_target)
827 emit_move_insn (into_target, inter);
828
829 outof_temp1 = expand_binop (word_mode, unsigned_shift,
830 into_input, first_shift_count,
831 NULL_RTX, unsignedp, next_methods);
832 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
833 outof_input, second_shift_count,
834 outof_target, unsignedp, next_methods);
835
836 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
837 inter = expand_binop (word_mode, ior_optab,
838 outof_temp1, outof_temp2,
839 outof_target, unsignedp, next_methods);
840
841 if (inter != 0 && inter != outof_target)
842 emit_move_insn (outof_target, inter);
843 }
844
845 insns = get_insns ();
846 end_sequence ();
847
848 if (inter != 0)
849 {
850 if (binoptab->code != UNKNOWN)
851 equiv_value = gen_rtx (binoptab->code, mode, op0, op1);
852 else
853 equiv_value = 0;
854
855 /* We can't make this a no conflict block if this is a word swap,
856 because the word swap case fails if the input and output values
857 are in the same register. */
858 if (shift_count != BITS_PER_WORD)
859 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
860 else
861 emit_insns (insns);
862
863
864 return target;
865 }
866 }
867
868 /* These can be done a word at a time by propagating carries. */
869 if ((binoptab == add_optab || binoptab == sub_optab)
870 && class == MODE_INT
871 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
872 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
873 {
874 int i;
875 rtx carry_tmp = gen_reg_rtx (word_mode);
876 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
877 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
878 rtx carry_in, carry_out;
879 rtx xop0, xop1;
880
881 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
882 value is one of those, use it. Otherwise, use 1 since it is the
883 one easiest to get. */
884 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
885 int normalizep = STORE_FLAG_VALUE;
886 #else
887 int normalizep = 1;
888 #endif
889
890 /* Prepare the operands. */
891 xop0 = force_reg (mode, op0);
892 xop1 = force_reg (mode, op1);
893
894 if (target == 0 || GET_CODE (target) != REG
895 || target == xop0 || target == xop1)
896 target = gen_reg_rtx (mode);
897
898 /* Indicate for flow that the entire target reg is being set. */
899 if (GET_CODE (target) == REG)
900 emit_insn (gen_rtx (CLOBBER, VOIDmode, target));
901
902 /* Do the actual arithmetic. */
903 for (i = 0; i < nwords; i++)
904 {
905 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
906 rtx target_piece = operand_subword (target, index, 1, mode);
907 rtx op0_piece = operand_subword_force (xop0, index, mode);
908 rtx op1_piece = operand_subword_force (xop1, index, mode);
909 rtx x;
910
911 /* Main add/subtract of the input operands. */
912 x = expand_binop (word_mode, binoptab,
913 op0_piece, op1_piece,
914 target_piece, unsignedp, next_methods);
915 if (x == 0)
916 break;
917
918 if (i + 1 < nwords)
919 {
920 /* Store carry from main add/subtract. */
921 carry_out = gen_reg_rtx (word_mode);
922 carry_out = emit_store_flag (carry_out,
923 binoptab == add_optab ? LTU : GTU,
924 x, op0_piece,
925 word_mode, 1, normalizep);
926 if (carry_out == 0)
927 break;
928 }
929
930 if (i > 0)
931 {
932 /* Add/subtract previous carry to main result. */
933 x = expand_binop (word_mode,
934 normalizep == 1 ? binoptab : otheroptab,
935 x, carry_in,
936 target_piece, 1, next_methods);
937 if (x == 0)
938 break;
939 else if (target_piece != x)
940 emit_move_insn (target_piece, x);
941
942 if (i + 1 < nwords)
943 {
944 /* THIS CODE HAS NOT BEEN TESTED. */
945 /* Get out carry from adding/subtracting carry in. */
946 carry_tmp = emit_store_flag (carry_tmp,
947 binoptab == add_optab
948 ? LTU : GTU,
949 x, carry_in,
950 word_mode, 1, normalizep);
951
952 /* Logical-ior the two poss. carry together. */
953 carry_out = expand_binop (word_mode, ior_optab,
954 carry_out, carry_tmp,
955 carry_out, 0, next_methods);
956 if (carry_out == 0)
957 break;
958 }
959 }
960
961 carry_in = carry_out;
962 }
963
964 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
965 {
966 rtx temp = emit_move_insn (target, target);
967
968 REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL,
969 gen_rtx (binoptab->code, mode,
970 copy_rtx (xop0),
971 copy_rtx (xop1)),
972 REG_NOTES (temp));
973 return target;
974 }
975 else
976 delete_insns_since (last);
977 }
978
979 /* If we want to multiply two two-word values and have normal and widening
980 multiplies of single-word values, we can do this with three smaller
981 multiplications. Note that we do not make a REG_NO_CONFLICT block here
982 because we are not operating on one word at a time.
983
984 The multiplication proceeds as follows:
985 _______________________
986 [__op0_high_|__op0_low__]
987 _______________________
988 * [__op1_high_|__op1_low__]
989 _______________________________________________
990 _______________________
991 (1) [__op0_low__*__op1_low__]
992 _______________________
993 (2a) [__op0_low__*__op1_high_]
994 _______________________
995 (2b) [__op0_high_*__op1_low__]
996 _______________________
997 (3) [__op0_high_*__op1_high_]
998
999
1000 This gives a 4-word result. Since we are only interested in the
1001 lower 2 words, partial result (3) and the upper words of (2a) and
1002 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1003 calculated using non-widening multiplication.
1004
1005 (1), however, needs to be calculated with an unsigned widening
1006 multiplication. If this operation is not directly supported we
1007 try using a signed widening multiplication and adjust the result.
1008 This adjustment works as follows:
1009
1010 If both operands are positive then no adjustment is needed.
1011
1012 If the operands have different signs, for example op0_low < 0 and
1013 op1_low >= 0, the instruction treats the most significant bit of
1014 op0_low as a sign bit instead of a bit with significance
1015 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1016 with 2**BITS_PER_WORD - op0_low, and two's complements the
1017 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1018 the result.
1019
1020 Similarly, if both operands are negative, we need to add
1021 (op0_low + op1_low) * 2**BITS_PER_WORD.
1022
1023 We use a trick to adjust quickly. We logically shift op0_low right
1024 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1025 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1026 logical shift exists, we do an arithmetic right shift and subtract
1027 the 0 or -1. */
1028
1029 if (binoptab == smul_optab
1030 && class == MODE_INT
1031 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1032 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1033 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1034 && ((umul_widen_optab->handlers[(int) mode].insn_code
1035 != CODE_FOR_nothing)
1036 || (smul_widen_optab->handlers[(int) mode].insn_code
1037 != CODE_FOR_nothing)))
1038 {
1039 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1040 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1041 rtx op0_high = operand_subword_force (op0, high, mode);
1042 rtx op0_low = operand_subword_force (op0, low, mode);
1043 rtx op1_high = operand_subword_force (op1, high, mode);
1044 rtx op1_low = operand_subword_force (op1, low, mode);
1045 rtx product = 0;
1046 rtx op0_xhigh;
1047 rtx op1_xhigh;
1048
1049 /* If the target is the same as one of the inputs, don't use it. This
1050 prevents problems with the REG_EQUAL note. */
1051 if (target == op0 || target == op1
1052 || (target != 0 && GET_CODE (target) != REG))
1053 target = 0;
1054
1055 /* Multiply the two lower words to get a double-word product.
1056 If unsigned widening multiplication is available, use that;
1057 otherwise use the signed form and compensate. */
1058
1059 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1060 {
1061 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1062 target, 1, OPTAB_DIRECT);
1063
1064 /* If we didn't succeed, delete everything we did so far. */
1065 if (product == 0)
1066 delete_insns_since (last);
1067 else
1068 op0_xhigh = op0_high, op1_xhigh = op1_high;
1069 }
1070
1071 if (product == 0
1072 && smul_widen_optab->handlers[(int) mode].insn_code
1073 != CODE_FOR_nothing)
1074 {
1075 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1076 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1077 target, 1, OPTAB_DIRECT);
1078 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1079 NULL_RTX, 1, next_methods);
1080 if (op0_xhigh)
1081 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1082 op0_xhigh, op0_xhigh, 0, next_methods);
1083 else
1084 {
1085 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1086 NULL_RTX, 0, next_methods);
1087 if (op0_xhigh)
1088 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1089 op0_xhigh, op0_xhigh, 0,
1090 next_methods);
1091 }
1092
1093 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1094 NULL_RTX, 1, next_methods);
1095 if (op1_xhigh)
1096 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1097 op1_xhigh, op1_xhigh, 0, next_methods);
1098 else
1099 {
1100 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1101 NULL_RTX, 0, next_methods);
1102 if (op1_xhigh)
1103 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1104 op1_xhigh, op1_xhigh, 0,
1105 next_methods);
1106 }
1107 }
1108
1109 /* If we have been able to directly compute the product of the
1110 low-order words of the operands and perform any required adjustments
1111 of the operands, we proceed by trying two more multiplications
1112 and then computing the appropriate sum.
1113
1114 We have checked above that the required addition is provided.
1115 Full-word addition will normally always succeed, especially if
1116 it is provided at all, so we don't worry about its failure. The
1117 multiplication may well fail, however, so we do handle that. */
1118
1119 if (product && op0_xhigh && op1_xhigh)
1120 {
1121 rtx product_high = operand_subword (product, high, 1, mode);
1122 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1123 NULL_RTX, 0, OPTAB_DIRECT);
1124
1125 if (temp != 0)
1126 temp = expand_binop (word_mode, add_optab, temp, product_high,
1127 product_high, 0, next_methods);
1128
1129 if (temp != 0 && temp != product_high)
1130 emit_move_insn (product_high, temp);
1131
1132 if (temp != 0)
1133 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1134 NULL_RTX, 0, OPTAB_DIRECT);
1135
1136 if (temp != 0)
1137 temp = expand_binop (word_mode, add_optab, temp,
1138 product_high, product_high,
1139 0, next_methods);
1140
1141 if (temp != 0 && temp != product_high)
1142 emit_move_insn (product_high, temp);
1143
1144 if (temp != 0)
1145 {
1146 temp = emit_move_insn (product, product);
1147 REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL,
1148 gen_rtx (MULT, mode, copy_rtx (op0),
1149 copy_rtx (op1)),
1150 REG_NOTES (temp));
1151
1152 return product;
1153 }
1154 }
1155
1156 /* If we get here, we couldn't do it for some reason even though we
1157 originally thought we could. Delete anything we've emitted in
1158 trying to do it. */
1159
1160 delete_insns_since (last);
1161 }
1162
1163 /* We need to open-code the complex type operations: '+, -, * and /' */
1164
1165 /* At this point we allow operations between two similar complex
1166 numbers, and also if one of the operands is not a complex number
1167 but rather of MODE_FLOAT or MODE_INT. However, the caller
1168 must make sure that the MODE of the non-complex operand matches
1169 the SUBMODE of the complex operand. */
1170
1171 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1172 {
1173 rtx real0 = 0, imag0 = 0;
1174 rtx real1 = 0, imag1 = 0;
1175 rtx realr, imagr, res;
1176 rtx seq;
1177 rtx equiv_value;
1178 int ok = 0;
1179
1180 /* Find the correct mode for the real and imaginary parts */
1181 enum machine_mode submode
1182 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
1183 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
1184 0);
1185
1186 if (submode == BLKmode)
1187 abort ();
1188
1189 if (! target)
1190 target = gen_reg_rtx (mode);
1191
1192 start_sequence ();
1193
1194 realr = gen_realpart (submode, target);
1195 imagr = gen_imagpart (submode, target);
1196
1197 if (GET_MODE (op0) == mode)
1198 {
1199 real0 = gen_realpart (submode, op0);
1200 imag0 = gen_imagpart (submode, op0);
1201 }
1202 else
1203 real0 = op0;
1204
1205 if (GET_MODE (op1) == mode)
1206 {
1207 real1 = gen_realpart (submode, op1);
1208 imag1 = gen_imagpart (submode, op1);
1209 }
1210 else
1211 real1 = op1;
1212
1213 if (real0 == 0 || real1 == 0 || ! (imag0 != 0|| imag1 != 0))
1214 abort ();
1215
1216 switch (binoptab->code)
1217 {
1218 case PLUS:
1219 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1220 case MINUS:
1221 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1222 res = expand_binop (submode, binoptab, real0, real1,
1223 realr, unsignedp, methods);
1224
1225 if (res == 0)
1226 break;
1227 else if (res != realr)
1228 emit_move_insn (realr, res);
1229
1230 if (imag0 && imag1)
1231 res = expand_binop (submode, binoptab, imag0, imag1,
1232 imagr, unsignedp, methods);
1233 else if (imag0)
1234 res = imag0;
1235 else if (binoptab->code == MINUS)
1236 res = expand_unop (submode, neg_optab, imag1, imagr, unsignedp);
1237 else
1238 res = imag1;
1239
1240 if (res == 0)
1241 break;
1242 else if (res != imagr)
1243 emit_move_insn (imagr, res);
1244
1245 ok = 1;
1246 break;
1247
1248 case MULT:
1249 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1250
1251 if (imag0 && imag1)
1252 {
1253 rtx temp1, temp2;
1254
1255 /* Don't fetch these from memory more than once. */
1256 real0 = force_reg (submode, real0);
1257 real1 = force_reg (submode, real1);
1258 imag0 = force_reg (submode, imag0);
1259 imag1 = force_reg (submode, imag1);
1260
1261 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1262 unsignedp, methods);
1263
1264 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1265 unsignedp, methods);
1266
1267 if (temp1 == 0 || temp2 == 0)
1268 break;
1269
1270 res = expand_binop (submode, sub_optab, temp1, temp2,
1271 realr, unsignedp, methods);
1272
1273 if (res == 0)
1274 break;
1275 else if (res != realr)
1276 emit_move_insn (realr, res);
1277
1278 temp1 = expand_binop (submode, binoptab, real0, imag1,
1279 NULL_RTX, unsignedp, methods);
1280
1281 temp2 = expand_binop (submode, binoptab, real1, imag0,
1282 NULL_RTX, unsignedp, methods);
1283
1284 if (temp1 == 0 || temp2 == 0)
1285 break;
1286
1287 res = expand_binop (submode, add_optab, temp1, temp2,
1288 imagr, unsignedp, methods);
1289
1290 if (res == 0)
1291 break;
1292 else if (res != imagr)
1293 emit_move_insn (imagr, res);
1294
1295 ok = 1;
1296 }
1297 else
1298 {
1299 /* Don't fetch these from memory more than once. */
1300 real0 = force_reg (submode, real0);
1301 real1 = force_reg (submode, real1);
1302
1303 res = expand_binop (submode, binoptab, real0, real1,
1304 realr, unsignedp, methods);
1305 if (res == 0)
1306 break;
1307 else if (res != realr)
1308 emit_move_insn (realr, res);
1309
1310 if (imag0 != 0)
1311 res = expand_binop (submode, binoptab,
1312 real1, imag0, imagr, unsignedp, methods);
1313 else
1314 res = expand_binop (submode, binoptab,
1315 real0, imag1, imagr, unsignedp, methods);
1316
1317 if (res == 0)
1318 break;
1319 else if (res != imagr)
1320 emit_move_insn (imagr, res);
1321
1322 ok = 1;
1323 }
1324 break;
1325
1326 case DIV:
1327 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1328
1329 if (imag1 == 0)
1330 {
1331 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1332
1333 /* Don't fetch these from memory more than once. */
1334 real1 = force_reg (submode, real1);
1335
1336 /* Simply divide the real and imaginary parts by `c' */
1337 if (class == MODE_COMPLEX_FLOAT)
1338 res = expand_binop (submode, binoptab, real0, real1,
1339 realr, unsignedp, methods);
1340 else
1341 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1342 real0, real1, realr, unsignedp);
1343
1344 if (res == 0)
1345 break;
1346 else if (res != realr)
1347 emit_move_insn (realr, res);
1348
1349 if (class == MODE_COMPLEX_FLOAT)
1350 res = expand_binop (submode, binoptab, imag0, real1,
1351 imagr, unsignedp, methods);
1352 else
1353 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1354 imag0, real1, imagr, unsignedp);
1355
1356 if (res == 0)
1357 break;
1358 else if (res != imagr)
1359 emit_move_insn (imagr, res);
1360
1361 ok = 1;
1362 }
1363 else
1364 {
1365 /* Divisor is of complex type:
1366 X/(a+ib) */
1367 rtx divisor;
1368 rtx real_t, imag_t;
1369 rtx lhs, rhs;
1370 rtx temp1, temp2;
1371
1372 /* Don't fetch these from memory more than once. */
1373 real0 = force_reg (submode, real0);
1374 real1 = force_reg (submode, real1);
1375
1376 if (imag0 != 0)
1377 imag0 = force_reg (submode, imag0);
1378
1379 imag1 = force_reg (submode, imag1);
1380
1381 /* Divisor: c*c + d*d */
1382 temp1 = expand_binop (submode, smul_optab, real1, real1,
1383 NULL_RTX, unsignedp, methods);
1384
1385 temp2 = expand_binop (submode, smul_optab, imag1, imag1,
1386 NULL_RTX, unsignedp, methods);
1387
1388 if (temp1 == 0 || temp2 == 0)
1389 break;
1390
1391 divisor = expand_binop (submode, add_optab, temp1, temp2,
1392 NULL_RTX, unsignedp, methods);
1393 if (divisor == 0)
1394 break;
1395
1396 if (imag0 == 0)
1397 {
1398 /* ((a)(c-id))/divisor */
1399 /* (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)) */
1400
1401 /* Calculate the dividend */
1402 real_t = expand_binop (submode, smul_optab, real0, real1,
1403 NULL_RTX, unsignedp, methods);
1404
1405 imag_t = expand_binop (submode, smul_optab, real0, imag1,
1406 NULL_RTX, unsignedp, methods);
1407
1408 if (real_t == 0 || imag_t == 0)
1409 break;
1410
1411 imag_t = expand_unop (submode, neg_optab, imag_t,
1412 NULL_RTX, unsignedp);
1413 }
1414 else
1415 {
1416 /* ((a+ib)(c-id))/divider */
1417 /* Calculate the dividend */
1418 temp1 = expand_binop (submode, smul_optab, real0, real1,
1419 NULL_RTX, unsignedp, methods);
1420
1421 temp2 = expand_binop (submode, smul_optab, imag0, imag1,
1422 NULL_RTX, unsignedp, methods);
1423
1424 if (temp1 == 0 || temp2 == 0)
1425 break;
1426
1427 real_t = expand_binop (submode, add_optab, temp1, temp2,
1428 NULL_RTX, unsignedp, methods);
1429
1430 temp1 = expand_binop (submode, smul_optab, imag0, real1,
1431 NULL_RTX, unsignedp, methods);
1432
1433 temp2 = expand_binop (submode, smul_optab, real0, imag1,
1434 NULL_RTX, unsignedp, methods);
1435
1436 if (temp1 == 0 || temp2 == 0)
1437 break;
1438
1439 imag_t = expand_binop (submode, sub_optab, temp1, temp2,
1440 NULL_RTX, unsignedp, methods);
1441
1442 if (real_t == 0 || imag_t == 0)
1443 break;
1444 }
1445
1446 if (class == MODE_COMPLEX_FLOAT)
1447 res = expand_binop (submode, binoptab, real_t, divisor,
1448 realr, unsignedp, methods);
1449 else
1450 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1451 real_t, divisor, realr, unsignedp);
1452
1453 if (res == 0)
1454 break;
1455 else if (res != realr)
1456 emit_move_insn (realr, res);
1457
1458 if (class == MODE_COMPLEX_FLOAT)
1459 res = expand_binop (submode, binoptab, imag_t, divisor,
1460 imagr, unsignedp, methods);
1461 else
1462 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1463 imag_t, divisor, imagr, unsignedp);
1464
1465 if (res == 0)
1466 break;
1467 else if (res != imagr)
1468 emit_move_insn (imagr, res);
1469
1470 ok = 1;
1471 }
1472 break;
1473
1474 default:
1475 abort ();
1476 }
1477
1478 seq = get_insns ();
1479 end_sequence ();
1480
1481 if (ok)
1482 {
1483 if (binoptab->code != UNKNOWN)
1484 equiv_value
1485 = gen_rtx (binoptab->code, mode, copy_rtx (op0), copy_rtx (op1));
1486 else
1487 equiv_value = 0;
1488
1489 emit_no_conflict_block (seq, target, op0, op1, equiv_value);
1490
1491 return target;
1492 }
1493 }
1494
1495 /* It can't be open-coded in this mode.
1496 Use a library call if one is available and caller says that's ok. */
1497
1498 if (binoptab->handlers[(int) mode].libfunc
1499 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1500 {
1501 rtx insns;
1502 rtx funexp = binoptab->handlers[(int) mode].libfunc;
1503 rtx op1x = op1;
1504 enum machine_mode op1_mode = mode;
1505 rtx value;
1506
1507 start_sequence ();
1508
1509 if (shift_op)
1510 {
1511 op1_mode = word_mode;
1512 /* Specify unsigned here,
1513 since negative shift counts are meaningless. */
1514 op1x = convert_to_mode (word_mode, op1, 1);
1515 }
1516
1517 if (GET_MODE (op0) != VOIDmode
1518 && GET_MODE (op0) != mode)
1519 op0 = convert_to_mode (mode, op0, unsignedp);
1520
1521 /* Pass 1 for NO_QUEUE so we don't lose any increments
1522 if the libcall is cse'd or moved. */
1523 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1524 NULL_RTX, 1, mode, 2,
1525 op0, mode, op1x, op1_mode);
1526
1527 insns = get_insns ();
1528 end_sequence ();
1529
1530 target = gen_reg_rtx (mode);
1531 emit_libcall_block (insns, target, value,
1532 gen_rtx (binoptab->code, mode, op0, op1));
1533
1534 return target;
1535 }
1536
1537 delete_insns_since (last);
1538
1539 /* It can't be done in this mode. Can we do it in a wider mode? */
1540
1541 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1542 || methods == OPTAB_MUST_WIDEN))
1543 {
1544 /* Caller says, don't even try. */
1545 delete_insns_since (entry_last);
1546 return 0;
1547 }
1548
1549 /* Compute the value of METHODS to pass to recursive calls.
1550 Don't allow widening to be tried recursively. */
1551
1552 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1553
1554 /* Look for a wider mode of the same class for which it appears we can do
1555 the operation. */
1556
1557 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1558 {
1559 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1560 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1561 {
1562 if ((binoptab->handlers[(int) wider_mode].insn_code
1563 != CODE_FOR_nothing)
1564 || (methods == OPTAB_LIB
1565 && binoptab->handlers[(int) wider_mode].libfunc))
1566 {
1567 rtx xop0 = op0, xop1 = op1;
1568 int no_extend = 0;
1569
1570 /* For certain integer operations, we need not actually extend
1571 the narrow operands, as long as we will truncate
1572 the results to the same narrowness. */
1573
1574 if ((binoptab == ior_optab || binoptab == and_optab
1575 || binoptab == xor_optab
1576 || binoptab == add_optab || binoptab == sub_optab
1577 || binoptab == smul_optab || binoptab == ashl_optab)
1578 && class == MODE_INT)
1579 no_extend = 1;
1580
1581 xop0 = widen_operand (xop0, wider_mode, mode,
1582 unsignedp, no_extend);
1583
1584 /* The second operand of a shift must always be extended. */
1585 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1586 no_extend && binoptab != ashl_optab);
1587
1588 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1589 unsignedp, methods);
1590 if (temp)
1591 {
1592 if (class != MODE_INT)
1593 {
1594 if (target == 0)
1595 target = gen_reg_rtx (mode);
1596 convert_move (target, temp, 0);
1597 return target;
1598 }
1599 else
1600 return gen_lowpart (mode, temp);
1601 }
1602 else
1603 delete_insns_since (last);
1604 }
1605 }
1606 }
1607
1608 delete_insns_since (entry_last);
1609 return 0;
1610 }
1611 \f
1612 /* Expand a binary operator which has both signed and unsigned forms.
1613 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1614 signed operations.
1615
1616 If we widen unsigned operands, we may use a signed wider operation instead
1617 of an unsigned wider operation, since the result would be the same. */
1618
1619 rtx
1620 sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
1621 enum machine_mode mode;
1622 optab uoptab, soptab;
1623 rtx op0, op1, target;
1624 int unsignedp;
1625 enum optab_methods methods;
1626 {
1627 register rtx temp;
1628 optab direct_optab = unsignedp ? uoptab : soptab;
1629 struct optab wide_soptab;
1630
1631 /* Do it without widening, if possible. */
1632 temp = expand_binop (mode, direct_optab, op0, op1, target,
1633 unsignedp, OPTAB_DIRECT);
1634 if (temp || methods == OPTAB_DIRECT)
1635 return temp;
1636
1637 /* Try widening to a signed int. Make a fake signed optab that
1638 hides any signed insn for direct use. */
1639 wide_soptab = *soptab;
1640 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
1641 wide_soptab.handlers[(int) mode].libfunc = 0;
1642
1643 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1644 unsignedp, OPTAB_WIDEN);
1645
1646 /* For unsigned operands, try widening to an unsigned int. */
1647 if (temp == 0 && unsignedp)
1648 temp = expand_binop (mode, uoptab, op0, op1, target,
1649 unsignedp, OPTAB_WIDEN);
1650 if (temp || methods == OPTAB_WIDEN)
1651 return temp;
1652
1653 /* Use the right width lib call if that exists. */
1654 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
1655 if (temp || methods == OPTAB_LIB)
1656 return temp;
1657
1658 /* Must widen and use a lib call, use either signed or unsigned. */
1659 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1660 unsignedp, methods);
1661 if (temp != 0)
1662 return temp;
1663 if (unsignedp)
1664 return expand_binop (mode, uoptab, op0, op1, target,
1665 unsignedp, methods);
1666 return 0;
1667 }
1668 \f
1669 /* Generate code to perform an operation specified by BINOPTAB
1670 on operands OP0 and OP1, with two results to TARG1 and TARG2.
1671 We assume that the order of the operands for the instruction
1672 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
1673 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
1674
1675 Either TARG0 or TARG1 may be zero, but what that means is that
1676 that result is not actually wanted. We will generate it into
1677 a dummy pseudo-reg and discard it. They may not both be zero.
1678
1679 Returns 1 if this operation can be performed; 0 if not. */
1680
1681 int
1682 expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
1683 optab binoptab;
1684 rtx op0, op1;
1685 rtx targ0, targ1;
1686 int unsignedp;
1687 {
1688 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1689 enum mode_class class;
1690 enum machine_mode wider_mode;
1691 rtx entry_last = get_last_insn ();
1692 rtx last;
1693
1694 class = GET_MODE_CLASS (mode);
1695
1696 op0 = protect_from_queue (op0, 0);
1697 op1 = protect_from_queue (op1, 0);
1698
1699 if (flag_force_mem)
1700 {
1701 op0 = force_not_mem (op0);
1702 op1 = force_not_mem (op1);
1703 }
1704
1705 /* If we are inside an appropriately-short loop and one operand is an
1706 expensive constant, force it into a register. */
1707 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
1708 && rtx_cost (op0, binoptab->code) > 2)
1709 op0 = force_reg (mode, op0);
1710
1711 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
1712 && rtx_cost (op1, binoptab->code) > 2)
1713 op1 = force_reg (mode, op1);
1714
1715 if (targ0)
1716 targ0 = protect_from_queue (targ0, 1);
1717 else
1718 targ0 = gen_reg_rtx (mode);
1719 if (targ1)
1720 targ1 = protect_from_queue (targ1, 1);
1721 else
1722 targ1 = gen_reg_rtx (mode);
1723
1724 /* Record where to go back to if we fail. */
1725 last = get_last_insn ();
1726
1727 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1728 {
1729 int icode = (int) binoptab->handlers[(int) mode].insn_code;
1730 enum machine_mode mode0 = insn_operand_mode[icode][1];
1731 enum machine_mode mode1 = insn_operand_mode[icode][2];
1732 rtx pat;
1733 rtx xop0 = op0, xop1 = op1;
1734
1735 /* In case this insn wants input operands in modes different from the
1736 result, convert the operands. */
1737 if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
1738 xop0 = convert_to_mode (mode0, xop0, unsignedp);
1739
1740 if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
1741 xop1 = convert_to_mode (mode1, xop1, unsignedp);
1742
1743 /* Now, if insn doesn't accept these operands, put them into pseudos. */
1744 if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
1745 xop0 = copy_to_mode_reg (mode0, xop0);
1746
1747 if (! (*insn_operand_predicate[icode][2]) (xop1, mode1))
1748 xop1 = copy_to_mode_reg (mode1, xop1);
1749
1750 /* We could handle this, but we should always be called with a pseudo
1751 for our targets and all insns should take them as outputs. */
1752 if (! (*insn_operand_predicate[icode][0]) (targ0, mode)
1753 || ! (*insn_operand_predicate[icode][3]) (targ1, mode))
1754 abort ();
1755
1756 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
1757 if (pat)
1758 {
1759 emit_insn (pat);
1760 return 1;
1761 }
1762 else
1763 delete_insns_since (last);
1764 }
1765
1766 /* It can't be done in this mode. Can we do it in a wider mode? */
1767
1768 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1769 {
1770 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1771 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1772 {
1773 if (binoptab->handlers[(int) wider_mode].insn_code
1774 != CODE_FOR_nothing)
1775 {
1776 register rtx t0 = gen_reg_rtx (wider_mode);
1777 register rtx t1 = gen_reg_rtx (wider_mode);
1778
1779 if (expand_twoval_binop (binoptab,
1780 convert_modes (wider_mode, mode, op0,
1781 unsignedp),
1782 convert_modes (wider_mode, mode, op1,
1783 unsignedp),
1784 t0, t1, unsignedp))
1785 {
1786 convert_move (targ0, t0, unsignedp);
1787 convert_move (targ1, t1, unsignedp);
1788 return 1;
1789 }
1790 else
1791 delete_insns_since (last);
1792 }
1793 }
1794 }
1795
1796 delete_insns_since (entry_last);
1797 return 0;
1798 }
1799 \f
1800 /* Generate code to perform an operation specified by UNOPTAB
1801 on operand OP0, with result having machine-mode MODE.
1802
1803 UNSIGNEDP is for the case where we have to widen the operands
1804 to perform the operation. It says to use zero-extension.
1805
1806 If TARGET is nonzero, the value
1807 is generated there, if it is convenient to do so.
1808 In all cases an rtx is returned for the locus of the value;
1809 this may or may not be TARGET. */
1810
1811 rtx
1812 expand_unop (mode, unoptab, op0, target, unsignedp)
1813 enum machine_mode mode;
1814 optab unoptab;
1815 rtx op0;
1816 rtx target;
1817 int unsignedp;
1818 {
1819 enum mode_class class;
1820 enum machine_mode wider_mode;
1821 register rtx temp;
1822 rtx last = get_last_insn ();
1823 rtx pat;
1824
1825 class = GET_MODE_CLASS (mode);
1826
1827 op0 = protect_from_queue (op0, 0);
1828
1829 if (flag_force_mem)
1830 {
1831 op0 = force_not_mem (op0);
1832 }
1833
1834 if (target)
1835 target = protect_from_queue (target, 1);
1836
1837 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1838 {
1839 int icode = (int) unoptab->handlers[(int) mode].insn_code;
1840 enum machine_mode mode0 = insn_operand_mode[icode][1];
1841 rtx xop0 = op0;
1842
1843 if (target)
1844 temp = target;
1845 else
1846 temp = gen_reg_rtx (mode);
1847
1848 if (GET_MODE (xop0) != VOIDmode
1849 && GET_MODE (xop0) != mode0)
1850 xop0 = convert_to_mode (mode0, xop0, unsignedp);
1851
1852 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
1853
1854 if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
1855 xop0 = copy_to_mode_reg (mode0, xop0);
1856
1857 if (! (*insn_operand_predicate[icode][0]) (temp, mode))
1858 temp = gen_reg_rtx (mode);
1859
1860 pat = GEN_FCN (icode) (temp, xop0);
1861 if (pat)
1862 {
1863 if (GET_CODE (pat) == SEQUENCE
1864 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
1865 {
1866 delete_insns_since (last);
1867 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
1868 }
1869
1870 emit_insn (pat);
1871
1872 return temp;
1873 }
1874 else
1875 delete_insns_since (last);
1876 }
1877
1878 /* It can't be done in this mode. Can we open-code it in a wider mode? */
1879
1880 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1881 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1882 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1883 {
1884 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
1885 {
1886 rtx xop0 = op0;
1887
1888 /* For certain operations, we need not actually extend
1889 the narrow operand, as long as we will truncate the
1890 results to the same narrowness. */
1891
1892 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
1893 (unoptab == neg_optab
1894 || unoptab == one_cmpl_optab)
1895 && class == MODE_INT);
1896
1897 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
1898 unsignedp);
1899
1900 if (temp)
1901 {
1902 if (class != MODE_INT)
1903 {
1904 if (target == 0)
1905 target = gen_reg_rtx (mode);
1906 convert_move (target, temp, 0);
1907 return target;
1908 }
1909 else
1910 return gen_lowpart (mode, temp);
1911 }
1912 else
1913 delete_insns_since (last);
1914 }
1915 }
1916
1917 /* These can be done a word at a time. */
1918 if (unoptab == one_cmpl_optab
1919 && class == MODE_INT
1920 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1921 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1922 {
1923 int i;
1924 rtx insns;
1925
1926 if (target == 0 || target == op0)
1927 target = gen_reg_rtx (mode);
1928
1929 start_sequence ();
1930
1931 /* Do the actual arithmetic. */
1932 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1933 {
1934 rtx target_piece = operand_subword (target, i, 1, mode);
1935 rtx x = expand_unop (word_mode, unoptab,
1936 operand_subword_force (op0, i, mode),
1937 target_piece, unsignedp);
1938 if (target_piece != x)
1939 emit_move_insn (target_piece, x);
1940 }
1941
1942 insns = get_insns ();
1943 end_sequence ();
1944
1945 emit_no_conflict_block (insns, target, op0, NULL_RTX,
1946 gen_rtx (unoptab->code, mode, copy_rtx (op0)));
1947 return target;
1948 }
1949
1950 /* Open-code the complex negation operation. */
1951 else if (unoptab == neg_optab
1952 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
1953 {
1954 rtx target_piece;
1955 rtx x;
1956 rtx seq;
1957
1958 /* Find the correct mode for the real and imaginary parts */
1959 enum machine_mode submode
1960 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
1961 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
1962 0);
1963
1964 if (submode == BLKmode)
1965 abort ();
1966
1967 if (target == 0)
1968 target = gen_reg_rtx (mode);
1969
1970 start_sequence ();
1971
1972 target_piece = gen_imagpart (submode, target);
1973 x = expand_unop (submode, unoptab,
1974 gen_imagpart (submode, op0),
1975 target_piece, unsignedp);
1976 if (target_piece != x)
1977 emit_move_insn (target_piece, x);
1978
1979 target_piece = gen_realpart (submode, target);
1980 x = expand_unop (submode, unoptab,
1981 gen_realpart (submode, op0),
1982 target_piece, unsignedp);
1983 if (target_piece != x)
1984 emit_move_insn (target_piece, x);
1985
1986 seq = get_insns ();
1987 end_sequence ();
1988
1989 emit_no_conflict_block (seq, target, op0, 0,
1990 gen_rtx (unoptab->code, mode, copy_rtx (op0)));
1991 return target;
1992 }
1993
1994 /* Now try a library call in this mode. */
1995 if (unoptab->handlers[(int) mode].libfunc)
1996 {
1997 rtx insns;
1998 rtx funexp = unoptab->handlers[(int) mode].libfunc;
1999 rtx value;
2000
2001 start_sequence ();
2002
2003 /* Pass 1 for NO_QUEUE so we don't lose any increments
2004 if the libcall is cse'd or moved. */
2005 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2006 NULL_RTX, 1, mode, 1, op0, mode);
2007 insns = get_insns ();
2008 end_sequence ();
2009
2010 target = gen_reg_rtx (mode);
2011 emit_libcall_block (insns, target, value,
2012 gen_rtx (unoptab->code, mode, op0));
2013
2014 return target;
2015 }
2016
2017 /* It can't be done in this mode. Can we do it in a wider mode? */
2018
2019 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2020 {
2021 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2022 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2023 {
2024 if ((unoptab->handlers[(int) wider_mode].insn_code
2025 != CODE_FOR_nothing)
2026 || unoptab->handlers[(int) wider_mode].libfunc)
2027 {
2028 rtx xop0 = op0;
2029
2030 /* For certain operations, we need not actually extend
2031 the narrow operand, as long as we will truncate the
2032 results to the same narrowness. */
2033
2034 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2035 (unoptab == neg_optab
2036 || unoptab == one_cmpl_optab)
2037 && class == MODE_INT);
2038
2039 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2040 unsignedp);
2041
2042 if (temp)
2043 {
2044 if (class != MODE_INT)
2045 {
2046 if (target == 0)
2047 target = gen_reg_rtx (mode);
2048 convert_move (target, temp, 0);
2049 return target;
2050 }
2051 else
2052 return gen_lowpart (mode, temp);
2053 }
2054 else
2055 delete_insns_since (last);
2056 }
2057 }
2058 }
2059
2060 /* If there is no negate operation, try doing a subtract from zero.
2061 The US Software GOFAST library needs this. */
2062 if (unoptab == neg_optab)
2063 {
2064 rtx temp;
2065 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2066 target, unsignedp, OPTAB_LIB_WIDEN);
2067 if (temp)
2068 return temp;
2069 }
2070
2071 return 0;
2072 }
2073 \f
2074 /* Emit code to compute the absolute value of OP0, with result to
2075 TARGET if convenient. (TARGET may be 0.) The return value says
2076 where the result actually is to be found.
2077
2078 MODE is the mode of the operand; the mode of the result is
2079 different but can be deduced from MODE.
2080
2081 UNSIGNEDP is relevant if extension is needed. */
2082
2083 rtx
2084 expand_abs (mode, op0, target, unsignedp, safe)
2085 enum machine_mode mode;
2086 rtx op0;
2087 rtx target;
2088 int unsignedp;
2089 int safe;
2090 {
2091 rtx temp, op1;
2092
2093 /* First try to do it with a special abs instruction. */
2094 temp = expand_unop (mode, abs_optab, op0, target, 0);
2095 if (temp != 0)
2096 return temp;
2097
2098 /* If this machine has expensive jumps, we can do integer absolute
2099 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2100 where W is the width of MODE. */
2101
2102 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2103 {
2104 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2105 size_int (GET_MODE_BITSIZE (mode) - 1),
2106 NULL_RTX, 0);
2107
2108 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2109 OPTAB_LIB_WIDEN);
2110 if (temp != 0)
2111 temp = expand_binop (mode, sub_optab, temp, extended, target, 0,
2112 OPTAB_LIB_WIDEN);
2113
2114 if (temp != 0)
2115 return temp;
2116 }
2117
2118 /* If that does not win, use conditional jump and negate. */
2119 op1 = gen_label_rtx ();
2120 if (target == 0 || ! safe
2121 || GET_MODE (target) != mode
2122 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2123 || (GET_CODE (target) == REG
2124 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2125 target = gen_reg_rtx (mode);
2126
2127 emit_move_insn (target, op0);
2128 NO_DEFER_POP;
2129
2130 /* If this mode is an integer too wide to compare properly,
2131 compare word by word. Rely on CSE to optimize constant cases. */
2132 if (GET_MODE_CLASS (mode) == MODE_INT && ! can_compare_p (mode))
2133 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2134 NULL_RTX, op1);
2135 else
2136 {
2137 temp = compare_from_rtx (target, CONST0_RTX (mode), GE, 0, mode,
2138 NULL_RTX, 0);
2139 if (temp == const1_rtx)
2140 return target;
2141 else if (temp != const0_rtx)
2142 {
2143 if (bcc_gen_fctn[(int) GET_CODE (temp)] != 0)
2144 emit_jump_insn ((*bcc_gen_fctn[(int) GET_CODE (temp)]) (op1));
2145 else
2146 abort ();
2147 }
2148 }
2149
2150 op0 = expand_unop (mode, neg_optab, target, target, 0);
2151 if (op0 != target)
2152 emit_move_insn (target, op0);
2153 emit_label (op1);
2154 OK_DEFER_POP;
2155 return target;
2156 }
2157 \f
2158 /* Emit code to compute the absolute value of OP0, with result to
2159 TARGET if convenient. (TARGET may be 0.) The return value says
2160 where the result actually is to be found.
2161
2162 MODE is the mode of the operand; the mode of the result is
2163 different but can be deduced from MODE.
2164
2165 UNSIGNEDP is relevant for complex integer modes. */
2166
2167 rtx
2168 expand_complex_abs (mode, op0, target, unsignedp)
2169 enum machine_mode mode;
2170 rtx op0;
2171 rtx target;
2172 int unsignedp;
2173 {
2174 enum mode_class class = GET_MODE_CLASS (mode);
2175 enum machine_mode wider_mode;
2176 register rtx temp;
2177 rtx entry_last = get_last_insn ();
2178 rtx last;
2179 rtx pat;
2180
2181 /* Find the correct mode for the real and imaginary parts. */
2182 enum machine_mode submode
2183 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2184 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2185 0);
2186
2187 if (submode == BLKmode)
2188 abort ();
2189
2190 op0 = protect_from_queue (op0, 0);
2191
2192 if (flag_force_mem)
2193 {
2194 op0 = force_not_mem (op0);
2195 }
2196
2197 last = get_last_insn ();
2198
2199 if (target)
2200 target = protect_from_queue (target, 1);
2201
2202 if (abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2203 {
2204 int icode = (int) abs_optab->handlers[(int) mode].insn_code;
2205 enum machine_mode mode0 = insn_operand_mode[icode][1];
2206 rtx xop0 = op0;
2207
2208 if (target)
2209 temp = target;
2210 else
2211 temp = gen_reg_rtx (submode);
2212
2213 if (GET_MODE (xop0) != VOIDmode
2214 && GET_MODE (xop0) != mode0)
2215 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2216
2217 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2218
2219 if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
2220 xop0 = copy_to_mode_reg (mode0, xop0);
2221
2222 if (! (*insn_operand_predicate[icode][0]) (temp, submode))
2223 temp = gen_reg_rtx (submode);
2224
2225 pat = GEN_FCN (icode) (temp, xop0);
2226 if (pat)
2227 {
2228 if (GET_CODE (pat) == SEQUENCE
2229 && ! add_equal_note (pat, temp, abs_optab->code, xop0, NULL_RTX))
2230 {
2231 delete_insns_since (last);
2232 return expand_unop (mode, abs_optab, op0, NULL_RTX, unsignedp);
2233 }
2234
2235 emit_insn (pat);
2236
2237 return temp;
2238 }
2239 else
2240 delete_insns_since (last);
2241 }
2242
2243 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2244
2245 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2246 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2247 {
2248 if (abs_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2249 {
2250 rtx xop0 = op0;
2251
2252 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2253 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2254
2255 if (temp)
2256 {
2257 if (class != MODE_COMPLEX_INT)
2258 {
2259 if (target == 0)
2260 target = gen_reg_rtx (submode);
2261 convert_move (target, temp, 0);
2262 return target;
2263 }
2264 else
2265 return gen_lowpart (submode, temp);
2266 }
2267 else
2268 delete_insns_since (last);
2269 }
2270 }
2271
2272 /* Open-code the complex absolute-value operation
2273 if we can open-code sqrt. Otherwise it's not worth while. */
2274 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing)
2275 {
2276 rtx real, imag, total;
2277
2278 real = gen_realpart (submode, op0);
2279 imag = gen_imagpart (submode, op0);
2280
2281 /* Square both parts. */
2282 real = expand_mult (submode, real, real, NULL_RTX, 0);
2283 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
2284
2285 /* Sum the parts. */
2286 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
2287 0, OPTAB_LIB_WIDEN);
2288
2289 /* Get sqrt in TARGET. Set TARGET to where the result is. */
2290 target = expand_unop (submode, sqrt_optab, total, target, 0);
2291 if (target == 0)
2292 delete_insns_since (last);
2293 else
2294 return target;
2295 }
2296
2297 /* Now try a library call in this mode. */
2298 if (abs_optab->handlers[(int) mode].libfunc)
2299 {
2300 rtx insns;
2301 rtx funexp = abs_optab->handlers[(int) mode].libfunc;
2302 rtx value;
2303
2304 start_sequence ();
2305
2306 /* Pass 1 for NO_QUEUE so we don't lose any increments
2307 if the libcall is cse'd or moved. */
2308 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
2309 NULL_RTX, 1, submode, 1, op0, mode);
2310 insns = get_insns ();
2311 end_sequence ();
2312
2313 target = gen_reg_rtx (submode);
2314 emit_libcall_block (insns, target, value,
2315 gen_rtx (abs_optab->code, mode, op0));
2316
2317 return target;
2318 }
2319
2320 /* It can't be done in this mode. Can we do it in a wider mode? */
2321
2322 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2323 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2324 {
2325 if ((abs_optab->handlers[(int) wider_mode].insn_code
2326 != CODE_FOR_nothing)
2327 || abs_optab->handlers[(int) wider_mode].libfunc)
2328 {
2329 rtx xop0 = op0;
2330
2331 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2332
2333 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2334
2335 if (temp)
2336 {
2337 if (class != MODE_COMPLEX_INT)
2338 {
2339 if (target == 0)
2340 target = gen_reg_rtx (submode);
2341 convert_move (target, temp, 0);
2342 return target;
2343 }
2344 else
2345 return gen_lowpart (submode, temp);
2346 }
2347 else
2348 delete_insns_since (last);
2349 }
2350 }
2351
2352 delete_insns_since (entry_last);
2353 return 0;
2354 }
2355 \f
2356 /* Generate an instruction whose insn-code is INSN_CODE,
2357 with two operands: an output TARGET and an input OP0.
2358 TARGET *must* be nonzero, and the output is always stored there.
2359 CODE is an rtx code such that (CODE OP0) is an rtx that describes
2360 the value that is stored into TARGET. */
2361
2362 void
2363 emit_unop_insn (icode, target, op0, code)
2364 int icode;
2365 rtx target;
2366 rtx op0;
2367 enum rtx_code code;
2368 {
2369 register rtx temp;
2370 enum machine_mode mode0 = insn_operand_mode[icode][1];
2371 rtx pat;
2372
2373 temp = target = protect_from_queue (target, 1);
2374
2375 op0 = protect_from_queue (op0, 0);
2376
2377 if (flag_force_mem)
2378 op0 = force_not_mem (op0);
2379
2380 /* Now, if insn does not accept our operands, put them into pseudos. */
2381
2382 if (! (*insn_operand_predicate[icode][1]) (op0, mode0))
2383 op0 = copy_to_mode_reg (mode0, op0);
2384
2385 if (! (*insn_operand_predicate[icode][0]) (temp, GET_MODE (temp))
2386 || (flag_force_mem && GET_CODE (temp) == MEM))
2387 temp = gen_reg_rtx (GET_MODE (temp));
2388
2389 pat = GEN_FCN (icode) (temp, op0);
2390
2391 if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN)
2392 add_equal_note (pat, temp, code, op0, NULL_RTX);
2393
2394 emit_insn (pat);
2395
2396 if (temp != target)
2397 emit_move_insn (target, temp);
2398 }
2399 \f
2400 /* Emit code to perform a series of operations on a multi-word quantity, one
2401 word at a time.
2402
2403 Such a block is preceded by a CLOBBER of the output, consists of multiple
2404 insns, each setting one word of the output, and followed by a SET copying
2405 the output to itself.
2406
2407 Each of the insns setting words of the output receives a REG_NO_CONFLICT
2408 note indicating that it doesn't conflict with the (also multi-word)
2409 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
2410 notes.
2411
2412 INSNS is a block of code generated to perform the operation, not including
2413 the CLOBBER and final copy. All insns that compute intermediate values
2414 are first emitted, followed by the block as described above.
2415
2416 TARGET, OP0, and OP1 are the output and inputs of the operations,
2417 respectively. OP1 may be zero for a unary operation.
2418
2419 EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
2420 on the last insn.
2421
2422 If TARGET is not a register, INSNS is simply emitted with no special
2423 processing. Likewise if anything in INSNS is not an INSN or if
2424 there is a libcall block inside INSNS.
2425
2426 The final insn emitted is returned. */
2427
2428 rtx
2429 emit_no_conflict_block (insns, target, op0, op1, equiv)
2430 rtx insns;
2431 rtx target;
2432 rtx op0, op1;
2433 rtx equiv;
2434 {
2435 rtx prev, next, first, last, insn;
2436
2437 if (GET_CODE (target) != REG || reload_in_progress)
2438 return emit_insns (insns);
2439 else
2440 for (insn = insns; insn; insn = NEXT_INSN (insn))
2441 if (GET_CODE (insn) != INSN
2442 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2443 return emit_insns (insns);
2444
2445 /* First emit all insns that do not store into words of the output and remove
2446 these from the list. */
2447 for (insn = insns; insn; insn = next)
2448 {
2449 rtx set = 0;
2450 int i;
2451
2452 next = NEXT_INSN (insn);
2453
2454 if (GET_CODE (PATTERN (insn)) == SET)
2455 set = PATTERN (insn);
2456 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2457 {
2458 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2459 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
2460 {
2461 set = XVECEXP (PATTERN (insn), 0, i);
2462 break;
2463 }
2464 }
2465
2466 if (set == 0)
2467 abort ();
2468
2469 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
2470 {
2471 if (PREV_INSN (insn))
2472 NEXT_INSN (PREV_INSN (insn)) = next;
2473 else
2474 insns = next;
2475
2476 if (next)
2477 PREV_INSN (next) = PREV_INSN (insn);
2478
2479 add_insn (insn);
2480 }
2481 }
2482
2483 prev = get_last_insn ();
2484
2485 /* Now write the CLOBBER of the output, followed by the setting of each
2486 of the words, followed by the final copy. */
2487 if (target != op0 && target != op1)
2488 emit_insn (gen_rtx (CLOBBER, VOIDmode, target));
2489
2490 for (insn = insns; insn; insn = next)
2491 {
2492 next = NEXT_INSN (insn);
2493 add_insn (insn);
2494
2495 if (op1 && GET_CODE (op1) == REG)
2496 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op1,
2497 REG_NOTES (insn));
2498
2499 if (op0 && GET_CODE (op0) == REG)
2500 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op0,
2501 REG_NOTES (insn));
2502 }
2503
2504 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2505 != CODE_FOR_nothing)
2506 {
2507 last = emit_move_insn (target, target);
2508 if (equiv)
2509 REG_NOTES (last)
2510 = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last));
2511 }
2512 else
2513 last = get_last_insn ();
2514
2515 if (prev == 0)
2516 first = get_insns ();
2517 else
2518 first = NEXT_INSN (prev);
2519
2520 /* Encapsulate the block so it gets manipulated as a unit. */
2521 REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
2522 REG_NOTES (first));
2523 REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
2524
2525 return last;
2526 }
2527 \f
2528 /* Emit code to make a call to a constant function or a library call.
2529
2530 INSNS is a list containing all insns emitted in the call.
2531 These insns leave the result in RESULT. Our block is to copy RESULT
2532 to TARGET, which is logically equivalent to EQUIV.
2533
2534 We first emit any insns that set a pseudo on the assumption that these are
2535 loading constants into registers; doing so allows them to be safely cse'ed
2536 between blocks. Then we emit all the other insns in the block, followed by
2537 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
2538 note with an operand of EQUIV.
2539
2540 Moving assignments to pseudos outside of the block is done to improve
2541 the generated code, but is not required to generate correct code,
2542 hence being unable to move an assignment is not grounds for not making
2543 a libcall block. There are two reasons why it is safe to leave these
2544 insns inside the block: First, we know that these pseudos cannot be
2545 used in generated RTL outside the block since they are created for
2546 temporary purposes within the block. Second, CSE will not record the
2547 values of anything set inside a libcall block, so we know they must
2548 be dead at the end of the block.
2549
2550 Except for the first group of insns (the ones setting pseudos), the
2551 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
2552
2553 void
2554 emit_libcall_block (insns, target, result, equiv)
2555 rtx insns;
2556 rtx target;
2557 rtx result;
2558 rtx equiv;
2559 {
2560 rtx prev, next, first, last, insn;
2561
2562 /* First emit all insns that set pseudos. Remove them from the list as
2563 we go. Avoid insns that set pseudos which were referenced in previous
2564 insns. These can be generated by move_by_pieces, for example,
2565 to update an address. Similarly, avoid insns that reference things
2566 set in previous insns. */
2567
2568 for (insn = insns; insn; insn = next)
2569 {
2570 rtx set = single_set (insn);
2571
2572 next = NEXT_INSN (insn);
2573
2574 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
2575 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
2576 && (insn == insns
2577 || (! reg_mentioned_p (SET_DEST (set), PATTERN (insns))
2578 && ! reg_used_between_p (SET_DEST (set), insns, insn)
2579 && ! modified_in_p (SET_SRC (set), insns)
2580 && ! modified_between_p (SET_SRC (set), insns, insn))))
2581 {
2582 if (PREV_INSN (insn))
2583 NEXT_INSN (PREV_INSN (insn)) = next;
2584 else
2585 insns = next;
2586
2587 if (next)
2588 PREV_INSN (next) = PREV_INSN (insn);
2589
2590 add_insn (insn);
2591 }
2592 }
2593
2594 prev = get_last_insn ();
2595
2596 /* Write the remaining insns followed by the final copy. */
2597
2598 for (insn = insns; insn; insn = next)
2599 {
2600 next = NEXT_INSN (insn);
2601
2602 add_insn (insn);
2603 }
2604
2605 last = emit_move_insn (target, result);
2606 REG_NOTES (last) = gen_rtx (EXPR_LIST,
2607 REG_EQUAL, copy_rtx (equiv), REG_NOTES (last));
2608
2609 if (prev == 0)
2610 first = get_insns ();
2611 else
2612 first = NEXT_INSN (prev);
2613
2614 /* Encapsulate the block so it gets manipulated as a unit. */
2615 REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
2616 REG_NOTES (first));
2617 REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
2618 }
2619 \f
2620 /* Generate code to store zero in X. */
2621
2622 void
2623 emit_clr_insn (x)
2624 rtx x;
2625 {
2626 emit_move_insn (x, const0_rtx);
2627 }
2628
2629 /* Generate code to store 1 in X
2630 assuming it contains zero beforehand. */
2631
2632 void
2633 emit_0_to_1_insn (x)
2634 rtx x;
2635 {
2636 emit_move_insn (x, const1_rtx);
2637 }
2638
2639 /* Generate code to compare X with Y
2640 so that the condition codes are set.
2641
2642 MODE is the mode of the inputs (in case they are const_int).
2643 UNSIGNEDP nonzero says that X and Y are unsigned;
2644 this matters if they need to be widened.
2645
2646 If they have mode BLKmode, then SIZE specifies the size of both X and Y,
2647 and ALIGN specifies the known shared alignment of X and Y.
2648
2649 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
2650 It is ignored for fixed-point and block comparisons;
2651 it is used only for floating-point comparisons. */
2652
2653 void
2654 emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align)
2655 rtx x, y;
2656 enum rtx_code comparison;
2657 rtx size;
2658 enum machine_mode mode;
2659 int unsignedp;
2660 int align;
2661 {
2662 enum mode_class class;
2663 enum machine_mode wider_mode;
2664
2665 class = GET_MODE_CLASS (mode);
2666
2667 /* They could both be VOIDmode if both args are immediate constants,
2668 but we should fold that at an earlier stage.
2669 With no special code here, this will call abort,
2670 reminding the programmer to implement such folding. */
2671
2672 if (mode != BLKmode && flag_force_mem)
2673 {
2674 x = force_not_mem (x);
2675 y = force_not_mem (y);
2676 }
2677
2678 /* If we are inside an appropriately-short loop and one operand is an
2679 expensive constant, force it into a register. */
2680 if (CONSTANT_P (x) && preserve_subexpressions_p () && rtx_cost (x, COMPARE) > 2)
2681 x = force_reg (mode, x);
2682
2683 if (CONSTANT_P (y) && preserve_subexpressions_p () && rtx_cost (y, COMPARE) > 2)
2684 y = force_reg (mode, y);
2685
2686 /* Don't let both operands fail to indicate the mode. */
2687 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
2688 x = force_reg (mode, x);
2689
2690 /* Handle all BLKmode compares. */
2691
2692 if (mode == BLKmode)
2693 {
2694 emit_queue ();
2695 x = protect_from_queue (x, 0);
2696 y = protect_from_queue (y, 0);
2697
2698 if (size == 0)
2699 abort ();
2700 #ifdef HAVE_cmpstrqi
2701 if (HAVE_cmpstrqi
2702 && GET_CODE (size) == CONST_INT
2703 && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
2704 {
2705 enum machine_mode result_mode
2706 = insn_operand_mode[(int) CODE_FOR_cmpstrqi][0];
2707 rtx result = gen_reg_rtx (result_mode);
2708 emit_insn (gen_cmpstrqi (result, x, y, size, GEN_INT (align)));
2709 emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
2710 result_mode, 0, 0);
2711 }
2712 else
2713 #endif
2714 #ifdef HAVE_cmpstrhi
2715 if (HAVE_cmpstrhi
2716 && GET_CODE (size) == CONST_INT
2717 && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
2718 {
2719 enum machine_mode result_mode
2720 = insn_operand_mode[(int) CODE_FOR_cmpstrhi][0];
2721 rtx result = gen_reg_rtx (result_mode);
2722 emit_insn (gen_cmpstrhi (result, x, y, size, GEN_INT (align)));
2723 emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
2724 result_mode, 0, 0);
2725 }
2726 else
2727 #endif
2728 #ifdef HAVE_cmpstrsi
2729 if (HAVE_cmpstrsi)
2730 {
2731 enum machine_mode result_mode
2732 = insn_operand_mode[(int) CODE_FOR_cmpstrsi][0];
2733 rtx result = gen_reg_rtx (result_mode);
2734 size = protect_from_queue (size, 0);
2735 emit_insn (gen_cmpstrsi (result, x, y,
2736 convert_to_mode (SImode, size, 1),
2737 GEN_INT (align)));
2738 emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
2739 result_mode, 0, 0);
2740 }
2741 else
2742 #endif
2743 {
2744 #ifdef TARGET_MEM_FUNCTIONS
2745 emit_library_call (memcmp_libfunc, 0,
2746 TYPE_MODE (integer_type_node), 3,
2747 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
2748 size, Pmode);
2749 #else
2750 emit_library_call (bcmp_libfunc, 0,
2751 TYPE_MODE (integer_type_node), 3,
2752 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
2753 size, Pmode);
2754 #endif
2755 emit_cmp_insn (hard_libcall_value (TYPE_MODE (integer_type_node)),
2756 const0_rtx, comparison, NULL_RTX,
2757 TYPE_MODE (integer_type_node), 0, 0);
2758 }
2759 return;
2760 }
2761
2762 /* Handle some compares against zero. */
2763
2764 if (y == CONST0_RTX (mode)
2765 && tst_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2766 {
2767 int icode = (int) tst_optab->handlers[(int) mode].insn_code;
2768
2769 emit_queue ();
2770 x = protect_from_queue (x, 0);
2771 y = protect_from_queue (y, 0);
2772
2773 /* Now, if insn does accept these operands, put them into pseudos. */
2774 if (! (*insn_operand_predicate[icode][0])
2775 (x, insn_operand_mode[icode][0]))
2776 x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
2777
2778 emit_insn (GEN_FCN (icode) (x));
2779 return;
2780 }
2781
2782 /* Handle compares for which there is a directly suitable insn. */
2783
2784 if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2785 {
2786 int icode = (int) cmp_optab->handlers[(int) mode].insn_code;
2787
2788 emit_queue ();
2789 x = protect_from_queue (x, 0);
2790 y = protect_from_queue (y, 0);
2791
2792 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2793 if (! (*insn_operand_predicate[icode][0])
2794 (x, insn_operand_mode[icode][0]))
2795 x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
2796
2797 if (! (*insn_operand_predicate[icode][1])
2798 (y, insn_operand_mode[icode][1]))
2799 y = copy_to_mode_reg (insn_operand_mode[icode][1], y);
2800
2801 emit_insn (GEN_FCN (icode) (x, y));
2802 return;
2803 }
2804
2805 /* Try widening if we can find a direct insn that way. */
2806
2807 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2808 {
2809 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2810 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2811 {
2812 if (cmp_optab->handlers[(int) wider_mode].insn_code
2813 != CODE_FOR_nothing)
2814 {
2815 x = protect_from_queue (x, 0);
2816 y = protect_from_queue (y, 0);
2817 x = convert_modes (wider_mode, mode, x, unsignedp);
2818 y = convert_modes (wider_mode, mode, y, unsignedp);
2819 emit_cmp_insn (x, y, comparison, NULL_RTX,
2820 wider_mode, unsignedp, align);
2821 return;
2822 }
2823 }
2824 }
2825
2826 /* Handle a lib call just for the mode we are using. */
2827
2828 if (cmp_optab->handlers[(int) mode].libfunc
2829 && class != MODE_FLOAT)
2830 {
2831 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
2832 /* If we want unsigned, and this mode has a distinct unsigned
2833 comparison routine, use that. */
2834 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
2835 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
2836
2837 emit_library_call (libfunc, 1,
2838 word_mode, 2, x, mode, y, mode);
2839
2840 /* Integer comparison returns a result that must be compared against 1,
2841 so that even if we do an unsigned compare afterward,
2842 there is still a value that can represent the result "less than". */
2843
2844 emit_cmp_insn (hard_libcall_value (word_mode), const1_rtx,
2845 comparison, NULL_RTX, word_mode, unsignedp, 0);
2846 return;
2847 }
2848
2849 if (class == MODE_FLOAT)
2850 emit_float_lib_cmp (x, y, comparison);
2851
2852 else
2853 abort ();
2854 }
2855
2856 /* Nonzero if a compare of mode MODE can be done straightforwardly
2857 (without splitting it into pieces). */
2858
2859 int
2860 can_compare_p (mode)
2861 enum machine_mode mode;
2862 {
2863 do
2864 {
2865 if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2866 return 1;
2867 mode = GET_MODE_WIDER_MODE (mode);
2868 } while (mode != VOIDmode);
2869
2870 return 0;
2871 }
2872 \f
2873 /* Emit a library call comparison between floating point X and Y.
2874 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
2875
2876 void
2877 emit_float_lib_cmp (x, y, comparison)
2878 rtx x, y;
2879 enum rtx_code comparison;
2880 {
2881 enum machine_mode mode = GET_MODE (x);
2882 rtx libfunc = 0;
2883
2884 if (mode == HFmode)
2885 switch (comparison)
2886 {
2887 case EQ:
2888 libfunc = eqhf2_libfunc;
2889 break;
2890
2891 case NE:
2892 libfunc = nehf2_libfunc;
2893 break;
2894
2895 case GT:
2896 libfunc = gthf2_libfunc;
2897 break;
2898
2899 case GE:
2900 libfunc = gehf2_libfunc;
2901 break;
2902
2903 case LT:
2904 libfunc = lthf2_libfunc;
2905 break;
2906
2907 case LE:
2908 libfunc = lehf2_libfunc;
2909 break;
2910 }
2911 else if (mode == SFmode)
2912 switch (comparison)
2913 {
2914 case EQ:
2915 libfunc = eqsf2_libfunc;
2916 break;
2917
2918 case NE:
2919 libfunc = nesf2_libfunc;
2920 break;
2921
2922 case GT:
2923 libfunc = gtsf2_libfunc;
2924 break;
2925
2926 case GE:
2927 libfunc = gesf2_libfunc;
2928 break;
2929
2930 case LT:
2931 libfunc = ltsf2_libfunc;
2932 break;
2933
2934 case LE:
2935 libfunc = lesf2_libfunc;
2936 break;
2937 }
2938 else if (mode == DFmode)
2939 switch (comparison)
2940 {
2941 case EQ:
2942 libfunc = eqdf2_libfunc;
2943 break;
2944
2945 case NE:
2946 libfunc = nedf2_libfunc;
2947 break;
2948
2949 case GT:
2950 libfunc = gtdf2_libfunc;
2951 break;
2952
2953 case GE:
2954 libfunc = gedf2_libfunc;
2955 break;
2956
2957 case LT:
2958 libfunc = ltdf2_libfunc;
2959 break;
2960
2961 case LE:
2962 libfunc = ledf2_libfunc;
2963 break;
2964 }
2965 else if (mode == XFmode)
2966 switch (comparison)
2967 {
2968 case EQ:
2969 libfunc = eqxf2_libfunc;
2970 break;
2971
2972 case NE:
2973 libfunc = nexf2_libfunc;
2974 break;
2975
2976 case GT:
2977 libfunc = gtxf2_libfunc;
2978 break;
2979
2980 case GE:
2981 libfunc = gexf2_libfunc;
2982 break;
2983
2984 case LT:
2985 libfunc = ltxf2_libfunc;
2986 break;
2987
2988 case LE:
2989 libfunc = lexf2_libfunc;
2990 break;
2991 }
2992 else if (mode == TFmode)
2993 switch (comparison)
2994 {
2995 case EQ:
2996 libfunc = eqtf2_libfunc;
2997 break;
2998
2999 case NE:
3000 libfunc = netf2_libfunc;
3001 break;
3002
3003 case GT:
3004 libfunc = gttf2_libfunc;
3005 break;
3006
3007 case GE:
3008 libfunc = getf2_libfunc;
3009 break;
3010
3011 case LT:
3012 libfunc = lttf2_libfunc;
3013 break;
3014
3015 case LE:
3016 libfunc = letf2_libfunc;
3017 break;
3018 }
3019 else
3020 {
3021 enum machine_mode wider_mode;
3022
3023 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3024 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3025 {
3026 if ((cmp_optab->handlers[(int) wider_mode].insn_code
3027 != CODE_FOR_nothing)
3028 || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
3029 {
3030 x = protect_from_queue (x, 0);
3031 y = protect_from_queue (y, 0);
3032 x = convert_to_mode (wider_mode, x, 0);
3033 y = convert_to_mode (wider_mode, y, 0);
3034 emit_float_lib_cmp (x, y, comparison);
3035 return;
3036 }
3037 }
3038 abort ();
3039 }
3040
3041 if (libfunc == 0)
3042 abort ();
3043
3044 emit_library_call (libfunc, 1,
3045 word_mode, 2, x, mode, y, mode);
3046
3047 emit_cmp_insn (hard_libcall_value (word_mode), const0_rtx, comparison,
3048 NULL_RTX, word_mode, 0, 0);
3049 }
3050 \f
3051 /* Generate code to indirectly jump to a location given in the rtx LOC. */
3052
3053 void
3054 emit_indirect_jump (loc)
3055 rtx loc;
3056 {
3057 if (! ((*insn_operand_predicate[(int)CODE_FOR_indirect_jump][0])
3058 (loc, Pmode)))
3059 loc = copy_to_mode_reg (Pmode, loc);
3060
3061 emit_jump_insn (gen_indirect_jump (loc));
3062 emit_barrier ();
3063 }
3064 \f
3065 #ifdef HAVE_conditional_move
3066
3067 /* Emit a conditional move instruction if the machine supports one for that
3068 condition and machine mode.
3069
3070 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
3071 the mode to use should they be constants. If it is VOIDmode, they cannot
3072 both be constants.
3073
3074 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
3075 should be stored there. MODE is the mode to use should they be constants.
3076 If it is VOIDmode, they cannot both be constants.
3077
3078 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
3079 is not supported. */
3080
3081 rtx
3082 emit_conditional_move (target, code, op0, op1, cmode, op2, op3, mode,
3083 unsignedp)
3084 rtx target;
3085 enum rtx_code code;
3086 rtx op0, op1;
3087 enum machine_mode cmode;
3088 rtx op2, op3;
3089 enum machine_mode mode;
3090 int unsignedp;
3091 {
3092 rtx tem, subtarget, comparison, insn;
3093 enum insn_code icode;
3094
3095 /* If one operand is constant, make it the second one. Only do this
3096 if the other operand is not constant as well. */
3097
3098 if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
3099 || (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
3100 {
3101 tem = op0;
3102 op0 = op1;
3103 op1 = tem;
3104 code = swap_condition (code);
3105 }
3106
3107 if (cmode == VOIDmode)
3108 cmode = GET_MODE (op0);
3109
3110 if ((CONSTANT_P (op2) && ! CONSTANT_P (op3))
3111 || (GET_CODE (op2) == CONST_INT && GET_CODE (op3) != CONST_INT))
3112 {
3113 tem = op2;
3114 op2 = op3;
3115 op3 = tem;
3116 /* ??? This may not be appropriate (consider IEEE). Perhaps we should
3117 call can_reverse_comparison_p here and bail out if necessary.
3118 It's not clear whether we need to do this canonicalization though. */
3119 code = reverse_condition (code);
3120 }
3121
3122 if (mode == VOIDmode)
3123 mode = GET_MODE (op2);
3124
3125 icode = movcc_gen_code[mode];
3126
3127 if (icode == CODE_FOR_nothing)
3128 return 0;
3129
3130 if (flag_force_mem)
3131 {
3132 op2 = force_not_mem (op2);
3133 op3 = force_not_mem (op3);
3134 }
3135
3136 if (target)
3137 target = protect_from_queue (target, 1);
3138 else
3139 target = gen_reg_rtx (mode);
3140
3141 subtarget = target;
3142
3143 emit_queue ();
3144
3145 op2 = protect_from_queue (op2, 0);
3146 op3 = protect_from_queue (op3, 0);
3147
3148 /* If the insn doesn't accept these operands, put them in pseudos. */
3149
3150 if (! (*insn_operand_predicate[icode][0])
3151 (subtarget, insn_operand_mode[icode][0]))
3152 subtarget = gen_reg_rtx (insn_operand_mode[icode][0]);
3153
3154 if (! (*insn_operand_predicate[icode][2])
3155 (op2, insn_operand_mode[icode][2]))
3156 op2 = copy_to_mode_reg (insn_operand_mode[icode][2], op2);
3157
3158 if (! (*insn_operand_predicate[icode][3])
3159 (op3, insn_operand_mode[icode][3]))
3160 op3 = copy_to_mode_reg (insn_operand_mode[icode][3], op3);
3161
3162 /* Everything should now be in the suitable form, so emit the compare insn
3163 and then the conditional move. */
3164
3165 comparison
3166 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX, 0);
3167
3168 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
3169 if (GET_CODE (comparison) != code)
3170 /* This shouldn't happen. */
3171 abort ();
3172
3173 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
3174
3175 /* If that failed, then give up. */
3176 if (insn == 0)
3177 return 0;
3178
3179 emit_insn (insn);
3180
3181 if (subtarget != target)
3182 convert_move (target, subtarget, 0);
3183
3184 return target;
3185 }
3186
3187 /* Return non-zero if a conditional move of mode MODE is supported.
3188
3189 This function is for combine so it can tell whether an insn that looks
3190 like a conditional move is actually supported by the hardware. If we
3191 guess wrong we lose a bit on optimization, but that's it. */
3192 /* ??? sparc64 supports conditionally moving integers values based on fp
3193 comparisons, and vice versa. How do we handle them? */
3194
3195 int
3196 can_conditionally_move_p (mode)
3197 enum machine_mode mode;
3198 {
3199 if (movcc_gen_code[mode] != CODE_FOR_nothing)
3200 return 1;
3201
3202 return 0;
3203 }
3204
3205 #endif /* HAVE_conditional_move */
3206 \f
3207 /* These three functions generate an insn body and return it
3208 rather than emitting the insn.
3209
3210 They do not protect from queued increments,
3211 because they may be used 1) in protect_from_queue itself
3212 and 2) in other passes where there is no queue. */
3213
3214 /* Generate and return an insn body to add Y to X. */
3215
3216 rtx
3217 gen_add2_insn (x, y)
3218 rtx x, y;
3219 {
3220 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
3221
3222 if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
3223 || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
3224 || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
3225 abort ();
3226
3227 return (GEN_FCN (icode) (x, x, y));
3228 }
3229
3230 int
3231 have_add2_insn (mode)
3232 enum machine_mode mode;
3233 {
3234 return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
3235 }
3236
3237 /* Generate and return an insn body to subtract Y from X. */
3238
3239 rtx
3240 gen_sub2_insn (x, y)
3241 rtx x, y;
3242 {
3243 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
3244
3245 if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
3246 || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
3247 || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
3248 abort ();
3249
3250 return (GEN_FCN (icode) (x, x, y));
3251 }
3252
3253 int
3254 have_sub2_insn (mode)
3255 enum machine_mode mode;
3256 {
3257 return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
3258 }
3259
3260 /* Generate the body of an instruction to copy Y into X.
3261 It may be a SEQUENCE, if one insn isn't enough. */
3262
3263 rtx
3264 gen_move_insn (x, y)
3265 rtx x, y;
3266 {
3267 register enum machine_mode mode = GET_MODE (x);
3268 enum insn_code insn_code;
3269 rtx seq;
3270
3271 if (mode == VOIDmode)
3272 mode = GET_MODE (y);
3273
3274 insn_code = mov_optab->handlers[(int) mode].insn_code;
3275
3276 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
3277 find a mode to do it in. If we have a movcc, use it. Otherwise,
3278 find the MODE_INT mode of the same width. */
3279
3280 if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
3281 {
3282 enum machine_mode tmode = VOIDmode;
3283 rtx x1 = x, y1 = y;
3284
3285 if (mode != CCmode
3286 && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
3287 tmode = CCmode;
3288 else
3289 for (tmode = QImode; tmode != VOIDmode;
3290 tmode = GET_MODE_WIDER_MODE (tmode))
3291 if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
3292 break;
3293
3294 if (tmode == VOIDmode)
3295 abort ();
3296
3297 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
3298 may call change_address which is not appropriate if we were
3299 called when a reload was in progress. We don't have to worry
3300 about changing the address since the size in bytes is supposed to
3301 be the same. Copy the MEM to change the mode and move any
3302 substitutions from the old MEM to the new one. */
3303
3304 if (reload_in_progress)
3305 {
3306 x = gen_lowpart_common (tmode, x1);
3307 if (x == 0 && GET_CODE (x1) == MEM)
3308 {
3309 x = gen_rtx (MEM, tmode, XEXP (x1, 0));
3310 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (x1);
3311 MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (x1);
3312 MEM_VOLATILE_P (x) = MEM_VOLATILE_P (x1);
3313 copy_replacements (x1, x);
3314 }
3315
3316 y = gen_lowpart_common (tmode, y1);
3317 if (y == 0 && GET_CODE (y1) == MEM)
3318 {
3319 y = gen_rtx (MEM, tmode, XEXP (y1, 0));
3320 RTX_UNCHANGING_P (y) = RTX_UNCHANGING_P (y1);
3321 MEM_IN_STRUCT_P (y) = MEM_IN_STRUCT_P (y1);
3322 MEM_VOLATILE_P (y) = MEM_VOLATILE_P (y1);
3323 copy_replacements (y1, y);
3324 }
3325 }
3326 else
3327 {
3328 x = gen_lowpart (tmode, x);
3329 y = gen_lowpart (tmode, y);
3330 }
3331
3332 insn_code = mov_optab->handlers[(int) tmode].insn_code;
3333 return (GEN_FCN (insn_code) (x, y));
3334 }
3335
3336 start_sequence ();
3337 emit_move_insn_1 (x, y);
3338 seq = gen_sequence ();
3339 end_sequence ();
3340 return seq;
3341 }
3342 \f
3343 /* Return the insn code used to extend FROM_MODE to TO_MODE.
3344 UNSIGNEDP specifies zero-extension instead of sign-extension. If
3345 no such operation exists, CODE_FOR_nothing will be returned. */
3346
3347 enum insn_code
3348 can_extend_p (to_mode, from_mode, unsignedp)
3349 enum machine_mode to_mode, from_mode;
3350 int unsignedp;
3351 {
3352 return extendtab[(int) to_mode][(int) from_mode][unsignedp];
3353 }
3354
3355 /* Generate the body of an insn to extend Y (with mode MFROM)
3356 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
3357
3358 rtx
3359 gen_extend_insn (x, y, mto, mfrom, unsignedp)
3360 rtx x, y;
3361 enum machine_mode mto, mfrom;
3362 int unsignedp;
3363 {
3364 return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp]) (x, y));
3365 }
3366 \f
3367 /* can_fix_p and can_float_p say whether the target machine
3368 can directly convert a given fixed point type to
3369 a given floating point type, or vice versa.
3370 The returned value is the CODE_FOR_... value to use,
3371 or CODE_FOR_nothing if these modes cannot be directly converted.
3372
3373 *TRUNCP_PTR is set to 1 if it is necessary to output
3374 an explicit FTRUNC insn before the fix insn; otherwise 0. */
3375
3376 static enum insn_code
3377 can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
3378 enum machine_mode fltmode, fixmode;
3379 int unsignedp;
3380 int *truncp_ptr;
3381 {
3382 *truncp_ptr = 0;
3383 if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp] != CODE_FOR_nothing)
3384 return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp];
3385
3386 if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
3387 {
3388 *truncp_ptr = 1;
3389 return fixtab[(int) fltmode][(int) fixmode][unsignedp];
3390 }
3391 return CODE_FOR_nothing;
3392 }
3393
3394 static enum insn_code
3395 can_float_p (fltmode, fixmode, unsignedp)
3396 enum machine_mode fixmode, fltmode;
3397 int unsignedp;
3398 {
3399 return floattab[(int) fltmode][(int) fixmode][unsignedp];
3400 }
3401 \f
3402 /* Generate code to convert FROM to floating point
3403 and store in TO. FROM must be fixed point and not VOIDmode.
3404 UNSIGNEDP nonzero means regard FROM as unsigned.
3405 Normally this is done by correcting the final value
3406 if it is negative. */
3407
3408 void
3409 expand_float (to, from, unsignedp)
3410 rtx to, from;
3411 int unsignedp;
3412 {
3413 enum insn_code icode;
3414 register rtx target = to;
3415 enum machine_mode fmode, imode;
3416
3417 /* Crash now, because we won't be able to decide which mode to use. */
3418 if (GET_MODE (from) == VOIDmode)
3419 abort ();
3420
3421 /* Look for an insn to do the conversion. Do it in the specified
3422 modes if possible; otherwise convert either input, output or both to
3423 wider mode. If the integer mode is wider than the mode of FROM,
3424 we can do the conversion signed even if the input is unsigned. */
3425
3426 for (imode = GET_MODE (from); imode != VOIDmode;
3427 imode = GET_MODE_WIDER_MODE (imode))
3428 for (fmode = GET_MODE (to); fmode != VOIDmode;
3429 fmode = GET_MODE_WIDER_MODE (fmode))
3430 {
3431 int doing_unsigned = unsignedp;
3432
3433 icode = can_float_p (fmode, imode, unsignedp);
3434 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
3435 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
3436
3437 if (icode != CODE_FOR_nothing)
3438 {
3439 to = protect_from_queue (to, 1);
3440 from = protect_from_queue (from, 0);
3441
3442 if (imode != GET_MODE (from))
3443 from = convert_to_mode (imode, from, unsignedp);
3444
3445 if (fmode != GET_MODE (to))
3446 target = gen_reg_rtx (fmode);
3447
3448 emit_unop_insn (icode, target, from,
3449 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
3450
3451 if (target != to)
3452 convert_move (to, target, 0);
3453 return;
3454 }
3455 }
3456
3457 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3458
3459 /* Unsigned integer, and no way to convert directly.
3460 Convert as signed, then conditionally adjust the result. */
3461 if (unsignedp)
3462 {
3463 rtx label = gen_label_rtx ();
3464 rtx temp;
3465 REAL_VALUE_TYPE offset;
3466
3467 emit_queue ();
3468
3469 to = protect_from_queue (to, 1);
3470 from = protect_from_queue (from, 0);
3471
3472 if (flag_force_mem)
3473 from = force_not_mem (from);
3474
3475 /* Look for a usable floating mode FMODE wider than the source and at
3476 least as wide as the target. Using FMODE will avoid rounding woes
3477 with unsigned values greater than the signed maximum value. */
3478
3479 for (fmode = GET_MODE (to); fmode != VOIDmode;
3480 fmode = GET_MODE_WIDER_MODE (fmode))
3481 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
3482 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
3483 break;
3484
3485 if (fmode == VOIDmode)
3486 {
3487 /* There is no such mode. Pretend the target is wide enough. */
3488 fmode = GET_MODE (to);
3489
3490 /* Avoid double-rounding when TO is narrower than FROM. */
3491 if ((significand_size (fmode) + 1)
3492 < GET_MODE_BITSIZE (GET_MODE (from)))
3493 {
3494 rtx temp1;
3495 rtx neglabel = gen_label_rtx ();
3496
3497 /* Don't use TARGET if it isn't a register, is a hard register,
3498 or is the wrong mode. */
3499 if (GET_CODE (target) != REG
3500 || REGNO (target) < FIRST_PSEUDO_REGISTER
3501 || GET_MODE (target) != fmode)
3502 target = gen_reg_rtx (fmode);
3503
3504 imode = GET_MODE (from);
3505 do_pending_stack_adjust ();
3506
3507 /* Test whether the sign bit is set. */
3508 emit_cmp_insn (from, const0_rtx, GE, NULL_RTX, imode, 0, 0);
3509 emit_jump_insn (gen_blt (neglabel));
3510
3511 /* The sign bit is not set. Convert as signed. */
3512 expand_float (target, from, 0);
3513 emit_jump_insn (gen_jump (label));
3514
3515 /* The sign bit is set.
3516 Convert to a usable (positive signed) value by shifting right
3517 one bit, while remembering if a nonzero bit was shifted
3518 out; i.e., compute (from & 1) | (from >> 1). */
3519
3520 emit_label (neglabel);
3521 temp = expand_binop (imode, and_optab, from, const1_rtx,
3522 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3523 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
3524 NULL_RTX, 1);
3525 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
3526 OPTAB_LIB_WIDEN);
3527 expand_float (target, temp, 0);
3528
3529 /* Multiply by 2 to undo the shift above. */
3530 temp = expand_binop (fmode, add_optab, target, target,
3531 target, 0, OPTAB_LIB_WIDEN);
3532 if (temp != target)
3533 emit_move_insn (target, temp);
3534
3535 do_pending_stack_adjust ();
3536 emit_label (label);
3537 goto done;
3538 }
3539 }
3540
3541 /* If we are about to do some arithmetic to correct for an
3542 unsigned operand, do it in a pseudo-register. */
3543
3544 if (GET_MODE (to) != fmode
3545 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
3546 target = gen_reg_rtx (fmode);
3547
3548 /* Convert as signed integer to floating. */
3549 expand_float (target, from, 0);
3550
3551 /* If FROM is negative (and therefore TO is negative),
3552 correct its value by 2**bitwidth. */
3553
3554 do_pending_stack_adjust ();
3555 emit_cmp_insn (from, const0_rtx, GE, NULL_RTX, GET_MODE (from), 0, 0);
3556 emit_jump_insn (gen_bge (label));
3557
3558 /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
3559 Rather than setting up a dconst_dot_5, let's hope SCO
3560 fixes the bug. */
3561 offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
3562 temp = expand_binop (fmode, add_optab, target,
3563 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
3564 target, 0, OPTAB_LIB_WIDEN);
3565 if (temp != target)
3566 emit_move_insn (target, temp);
3567
3568 do_pending_stack_adjust ();
3569 emit_label (label);
3570 goto done;
3571 }
3572 #endif
3573
3574 /* No hardware instruction available; call a library routine to convert from
3575 SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
3576 {
3577 rtx libfcn;
3578 rtx insns;
3579 rtx value;
3580
3581 to = protect_from_queue (to, 1);
3582 from = protect_from_queue (from, 0);
3583
3584 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
3585 from = convert_to_mode (SImode, from, unsignedp);
3586
3587 if (flag_force_mem)
3588 from = force_not_mem (from);
3589
3590 if (GET_MODE (to) == SFmode)
3591 {
3592 if (GET_MODE (from) == SImode)
3593 libfcn = floatsisf_libfunc;
3594 else if (GET_MODE (from) == DImode)
3595 libfcn = floatdisf_libfunc;
3596 else if (GET_MODE (from) == TImode)
3597 libfcn = floattisf_libfunc;
3598 else
3599 abort ();
3600 }
3601 else if (GET_MODE (to) == DFmode)
3602 {
3603 if (GET_MODE (from) == SImode)
3604 libfcn = floatsidf_libfunc;
3605 else if (GET_MODE (from) == DImode)
3606 libfcn = floatdidf_libfunc;
3607 else if (GET_MODE (from) == TImode)
3608 libfcn = floattidf_libfunc;
3609 else
3610 abort ();
3611 }
3612 else if (GET_MODE (to) == XFmode)
3613 {
3614 if (GET_MODE (from) == SImode)
3615 libfcn = floatsixf_libfunc;
3616 else if (GET_MODE (from) == DImode)
3617 libfcn = floatdixf_libfunc;
3618 else if (GET_MODE (from) == TImode)
3619 libfcn = floattixf_libfunc;
3620 else
3621 abort ();
3622 }
3623 else if (GET_MODE (to) == TFmode)
3624 {
3625 if (GET_MODE (from) == SImode)
3626 libfcn = floatsitf_libfunc;
3627 else if (GET_MODE (from) == DImode)
3628 libfcn = floatditf_libfunc;
3629 else if (GET_MODE (from) == TImode)
3630 libfcn = floattitf_libfunc;
3631 else
3632 abort ();
3633 }
3634 else
3635 abort ();
3636
3637 start_sequence ();
3638
3639 value = emit_library_call_value (libfcn, NULL_RTX, 1,
3640 GET_MODE (to),
3641 1, from, GET_MODE (from));
3642 insns = get_insns ();
3643 end_sequence ();
3644
3645 emit_libcall_block (insns, target, value,
3646 gen_rtx (FLOAT, GET_MODE (to), from));
3647 }
3648
3649 done:
3650
3651 /* Copy result to requested destination
3652 if we have been computing in a temp location. */
3653
3654 if (target != to)
3655 {
3656 if (GET_MODE (target) == GET_MODE (to))
3657 emit_move_insn (to, target);
3658 else
3659 convert_move (to, target, 0);
3660 }
3661 }
3662 \f
3663 /* expand_fix: generate code to convert FROM to fixed point
3664 and store in TO. FROM must be floating point. */
3665
3666 static rtx
3667 ftruncify (x)
3668 rtx x;
3669 {
3670 rtx temp = gen_reg_rtx (GET_MODE (x));
3671 return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
3672 }
3673
3674 void
3675 expand_fix (to, from, unsignedp)
3676 register rtx to, from;
3677 int unsignedp;
3678 {
3679 enum insn_code icode;
3680 register rtx target = to;
3681 enum machine_mode fmode, imode;
3682 int must_trunc = 0;
3683 rtx libfcn = 0;
3684
3685 /* We first try to find a pair of modes, one real and one integer, at
3686 least as wide as FROM and TO, respectively, in which we can open-code
3687 this conversion. If the integer mode is wider than the mode of TO,
3688 we can do the conversion either signed or unsigned. */
3689
3690 for (imode = GET_MODE (to); imode != VOIDmode;
3691 imode = GET_MODE_WIDER_MODE (imode))
3692 for (fmode = GET_MODE (from); fmode != VOIDmode;
3693 fmode = GET_MODE_WIDER_MODE (fmode))
3694 {
3695 int doing_unsigned = unsignedp;
3696
3697 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
3698 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
3699 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
3700
3701 if (icode != CODE_FOR_nothing)
3702 {
3703 to = protect_from_queue (to, 1);
3704 from = protect_from_queue (from, 0);
3705
3706 if (fmode != GET_MODE (from))
3707 from = convert_to_mode (fmode, from, 0);
3708
3709 if (must_trunc)
3710 from = ftruncify (from);
3711
3712 if (imode != GET_MODE (to))
3713 target = gen_reg_rtx (imode);
3714
3715 emit_unop_insn (icode, target, from,
3716 doing_unsigned ? UNSIGNED_FIX : FIX);
3717 if (target != to)
3718 convert_move (to, target, unsignedp);
3719 return;
3720 }
3721 }
3722
3723 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3724 /* For an unsigned conversion, there is one more way to do it.
3725 If we have a signed conversion, we generate code that compares
3726 the real value to the largest representable positive number. If if
3727 is smaller, the conversion is done normally. Otherwise, subtract
3728 one plus the highest signed number, convert, and add it back.
3729
3730 We only need to check all real modes, since we know we didn't find
3731 anything with a wider integer mode. */
3732
3733 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
3734 for (fmode = GET_MODE (from); fmode != VOIDmode;
3735 fmode = GET_MODE_WIDER_MODE (fmode))
3736 /* Make sure we won't lose significant bits doing this. */
3737 if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
3738 && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
3739 &must_trunc))
3740 {
3741 int bitsize;
3742 REAL_VALUE_TYPE offset;
3743 rtx limit, lab1, lab2, insn;
3744
3745 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
3746 offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
3747 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
3748 lab1 = gen_label_rtx ();
3749 lab2 = gen_label_rtx ();
3750
3751 emit_queue ();
3752 to = protect_from_queue (to, 1);
3753 from = protect_from_queue (from, 0);
3754
3755 if (flag_force_mem)
3756 from = force_not_mem (from);
3757
3758 if (fmode != GET_MODE (from))
3759 from = convert_to_mode (fmode, from, 0);
3760
3761 /* See if we need to do the subtraction. */
3762 do_pending_stack_adjust ();
3763 emit_cmp_insn (from, limit, GE, NULL_RTX, GET_MODE (from), 0, 0);
3764 emit_jump_insn (gen_bge (lab1));
3765
3766 /* If not, do the signed "fix" and branch around fixup code. */
3767 expand_fix (to, from, 0);
3768 emit_jump_insn (gen_jump (lab2));
3769 emit_barrier ();
3770
3771 /* Otherwise, subtract 2**(N-1), convert to signed number,
3772 then add 2**(N-1). Do the addition using XOR since this
3773 will often generate better code. */
3774 emit_label (lab1);
3775 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
3776 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3777 expand_fix (to, target, 0);
3778 target = expand_binop (GET_MODE (to), xor_optab, to,
3779 GEN_INT ((HOST_WIDE_INT) 1 << (bitsize - 1)),
3780 to, 1, OPTAB_LIB_WIDEN);
3781
3782 if (target != to)
3783 emit_move_insn (to, target);
3784
3785 emit_label (lab2);
3786
3787 /* Make a place for a REG_NOTE and add it. */
3788 insn = emit_move_insn (to, to);
3789 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL,
3790 gen_rtx (UNSIGNED_FIX, GET_MODE (to),
3791 copy_rtx (from)),
3792 REG_NOTES (insn));
3793
3794 return;
3795 }
3796 #endif
3797
3798 /* We can't do it with an insn, so use a library call. But first ensure
3799 that the mode of TO is at least as wide as SImode, since those are the
3800 only library calls we know about. */
3801
3802 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
3803 {
3804 target = gen_reg_rtx (SImode);
3805
3806 expand_fix (target, from, unsignedp);
3807 }
3808 else if (GET_MODE (from) == SFmode)
3809 {
3810 if (GET_MODE (to) == SImode)
3811 libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
3812 else if (GET_MODE (to) == DImode)
3813 libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
3814 else if (GET_MODE (to) == TImode)
3815 libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
3816 else
3817 abort ();
3818 }
3819 else if (GET_MODE (from) == DFmode)
3820 {
3821 if (GET_MODE (to) == SImode)
3822 libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
3823 else if (GET_MODE (to) == DImode)
3824 libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
3825 else if (GET_MODE (to) == TImode)
3826 libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
3827 else
3828 abort ();
3829 }
3830 else if (GET_MODE (from) == XFmode)
3831 {
3832 if (GET_MODE (to) == SImode)
3833 libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
3834 else if (GET_MODE (to) == DImode)
3835 libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
3836 else if (GET_MODE (to) == TImode)
3837 libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
3838 else
3839 abort ();
3840 }
3841 else if (GET_MODE (from) == TFmode)
3842 {
3843 if (GET_MODE (to) == SImode)
3844 libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
3845 else if (GET_MODE (to) == DImode)
3846 libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
3847 else if (GET_MODE (to) == TImode)
3848 libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
3849 else
3850 abort ();
3851 }
3852 else
3853 abort ();
3854
3855 if (libfcn)
3856 {
3857 rtx insns;
3858 rtx value;
3859
3860 to = protect_from_queue (to, 1);
3861 from = protect_from_queue (from, 0);
3862
3863 if (flag_force_mem)
3864 from = force_not_mem (from);
3865
3866 start_sequence ();
3867
3868 value = emit_library_call_value (libfcn, NULL_RTX, 1, GET_MODE (to),
3869
3870 1, from, GET_MODE (from));
3871 insns = get_insns ();
3872 end_sequence ();
3873
3874 emit_libcall_block (insns, target, value,
3875 gen_rtx (unsignedp ? UNSIGNED_FIX : FIX,
3876 GET_MODE (to), from));
3877 }
3878
3879 if (GET_MODE (to) == GET_MODE (target))
3880 emit_move_insn (to, target);
3881 else
3882 convert_move (to, target, 0);
3883 }
3884 \f
3885 static optab
3886 init_optab (code)
3887 enum rtx_code code;
3888 {
3889 int i;
3890 optab op = (optab) xmalloc (sizeof (struct optab));
3891 op->code = code;
3892 for (i = 0; i < NUM_MACHINE_MODES; i++)
3893 {
3894 op->handlers[i].insn_code = CODE_FOR_nothing;
3895 op->handlers[i].libfunc = 0;
3896 }
3897
3898 if (code != UNKNOWN)
3899 code_to_optab[(int) code] = op;
3900
3901 return op;
3902 }
3903
3904 /* Initialize the libfunc fields of an entire group of entries in some
3905 optab. Each entry is set equal to a string consisting of a leading
3906 pair of underscores followed by a generic operation name followed by
3907 a mode name (downshifted to lower case) followed by a single character
3908 representing the number of operands for the given operation (which is
3909 usually one of the characters '2', '3', or '4').
3910
3911 OPTABLE is the table in which libfunc fields are to be initialized.
3912 FIRST_MODE is the first machine mode index in the given optab to
3913 initialize.
3914 LAST_MODE is the last machine mode index in the given optab to
3915 initialize.
3916 OPNAME is the generic (string) name of the operation.
3917 SUFFIX is the character which specifies the number of operands for
3918 the given generic operation.
3919 */
3920
3921 static void
3922 init_libfuncs (optable, first_mode, last_mode, opname, suffix)
3923 register optab optable;
3924 register int first_mode;
3925 register int last_mode;
3926 register char *opname;
3927 register int suffix;
3928 {
3929 register int mode;
3930 register unsigned opname_len = strlen (opname);
3931
3932 for (mode = first_mode; (int) mode <= (int) last_mode;
3933 mode = (enum machine_mode) ((int) mode + 1))
3934 {
3935 register char *mname = mode_name[(int) mode];
3936 register unsigned mname_len = strlen (mname);
3937 register char *libfunc_name
3938 = (char *) xmalloc (2 + opname_len + mname_len + 1 + 1);
3939 register char *p;
3940 register char *q;
3941
3942 p = libfunc_name;
3943 *p++ = '_';
3944 *p++ = '_';
3945 for (q = opname; *q; )
3946 *p++ = *q++;
3947 for (q = mname; *q; q++)
3948 *p++ = tolower (*q);
3949 *p++ = suffix;
3950 *p++ = '\0';
3951 optable->handlers[(int) mode].libfunc
3952 = gen_rtx (SYMBOL_REF, Pmode, libfunc_name);
3953 }
3954 }
3955
3956 /* Initialize the libfunc fields of an entire group of entries in some
3957 optab which correspond to all integer mode operations. The parameters
3958 have the same meaning as similarly named ones for the `init_libfuncs'
3959 routine. (See above). */
3960
3961 static void
3962 init_integral_libfuncs (optable, opname, suffix)
3963 register optab optable;
3964 register char *opname;
3965 register int suffix;
3966 {
3967 init_libfuncs (optable, SImode, TImode, opname, suffix);
3968 }
3969
3970 /* Initialize the libfunc fields of an entire group of entries in some
3971 optab which correspond to all real mode operations. The parameters
3972 have the same meaning as similarly named ones for the `init_libfuncs'
3973 routine. (See above). */
3974
3975 static void
3976 init_floating_libfuncs (optable, opname, suffix)
3977 register optab optable;
3978 register char *opname;
3979 register int suffix;
3980 {
3981 init_libfuncs (optable, SFmode, TFmode, opname, suffix);
3982 }
3983
3984 /* Initialize the libfunc fields of an entire group of entries in some
3985 optab which correspond to all complex floating modes. The parameters
3986 have the same meaning as similarly named ones for the `init_libfuncs'
3987 routine. (See above). */
3988
3989 static void
3990 init_complex_libfuncs (optable, opname, suffix)
3991 register optab optable;
3992 register char *opname;
3993 register int suffix;
3994 {
3995 init_libfuncs (optable, SCmode, TCmode, opname, suffix);
3996 }
3997
3998 /* Call this once to initialize the contents of the optabs
3999 appropriately for the current target machine. */
4000
4001 void
4002 init_optabs ()
4003 {
4004 int i, j;
4005 enum insn_code *p;
4006
4007 /* Start by initializing all tables to contain CODE_FOR_nothing. */
4008
4009 for (p = fixtab[0][0];
4010 p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]);
4011 p++)
4012 *p = CODE_FOR_nothing;
4013
4014 for (p = fixtrunctab[0][0];
4015 p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]);
4016 p++)
4017 *p = CODE_FOR_nothing;
4018
4019 for (p = floattab[0][0];
4020 p < floattab[0][0] + sizeof floattab / sizeof (floattab[0][0][0]);
4021 p++)
4022 *p = CODE_FOR_nothing;
4023
4024 for (p = extendtab[0][0];
4025 p < extendtab[0][0] + sizeof extendtab / sizeof extendtab[0][0][0];
4026 p++)
4027 *p = CODE_FOR_nothing;
4028
4029 for (i = 0; i < NUM_RTX_CODE; i++)
4030 setcc_gen_code[i] = CODE_FOR_nothing;
4031
4032 #ifdef HAVE_conditional_move
4033 for (i = 0; i < NUM_MACHINE_MODES; i++)
4034 movcc_gen_code[i] = CODE_FOR_nothing;
4035 #endif
4036
4037 add_optab = init_optab (PLUS);
4038 sub_optab = init_optab (MINUS);
4039 smul_optab = init_optab (MULT);
4040 smul_highpart_optab = init_optab (UNKNOWN);
4041 umul_highpart_optab = init_optab (UNKNOWN);
4042 smul_widen_optab = init_optab (UNKNOWN);
4043 umul_widen_optab = init_optab (UNKNOWN);
4044 sdiv_optab = init_optab (DIV);
4045 sdivmod_optab = init_optab (UNKNOWN);
4046 udiv_optab = init_optab (UDIV);
4047 udivmod_optab = init_optab (UNKNOWN);
4048 smod_optab = init_optab (MOD);
4049 umod_optab = init_optab (UMOD);
4050 flodiv_optab = init_optab (DIV);
4051 ftrunc_optab = init_optab (UNKNOWN);
4052 and_optab = init_optab (AND);
4053 ior_optab = init_optab (IOR);
4054 xor_optab = init_optab (XOR);
4055 ashl_optab = init_optab (ASHIFT);
4056 ashr_optab = init_optab (ASHIFTRT);
4057 lshr_optab = init_optab (LSHIFTRT);
4058 rotl_optab = init_optab (ROTATE);
4059 rotr_optab = init_optab (ROTATERT);
4060 smin_optab = init_optab (SMIN);
4061 smax_optab = init_optab (SMAX);
4062 umin_optab = init_optab (UMIN);
4063 umax_optab = init_optab (UMAX);
4064 mov_optab = init_optab (UNKNOWN);
4065 movstrict_optab = init_optab (UNKNOWN);
4066 cmp_optab = init_optab (UNKNOWN);
4067 ucmp_optab = init_optab (UNKNOWN);
4068 tst_optab = init_optab (UNKNOWN);
4069 neg_optab = init_optab (NEG);
4070 abs_optab = init_optab (ABS);
4071 one_cmpl_optab = init_optab (NOT);
4072 ffs_optab = init_optab (FFS);
4073 sqrt_optab = init_optab (SQRT);
4074 sin_optab = init_optab (UNKNOWN);
4075 cos_optab = init_optab (UNKNOWN);
4076 strlen_optab = init_optab (UNKNOWN);
4077
4078 for (i = 0; i < NUM_MACHINE_MODES; i++)
4079 {
4080 movstr_optab[i] = CODE_FOR_nothing;
4081
4082 #ifdef HAVE_SECONDARY_RELOADS
4083 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
4084 #endif
4085 }
4086
4087 /* Fill in the optabs with the insns we support. */
4088 init_all_optabs ();
4089
4090 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
4091 /* This flag says the same insns that convert to a signed fixnum
4092 also convert validly to an unsigned one. */
4093 for (i = 0; i < NUM_MACHINE_MODES; i++)
4094 for (j = 0; j < NUM_MACHINE_MODES; j++)
4095 fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
4096 #endif
4097
4098 #ifdef EXTRA_CC_MODES
4099 init_mov_optab ();
4100 #endif
4101
4102 /* Initialize the optabs with the names of the library functions. */
4103 init_integral_libfuncs (add_optab, "add", '3');
4104 init_floating_libfuncs (add_optab, "add", '3');
4105 init_integral_libfuncs (sub_optab, "sub", '3');
4106 init_floating_libfuncs (sub_optab, "sub", '3');
4107 init_integral_libfuncs (smul_optab, "mul", '3');
4108 init_floating_libfuncs (smul_optab, "mul", '3');
4109 init_integral_libfuncs (sdiv_optab, "div", '3');
4110 init_integral_libfuncs (udiv_optab, "udiv", '3');
4111 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
4112 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
4113 init_integral_libfuncs (smod_optab, "mod", '3');
4114 init_integral_libfuncs (umod_optab, "umod", '3');
4115 init_floating_libfuncs (flodiv_optab, "div", '3');
4116 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
4117 init_integral_libfuncs (and_optab, "and", '3');
4118 init_integral_libfuncs (ior_optab, "ior", '3');
4119 init_integral_libfuncs (xor_optab, "xor", '3');
4120 init_integral_libfuncs (ashl_optab, "ashl", '3');
4121 init_integral_libfuncs (ashr_optab, "ashr", '3');
4122 init_integral_libfuncs (lshr_optab, "lshr", '3');
4123 init_integral_libfuncs (smin_optab, "min", '3');
4124 init_floating_libfuncs (smin_optab, "min", '3');
4125 init_integral_libfuncs (smax_optab, "max", '3');
4126 init_floating_libfuncs (smax_optab, "max", '3');
4127 init_integral_libfuncs (umin_optab, "umin", '3');
4128 init_integral_libfuncs (umax_optab, "umax", '3');
4129 init_integral_libfuncs (neg_optab, "neg", '2');
4130 init_floating_libfuncs (neg_optab, "neg", '2');
4131 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
4132 init_integral_libfuncs (ffs_optab, "ffs", '2');
4133
4134 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
4135 init_integral_libfuncs (cmp_optab, "cmp", '2');
4136 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
4137 init_floating_libfuncs (cmp_optab, "cmp", '2');
4138
4139 #ifdef MULSI3_LIBCALL
4140 smul_optab->handlers[(int) SImode].libfunc
4141 = gen_rtx (SYMBOL_REF, Pmode, MULSI3_LIBCALL);
4142 #endif
4143 #ifdef MULDI3_LIBCALL
4144 smul_optab->handlers[(int) DImode].libfunc
4145 = gen_rtx (SYMBOL_REF, Pmode, MULDI3_LIBCALL);
4146 #endif
4147
4148 #ifdef DIVSI3_LIBCALL
4149 sdiv_optab->handlers[(int) SImode].libfunc
4150 = gen_rtx (SYMBOL_REF, Pmode, DIVSI3_LIBCALL);
4151 #endif
4152 #ifdef DIVDI3_LIBCALL
4153 sdiv_optab->handlers[(int) DImode].libfunc
4154 = gen_rtx (SYMBOL_REF, Pmode, DIVDI3_LIBCALL);
4155 #endif
4156
4157 #ifdef UDIVSI3_LIBCALL
4158 udiv_optab->handlers[(int) SImode].libfunc
4159 = gen_rtx (SYMBOL_REF, Pmode, UDIVSI3_LIBCALL);
4160 #endif
4161 #ifdef UDIVDI3_LIBCALL
4162 udiv_optab->handlers[(int) DImode].libfunc
4163 = gen_rtx (SYMBOL_REF, Pmode, UDIVDI3_LIBCALL);
4164 #endif
4165
4166 #ifdef MODSI3_LIBCALL
4167 smod_optab->handlers[(int) SImode].libfunc
4168 = gen_rtx (SYMBOL_REF, Pmode, MODSI3_LIBCALL);
4169 #endif
4170 #ifdef MODDI3_LIBCALL
4171 smod_optab->handlers[(int) DImode].libfunc
4172 = gen_rtx (SYMBOL_REF, Pmode, MODDI3_LIBCALL);
4173 #endif
4174
4175 #ifdef UMODSI3_LIBCALL
4176 umod_optab->handlers[(int) SImode].libfunc
4177 = gen_rtx (SYMBOL_REF, Pmode, UMODSI3_LIBCALL);
4178 #endif
4179 #ifdef UMODDI3_LIBCALL
4180 umod_optab->handlers[(int) DImode].libfunc
4181 = gen_rtx (SYMBOL_REF, Pmode, UMODDI3_LIBCALL);
4182 #endif
4183
4184 /* Use cabs for DC complex abs, since systems generally have cabs.
4185 Don't define any libcall for SCmode, so that cabs will be used. */
4186 abs_optab->handlers[(int) DCmode].libfunc
4187 = gen_rtx (SYMBOL_REF, Pmode, "cabs");
4188
4189 /* The ffs function operates on `int'. */
4190 #ifndef INT_TYPE_SIZE
4191 #define INT_TYPE_SIZE BITS_PER_WORD
4192 #endif
4193 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)] .libfunc
4194 = gen_rtx (SYMBOL_REF, Pmode, "ffs");
4195
4196 extendsfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfdf2");
4197 extendsfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfxf2");
4198 extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsftf2");
4199 extenddfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddfxf2");
4200 extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddftf2");
4201
4202 truncdfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncdfsf2");
4203 truncxfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfsf2");
4204 trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfsf2");
4205 truncxfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfdf2");
4206 trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfdf2");
4207
4208 memcpy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcpy");
4209 bcopy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcopy");
4210 memcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcmp");
4211 bcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gcc_bcmp");
4212 memset_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memset");
4213 bzero_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bzero");
4214
4215 eqhf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqhf2");
4216 nehf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nehf2");
4217 gthf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gthf2");
4218 gehf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gehf2");
4219 lthf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lthf2");
4220 lehf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lehf2");
4221
4222 eqsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqsf2");
4223 nesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nesf2");
4224 gtsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtsf2");
4225 gesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gesf2");
4226 ltsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltsf2");
4227 lesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lesf2");
4228
4229 eqdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqdf2");
4230 nedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nedf2");
4231 gtdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtdf2");
4232 gedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gedf2");
4233 ltdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltdf2");
4234 ledf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ledf2");
4235
4236 eqxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqxf2");
4237 nexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nexf2");
4238 gtxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtxf2");
4239 gexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gexf2");
4240 ltxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltxf2");
4241 lexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lexf2");
4242
4243 eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqtf2");
4244 netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__netf2");
4245 gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gttf2");
4246 getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__getf2");
4247 lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lttf2");
4248 letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__letf2");
4249
4250 floatsisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsisf");
4251 floatdisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdisf");
4252 floattisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattisf");
4253
4254 floatsidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsidf");
4255 floatdidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdidf");
4256 floattidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattidf");
4257
4258 floatsixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsixf");
4259 floatdixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdixf");
4260 floattixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattixf");
4261
4262 floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsitf");
4263 floatditf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatditf");
4264 floattitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattitf");
4265
4266 fixsfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfsi");
4267 fixsfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfdi");
4268 fixsfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfti");
4269
4270 fixdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfsi");
4271 fixdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfdi");
4272 fixdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfti");
4273
4274 fixxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfsi");
4275 fixxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfdi");
4276 fixxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfti");
4277
4278 fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfsi");
4279 fixtfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfdi");
4280 fixtfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfti");
4281
4282 fixunssfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfsi");
4283 fixunssfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfdi");
4284 fixunssfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfti");
4285
4286 fixunsdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfsi");
4287 fixunsdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfdi");
4288 fixunsdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfti");
4289
4290 fixunsxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfsi");
4291 fixunsxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfdi");
4292 fixunsxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfti");
4293
4294 fixunstfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfsi");
4295 fixunstfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfdi");
4296 fixunstfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfti");
4297
4298 #ifdef INIT_TARGET_OPTABS
4299 /* Allow the target to add more libcalls or rename some, etc. */
4300 INIT_TARGET_OPTABS;
4301 #endif
4302 }
4303 \f
4304 #ifdef BROKEN_LDEXP
4305
4306 /* SCO 3.2 apparently has a broken ldexp. */
4307
4308 double
4309 ldexp(x,n)
4310 double x;
4311 int n;
4312 {
4313 if (n > 0)
4314 while (n--)
4315 x *= 2;
4316
4317 return x;
4318 }
4319 #endif /* BROKEN_LDEXP */
This page took 0.222736 seconds and 6 git commands to generate.