]> gcc.gnu.org Git - gcc.git/blob - gcc/optabs.c
Use cbranch patterns when available
[gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "toplev.h"
25
26 /* Include insn-config.h before expr.h so that HAVE_conditional_move
27 is properly defined. */
28 #include "insn-config.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-flags.h"
34 #include "insn-codes.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "recog.h"
38 #include "reload.h"
39 #include "ggc.h"
40
41 /* Each optab contains info on how this target machine
42 can perform a particular operation
43 for all sizes and kinds of operands.
44
45 The operation to be performed is often specified
46 by passing one of these optabs as an argument.
47
48 See expr.h for documentation of these optabs. */
49
50 optab optab_table[OTI_MAX];
51
52 rtx libfunc_table[LTI_MAX];
53
54 /* Tables of patterns for extending one integer mode to another. */
55 enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
56
57 /* Tables of patterns for converting between fixed and floating point. */
58 enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
59 enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
60 enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
61
62 /* Contains the optab used for each rtx code. */
63 optab code_to_optab[NUM_RTX_CODE + 1];
64
65 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
66 gives the gen_function to make a branch to test that condition. */
67
68 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
69
70 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
71 gives the insn code to make a store-condition insn
72 to test that condition. */
73
74 enum insn_code setcc_gen_code[NUM_RTX_CODE];
75
76 #ifdef HAVE_conditional_move
77 /* Indexed by the machine mode, gives the insn code to make a conditional
78 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
79 setcc_gen_code to cut down on the number of named patterns. Consider a day
80 when a lot more rtx codes are conditional (eg: for the ARM). */
81
82 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
83 #endif
84
85 static int add_equal_note PROTO((rtx, rtx, enum rtx_code, rtx, rtx));
86 static rtx widen_operand PROTO((rtx, enum machine_mode,
87 enum machine_mode, int, int));
88 static int expand_cmplxdiv_straight PROTO((rtx, rtx, rtx, rtx,
89 rtx, rtx, enum machine_mode,
90 int, enum optab_methods,
91 enum mode_class, optab));
92 static int expand_cmplxdiv_wide PROTO((rtx, rtx, rtx, rtx,
93 rtx, rtx, enum machine_mode,
94 int, enum optab_methods,
95 enum mode_class, optab));
96 static enum insn_code can_fix_p PROTO((enum machine_mode, enum machine_mode,
97 int, int *));
98 static enum insn_code can_float_p PROTO((enum machine_mode, enum machine_mode,
99 int));
100 static rtx ftruncify PROTO((rtx));
101 static optab init_optab PROTO((enum rtx_code));
102 static void init_libfuncs PROTO((optab, int, int, const char *, int));
103 static void init_integral_libfuncs PROTO((optab, const char *, int));
104 static void init_floating_libfuncs PROTO((optab, const char *, int));
105 #ifdef HAVE_conditional_trap
106 static void init_traps PROTO((void));
107 #endif
108 static void emit_cmp_and_jump_insn_1 PROTO((rtx, rtx, enum machine_mode,
109 enum rtx_code, int, rtx));
110 static void prepare_float_lib_cmp PROTO((rtx *, rtx *, enum rtx_code *,
111 enum machine_mode *, int *));
112 \f
113 /* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
114 the result of operation CODE applied to OP0 (and OP1 if it is a binary
115 operation).
116
117 If the last insn does not set TARGET, don't do anything, but return 1.
118
119 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
120 don't add the REG_EQUAL note but return 0. Our caller can then try
121 again, ensuring that TARGET is not one of the operands. */
122
123 static int
124 add_equal_note (seq, target, code, op0, op1)
125 rtx seq;
126 rtx target;
127 enum rtx_code code;
128 rtx op0, op1;
129 {
130 rtx set;
131 int i;
132 rtx note;
133
134 if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
135 && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
136 || GET_CODE (seq) != SEQUENCE
137 || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0
138 || GET_CODE (target) == ZERO_EXTRACT
139 || (! rtx_equal_p (SET_DEST (set), target)
140 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
141 SUBREG. */
142 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
143 || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
144 target))))
145 return 1;
146
147 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
148 besides the last insn. */
149 if (reg_overlap_mentioned_p (target, op0)
150 || (op1 && reg_overlap_mentioned_p (target, op1)))
151 for (i = XVECLEN (seq, 0) - 2; i >= 0; i--)
152 if (reg_set_p (target, XVECEXP (seq, 0, i)))
153 return 0;
154
155 if (GET_RTX_CLASS (code) == '1')
156 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
157 else
158 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
159
160 set_unique_reg_note (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1), REG_EQUAL, note);
161
162 return 1;
163 }
164 \f
165 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
166 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
167 not actually do a sign-extend or zero-extend, but can leave the
168 higher-order bits of the result rtx undefined, for example, in the case
169 of logical operations, but not right shifts. */
170
171 static rtx
172 widen_operand (op, mode, oldmode, unsignedp, no_extend)
173 rtx op;
174 enum machine_mode mode, oldmode;
175 int unsignedp;
176 int no_extend;
177 {
178 rtx result;
179
180 /* If we must extend do so. If OP is either a constant or a SUBREG
181 for a promoted object, also extend since it will be more efficient to
182 do so. */
183 if (! no_extend
184 || GET_MODE (op) == VOIDmode
185 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)))
186 return convert_modes (mode, oldmode, op, unsignedp);
187
188 /* If MODE is no wider than a single word, we return a paradoxical
189 SUBREG. */
190 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
191 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
192
193 /* Otherwise, get an object of MODE, clobber it, and set the low-order
194 part to OP. */
195
196 result = gen_reg_rtx (mode);
197 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
198 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
199 return result;
200 }
201 \f
202 /* Generate code to perform a straightforward complex divide. */
203
204 static int
205 expand_cmplxdiv_straight (real0, real1, imag0, imag1, realr, imagr, submode,
206 unsignedp, methods, class, binoptab)
207 rtx real0, real1, imag0, imag1, realr, imagr;
208 enum machine_mode submode;
209 int unsignedp;
210 enum optab_methods methods;
211 enum mode_class class;
212 optab binoptab;
213 {
214 rtx divisor;
215 rtx real_t, imag_t;
216 rtx temp1, temp2;
217 rtx res;
218
219 /* Don't fetch these from memory more than once. */
220 real0 = force_reg (submode, real0);
221 real1 = force_reg (submode, real1);
222
223 if (imag0 != 0)
224 imag0 = force_reg (submode, imag0);
225
226 imag1 = force_reg (submode, imag1);
227
228 /* Divisor: c*c + d*d. */
229 temp1 = expand_binop (submode, smul_optab, real1, real1,
230 NULL_RTX, unsignedp, methods);
231
232 temp2 = expand_binop (submode, smul_optab, imag1, imag1,
233 NULL_RTX, unsignedp, methods);
234
235 if (temp1 == 0 || temp2 == 0)
236 return 0;
237
238 divisor = expand_binop (submode, add_optab, temp1, temp2,
239 NULL_RTX, unsignedp, methods);
240 if (divisor == 0)
241 return 0;
242
243 if (imag0 == 0)
244 {
245 /* Mathematically, ((a)(c-id))/divisor. */
246 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
247
248 /* Calculate the dividend. */
249 real_t = expand_binop (submode, smul_optab, real0, real1,
250 NULL_RTX, unsignedp, methods);
251
252 imag_t = expand_binop (submode, smul_optab, real0, imag1,
253 NULL_RTX, unsignedp, methods);
254
255 if (real_t == 0 || imag_t == 0)
256 return 0;
257
258 imag_t = expand_unop (submode, neg_optab, imag_t,
259 NULL_RTX, unsignedp);
260 }
261 else
262 {
263 /* Mathematically, ((a+ib)(c-id))/divider. */
264 /* Calculate the dividend. */
265 temp1 = expand_binop (submode, smul_optab, real0, real1,
266 NULL_RTX, unsignedp, methods);
267
268 temp2 = expand_binop (submode, smul_optab, imag0, imag1,
269 NULL_RTX, unsignedp, methods);
270
271 if (temp1 == 0 || temp2 == 0)
272 return 0;
273
274 real_t = expand_binop (submode, add_optab, temp1, temp2,
275 NULL_RTX, unsignedp, methods);
276
277 temp1 = expand_binop (submode, smul_optab, imag0, real1,
278 NULL_RTX, unsignedp, methods);
279
280 temp2 = expand_binop (submode, smul_optab, real0, imag1,
281 NULL_RTX, unsignedp, methods);
282
283 if (temp1 == 0 || temp2 == 0)
284 return 0;
285
286 imag_t = expand_binop (submode, sub_optab, temp1, temp2,
287 NULL_RTX, unsignedp, methods);
288
289 if (real_t == 0 || imag_t == 0)
290 return 0;
291 }
292
293 if (class == MODE_COMPLEX_FLOAT)
294 res = expand_binop (submode, binoptab, real_t, divisor,
295 realr, unsignedp, methods);
296 else
297 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
298 real_t, divisor, realr, unsignedp);
299
300 if (res == 0)
301 return 0;
302
303 if (res != realr)
304 emit_move_insn (realr, res);
305
306 if (class == MODE_COMPLEX_FLOAT)
307 res = expand_binop (submode, binoptab, imag_t, divisor,
308 imagr, unsignedp, methods);
309 else
310 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
311 imag_t, divisor, imagr, unsignedp);
312
313 if (res == 0)
314 return 0;
315
316 if (res != imagr)
317 emit_move_insn (imagr, res);
318
319 return 1;
320 }
321 \f
322 /* Generate code to perform a wide-input-range-acceptable complex divide. */
323
324 static int
325 expand_cmplxdiv_wide (real0, real1, imag0, imag1, realr, imagr, submode,
326 unsignedp, methods, class, binoptab)
327 rtx real0, real1, imag0, imag1, realr, imagr;
328 enum machine_mode submode;
329 int unsignedp;
330 enum optab_methods methods;
331 enum mode_class class;
332 optab binoptab;
333 {
334 rtx ratio, divisor;
335 rtx real_t, imag_t;
336 rtx temp1, temp2, lab1, lab2;
337 enum machine_mode mode;
338 int align;
339 rtx res;
340
341 /* Don't fetch these from memory more than once. */
342 real0 = force_reg (submode, real0);
343 real1 = force_reg (submode, real1);
344
345 if (imag0 != 0)
346 imag0 = force_reg (submode, imag0);
347
348 imag1 = force_reg (submode, imag1);
349
350 /* XXX What's an "unsigned" complex number? */
351 if (unsignedp)
352 {
353 temp1 = real1;
354 temp2 = imag1;
355 }
356 else
357 {
358 temp1 = expand_abs (submode, real1, NULL_RTX, 1);
359 temp2 = expand_abs (submode, imag1, NULL_RTX, 1);
360 }
361
362 if (temp1 == 0 || temp2 == 0)
363 return 0;
364
365 mode = GET_MODE (temp1);
366 align = GET_MODE_ALIGNMENT (mode);
367 lab1 = gen_label_rtx ();
368 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
369 mode, unsignedp, align, lab1);
370
371 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
372
373 if (class == MODE_COMPLEX_FLOAT)
374 ratio = expand_binop (submode, binoptab, imag1, real1,
375 NULL_RTX, unsignedp, methods);
376 else
377 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
378 imag1, real1, NULL_RTX, unsignedp);
379
380 if (ratio == 0)
381 return 0;
382
383 /* Calculate divisor. */
384
385 temp1 = expand_binop (submode, smul_optab, imag1, ratio,
386 NULL_RTX, unsignedp, methods);
387
388 if (temp1 == 0)
389 return 0;
390
391 divisor = expand_binop (submode, add_optab, temp1, real1,
392 NULL_RTX, unsignedp, methods);
393
394 if (divisor == 0)
395 return 0;
396
397 /* Calculate dividend. */
398
399 if (imag0 == 0)
400 {
401 real_t = real0;
402
403 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
404
405 imag_t = expand_binop (submode, smul_optab, real0, ratio,
406 NULL_RTX, unsignedp, methods);
407
408 if (imag_t == 0)
409 return 0;
410
411 imag_t = expand_unop (submode, neg_optab, imag_t,
412 NULL_RTX, unsignedp);
413
414 if (real_t == 0 || imag_t == 0)
415 return 0;
416 }
417 else
418 {
419 /* Compute (a+ib)/(c+id) as
420 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
421
422 temp1 = expand_binop (submode, smul_optab, imag0, ratio,
423 NULL_RTX, unsignedp, methods);
424
425 if (temp1 == 0)
426 return 0;
427
428 real_t = expand_binop (submode, add_optab, temp1, real0,
429 NULL_RTX, unsignedp, methods);
430
431 temp1 = expand_binop (submode, smul_optab, real0, ratio,
432 NULL_RTX, unsignedp, methods);
433
434 if (temp1 == 0)
435 return 0;
436
437 imag_t = expand_binop (submode, sub_optab, imag0, temp1,
438 NULL_RTX, unsignedp, methods);
439
440 if (real_t == 0 || imag_t == 0)
441 return 0;
442 }
443
444 if (class == MODE_COMPLEX_FLOAT)
445 res = expand_binop (submode, binoptab, real_t, divisor,
446 realr, unsignedp, methods);
447 else
448 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
449 real_t, divisor, realr, unsignedp);
450
451 if (res == 0)
452 return 0;
453
454 if (res != realr)
455 emit_move_insn (realr, res);
456
457 if (class == MODE_COMPLEX_FLOAT)
458 res = expand_binop (submode, binoptab, imag_t, divisor,
459 imagr, unsignedp, methods);
460 else
461 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
462 imag_t, divisor, imagr, unsignedp);
463
464 if (res == 0)
465 return 0;
466
467 if (res != imagr)
468 emit_move_insn (imagr, res);
469
470 lab2 = gen_label_rtx ();
471 emit_jump_insn (gen_jump (lab2));
472 emit_barrier ();
473
474 emit_label (lab1);
475
476 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
477
478 if (class == MODE_COMPLEX_FLOAT)
479 ratio = expand_binop (submode, binoptab, real1, imag1,
480 NULL_RTX, unsignedp, methods);
481 else
482 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
483 real1, imag1, NULL_RTX, unsignedp);
484
485 if (ratio == 0)
486 return 0;
487
488 /* Calculate divisor. */
489
490 temp1 = expand_binop (submode, smul_optab, real1, ratio,
491 NULL_RTX, unsignedp, methods);
492
493 if (temp1 == 0)
494 return 0;
495
496 divisor = expand_binop (submode, add_optab, temp1, imag1,
497 NULL_RTX, unsignedp, methods);
498
499 if (divisor == 0)
500 return 0;
501
502 /* Calculate dividend. */
503
504 if (imag0 == 0)
505 {
506 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
507
508 real_t = expand_binop (submode, smul_optab, real0, ratio,
509 NULL_RTX, unsignedp, methods);
510
511 imag_t = expand_unop (submode, neg_optab, real0,
512 NULL_RTX, unsignedp);
513
514 if (real_t == 0 || imag_t == 0)
515 return 0;
516 }
517 else
518 {
519 /* Compute (a+ib)/(c+id) as
520 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
521
522 temp1 = expand_binop (submode, smul_optab, real0, ratio,
523 NULL_RTX, unsignedp, methods);
524
525 if (temp1 == 0)
526 return 0;
527
528 real_t = expand_binop (submode, add_optab, temp1, imag0,
529 NULL_RTX, unsignedp, methods);
530
531 temp1 = expand_binop (submode, smul_optab, imag0, ratio,
532 NULL_RTX, unsignedp, methods);
533
534 if (temp1 == 0)
535 return 0;
536
537 imag_t = expand_binop (submode, sub_optab, temp1, real0,
538 NULL_RTX, unsignedp, methods);
539
540 if (real_t == 0 || imag_t == 0)
541 return 0;
542 }
543
544 if (class == MODE_COMPLEX_FLOAT)
545 res = expand_binop (submode, binoptab, real_t, divisor,
546 realr, unsignedp, methods);
547 else
548 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
549 real_t, divisor, realr, unsignedp);
550
551 if (res == 0)
552 return 0;
553
554 if (res != realr)
555 emit_move_insn (realr, res);
556
557 if (class == MODE_COMPLEX_FLOAT)
558 res = expand_binop (submode, binoptab, imag_t, divisor,
559 imagr, unsignedp, methods);
560 else
561 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
562 imag_t, divisor, imagr, unsignedp);
563
564 if (res == 0)
565 return 0;
566
567 if (res != imagr)
568 emit_move_insn (imagr, res);
569
570 emit_label (lab2);
571
572 return 1;
573 }
574 \f
575 /* Generate code to perform an operation specified by BINOPTAB
576 on operands OP0 and OP1, with result having machine-mode MODE.
577
578 UNSIGNEDP is for the case where we have to widen the operands
579 to perform the operation. It says to use zero-extension.
580
581 If TARGET is nonzero, the value
582 is generated there, if it is convenient to do so.
583 In all cases an rtx is returned for the locus of the value;
584 this may or may not be TARGET. */
585
586 rtx
587 expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
588 enum machine_mode mode;
589 optab binoptab;
590 rtx op0, op1;
591 rtx target;
592 int unsignedp;
593 enum optab_methods methods;
594 {
595 enum optab_methods next_methods
596 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
597 ? OPTAB_WIDEN : methods);
598 enum mode_class class;
599 enum machine_mode wider_mode;
600 register rtx temp;
601 int commutative_op = 0;
602 int shift_op = (binoptab->code == ASHIFT
603 || binoptab->code == ASHIFTRT
604 || binoptab->code == LSHIFTRT
605 || binoptab->code == ROTATE
606 || binoptab->code == ROTATERT);
607 rtx entry_last = get_last_insn ();
608 rtx last;
609
610 class = GET_MODE_CLASS (mode);
611
612 op0 = protect_from_queue (op0, 0);
613 op1 = protect_from_queue (op1, 0);
614 if (target)
615 target = protect_from_queue (target, 1);
616
617 if (flag_force_mem)
618 {
619 op0 = force_not_mem (op0);
620 op1 = force_not_mem (op1);
621 }
622
623 /* If subtracting an integer constant, convert this into an addition of
624 the negated constant. */
625
626 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
627 {
628 op1 = negate_rtx (mode, op1);
629 binoptab = add_optab;
630 }
631
632 /* If we are inside an appropriately-short loop and one operand is an
633 expensive constant, force it into a register. */
634 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
635 && rtx_cost (op0, binoptab->code) > 2)
636 op0 = force_reg (mode, op0);
637
638 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
639 && ! shift_op && rtx_cost (op1, binoptab->code) > 2)
640 op1 = force_reg (mode, op1);
641
642 /* Record where to delete back to if we backtrack. */
643 last = get_last_insn ();
644
645 /* If operation is commutative,
646 try to make the first operand a register.
647 Even better, try to make it the same as the target.
648 Also try to make the last operand a constant. */
649 if (GET_RTX_CLASS (binoptab->code) == 'c'
650 || binoptab == smul_widen_optab
651 || binoptab == umul_widen_optab
652 || binoptab == smul_highpart_optab
653 || binoptab == umul_highpart_optab)
654 {
655 commutative_op = 1;
656
657 if (((target == 0 || GET_CODE (target) == REG)
658 ? ((GET_CODE (op1) == REG
659 && GET_CODE (op0) != REG)
660 || target == op1)
661 : rtx_equal_p (op1, target))
662 || GET_CODE (op0) == CONST_INT)
663 {
664 temp = op1;
665 op1 = op0;
666 op0 = temp;
667 }
668 }
669
670 /* If we can do it with a three-operand insn, do so. */
671
672 if (methods != OPTAB_MUST_WIDEN
673 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
674 {
675 int icode = (int) binoptab->handlers[(int) mode].insn_code;
676 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
677 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
678 rtx pat;
679 rtx xop0 = op0, xop1 = op1;
680
681 if (target)
682 temp = target;
683 else
684 temp = gen_reg_rtx (mode);
685
686 /* If it is a commutative operator and the modes would match
687 if we would swap the operands, we can save the conversions. */
688 if (commutative_op)
689 {
690 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
691 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
692 {
693 register rtx tmp;
694
695 tmp = op0; op0 = op1; op1 = tmp;
696 tmp = xop0; xop0 = xop1; xop1 = tmp;
697 }
698 }
699
700 /* In case the insn wants input operands in modes different from
701 the result, convert the operands. */
702
703 if (GET_MODE (op0) != VOIDmode
704 && GET_MODE (op0) != mode0
705 && mode0 != VOIDmode)
706 xop0 = convert_to_mode (mode0, xop0, unsignedp);
707
708 if (GET_MODE (xop1) != VOIDmode
709 && GET_MODE (xop1) != mode1
710 && mode1 != VOIDmode)
711 xop1 = convert_to_mode (mode1, xop1, unsignedp);
712
713 /* Now, if insn's predicates don't allow our operands, put them into
714 pseudo regs. */
715
716 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
717 && mode0 != VOIDmode)
718 xop0 = copy_to_mode_reg (mode0, xop0);
719
720 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
721 && mode1 != VOIDmode)
722 xop1 = copy_to_mode_reg (mode1, xop1);
723
724 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
725 temp = gen_reg_rtx (mode);
726
727 pat = GEN_FCN (icode) (temp, xop0, xop1);
728 if (pat)
729 {
730 /* If PAT is a multi-insn sequence, try to add an appropriate
731 REG_EQUAL note to it. If we can't because TEMP conflicts with an
732 operand, call ourselves again, this time without a target. */
733 if (GET_CODE (pat) == SEQUENCE
734 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
735 {
736 delete_insns_since (last);
737 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
738 unsignedp, methods);
739 }
740
741 emit_insn (pat);
742 return temp;
743 }
744 else
745 delete_insns_since (last);
746 }
747
748 /* If this is a multiply, see if we can do a widening operation that
749 takes operands of this mode and makes a wider mode. */
750
751 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
752 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
753 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
754 != CODE_FOR_nothing))
755 {
756 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
757 unsignedp ? umul_widen_optab : smul_widen_optab,
758 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
759
760 if (temp != 0)
761 {
762 if (GET_MODE_CLASS (mode) == MODE_INT)
763 return gen_lowpart (mode, temp);
764 else
765 return convert_to_mode (mode, temp, unsignedp);
766 }
767 }
768
769 /* Look for a wider mode of the same class for which we think we
770 can open-code the operation. Check for a widening multiply at the
771 wider mode as well. */
772
773 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
774 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
775 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
776 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
777 {
778 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
779 || (binoptab == smul_optab
780 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
781 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
782 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
783 != CODE_FOR_nothing)))
784 {
785 rtx xop0 = op0, xop1 = op1;
786 int no_extend = 0;
787
788 /* For certain integer operations, we need not actually extend
789 the narrow operands, as long as we will truncate
790 the results to the same narrowness. */
791
792 if ((binoptab == ior_optab || binoptab == and_optab
793 || binoptab == xor_optab
794 || binoptab == add_optab || binoptab == sub_optab
795 || binoptab == smul_optab || binoptab == ashl_optab)
796 && class == MODE_INT)
797 no_extend = 1;
798
799 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
800
801 /* The second operand of a shift must always be extended. */
802 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
803 no_extend && binoptab != ashl_optab);
804
805 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
806 unsignedp, OPTAB_DIRECT);
807 if (temp)
808 {
809 if (class != MODE_INT)
810 {
811 if (target == 0)
812 target = gen_reg_rtx (mode);
813 convert_move (target, temp, 0);
814 return target;
815 }
816 else
817 return gen_lowpart (mode, temp);
818 }
819 else
820 delete_insns_since (last);
821 }
822 }
823
824 /* These can be done a word at a time. */
825 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
826 && class == MODE_INT
827 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
828 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
829 {
830 int i;
831 rtx insns;
832 rtx equiv_value;
833
834 /* If TARGET is the same as one of the operands, the REG_EQUAL note
835 won't be accurate, so use a new target. */
836 if (target == 0 || target == op0 || target == op1)
837 target = gen_reg_rtx (mode);
838
839 start_sequence ();
840
841 /* Do the actual arithmetic. */
842 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
843 {
844 rtx target_piece = operand_subword (target, i, 1, mode);
845 rtx x = expand_binop (word_mode, binoptab,
846 operand_subword_force (op0, i, mode),
847 operand_subword_force (op1, i, mode),
848 target_piece, unsignedp, next_methods);
849
850 if (x == 0)
851 break;
852
853 if (target_piece != x)
854 emit_move_insn (target_piece, x);
855 }
856
857 insns = get_insns ();
858 end_sequence ();
859
860 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
861 {
862 if (binoptab->code != UNKNOWN)
863 equiv_value
864 = gen_rtx_fmt_ee (binoptab->code, mode,
865 copy_rtx (op0), copy_rtx (op1));
866 else
867 equiv_value = 0;
868
869 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
870 return target;
871 }
872 }
873
874 /* Synthesize double word shifts from single word shifts. */
875 if ((binoptab == lshr_optab || binoptab == ashl_optab
876 || binoptab == ashr_optab)
877 && class == MODE_INT
878 && GET_CODE (op1) == CONST_INT
879 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
880 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
881 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
882 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
883 {
884 rtx insns, inter, equiv_value;
885 rtx into_target, outof_target;
886 rtx into_input, outof_input;
887 int shift_count, left_shift, outof_word;
888
889 /* If TARGET is the same as one of the operands, the REG_EQUAL note
890 won't be accurate, so use a new target. */
891 if (target == 0 || target == op0 || target == op1)
892 target = gen_reg_rtx (mode);
893
894 start_sequence ();
895
896 shift_count = INTVAL (op1);
897
898 /* OUTOF_* is the word we are shifting bits away from, and
899 INTO_* is the word that we are shifting bits towards, thus
900 they differ depending on the direction of the shift and
901 WORDS_BIG_ENDIAN. */
902
903 left_shift = binoptab == ashl_optab;
904 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
905
906 outof_target = operand_subword (target, outof_word, 1, mode);
907 into_target = operand_subword (target, 1 - outof_word, 1, mode);
908
909 outof_input = operand_subword_force (op0, outof_word, mode);
910 into_input = operand_subword_force (op0, 1 - outof_word, mode);
911
912 if (shift_count >= BITS_PER_WORD)
913 {
914 inter = expand_binop (word_mode, binoptab,
915 outof_input,
916 GEN_INT (shift_count - BITS_PER_WORD),
917 into_target, unsignedp, next_methods);
918
919 if (inter != 0 && inter != into_target)
920 emit_move_insn (into_target, inter);
921
922 /* For a signed right shift, we must fill the word we are shifting
923 out of with copies of the sign bit. Otherwise it is zeroed. */
924 if (inter != 0 && binoptab != ashr_optab)
925 inter = CONST0_RTX (word_mode);
926 else if (inter != 0)
927 inter = expand_binop (word_mode, binoptab,
928 outof_input,
929 GEN_INT (BITS_PER_WORD - 1),
930 outof_target, unsignedp, next_methods);
931
932 if (inter != 0 && inter != outof_target)
933 emit_move_insn (outof_target, inter);
934 }
935 else
936 {
937 rtx carries;
938 optab reverse_unsigned_shift, unsigned_shift;
939
940 /* For a shift of less then BITS_PER_WORD, to compute the carry,
941 we must do a logical shift in the opposite direction of the
942 desired shift. */
943
944 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
945
946 /* For a shift of less than BITS_PER_WORD, to compute the word
947 shifted towards, we need to unsigned shift the orig value of
948 that word. */
949
950 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
951
952 carries = expand_binop (word_mode, reverse_unsigned_shift,
953 outof_input,
954 GEN_INT (BITS_PER_WORD - shift_count),
955 0, unsignedp, next_methods);
956
957 if (carries == 0)
958 inter = 0;
959 else
960 inter = expand_binop (word_mode, unsigned_shift, into_input,
961 op1, 0, unsignedp, next_methods);
962
963 if (inter != 0)
964 inter = expand_binop (word_mode, ior_optab, carries, inter,
965 into_target, unsignedp, next_methods);
966
967 if (inter != 0 && inter != into_target)
968 emit_move_insn (into_target, inter);
969
970 if (inter != 0)
971 inter = expand_binop (word_mode, binoptab, outof_input,
972 op1, outof_target, unsignedp, next_methods);
973
974 if (inter != 0 && inter != outof_target)
975 emit_move_insn (outof_target, inter);
976 }
977
978 insns = get_insns ();
979 end_sequence ();
980
981 if (inter != 0)
982 {
983 if (binoptab->code != UNKNOWN)
984 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
985 else
986 equiv_value = 0;
987
988 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
989 return target;
990 }
991 }
992
993 /* Synthesize double word rotates from single word shifts. */
994 if ((binoptab == rotl_optab || binoptab == rotr_optab)
995 && class == MODE_INT
996 && GET_CODE (op1) == CONST_INT
997 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
998 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
999 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1000 {
1001 rtx insns, equiv_value;
1002 rtx into_target, outof_target;
1003 rtx into_input, outof_input;
1004 rtx inter;
1005 int shift_count, left_shift, outof_word;
1006
1007 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1008 won't be accurate, so use a new target. */
1009 if (target == 0 || target == op0 || target == op1)
1010 target = gen_reg_rtx (mode);
1011
1012 start_sequence ();
1013
1014 shift_count = INTVAL (op1);
1015
1016 /* OUTOF_* is the word we are shifting bits away from, and
1017 INTO_* is the word that we are shifting bits towards, thus
1018 they differ depending on the direction of the shift and
1019 WORDS_BIG_ENDIAN. */
1020
1021 left_shift = (binoptab == rotl_optab);
1022 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1023
1024 outof_target = operand_subword (target, outof_word, 1, mode);
1025 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1026
1027 outof_input = operand_subword_force (op0, outof_word, mode);
1028 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1029
1030 if (shift_count == BITS_PER_WORD)
1031 {
1032 /* This is just a word swap. */
1033 emit_move_insn (outof_target, into_input);
1034 emit_move_insn (into_target, outof_input);
1035 inter = const0_rtx;
1036 }
1037 else
1038 {
1039 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1040 rtx first_shift_count, second_shift_count;
1041 optab reverse_unsigned_shift, unsigned_shift;
1042
1043 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1044 ? lshr_optab : ashl_optab);
1045
1046 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1047 ? ashl_optab : lshr_optab);
1048
1049 if (shift_count > BITS_PER_WORD)
1050 {
1051 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1052 second_shift_count = GEN_INT (2*BITS_PER_WORD - shift_count);
1053 }
1054 else
1055 {
1056 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1057 second_shift_count = GEN_INT (shift_count);
1058 }
1059
1060 into_temp1 = expand_binop (word_mode, unsigned_shift,
1061 outof_input, first_shift_count,
1062 NULL_RTX, unsignedp, next_methods);
1063 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1064 into_input, second_shift_count,
1065 into_target, unsignedp, next_methods);
1066
1067 if (into_temp1 != 0 && into_temp2 != 0)
1068 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1069 into_target, unsignedp, next_methods);
1070 else
1071 inter = 0;
1072
1073 if (inter != 0 && inter != into_target)
1074 emit_move_insn (into_target, inter);
1075
1076 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1077 into_input, first_shift_count,
1078 NULL_RTX, unsignedp, next_methods);
1079 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1080 outof_input, second_shift_count,
1081 outof_target, unsignedp, next_methods);
1082
1083 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1084 inter = expand_binop (word_mode, ior_optab,
1085 outof_temp1, outof_temp2,
1086 outof_target, unsignedp, next_methods);
1087
1088 if (inter != 0 && inter != outof_target)
1089 emit_move_insn (outof_target, inter);
1090 }
1091
1092 insns = get_insns ();
1093 end_sequence ();
1094
1095 if (inter != 0)
1096 {
1097 if (binoptab->code != UNKNOWN)
1098 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1099 else
1100 equiv_value = 0;
1101
1102 /* We can't make this a no conflict block if this is a word swap,
1103 because the word swap case fails if the input and output values
1104 are in the same register. */
1105 if (shift_count != BITS_PER_WORD)
1106 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1107 else
1108 emit_insns (insns);
1109
1110
1111 return target;
1112 }
1113 }
1114
1115 /* These can be done a word at a time by propagating carries. */
1116 if ((binoptab == add_optab || binoptab == sub_optab)
1117 && class == MODE_INT
1118 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1119 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1120 {
1121 int i;
1122 rtx carry_tmp = gen_reg_rtx (word_mode);
1123 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1124 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1125 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1126 rtx xop0, xop1;
1127
1128 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1129 value is one of those, use it. Otherwise, use 1 since it is the
1130 one easiest to get. */
1131 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1132 int normalizep = STORE_FLAG_VALUE;
1133 #else
1134 int normalizep = 1;
1135 #endif
1136
1137 /* Prepare the operands. */
1138 xop0 = force_reg (mode, op0);
1139 xop1 = force_reg (mode, op1);
1140
1141 if (target == 0 || GET_CODE (target) != REG
1142 || target == xop0 || target == xop1)
1143 target = gen_reg_rtx (mode);
1144
1145 /* Indicate for flow that the entire target reg is being set. */
1146 if (GET_CODE (target) == REG)
1147 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1148
1149 /* Do the actual arithmetic. */
1150 for (i = 0; i < nwords; i++)
1151 {
1152 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1153 rtx target_piece = operand_subword (target, index, 1, mode);
1154 rtx op0_piece = operand_subword_force (xop0, index, mode);
1155 rtx op1_piece = operand_subword_force (xop1, index, mode);
1156 rtx x;
1157
1158 /* Main add/subtract of the input operands. */
1159 x = expand_binop (word_mode, binoptab,
1160 op0_piece, op1_piece,
1161 target_piece, unsignedp, next_methods);
1162 if (x == 0)
1163 break;
1164
1165 if (i + 1 < nwords)
1166 {
1167 /* Store carry from main add/subtract. */
1168 carry_out = gen_reg_rtx (word_mode);
1169 carry_out = emit_store_flag_force (carry_out,
1170 (binoptab == add_optab
1171 ? LT : GT),
1172 x, op0_piece,
1173 word_mode, 1, normalizep);
1174 }
1175
1176 if (i > 0)
1177 {
1178 /* Add/subtract previous carry to main result. */
1179 x = expand_binop (word_mode,
1180 normalizep == 1 ? binoptab : otheroptab,
1181 x, carry_in,
1182 target_piece, 1, next_methods);
1183 if (x == 0)
1184 break;
1185 else if (target_piece != x)
1186 emit_move_insn (target_piece, x);
1187
1188 if (i + 1 < nwords)
1189 {
1190 /* THIS CODE HAS NOT BEEN TESTED. */
1191 /* Get out carry from adding/subtracting carry in. */
1192 carry_tmp = emit_store_flag_force (carry_tmp,
1193 binoptab == add_optab
1194 ? LT : GT,
1195 x, carry_in,
1196 word_mode, 1, normalizep);
1197
1198 /* Logical-ior the two poss. carry together. */
1199 carry_out = expand_binop (word_mode, ior_optab,
1200 carry_out, carry_tmp,
1201 carry_out, 0, next_methods);
1202 if (carry_out == 0)
1203 break;
1204 }
1205 }
1206
1207 carry_in = carry_out;
1208 }
1209
1210 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1211 {
1212 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1213 {
1214 rtx temp = emit_move_insn (target, target);
1215
1216 set_unique_reg_note (temp,
1217 REG_EQUAL,
1218 gen_rtx_fmt_ee (binoptab->code, mode,
1219 copy_rtx (xop0),
1220 copy_rtx (xop1)));
1221 }
1222
1223 return target;
1224 }
1225
1226 else
1227 delete_insns_since (last);
1228 }
1229
1230 /* If we want to multiply two two-word values and have normal and widening
1231 multiplies of single-word values, we can do this with three smaller
1232 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1233 because we are not operating on one word at a time.
1234
1235 The multiplication proceeds as follows:
1236 _______________________
1237 [__op0_high_|__op0_low__]
1238 _______________________
1239 * [__op1_high_|__op1_low__]
1240 _______________________________________________
1241 _______________________
1242 (1) [__op0_low__*__op1_low__]
1243 _______________________
1244 (2a) [__op0_low__*__op1_high_]
1245 _______________________
1246 (2b) [__op0_high_*__op1_low__]
1247 _______________________
1248 (3) [__op0_high_*__op1_high_]
1249
1250
1251 This gives a 4-word result. Since we are only interested in the
1252 lower 2 words, partial result (3) and the upper words of (2a) and
1253 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1254 calculated using non-widening multiplication.
1255
1256 (1), however, needs to be calculated with an unsigned widening
1257 multiplication. If this operation is not directly supported we
1258 try using a signed widening multiplication and adjust the result.
1259 This adjustment works as follows:
1260
1261 If both operands are positive then no adjustment is needed.
1262
1263 If the operands have different signs, for example op0_low < 0 and
1264 op1_low >= 0, the instruction treats the most significant bit of
1265 op0_low as a sign bit instead of a bit with significance
1266 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1267 with 2**BITS_PER_WORD - op0_low, and two's complements the
1268 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1269 the result.
1270
1271 Similarly, if both operands are negative, we need to add
1272 (op0_low + op1_low) * 2**BITS_PER_WORD.
1273
1274 We use a trick to adjust quickly. We logically shift op0_low right
1275 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1276 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1277 logical shift exists, we do an arithmetic right shift and subtract
1278 the 0 or -1. */
1279
1280 if (binoptab == smul_optab
1281 && class == MODE_INT
1282 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1283 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1284 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1285 && ((umul_widen_optab->handlers[(int) mode].insn_code
1286 != CODE_FOR_nothing)
1287 || (smul_widen_optab->handlers[(int) mode].insn_code
1288 != CODE_FOR_nothing)))
1289 {
1290 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1291 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1292 rtx op0_high = operand_subword_force (op0, high, mode);
1293 rtx op0_low = operand_subword_force (op0, low, mode);
1294 rtx op1_high = operand_subword_force (op1, high, mode);
1295 rtx op1_low = operand_subword_force (op1, low, mode);
1296 rtx product = 0;
1297 rtx op0_xhigh = NULL_RTX;
1298 rtx op1_xhigh = NULL_RTX;
1299
1300 /* If the target is the same as one of the inputs, don't use it. This
1301 prevents problems with the REG_EQUAL note. */
1302 if (target == op0 || target == op1
1303 || (target != 0 && GET_CODE (target) != REG))
1304 target = 0;
1305
1306 /* Multiply the two lower words to get a double-word product.
1307 If unsigned widening multiplication is available, use that;
1308 otherwise use the signed form and compensate. */
1309
1310 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1311 {
1312 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1313 target, 1, OPTAB_DIRECT);
1314
1315 /* If we didn't succeed, delete everything we did so far. */
1316 if (product == 0)
1317 delete_insns_since (last);
1318 else
1319 op0_xhigh = op0_high, op1_xhigh = op1_high;
1320 }
1321
1322 if (product == 0
1323 && smul_widen_optab->handlers[(int) mode].insn_code
1324 != CODE_FOR_nothing)
1325 {
1326 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1327 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1328 target, 1, OPTAB_DIRECT);
1329 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1330 NULL_RTX, 1, next_methods);
1331 if (op0_xhigh)
1332 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1333 op0_xhigh, op0_xhigh, 0, next_methods);
1334 else
1335 {
1336 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1337 NULL_RTX, 0, next_methods);
1338 if (op0_xhigh)
1339 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1340 op0_xhigh, op0_xhigh, 0,
1341 next_methods);
1342 }
1343
1344 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1345 NULL_RTX, 1, next_methods);
1346 if (op1_xhigh)
1347 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1348 op1_xhigh, op1_xhigh, 0, next_methods);
1349 else
1350 {
1351 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1352 NULL_RTX, 0, next_methods);
1353 if (op1_xhigh)
1354 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1355 op1_xhigh, op1_xhigh, 0,
1356 next_methods);
1357 }
1358 }
1359
1360 /* If we have been able to directly compute the product of the
1361 low-order words of the operands and perform any required adjustments
1362 of the operands, we proceed by trying two more multiplications
1363 and then computing the appropriate sum.
1364
1365 We have checked above that the required addition is provided.
1366 Full-word addition will normally always succeed, especially if
1367 it is provided at all, so we don't worry about its failure. The
1368 multiplication may well fail, however, so we do handle that. */
1369
1370 if (product && op0_xhigh && op1_xhigh)
1371 {
1372 rtx product_high = operand_subword (product, high, 1, mode);
1373 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1374 NULL_RTX, 0, OPTAB_DIRECT);
1375
1376 if (temp != 0)
1377 temp = expand_binop (word_mode, add_optab, temp, product_high,
1378 product_high, 0, next_methods);
1379
1380 if (temp != 0 && temp != product_high)
1381 emit_move_insn (product_high, temp);
1382
1383 if (temp != 0)
1384 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1385 NULL_RTX, 0, OPTAB_DIRECT);
1386
1387 if (temp != 0)
1388 temp = expand_binop (word_mode, add_optab, temp,
1389 product_high, product_high,
1390 0, next_methods);
1391
1392 if (temp != 0 && temp != product_high)
1393 emit_move_insn (product_high, temp);
1394
1395 if (temp != 0)
1396 {
1397 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1398 {
1399 temp = emit_move_insn (product, product);
1400 set_unique_reg_note (temp,
1401 REG_EQUAL,
1402 gen_rtx_fmt_ee (MULT, mode,
1403 copy_rtx (op0),
1404 copy_rtx (op1)));
1405 }
1406
1407 return product;
1408 }
1409 }
1410
1411 /* If we get here, we couldn't do it for some reason even though we
1412 originally thought we could. Delete anything we've emitted in
1413 trying to do it. */
1414
1415 delete_insns_since (last);
1416 }
1417
1418 /* We need to open-code the complex type operations: '+, -, * and /' */
1419
1420 /* At this point we allow operations between two similar complex
1421 numbers, and also if one of the operands is not a complex number
1422 but rather of MODE_FLOAT or MODE_INT. However, the caller
1423 must make sure that the MODE of the non-complex operand matches
1424 the SUBMODE of the complex operand. */
1425
1426 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1427 {
1428 rtx real0 = 0, imag0 = 0;
1429 rtx real1 = 0, imag1 = 0;
1430 rtx realr, imagr, res;
1431 rtx seq;
1432 rtx equiv_value;
1433 int ok = 0;
1434
1435 /* Find the correct mode for the real and imaginary parts */
1436 enum machine_mode submode
1437 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
1438 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
1439 0);
1440
1441 if (submode == BLKmode)
1442 abort ();
1443
1444 if (! target)
1445 target = gen_reg_rtx (mode);
1446
1447 start_sequence ();
1448
1449 realr = gen_realpart (submode, target);
1450 imagr = gen_imagpart (submode, target);
1451
1452 if (GET_MODE (op0) == mode)
1453 {
1454 real0 = gen_realpart (submode, op0);
1455 imag0 = gen_imagpart (submode, op0);
1456 }
1457 else
1458 real0 = op0;
1459
1460 if (GET_MODE (op1) == mode)
1461 {
1462 real1 = gen_realpart (submode, op1);
1463 imag1 = gen_imagpart (submode, op1);
1464 }
1465 else
1466 real1 = op1;
1467
1468 if (real0 == 0 || real1 == 0 || ! (imag0 != 0|| imag1 != 0))
1469 abort ();
1470
1471 switch (binoptab->code)
1472 {
1473 case PLUS:
1474 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1475 case MINUS:
1476 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1477 res = expand_binop (submode, binoptab, real0, real1,
1478 realr, unsignedp, methods);
1479
1480 if (res == 0)
1481 break;
1482 else if (res != realr)
1483 emit_move_insn (realr, res);
1484
1485 if (imag0 && imag1)
1486 res = expand_binop (submode, binoptab, imag0, imag1,
1487 imagr, unsignedp, methods);
1488 else if (imag0)
1489 res = imag0;
1490 else if (binoptab->code == MINUS)
1491 res = expand_unop (submode, neg_optab, imag1, imagr, unsignedp);
1492 else
1493 res = imag1;
1494
1495 if (res == 0)
1496 break;
1497 else if (res != imagr)
1498 emit_move_insn (imagr, res);
1499
1500 ok = 1;
1501 break;
1502
1503 case MULT:
1504 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1505
1506 if (imag0 && imag1)
1507 {
1508 rtx temp1, temp2;
1509
1510 /* Don't fetch these from memory more than once. */
1511 real0 = force_reg (submode, real0);
1512 real1 = force_reg (submode, real1);
1513 imag0 = force_reg (submode, imag0);
1514 imag1 = force_reg (submode, imag1);
1515
1516 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1517 unsignedp, methods);
1518
1519 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1520 unsignedp, methods);
1521
1522 if (temp1 == 0 || temp2 == 0)
1523 break;
1524
1525 res = expand_binop (submode, sub_optab, temp1, temp2,
1526 realr, unsignedp, methods);
1527
1528 if (res == 0)
1529 break;
1530 else if (res != realr)
1531 emit_move_insn (realr, res);
1532
1533 temp1 = expand_binop (submode, binoptab, real0, imag1,
1534 NULL_RTX, unsignedp, methods);
1535
1536 temp2 = expand_binop (submode, binoptab, real1, imag0,
1537 NULL_RTX, unsignedp, methods);
1538
1539 if (temp1 == 0 || temp2 == 0)
1540 break;
1541
1542 res = expand_binop (submode, add_optab, temp1, temp2,
1543 imagr, unsignedp, methods);
1544
1545 if (res == 0)
1546 break;
1547 else if (res != imagr)
1548 emit_move_insn (imagr, res);
1549
1550 ok = 1;
1551 }
1552 else
1553 {
1554 /* Don't fetch these from memory more than once. */
1555 real0 = force_reg (submode, real0);
1556 real1 = force_reg (submode, real1);
1557
1558 res = expand_binop (submode, binoptab, real0, real1,
1559 realr, unsignedp, methods);
1560 if (res == 0)
1561 break;
1562 else if (res != realr)
1563 emit_move_insn (realr, res);
1564
1565 if (imag0 != 0)
1566 res = expand_binop (submode, binoptab,
1567 real1, imag0, imagr, unsignedp, methods);
1568 else
1569 res = expand_binop (submode, binoptab,
1570 real0, imag1, imagr, unsignedp, methods);
1571
1572 if (res == 0)
1573 break;
1574 else if (res != imagr)
1575 emit_move_insn (imagr, res);
1576
1577 ok = 1;
1578 }
1579 break;
1580
1581 case DIV:
1582 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1583
1584 if (imag1 == 0)
1585 {
1586 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1587
1588 /* Don't fetch these from memory more than once. */
1589 real1 = force_reg (submode, real1);
1590
1591 /* Simply divide the real and imaginary parts by `c' */
1592 if (class == MODE_COMPLEX_FLOAT)
1593 res = expand_binop (submode, binoptab, real0, real1,
1594 realr, unsignedp, methods);
1595 else
1596 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1597 real0, real1, realr, unsignedp);
1598
1599 if (res == 0)
1600 break;
1601 else if (res != realr)
1602 emit_move_insn (realr, res);
1603
1604 if (class == MODE_COMPLEX_FLOAT)
1605 res = expand_binop (submode, binoptab, imag0, real1,
1606 imagr, unsignedp, methods);
1607 else
1608 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1609 imag0, real1, imagr, unsignedp);
1610
1611 if (res == 0)
1612 break;
1613 else if (res != imagr)
1614 emit_move_insn (imagr, res);
1615
1616 ok = 1;
1617 }
1618 else
1619 {
1620 switch (flag_complex_divide_method)
1621 {
1622 case 0:
1623 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1624 realr, imagr, submode,
1625 unsignedp, methods,
1626 class, binoptab);
1627 break;
1628
1629 case 1:
1630 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1631 realr, imagr, submode,
1632 unsignedp, methods,
1633 class, binoptab);
1634 break;
1635
1636 default:
1637 abort ();
1638 }
1639 }
1640 break;
1641
1642 default:
1643 abort ();
1644 }
1645
1646 seq = get_insns ();
1647 end_sequence ();
1648
1649 if (ok)
1650 {
1651 if (binoptab->code != UNKNOWN)
1652 equiv_value
1653 = gen_rtx_fmt_ee (binoptab->code, mode,
1654 copy_rtx (op0), copy_rtx (op1));
1655 else
1656 equiv_value = 0;
1657
1658 emit_no_conflict_block (seq, target, op0, op1, equiv_value);
1659
1660 return target;
1661 }
1662 }
1663
1664 /* It can't be open-coded in this mode.
1665 Use a library call if one is available and caller says that's ok. */
1666
1667 if (binoptab->handlers[(int) mode].libfunc
1668 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1669 {
1670 rtx insns;
1671 rtx op1x = op1;
1672 enum machine_mode op1_mode = mode;
1673 rtx value;
1674
1675 start_sequence ();
1676
1677 if (shift_op)
1678 {
1679 op1_mode = word_mode;
1680 /* Specify unsigned here,
1681 since negative shift counts are meaningless. */
1682 op1x = convert_to_mode (word_mode, op1, 1);
1683 }
1684
1685 if (GET_MODE (op0) != VOIDmode
1686 && GET_MODE (op0) != mode)
1687 op0 = convert_to_mode (mode, op0, unsignedp);
1688
1689 /* Pass 1 for NO_QUEUE so we don't lose any increments
1690 if the libcall is cse'd or moved. */
1691 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1692 NULL_RTX, 1, mode, 2,
1693 op0, mode, op1x, op1_mode);
1694
1695 insns = get_insns ();
1696 end_sequence ();
1697
1698 target = gen_reg_rtx (mode);
1699 emit_libcall_block (insns, target, value,
1700 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1701
1702 return target;
1703 }
1704
1705 delete_insns_since (last);
1706
1707 /* It can't be done in this mode. Can we do it in a wider mode? */
1708
1709 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1710 || methods == OPTAB_MUST_WIDEN))
1711 {
1712 /* Caller says, don't even try. */
1713 delete_insns_since (entry_last);
1714 return 0;
1715 }
1716
1717 /* Compute the value of METHODS to pass to recursive calls.
1718 Don't allow widening to be tried recursively. */
1719
1720 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1721
1722 /* Look for a wider mode of the same class for which it appears we can do
1723 the operation. */
1724
1725 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1726 {
1727 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1728 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1729 {
1730 if ((binoptab->handlers[(int) wider_mode].insn_code
1731 != CODE_FOR_nothing)
1732 || (methods == OPTAB_LIB
1733 && binoptab->handlers[(int) wider_mode].libfunc))
1734 {
1735 rtx xop0 = op0, xop1 = op1;
1736 int no_extend = 0;
1737
1738 /* For certain integer operations, we need not actually extend
1739 the narrow operands, as long as we will truncate
1740 the results to the same narrowness. */
1741
1742 if ((binoptab == ior_optab || binoptab == and_optab
1743 || binoptab == xor_optab
1744 || binoptab == add_optab || binoptab == sub_optab
1745 || binoptab == smul_optab || binoptab == ashl_optab)
1746 && class == MODE_INT)
1747 no_extend = 1;
1748
1749 xop0 = widen_operand (xop0, wider_mode, mode,
1750 unsignedp, no_extend);
1751
1752 /* The second operand of a shift must always be extended. */
1753 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1754 no_extend && binoptab != ashl_optab);
1755
1756 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1757 unsignedp, methods);
1758 if (temp)
1759 {
1760 if (class != MODE_INT)
1761 {
1762 if (target == 0)
1763 target = gen_reg_rtx (mode);
1764 convert_move (target, temp, 0);
1765 return target;
1766 }
1767 else
1768 return gen_lowpart (mode, temp);
1769 }
1770 else
1771 delete_insns_since (last);
1772 }
1773 }
1774 }
1775
1776 delete_insns_since (entry_last);
1777 return 0;
1778 }
1779 \f
1780 /* Expand a binary operator which has both signed and unsigned forms.
1781 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1782 signed operations.
1783
1784 If we widen unsigned operands, we may use a signed wider operation instead
1785 of an unsigned wider operation, since the result would be the same. */
1786
1787 rtx
1788 sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
1789 enum machine_mode mode;
1790 optab uoptab, soptab;
1791 rtx op0, op1, target;
1792 int unsignedp;
1793 enum optab_methods methods;
1794 {
1795 register rtx temp;
1796 optab direct_optab = unsignedp ? uoptab : soptab;
1797 struct optab wide_soptab;
1798
1799 /* Do it without widening, if possible. */
1800 temp = expand_binop (mode, direct_optab, op0, op1, target,
1801 unsignedp, OPTAB_DIRECT);
1802 if (temp || methods == OPTAB_DIRECT)
1803 return temp;
1804
1805 /* Try widening to a signed int. Make a fake signed optab that
1806 hides any signed insn for direct use. */
1807 wide_soptab = *soptab;
1808 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
1809 wide_soptab.handlers[(int) mode].libfunc = 0;
1810
1811 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1812 unsignedp, OPTAB_WIDEN);
1813
1814 /* For unsigned operands, try widening to an unsigned int. */
1815 if (temp == 0 && unsignedp)
1816 temp = expand_binop (mode, uoptab, op0, op1, target,
1817 unsignedp, OPTAB_WIDEN);
1818 if (temp || methods == OPTAB_WIDEN)
1819 return temp;
1820
1821 /* Use the right width lib call if that exists. */
1822 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
1823 if (temp || methods == OPTAB_LIB)
1824 return temp;
1825
1826 /* Must widen and use a lib call, use either signed or unsigned. */
1827 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1828 unsignedp, methods);
1829 if (temp != 0)
1830 return temp;
1831 if (unsignedp)
1832 return expand_binop (mode, uoptab, op0, op1, target,
1833 unsignedp, methods);
1834 return 0;
1835 }
1836 \f
1837 /* Generate code to perform an operation specified by BINOPTAB
1838 on operands OP0 and OP1, with two results to TARG1 and TARG2.
1839 We assume that the order of the operands for the instruction
1840 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
1841 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
1842
1843 Either TARG0 or TARG1 may be zero, but what that means is that
1844 the result is not actually wanted. We will generate it into
1845 a dummy pseudo-reg and discard it. They may not both be zero.
1846
1847 Returns 1 if this operation can be performed; 0 if not. */
1848
1849 int
1850 expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
1851 optab binoptab;
1852 rtx op0, op1;
1853 rtx targ0, targ1;
1854 int unsignedp;
1855 {
1856 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1857 enum mode_class class;
1858 enum machine_mode wider_mode;
1859 rtx entry_last = get_last_insn ();
1860 rtx last;
1861
1862 class = GET_MODE_CLASS (mode);
1863
1864 op0 = protect_from_queue (op0, 0);
1865 op1 = protect_from_queue (op1, 0);
1866
1867 if (flag_force_mem)
1868 {
1869 op0 = force_not_mem (op0);
1870 op1 = force_not_mem (op1);
1871 }
1872
1873 /* If we are inside an appropriately-short loop and one operand is an
1874 expensive constant, force it into a register. */
1875 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
1876 && rtx_cost (op0, binoptab->code) > 2)
1877 op0 = force_reg (mode, op0);
1878
1879 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
1880 && rtx_cost (op1, binoptab->code) > 2)
1881 op1 = force_reg (mode, op1);
1882
1883 if (targ0)
1884 targ0 = protect_from_queue (targ0, 1);
1885 else
1886 targ0 = gen_reg_rtx (mode);
1887 if (targ1)
1888 targ1 = protect_from_queue (targ1, 1);
1889 else
1890 targ1 = gen_reg_rtx (mode);
1891
1892 /* Record where to go back to if we fail. */
1893 last = get_last_insn ();
1894
1895 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1896 {
1897 int icode = (int) binoptab->handlers[(int) mode].insn_code;
1898 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
1899 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
1900 rtx pat;
1901 rtx xop0 = op0, xop1 = op1;
1902
1903 /* In case this insn wants input operands in modes different from the
1904 result, convert the operands. */
1905 if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
1906 xop0 = convert_to_mode (mode0, xop0, unsignedp);
1907
1908 if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
1909 xop1 = convert_to_mode (mode1, xop1, unsignedp);
1910
1911 /* Now, if insn doesn't accept these operands, put them into pseudos. */
1912 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
1913 xop0 = copy_to_mode_reg (mode0, xop0);
1914
1915 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
1916 xop1 = copy_to_mode_reg (mode1, xop1);
1917
1918 /* We could handle this, but we should always be called with a pseudo
1919 for our targets and all insns should take them as outputs. */
1920 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
1921 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
1922 abort ();
1923
1924 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
1925 if (pat)
1926 {
1927 emit_insn (pat);
1928 return 1;
1929 }
1930 else
1931 delete_insns_since (last);
1932 }
1933
1934 /* It can't be done in this mode. Can we do it in a wider mode? */
1935
1936 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1937 {
1938 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1939 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1940 {
1941 if (binoptab->handlers[(int) wider_mode].insn_code
1942 != CODE_FOR_nothing)
1943 {
1944 register rtx t0 = gen_reg_rtx (wider_mode);
1945 register rtx t1 = gen_reg_rtx (wider_mode);
1946
1947 if (expand_twoval_binop (binoptab,
1948 convert_modes (wider_mode, mode, op0,
1949 unsignedp),
1950 convert_modes (wider_mode, mode, op1,
1951 unsignedp),
1952 t0, t1, unsignedp))
1953 {
1954 convert_move (targ0, t0, unsignedp);
1955 convert_move (targ1, t1, unsignedp);
1956 return 1;
1957 }
1958 else
1959 delete_insns_since (last);
1960 }
1961 }
1962 }
1963
1964 delete_insns_since (entry_last);
1965 return 0;
1966 }
1967 \f
1968 /* Generate code to perform an operation specified by UNOPTAB
1969 on operand OP0, with result having machine-mode MODE.
1970
1971 UNSIGNEDP is for the case where we have to widen the operands
1972 to perform the operation. It says to use zero-extension.
1973
1974 If TARGET is nonzero, the value
1975 is generated there, if it is convenient to do so.
1976 In all cases an rtx is returned for the locus of the value;
1977 this may or may not be TARGET. */
1978
1979 rtx
1980 expand_unop (mode, unoptab, op0, target, unsignedp)
1981 enum machine_mode mode;
1982 optab unoptab;
1983 rtx op0;
1984 rtx target;
1985 int unsignedp;
1986 {
1987 enum mode_class class;
1988 enum machine_mode wider_mode;
1989 register rtx temp;
1990 rtx last = get_last_insn ();
1991 rtx pat;
1992
1993 class = GET_MODE_CLASS (mode);
1994
1995 op0 = protect_from_queue (op0, 0);
1996
1997 if (flag_force_mem)
1998 {
1999 op0 = force_not_mem (op0);
2000 }
2001
2002 if (target)
2003 target = protect_from_queue (target, 1);
2004
2005 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2006 {
2007 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2008 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2009 rtx xop0 = op0;
2010
2011 if (target)
2012 temp = target;
2013 else
2014 temp = gen_reg_rtx (mode);
2015
2016 if (GET_MODE (xop0) != VOIDmode
2017 && GET_MODE (xop0) != mode0)
2018 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2019
2020 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2021
2022 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2023 xop0 = copy_to_mode_reg (mode0, xop0);
2024
2025 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2026 temp = gen_reg_rtx (mode);
2027
2028 pat = GEN_FCN (icode) (temp, xop0);
2029 if (pat)
2030 {
2031 if (GET_CODE (pat) == SEQUENCE
2032 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2033 {
2034 delete_insns_since (last);
2035 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2036 }
2037
2038 emit_insn (pat);
2039
2040 return temp;
2041 }
2042 else
2043 delete_insns_since (last);
2044 }
2045
2046 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2047
2048 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2049 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2050 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2051 {
2052 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2053 {
2054 rtx xop0 = op0;
2055
2056 /* For certain operations, we need not actually extend
2057 the narrow operand, as long as we will truncate the
2058 results to the same narrowness. */
2059
2060 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2061 (unoptab == neg_optab
2062 || unoptab == one_cmpl_optab)
2063 && class == MODE_INT);
2064
2065 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2066 unsignedp);
2067
2068 if (temp)
2069 {
2070 if (class != MODE_INT)
2071 {
2072 if (target == 0)
2073 target = gen_reg_rtx (mode);
2074 convert_move (target, temp, 0);
2075 return target;
2076 }
2077 else
2078 return gen_lowpart (mode, temp);
2079 }
2080 else
2081 delete_insns_since (last);
2082 }
2083 }
2084
2085 /* These can be done a word at a time. */
2086 if (unoptab == one_cmpl_optab
2087 && class == MODE_INT
2088 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2089 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2090 {
2091 int i;
2092 rtx insns;
2093
2094 if (target == 0 || target == op0)
2095 target = gen_reg_rtx (mode);
2096
2097 start_sequence ();
2098
2099 /* Do the actual arithmetic. */
2100 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2101 {
2102 rtx target_piece = operand_subword (target, i, 1, mode);
2103 rtx x = expand_unop (word_mode, unoptab,
2104 operand_subword_force (op0, i, mode),
2105 target_piece, unsignedp);
2106 if (target_piece != x)
2107 emit_move_insn (target_piece, x);
2108 }
2109
2110 insns = get_insns ();
2111 end_sequence ();
2112
2113 emit_no_conflict_block (insns, target, op0, NULL_RTX,
2114 gen_rtx_fmt_e (unoptab->code, mode,
2115 copy_rtx (op0)));
2116 return target;
2117 }
2118
2119 /* Open-code the complex negation operation. */
2120 else if (unoptab == neg_optab
2121 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2122 {
2123 rtx target_piece;
2124 rtx x;
2125 rtx seq;
2126
2127 /* Find the correct mode for the real and imaginary parts */
2128 enum machine_mode submode
2129 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2130 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2131 0);
2132
2133 if (submode == BLKmode)
2134 abort ();
2135
2136 if (target == 0)
2137 target = gen_reg_rtx (mode);
2138
2139 start_sequence ();
2140
2141 target_piece = gen_imagpart (submode, target);
2142 x = expand_unop (submode, unoptab,
2143 gen_imagpart (submode, op0),
2144 target_piece, unsignedp);
2145 if (target_piece != x)
2146 emit_move_insn (target_piece, x);
2147
2148 target_piece = gen_realpart (submode, target);
2149 x = expand_unop (submode, unoptab,
2150 gen_realpart (submode, op0),
2151 target_piece, unsignedp);
2152 if (target_piece != x)
2153 emit_move_insn (target_piece, x);
2154
2155 seq = get_insns ();
2156 end_sequence ();
2157
2158 emit_no_conflict_block (seq, target, op0, 0,
2159 gen_rtx_fmt_e (unoptab->code, mode,
2160 copy_rtx (op0)));
2161 return target;
2162 }
2163
2164 /* Now try a library call in this mode. */
2165 if (unoptab->handlers[(int) mode].libfunc)
2166 {
2167 rtx insns;
2168 rtx value;
2169
2170 start_sequence ();
2171
2172 /* Pass 1 for NO_QUEUE so we don't lose any increments
2173 if the libcall is cse'd or moved. */
2174 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2175 NULL_RTX, 1, mode, 1, op0, mode);
2176 insns = get_insns ();
2177 end_sequence ();
2178
2179 target = gen_reg_rtx (mode);
2180 emit_libcall_block (insns, target, value,
2181 gen_rtx_fmt_e (unoptab->code, mode, op0));
2182
2183 return target;
2184 }
2185
2186 /* It can't be done in this mode. Can we do it in a wider mode? */
2187
2188 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2189 {
2190 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2191 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2192 {
2193 if ((unoptab->handlers[(int) wider_mode].insn_code
2194 != CODE_FOR_nothing)
2195 || unoptab->handlers[(int) wider_mode].libfunc)
2196 {
2197 rtx xop0 = op0;
2198
2199 /* For certain operations, we need not actually extend
2200 the narrow operand, as long as we will truncate the
2201 results to the same narrowness. */
2202
2203 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2204 (unoptab == neg_optab
2205 || unoptab == one_cmpl_optab)
2206 && class == MODE_INT);
2207
2208 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2209 unsignedp);
2210
2211 if (temp)
2212 {
2213 if (class != MODE_INT)
2214 {
2215 if (target == 0)
2216 target = gen_reg_rtx (mode);
2217 convert_move (target, temp, 0);
2218 return target;
2219 }
2220 else
2221 return gen_lowpart (mode, temp);
2222 }
2223 else
2224 delete_insns_since (last);
2225 }
2226 }
2227 }
2228
2229 /* If there is no negate operation, try doing a subtract from zero.
2230 The US Software GOFAST library needs this. */
2231 if (unoptab == neg_optab)
2232 {
2233 rtx temp;
2234 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2235 target, unsignedp, OPTAB_LIB_WIDEN);
2236 if (temp)
2237 return temp;
2238 }
2239
2240 return 0;
2241 }
2242 \f
2243 /* Emit code to compute the absolute value of OP0, with result to
2244 TARGET if convenient. (TARGET may be 0.) The return value says
2245 where the result actually is to be found.
2246
2247 MODE is the mode of the operand; the mode of the result is
2248 different but can be deduced from MODE.
2249
2250 */
2251
2252 rtx
2253 expand_abs (mode, op0, target, safe)
2254 enum machine_mode mode;
2255 rtx op0;
2256 rtx target;
2257 int safe;
2258 {
2259 rtx temp, op1;
2260
2261 /* First try to do it with a special abs instruction. */
2262 temp = expand_unop (mode, abs_optab, op0, target, 0);
2263 if (temp != 0)
2264 return temp;
2265
2266 /* If this machine has expensive jumps, we can do integer absolute
2267 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2268 where W is the width of MODE. */
2269
2270 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2271 {
2272 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2273 size_int (GET_MODE_BITSIZE (mode) - 1),
2274 NULL_RTX, 0);
2275
2276 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2277 OPTAB_LIB_WIDEN);
2278 if (temp != 0)
2279 temp = expand_binop (mode, sub_optab, temp, extended, target, 0,
2280 OPTAB_LIB_WIDEN);
2281
2282 if (temp != 0)
2283 return temp;
2284 }
2285
2286 /* If that does not win, use conditional jump and negate. */
2287
2288 /* It is safe to use the target if it is the same
2289 as the source if this is also a pseudo register */
2290 if (op0 == target && GET_CODE (op0) == REG
2291 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2292 safe = 1;
2293
2294 op1 = gen_label_rtx ();
2295 if (target == 0 || ! safe
2296 || GET_MODE (target) != mode
2297 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2298 || (GET_CODE (target) == REG
2299 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2300 target = gen_reg_rtx (mode);
2301
2302 emit_move_insn (target, op0);
2303 NO_DEFER_POP;
2304
2305 /* If this mode is an integer too wide to compare properly,
2306 compare word by word. Rely on CSE to optimize constant cases. */
2307 if (GET_MODE_CLASS (mode) == MODE_INT && ! can_compare_p (mode, ccp_jump))
2308 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2309 NULL_RTX, op1);
2310 else
2311 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
2312 NULL_RTX, 0, NULL_RTX, op1);
2313
2314 op0 = expand_unop (mode, neg_optab, target, target, 0);
2315 if (op0 != target)
2316 emit_move_insn (target, op0);
2317 emit_label (op1);
2318 OK_DEFER_POP;
2319 return target;
2320 }
2321 \f
2322 /* Emit code to compute the absolute value of OP0, with result to
2323 TARGET if convenient. (TARGET may be 0.) The return value says
2324 where the result actually is to be found.
2325
2326 MODE is the mode of the operand; the mode of the result is
2327 different but can be deduced from MODE.
2328
2329 UNSIGNEDP is relevant for complex integer modes. */
2330
2331 rtx
2332 expand_complex_abs (mode, op0, target, unsignedp)
2333 enum machine_mode mode;
2334 rtx op0;
2335 rtx target;
2336 int unsignedp;
2337 {
2338 enum mode_class class = GET_MODE_CLASS (mode);
2339 enum machine_mode wider_mode;
2340 register rtx temp;
2341 rtx entry_last = get_last_insn ();
2342 rtx last;
2343 rtx pat;
2344
2345 /* Find the correct mode for the real and imaginary parts. */
2346 enum machine_mode submode
2347 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2348 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2349 0);
2350
2351 if (submode == BLKmode)
2352 abort ();
2353
2354 op0 = protect_from_queue (op0, 0);
2355
2356 if (flag_force_mem)
2357 {
2358 op0 = force_not_mem (op0);
2359 }
2360
2361 last = get_last_insn ();
2362
2363 if (target)
2364 target = protect_from_queue (target, 1);
2365
2366 if (abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2367 {
2368 int icode = (int) abs_optab->handlers[(int) mode].insn_code;
2369 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2370 rtx xop0 = op0;
2371
2372 if (target)
2373 temp = target;
2374 else
2375 temp = gen_reg_rtx (submode);
2376
2377 if (GET_MODE (xop0) != VOIDmode
2378 && GET_MODE (xop0) != mode0)
2379 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2380
2381 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2382
2383 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2384 xop0 = copy_to_mode_reg (mode0, xop0);
2385
2386 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
2387 temp = gen_reg_rtx (submode);
2388
2389 pat = GEN_FCN (icode) (temp, xop0);
2390 if (pat)
2391 {
2392 if (GET_CODE (pat) == SEQUENCE
2393 && ! add_equal_note (pat, temp, abs_optab->code, xop0, NULL_RTX))
2394 {
2395 delete_insns_since (last);
2396 return expand_unop (mode, abs_optab, op0, NULL_RTX, unsignedp);
2397 }
2398
2399 emit_insn (pat);
2400
2401 return temp;
2402 }
2403 else
2404 delete_insns_since (last);
2405 }
2406
2407 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2408
2409 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2410 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2411 {
2412 if (abs_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2413 {
2414 rtx xop0 = op0;
2415
2416 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2417 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2418
2419 if (temp)
2420 {
2421 if (class != MODE_COMPLEX_INT)
2422 {
2423 if (target == 0)
2424 target = gen_reg_rtx (submode);
2425 convert_move (target, temp, 0);
2426 return target;
2427 }
2428 else
2429 return gen_lowpart (submode, temp);
2430 }
2431 else
2432 delete_insns_since (last);
2433 }
2434 }
2435
2436 /* Open-code the complex absolute-value operation
2437 if we can open-code sqrt. Otherwise it's not worth while. */
2438 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing)
2439 {
2440 rtx real, imag, total;
2441
2442 real = gen_realpart (submode, op0);
2443 imag = gen_imagpart (submode, op0);
2444
2445 /* Square both parts. */
2446 real = expand_mult (submode, real, real, NULL_RTX, 0);
2447 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
2448
2449 /* Sum the parts. */
2450 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
2451 0, OPTAB_LIB_WIDEN);
2452
2453 /* Get sqrt in TARGET. Set TARGET to where the result is. */
2454 target = expand_unop (submode, sqrt_optab, total, target, 0);
2455 if (target == 0)
2456 delete_insns_since (last);
2457 else
2458 return target;
2459 }
2460
2461 /* Now try a library call in this mode. */
2462 if (abs_optab->handlers[(int) mode].libfunc)
2463 {
2464 rtx insns;
2465 rtx value;
2466
2467 start_sequence ();
2468
2469 /* Pass 1 for NO_QUEUE so we don't lose any increments
2470 if the libcall is cse'd or moved. */
2471 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
2472 NULL_RTX, 1, submode, 1, op0, mode);
2473 insns = get_insns ();
2474 end_sequence ();
2475
2476 target = gen_reg_rtx (submode);
2477 emit_libcall_block (insns, target, value,
2478 gen_rtx_fmt_e (abs_optab->code, mode, op0));
2479
2480 return target;
2481 }
2482
2483 /* It can't be done in this mode. Can we do it in a wider mode? */
2484
2485 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2486 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2487 {
2488 if ((abs_optab->handlers[(int) wider_mode].insn_code
2489 != CODE_FOR_nothing)
2490 || abs_optab->handlers[(int) wider_mode].libfunc)
2491 {
2492 rtx xop0 = op0;
2493
2494 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2495
2496 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2497
2498 if (temp)
2499 {
2500 if (class != MODE_COMPLEX_INT)
2501 {
2502 if (target == 0)
2503 target = gen_reg_rtx (submode);
2504 convert_move (target, temp, 0);
2505 return target;
2506 }
2507 else
2508 return gen_lowpart (submode, temp);
2509 }
2510 else
2511 delete_insns_since (last);
2512 }
2513 }
2514
2515 delete_insns_since (entry_last);
2516 return 0;
2517 }
2518 \f
2519 /* Generate an instruction whose insn-code is INSN_CODE,
2520 with two operands: an output TARGET and an input OP0.
2521 TARGET *must* be nonzero, and the output is always stored there.
2522 CODE is an rtx code such that (CODE OP0) is an rtx that describes
2523 the value that is stored into TARGET. */
2524
2525 void
2526 emit_unop_insn (icode, target, op0, code)
2527 int icode;
2528 rtx target;
2529 rtx op0;
2530 enum rtx_code code;
2531 {
2532 register rtx temp;
2533 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2534 rtx pat;
2535
2536 temp = target = protect_from_queue (target, 1);
2537
2538 op0 = protect_from_queue (op0, 0);
2539
2540 /* Sign and zero extension from memory is often done specially on
2541 RISC machines, so forcing into a register here can pessimize
2542 code. */
2543 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
2544 op0 = force_not_mem (op0);
2545
2546 /* Now, if insn does not accept our operands, put them into pseudos. */
2547
2548 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
2549 op0 = copy_to_mode_reg (mode0, op0);
2550
2551 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
2552 || (flag_force_mem && GET_CODE (temp) == MEM))
2553 temp = gen_reg_rtx (GET_MODE (temp));
2554
2555 pat = GEN_FCN (icode) (temp, op0);
2556
2557 if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN)
2558 add_equal_note (pat, temp, code, op0, NULL_RTX);
2559
2560 emit_insn (pat);
2561
2562 if (temp != target)
2563 emit_move_insn (target, temp);
2564 }
2565 \f
2566 /* Emit code to perform a series of operations on a multi-word quantity, one
2567 word at a time.
2568
2569 Such a block is preceded by a CLOBBER of the output, consists of multiple
2570 insns, each setting one word of the output, and followed by a SET copying
2571 the output to itself.
2572
2573 Each of the insns setting words of the output receives a REG_NO_CONFLICT
2574 note indicating that it doesn't conflict with the (also multi-word)
2575 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
2576 notes.
2577
2578 INSNS is a block of code generated to perform the operation, not including
2579 the CLOBBER and final copy. All insns that compute intermediate values
2580 are first emitted, followed by the block as described above.
2581
2582 TARGET, OP0, and OP1 are the output and inputs of the operations,
2583 respectively. OP1 may be zero for a unary operation.
2584
2585 EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
2586 on the last insn.
2587
2588 If TARGET is not a register, INSNS is simply emitted with no special
2589 processing. Likewise if anything in INSNS is not an INSN or if
2590 there is a libcall block inside INSNS.
2591
2592 The final insn emitted is returned. */
2593
2594 rtx
2595 emit_no_conflict_block (insns, target, op0, op1, equiv)
2596 rtx insns;
2597 rtx target;
2598 rtx op0, op1;
2599 rtx equiv;
2600 {
2601 rtx prev, next, first, last, insn;
2602
2603 if (GET_CODE (target) != REG || reload_in_progress)
2604 return emit_insns (insns);
2605 else
2606 for (insn = insns; insn; insn = NEXT_INSN (insn))
2607 if (GET_CODE (insn) != INSN
2608 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2609 return emit_insns (insns);
2610
2611 /* First emit all insns that do not store into words of the output and remove
2612 these from the list. */
2613 for (insn = insns; insn; insn = next)
2614 {
2615 rtx set = 0;
2616 int i;
2617
2618 next = NEXT_INSN (insn);
2619
2620 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
2621 || GET_CODE (PATTERN (insn)) == CLOBBER)
2622 set = PATTERN (insn);
2623 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2624 {
2625 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2626 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
2627 {
2628 set = XVECEXP (PATTERN (insn), 0, i);
2629 break;
2630 }
2631 }
2632
2633 if (set == 0)
2634 abort ();
2635
2636 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
2637 {
2638 if (PREV_INSN (insn))
2639 NEXT_INSN (PREV_INSN (insn)) = next;
2640 else
2641 insns = next;
2642
2643 if (next)
2644 PREV_INSN (next) = PREV_INSN (insn);
2645
2646 add_insn (insn);
2647 }
2648 }
2649
2650 prev = get_last_insn ();
2651
2652 /* Now write the CLOBBER of the output, followed by the setting of each
2653 of the words, followed by the final copy. */
2654 if (target != op0 && target != op1)
2655 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
2656
2657 for (insn = insns; insn; insn = next)
2658 {
2659 next = NEXT_INSN (insn);
2660 add_insn (insn);
2661
2662 if (op1 && GET_CODE (op1) == REG)
2663 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
2664 REG_NOTES (insn));
2665
2666 if (op0 && GET_CODE (op0) == REG)
2667 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
2668 REG_NOTES (insn));
2669 }
2670
2671 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2672 != CODE_FOR_nothing)
2673 {
2674 last = emit_move_insn (target, target);
2675 if (equiv)
2676 set_unique_reg_note (last, REG_EQUAL, equiv);
2677 }
2678 else
2679 last = get_last_insn ();
2680
2681 if (prev == 0)
2682 first = get_insns ();
2683 else
2684 first = NEXT_INSN (prev);
2685
2686 /* Encapsulate the block so it gets manipulated as a unit. */
2687 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
2688 REG_NOTES (first));
2689 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
2690
2691 return last;
2692 }
2693 \f
2694 /* Emit code to make a call to a constant function or a library call.
2695
2696 INSNS is a list containing all insns emitted in the call.
2697 These insns leave the result in RESULT. Our block is to copy RESULT
2698 to TARGET, which is logically equivalent to EQUIV.
2699
2700 We first emit any insns that set a pseudo on the assumption that these are
2701 loading constants into registers; doing so allows them to be safely cse'ed
2702 between blocks. Then we emit all the other insns in the block, followed by
2703 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
2704 note with an operand of EQUIV.
2705
2706 Moving assignments to pseudos outside of the block is done to improve
2707 the generated code, but is not required to generate correct code,
2708 hence being unable to move an assignment is not grounds for not making
2709 a libcall block. There are two reasons why it is safe to leave these
2710 insns inside the block: First, we know that these pseudos cannot be
2711 used in generated RTL outside the block since they are created for
2712 temporary purposes within the block. Second, CSE will not record the
2713 values of anything set inside a libcall block, so we know they must
2714 be dead at the end of the block.
2715
2716 Except for the first group of insns (the ones setting pseudos), the
2717 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
2718
2719 void
2720 emit_libcall_block (insns, target, result, equiv)
2721 rtx insns;
2722 rtx target;
2723 rtx result;
2724 rtx equiv;
2725 {
2726 rtx prev, next, first, last, insn;
2727
2728 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
2729 reg note to indicate that this call cannot throw. (Unless there is
2730 already a REG_EH_REGION note.) */
2731
2732 for (insn = insns; insn; insn = NEXT_INSN (insn))
2733 {
2734 if (GET_CODE (insn) == CALL_INSN)
2735 {
2736 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2737 if (note == NULL_RTX)
2738 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (-1),
2739 REG_NOTES (insn));
2740 }
2741 }
2742
2743 /* First emit all insns that set pseudos. Remove them from the list as
2744 we go. Avoid insns that set pseudos which were referenced in previous
2745 insns. These can be generated by move_by_pieces, for example,
2746 to update an address. Similarly, avoid insns that reference things
2747 set in previous insns. */
2748
2749 for (insn = insns; insn; insn = next)
2750 {
2751 rtx set = single_set (insn);
2752
2753 next = NEXT_INSN (insn);
2754
2755 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
2756 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
2757 && (insn == insns
2758 || (! reg_mentioned_p (SET_DEST (set), PATTERN (insns))
2759 && ! reg_used_between_p (SET_DEST (set), insns, insn)
2760 && ! modified_in_p (SET_SRC (set), insns)
2761 && ! modified_between_p (SET_SRC (set), insns, insn))))
2762 {
2763 if (PREV_INSN (insn))
2764 NEXT_INSN (PREV_INSN (insn)) = next;
2765 else
2766 insns = next;
2767
2768 if (next)
2769 PREV_INSN (next) = PREV_INSN (insn);
2770
2771 add_insn (insn);
2772 }
2773 }
2774
2775 prev = get_last_insn ();
2776
2777 /* Write the remaining insns followed by the final copy. */
2778
2779 for (insn = insns; insn; insn = next)
2780 {
2781 next = NEXT_INSN (insn);
2782
2783 add_insn (insn);
2784 }
2785
2786 last = emit_move_insn (target, result);
2787 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2788 != CODE_FOR_nothing)
2789 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
2790
2791 if (prev == 0)
2792 first = get_insns ();
2793 else
2794 first = NEXT_INSN (prev);
2795
2796 /* Encapsulate the block so it gets manipulated as a unit. */
2797 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
2798 REG_NOTES (first));
2799 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
2800 }
2801 \f
2802 /* Generate code to store zero in X. */
2803
2804 void
2805 emit_clr_insn (x)
2806 rtx x;
2807 {
2808 emit_move_insn (x, const0_rtx);
2809 }
2810
2811 /* Generate code to store 1 in X
2812 assuming it contains zero beforehand. */
2813
2814 void
2815 emit_0_to_1_insn (x)
2816 rtx x;
2817 {
2818 emit_move_insn (x, const1_rtx);
2819 }
2820
2821 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
2822 If FOR_JUMP is nonzero, we will be generating a jump based on this
2823 comparison, otherwise a store-flags operation. */
2824
2825 int
2826 can_compare_p (mode, purpose)
2827 enum machine_mode mode;
2828 enum can_compare_purpose purpose;
2829 {
2830 do
2831 {
2832 if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2833 return 1;
2834 if (purpose == ccp_jump
2835 && cbranch_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2836 return 1;
2837 if (purpose == ccp_cmov
2838 && cmov_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2839 return 1;
2840 if (purpose == ccp_store_flag
2841 && cstore_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2842 return 1;
2843
2844 mode = GET_MODE_WIDER_MODE (mode);
2845 }
2846 while (mode != VOIDmode);
2847
2848 return 0;
2849 }
2850
2851 /* This function is called when we are going to emit a compare instruction that
2852 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
2853
2854 *PMODE is the mode of the inputs (in case they are const_int).
2855 *PUNSIGNEDP nonzero says that the operands are unsigned;
2856 this matters if they need to be widened.
2857
2858 If they have mode BLKmode, then SIZE specifies the size of both operands,
2859 and ALIGN specifies the known shared alignment of the operands.
2860
2861 This function performs all the setup necessary so that the caller only has
2862 to emit a single comparison insn. This setup can involve doing a BLKmode
2863 comparison or emitting a library call to perform the comparison if no insn
2864 is available to handle it.
2865 The values which are passed in through pointers can be modified; the caller
2866 should perform the comparison on the modified values. */
2867
2868 void
2869 prepare_cmp_insn (px, py, pcomparison, size, pmode, punsignedp, align,
2870 purpose)
2871 rtx *px, *py;
2872 enum rtx_code *pcomparison;
2873 rtx size;
2874 enum machine_mode *pmode;
2875 int *punsignedp;
2876 int align;
2877 enum can_compare_purpose purpose;
2878 {
2879 enum machine_mode mode = *pmode;
2880 rtx x = *px, y = *py;
2881 int unsignedp = *punsignedp;
2882 enum mode_class class;
2883
2884 class = GET_MODE_CLASS (mode);
2885
2886 /* They could both be VOIDmode if both args are immediate constants,
2887 but we should fold that at an earlier stage.
2888 With no special code here, this will call abort,
2889 reminding the programmer to implement such folding. */
2890
2891 if (mode != BLKmode && flag_force_mem)
2892 {
2893 x = force_not_mem (x);
2894 y = force_not_mem (y);
2895 }
2896
2897 /* If we are inside an appropriately-short loop and one operand is an
2898 expensive constant, force it into a register. */
2899 if (CONSTANT_P (x) && preserve_subexpressions_p () && rtx_cost (x, COMPARE) > 2)
2900 x = force_reg (mode, x);
2901
2902 if (CONSTANT_P (y) && preserve_subexpressions_p () && rtx_cost (y, COMPARE) > 2)
2903 y = force_reg (mode, y);
2904
2905 #ifdef HAVE_cc0
2906 /* Abort if we have a non-canonical comparison. The RTL documentation
2907 states that canonical comparisons are required only for targets which
2908 have cc0. */
2909 if (CONSTANT_P (x) && ! CONSTANT_P (y))
2910 abort();
2911 #endif
2912
2913 /* Don't let both operands fail to indicate the mode. */
2914 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
2915 x = force_reg (mode, x);
2916
2917 /* Handle all BLKmode compares. */
2918
2919 if (mode == BLKmode)
2920 {
2921 rtx result;
2922 enum machine_mode result_mode;
2923
2924 emit_queue ();
2925 x = protect_from_queue (x, 0);
2926 y = protect_from_queue (y, 0);
2927
2928 if (size == 0)
2929 abort ();
2930 #ifdef HAVE_cmpstrqi
2931 if (HAVE_cmpstrqi
2932 && GET_CODE (size) == CONST_INT
2933 && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
2934 {
2935 result_mode = insn_data[(int) CODE_FOR_cmpstrqi].operand[0].mode;
2936 result = gen_reg_rtx (result_mode);
2937 emit_insn (gen_cmpstrqi (result, x, y, size, GEN_INT (align)));
2938 }
2939 else
2940 #endif
2941 #ifdef HAVE_cmpstrhi
2942 if (HAVE_cmpstrhi
2943 && GET_CODE (size) == CONST_INT
2944 && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
2945 {
2946 result_mode = insn_data[(int) CODE_FOR_cmpstrhi].operand[0].mode;
2947 result = gen_reg_rtx (result_mode);
2948 emit_insn (gen_cmpstrhi (result, x, y, size, GEN_INT (align)));
2949 }
2950 else
2951 #endif
2952 #ifdef HAVE_cmpstrsi
2953 if (HAVE_cmpstrsi)
2954 {
2955 result_mode = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
2956 result = gen_reg_rtx (result_mode);
2957 size = protect_from_queue (size, 0);
2958 emit_insn (gen_cmpstrsi (result, x, y,
2959 convert_to_mode (SImode, size, 1),
2960 GEN_INT (align)));
2961 }
2962 else
2963 #endif
2964 {
2965 #ifdef TARGET_MEM_FUNCTIONS
2966 emit_library_call (memcmp_libfunc, 0,
2967 TYPE_MODE (integer_type_node), 3,
2968 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
2969 convert_to_mode (TYPE_MODE (sizetype), size,
2970 TREE_UNSIGNED (sizetype)),
2971 TYPE_MODE (sizetype));
2972 #else
2973 emit_library_call (bcmp_libfunc, 0,
2974 TYPE_MODE (integer_type_node), 3,
2975 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
2976 convert_to_mode (TYPE_MODE (integer_type_node),
2977 size,
2978 TREE_UNSIGNED (integer_type_node)),
2979 TYPE_MODE (integer_type_node));
2980 #endif
2981
2982 /* Immediately move the result of the libcall into a pseudo
2983 register so reload doesn't clobber the value if it needs
2984 the return register for a spill reg. */
2985 result = gen_reg_rtx (TYPE_MODE (integer_type_node));
2986 result_mode = TYPE_MODE (integer_type_node);
2987 emit_move_insn (result,
2988 hard_libcall_value (result_mode));
2989 }
2990 *px = result;
2991 *py = const0_rtx;
2992 *pmode = result_mode;
2993 return;
2994 }
2995
2996 *px = x;
2997 *py = y;
2998 if (can_compare_p (mode, purpose))
2999 return;
3000
3001 /* Handle a lib call just for the mode we are using. */
3002
3003 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3004 {
3005 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3006 rtx result;
3007
3008 /* If we want unsigned, and this mode has a distinct unsigned
3009 comparison routine, use that. */
3010 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3011 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3012
3013 emit_library_call (libfunc, 1,
3014 word_mode, 2, x, mode, y, mode);
3015
3016 /* Immediately move the result of the libcall into a pseudo
3017 register so reload doesn't clobber the value if it needs
3018 the return register for a spill reg. */
3019 result = gen_reg_rtx (word_mode);
3020 emit_move_insn (result, hard_libcall_value (word_mode));
3021
3022 /* Integer comparison returns a result that must be compared against 1,
3023 so that even if we do an unsigned compare afterward,
3024 there is still a value that can represent the result "less than". */
3025 *px = result;
3026 *py = const1_rtx;
3027 *pmode = word_mode;
3028 return;
3029 }
3030
3031 if (class == MODE_FLOAT)
3032 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3033
3034 else
3035 abort ();
3036 }
3037
3038 /* Before emitting an insn with code ICODE, make sure that X, which is going
3039 to be used for operand OPNUM of the insn, is converted from mode MODE to
3040 WIDER_MODE (UNSIGNEDP determines whether it is a unsigned conversion), and
3041 that it is accepted by the operand predicate. Return the new value. */
3042 rtx
3043 prepare_operand (icode, x, opnum, mode, wider_mode, unsignedp)
3044 int icode;
3045 rtx x;
3046 int opnum;
3047 enum machine_mode mode, wider_mode;
3048 int unsignedp;
3049 {
3050 x = protect_from_queue (x, 0);
3051
3052 if (mode != wider_mode)
3053 x = convert_modes (wider_mode, mode, x, unsignedp);
3054
3055 if (! (*insn_data[icode].operand[opnum].predicate)
3056 (x, insn_data[icode].operand[opnum].mode))
3057 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3058 return x;
3059 }
3060
3061 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3062 we can do the comparison.
3063 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3064 be NULL_RTX which indicates that only a comparison is to be generated. */
3065
3066 static void
3067 emit_cmp_and_jump_insn_1 (x, y, mode, comparison, unsignedp, label)
3068 rtx x, y;
3069 enum machine_mode mode;
3070 enum rtx_code comparison;
3071 int unsignedp;
3072 rtx label;
3073 {
3074 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3075 enum mode_class class = GET_MODE_CLASS (mode);
3076 enum machine_mode wider_mode = mode;
3077
3078 /* Try combined insns first. */
3079 do
3080 {
3081 enum insn_code icode;
3082 PUT_MODE (test, wider_mode);
3083
3084 if (label)
3085 {
3086 icode = cbranch_optab->handlers[(int)wider_mode].insn_code;
3087
3088 if (icode != CODE_FOR_nothing
3089 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3090 {
3091 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3092 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3093 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3094 return;
3095 }
3096 }
3097
3098 /* Handle some compares against zero. */
3099 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3100 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3101 {
3102 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3103 emit_insn (GEN_FCN (icode) (x));
3104 if (label)
3105 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3106 return;
3107 }
3108
3109 /* Handle compares for which there is a directly suitable insn. */
3110
3111 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3112 if (icode != CODE_FOR_nothing)
3113 {
3114 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3115 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3116 emit_insn (GEN_FCN (icode) (x, y));
3117 if (label)
3118 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3119 return;
3120 }
3121
3122 if (class != MODE_INT && class != MODE_FLOAT
3123 && class != MODE_COMPLEX_FLOAT)
3124 break;
3125
3126 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3127 } while (wider_mode != VOIDmode);
3128
3129 abort ();
3130 }
3131
3132 /* Generate code to compare X with Y so that the condition codes are
3133 set and to jump to LABEL if the condition is true. If X is a
3134 constant and Y is not a constant, then the comparison is swapped to
3135 ensure that the comparison RTL has the canonical form.
3136
3137 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3138 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3139 the proper branch condition code.
3140
3141 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y,
3142 and ALIGN specifies the known shared alignment of X and Y.
3143
3144 MODE is the mode of the inputs (in case they are const_int).
3145
3146 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3147 be passed unchanged to emit_cmp_insn, then potentially converted into an
3148 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
3149
3150 void
3151 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, align, label)
3152 rtx x, y;
3153 enum rtx_code comparison;
3154 rtx size;
3155 enum machine_mode mode;
3156 int unsignedp;
3157 int align;
3158 rtx label;
3159 {
3160 rtx op0;
3161 rtx op1;
3162
3163 if ((CONSTANT_P (x) && ! CONSTANT_P (y))
3164 || (GET_CODE (x) == CONST_INT && GET_CODE (y) != CONST_INT))
3165 {
3166 /* Swap operands and condition to ensure canonical RTL. */
3167 op0 = y;
3168 op1 = x;
3169 comparison = swap_condition (comparison);
3170 }
3171 else
3172 {
3173 op0 = x;
3174 op1 = y;
3175 }
3176
3177 #ifdef HAVE_cc0
3178 /* If OP0 is still a constant, then both X and Y must be constants. Force
3179 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3180 RTL. */
3181 if (CONSTANT_P (op0))
3182 op0 = force_reg (mode, op0);
3183 #endif
3184
3185 emit_queue ();
3186 if (unsignedp)
3187 comparison = unsigned_condition (comparison);
3188 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp, align,
3189 ccp_jump);
3190 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3191 }
3192
3193 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
3194 void
3195 emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align)
3196 rtx x, y;
3197 enum rtx_code comparison;
3198 rtx size;
3199 enum machine_mode mode;
3200 int unsignedp;
3201 int align;
3202 {
3203 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, align, 0);
3204 }
3205 \f
3206 /* Emit a library call comparison between floating point X and Y.
3207 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3208
3209 static void
3210 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp)
3211 rtx *px, *py;
3212 enum rtx_code *pcomparison;
3213 enum machine_mode *pmode;
3214 int *punsignedp;
3215 {
3216 enum rtx_code comparison = *pcomparison;
3217 rtx x = *px, y = *py;
3218 enum machine_mode mode = GET_MODE (x);
3219 rtx libfunc = 0;
3220 rtx result;
3221
3222 if (mode == HFmode)
3223 switch (comparison)
3224 {
3225 case EQ:
3226 libfunc = eqhf2_libfunc;
3227 break;
3228
3229 case NE:
3230 libfunc = nehf2_libfunc;
3231 break;
3232
3233 case GT:
3234 libfunc = gthf2_libfunc;
3235 break;
3236
3237 case GE:
3238 libfunc = gehf2_libfunc;
3239 break;
3240
3241 case LT:
3242 libfunc = lthf2_libfunc;
3243 break;
3244
3245 case LE:
3246 libfunc = lehf2_libfunc;
3247 break;
3248
3249 default:
3250 break;
3251 }
3252 else if (mode == SFmode)
3253 switch (comparison)
3254 {
3255 case EQ:
3256 libfunc = eqsf2_libfunc;
3257 break;
3258
3259 case NE:
3260 libfunc = nesf2_libfunc;
3261 break;
3262
3263 case GT:
3264 libfunc = gtsf2_libfunc;
3265 break;
3266
3267 case GE:
3268 libfunc = gesf2_libfunc;
3269 break;
3270
3271 case LT:
3272 libfunc = ltsf2_libfunc;
3273 break;
3274
3275 case LE:
3276 libfunc = lesf2_libfunc;
3277 break;
3278
3279 default:
3280 break;
3281 }
3282 else if (mode == DFmode)
3283 switch (comparison)
3284 {
3285 case EQ:
3286 libfunc = eqdf2_libfunc;
3287 break;
3288
3289 case NE:
3290 libfunc = nedf2_libfunc;
3291 break;
3292
3293 case GT:
3294 libfunc = gtdf2_libfunc;
3295 break;
3296
3297 case GE:
3298 libfunc = gedf2_libfunc;
3299 break;
3300
3301 case LT:
3302 libfunc = ltdf2_libfunc;
3303 break;
3304
3305 case LE:
3306 libfunc = ledf2_libfunc;
3307 break;
3308
3309 default:
3310 break;
3311 }
3312 else if (mode == XFmode)
3313 switch (comparison)
3314 {
3315 case EQ:
3316 libfunc = eqxf2_libfunc;
3317 break;
3318
3319 case NE:
3320 libfunc = nexf2_libfunc;
3321 break;
3322
3323 case GT:
3324 libfunc = gtxf2_libfunc;
3325 break;
3326
3327 case GE:
3328 libfunc = gexf2_libfunc;
3329 break;
3330
3331 case LT:
3332 libfunc = ltxf2_libfunc;
3333 break;
3334
3335 case LE:
3336 libfunc = lexf2_libfunc;
3337 break;
3338
3339 default:
3340 break;
3341 }
3342 else if (mode == TFmode)
3343 switch (comparison)
3344 {
3345 case EQ:
3346 libfunc = eqtf2_libfunc;
3347 break;
3348
3349 case NE:
3350 libfunc = netf2_libfunc;
3351 break;
3352
3353 case GT:
3354 libfunc = gttf2_libfunc;
3355 break;
3356
3357 case GE:
3358 libfunc = getf2_libfunc;
3359 break;
3360
3361 case LT:
3362 libfunc = lttf2_libfunc;
3363 break;
3364
3365 case LE:
3366 libfunc = letf2_libfunc;
3367 break;
3368
3369 default:
3370 break;
3371 }
3372 else
3373 {
3374 enum machine_mode wider_mode;
3375
3376 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3377 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3378 {
3379 if ((cmp_optab->handlers[(int) wider_mode].insn_code
3380 != CODE_FOR_nothing)
3381 || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
3382 {
3383 x = protect_from_queue (x, 0);
3384 y = protect_from_queue (y, 0);
3385 *px = convert_to_mode (wider_mode, x, 0);
3386 *py = convert_to_mode (wider_mode, y, 0);
3387 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3388 return;
3389 }
3390 }
3391 abort ();
3392 }
3393
3394 if (libfunc == 0)
3395 abort ();
3396
3397 emit_library_call (libfunc, 1,
3398 word_mode, 2, x, mode, y, mode);
3399
3400 /* Immediately move the result of the libcall into a pseudo
3401 register so reload doesn't clobber the value if it needs
3402 the return register for a spill reg. */
3403 result = gen_reg_rtx (word_mode);
3404 emit_move_insn (result, hard_libcall_value (word_mode));
3405 *px = result;
3406 *py = const0_rtx;
3407 *pmode = word_mode;
3408 #ifdef FLOAT_LIB_COMPARE_RETURNS_BOOL
3409 if (FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
3410 *pcomparison = NE;
3411 #endif
3412 *punsignedp = 0;
3413 }
3414 \f
3415 /* Generate code to indirectly jump to a location given in the rtx LOC. */
3416
3417 void
3418 emit_indirect_jump (loc)
3419 rtx loc;
3420 {
3421 if (! ((*insn_data[(int)CODE_FOR_indirect_jump].operand[0].predicate)
3422 (loc, Pmode)))
3423 loc = copy_to_mode_reg (Pmode, loc);
3424
3425 emit_jump_insn (gen_indirect_jump (loc));
3426 emit_barrier ();
3427 }
3428 \f
3429 #ifdef HAVE_conditional_move
3430
3431 /* Emit a conditional move instruction if the machine supports one for that
3432 condition and machine mode.
3433
3434 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
3435 the mode to use should they be constants. If it is VOIDmode, they cannot
3436 both be constants.
3437
3438 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
3439 should be stored there. MODE is the mode to use should they be constants.
3440 If it is VOIDmode, they cannot both be constants.
3441
3442 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
3443 is not supported. */
3444
3445 rtx
3446 emit_conditional_move (target, code, op0, op1, cmode, op2, op3, mode,
3447 unsignedp)
3448 rtx target;
3449 enum rtx_code code;
3450 rtx op0, op1;
3451 enum machine_mode cmode;
3452 rtx op2, op3;
3453 enum machine_mode mode;
3454 int unsignedp;
3455 {
3456 rtx tem, subtarget, comparison, insn;
3457 enum insn_code icode;
3458
3459 /* If one operand is constant, make it the second one. Only do this
3460 if the other operand is not constant as well. */
3461
3462 if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
3463 || (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
3464 {
3465 tem = op0;
3466 op0 = op1;
3467 op1 = tem;
3468 code = swap_condition (code);
3469 }
3470
3471 /* get_condition will prefer to generate LT and GT even if the old
3472 comparison was against zero, so undo that canonicalization here since
3473 comparisons against zero are cheaper. */
3474 if (code == LT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == 1)
3475 code = LE, op1 = const0_rtx;
3476 else if (code == GT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == -1)
3477 code = GE, op1 = const0_rtx;
3478
3479 if (cmode == VOIDmode)
3480 cmode = GET_MODE (op0);
3481
3482 if (((CONSTANT_P (op2) && ! CONSTANT_P (op3))
3483 || (GET_CODE (op2) == CONST_INT && GET_CODE (op3) != CONST_INT))
3484 && (GET_MODE_CLASS (GET_MODE (op1)) != MODE_FLOAT
3485 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT || flag_fast_math))
3486 {
3487 tem = op2;
3488 op2 = op3;
3489 op3 = tem;
3490 code = reverse_condition (code);
3491 }
3492
3493 if (mode == VOIDmode)
3494 mode = GET_MODE (op2);
3495
3496 icode = movcc_gen_code[mode];
3497
3498 if (icode == CODE_FOR_nothing)
3499 return 0;
3500
3501 if (flag_force_mem)
3502 {
3503 op2 = force_not_mem (op2);
3504 op3 = force_not_mem (op3);
3505 }
3506
3507 if (target)
3508 target = protect_from_queue (target, 1);
3509 else
3510 target = gen_reg_rtx (mode);
3511
3512 subtarget = target;
3513
3514 emit_queue ();
3515
3516 op2 = protect_from_queue (op2, 0);
3517 op3 = protect_from_queue (op3, 0);
3518
3519 /* If the insn doesn't accept these operands, put them in pseudos. */
3520
3521 if (! (*insn_data[icode].operand[0].predicate)
3522 (subtarget, insn_data[icode].operand[0].mode))
3523 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
3524
3525 if (! (*insn_data[icode].operand[2].predicate)
3526 (op2, insn_data[icode].operand[2].mode))
3527 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
3528
3529 if (! (*insn_data[icode].operand[3].predicate)
3530 (op3, insn_data[icode].operand[3].mode))
3531 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
3532
3533 /* Everything should now be in the suitable form, so emit the compare insn
3534 and then the conditional move. */
3535
3536 comparison
3537 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX, 0);
3538
3539 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
3540 if (GET_CODE (comparison) != code)
3541 /* This shouldn't happen. */
3542 abort ();
3543
3544 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
3545
3546 /* If that failed, then give up. */
3547 if (insn == 0)
3548 return 0;
3549
3550 emit_insn (insn);
3551
3552 if (subtarget != target)
3553 convert_move (target, subtarget, 0);
3554
3555 return target;
3556 }
3557
3558 /* Return non-zero if a conditional move of mode MODE is supported.
3559
3560 This function is for combine so it can tell whether an insn that looks
3561 like a conditional move is actually supported by the hardware. If we
3562 guess wrong we lose a bit on optimization, but that's it. */
3563 /* ??? sparc64 supports conditionally moving integers values based on fp
3564 comparisons, and vice versa. How do we handle them? */
3565
3566 int
3567 can_conditionally_move_p (mode)
3568 enum machine_mode mode;
3569 {
3570 if (movcc_gen_code[mode] != CODE_FOR_nothing)
3571 return 1;
3572
3573 return 0;
3574 }
3575
3576 #endif /* HAVE_conditional_move */
3577 \f
3578 /* These three functions generate an insn body and return it
3579 rather than emitting the insn.
3580
3581 They do not protect from queued increments,
3582 because they may be used 1) in protect_from_queue itself
3583 and 2) in other passes where there is no queue. */
3584
3585 /* Generate and return an insn body to add Y to X. */
3586
3587 rtx
3588 gen_add2_insn (x, y)
3589 rtx x, y;
3590 {
3591 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
3592
3593 if (! ((*insn_data[icode].operand[0].predicate)
3594 (x, insn_data[icode].operand[0].mode))
3595 || ! ((*insn_data[icode].operand[1].predicate)
3596 (x, insn_data[icode].operand[1].mode))
3597 || ! ((*insn_data[icode].operand[2].predicate)
3598 (y, insn_data[icode].operand[2].mode)))
3599 abort ();
3600
3601 return (GEN_FCN (icode) (x, x, y));
3602 }
3603
3604 int
3605 have_add2_insn (mode)
3606 enum machine_mode mode;
3607 {
3608 return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
3609 }
3610
3611 /* Generate and return an insn body to subtract Y from X. */
3612
3613 rtx
3614 gen_sub2_insn (x, y)
3615 rtx x, y;
3616 {
3617 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
3618
3619 if (! ((*insn_data[icode].operand[0].predicate)
3620 (x, insn_data[icode].operand[0].mode))
3621 || ! ((*insn_data[icode].operand[1].predicate)
3622 (x, insn_data[icode].operand[1].mode))
3623 || ! ((*insn_data[icode].operand[2].predicate)
3624 (y, insn_data[icode].operand[2].mode)))
3625 abort ();
3626
3627 return (GEN_FCN (icode) (x, x, y));
3628 }
3629
3630 int
3631 have_sub2_insn (mode)
3632 enum machine_mode mode;
3633 {
3634 return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
3635 }
3636
3637 /* Generate the body of an instruction to copy Y into X.
3638 It may be a SEQUENCE, if one insn isn't enough. */
3639
3640 rtx
3641 gen_move_insn (x, y)
3642 rtx x, y;
3643 {
3644 register enum machine_mode mode = GET_MODE (x);
3645 enum insn_code insn_code;
3646 rtx seq;
3647
3648 if (mode == VOIDmode)
3649 mode = GET_MODE (y);
3650
3651 insn_code = mov_optab->handlers[(int) mode].insn_code;
3652
3653 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
3654 find a mode to do it in. If we have a movcc, use it. Otherwise,
3655 find the MODE_INT mode of the same width. */
3656
3657 if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
3658 {
3659 enum machine_mode tmode = VOIDmode;
3660 rtx x1 = x, y1 = y;
3661
3662 if (mode != CCmode
3663 && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
3664 tmode = CCmode;
3665 else
3666 for (tmode = QImode; tmode != VOIDmode;
3667 tmode = GET_MODE_WIDER_MODE (tmode))
3668 if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
3669 break;
3670
3671 if (tmode == VOIDmode)
3672 abort ();
3673
3674 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
3675 may call change_address which is not appropriate if we were
3676 called when a reload was in progress. We don't have to worry
3677 about changing the address since the size in bytes is supposed to
3678 be the same. Copy the MEM to change the mode and move any
3679 substitutions from the old MEM to the new one. */
3680
3681 if (reload_in_progress)
3682 {
3683 x = gen_lowpart_common (tmode, x1);
3684 if (x == 0 && GET_CODE (x1) == MEM)
3685 {
3686 x = gen_rtx_MEM (tmode, XEXP (x1, 0));
3687 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (x1);
3688 MEM_COPY_ATTRIBUTES (x, x1);
3689 copy_replacements (x1, x);
3690 }
3691
3692 y = gen_lowpart_common (tmode, y1);
3693 if (y == 0 && GET_CODE (y1) == MEM)
3694 {
3695 y = gen_rtx_MEM (tmode, XEXP (y1, 0));
3696 RTX_UNCHANGING_P (y) = RTX_UNCHANGING_P (y1);
3697 MEM_COPY_ATTRIBUTES (y, y1);
3698 copy_replacements (y1, y);
3699 }
3700 }
3701 else
3702 {
3703 x = gen_lowpart (tmode, x);
3704 y = gen_lowpart (tmode, y);
3705 }
3706
3707 insn_code = mov_optab->handlers[(int) tmode].insn_code;
3708 return (GEN_FCN (insn_code) (x, y));
3709 }
3710
3711 start_sequence ();
3712 emit_move_insn_1 (x, y);
3713 seq = gen_sequence ();
3714 end_sequence ();
3715 return seq;
3716 }
3717 \f
3718 /* Return the insn code used to extend FROM_MODE to TO_MODE.
3719 UNSIGNEDP specifies zero-extension instead of sign-extension. If
3720 no such operation exists, CODE_FOR_nothing will be returned. */
3721
3722 enum insn_code
3723 can_extend_p (to_mode, from_mode, unsignedp)
3724 enum machine_mode to_mode, from_mode;
3725 int unsignedp;
3726 {
3727 return extendtab[(int) to_mode][(int) from_mode][unsignedp];
3728 }
3729
3730 /* Generate the body of an insn to extend Y (with mode MFROM)
3731 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
3732
3733 rtx
3734 gen_extend_insn (x, y, mto, mfrom, unsignedp)
3735 rtx x, y;
3736 enum machine_mode mto, mfrom;
3737 int unsignedp;
3738 {
3739 return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp]) (x, y));
3740 }
3741 \f
3742 /* can_fix_p and can_float_p say whether the target machine
3743 can directly convert a given fixed point type to
3744 a given floating point type, or vice versa.
3745 The returned value is the CODE_FOR_... value to use,
3746 or CODE_FOR_nothing if these modes cannot be directly converted.
3747
3748 *TRUNCP_PTR is set to 1 if it is necessary to output
3749 an explicit FTRUNC insn before the fix insn; otherwise 0. */
3750
3751 static enum insn_code
3752 can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
3753 enum machine_mode fltmode, fixmode;
3754 int unsignedp;
3755 int *truncp_ptr;
3756 {
3757 *truncp_ptr = 0;
3758 if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp] != CODE_FOR_nothing)
3759 return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp];
3760
3761 if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
3762 {
3763 *truncp_ptr = 1;
3764 return fixtab[(int) fltmode][(int) fixmode][unsignedp];
3765 }
3766 return CODE_FOR_nothing;
3767 }
3768
3769 static enum insn_code
3770 can_float_p (fltmode, fixmode, unsignedp)
3771 enum machine_mode fixmode, fltmode;
3772 int unsignedp;
3773 {
3774 return floattab[(int) fltmode][(int) fixmode][unsignedp];
3775 }
3776 \f
3777 /* Generate code to convert FROM to floating point
3778 and store in TO. FROM must be fixed point and not VOIDmode.
3779 UNSIGNEDP nonzero means regard FROM as unsigned.
3780 Normally this is done by correcting the final value
3781 if it is negative. */
3782
3783 void
3784 expand_float (to, from, unsignedp)
3785 rtx to, from;
3786 int unsignedp;
3787 {
3788 enum insn_code icode;
3789 register rtx target = to;
3790 enum machine_mode fmode, imode;
3791
3792 /* Crash now, because we won't be able to decide which mode to use. */
3793 if (GET_MODE (from) == VOIDmode)
3794 abort ();
3795
3796 /* Look for an insn to do the conversion. Do it in the specified
3797 modes if possible; otherwise convert either input, output or both to
3798 wider mode. If the integer mode is wider than the mode of FROM,
3799 we can do the conversion signed even if the input is unsigned. */
3800
3801 for (imode = GET_MODE (from); imode != VOIDmode;
3802 imode = GET_MODE_WIDER_MODE (imode))
3803 for (fmode = GET_MODE (to); fmode != VOIDmode;
3804 fmode = GET_MODE_WIDER_MODE (fmode))
3805 {
3806 int doing_unsigned = unsignedp;
3807
3808 icode = can_float_p (fmode, imode, unsignedp);
3809 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
3810 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
3811
3812 if (icode != CODE_FOR_nothing)
3813 {
3814 to = protect_from_queue (to, 1);
3815 from = protect_from_queue (from, 0);
3816
3817 if (imode != GET_MODE (from))
3818 from = convert_to_mode (imode, from, unsignedp);
3819
3820 if (fmode != GET_MODE (to))
3821 target = gen_reg_rtx (fmode);
3822
3823 emit_unop_insn (icode, target, from,
3824 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
3825
3826 if (target != to)
3827 convert_move (to, target, 0);
3828 return;
3829 }
3830 }
3831
3832 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3833
3834 /* Unsigned integer, and no way to convert directly.
3835 Convert as signed, then conditionally adjust the result. */
3836 if (unsignedp)
3837 {
3838 rtx label = gen_label_rtx ();
3839 rtx temp;
3840 REAL_VALUE_TYPE offset;
3841
3842 emit_queue ();
3843
3844 to = protect_from_queue (to, 1);
3845 from = protect_from_queue (from, 0);
3846
3847 if (flag_force_mem)
3848 from = force_not_mem (from);
3849
3850 /* Look for a usable floating mode FMODE wider than the source and at
3851 least as wide as the target. Using FMODE will avoid rounding woes
3852 with unsigned values greater than the signed maximum value. */
3853
3854 for (fmode = GET_MODE (to); fmode != VOIDmode;
3855 fmode = GET_MODE_WIDER_MODE (fmode))
3856 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
3857 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
3858 break;
3859
3860 if (fmode == VOIDmode)
3861 {
3862 /* There is no such mode. Pretend the target is wide enough. */
3863 fmode = GET_MODE (to);
3864
3865 /* Avoid double-rounding when TO is narrower than FROM. */
3866 if ((significand_size (fmode) + 1)
3867 < GET_MODE_BITSIZE (GET_MODE (from)))
3868 {
3869 rtx temp1;
3870 rtx neglabel = gen_label_rtx ();
3871
3872 /* Don't use TARGET if it isn't a register, is a hard register,
3873 or is the wrong mode. */
3874 if (GET_CODE (target) != REG
3875 || REGNO (target) < FIRST_PSEUDO_REGISTER
3876 || GET_MODE (target) != fmode)
3877 target = gen_reg_rtx (fmode);
3878
3879 imode = GET_MODE (from);
3880 do_pending_stack_adjust ();
3881
3882 /* Test whether the sign bit is set. */
3883 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
3884 0, 0, neglabel);
3885
3886 /* The sign bit is not set. Convert as signed. */
3887 expand_float (target, from, 0);
3888 emit_jump_insn (gen_jump (label));
3889 emit_barrier ();
3890
3891 /* The sign bit is set.
3892 Convert to a usable (positive signed) value by shifting right
3893 one bit, while remembering if a nonzero bit was shifted
3894 out; i.e., compute (from & 1) | (from >> 1). */
3895
3896 emit_label (neglabel);
3897 temp = expand_binop (imode, and_optab, from, const1_rtx,
3898 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3899 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
3900 NULL_RTX, 1);
3901 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
3902 OPTAB_LIB_WIDEN);
3903 expand_float (target, temp, 0);
3904
3905 /* Multiply by 2 to undo the shift above. */
3906 temp = expand_binop (fmode, add_optab, target, target,
3907 target, 0, OPTAB_LIB_WIDEN);
3908 if (temp != target)
3909 emit_move_insn (target, temp);
3910
3911 do_pending_stack_adjust ();
3912 emit_label (label);
3913 goto done;
3914 }
3915 }
3916
3917 /* If we are about to do some arithmetic to correct for an
3918 unsigned operand, do it in a pseudo-register. */
3919
3920 if (GET_MODE (to) != fmode
3921 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
3922 target = gen_reg_rtx (fmode);
3923
3924 /* Convert as signed integer to floating. */
3925 expand_float (target, from, 0);
3926
3927 /* If FROM is negative (and therefore TO is negative),
3928 correct its value by 2**bitwidth. */
3929
3930 do_pending_stack_adjust ();
3931 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
3932 0, 0, label);
3933
3934 /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
3935 Rather than setting up a dconst_dot_5, let's hope SCO
3936 fixes the bug. */
3937 offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
3938 temp = expand_binop (fmode, add_optab, target,
3939 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
3940 target, 0, OPTAB_LIB_WIDEN);
3941 if (temp != target)
3942 emit_move_insn (target, temp);
3943
3944 do_pending_stack_adjust ();
3945 emit_label (label);
3946 goto done;
3947 }
3948 #endif
3949
3950 /* No hardware instruction available; call a library routine to convert from
3951 SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
3952 {
3953 rtx libfcn;
3954 rtx insns;
3955 rtx value;
3956
3957 to = protect_from_queue (to, 1);
3958 from = protect_from_queue (from, 0);
3959
3960 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
3961 from = convert_to_mode (SImode, from, unsignedp);
3962
3963 if (flag_force_mem)
3964 from = force_not_mem (from);
3965
3966 if (GET_MODE (to) == SFmode)
3967 {
3968 if (GET_MODE (from) == SImode)
3969 libfcn = floatsisf_libfunc;
3970 else if (GET_MODE (from) == DImode)
3971 libfcn = floatdisf_libfunc;
3972 else if (GET_MODE (from) == TImode)
3973 libfcn = floattisf_libfunc;
3974 else
3975 abort ();
3976 }
3977 else if (GET_MODE (to) == DFmode)
3978 {
3979 if (GET_MODE (from) == SImode)
3980 libfcn = floatsidf_libfunc;
3981 else if (GET_MODE (from) == DImode)
3982 libfcn = floatdidf_libfunc;
3983 else if (GET_MODE (from) == TImode)
3984 libfcn = floattidf_libfunc;
3985 else
3986 abort ();
3987 }
3988 else if (GET_MODE (to) == XFmode)
3989 {
3990 if (GET_MODE (from) == SImode)
3991 libfcn = floatsixf_libfunc;
3992 else if (GET_MODE (from) == DImode)
3993 libfcn = floatdixf_libfunc;
3994 else if (GET_MODE (from) == TImode)
3995 libfcn = floattixf_libfunc;
3996 else
3997 abort ();
3998 }
3999 else if (GET_MODE (to) == TFmode)
4000 {
4001 if (GET_MODE (from) == SImode)
4002 libfcn = floatsitf_libfunc;
4003 else if (GET_MODE (from) == DImode)
4004 libfcn = floatditf_libfunc;
4005 else if (GET_MODE (from) == TImode)
4006 libfcn = floattitf_libfunc;
4007 else
4008 abort ();
4009 }
4010 else
4011 abort ();
4012
4013 start_sequence ();
4014
4015 value = emit_library_call_value (libfcn, NULL_RTX, 1,
4016 GET_MODE (to),
4017 1, from, GET_MODE (from));
4018 insns = get_insns ();
4019 end_sequence ();
4020
4021 emit_libcall_block (insns, target, value,
4022 gen_rtx_FLOAT (GET_MODE (to), from));
4023 }
4024
4025 done:
4026
4027 /* Copy result to requested destination
4028 if we have been computing in a temp location. */
4029
4030 if (target != to)
4031 {
4032 if (GET_MODE (target) == GET_MODE (to))
4033 emit_move_insn (to, target);
4034 else
4035 convert_move (to, target, 0);
4036 }
4037 }
4038 \f
4039 /* expand_fix: generate code to convert FROM to fixed point
4040 and store in TO. FROM must be floating point. */
4041
4042 static rtx
4043 ftruncify (x)
4044 rtx x;
4045 {
4046 rtx temp = gen_reg_rtx (GET_MODE (x));
4047 return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
4048 }
4049
4050 void
4051 expand_fix (to, from, unsignedp)
4052 register rtx to, from;
4053 int unsignedp;
4054 {
4055 enum insn_code icode;
4056 register rtx target = to;
4057 enum machine_mode fmode, imode;
4058 int must_trunc = 0;
4059 rtx libfcn = 0;
4060
4061 /* We first try to find a pair of modes, one real and one integer, at
4062 least as wide as FROM and TO, respectively, in which we can open-code
4063 this conversion. If the integer mode is wider than the mode of TO,
4064 we can do the conversion either signed or unsigned. */
4065
4066 for (imode = GET_MODE (to); imode != VOIDmode;
4067 imode = GET_MODE_WIDER_MODE (imode))
4068 for (fmode = GET_MODE (from); fmode != VOIDmode;
4069 fmode = GET_MODE_WIDER_MODE (fmode))
4070 {
4071 int doing_unsigned = unsignedp;
4072
4073 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4074 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4075 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4076
4077 if (icode != CODE_FOR_nothing)
4078 {
4079 to = protect_from_queue (to, 1);
4080 from = protect_from_queue (from, 0);
4081
4082 if (fmode != GET_MODE (from))
4083 from = convert_to_mode (fmode, from, 0);
4084
4085 if (must_trunc)
4086 from = ftruncify (from);
4087
4088 if (imode != GET_MODE (to))
4089 target = gen_reg_rtx (imode);
4090
4091 emit_unop_insn (icode, target, from,
4092 doing_unsigned ? UNSIGNED_FIX : FIX);
4093 if (target != to)
4094 convert_move (to, target, unsignedp);
4095 return;
4096 }
4097 }
4098
4099 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4100 /* For an unsigned conversion, there is one more way to do it.
4101 If we have a signed conversion, we generate code that compares
4102 the real value to the largest representable positive number. If if
4103 is smaller, the conversion is done normally. Otherwise, subtract
4104 one plus the highest signed number, convert, and add it back.
4105
4106 We only need to check all real modes, since we know we didn't find
4107 anything with a wider integer mode. */
4108
4109 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4110 for (fmode = GET_MODE (from); fmode != VOIDmode;
4111 fmode = GET_MODE_WIDER_MODE (fmode))
4112 /* Make sure we won't lose significant bits doing this. */
4113 if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
4114 && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4115 &must_trunc))
4116 {
4117 int bitsize;
4118 REAL_VALUE_TYPE offset;
4119 rtx limit, lab1, lab2, insn;
4120
4121 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4122 offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
4123 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4124 lab1 = gen_label_rtx ();
4125 lab2 = gen_label_rtx ();
4126
4127 emit_queue ();
4128 to = protect_from_queue (to, 1);
4129 from = protect_from_queue (from, 0);
4130
4131 if (flag_force_mem)
4132 from = force_not_mem (from);
4133
4134 if (fmode != GET_MODE (from))
4135 from = convert_to_mode (fmode, from, 0);
4136
4137 /* See if we need to do the subtraction. */
4138 do_pending_stack_adjust ();
4139 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4140 0, 0, lab1);
4141
4142 /* If not, do the signed "fix" and branch around fixup code. */
4143 expand_fix (to, from, 0);
4144 emit_jump_insn (gen_jump (lab2));
4145 emit_barrier ();
4146
4147 /* Otherwise, subtract 2**(N-1), convert to signed number,
4148 then add 2**(N-1). Do the addition using XOR since this
4149 will often generate better code. */
4150 emit_label (lab1);
4151 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4152 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4153 expand_fix (to, target, 0);
4154 target = expand_binop (GET_MODE (to), xor_optab, to,
4155 GEN_INT ((HOST_WIDE_INT) 1 << (bitsize - 1)),
4156 to, 1, OPTAB_LIB_WIDEN);
4157
4158 if (target != to)
4159 emit_move_insn (to, target);
4160
4161 emit_label (lab2);
4162
4163 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4164 != CODE_FOR_nothing)
4165 {
4166 /* Make a place for a REG_NOTE and add it. */
4167 insn = emit_move_insn (to, to);
4168 set_unique_reg_note (insn,
4169 REG_EQUAL,
4170 gen_rtx_fmt_e (UNSIGNED_FIX,
4171 GET_MODE (to),
4172 copy_rtx (from)));
4173 }
4174
4175 return;
4176 }
4177 #endif
4178
4179 /* We can't do it with an insn, so use a library call. But first ensure
4180 that the mode of TO is at least as wide as SImode, since those are the
4181 only library calls we know about. */
4182
4183 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4184 {
4185 target = gen_reg_rtx (SImode);
4186
4187 expand_fix (target, from, unsignedp);
4188 }
4189 else if (GET_MODE (from) == SFmode)
4190 {
4191 if (GET_MODE (to) == SImode)
4192 libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
4193 else if (GET_MODE (to) == DImode)
4194 libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
4195 else if (GET_MODE (to) == TImode)
4196 libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
4197 else
4198 abort ();
4199 }
4200 else if (GET_MODE (from) == DFmode)
4201 {
4202 if (GET_MODE (to) == SImode)
4203 libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
4204 else if (GET_MODE (to) == DImode)
4205 libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
4206 else if (GET_MODE (to) == TImode)
4207 libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
4208 else
4209 abort ();
4210 }
4211 else if (GET_MODE (from) == XFmode)
4212 {
4213 if (GET_MODE (to) == SImode)
4214 libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
4215 else if (GET_MODE (to) == DImode)
4216 libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
4217 else if (GET_MODE (to) == TImode)
4218 libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
4219 else
4220 abort ();
4221 }
4222 else if (GET_MODE (from) == TFmode)
4223 {
4224 if (GET_MODE (to) == SImode)
4225 libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
4226 else if (GET_MODE (to) == DImode)
4227 libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
4228 else if (GET_MODE (to) == TImode)
4229 libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
4230 else
4231 abort ();
4232 }
4233 else
4234 abort ();
4235
4236 if (libfcn)
4237 {
4238 rtx insns;
4239 rtx value;
4240
4241 to = protect_from_queue (to, 1);
4242 from = protect_from_queue (from, 0);
4243
4244 if (flag_force_mem)
4245 from = force_not_mem (from);
4246
4247 start_sequence ();
4248
4249 value = emit_library_call_value (libfcn, NULL_RTX, 1, GET_MODE (to),
4250
4251 1, from, GET_MODE (from));
4252 insns = get_insns ();
4253 end_sequence ();
4254
4255 emit_libcall_block (insns, target, value,
4256 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4257 GET_MODE (to), from));
4258 }
4259
4260 if (target != to)
4261 {
4262 if (GET_MODE (to) == GET_MODE (target))
4263 emit_move_insn (to, target);
4264 else
4265 convert_move (to, target, 0);
4266 }
4267 }
4268 \f
4269 static optab
4270 init_optab (code)
4271 enum rtx_code code;
4272 {
4273 int i;
4274 optab op = (optab) xmalloc (sizeof (struct optab));
4275 op->code = code;
4276 for (i = 0; i < NUM_MACHINE_MODES; i++)
4277 {
4278 op->handlers[i].insn_code = CODE_FOR_nothing;
4279 op->handlers[i].libfunc = 0;
4280 }
4281
4282 if (code != UNKNOWN)
4283 code_to_optab[(int) code] = op;
4284
4285 return op;
4286 }
4287
4288 /* Initialize the libfunc fields of an entire group of entries in some
4289 optab. Each entry is set equal to a string consisting of a leading
4290 pair of underscores followed by a generic operation name followed by
4291 a mode name (downshifted to lower case) followed by a single character
4292 representing the number of operands for the given operation (which is
4293 usually one of the characters '2', '3', or '4').
4294
4295 OPTABLE is the table in which libfunc fields are to be initialized.
4296 FIRST_MODE is the first machine mode index in the given optab to
4297 initialize.
4298 LAST_MODE is the last machine mode index in the given optab to
4299 initialize.
4300 OPNAME is the generic (string) name of the operation.
4301 SUFFIX is the character which specifies the number of operands for
4302 the given generic operation.
4303 */
4304
4305 static void
4306 init_libfuncs (optable, first_mode, last_mode, opname, suffix)
4307 register optab optable;
4308 register int first_mode;
4309 register int last_mode;
4310 register const char *opname;
4311 register int suffix;
4312 {
4313 register int mode;
4314 register unsigned opname_len = strlen (opname);
4315
4316 for (mode = first_mode; (int) mode <= (int) last_mode;
4317 mode = (enum machine_mode) ((int) mode + 1))
4318 {
4319 register const char *mname = GET_MODE_NAME(mode);
4320 register unsigned mname_len = strlen (mname);
4321 register char *libfunc_name
4322 = ggc_alloc_string (NULL, 2 + opname_len + mname_len + 1 + 1);
4323 register char *p;
4324 register const char *q;
4325
4326 p = libfunc_name;
4327 *p++ = '_';
4328 *p++ = '_';
4329 for (q = opname; *q; )
4330 *p++ = *q++;
4331 for (q = mname; *q; q++)
4332 *p++ = TOLOWER (*q);
4333 *p++ = suffix;
4334 *p++ = '\0';
4335
4336 optable->handlers[(int) mode].libfunc
4337 = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
4338 }
4339 }
4340
4341 /* Initialize the libfunc fields of an entire group of entries in some
4342 optab which correspond to all integer mode operations. The parameters
4343 have the same meaning as similarly named ones for the `init_libfuncs'
4344 routine. (See above). */
4345
4346 static void
4347 init_integral_libfuncs (optable, opname, suffix)
4348 register optab optable;
4349 register const char *opname;
4350 register int suffix;
4351 {
4352 init_libfuncs (optable, SImode, TImode, opname, suffix);
4353 }
4354
4355 /* Initialize the libfunc fields of an entire group of entries in some
4356 optab which correspond to all real mode operations. The parameters
4357 have the same meaning as similarly named ones for the `init_libfuncs'
4358 routine. (See above). */
4359
4360 static void
4361 init_floating_libfuncs (optable, opname, suffix)
4362 register optab optable;
4363 register const char *opname;
4364 register int suffix;
4365 {
4366 init_libfuncs (optable, SFmode, TFmode, opname, suffix);
4367 }
4368
4369 rtx
4370 init_one_libfunc (name)
4371 register const char *name;
4372 {
4373 if (ggc_p)
4374 name = ggc_alloc_string (name, -1);
4375 return gen_rtx_SYMBOL_REF (Pmode, name);
4376 }
4377
4378 /* Mark ARG (which is really an OPTAB *) for GC. */
4379
4380 void
4381 mark_optab (arg)
4382 void *arg;
4383 {
4384 optab o = *(optab *) arg;
4385 int i;
4386
4387 for (i = 0; i < NUM_MACHINE_MODES; ++i)
4388 ggc_mark_rtx (o->handlers[i].libfunc);
4389 }
4390
4391 /* Call this once to initialize the contents of the optabs
4392 appropriately for the current target machine. */
4393
4394 void
4395 init_optabs ()
4396 {
4397 int i;
4398 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
4399 int j;
4400 #endif
4401
4402 enum insn_code *p;
4403
4404 /* Start by initializing all tables to contain CODE_FOR_nothing. */
4405
4406 for (p = fixtab[0][0];
4407 p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]);
4408 p++)
4409 *p = CODE_FOR_nothing;
4410
4411 for (p = fixtrunctab[0][0];
4412 p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]);
4413 p++)
4414 *p = CODE_FOR_nothing;
4415
4416 for (p = floattab[0][0];
4417 p < floattab[0][0] + sizeof floattab / sizeof (floattab[0][0][0]);
4418 p++)
4419 *p = CODE_FOR_nothing;
4420
4421 for (p = extendtab[0][0];
4422 p < extendtab[0][0] + sizeof extendtab / sizeof extendtab[0][0][0];
4423 p++)
4424 *p = CODE_FOR_nothing;
4425
4426 for (i = 0; i < NUM_RTX_CODE; i++)
4427 setcc_gen_code[i] = CODE_FOR_nothing;
4428
4429 #ifdef HAVE_conditional_move
4430 for (i = 0; i < NUM_MACHINE_MODES; i++)
4431 movcc_gen_code[i] = CODE_FOR_nothing;
4432 #endif
4433
4434 add_optab = init_optab (PLUS);
4435 sub_optab = init_optab (MINUS);
4436 smul_optab = init_optab (MULT);
4437 smul_highpart_optab = init_optab (UNKNOWN);
4438 umul_highpart_optab = init_optab (UNKNOWN);
4439 smul_widen_optab = init_optab (UNKNOWN);
4440 umul_widen_optab = init_optab (UNKNOWN);
4441 sdiv_optab = init_optab (DIV);
4442 sdivmod_optab = init_optab (UNKNOWN);
4443 udiv_optab = init_optab (UDIV);
4444 udivmod_optab = init_optab (UNKNOWN);
4445 smod_optab = init_optab (MOD);
4446 umod_optab = init_optab (UMOD);
4447 flodiv_optab = init_optab (DIV);
4448 ftrunc_optab = init_optab (UNKNOWN);
4449 and_optab = init_optab (AND);
4450 ior_optab = init_optab (IOR);
4451 xor_optab = init_optab (XOR);
4452 ashl_optab = init_optab (ASHIFT);
4453 ashr_optab = init_optab (ASHIFTRT);
4454 lshr_optab = init_optab (LSHIFTRT);
4455 rotl_optab = init_optab (ROTATE);
4456 rotr_optab = init_optab (ROTATERT);
4457 smin_optab = init_optab (SMIN);
4458 smax_optab = init_optab (SMAX);
4459 umin_optab = init_optab (UMIN);
4460 umax_optab = init_optab (UMAX);
4461 mov_optab = init_optab (UNKNOWN);
4462 movstrict_optab = init_optab (UNKNOWN);
4463 cmp_optab = init_optab (UNKNOWN);
4464 ucmp_optab = init_optab (UNKNOWN);
4465 tst_optab = init_optab (UNKNOWN);
4466 neg_optab = init_optab (NEG);
4467 abs_optab = init_optab (ABS);
4468 one_cmpl_optab = init_optab (NOT);
4469 ffs_optab = init_optab (FFS);
4470 sqrt_optab = init_optab (SQRT);
4471 sin_optab = init_optab (UNKNOWN);
4472 cos_optab = init_optab (UNKNOWN);
4473 strlen_optab = init_optab (UNKNOWN);
4474 cbranch_optab = init_optab (UNKNOWN);
4475 cmov_optab = init_optab (UNKNOWN);
4476 cstore_optab = init_optab (UNKNOWN);
4477
4478 for (i = 0; i < NUM_MACHINE_MODES; i++)
4479 {
4480 movstr_optab[i] = CODE_FOR_nothing;
4481 clrstr_optab[i] = CODE_FOR_nothing;
4482
4483 #ifdef HAVE_SECONDARY_RELOADS
4484 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
4485 #endif
4486 }
4487
4488 /* Fill in the optabs with the insns we support. */
4489 init_all_optabs ();
4490
4491 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
4492 /* This flag says the same insns that convert to a signed fixnum
4493 also convert validly to an unsigned one. */
4494 for (i = 0; i < NUM_MACHINE_MODES; i++)
4495 for (j = 0; j < NUM_MACHINE_MODES; j++)
4496 fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
4497 #endif
4498
4499 /* Initialize the optabs with the names of the library functions. */
4500 init_integral_libfuncs (add_optab, "add", '3');
4501 init_floating_libfuncs (add_optab, "add", '3');
4502 init_integral_libfuncs (sub_optab, "sub", '3');
4503 init_floating_libfuncs (sub_optab, "sub", '3');
4504 init_integral_libfuncs (smul_optab, "mul", '3');
4505 init_floating_libfuncs (smul_optab, "mul", '3');
4506 init_integral_libfuncs (sdiv_optab, "div", '3');
4507 init_integral_libfuncs (udiv_optab, "udiv", '3');
4508 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
4509 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
4510 init_integral_libfuncs (smod_optab, "mod", '3');
4511 init_integral_libfuncs (umod_optab, "umod", '3');
4512 init_floating_libfuncs (flodiv_optab, "div", '3');
4513 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
4514 init_integral_libfuncs (and_optab, "and", '3');
4515 init_integral_libfuncs (ior_optab, "ior", '3');
4516 init_integral_libfuncs (xor_optab, "xor", '3');
4517 init_integral_libfuncs (ashl_optab, "ashl", '3');
4518 init_integral_libfuncs (ashr_optab, "ashr", '3');
4519 init_integral_libfuncs (lshr_optab, "lshr", '3');
4520 init_integral_libfuncs (smin_optab, "min", '3');
4521 init_floating_libfuncs (smin_optab, "min", '3');
4522 init_integral_libfuncs (smax_optab, "max", '3');
4523 init_floating_libfuncs (smax_optab, "max", '3');
4524 init_integral_libfuncs (umin_optab, "umin", '3');
4525 init_integral_libfuncs (umax_optab, "umax", '3');
4526 init_integral_libfuncs (neg_optab, "neg", '2');
4527 init_floating_libfuncs (neg_optab, "neg", '2');
4528 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
4529 init_integral_libfuncs (ffs_optab, "ffs", '2');
4530
4531 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
4532 init_integral_libfuncs (cmp_optab, "cmp", '2');
4533 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
4534 init_floating_libfuncs (cmp_optab, "cmp", '2');
4535
4536 #ifdef MULSI3_LIBCALL
4537 smul_optab->handlers[(int) SImode].libfunc
4538 = init_one_libfunc (MULSI3_LIBCALL);
4539 #endif
4540 #ifdef MULDI3_LIBCALL
4541 smul_optab->handlers[(int) DImode].libfunc
4542 = init_one_libfunc (MULDI3_LIBCALL);
4543 #endif
4544
4545 #ifdef DIVSI3_LIBCALL
4546 sdiv_optab->handlers[(int) SImode].libfunc
4547 = init_one_libfunc (DIVSI3_LIBCALL);
4548 #endif
4549 #ifdef DIVDI3_LIBCALL
4550 sdiv_optab->handlers[(int) DImode].libfunc
4551 = init_one_libfunc (DIVDI3_LIBCALL);
4552 #endif
4553
4554 #ifdef UDIVSI3_LIBCALL
4555 udiv_optab->handlers[(int) SImode].libfunc
4556 = init_one_libfunc (UDIVSI3_LIBCALL);
4557 #endif
4558 #ifdef UDIVDI3_LIBCALL
4559 udiv_optab->handlers[(int) DImode].libfunc
4560 = init_one_libfunc (UDIVDI3_LIBCALL);
4561 #endif
4562
4563 #ifdef MODSI3_LIBCALL
4564 smod_optab->handlers[(int) SImode].libfunc
4565 = init_one_libfunc (MODSI3_LIBCALL);
4566 #endif
4567 #ifdef MODDI3_LIBCALL
4568 smod_optab->handlers[(int) DImode].libfunc
4569 = init_one_libfunc (MODDI3_LIBCALL);
4570 #endif
4571
4572 #ifdef UMODSI3_LIBCALL
4573 umod_optab->handlers[(int) SImode].libfunc
4574 = init_one_libfunc (UMODSI3_LIBCALL);
4575 #endif
4576 #ifdef UMODDI3_LIBCALL
4577 umod_optab->handlers[(int) DImode].libfunc
4578 = init_one_libfunc (UMODDI3_LIBCALL);
4579 #endif
4580
4581 /* Use cabs for DC complex abs, since systems generally have cabs.
4582 Don't define any libcall for SCmode, so that cabs will be used. */
4583 abs_optab->handlers[(int) DCmode].libfunc
4584 = init_one_libfunc ("cabs");
4585
4586 /* The ffs function operates on `int'. */
4587 #ifndef INT_TYPE_SIZE
4588 #define INT_TYPE_SIZE BITS_PER_WORD
4589 #endif
4590 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
4591 = init_one_libfunc ("ffs");
4592
4593 extendsfdf2_libfunc = init_one_libfunc ("__extendsfdf2");
4594 extendsfxf2_libfunc = init_one_libfunc ("__extendsfxf2");
4595 extendsftf2_libfunc = init_one_libfunc ("__extendsftf2");
4596 extenddfxf2_libfunc = init_one_libfunc ("__extenddfxf2");
4597 extenddftf2_libfunc = init_one_libfunc ("__extenddftf2");
4598
4599 truncdfsf2_libfunc = init_one_libfunc ("__truncdfsf2");
4600 truncxfsf2_libfunc = init_one_libfunc ("__truncxfsf2");
4601 trunctfsf2_libfunc = init_one_libfunc ("__trunctfsf2");
4602 truncxfdf2_libfunc = init_one_libfunc ("__truncxfdf2");
4603 trunctfdf2_libfunc = init_one_libfunc ("__trunctfdf2");
4604
4605 memcpy_libfunc = init_one_libfunc ("memcpy");
4606 bcopy_libfunc = init_one_libfunc ("bcopy");
4607 memcmp_libfunc = init_one_libfunc ("memcmp");
4608 bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
4609 memset_libfunc = init_one_libfunc ("memset");
4610 bzero_libfunc = init_one_libfunc ("bzero");
4611
4612 throw_libfunc = init_one_libfunc ("__throw");
4613 rethrow_libfunc = init_one_libfunc ("__rethrow");
4614 sjthrow_libfunc = init_one_libfunc ("__sjthrow");
4615 sjpopnthrow_libfunc = init_one_libfunc ("__sjpopnthrow");
4616 terminate_libfunc = init_one_libfunc ("__terminate");
4617 eh_rtime_match_libfunc = init_one_libfunc ("__eh_rtime_match");
4618 #ifndef DONT_USE_BUILTIN_SETJMP
4619 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
4620 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
4621 #else
4622 setjmp_libfunc = init_one_libfunc ("setjmp");
4623 longjmp_libfunc = init_one_libfunc ("longjmp");
4624 #endif
4625
4626 eqhf2_libfunc = init_one_libfunc ("__eqhf2");
4627 nehf2_libfunc = init_one_libfunc ("__nehf2");
4628 gthf2_libfunc = init_one_libfunc ("__gthf2");
4629 gehf2_libfunc = init_one_libfunc ("__gehf2");
4630 lthf2_libfunc = init_one_libfunc ("__lthf2");
4631 lehf2_libfunc = init_one_libfunc ("__lehf2");
4632
4633 eqsf2_libfunc = init_one_libfunc ("__eqsf2");
4634 nesf2_libfunc = init_one_libfunc ("__nesf2");
4635 gtsf2_libfunc = init_one_libfunc ("__gtsf2");
4636 gesf2_libfunc = init_one_libfunc ("__gesf2");
4637 ltsf2_libfunc = init_one_libfunc ("__ltsf2");
4638 lesf2_libfunc = init_one_libfunc ("__lesf2");
4639
4640 eqdf2_libfunc = init_one_libfunc ("__eqdf2");
4641 nedf2_libfunc = init_one_libfunc ("__nedf2");
4642 gtdf2_libfunc = init_one_libfunc ("__gtdf2");
4643 gedf2_libfunc = init_one_libfunc ("__gedf2");
4644 ltdf2_libfunc = init_one_libfunc ("__ltdf2");
4645 ledf2_libfunc = init_one_libfunc ("__ledf2");
4646
4647 eqxf2_libfunc = init_one_libfunc ("__eqxf2");
4648 nexf2_libfunc = init_one_libfunc ("__nexf2");
4649 gtxf2_libfunc = init_one_libfunc ("__gtxf2");
4650 gexf2_libfunc = init_one_libfunc ("__gexf2");
4651 ltxf2_libfunc = init_one_libfunc ("__ltxf2");
4652 lexf2_libfunc = init_one_libfunc ("__lexf2");
4653
4654 eqtf2_libfunc = init_one_libfunc ("__eqtf2");
4655 netf2_libfunc = init_one_libfunc ("__netf2");
4656 gttf2_libfunc = init_one_libfunc ("__gttf2");
4657 getf2_libfunc = init_one_libfunc ("__getf2");
4658 lttf2_libfunc = init_one_libfunc ("__lttf2");
4659 letf2_libfunc = init_one_libfunc ("__letf2");
4660
4661 floatsisf_libfunc = init_one_libfunc ("__floatsisf");
4662 floatdisf_libfunc = init_one_libfunc ("__floatdisf");
4663 floattisf_libfunc = init_one_libfunc ("__floattisf");
4664
4665 floatsidf_libfunc = init_one_libfunc ("__floatsidf");
4666 floatdidf_libfunc = init_one_libfunc ("__floatdidf");
4667 floattidf_libfunc = init_one_libfunc ("__floattidf");
4668
4669 floatsixf_libfunc = init_one_libfunc ("__floatsixf");
4670 floatdixf_libfunc = init_one_libfunc ("__floatdixf");
4671 floattixf_libfunc = init_one_libfunc ("__floattixf");
4672
4673 floatsitf_libfunc = init_one_libfunc ("__floatsitf");
4674 floatditf_libfunc = init_one_libfunc ("__floatditf");
4675 floattitf_libfunc = init_one_libfunc ("__floattitf");
4676
4677 fixsfsi_libfunc = init_one_libfunc ("__fixsfsi");
4678 fixsfdi_libfunc = init_one_libfunc ("__fixsfdi");
4679 fixsfti_libfunc = init_one_libfunc ("__fixsfti");
4680
4681 fixdfsi_libfunc = init_one_libfunc ("__fixdfsi");
4682 fixdfdi_libfunc = init_one_libfunc ("__fixdfdi");
4683 fixdfti_libfunc = init_one_libfunc ("__fixdfti");
4684
4685 fixxfsi_libfunc = init_one_libfunc ("__fixxfsi");
4686 fixxfdi_libfunc = init_one_libfunc ("__fixxfdi");
4687 fixxfti_libfunc = init_one_libfunc ("__fixxfti");
4688
4689 fixtfsi_libfunc = init_one_libfunc ("__fixtfsi");
4690 fixtfdi_libfunc = init_one_libfunc ("__fixtfdi");
4691 fixtfti_libfunc = init_one_libfunc ("__fixtfti");
4692
4693 fixunssfsi_libfunc = init_one_libfunc ("__fixunssfsi");
4694 fixunssfdi_libfunc = init_one_libfunc ("__fixunssfdi");
4695 fixunssfti_libfunc = init_one_libfunc ("__fixunssfti");
4696
4697 fixunsdfsi_libfunc = init_one_libfunc ("__fixunsdfsi");
4698 fixunsdfdi_libfunc = init_one_libfunc ("__fixunsdfdi");
4699 fixunsdfti_libfunc = init_one_libfunc ("__fixunsdfti");
4700
4701 fixunsxfsi_libfunc = init_one_libfunc ("__fixunsxfsi");
4702 fixunsxfdi_libfunc = init_one_libfunc ("__fixunsxfdi");
4703 fixunsxfti_libfunc = init_one_libfunc ("__fixunsxfti");
4704
4705 fixunstfsi_libfunc = init_one_libfunc ("__fixunstfsi");
4706 fixunstfdi_libfunc = init_one_libfunc ("__fixunstfdi");
4707 fixunstfti_libfunc = init_one_libfunc ("__fixunstfti");
4708
4709 /* For check-memory-usage. */
4710 chkr_check_addr_libfunc = init_one_libfunc ("chkr_check_addr");
4711 chkr_set_right_libfunc = init_one_libfunc ("chkr_set_right");
4712 chkr_copy_bitmap_libfunc = init_one_libfunc ("chkr_copy_bitmap");
4713 chkr_check_exec_libfunc = init_one_libfunc ("chkr_check_exec");
4714 chkr_check_str_libfunc = init_one_libfunc ("chkr_check_str");
4715
4716 /* For function entry/exit instrumentation. */
4717 profile_function_entry_libfunc
4718 = init_one_libfunc ("__cyg_profile_func_enter");
4719 profile_function_exit_libfunc
4720 = init_one_libfunc ("__cyg_profile_func_exit");
4721
4722 #ifdef HAVE_conditional_trap
4723 init_traps ();
4724 #endif
4725
4726 #ifdef INIT_TARGET_OPTABS
4727 /* Allow the target to add more libcalls or rename some, etc. */
4728 INIT_TARGET_OPTABS;
4729 #endif
4730
4731 /* Add these GC roots. */
4732 ggc_add_root (optab_table, OTI_MAX, sizeof(optab), mark_optab);
4733 ggc_add_rtx_root (libfunc_table, LTI_MAX);
4734 }
4735 \f
4736 #ifdef BROKEN_LDEXP
4737
4738 /* SCO 3.2 apparently has a broken ldexp. */
4739
4740 double
4741 ldexp(x,n)
4742 double x;
4743 int n;
4744 {
4745 if (n > 0)
4746 while (n--)
4747 x *= 2;
4748
4749 return x;
4750 }
4751 #endif /* BROKEN_LDEXP */
4752 \f
4753 #ifdef HAVE_conditional_trap
4754 /* The insn generating function can not take an rtx_code argument.
4755 TRAP_RTX is used as an rtx argument. Its code is replaced with
4756 the code to be used in the trap insn and all other fields are
4757 ignored.
4758
4759 ??? Will need to change to support garbage collection. */
4760 static rtx trap_rtx;
4761
4762 static void
4763 init_traps ()
4764 {
4765 if (HAVE_conditional_trap)
4766 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
4767 }
4768 #endif
4769
4770 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
4771 CODE. Return 0 on failure. */
4772
4773 rtx
4774 gen_cond_trap (code, op1, op2, tcode)
4775 enum rtx_code code ATTRIBUTE_UNUSED;
4776 rtx op1, op2 ATTRIBUTE_UNUSED, tcode ATTRIBUTE_UNUSED;
4777 {
4778 enum machine_mode mode = GET_MODE (op1);
4779
4780 if (mode == VOIDmode)
4781 return 0;
4782
4783 #ifdef HAVE_conditional_trap
4784 if (HAVE_conditional_trap
4785 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
4786 {
4787 rtx insn;
4788 emit_insn (GEN_FCN (cmp_optab->handlers[(int) mode].insn_code) (op1, op2));
4789 PUT_CODE (trap_rtx, code);
4790 insn = gen_conditional_trap (trap_rtx, tcode);
4791 if (insn)
4792 return insn;
4793 }
4794 #endif
4795
4796 return 0;
4797 }
This page took 0.254357 seconds and 6 git commands to generate.