]> gcc.gnu.org Git - gcc.git/blob - gcc/optabs.c
1ef656d0eb1faecedf691f6d45f42d5942c27b54
[gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "real.h"
45 #include "basic-block.h"
46 #include "target.h"
47
48 /* Each optab contains info on how this target machine
49 can perform a particular operation
50 for all sizes and kinds of operands.
51
52 The operation to be performed is often specified
53 by passing one of these optabs as an argument.
54
55 See expr.h for documentation of these optabs. */
56
57 optab optab_table[OTI_MAX];
58
59 rtx libfunc_table[LTI_MAX];
60
61 /* Tables of patterns for converting one mode to another. */
62 convert_optab convert_optab_table[CTI_MAX];
63
64 /* Contains the optab used for each rtx code. */
65 optab code_to_optab[NUM_RTX_CODE + 1];
66
67 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
68 gives the gen_function to make a branch to test that condition. */
69
70 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
71
72 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
73 gives the insn code to make a store-condition insn
74 to test that condition. */
75
76 enum insn_code setcc_gen_code[NUM_RTX_CODE];
77
78 #ifdef HAVE_conditional_move
79 /* Indexed by the machine mode, gives the insn code to make a conditional
80 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
81 setcc_gen_code to cut down on the number of named patterns. Consider a day
82 when a lot more rtx codes are conditional (eg: for the ARM). */
83
84 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
85 #endif
86
87 /* The insn generating function can not take an rtx_code argument.
88 TRAP_RTX is used as an rtx argument. Its code is replaced with
89 the code to be used in the trap insn and all other fields are ignored. */
90 static GTY(()) rtx trap_rtx;
91
92 static int add_equal_note (rtx, rtx, enum rtx_code, rtx, rtx);
93 static rtx widen_operand (rtx, enum machine_mode, enum machine_mode, int,
94 int);
95 static int expand_cmplxdiv_straight (rtx, rtx, rtx, rtx, rtx, rtx,
96 enum machine_mode, int,
97 enum optab_methods, enum mode_class,
98 optab);
99 static int expand_cmplxdiv_wide (rtx, rtx, rtx, rtx, rtx, rtx,
100 enum machine_mode, int, enum optab_methods,
101 enum mode_class, optab);
102 static void prepare_cmp_insn (rtx *, rtx *, enum rtx_code *, rtx,
103 enum machine_mode *, int *,
104 enum can_compare_purpose);
105 static enum insn_code can_fix_p (enum machine_mode, enum machine_mode, int,
106 int *);
107 static enum insn_code can_float_p (enum machine_mode, enum machine_mode, int);
108 static optab new_optab (void);
109 static convert_optab new_convert_optab (void);
110 static inline optab init_optab (enum rtx_code);
111 static inline optab init_optabv (enum rtx_code);
112 static inline convert_optab init_convert_optab (enum rtx_code);
113 static void init_libfuncs (optab, int, int, const char *, int);
114 static void init_integral_libfuncs (optab, const char *, int);
115 static void init_floating_libfuncs (optab, const char *, int);
116 static void init_interclass_conv_libfuncs (convert_optab, const char *,
117 enum mode_class, enum mode_class);
118 static void init_intraclass_conv_libfuncs (convert_optab, const char *,
119 enum mode_class, bool);
120 static void emit_cmp_and_jump_insn_1 (rtx, rtx, enum machine_mode,
121 enum rtx_code, int, rtx);
122 static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
123 enum machine_mode *, int *);
124 static rtx expand_vector_binop (enum machine_mode, optab, rtx, rtx, rtx, int,
125 enum optab_methods);
126 static rtx expand_vector_unop (enum machine_mode, optab, rtx, rtx, int);
127 static rtx widen_clz (enum machine_mode, rtx, rtx);
128 static rtx expand_parity (enum machine_mode, rtx, rtx);
129
130 #ifndef HAVE_conditional_trap
131 #define HAVE_conditional_trap 0
132 #define gen_conditional_trap(a,b) (abort (), NULL_RTX)
133 #endif
134 \f
135 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
136 the result of operation CODE applied to OP0 (and OP1 if it is a binary
137 operation).
138
139 If the last insn does not set TARGET, don't do anything, but return 1.
140
141 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
142 don't add the REG_EQUAL note but return 0. Our caller can then try
143 again, ensuring that TARGET is not one of the operands. */
144
145 static int
146 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
147 {
148 rtx last_insn, insn, set;
149 rtx note;
150
151 if (! insns
152 || ! INSN_P (insns)
153 || NEXT_INSN (insns) == NULL_RTX)
154 abort ();
155
156 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
157 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
158 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
159 && GET_RTX_CLASS (code) != RTX_COMPARE
160 && GET_RTX_CLASS (code) != RTX_UNARY)
161 return 1;
162
163 if (GET_CODE (target) == ZERO_EXTRACT)
164 return 1;
165
166 for (last_insn = insns;
167 NEXT_INSN (last_insn) != NULL_RTX;
168 last_insn = NEXT_INSN (last_insn))
169 ;
170
171 set = single_set (last_insn);
172 if (set == NULL_RTX)
173 return 1;
174
175 if (! rtx_equal_p (SET_DEST (set), target)
176 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
177 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
178 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
179 return 1;
180
181 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
182 besides the last insn. */
183 if (reg_overlap_mentioned_p (target, op0)
184 || (op1 && reg_overlap_mentioned_p (target, op1)))
185 {
186 insn = PREV_INSN (last_insn);
187 while (insn != NULL_RTX)
188 {
189 if (reg_set_p (target, insn))
190 return 0;
191
192 insn = PREV_INSN (insn);
193 }
194 }
195
196 if (GET_RTX_CLASS (code) == RTX_UNARY)
197 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
198 else
199 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
200
201 set_unique_reg_note (last_insn, REG_EQUAL, note);
202
203 return 1;
204 }
205 \f
206 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
207 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
208 not actually do a sign-extend or zero-extend, but can leave the
209 higher-order bits of the result rtx undefined, for example, in the case
210 of logical operations, but not right shifts. */
211
212 static rtx
213 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
214 int unsignedp, int no_extend)
215 {
216 rtx result;
217
218 /* If we don't have to extend and this is a constant, return it. */
219 if (no_extend && GET_MODE (op) == VOIDmode)
220 return op;
221
222 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
223 extend since it will be more efficient to do so unless the signedness of
224 a promoted object differs from our extension. */
225 if (! no_extend
226 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
227 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
228 return convert_modes (mode, oldmode, op, unsignedp);
229
230 /* If MODE is no wider than a single word, we return a paradoxical
231 SUBREG. */
232 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
233 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
234
235 /* Otherwise, get an object of MODE, clobber it, and set the low-order
236 part to OP. */
237
238 result = gen_reg_rtx (mode);
239 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
240 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
241 return result;
242 }
243 \f
244 /* Generate code to perform a straightforward complex divide. */
245
246 static int
247 expand_cmplxdiv_straight (rtx real0, rtx real1, rtx imag0, rtx imag1,
248 rtx realr, rtx imagr, enum machine_mode submode,
249 int unsignedp, enum optab_methods methods,
250 enum mode_class class, optab binoptab)
251 {
252 rtx divisor;
253 rtx real_t, imag_t;
254 rtx temp1, temp2;
255 rtx res;
256 optab this_add_optab = add_optab;
257 optab this_sub_optab = sub_optab;
258 optab this_neg_optab = neg_optab;
259 optab this_mul_optab = smul_optab;
260
261 if (binoptab == sdivv_optab)
262 {
263 this_add_optab = addv_optab;
264 this_sub_optab = subv_optab;
265 this_neg_optab = negv_optab;
266 this_mul_optab = smulv_optab;
267 }
268
269 /* Don't fetch these from memory more than once. */
270 real0 = force_reg (submode, real0);
271 real1 = force_reg (submode, real1);
272
273 if (imag0 != 0)
274 imag0 = force_reg (submode, imag0);
275
276 imag1 = force_reg (submode, imag1);
277
278 /* Divisor: c*c + d*d. */
279 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
280 NULL_RTX, unsignedp, methods);
281
282 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
283 NULL_RTX, unsignedp, methods);
284
285 if (temp1 == 0 || temp2 == 0)
286 return 0;
287
288 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
289 NULL_RTX, unsignedp, methods);
290 if (divisor == 0)
291 return 0;
292
293 if (imag0 == 0)
294 {
295 /* Mathematically, ((a)(c-id))/divisor. */
296 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
297
298 /* Calculate the dividend. */
299 real_t = expand_binop (submode, this_mul_optab, real0, real1,
300 NULL_RTX, unsignedp, methods);
301
302 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
303 NULL_RTX, unsignedp, methods);
304
305 if (real_t == 0 || imag_t == 0)
306 return 0;
307
308 imag_t = expand_unop (submode, this_neg_optab, imag_t,
309 NULL_RTX, unsignedp);
310 }
311 else
312 {
313 /* Mathematically, ((a+ib)(c-id))/divider. */
314 /* Calculate the dividend. */
315 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
316 NULL_RTX, unsignedp, methods);
317
318 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
319 NULL_RTX, unsignedp, methods);
320
321 if (temp1 == 0 || temp2 == 0)
322 return 0;
323
324 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
325 NULL_RTX, unsignedp, methods);
326
327 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
328 NULL_RTX, unsignedp, methods);
329
330 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
331 NULL_RTX, unsignedp, methods);
332
333 if (temp1 == 0 || temp2 == 0)
334 return 0;
335
336 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
337 NULL_RTX, unsignedp, methods);
338
339 if (real_t == 0 || imag_t == 0)
340 return 0;
341 }
342
343 if (class == MODE_COMPLEX_FLOAT)
344 res = expand_binop (submode, binoptab, real_t, divisor,
345 realr, unsignedp, methods);
346 else
347 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
348 real_t, divisor, realr, unsignedp);
349
350 if (res == 0)
351 return 0;
352
353 if (res != realr)
354 emit_move_insn (realr, res);
355
356 if (class == MODE_COMPLEX_FLOAT)
357 res = expand_binop (submode, binoptab, imag_t, divisor,
358 imagr, unsignedp, methods);
359 else
360 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
361 imag_t, divisor, imagr, unsignedp);
362
363 if (res == 0)
364 return 0;
365
366 if (res != imagr)
367 emit_move_insn (imagr, res);
368
369 return 1;
370 }
371 \f
372 /* Generate code to perform a wide-input-range-acceptable complex divide. */
373
374 static int
375 expand_cmplxdiv_wide (rtx real0, rtx real1, rtx imag0, rtx imag1, rtx realr,
376 rtx imagr, enum machine_mode submode, int unsignedp,
377 enum optab_methods methods, enum mode_class class,
378 optab binoptab)
379 {
380 rtx ratio, divisor;
381 rtx real_t, imag_t;
382 rtx temp1, temp2, lab1, lab2;
383 enum machine_mode mode;
384 rtx res;
385 optab this_add_optab = add_optab;
386 optab this_sub_optab = sub_optab;
387 optab this_neg_optab = neg_optab;
388 optab this_mul_optab = smul_optab;
389
390 if (binoptab == sdivv_optab)
391 {
392 this_add_optab = addv_optab;
393 this_sub_optab = subv_optab;
394 this_neg_optab = negv_optab;
395 this_mul_optab = smulv_optab;
396 }
397
398 /* Don't fetch these from memory more than once. */
399 real0 = force_reg (submode, real0);
400 real1 = force_reg (submode, real1);
401
402 if (imag0 != 0)
403 imag0 = force_reg (submode, imag0);
404
405 imag1 = force_reg (submode, imag1);
406
407 /* XXX What's an "unsigned" complex number? */
408 if (unsignedp)
409 {
410 temp1 = real1;
411 temp2 = imag1;
412 }
413 else
414 {
415 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
416 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
417 }
418
419 if (temp1 == 0 || temp2 == 0)
420 return 0;
421
422 mode = GET_MODE (temp1);
423 lab1 = gen_label_rtx ();
424 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
425 mode, unsignedp, lab1);
426
427 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
428
429 if (class == MODE_COMPLEX_FLOAT)
430 ratio = expand_binop (submode, binoptab, imag1, real1,
431 NULL_RTX, unsignedp, methods);
432 else
433 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
434 imag1, real1, NULL_RTX, unsignedp);
435
436 if (ratio == 0)
437 return 0;
438
439 /* Calculate divisor. */
440
441 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
442 NULL_RTX, unsignedp, methods);
443
444 if (temp1 == 0)
445 return 0;
446
447 divisor = expand_binop (submode, this_add_optab, temp1, real1,
448 NULL_RTX, unsignedp, methods);
449
450 if (divisor == 0)
451 return 0;
452
453 /* Calculate dividend. */
454
455 if (imag0 == 0)
456 {
457 real_t = real0;
458
459 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
460
461 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
462 NULL_RTX, unsignedp, methods);
463
464 if (imag_t == 0)
465 return 0;
466
467 imag_t = expand_unop (submode, this_neg_optab, imag_t,
468 NULL_RTX, unsignedp);
469
470 if (real_t == 0 || imag_t == 0)
471 return 0;
472 }
473 else
474 {
475 /* Compute (a+ib)/(c+id) as
476 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
477
478 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
479 NULL_RTX, unsignedp, methods);
480
481 if (temp1 == 0)
482 return 0;
483
484 real_t = expand_binop (submode, this_add_optab, temp1, real0,
485 NULL_RTX, unsignedp, methods);
486
487 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
488 NULL_RTX, unsignedp, methods);
489
490 if (temp1 == 0)
491 return 0;
492
493 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
494 NULL_RTX, unsignedp, methods);
495
496 if (real_t == 0 || imag_t == 0)
497 return 0;
498 }
499
500 if (class == MODE_COMPLEX_FLOAT)
501 res = expand_binop (submode, binoptab, real_t, divisor,
502 realr, unsignedp, methods);
503 else
504 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
505 real_t, divisor, realr, unsignedp);
506
507 if (res == 0)
508 return 0;
509
510 if (res != realr)
511 emit_move_insn (realr, res);
512
513 if (class == MODE_COMPLEX_FLOAT)
514 res = expand_binop (submode, binoptab, imag_t, divisor,
515 imagr, unsignedp, methods);
516 else
517 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
518 imag_t, divisor, imagr, unsignedp);
519
520 if (res == 0)
521 return 0;
522
523 if (res != imagr)
524 emit_move_insn (imagr, res);
525
526 lab2 = gen_label_rtx ();
527 emit_jump_insn (gen_jump (lab2));
528 emit_barrier ();
529
530 emit_label (lab1);
531
532 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
533
534 if (class == MODE_COMPLEX_FLOAT)
535 ratio = expand_binop (submode, binoptab, real1, imag1,
536 NULL_RTX, unsignedp, methods);
537 else
538 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
539 real1, imag1, NULL_RTX, unsignedp);
540
541 if (ratio == 0)
542 return 0;
543
544 /* Calculate divisor. */
545
546 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
547 NULL_RTX, unsignedp, methods);
548
549 if (temp1 == 0)
550 return 0;
551
552 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
553 NULL_RTX, unsignedp, methods);
554
555 if (divisor == 0)
556 return 0;
557
558 /* Calculate dividend. */
559
560 if (imag0 == 0)
561 {
562 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
563
564 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
565 NULL_RTX, unsignedp, methods);
566
567 imag_t = expand_unop (submode, this_neg_optab, real0,
568 NULL_RTX, unsignedp);
569
570 if (real_t == 0 || imag_t == 0)
571 return 0;
572 }
573 else
574 {
575 /* Compute (a+ib)/(c+id) as
576 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
577
578 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
579 NULL_RTX, unsignedp, methods);
580
581 if (temp1 == 0)
582 return 0;
583
584 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
585 NULL_RTX, unsignedp, methods);
586
587 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
588 NULL_RTX, unsignedp, methods);
589
590 if (temp1 == 0)
591 return 0;
592
593 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
594 NULL_RTX, unsignedp, methods);
595
596 if (real_t == 0 || imag_t == 0)
597 return 0;
598 }
599
600 if (class == MODE_COMPLEX_FLOAT)
601 res = expand_binop (submode, binoptab, real_t, divisor,
602 realr, unsignedp, methods);
603 else
604 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
605 real_t, divisor, realr, unsignedp);
606
607 if (res == 0)
608 return 0;
609
610 if (res != realr)
611 emit_move_insn (realr, res);
612
613 if (class == MODE_COMPLEX_FLOAT)
614 res = expand_binop (submode, binoptab, imag_t, divisor,
615 imagr, unsignedp, methods);
616 else
617 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
618 imag_t, divisor, imagr, unsignedp);
619
620 if (res == 0)
621 return 0;
622
623 if (res != imagr)
624 emit_move_insn (imagr, res);
625
626 emit_label (lab2);
627
628 return 1;
629 }
630 \f
631 /* Wrapper around expand_binop which takes an rtx code to specify
632 the operation to perform, not an optab pointer. All other
633 arguments are the same. */
634 rtx
635 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
636 rtx op1, rtx target, int unsignedp,
637 enum optab_methods methods)
638 {
639 optab binop = code_to_optab[(int) code];
640 if (binop == 0)
641 abort ();
642
643 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
644 }
645
646 /* Generate code to perform an operation specified by BINOPTAB
647 on operands OP0 and OP1, with result having machine-mode MODE.
648
649 UNSIGNEDP is for the case where we have to widen the operands
650 to perform the operation. It says to use zero-extension.
651
652 If TARGET is nonzero, the value
653 is generated there, if it is convenient to do so.
654 In all cases an rtx is returned for the locus of the value;
655 this may or may not be TARGET. */
656
657 rtx
658 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
659 rtx target, int unsignedp, enum optab_methods methods)
660 {
661 enum optab_methods next_methods
662 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
663 ? OPTAB_WIDEN : methods);
664 enum mode_class class;
665 enum machine_mode wider_mode;
666 rtx temp;
667 int commutative_op = 0;
668 int shift_op = (binoptab->code == ASHIFT
669 || binoptab->code == ASHIFTRT
670 || binoptab->code == LSHIFTRT
671 || binoptab->code == ROTATE
672 || binoptab->code == ROTATERT);
673 rtx entry_last = get_last_insn ();
674 rtx last;
675
676 class = GET_MODE_CLASS (mode);
677
678 op0 = protect_from_queue (op0, 0);
679 op1 = protect_from_queue (op1, 0);
680 if (target)
681 target = protect_from_queue (target, 1);
682
683 if (flag_force_mem)
684 {
685 /* Load duplicate non-volatile operands once. */
686 if (rtx_equal_p (op0, op1) && ! volatile_refs_p (op0))
687 {
688 op0 = force_not_mem (op0);
689 op1 = op0;
690 }
691 else
692 {
693 op0 = force_not_mem (op0);
694 op1 = force_not_mem (op1);
695 }
696 }
697
698 /* If subtracting an integer constant, convert this into an addition of
699 the negated constant. */
700
701 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
702 {
703 op1 = negate_rtx (mode, op1);
704 binoptab = add_optab;
705 }
706
707 /* If we are inside an appropriately-short loop and one operand is an
708 expensive constant, force it into a register. */
709 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
710 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
711 op0 = force_reg (mode, op0);
712
713 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
714 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
715 op1 = force_reg (mode, op1);
716
717 /* Record where to delete back to if we backtrack. */
718 last = get_last_insn ();
719
720 /* If operation is commutative,
721 try to make the first operand a register.
722 Even better, try to make it the same as the target.
723 Also try to make the last operand a constant. */
724 if (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
725 || binoptab == smul_widen_optab
726 || binoptab == umul_widen_optab
727 || binoptab == smul_highpart_optab
728 || binoptab == umul_highpart_optab)
729 {
730 commutative_op = 1;
731
732 if (((target == 0 || REG_P (target))
733 ? ((REG_P (op1)
734 && !REG_P (op0))
735 || target == op1)
736 : rtx_equal_p (op1, target))
737 || GET_CODE (op0) == CONST_INT)
738 {
739 temp = op1;
740 op1 = op0;
741 op0 = temp;
742 }
743 }
744
745 /* If we can do it with a three-operand insn, do so. */
746
747 if (methods != OPTAB_MUST_WIDEN
748 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
749 {
750 int icode = (int) binoptab->handlers[(int) mode].insn_code;
751 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
752 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
753 rtx pat;
754 rtx xop0 = op0, xop1 = op1;
755
756 if (target)
757 temp = target;
758 else
759 temp = gen_reg_rtx (mode);
760
761 /* If it is a commutative operator and the modes would match
762 if we would swap the operands, we can save the conversions. */
763 if (commutative_op)
764 {
765 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
766 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
767 {
768 rtx tmp;
769
770 tmp = op0; op0 = op1; op1 = tmp;
771 tmp = xop0; xop0 = xop1; xop1 = tmp;
772 }
773 }
774
775 /* In case the insn wants input operands in modes different from
776 those of the actual operands, convert the operands. It would
777 seem that we don't need to convert CONST_INTs, but we do, so
778 that they're properly zero-extended, sign-extended or truncated
779 for their mode. */
780
781 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
782 xop0 = convert_modes (mode0,
783 GET_MODE (op0) != VOIDmode
784 ? GET_MODE (op0)
785 : mode,
786 xop0, unsignedp);
787
788 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
789 xop1 = convert_modes (mode1,
790 GET_MODE (op1) != VOIDmode
791 ? GET_MODE (op1)
792 : mode,
793 xop1, unsignedp);
794
795 /* Now, if insn's predicates don't allow our operands, put them into
796 pseudo regs. */
797
798 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
799 && mode0 != VOIDmode)
800 xop0 = copy_to_mode_reg (mode0, xop0);
801
802 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
803 && mode1 != VOIDmode)
804 xop1 = copy_to_mode_reg (mode1, xop1);
805
806 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
807 temp = gen_reg_rtx (mode);
808
809 pat = GEN_FCN (icode) (temp, xop0, xop1);
810 if (pat)
811 {
812 /* If PAT is composed of more than one insn, try to add an appropriate
813 REG_EQUAL note to it. If we can't because TEMP conflicts with an
814 operand, call ourselves again, this time without a target. */
815 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
816 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
817 {
818 delete_insns_since (last);
819 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
820 unsignedp, methods);
821 }
822
823 emit_insn (pat);
824 return temp;
825 }
826 else
827 delete_insns_since (last);
828 }
829
830 /* If this is a multiply, see if we can do a widening operation that
831 takes operands of this mode and makes a wider mode. */
832
833 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
834 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
835 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
836 != CODE_FOR_nothing))
837 {
838 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
839 unsignedp ? umul_widen_optab : smul_widen_optab,
840 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
841
842 if (temp != 0)
843 {
844 if (GET_MODE_CLASS (mode) == MODE_INT)
845 return gen_lowpart (mode, temp);
846 else
847 return convert_to_mode (mode, temp, unsignedp);
848 }
849 }
850
851 /* Look for a wider mode of the same class for which we think we
852 can open-code the operation. Check for a widening multiply at the
853 wider mode as well. */
854
855 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
856 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
857 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
858 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
859 {
860 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
861 || (binoptab == smul_optab
862 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
863 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
864 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
865 != CODE_FOR_nothing)))
866 {
867 rtx xop0 = op0, xop1 = op1;
868 int no_extend = 0;
869
870 /* For certain integer operations, we need not actually extend
871 the narrow operands, as long as we will truncate
872 the results to the same narrowness. */
873
874 if ((binoptab == ior_optab || binoptab == and_optab
875 || binoptab == xor_optab
876 || binoptab == add_optab || binoptab == sub_optab
877 || binoptab == smul_optab || binoptab == ashl_optab)
878 && class == MODE_INT)
879 no_extend = 1;
880
881 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
882
883 /* The second operand of a shift must always be extended. */
884 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
885 no_extend && binoptab != ashl_optab);
886
887 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
888 unsignedp, OPTAB_DIRECT);
889 if (temp)
890 {
891 if (class != MODE_INT)
892 {
893 if (target == 0)
894 target = gen_reg_rtx (mode);
895 convert_move (target, temp, 0);
896 return target;
897 }
898 else
899 return gen_lowpart (mode, temp);
900 }
901 else
902 delete_insns_since (last);
903 }
904 }
905
906 /* These can be done a word at a time. */
907 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
908 && class == MODE_INT
909 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
910 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
911 {
912 int i;
913 rtx insns;
914 rtx equiv_value;
915
916 /* If TARGET is the same as one of the operands, the REG_EQUAL note
917 won't be accurate, so use a new target. */
918 if (target == 0 || target == op0 || target == op1)
919 target = gen_reg_rtx (mode);
920
921 start_sequence ();
922
923 /* Do the actual arithmetic. */
924 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
925 {
926 rtx target_piece = operand_subword (target, i, 1, mode);
927 rtx x = expand_binop (word_mode, binoptab,
928 operand_subword_force (op0, i, mode),
929 operand_subword_force (op1, i, mode),
930 target_piece, unsignedp, next_methods);
931
932 if (x == 0)
933 break;
934
935 if (target_piece != x)
936 emit_move_insn (target_piece, x);
937 }
938
939 insns = get_insns ();
940 end_sequence ();
941
942 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
943 {
944 if (binoptab->code != UNKNOWN)
945 equiv_value
946 = gen_rtx_fmt_ee (binoptab->code, mode,
947 copy_rtx (op0), copy_rtx (op1));
948 else
949 equiv_value = 0;
950
951 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
952 return target;
953 }
954 }
955
956 /* Synthesize double word shifts from single word shifts. */
957 if ((binoptab == lshr_optab || binoptab == ashl_optab
958 || binoptab == ashr_optab)
959 && class == MODE_INT
960 && GET_CODE (op1) == CONST_INT
961 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
962 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
963 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
964 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
965 {
966 rtx insns, inter, equiv_value;
967 rtx into_target, outof_target;
968 rtx into_input, outof_input;
969 int shift_count, left_shift, outof_word;
970
971 /* If TARGET is the same as one of the operands, the REG_EQUAL note
972 won't be accurate, so use a new target. */
973 if (target == 0 || target == op0 || target == op1)
974 target = gen_reg_rtx (mode);
975
976 start_sequence ();
977
978 shift_count = INTVAL (op1);
979
980 /* OUTOF_* is the word we are shifting bits away from, and
981 INTO_* is the word that we are shifting bits towards, thus
982 they differ depending on the direction of the shift and
983 WORDS_BIG_ENDIAN. */
984
985 left_shift = binoptab == ashl_optab;
986 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
987
988 outof_target = operand_subword (target, outof_word, 1, mode);
989 into_target = operand_subword (target, 1 - outof_word, 1, mode);
990
991 outof_input = operand_subword_force (op0, outof_word, mode);
992 into_input = operand_subword_force (op0, 1 - outof_word, mode);
993
994 if (shift_count >= BITS_PER_WORD)
995 {
996 inter = expand_binop (word_mode, binoptab,
997 outof_input,
998 GEN_INT (shift_count - BITS_PER_WORD),
999 into_target, unsignedp, next_methods);
1000
1001 if (inter != 0 && inter != into_target)
1002 emit_move_insn (into_target, inter);
1003
1004 /* For a signed right shift, we must fill the word we are shifting
1005 out of with copies of the sign bit. Otherwise it is zeroed. */
1006 if (inter != 0 && binoptab != ashr_optab)
1007 inter = CONST0_RTX (word_mode);
1008 else if (inter != 0)
1009 inter = expand_binop (word_mode, binoptab,
1010 outof_input,
1011 GEN_INT (BITS_PER_WORD - 1),
1012 outof_target, unsignedp, next_methods);
1013
1014 if (inter != 0 && inter != outof_target)
1015 emit_move_insn (outof_target, inter);
1016 }
1017 else
1018 {
1019 rtx carries;
1020 optab reverse_unsigned_shift, unsigned_shift;
1021
1022 /* For a shift of less then BITS_PER_WORD, to compute the carry,
1023 we must do a logical shift in the opposite direction of the
1024 desired shift. */
1025
1026 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1027
1028 /* For a shift of less than BITS_PER_WORD, to compute the word
1029 shifted towards, we need to unsigned shift the orig value of
1030 that word. */
1031
1032 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1033
1034 carries = expand_binop (word_mode, reverse_unsigned_shift,
1035 outof_input,
1036 GEN_INT (BITS_PER_WORD - shift_count),
1037 0, unsignedp, next_methods);
1038
1039 if (carries == 0)
1040 inter = 0;
1041 else
1042 inter = expand_binop (word_mode, unsigned_shift, into_input,
1043 op1, 0, unsignedp, next_methods);
1044
1045 if (inter != 0)
1046 inter = expand_binop (word_mode, ior_optab, carries, inter,
1047 into_target, unsignedp, next_methods);
1048
1049 if (inter != 0 && inter != into_target)
1050 emit_move_insn (into_target, inter);
1051
1052 if (inter != 0)
1053 inter = expand_binop (word_mode, binoptab, outof_input,
1054 op1, outof_target, unsignedp, next_methods);
1055
1056 if (inter != 0 && inter != outof_target)
1057 emit_move_insn (outof_target, inter);
1058 }
1059
1060 insns = get_insns ();
1061 end_sequence ();
1062
1063 if (inter != 0)
1064 {
1065 if (binoptab->code != UNKNOWN)
1066 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1067 else
1068 equiv_value = 0;
1069
1070 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1071 return target;
1072 }
1073 }
1074
1075 /* Synthesize double word rotates from single word shifts. */
1076 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1077 && class == MODE_INT
1078 && GET_CODE (op1) == CONST_INT
1079 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1080 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1081 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1082 {
1083 rtx insns, equiv_value;
1084 rtx into_target, outof_target;
1085 rtx into_input, outof_input;
1086 rtx inter;
1087 int shift_count, left_shift, outof_word;
1088
1089 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1090 won't be accurate, so use a new target. Do this also if target is not
1091 a REG, first because having a register instead may open optimization
1092 opportunities, and second because if target and op0 happen to be MEMs
1093 designating the same location, we would risk clobbering it too early
1094 in the code sequence we generate below. */
1095 if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
1096 target = gen_reg_rtx (mode);
1097
1098 start_sequence ();
1099
1100 shift_count = INTVAL (op1);
1101
1102 /* OUTOF_* is the word we are shifting bits away from, and
1103 INTO_* is the word that we are shifting bits towards, thus
1104 they differ depending on the direction of the shift and
1105 WORDS_BIG_ENDIAN. */
1106
1107 left_shift = (binoptab == rotl_optab);
1108 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1109
1110 outof_target = operand_subword (target, outof_word, 1, mode);
1111 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1112
1113 outof_input = operand_subword_force (op0, outof_word, mode);
1114 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1115
1116 if (shift_count == BITS_PER_WORD)
1117 {
1118 /* This is just a word swap. */
1119 emit_move_insn (outof_target, into_input);
1120 emit_move_insn (into_target, outof_input);
1121 inter = const0_rtx;
1122 }
1123 else
1124 {
1125 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1126 rtx first_shift_count, second_shift_count;
1127 optab reverse_unsigned_shift, unsigned_shift;
1128
1129 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1130 ? lshr_optab : ashl_optab);
1131
1132 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1133 ? ashl_optab : lshr_optab);
1134
1135 if (shift_count > BITS_PER_WORD)
1136 {
1137 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1138 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1139 }
1140 else
1141 {
1142 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1143 second_shift_count = GEN_INT (shift_count);
1144 }
1145
1146 into_temp1 = expand_binop (word_mode, unsigned_shift,
1147 outof_input, first_shift_count,
1148 NULL_RTX, unsignedp, next_methods);
1149 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1150 into_input, second_shift_count,
1151 NULL_RTX, unsignedp, next_methods);
1152
1153 if (into_temp1 != 0 && into_temp2 != 0)
1154 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1155 into_target, unsignedp, next_methods);
1156 else
1157 inter = 0;
1158
1159 if (inter != 0 && inter != into_target)
1160 emit_move_insn (into_target, inter);
1161
1162 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1163 into_input, first_shift_count,
1164 NULL_RTX, unsignedp, next_methods);
1165 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1166 outof_input, second_shift_count,
1167 NULL_RTX, unsignedp, next_methods);
1168
1169 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1170 inter = expand_binop (word_mode, ior_optab,
1171 outof_temp1, outof_temp2,
1172 outof_target, unsignedp, next_methods);
1173
1174 if (inter != 0 && inter != outof_target)
1175 emit_move_insn (outof_target, inter);
1176 }
1177
1178 insns = get_insns ();
1179 end_sequence ();
1180
1181 if (inter != 0)
1182 {
1183 if (binoptab->code != UNKNOWN)
1184 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1185 else
1186 equiv_value = 0;
1187
1188 /* We can't make this a no conflict block if this is a word swap,
1189 because the word swap case fails if the input and output values
1190 are in the same register. */
1191 if (shift_count != BITS_PER_WORD)
1192 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1193 else
1194 emit_insn (insns);
1195
1196
1197 return target;
1198 }
1199 }
1200
1201 /* These can be done a word at a time by propagating carries. */
1202 if ((binoptab == add_optab || binoptab == sub_optab)
1203 && class == MODE_INT
1204 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1205 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1206 {
1207 unsigned int i;
1208 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1209 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1210 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1211 rtx xop0, xop1, xtarget;
1212
1213 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1214 value is one of those, use it. Otherwise, use 1 since it is the
1215 one easiest to get. */
1216 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1217 int normalizep = STORE_FLAG_VALUE;
1218 #else
1219 int normalizep = 1;
1220 #endif
1221
1222 /* Prepare the operands. */
1223 xop0 = force_reg (mode, op0);
1224 xop1 = force_reg (mode, op1);
1225
1226 xtarget = gen_reg_rtx (mode);
1227
1228 if (target == 0 || !REG_P (target))
1229 target = xtarget;
1230
1231 /* Indicate for flow that the entire target reg is being set. */
1232 if (REG_P (target))
1233 emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
1234
1235 /* Do the actual arithmetic. */
1236 for (i = 0; i < nwords; i++)
1237 {
1238 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1239 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1240 rtx op0_piece = operand_subword_force (xop0, index, mode);
1241 rtx op1_piece = operand_subword_force (xop1, index, mode);
1242 rtx x;
1243
1244 /* Main add/subtract of the input operands. */
1245 x = expand_binop (word_mode, binoptab,
1246 op0_piece, op1_piece,
1247 target_piece, unsignedp, next_methods);
1248 if (x == 0)
1249 break;
1250
1251 if (i + 1 < nwords)
1252 {
1253 /* Store carry from main add/subtract. */
1254 carry_out = gen_reg_rtx (word_mode);
1255 carry_out = emit_store_flag_force (carry_out,
1256 (binoptab == add_optab
1257 ? LT : GT),
1258 x, op0_piece,
1259 word_mode, 1, normalizep);
1260 }
1261
1262 if (i > 0)
1263 {
1264 rtx newx;
1265
1266 /* Add/subtract previous carry to main result. */
1267 newx = expand_binop (word_mode,
1268 normalizep == 1 ? binoptab : otheroptab,
1269 x, carry_in,
1270 NULL_RTX, 1, next_methods);
1271
1272 if (i + 1 < nwords)
1273 {
1274 /* Get out carry from adding/subtracting carry in. */
1275 rtx carry_tmp = gen_reg_rtx (word_mode);
1276 carry_tmp = emit_store_flag_force (carry_tmp,
1277 (binoptab == add_optab
1278 ? LT : GT),
1279 newx, x,
1280 word_mode, 1, normalizep);
1281
1282 /* Logical-ior the two poss. carry together. */
1283 carry_out = expand_binop (word_mode, ior_optab,
1284 carry_out, carry_tmp,
1285 carry_out, 0, next_methods);
1286 if (carry_out == 0)
1287 break;
1288 }
1289 emit_move_insn (target_piece, newx);
1290 }
1291
1292 carry_in = carry_out;
1293 }
1294
1295 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
1296 {
1297 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
1298 || ! rtx_equal_p (target, xtarget))
1299 {
1300 rtx temp = emit_move_insn (target, xtarget);
1301
1302 set_unique_reg_note (temp,
1303 REG_EQUAL,
1304 gen_rtx_fmt_ee (binoptab->code, mode,
1305 copy_rtx (xop0),
1306 copy_rtx (xop1)));
1307 }
1308 else
1309 target = xtarget;
1310
1311 return target;
1312 }
1313
1314 else
1315 delete_insns_since (last);
1316 }
1317
1318 /* If we want to multiply two two-word values and have normal and widening
1319 multiplies of single-word values, we can do this with three smaller
1320 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1321 because we are not operating on one word at a time.
1322
1323 The multiplication proceeds as follows:
1324 _______________________
1325 [__op0_high_|__op0_low__]
1326 _______________________
1327 * [__op1_high_|__op1_low__]
1328 _______________________________________________
1329 _______________________
1330 (1) [__op0_low__*__op1_low__]
1331 _______________________
1332 (2a) [__op0_low__*__op1_high_]
1333 _______________________
1334 (2b) [__op0_high_*__op1_low__]
1335 _______________________
1336 (3) [__op0_high_*__op1_high_]
1337
1338
1339 This gives a 4-word result. Since we are only interested in the
1340 lower 2 words, partial result (3) and the upper words of (2a) and
1341 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1342 calculated using non-widening multiplication.
1343
1344 (1), however, needs to be calculated with an unsigned widening
1345 multiplication. If this operation is not directly supported we
1346 try using a signed widening multiplication and adjust the result.
1347 This adjustment works as follows:
1348
1349 If both operands are positive then no adjustment is needed.
1350
1351 If the operands have different signs, for example op0_low < 0 and
1352 op1_low >= 0, the instruction treats the most significant bit of
1353 op0_low as a sign bit instead of a bit with significance
1354 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1355 with 2**BITS_PER_WORD - op0_low, and two's complements the
1356 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1357 the result.
1358
1359 Similarly, if both operands are negative, we need to add
1360 (op0_low + op1_low) * 2**BITS_PER_WORD.
1361
1362 We use a trick to adjust quickly. We logically shift op0_low right
1363 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1364 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1365 logical shift exists, we do an arithmetic right shift and subtract
1366 the 0 or -1. */
1367
1368 if (binoptab == smul_optab
1369 && class == MODE_INT
1370 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1371 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1372 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1373 && ((umul_widen_optab->handlers[(int) mode].insn_code
1374 != CODE_FOR_nothing)
1375 || (smul_widen_optab->handlers[(int) mode].insn_code
1376 != CODE_FOR_nothing)))
1377 {
1378 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1379 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1380 rtx op0_high = operand_subword_force (op0, high, mode);
1381 rtx op0_low = operand_subword_force (op0, low, mode);
1382 rtx op1_high = operand_subword_force (op1, high, mode);
1383 rtx op1_low = operand_subword_force (op1, low, mode);
1384 rtx product = 0;
1385 rtx op0_xhigh = NULL_RTX;
1386 rtx op1_xhigh = NULL_RTX;
1387
1388 /* If the target is the same as one of the inputs, don't use it. This
1389 prevents problems with the REG_EQUAL note. */
1390 if (target == op0 || target == op1
1391 || (target != 0 && !REG_P (target)))
1392 target = 0;
1393
1394 /* Multiply the two lower words to get a double-word product.
1395 If unsigned widening multiplication is available, use that;
1396 otherwise use the signed form and compensate. */
1397
1398 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1399 {
1400 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1401 target, 1, OPTAB_DIRECT);
1402
1403 /* If we didn't succeed, delete everything we did so far. */
1404 if (product == 0)
1405 delete_insns_since (last);
1406 else
1407 op0_xhigh = op0_high, op1_xhigh = op1_high;
1408 }
1409
1410 if (product == 0
1411 && smul_widen_optab->handlers[(int) mode].insn_code
1412 != CODE_FOR_nothing)
1413 {
1414 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1415 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1416 target, 1, OPTAB_DIRECT);
1417 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1418 NULL_RTX, 1, next_methods);
1419 if (op0_xhigh)
1420 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1421 op0_xhigh, op0_xhigh, 0, next_methods);
1422 else
1423 {
1424 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1425 NULL_RTX, 0, next_methods);
1426 if (op0_xhigh)
1427 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1428 op0_xhigh, op0_xhigh, 0,
1429 next_methods);
1430 }
1431
1432 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1433 NULL_RTX, 1, next_methods);
1434 if (op1_xhigh)
1435 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1436 op1_xhigh, op1_xhigh, 0, next_methods);
1437 else
1438 {
1439 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1440 NULL_RTX, 0, next_methods);
1441 if (op1_xhigh)
1442 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1443 op1_xhigh, op1_xhigh, 0,
1444 next_methods);
1445 }
1446 }
1447
1448 /* If we have been able to directly compute the product of the
1449 low-order words of the operands and perform any required adjustments
1450 of the operands, we proceed by trying two more multiplications
1451 and then computing the appropriate sum.
1452
1453 We have checked above that the required addition is provided.
1454 Full-word addition will normally always succeed, especially if
1455 it is provided at all, so we don't worry about its failure. The
1456 multiplication may well fail, however, so we do handle that. */
1457
1458 if (product && op0_xhigh && op1_xhigh)
1459 {
1460 rtx product_high = operand_subword (product, high, 1, mode);
1461 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1462 NULL_RTX, 0, OPTAB_DIRECT);
1463
1464 if (!REG_P (product_high))
1465 product_high = force_reg (word_mode, product_high);
1466
1467 if (temp != 0)
1468 temp = expand_binop (word_mode, add_optab, temp, product_high,
1469 product_high, 0, next_methods);
1470
1471 if (temp != 0 && temp != product_high)
1472 emit_move_insn (product_high, temp);
1473
1474 if (temp != 0)
1475 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1476 NULL_RTX, 0, OPTAB_DIRECT);
1477
1478 if (temp != 0)
1479 temp = expand_binop (word_mode, add_optab, temp,
1480 product_high, product_high,
1481 0, next_methods);
1482
1483 if (temp != 0 && temp != product_high)
1484 emit_move_insn (product_high, temp);
1485
1486 emit_move_insn (operand_subword (product, high, 1, mode), product_high);
1487
1488 if (temp != 0)
1489 {
1490 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1491 {
1492 temp = emit_move_insn (product, product);
1493 set_unique_reg_note (temp,
1494 REG_EQUAL,
1495 gen_rtx_fmt_ee (MULT, mode,
1496 copy_rtx (op0),
1497 copy_rtx (op1)));
1498 }
1499
1500 return product;
1501 }
1502 }
1503
1504 /* If we get here, we couldn't do it for some reason even though we
1505 originally thought we could. Delete anything we've emitted in
1506 trying to do it. */
1507
1508 delete_insns_since (last);
1509 }
1510
1511 /* Open-code the vector operations if we have no hardware support
1512 for them. */
1513 if (class == MODE_VECTOR_INT || class == MODE_VECTOR_FLOAT)
1514 return expand_vector_binop (mode, binoptab, op0, op1, target,
1515 unsignedp, methods);
1516
1517 /* We need to open-code the complex type operations: '+, -, * and /' */
1518
1519 /* At this point we allow operations between two similar complex
1520 numbers, and also if one of the operands is not a complex number
1521 but rather of MODE_FLOAT or MODE_INT. However, the caller
1522 must make sure that the MODE of the non-complex operand matches
1523 the SUBMODE of the complex operand. */
1524
1525 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1526 {
1527 rtx real0 = 0, imag0 = 0;
1528 rtx real1 = 0, imag1 = 0;
1529 rtx realr, imagr, res;
1530 rtx seq, result;
1531 int ok = 0;
1532
1533 /* Find the correct mode for the real and imaginary parts. */
1534 enum machine_mode submode = GET_MODE_INNER (mode);
1535
1536 if (submode == BLKmode)
1537 abort ();
1538
1539 start_sequence ();
1540
1541 if (GET_MODE (op0) == mode)
1542 {
1543 real0 = gen_realpart (submode, op0);
1544 imag0 = gen_imagpart (submode, op0);
1545 }
1546 else
1547 real0 = op0;
1548
1549 if (GET_MODE (op1) == mode)
1550 {
1551 real1 = gen_realpart (submode, op1);
1552 imag1 = gen_imagpart (submode, op1);
1553 }
1554 else
1555 real1 = op1;
1556
1557 if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0))
1558 abort ();
1559
1560 result = gen_reg_rtx (mode);
1561 realr = gen_realpart (submode, result);
1562 imagr = gen_imagpart (submode, result);
1563
1564 switch (binoptab->code)
1565 {
1566 case PLUS:
1567 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1568 case MINUS:
1569 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1570 res = expand_binop (submode, binoptab, real0, real1,
1571 realr, unsignedp, methods);
1572
1573 if (res == 0)
1574 break;
1575 else if (res != realr)
1576 emit_move_insn (realr, res);
1577
1578 if (imag0 != 0 && imag1 != 0)
1579 res = expand_binop (submode, binoptab, imag0, imag1,
1580 imagr, unsignedp, methods);
1581 else if (imag0 != 0)
1582 res = imag0;
1583 else if (binoptab->code == MINUS)
1584 res = expand_unop (submode,
1585 binoptab == subv_optab ? negv_optab : neg_optab,
1586 imag1, imagr, unsignedp);
1587 else
1588 res = imag1;
1589
1590 if (res == 0)
1591 break;
1592 else if (res != imagr)
1593 emit_move_insn (imagr, res);
1594
1595 ok = 1;
1596 break;
1597
1598 case MULT:
1599 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1600
1601 if (imag0 != 0 && imag1 != 0)
1602 {
1603 rtx temp1, temp2;
1604
1605 /* Don't fetch these from memory more than once. */
1606 real0 = force_reg (submode, real0);
1607 real1 = force_reg (submode, real1);
1608 imag0 = force_reg (submode, imag0);
1609 imag1 = force_reg (submode, imag1);
1610
1611 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1612 unsignedp, methods);
1613
1614 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1615 unsignedp, methods);
1616
1617 if (temp1 == 0 || temp2 == 0)
1618 break;
1619
1620 res = (expand_binop
1621 (submode,
1622 binoptab == smulv_optab ? subv_optab : sub_optab,
1623 temp1, temp2, realr, unsignedp, methods));
1624
1625 if (res == 0)
1626 break;
1627 else if (res != realr)
1628 emit_move_insn (realr, res);
1629
1630 temp1 = expand_binop (submode, binoptab, real0, imag1,
1631 NULL_RTX, unsignedp, methods);
1632
1633 /* Avoid expanding redundant multiplication for the common
1634 case of squaring a complex number. */
1635 if (rtx_equal_p (real0, real1) && rtx_equal_p (imag0, imag1))
1636 temp2 = temp1;
1637 else
1638 temp2 = expand_binop (submode, binoptab, real1, imag0,
1639 NULL_RTX, unsignedp, methods);
1640
1641 if (temp1 == 0 || temp2 == 0)
1642 break;
1643
1644 res = (expand_binop
1645 (submode,
1646 binoptab == smulv_optab ? addv_optab : add_optab,
1647 temp1, temp2, imagr, unsignedp, methods));
1648
1649 if (res == 0)
1650 break;
1651 else if (res != imagr)
1652 emit_move_insn (imagr, res);
1653
1654 ok = 1;
1655 }
1656 else
1657 {
1658 /* Don't fetch these from memory more than once. */
1659 real0 = force_reg (submode, real0);
1660 real1 = force_reg (submode, real1);
1661
1662 res = expand_binop (submode, binoptab, real0, real1,
1663 realr, unsignedp, methods);
1664 if (res == 0)
1665 break;
1666 else if (res != realr)
1667 emit_move_insn (realr, res);
1668
1669 if (imag0 != 0)
1670 res = expand_binop (submode, binoptab,
1671 real1, imag0, imagr, unsignedp, methods);
1672 else
1673 res = expand_binop (submode, binoptab,
1674 real0, imag1, imagr, unsignedp, methods);
1675
1676 if (res == 0)
1677 break;
1678 else if (res != imagr)
1679 emit_move_insn (imagr, res);
1680
1681 ok = 1;
1682 }
1683 break;
1684
1685 case DIV:
1686 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1687
1688 if (imag1 == 0)
1689 {
1690 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1691
1692 /* Don't fetch these from memory more than once. */
1693 real1 = force_reg (submode, real1);
1694
1695 /* Simply divide the real and imaginary parts by `c' */
1696 if (class == MODE_COMPLEX_FLOAT)
1697 res = expand_binop (submode, binoptab, real0, real1,
1698 realr, unsignedp, methods);
1699 else
1700 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1701 real0, real1, realr, unsignedp);
1702
1703 if (res == 0)
1704 break;
1705 else if (res != realr)
1706 emit_move_insn (realr, res);
1707
1708 if (class == MODE_COMPLEX_FLOAT)
1709 res = expand_binop (submode, binoptab, imag0, real1,
1710 imagr, unsignedp, methods);
1711 else
1712 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1713 imag0, real1, imagr, unsignedp);
1714
1715 if (res == 0)
1716 break;
1717 else if (res != imagr)
1718 emit_move_insn (imagr, res);
1719
1720 ok = 1;
1721 }
1722 else
1723 {
1724 switch (flag_complex_divide_method)
1725 {
1726 case 0:
1727 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1728 realr, imagr, submode,
1729 unsignedp, methods,
1730 class, binoptab);
1731 break;
1732
1733 case 1:
1734 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1735 realr, imagr, submode,
1736 unsignedp, methods,
1737 class, binoptab);
1738 break;
1739
1740 default:
1741 abort ();
1742 }
1743 }
1744 break;
1745
1746 default:
1747 abort ();
1748 }
1749
1750 seq = get_insns ();
1751 end_sequence ();
1752
1753 if (ok)
1754 {
1755 rtx equiv = gen_rtx_fmt_ee (binoptab->code, mode,
1756 copy_rtx (op0), copy_rtx (op1));
1757 emit_no_conflict_block (seq, result, op0, op1, equiv);
1758 return result;
1759 }
1760 }
1761
1762 /* It can't be open-coded in this mode.
1763 Use a library call if one is available and caller says that's ok. */
1764
1765 if (binoptab->handlers[(int) mode].libfunc
1766 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1767 {
1768 rtx insns;
1769 rtx op1x = op1;
1770 enum machine_mode op1_mode = mode;
1771 rtx value;
1772
1773 start_sequence ();
1774
1775 if (shift_op)
1776 {
1777 op1_mode = word_mode;
1778 /* Specify unsigned here,
1779 since negative shift counts are meaningless. */
1780 op1x = convert_to_mode (word_mode, op1, 1);
1781 }
1782
1783 if (GET_MODE (op0) != VOIDmode
1784 && GET_MODE (op0) != mode)
1785 op0 = convert_to_mode (mode, op0, unsignedp);
1786
1787 /* Pass 1 for NO_QUEUE so we don't lose any increments
1788 if the libcall is cse'd or moved. */
1789 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1790 NULL_RTX, LCT_CONST, mode, 2,
1791 op0, mode, op1x, op1_mode);
1792
1793 insns = get_insns ();
1794 end_sequence ();
1795
1796 target = gen_reg_rtx (mode);
1797 emit_libcall_block (insns, target, value,
1798 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1799
1800 return target;
1801 }
1802
1803 delete_insns_since (last);
1804
1805 /* It can't be done in this mode. Can we do it in a wider mode? */
1806
1807 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1808 || methods == OPTAB_MUST_WIDEN))
1809 {
1810 /* Caller says, don't even try. */
1811 delete_insns_since (entry_last);
1812 return 0;
1813 }
1814
1815 /* Compute the value of METHODS to pass to recursive calls.
1816 Don't allow widening to be tried recursively. */
1817
1818 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1819
1820 /* Look for a wider mode of the same class for which it appears we can do
1821 the operation. */
1822
1823 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1824 {
1825 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1826 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1827 {
1828 if ((binoptab->handlers[(int) wider_mode].insn_code
1829 != CODE_FOR_nothing)
1830 || (methods == OPTAB_LIB
1831 && binoptab->handlers[(int) wider_mode].libfunc))
1832 {
1833 rtx xop0 = op0, xop1 = op1;
1834 int no_extend = 0;
1835
1836 /* For certain integer operations, we need not actually extend
1837 the narrow operands, as long as we will truncate
1838 the results to the same narrowness. */
1839
1840 if ((binoptab == ior_optab || binoptab == and_optab
1841 || binoptab == xor_optab
1842 || binoptab == add_optab || binoptab == sub_optab
1843 || binoptab == smul_optab || binoptab == ashl_optab)
1844 && class == MODE_INT)
1845 no_extend = 1;
1846
1847 xop0 = widen_operand (xop0, wider_mode, mode,
1848 unsignedp, no_extend);
1849
1850 /* The second operand of a shift must always be extended. */
1851 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1852 no_extend && binoptab != ashl_optab);
1853
1854 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1855 unsignedp, methods);
1856 if (temp)
1857 {
1858 if (class != MODE_INT)
1859 {
1860 if (target == 0)
1861 target = gen_reg_rtx (mode);
1862 convert_move (target, temp, 0);
1863 return target;
1864 }
1865 else
1866 return gen_lowpart (mode, temp);
1867 }
1868 else
1869 delete_insns_since (last);
1870 }
1871 }
1872 }
1873
1874 delete_insns_since (entry_last);
1875 return 0;
1876 }
1877
1878 /* Like expand_binop, but for open-coding vectors binops. */
1879
1880 static rtx
1881 expand_vector_binop (enum machine_mode mode, optab binoptab, rtx op0,
1882 rtx op1, rtx target, int unsignedp,
1883 enum optab_methods methods)
1884 {
1885 enum machine_mode submode, tmode;
1886 int size, elts, subsize, subbitsize, i;
1887 rtx t, a, b, res, seq;
1888 enum mode_class class;
1889
1890 class = GET_MODE_CLASS (mode);
1891
1892 size = GET_MODE_SIZE (mode);
1893 submode = GET_MODE_INNER (mode);
1894
1895 /* Search for the widest vector mode with the same inner mode that is
1896 still narrower than MODE and that allows to open-code this operator.
1897 Note, if we find such a mode and the handler later decides it can't
1898 do the expansion, we'll be called recursively with the narrower mode. */
1899 for (tmode = GET_CLASS_NARROWEST_MODE (class);
1900 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
1901 tmode = GET_MODE_WIDER_MODE (tmode))
1902 {
1903 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
1904 && binoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
1905 submode = tmode;
1906 }
1907
1908 switch (binoptab->code)
1909 {
1910 case AND:
1911 case IOR:
1912 case XOR:
1913 tmode = int_mode_for_mode (mode);
1914 if (tmode != BLKmode)
1915 submode = tmode;
1916 case PLUS:
1917 case MINUS:
1918 case MULT:
1919 case DIV:
1920 subsize = GET_MODE_SIZE (submode);
1921 subbitsize = GET_MODE_BITSIZE (submode);
1922 elts = size / subsize;
1923
1924 /* If METHODS is OPTAB_DIRECT, we don't insist on the exact mode,
1925 but that we operate on more than one element at a time. */
1926 if (subsize == GET_MODE_UNIT_SIZE (mode) && methods == OPTAB_DIRECT)
1927 return 0;
1928
1929 start_sequence ();
1930
1931 /* Errors can leave us with a const0_rtx as operand. */
1932 if (GET_MODE (op0) != mode)
1933 op0 = copy_to_mode_reg (mode, op0);
1934 if (GET_MODE (op1) != mode)
1935 op1 = copy_to_mode_reg (mode, op1);
1936
1937 if (!target)
1938 target = gen_reg_rtx (mode);
1939
1940 for (i = 0; i < elts; ++i)
1941 {
1942 /* If this is part of a register, and not the first item in the
1943 word, we can't store using a SUBREG - that would clobber
1944 previous results.
1945 And storing with a SUBREG is only possible for the least
1946 significant part, hence we can't do it for big endian
1947 (unless we want to permute the evaluation order. */
1948 if (REG_P (target)
1949 && (BYTES_BIG_ENDIAN
1950 ? subsize < UNITS_PER_WORD
1951 : ((i * subsize) % UNITS_PER_WORD) != 0))
1952 t = NULL_RTX;
1953 else
1954 t = simplify_gen_subreg (submode, target, mode, i * subsize);
1955 if (CONSTANT_P (op0))
1956 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
1957 else
1958 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
1959 NULL_RTX, submode, submode, size);
1960 if (CONSTANT_P (op1))
1961 b = simplify_gen_subreg (submode, op1, mode, i * subsize);
1962 else
1963 b = extract_bit_field (op1, subbitsize, i * subbitsize, unsignedp,
1964 NULL_RTX, submode, submode, size);
1965
1966 if (binoptab->code == DIV)
1967 {
1968 if (class == MODE_VECTOR_FLOAT)
1969 res = expand_binop (submode, binoptab, a, b, t,
1970 unsignedp, methods);
1971 else
1972 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1973 a, b, t, unsignedp);
1974 }
1975 else
1976 res = expand_binop (submode, binoptab, a, b, t,
1977 unsignedp, methods);
1978
1979 if (res == 0)
1980 break;
1981
1982 if (t)
1983 emit_move_insn (t, res);
1984 else
1985 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
1986 size);
1987 }
1988 break;
1989
1990 default:
1991 abort ();
1992 }
1993
1994 seq = get_insns ();
1995 end_sequence ();
1996 emit_insn (seq);
1997
1998 return target;
1999 }
2000
2001 /* Like expand_unop but for open-coding vector unops. */
2002
2003 static rtx
2004 expand_vector_unop (enum machine_mode mode, optab unoptab, rtx op0,
2005 rtx target, int unsignedp)
2006 {
2007 enum machine_mode submode, tmode;
2008 int size, elts, subsize, subbitsize, i;
2009 rtx t, a, res, seq;
2010
2011 size = GET_MODE_SIZE (mode);
2012 submode = GET_MODE_INNER (mode);
2013
2014 /* Search for the widest vector mode with the same inner mode that is
2015 still narrower than MODE and that allows to open-code this operator.
2016 Note, if we find such a mode and the handler later decides it can't
2017 do the expansion, we'll be called recursively with the narrower mode. */
2018 for (tmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (mode));
2019 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
2020 tmode = GET_MODE_WIDER_MODE (tmode))
2021 {
2022 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
2023 && unoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
2024 submode = tmode;
2025 }
2026 /* If there is no negate operation, try doing a subtract from zero. */
2027 if (unoptab == neg_optab && GET_MODE_CLASS (submode) == MODE_INT
2028 /* Avoid infinite recursion when an
2029 error has left us with the wrong mode. */
2030 && GET_MODE (op0) == mode)
2031 {
2032 rtx temp;
2033 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2034 target, unsignedp, OPTAB_DIRECT);
2035 if (temp)
2036 return temp;
2037 }
2038
2039 if (unoptab == one_cmpl_optab)
2040 {
2041 tmode = int_mode_for_mode (mode);
2042 if (tmode != BLKmode)
2043 submode = tmode;
2044 }
2045
2046 subsize = GET_MODE_SIZE (submode);
2047 subbitsize = GET_MODE_BITSIZE (submode);
2048 elts = size / subsize;
2049
2050 /* Errors can leave us with a const0_rtx as operand. */
2051 if (GET_MODE (op0) != mode)
2052 op0 = copy_to_mode_reg (mode, op0);
2053
2054 if (!target)
2055 target = gen_reg_rtx (mode);
2056
2057 start_sequence ();
2058
2059 for (i = 0; i < elts; ++i)
2060 {
2061 /* If this is part of a register, and not the first item in the
2062 word, we can't store using a SUBREG - that would clobber
2063 previous results.
2064 And storing with a SUBREG is only possible for the least
2065 significant part, hence we can't do it for big endian
2066 (unless we want to permute the evaluation order. */
2067 if (REG_P (target)
2068 && (BYTES_BIG_ENDIAN
2069 ? subsize < UNITS_PER_WORD
2070 : ((i * subsize) % UNITS_PER_WORD) != 0))
2071 t = NULL_RTX;
2072 else
2073 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2074 if (CONSTANT_P (op0))
2075 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2076 else
2077 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2078 t, submode, submode, size);
2079
2080 res = expand_unop (submode, unoptab, a, t, unsignedp);
2081
2082 if (t)
2083 emit_move_insn (t, res);
2084 else
2085 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
2086 size);
2087 }
2088
2089 seq = get_insns ();
2090 end_sequence ();
2091 emit_insn (seq);
2092
2093 return target;
2094 }
2095 \f
2096 /* Expand a binary operator which has both signed and unsigned forms.
2097 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2098 signed operations.
2099
2100 If we widen unsigned operands, we may use a signed wider operation instead
2101 of an unsigned wider operation, since the result would be the same. */
2102
2103 rtx
2104 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2105 rtx op0, rtx op1, rtx target, int unsignedp,
2106 enum optab_methods methods)
2107 {
2108 rtx temp;
2109 optab direct_optab = unsignedp ? uoptab : soptab;
2110 struct optab wide_soptab;
2111
2112 /* Do it without widening, if possible. */
2113 temp = expand_binop (mode, direct_optab, op0, op1, target,
2114 unsignedp, OPTAB_DIRECT);
2115 if (temp || methods == OPTAB_DIRECT)
2116 return temp;
2117
2118 /* Try widening to a signed int. Make a fake signed optab that
2119 hides any signed insn for direct use. */
2120 wide_soptab = *soptab;
2121 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
2122 wide_soptab.handlers[(int) mode].libfunc = 0;
2123
2124 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2125 unsignedp, OPTAB_WIDEN);
2126
2127 /* For unsigned operands, try widening to an unsigned int. */
2128 if (temp == 0 && unsignedp)
2129 temp = expand_binop (mode, uoptab, op0, op1, target,
2130 unsignedp, OPTAB_WIDEN);
2131 if (temp || methods == OPTAB_WIDEN)
2132 return temp;
2133
2134 /* Use the right width lib call if that exists. */
2135 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2136 if (temp || methods == OPTAB_LIB)
2137 return temp;
2138
2139 /* Must widen and use a lib call, use either signed or unsigned. */
2140 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2141 unsignedp, methods);
2142 if (temp != 0)
2143 return temp;
2144 if (unsignedp)
2145 return expand_binop (mode, uoptab, op0, op1, target,
2146 unsignedp, methods);
2147 return 0;
2148 }
2149 \f
2150 /* Generate code to perform an operation specified by UNOPPTAB
2151 on operand OP0, with two results to TARG0 and TARG1.
2152 We assume that the order of the operands for the instruction
2153 is TARG0, TARG1, OP0.
2154
2155 Either TARG0 or TARG1 may be zero, but what that means is that
2156 the result is not actually wanted. We will generate it into
2157 a dummy pseudo-reg and discard it. They may not both be zero.
2158
2159 Returns 1 if this operation can be performed; 0 if not. */
2160
2161 int
2162 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2163 int unsignedp)
2164 {
2165 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2166 enum mode_class class;
2167 enum machine_mode wider_mode;
2168 rtx entry_last = get_last_insn ();
2169 rtx last;
2170
2171 class = GET_MODE_CLASS (mode);
2172
2173 op0 = protect_from_queue (op0, 0);
2174
2175 if (flag_force_mem)
2176 {
2177 op0 = force_not_mem (op0);
2178 }
2179
2180 if (targ0)
2181 targ0 = protect_from_queue (targ0, 1);
2182 else
2183 targ0 = gen_reg_rtx (mode);
2184 if (targ1)
2185 targ1 = protect_from_queue (targ1, 1);
2186 else
2187 targ1 = gen_reg_rtx (mode);
2188
2189 /* Record where to go back to if we fail. */
2190 last = get_last_insn ();
2191
2192 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2193 {
2194 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2195 enum machine_mode mode0 = insn_data[icode].operand[2].mode;
2196 rtx pat;
2197 rtx xop0 = op0;
2198
2199 if (GET_MODE (xop0) != VOIDmode
2200 && GET_MODE (xop0) != mode0)
2201 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2202
2203 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2204 if (! (*insn_data[icode].operand[2].predicate) (xop0, mode0))
2205 xop0 = copy_to_mode_reg (mode0, xop0);
2206
2207 /* We could handle this, but we should always be called with a pseudo
2208 for our targets and all insns should take them as outputs. */
2209 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2210 || ! (*insn_data[icode].operand[1].predicate) (targ1, mode))
2211 abort ();
2212
2213 pat = GEN_FCN (icode) (targ0, targ1, xop0);
2214 if (pat)
2215 {
2216 emit_insn (pat);
2217 return 1;
2218 }
2219 else
2220 delete_insns_since (last);
2221 }
2222
2223 /* It can't be done in this mode. Can we do it in a wider mode? */
2224
2225 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2226 {
2227 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2228 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2229 {
2230 if (unoptab->handlers[(int) wider_mode].insn_code
2231 != CODE_FOR_nothing)
2232 {
2233 rtx t0 = gen_reg_rtx (wider_mode);
2234 rtx t1 = gen_reg_rtx (wider_mode);
2235 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2236
2237 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2238 {
2239 convert_move (targ0, t0, unsignedp);
2240 convert_move (targ1, t1, unsignedp);
2241 return 1;
2242 }
2243 else
2244 delete_insns_since (last);
2245 }
2246 }
2247 }
2248
2249 delete_insns_since (entry_last);
2250 return 0;
2251 }
2252 \f
2253 /* Generate code to perform an operation specified by BINOPTAB
2254 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2255 We assume that the order of the operands for the instruction
2256 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2257 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2258
2259 Either TARG0 or TARG1 may be zero, but what that means is that
2260 the result is not actually wanted. We will generate it into
2261 a dummy pseudo-reg and discard it. They may not both be zero.
2262
2263 Returns 1 if this operation can be performed; 0 if not. */
2264
2265 int
2266 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2267 int unsignedp)
2268 {
2269 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2270 enum mode_class class;
2271 enum machine_mode wider_mode;
2272 rtx entry_last = get_last_insn ();
2273 rtx last;
2274
2275 class = GET_MODE_CLASS (mode);
2276
2277 op0 = protect_from_queue (op0, 0);
2278 op1 = protect_from_queue (op1, 0);
2279
2280 if (flag_force_mem)
2281 {
2282 op0 = force_not_mem (op0);
2283 op1 = force_not_mem (op1);
2284 }
2285
2286 /* If we are inside an appropriately-short loop and one operand is an
2287 expensive constant, force it into a register. */
2288 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
2289 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
2290 op0 = force_reg (mode, op0);
2291
2292 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
2293 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
2294 op1 = force_reg (mode, op1);
2295
2296 if (targ0)
2297 targ0 = protect_from_queue (targ0, 1);
2298 else
2299 targ0 = gen_reg_rtx (mode);
2300 if (targ1)
2301 targ1 = protect_from_queue (targ1, 1);
2302 else
2303 targ1 = gen_reg_rtx (mode);
2304
2305 /* Record where to go back to if we fail. */
2306 last = get_last_insn ();
2307
2308 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2309 {
2310 int icode = (int) binoptab->handlers[(int) mode].insn_code;
2311 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2312 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2313 rtx pat;
2314 rtx xop0 = op0, xop1 = op1;
2315
2316 /* In case the insn wants input operands in modes different from
2317 those of the actual operands, convert the operands. It would
2318 seem that we don't need to convert CONST_INTs, but we do, so
2319 that they're properly zero-extended, sign-extended or truncated
2320 for their mode. */
2321
2322 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2323 xop0 = convert_modes (mode0,
2324 GET_MODE (op0) != VOIDmode
2325 ? GET_MODE (op0)
2326 : mode,
2327 xop0, unsignedp);
2328
2329 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2330 xop1 = convert_modes (mode1,
2331 GET_MODE (op1) != VOIDmode
2332 ? GET_MODE (op1)
2333 : mode,
2334 xop1, unsignedp);
2335
2336 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2337 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2338 xop0 = copy_to_mode_reg (mode0, xop0);
2339
2340 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
2341 xop1 = copy_to_mode_reg (mode1, xop1);
2342
2343 /* We could handle this, but we should always be called with a pseudo
2344 for our targets and all insns should take them as outputs. */
2345 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2346 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
2347 abort ();
2348
2349 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2350 if (pat)
2351 {
2352 emit_insn (pat);
2353 return 1;
2354 }
2355 else
2356 delete_insns_since (last);
2357 }
2358
2359 /* It can't be done in this mode. Can we do it in a wider mode? */
2360
2361 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2362 {
2363 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2364 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2365 {
2366 if (binoptab->handlers[(int) wider_mode].insn_code
2367 != CODE_FOR_nothing)
2368 {
2369 rtx t0 = gen_reg_rtx (wider_mode);
2370 rtx t1 = gen_reg_rtx (wider_mode);
2371 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2372 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2373
2374 if (expand_twoval_binop (binoptab, cop0, cop1,
2375 t0, t1, unsignedp))
2376 {
2377 convert_move (targ0, t0, unsignedp);
2378 convert_move (targ1, t1, unsignedp);
2379 return 1;
2380 }
2381 else
2382 delete_insns_since (last);
2383 }
2384 }
2385 }
2386
2387 delete_insns_since (entry_last);
2388 return 0;
2389 }
2390 \f
2391 /* Wrapper around expand_unop which takes an rtx code to specify
2392 the operation to perform, not an optab pointer. All other
2393 arguments are the same. */
2394 rtx
2395 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2396 rtx target, int unsignedp)
2397 {
2398 optab unop = code_to_optab[(int) code];
2399 if (unop == 0)
2400 abort ();
2401
2402 return expand_unop (mode, unop, op0, target, unsignedp);
2403 }
2404
2405 /* Try calculating
2406 (clz:narrow x)
2407 as
2408 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2409 static rtx
2410 widen_clz (enum machine_mode mode, rtx op0, rtx target)
2411 {
2412 enum mode_class class = GET_MODE_CLASS (mode);
2413 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2414 {
2415 enum machine_mode wider_mode;
2416 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2417 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2418 {
2419 if (clz_optab->handlers[(int) wider_mode].insn_code
2420 != CODE_FOR_nothing)
2421 {
2422 rtx xop0, temp, last;
2423
2424 last = get_last_insn ();
2425
2426 if (target == 0)
2427 target = gen_reg_rtx (mode);
2428 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2429 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2430 if (temp != 0)
2431 temp = expand_binop (wider_mode, sub_optab, temp,
2432 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2433 - GET_MODE_BITSIZE (mode)),
2434 target, true, OPTAB_DIRECT);
2435 if (temp == 0)
2436 delete_insns_since (last);
2437
2438 return temp;
2439 }
2440 }
2441 }
2442 return 0;
2443 }
2444
2445 /* Try calculating (parity x) as (and (popcount x) 1), where
2446 popcount can also be done in a wider mode. */
2447 static rtx
2448 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2449 {
2450 enum mode_class class = GET_MODE_CLASS (mode);
2451 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2452 {
2453 enum machine_mode wider_mode;
2454 for (wider_mode = mode; wider_mode != VOIDmode;
2455 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2456 {
2457 if (popcount_optab->handlers[(int) wider_mode].insn_code
2458 != CODE_FOR_nothing)
2459 {
2460 rtx xop0, temp, last;
2461
2462 last = get_last_insn ();
2463
2464 if (target == 0)
2465 target = gen_reg_rtx (mode);
2466 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2467 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2468 true);
2469 if (temp != 0)
2470 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2471 target, true, OPTAB_DIRECT);
2472 if (temp == 0)
2473 delete_insns_since (last);
2474
2475 return temp;
2476 }
2477 }
2478 }
2479 return 0;
2480 }
2481
2482 /* Generate code to perform an operation specified by UNOPTAB
2483 on operand OP0, with result having machine-mode MODE.
2484
2485 UNSIGNEDP is for the case where we have to widen the operands
2486 to perform the operation. It says to use zero-extension.
2487
2488 If TARGET is nonzero, the value
2489 is generated there, if it is convenient to do so.
2490 In all cases an rtx is returned for the locus of the value;
2491 this may or may not be TARGET. */
2492
2493 rtx
2494 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2495 int unsignedp)
2496 {
2497 enum mode_class class;
2498 enum machine_mode wider_mode;
2499 rtx temp;
2500 rtx last = get_last_insn ();
2501 rtx pat;
2502
2503 class = GET_MODE_CLASS (mode);
2504
2505 op0 = protect_from_queue (op0, 0);
2506
2507 if (flag_force_mem)
2508 {
2509 op0 = force_not_mem (op0);
2510 }
2511
2512 if (target)
2513 target = protect_from_queue (target, 1);
2514
2515 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2516 {
2517 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2518 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2519 rtx xop0 = op0;
2520
2521 if (target)
2522 temp = target;
2523 else
2524 temp = gen_reg_rtx (mode);
2525
2526 if (GET_MODE (xop0) != VOIDmode
2527 && GET_MODE (xop0) != mode0)
2528 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2529
2530 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2531
2532 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2533 xop0 = copy_to_mode_reg (mode0, xop0);
2534
2535 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2536 temp = gen_reg_rtx (mode);
2537
2538 pat = GEN_FCN (icode) (temp, xop0);
2539 if (pat)
2540 {
2541 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2542 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2543 {
2544 delete_insns_since (last);
2545 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2546 }
2547
2548 emit_insn (pat);
2549
2550 return temp;
2551 }
2552 else
2553 delete_insns_since (last);
2554 }
2555
2556 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2557
2558 /* Widening clz needs special treatment. */
2559 if (unoptab == clz_optab)
2560 {
2561 temp = widen_clz (mode, op0, target);
2562 if (temp)
2563 return temp;
2564 else
2565 goto try_libcall;
2566 }
2567
2568 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2569 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2570 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2571 {
2572 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2573 {
2574 rtx xop0 = op0;
2575
2576 /* For certain operations, we need not actually extend
2577 the narrow operand, as long as we will truncate the
2578 results to the same narrowness. */
2579
2580 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2581 (unoptab == neg_optab
2582 || unoptab == one_cmpl_optab)
2583 && class == MODE_INT);
2584
2585 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2586 unsignedp);
2587
2588 if (temp)
2589 {
2590 if (class != MODE_INT)
2591 {
2592 if (target == 0)
2593 target = gen_reg_rtx (mode);
2594 convert_move (target, temp, 0);
2595 return target;
2596 }
2597 else
2598 return gen_lowpart (mode, temp);
2599 }
2600 else
2601 delete_insns_since (last);
2602 }
2603 }
2604
2605 /* These can be done a word at a time. */
2606 if (unoptab == one_cmpl_optab
2607 && class == MODE_INT
2608 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2609 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2610 {
2611 int i;
2612 rtx insns;
2613
2614 if (target == 0 || target == op0)
2615 target = gen_reg_rtx (mode);
2616
2617 start_sequence ();
2618
2619 /* Do the actual arithmetic. */
2620 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2621 {
2622 rtx target_piece = operand_subword (target, i, 1, mode);
2623 rtx x = expand_unop (word_mode, unoptab,
2624 operand_subword_force (op0, i, mode),
2625 target_piece, unsignedp);
2626
2627 if (target_piece != x)
2628 emit_move_insn (target_piece, x);
2629 }
2630
2631 insns = get_insns ();
2632 end_sequence ();
2633
2634 emit_no_conflict_block (insns, target, op0, NULL_RTX,
2635 gen_rtx_fmt_e (unoptab->code, mode,
2636 copy_rtx (op0)));
2637 return target;
2638 }
2639
2640 /* Open-code the complex negation operation. */
2641 else if (unoptab->code == NEG
2642 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2643 {
2644 rtx target_piece;
2645 rtx x;
2646 rtx seq;
2647
2648 /* Find the correct mode for the real and imaginary parts. */
2649 enum machine_mode submode = GET_MODE_INNER (mode);
2650
2651 if (submode == BLKmode)
2652 abort ();
2653
2654 if (target == 0)
2655 target = gen_reg_rtx (mode);
2656
2657 start_sequence ();
2658
2659 target_piece = gen_imagpart (submode, target);
2660 x = expand_unop (submode, unoptab,
2661 gen_imagpart (submode, op0),
2662 target_piece, unsignedp);
2663 if (target_piece != x)
2664 emit_move_insn (target_piece, x);
2665
2666 target_piece = gen_realpart (submode, target);
2667 x = expand_unop (submode, unoptab,
2668 gen_realpart (submode, op0),
2669 target_piece, unsignedp);
2670 if (target_piece != x)
2671 emit_move_insn (target_piece, x);
2672
2673 seq = get_insns ();
2674 end_sequence ();
2675
2676 emit_no_conflict_block (seq, target, op0, 0,
2677 gen_rtx_fmt_e (unoptab->code, mode,
2678 copy_rtx (op0)));
2679 return target;
2680 }
2681
2682 /* Try negating floating point values by flipping the sign bit. */
2683 if (unoptab->code == NEG && class == MODE_FLOAT
2684 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2685 {
2686 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
2687 enum machine_mode imode = int_mode_for_mode (mode);
2688 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2689
2690 if (imode != BLKmode && bitpos >= 0 && fmt->has_signed_zero)
2691 {
2692 HOST_WIDE_INT hi, lo;
2693 rtx last = get_last_insn ();
2694
2695 /* Handle targets with different FP word orders. */
2696 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2697 {
2698 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2699 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2700 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2701 }
2702
2703 if (bitpos < HOST_BITS_PER_WIDE_INT)
2704 {
2705 hi = 0;
2706 lo = (HOST_WIDE_INT) 1 << bitpos;
2707 }
2708 else
2709 {
2710 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2711 lo = 0;
2712 }
2713 temp = expand_binop (imode, xor_optab,
2714 gen_lowpart (imode, op0),
2715 immed_double_const (lo, hi, imode),
2716 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2717 if (temp != 0)
2718 {
2719 rtx insn;
2720 if (target == 0)
2721 target = gen_reg_rtx (mode);
2722 insn = emit_move_insn (target, gen_lowpart (mode, temp));
2723 set_unique_reg_note (insn, REG_EQUAL,
2724 gen_rtx_fmt_e (NEG, mode,
2725 copy_rtx (op0)));
2726 return target;
2727 }
2728 delete_insns_since (last);
2729 }
2730 }
2731
2732 /* Try calculating parity (x) as popcount (x) % 2. */
2733 if (unoptab == parity_optab)
2734 {
2735 temp = expand_parity (mode, op0, target);
2736 if (temp)
2737 return temp;
2738 }
2739
2740 /* If there is no negation pattern, try subtracting from zero. */
2741 if (unoptab == neg_optab && class == MODE_INT)
2742 {
2743 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2744 target, unsignedp, OPTAB_DIRECT);
2745 if (temp)
2746 return temp;
2747 }
2748
2749 try_libcall:
2750 /* Now try a library call in this mode. */
2751 if (unoptab->handlers[(int) mode].libfunc)
2752 {
2753 rtx insns;
2754 rtx value;
2755 enum machine_mode outmode = mode;
2756
2757 /* All of these functions return small values. Thus we choose to
2758 have them return something that isn't a double-word. */
2759 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
2760 || unoptab == popcount_optab || unoptab == parity_optab)
2761 outmode
2762 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
2763
2764 start_sequence ();
2765
2766 /* Pass 1 for NO_QUEUE so we don't lose any increments
2767 if the libcall is cse'd or moved. */
2768 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2769 NULL_RTX, LCT_CONST, outmode,
2770 1, op0, mode);
2771 insns = get_insns ();
2772 end_sequence ();
2773
2774 target = gen_reg_rtx (outmode);
2775 emit_libcall_block (insns, target, value,
2776 gen_rtx_fmt_e (unoptab->code, mode, op0));
2777
2778 return target;
2779 }
2780
2781 if (class == MODE_VECTOR_FLOAT || class == MODE_VECTOR_INT)
2782 return expand_vector_unop (mode, unoptab, op0, target, unsignedp);
2783
2784 /* It can't be done in this mode. Can we do it in a wider mode? */
2785
2786 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2787 {
2788 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2789 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2790 {
2791 if ((unoptab->handlers[(int) wider_mode].insn_code
2792 != CODE_FOR_nothing)
2793 || unoptab->handlers[(int) wider_mode].libfunc)
2794 {
2795 rtx xop0 = op0;
2796
2797 /* For certain operations, we need not actually extend
2798 the narrow operand, as long as we will truncate the
2799 results to the same narrowness. */
2800
2801 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2802 (unoptab == neg_optab
2803 || unoptab == one_cmpl_optab)
2804 && class == MODE_INT);
2805
2806 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2807 unsignedp);
2808
2809 /* If we are generating clz using wider mode, adjust the
2810 result. */
2811 if (unoptab == clz_optab && temp != 0)
2812 temp = expand_binop (wider_mode, sub_optab, temp,
2813 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2814 - GET_MODE_BITSIZE (mode)),
2815 target, true, OPTAB_DIRECT);
2816
2817 if (temp)
2818 {
2819 if (class != MODE_INT)
2820 {
2821 if (target == 0)
2822 target = gen_reg_rtx (mode);
2823 convert_move (target, temp, 0);
2824 return target;
2825 }
2826 else
2827 return gen_lowpart (mode, temp);
2828 }
2829 else
2830 delete_insns_since (last);
2831 }
2832 }
2833 }
2834
2835 /* If there is no negate operation, try doing a subtract from zero.
2836 The US Software GOFAST library needs this. */
2837 if (unoptab->code == NEG)
2838 {
2839 rtx temp;
2840 temp = expand_binop (mode,
2841 unoptab == negv_optab ? subv_optab : sub_optab,
2842 CONST0_RTX (mode), op0,
2843 target, unsignedp, OPTAB_LIB_WIDEN);
2844 if (temp)
2845 return temp;
2846 }
2847
2848 return 0;
2849 }
2850 \f
2851 /* Emit code to compute the absolute value of OP0, with result to
2852 TARGET if convenient. (TARGET may be 0.) The return value says
2853 where the result actually is to be found.
2854
2855 MODE is the mode of the operand; the mode of the result is
2856 different but can be deduced from MODE.
2857
2858 */
2859
2860 rtx
2861 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
2862 int result_unsignedp)
2863 {
2864 rtx temp;
2865
2866 if (! flag_trapv)
2867 result_unsignedp = 1;
2868
2869 /* First try to do it with a special abs instruction. */
2870 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2871 op0, target, 0);
2872 if (temp != 0)
2873 return temp;
2874
2875 /* For floating point modes, try clearing the sign bit. */
2876 if (GET_MODE_CLASS (mode) == MODE_FLOAT
2877 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2878 {
2879 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
2880 enum machine_mode imode = int_mode_for_mode (mode);
2881 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2882
2883 if (imode != BLKmode && bitpos >= 0)
2884 {
2885 HOST_WIDE_INT hi, lo;
2886 rtx last = get_last_insn ();
2887
2888 /* Handle targets with different FP word orders. */
2889 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2890 {
2891 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2892 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2893 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2894 }
2895
2896 if (bitpos < HOST_BITS_PER_WIDE_INT)
2897 {
2898 hi = 0;
2899 lo = (HOST_WIDE_INT) 1 << bitpos;
2900 }
2901 else
2902 {
2903 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2904 lo = 0;
2905 }
2906 temp = expand_binop (imode, and_optab,
2907 gen_lowpart (imode, op0),
2908 immed_double_const (~lo, ~hi, imode),
2909 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2910 if (temp != 0)
2911 {
2912 rtx insn;
2913 if (target == 0)
2914 target = gen_reg_rtx (mode);
2915 insn = emit_move_insn (target, gen_lowpart (mode, temp));
2916 set_unique_reg_note (insn, REG_EQUAL,
2917 gen_rtx_fmt_e (ABS, mode,
2918 copy_rtx (op0)));
2919 return target;
2920 }
2921 delete_insns_since (last);
2922 }
2923 }
2924
2925 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2926 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2927 {
2928 rtx last = get_last_insn ();
2929
2930 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2931 if (temp != 0)
2932 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2933 OPTAB_WIDEN);
2934
2935 if (temp != 0)
2936 return temp;
2937
2938 delete_insns_since (last);
2939 }
2940
2941 /* If this machine has expensive jumps, we can do integer absolute
2942 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2943 where W is the width of MODE. */
2944
2945 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2946 {
2947 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2948 size_int (GET_MODE_BITSIZE (mode) - 1),
2949 NULL_RTX, 0);
2950
2951 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2952 OPTAB_LIB_WIDEN);
2953 if (temp != 0)
2954 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2955 temp, extended, target, 0, OPTAB_LIB_WIDEN);
2956
2957 if (temp != 0)
2958 return temp;
2959 }
2960
2961 return NULL_RTX;
2962 }
2963
2964 rtx
2965 expand_abs (enum machine_mode mode, rtx op0, rtx target,
2966 int result_unsignedp, int safe)
2967 {
2968 rtx temp, op1;
2969
2970 if (! flag_trapv)
2971 result_unsignedp = 1;
2972
2973 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
2974 if (temp != 0)
2975 return temp;
2976
2977 /* If that does not win, use conditional jump and negate. */
2978
2979 /* It is safe to use the target if it is the same
2980 as the source if this is also a pseudo register */
2981 if (op0 == target && REG_P (op0)
2982 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2983 safe = 1;
2984
2985 op1 = gen_label_rtx ();
2986 if (target == 0 || ! safe
2987 || GET_MODE (target) != mode
2988 || (MEM_P (target) && MEM_VOLATILE_P (target))
2989 || (REG_P (target)
2990 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2991 target = gen_reg_rtx (mode);
2992
2993 emit_move_insn (target, op0);
2994 NO_DEFER_POP;
2995
2996 /* If this mode is an integer too wide to compare properly,
2997 compare word by word. Rely on CSE to optimize constant cases. */
2998 if (GET_MODE_CLASS (mode) == MODE_INT
2999 && ! can_compare_p (GE, mode, ccp_jump))
3000 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
3001 NULL_RTX, op1);
3002 else
3003 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3004 NULL_RTX, NULL_RTX, op1);
3005
3006 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3007 target, target, 0);
3008 if (op0 != target)
3009 emit_move_insn (target, op0);
3010 emit_label (op1);
3011 OK_DEFER_POP;
3012 return target;
3013 }
3014 \f
3015 /* Emit code to compute the absolute value of OP0, with result to
3016 TARGET if convenient. (TARGET may be 0.) The return value says
3017 where the result actually is to be found.
3018
3019 MODE is the mode of the operand; the mode of the result is
3020 different but can be deduced from MODE.
3021
3022 UNSIGNEDP is relevant for complex integer modes. */
3023
3024 rtx
3025 expand_complex_abs (enum machine_mode mode, rtx op0, rtx target,
3026 int unsignedp)
3027 {
3028 enum mode_class class = GET_MODE_CLASS (mode);
3029 enum machine_mode wider_mode;
3030 rtx temp;
3031 rtx entry_last = get_last_insn ();
3032 rtx last;
3033 rtx pat;
3034 optab this_abs_optab;
3035
3036 /* Find the correct mode for the real and imaginary parts. */
3037 enum machine_mode submode = GET_MODE_INNER (mode);
3038
3039 if (submode == BLKmode)
3040 abort ();
3041
3042 op0 = protect_from_queue (op0, 0);
3043
3044 if (flag_force_mem)
3045 {
3046 op0 = force_not_mem (op0);
3047 }
3048
3049 last = get_last_insn ();
3050
3051 if (target)
3052 target = protect_from_queue (target, 1);
3053
3054 this_abs_optab = ! unsignedp && flag_trapv
3055 && (GET_MODE_CLASS(mode) == MODE_INT)
3056 ? absv_optab : abs_optab;
3057
3058 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3059 {
3060 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
3061 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3062 rtx xop0 = op0;
3063
3064 if (target)
3065 temp = target;
3066 else
3067 temp = gen_reg_rtx (submode);
3068
3069 if (GET_MODE (xop0) != VOIDmode
3070 && GET_MODE (xop0) != mode0)
3071 xop0 = convert_to_mode (mode0, xop0, unsignedp);
3072
3073 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
3074
3075 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
3076 xop0 = copy_to_mode_reg (mode0, xop0);
3077
3078 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
3079 temp = gen_reg_rtx (submode);
3080
3081 pat = GEN_FCN (icode) (temp, xop0);
3082 if (pat)
3083 {
3084 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3085 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
3086 NULL_RTX))
3087 {
3088 delete_insns_since (last);
3089 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
3090 unsignedp);
3091 }
3092
3093 emit_insn (pat);
3094
3095 return temp;
3096 }
3097 else
3098 delete_insns_since (last);
3099 }
3100
3101 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3102
3103 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3104 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3105 {
3106 if (this_abs_optab->handlers[(int) wider_mode].insn_code
3107 != CODE_FOR_nothing)
3108 {
3109 rtx xop0 = op0;
3110
3111 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
3112 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3113
3114 if (temp)
3115 {
3116 if (class != MODE_COMPLEX_INT)
3117 {
3118 if (target == 0)
3119 target = gen_reg_rtx (submode);
3120 convert_move (target, temp, 0);
3121 return target;
3122 }
3123 else
3124 return gen_lowpart (submode, temp);
3125 }
3126 else
3127 delete_insns_since (last);
3128 }
3129 }
3130
3131 /* Open-code the complex absolute-value operation
3132 if we can open-code sqrt. Otherwise it's not worth while. */
3133 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
3134 && ! flag_trapv)
3135 {
3136 rtx real, imag, total;
3137
3138 real = gen_realpart (submode, op0);
3139 imag = gen_imagpart (submode, op0);
3140
3141 /* Square both parts. */
3142 real = expand_mult (submode, real, real, NULL_RTX, 0);
3143 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
3144
3145 /* Sum the parts. */
3146 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
3147 0, OPTAB_LIB_WIDEN);
3148
3149 /* Get sqrt in TARGET. Set TARGET to where the result is. */
3150 target = expand_unop (submode, sqrt_optab, total, target, 0);
3151 if (target == 0)
3152 delete_insns_since (last);
3153 else
3154 return target;
3155 }
3156
3157 /* Now try a library call in this mode. */
3158 if (this_abs_optab->handlers[(int) mode].libfunc)
3159 {
3160 rtx insns;
3161 rtx value;
3162
3163 start_sequence ();
3164
3165 /* Pass 1 for NO_QUEUE so we don't lose any increments
3166 if the libcall is cse'd or moved. */
3167 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
3168 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
3169 insns = get_insns ();
3170 end_sequence ();
3171
3172 target = gen_reg_rtx (submode);
3173 emit_libcall_block (insns, target, value,
3174 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
3175
3176 return target;
3177 }
3178
3179 /* It can't be done in this mode. Can we do it in a wider mode? */
3180
3181 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3182 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3183 {
3184 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
3185 != CODE_FOR_nothing)
3186 || this_abs_optab->handlers[(int) wider_mode].libfunc)
3187 {
3188 rtx xop0 = op0;
3189
3190 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
3191
3192 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3193
3194 if (temp)
3195 {
3196 if (class != MODE_COMPLEX_INT)
3197 {
3198 if (target == 0)
3199 target = gen_reg_rtx (submode);
3200 convert_move (target, temp, 0);
3201 return target;
3202 }
3203 else
3204 return gen_lowpart (submode, temp);
3205 }
3206 else
3207 delete_insns_since (last);
3208 }
3209 }
3210
3211 delete_insns_since (entry_last);
3212 return 0;
3213 }
3214 \f
3215 /* Generate an instruction whose insn-code is INSN_CODE,
3216 with two operands: an output TARGET and an input OP0.
3217 TARGET *must* be nonzero, and the output is always stored there.
3218 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3219 the value that is stored into TARGET. */
3220
3221 void
3222 emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3223 {
3224 rtx temp;
3225 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3226 rtx pat;
3227
3228 temp = target = protect_from_queue (target, 1);
3229
3230 op0 = protect_from_queue (op0, 0);
3231
3232 /* Sign and zero extension from memory is often done specially on
3233 RISC machines, so forcing into a register here can pessimize
3234 code. */
3235 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
3236 op0 = force_not_mem (op0);
3237
3238 /* Now, if insn does not accept our operands, put them into pseudos. */
3239
3240 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
3241 op0 = copy_to_mode_reg (mode0, op0);
3242
3243 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
3244 || (flag_force_mem && MEM_P (temp)))
3245 temp = gen_reg_rtx (GET_MODE (temp));
3246
3247 pat = GEN_FCN (icode) (temp, op0);
3248
3249 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3250 add_equal_note (pat, temp, code, op0, NULL_RTX);
3251
3252 emit_insn (pat);
3253
3254 if (temp != target)
3255 emit_move_insn (target, temp);
3256 }
3257 \f
3258 /* Emit code to perform a series of operations on a multi-word quantity, one
3259 word at a time.
3260
3261 Such a block is preceded by a CLOBBER of the output, consists of multiple
3262 insns, each setting one word of the output, and followed by a SET copying
3263 the output to itself.
3264
3265 Each of the insns setting words of the output receives a REG_NO_CONFLICT
3266 note indicating that it doesn't conflict with the (also multi-word)
3267 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
3268 notes.
3269
3270 INSNS is a block of code generated to perform the operation, not including
3271 the CLOBBER and final copy. All insns that compute intermediate values
3272 are first emitted, followed by the block as described above.
3273
3274 TARGET, OP0, and OP1 are the output and inputs of the operations,
3275 respectively. OP1 may be zero for a unary operation.
3276
3277 EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
3278 on the last insn.
3279
3280 If TARGET is not a register, INSNS is simply emitted with no special
3281 processing. Likewise if anything in INSNS is not an INSN or if
3282 there is a libcall block inside INSNS.
3283
3284 The final insn emitted is returned. */
3285
3286 rtx
3287 emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv)
3288 {
3289 rtx prev, next, first, last, insn;
3290
3291 if (!REG_P (target) || reload_in_progress)
3292 return emit_insn (insns);
3293 else
3294 for (insn = insns; insn; insn = NEXT_INSN (insn))
3295 if (GET_CODE (insn) != INSN
3296 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
3297 return emit_insn (insns);
3298
3299 /* First emit all insns that do not store into words of the output and remove
3300 these from the list. */
3301 for (insn = insns; insn; insn = next)
3302 {
3303 rtx set = 0, note;
3304 int i;
3305
3306 next = NEXT_INSN (insn);
3307
3308 /* Some ports (cris) create a libcall regions at their own. We must
3309 avoid any potential nesting of LIBCALLs. */
3310 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3311 remove_note (insn, note);
3312 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3313 remove_note (insn, note);
3314
3315 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
3316 || GET_CODE (PATTERN (insn)) == CLOBBER)
3317 set = PATTERN (insn);
3318 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3319 {
3320 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
3321 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
3322 {
3323 set = XVECEXP (PATTERN (insn), 0, i);
3324 break;
3325 }
3326 }
3327
3328 if (set == 0)
3329 abort ();
3330
3331 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
3332 {
3333 if (PREV_INSN (insn))
3334 NEXT_INSN (PREV_INSN (insn)) = next;
3335 else
3336 insns = next;
3337
3338 if (next)
3339 PREV_INSN (next) = PREV_INSN (insn);
3340
3341 add_insn (insn);
3342 }
3343 }
3344
3345 prev = get_last_insn ();
3346
3347 /* Now write the CLOBBER of the output, followed by the setting of each
3348 of the words, followed by the final copy. */
3349 if (target != op0 && target != op1)
3350 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
3351
3352 for (insn = insns; insn; insn = next)
3353 {
3354 next = NEXT_INSN (insn);
3355 add_insn (insn);
3356
3357 if (op1 && REG_P (op1))
3358 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
3359 REG_NOTES (insn));
3360
3361 if (op0 && REG_P (op0))
3362 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
3363 REG_NOTES (insn));
3364 }
3365
3366 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3367 != CODE_FOR_nothing)
3368 {
3369 last = emit_move_insn (target, target);
3370 if (equiv)
3371 set_unique_reg_note (last, REG_EQUAL, equiv);
3372 }
3373 else
3374 {
3375 last = get_last_insn ();
3376
3377 /* Remove any existing REG_EQUAL note from "last", or else it will
3378 be mistaken for a note referring to the full contents of the
3379 alleged libcall value when found together with the REG_RETVAL
3380 note added below. An existing note can come from an insn
3381 expansion at "last". */
3382 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3383 }
3384
3385 if (prev == 0)
3386 first = get_insns ();
3387 else
3388 first = NEXT_INSN (prev);
3389
3390 /* Encapsulate the block so it gets manipulated as a unit. */
3391 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3392 REG_NOTES (first));
3393 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
3394
3395 return last;
3396 }
3397 \f
3398 /* Emit code to make a call to a constant function or a library call.
3399
3400 INSNS is a list containing all insns emitted in the call.
3401 These insns leave the result in RESULT. Our block is to copy RESULT
3402 to TARGET, which is logically equivalent to EQUIV.
3403
3404 We first emit any insns that set a pseudo on the assumption that these are
3405 loading constants into registers; doing so allows them to be safely cse'ed
3406 between blocks. Then we emit all the other insns in the block, followed by
3407 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3408 note with an operand of EQUIV.
3409
3410 Moving assignments to pseudos outside of the block is done to improve
3411 the generated code, but is not required to generate correct code,
3412 hence being unable to move an assignment is not grounds for not making
3413 a libcall block. There are two reasons why it is safe to leave these
3414 insns inside the block: First, we know that these pseudos cannot be
3415 used in generated RTL outside the block since they are created for
3416 temporary purposes within the block. Second, CSE will not record the
3417 values of anything set inside a libcall block, so we know they must
3418 be dead at the end of the block.
3419
3420 Except for the first group of insns (the ones setting pseudos), the
3421 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
3422
3423 void
3424 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3425 {
3426 rtx final_dest = target;
3427 rtx prev, next, first, last, insn;
3428
3429 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3430 into a MEM later. Protect the libcall block from this change. */
3431 if (! REG_P (target) || REG_USERVAR_P (target))
3432 target = gen_reg_rtx (GET_MODE (target));
3433
3434 /* If we're using non-call exceptions, a libcall corresponding to an
3435 operation that may trap may also trap. */
3436 if (flag_non_call_exceptions && may_trap_p (equiv))
3437 {
3438 for (insn = insns; insn; insn = NEXT_INSN (insn))
3439 if (GET_CODE (insn) == CALL_INSN)
3440 {
3441 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3442
3443 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3444 remove_note (insn, note);
3445 }
3446 }
3447 else
3448 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3449 reg note to indicate that this call cannot throw or execute a nonlocal
3450 goto (unless there is already a REG_EH_REGION note, in which case
3451 we update it). */
3452 for (insn = insns; insn; insn = NEXT_INSN (insn))
3453 if (GET_CODE (insn) == CALL_INSN)
3454 {
3455 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3456
3457 if (note != 0)
3458 XEXP (note, 0) = constm1_rtx;
3459 else
3460 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx,
3461 REG_NOTES (insn));
3462 }
3463
3464 /* First emit all insns that set pseudos. Remove them from the list as
3465 we go. Avoid insns that set pseudos which were referenced in previous
3466 insns. These can be generated by move_by_pieces, for example,
3467 to update an address. Similarly, avoid insns that reference things
3468 set in previous insns. */
3469
3470 for (insn = insns; insn; insn = next)
3471 {
3472 rtx set = single_set (insn);
3473 rtx note;
3474
3475 /* Some ports (cris) create a libcall regions at their own. We must
3476 avoid any potential nesting of LIBCALLs. */
3477 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3478 remove_note (insn, note);
3479 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3480 remove_note (insn, note);
3481
3482 next = NEXT_INSN (insn);
3483
3484 if (set != 0 && REG_P (SET_DEST (set))
3485 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
3486 && (insn == insns
3487 || ((! INSN_P(insns)
3488 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
3489 && ! reg_used_between_p (SET_DEST (set), insns, insn)
3490 && ! modified_in_p (SET_SRC (set), insns)
3491 && ! modified_between_p (SET_SRC (set), insns, insn))))
3492 {
3493 if (PREV_INSN (insn))
3494 NEXT_INSN (PREV_INSN (insn)) = next;
3495 else
3496 insns = next;
3497
3498 if (next)
3499 PREV_INSN (next) = PREV_INSN (insn);
3500
3501 add_insn (insn);
3502 }
3503
3504 /* Some ports use a loop to copy large arguments onto the stack.
3505 Don't move anything outside such a loop. */
3506 if (GET_CODE (insn) == CODE_LABEL)
3507 break;
3508 }
3509
3510 prev = get_last_insn ();
3511
3512 /* Write the remaining insns followed by the final copy. */
3513
3514 for (insn = insns; insn; insn = next)
3515 {
3516 next = NEXT_INSN (insn);
3517
3518 add_insn (insn);
3519 }
3520
3521 last = emit_move_insn (target, result);
3522 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3523 != CODE_FOR_nothing)
3524 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3525 else
3526 {
3527 /* Remove any existing REG_EQUAL note from "last", or else it will
3528 be mistaken for a note referring to the full contents of the
3529 libcall value when found together with the REG_RETVAL note added
3530 below. An existing note can come from an insn expansion at
3531 "last". */
3532 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3533 }
3534
3535 if (final_dest != target)
3536 emit_move_insn (final_dest, target);
3537
3538 if (prev == 0)
3539 first = get_insns ();
3540 else
3541 first = NEXT_INSN (prev);
3542
3543 /* Encapsulate the block so it gets manipulated as a unit. */
3544 if (!flag_non_call_exceptions || !may_trap_p (equiv))
3545 {
3546 /* We can't attach the REG_LIBCALL and REG_RETVAL notes
3547 when the encapsulated region would not be in one basic block,
3548 i.e. when there is a control_flow_insn_p insn between FIRST and LAST.
3549 */
3550 bool attach_libcall_retval_notes = true;
3551 next = NEXT_INSN (last);
3552 for (insn = first; insn != next; insn = NEXT_INSN (insn))
3553 if (control_flow_insn_p (insn))
3554 {
3555 attach_libcall_retval_notes = false;
3556 break;
3557 }
3558
3559 if (attach_libcall_retval_notes)
3560 {
3561 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3562 REG_NOTES (first));
3563 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
3564 REG_NOTES (last));
3565 }
3566 }
3567 }
3568 \f
3569 /* Generate code to store zero in X. */
3570
3571 void
3572 emit_clr_insn (rtx x)
3573 {
3574 emit_move_insn (x, const0_rtx);
3575 }
3576
3577 /* Generate code to store 1 in X
3578 assuming it contains zero beforehand. */
3579
3580 void
3581 emit_0_to_1_insn (rtx x)
3582 {
3583 emit_move_insn (x, const1_rtx);
3584 }
3585
3586 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3587 PURPOSE describes how this comparison will be used. CODE is the rtx
3588 comparison code we will be using.
3589
3590 ??? Actually, CODE is slightly weaker than that. A target is still
3591 required to implement all of the normal bcc operations, but not
3592 required to implement all (or any) of the unordered bcc operations. */
3593
3594 int
3595 can_compare_p (enum rtx_code code, enum machine_mode mode,
3596 enum can_compare_purpose purpose)
3597 {
3598 do
3599 {
3600 if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3601 {
3602 if (purpose == ccp_jump)
3603 return bcc_gen_fctn[(int) code] != NULL;
3604 else if (purpose == ccp_store_flag)
3605 return setcc_gen_code[(int) code] != CODE_FOR_nothing;
3606 else
3607 /* There's only one cmov entry point, and it's allowed to fail. */
3608 return 1;
3609 }
3610 if (purpose == ccp_jump
3611 && cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3612 return 1;
3613 if (purpose == ccp_cmov
3614 && cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3615 return 1;
3616 if (purpose == ccp_store_flag
3617 && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3618 return 1;
3619
3620 mode = GET_MODE_WIDER_MODE (mode);
3621 }
3622 while (mode != VOIDmode);
3623
3624 return 0;
3625 }
3626
3627 /* This function is called when we are going to emit a compare instruction that
3628 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3629
3630 *PMODE is the mode of the inputs (in case they are const_int).
3631 *PUNSIGNEDP nonzero says that the operands are unsigned;
3632 this matters if they need to be widened.
3633
3634 If they have mode BLKmode, then SIZE specifies the size of both operands.
3635
3636 This function performs all the setup necessary so that the caller only has
3637 to emit a single comparison insn. This setup can involve doing a BLKmode
3638 comparison or emitting a library call to perform the comparison if no insn
3639 is available to handle it.
3640 The values which are passed in through pointers can be modified; the caller
3641 should perform the comparison on the modified values. */
3642
3643 static void
3644 prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
3645 enum machine_mode *pmode, int *punsignedp,
3646 enum can_compare_purpose purpose)
3647 {
3648 enum machine_mode mode = *pmode;
3649 rtx x = *px, y = *py;
3650 int unsignedp = *punsignedp;
3651 enum mode_class class;
3652
3653 class = GET_MODE_CLASS (mode);
3654
3655 /* They could both be VOIDmode if both args are immediate constants,
3656 but we should fold that at an earlier stage.
3657 With no special code here, this will call abort,
3658 reminding the programmer to implement such folding. */
3659
3660 if (mode != BLKmode && flag_force_mem)
3661 {
3662 /* Load duplicate non-volatile operands once. */
3663 if (rtx_equal_p (x, y) && ! volatile_refs_p (x))
3664 {
3665 x = force_not_mem (x);
3666 y = x;
3667 }
3668 else
3669 {
3670 x = force_not_mem (x);
3671 y = force_not_mem (y);
3672 }
3673 }
3674
3675 /* If we are inside an appropriately-short loop and one operand is an
3676 expensive constant, force it into a register. */
3677 if (CONSTANT_P (x) && preserve_subexpressions_p ()
3678 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
3679 x = force_reg (mode, x);
3680
3681 if (CONSTANT_P (y) && preserve_subexpressions_p ()
3682 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
3683 y = force_reg (mode, y);
3684
3685 #ifdef HAVE_cc0
3686 /* Abort if we have a non-canonical comparison. The RTL documentation
3687 states that canonical comparisons are required only for targets which
3688 have cc0. */
3689 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3690 abort ();
3691 #endif
3692
3693 /* Don't let both operands fail to indicate the mode. */
3694 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3695 x = force_reg (mode, x);
3696
3697 /* Handle all BLKmode compares. */
3698
3699 if (mode == BLKmode)
3700 {
3701 enum machine_mode cmp_mode, result_mode;
3702 enum insn_code cmp_code;
3703 tree length_type;
3704 rtx libfunc;
3705 rtx result;
3706 rtx opalign
3707 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3708
3709 if (size == 0)
3710 abort ();
3711
3712 emit_queue ();
3713 x = protect_from_queue (x, 0);
3714 y = protect_from_queue (y, 0);
3715 size = protect_from_queue (size, 0);
3716
3717 /* Try to use a memory block compare insn - either cmpstr
3718 or cmpmem will do. */
3719 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3720 cmp_mode != VOIDmode;
3721 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
3722 {
3723 cmp_code = cmpmem_optab[cmp_mode];
3724 if (cmp_code == CODE_FOR_nothing)
3725 cmp_code = cmpstr_optab[cmp_mode];
3726 if (cmp_code == CODE_FOR_nothing)
3727 continue;
3728
3729 /* Must make sure the size fits the insn's mode. */
3730 if ((GET_CODE (size) == CONST_INT
3731 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
3732 || (GET_MODE_BITSIZE (GET_MODE (size))
3733 > GET_MODE_BITSIZE (cmp_mode)))
3734 continue;
3735
3736 result_mode = insn_data[cmp_code].operand[0].mode;
3737 result = gen_reg_rtx (result_mode);
3738 size = convert_to_mode (cmp_mode, size, 1);
3739 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
3740
3741 *px = result;
3742 *py = const0_rtx;
3743 *pmode = result_mode;
3744 return;
3745 }
3746
3747 /* Otherwise call a library function, memcmp if we've got it,
3748 bcmp otherwise. */
3749 #ifdef TARGET_MEM_FUNCTIONS
3750 libfunc = memcmp_libfunc;
3751 length_type = sizetype;
3752 #else
3753 libfunc = bcmp_libfunc;
3754 length_type = integer_type_node;
3755 #endif
3756 result_mode = TYPE_MODE (integer_type_node);
3757 cmp_mode = TYPE_MODE (length_type);
3758 size = convert_to_mode (TYPE_MODE (length_type), size,
3759 TYPE_UNSIGNED (length_type));
3760
3761 result = emit_library_call_value (libfunc, 0, LCT_PURE_MAKE_BLOCK,
3762 result_mode, 3,
3763 XEXP (x, 0), Pmode,
3764 XEXP (y, 0), Pmode,
3765 size, cmp_mode);
3766 *px = result;
3767 *py = const0_rtx;
3768 *pmode = result_mode;
3769 return;
3770 }
3771
3772 /* Don't allow operands to the compare to trap, as that can put the
3773 compare and branch in different basic blocks. */
3774 if (flag_non_call_exceptions)
3775 {
3776 if (may_trap_p (x))
3777 x = force_reg (mode, x);
3778 if (may_trap_p (y))
3779 y = force_reg (mode, y);
3780 }
3781
3782 *px = x;
3783 *py = y;
3784 if (can_compare_p (*pcomparison, mode, purpose))
3785 return;
3786
3787 /* Handle a lib call just for the mode we are using. */
3788
3789 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3790 {
3791 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3792 rtx result;
3793
3794 /* If we want unsigned, and this mode has a distinct unsigned
3795 comparison routine, use that. */
3796 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3797 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3798
3799 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
3800 word_mode, 2, x, mode, y, mode);
3801
3802 /* Integer comparison returns a result that must be compared against 1,
3803 so that even if we do an unsigned compare afterward,
3804 there is still a value that can represent the result "less than". */
3805 *px = result;
3806 *py = const1_rtx;
3807 *pmode = word_mode;
3808 return;
3809 }
3810
3811 if (class == MODE_FLOAT)
3812 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3813
3814 else
3815 abort ();
3816 }
3817
3818 /* Before emitting an insn with code ICODE, make sure that X, which is going
3819 to be used for operand OPNUM of the insn, is converted from mode MODE to
3820 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3821 that it is accepted by the operand predicate. Return the new value. */
3822
3823 rtx
3824 prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
3825 enum machine_mode wider_mode, int unsignedp)
3826 {
3827 x = protect_from_queue (x, 0);
3828
3829 if (mode != wider_mode)
3830 x = convert_modes (wider_mode, mode, x, unsignedp);
3831
3832 if (! (*insn_data[icode].operand[opnum].predicate)
3833 (x, insn_data[icode].operand[opnum].mode))
3834 {
3835 if (no_new_pseudos)
3836 return NULL_RTX;
3837 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3838 }
3839
3840 return x;
3841 }
3842
3843 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3844 we can do the comparison.
3845 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3846 be NULL_RTX which indicates that only a comparison is to be generated. */
3847
3848 static void
3849 emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
3850 enum rtx_code comparison, int unsignedp, rtx label)
3851 {
3852 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3853 enum mode_class class = GET_MODE_CLASS (mode);
3854 enum machine_mode wider_mode = mode;
3855
3856 /* Try combined insns first. */
3857 do
3858 {
3859 enum insn_code icode;
3860 PUT_MODE (test, wider_mode);
3861
3862 if (label)
3863 {
3864 icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
3865
3866 if (icode != CODE_FOR_nothing
3867 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3868 {
3869 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3870 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3871 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3872 return;
3873 }
3874 }
3875
3876 /* Handle some compares against zero. */
3877 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3878 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3879 {
3880 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3881 emit_insn (GEN_FCN (icode) (x));
3882 if (label)
3883 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3884 return;
3885 }
3886
3887 /* Handle compares for which there is a directly suitable insn. */
3888
3889 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3890 if (icode != CODE_FOR_nothing)
3891 {
3892 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3893 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3894 emit_insn (GEN_FCN (icode) (x, y));
3895 if (label)
3896 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3897 return;
3898 }
3899
3900 if (class != MODE_INT && class != MODE_FLOAT
3901 && class != MODE_COMPLEX_FLOAT)
3902 break;
3903
3904 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3905 }
3906 while (wider_mode != VOIDmode);
3907
3908 abort ();
3909 }
3910
3911 /* Generate code to compare X with Y so that the condition codes are
3912 set and to jump to LABEL if the condition is true. If X is a
3913 constant and Y is not a constant, then the comparison is swapped to
3914 ensure that the comparison RTL has the canonical form.
3915
3916 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3917 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3918 the proper branch condition code.
3919
3920 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
3921
3922 MODE is the mode of the inputs (in case they are const_int).
3923
3924 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3925 be passed unchanged to emit_cmp_insn, then potentially converted into an
3926 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
3927
3928 void
3929 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
3930 enum machine_mode mode, int unsignedp, rtx label)
3931 {
3932 rtx op0 = x, op1 = y;
3933
3934 /* Swap operands and condition to ensure canonical RTL. */
3935 if (swap_commutative_operands_p (x, y))
3936 {
3937 /* If we're not emitting a branch, this means some caller
3938 is out of sync. */
3939 if (! label)
3940 abort ();
3941
3942 op0 = y, op1 = x;
3943 comparison = swap_condition (comparison);
3944 }
3945
3946 #ifdef HAVE_cc0
3947 /* If OP0 is still a constant, then both X and Y must be constants. Force
3948 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3949 RTL. */
3950 if (CONSTANT_P (op0))
3951 op0 = force_reg (mode, op0);
3952 #endif
3953
3954 emit_queue ();
3955 if (unsignedp)
3956 comparison = unsigned_condition (comparison);
3957
3958 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
3959 ccp_jump);
3960 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3961 }
3962
3963 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
3964
3965 void
3966 emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3967 enum machine_mode mode, int unsignedp)
3968 {
3969 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
3970 }
3971 \f
3972 /* Emit a library call comparison between floating point X and Y.
3973 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3974
3975 static void
3976 prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
3977 enum machine_mode *pmode, int *punsignedp)
3978 {
3979 enum rtx_code comparison = *pcomparison;
3980 enum rtx_code swapped = swap_condition (comparison);
3981 rtx x = protect_from_queue (*px, 0);
3982 rtx y = protect_from_queue (*py, 0);
3983 enum machine_mode orig_mode = GET_MODE (x);
3984 enum machine_mode mode;
3985 rtx value, target, insns, equiv;
3986 rtx libfunc = 0;
3987
3988 for (mode = orig_mode; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
3989 {
3990 if ((libfunc = code_to_optab[comparison]->handlers[mode].libfunc))
3991 break;
3992
3993 if ((libfunc = code_to_optab[swapped]->handlers[mode].libfunc))
3994 {
3995 rtx tmp;
3996 tmp = x; x = y; y = tmp;
3997 comparison = swapped;
3998 break;
3999 }
4000 }
4001
4002 if (mode == VOIDmode)
4003 abort ();
4004
4005 if (mode != orig_mode)
4006 {
4007 x = convert_to_mode (mode, x, 0);
4008 y = convert_to_mode (mode, y, 0);
4009 }
4010
4011 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4012 the RTL. The allows the RTL optimizers to delete the libcall if the
4013 condition can be determined at compile-time. */
4014 if (comparison == UNORDERED)
4015 {
4016 rtx temp = simplify_gen_relational (NE, word_mode, mode, x, x);
4017 equiv = simplify_gen_relational (NE, word_mode, mode, y, y);
4018 equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
4019 temp, const_true_rtx, equiv);
4020 }
4021 else
4022 {
4023 equiv = simplify_gen_relational (comparison, word_mode, mode, x, y);
4024 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4025 {
4026 rtx true_rtx, false_rtx;
4027
4028 switch (comparison)
4029 {
4030 case EQ:
4031 true_rtx = const0_rtx;
4032 false_rtx = const_true_rtx;
4033 break;
4034
4035 case NE:
4036 true_rtx = const_true_rtx;
4037 false_rtx = const0_rtx;
4038 break;
4039
4040 case GT:
4041 true_rtx = const1_rtx;
4042 false_rtx = const0_rtx;
4043 break;
4044
4045 case GE:
4046 true_rtx = const0_rtx;
4047 false_rtx = constm1_rtx;
4048 break;
4049
4050 case LT:
4051 true_rtx = constm1_rtx;
4052 false_rtx = const0_rtx;
4053 break;
4054
4055 case LE:
4056 true_rtx = const0_rtx;
4057 false_rtx = const1_rtx;
4058 break;
4059
4060 default:
4061 abort ();
4062 }
4063 equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
4064 equiv, true_rtx, false_rtx);
4065 }
4066 }
4067
4068 start_sequence ();
4069 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4070 word_mode, 2, x, mode, y, mode);
4071 insns = get_insns ();
4072 end_sequence ();
4073
4074 target = gen_reg_rtx (word_mode);
4075 emit_libcall_block (insns, target, value, equiv);
4076
4077
4078 if (comparison == UNORDERED
4079 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4080 comparison = NE;
4081
4082 *px = target;
4083 *py = const0_rtx;
4084 *pmode = word_mode;
4085 *pcomparison = comparison;
4086 *punsignedp = 0;
4087 }
4088 \f
4089 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4090
4091 void
4092 emit_indirect_jump (rtx loc)
4093 {
4094 if (! ((*insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate)
4095 (loc, Pmode)))
4096 loc = copy_to_mode_reg (Pmode, loc);
4097
4098 emit_jump_insn (gen_indirect_jump (loc));
4099 emit_barrier ();
4100 }
4101 \f
4102 #ifdef HAVE_conditional_move
4103
4104 /* Emit a conditional move instruction if the machine supports one for that
4105 condition and machine mode.
4106
4107 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4108 the mode to use should they be constants. If it is VOIDmode, they cannot
4109 both be constants.
4110
4111 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4112 should be stored there. MODE is the mode to use should they be constants.
4113 If it is VOIDmode, they cannot both be constants.
4114
4115 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4116 is not supported. */
4117
4118 rtx
4119 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4120 enum machine_mode cmode, rtx op2, rtx op3,
4121 enum machine_mode mode, int unsignedp)
4122 {
4123 rtx tem, subtarget, comparison, insn;
4124 enum insn_code icode;
4125 enum rtx_code reversed;
4126
4127 /* If one operand is constant, make it the second one. Only do this
4128 if the other operand is not constant as well. */
4129
4130 if (swap_commutative_operands_p (op0, op1))
4131 {
4132 tem = op0;
4133 op0 = op1;
4134 op1 = tem;
4135 code = swap_condition (code);
4136 }
4137
4138 /* get_condition will prefer to generate LT and GT even if the old
4139 comparison was against zero, so undo that canonicalization here since
4140 comparisons against zero are cheaper. */
4141 if (code == LT && op1 == const1_rtx)
4142 code = LE, op1 = const0_rtx;
4143 else if (code == GT && op1 == constm1_rtx)
4144 code = GE, op1 = const0_rtx;
4145
4146 if (cmode == VOIDmode)
4147 cmode = GET_MODE (op0);
4148
4149 if (swap_commutative_operands_p (op2, op3)
4150 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4151 != UNKNOWN))
4152 {
4153 tem = op2;
4154 op2 = op3;
4155 op3 = tem;
4156 code = reversed;
4157 }
4158
4159 if (mode == VOIDmode)
4160 mode = GET_MODE (op2);
4161
4162 icode = movcc_gen_code[mode];
4163
4164 if (icode == CODE_FOR_nothing)
4165 return 0;
4166
4167 if (flag_force_mem)
4168 {
4169 op2 = force_not_mem (op2);
4170 op3 = force_not_mem (op3);
4171 }
4172
4173 if (target)
4174 target = protect_from_queue (target, 1);
4175 else
4176 target = gen_reg_rtx (mode);
4177
4178 subtarget = target;
4179
4180 emit_queue ();
4181
4182 op2 = protect_from_queue (op2, 0);
4183 op3 = protect_from_queue (op3, 0);
4184
4185 /* If the insn doesn't accept these operands, put them in pseudos. */
4186
4187 if (! (*insn_data[icode].operand[0].predicate)
4188 (subtarget, insn_data[icode].operand[0].mode))
4189 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4190
4191 if (! (*insn_data[icode].operand[2].predicate)
4192 (op2, insn_data[icode].operand[2].mode))
4193 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4194
4195 if (! (*insn_data[icode].operand[3].predicate)
4196 (op3, insn_data[icode].operand[3].mode))
4197 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4198
4199 /* Everything should now be in the suitable form, so emit the compare insn
4200 and then the conditional move. */
4201
4202 comparison
4203 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4204
4205 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4206 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4207 return NULL and let the caller figure out how best to deal with this
4208 situation. */
4209 if (GET_CODE (comparison) != code)
4210 return NULL_RTX;
4211
4212 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4213
4214 /* If that failed, then give up. */
4215 if (insn == 0)
4216 return 0;
4217
4218 emit_insn (insn);
4219
4220 if (subtarget != target)
4221 convert_move (target, subtarget, 0);
4222
4223 return target;
4224 }
4225
4226 /* Return nonzero if a conditional move of mode MODE is supported.
4227
4228 This function is for combine so it can tell whether an insn that looks
4229 like a conditional move is actually supported by the hardware. If we
4230 guess wrong we lose a bit on optimization, but that's it. */
4231 /* ??? sparc64 supports conditionally moving integers values based on fp
4232 comparisons, and vice versa. How do we handle them? */
4233
4234 int
4235 can_conditionally_move_p (enum machine_mode mode)
4236 {
4237 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4238 return 1;
4239
4240 return 0;
4241 }
4242
4243 #endif /* HAVE_conditional_move */
4244
4245 /* Emit a conditional addition instruction if the machine supports one for that
4246 condition and machine mode.
4247
4248 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4249 the mode to use should they be constants. If it is VOIDmode, they cannot
4250 both be constants.
4251
4252 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4253 should be stored there. MODE is the mode to use should they be constants.
4254 If it is VOIDmode, they cannot both be constants.
4255
4256 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4257 is not supported. */
4258
4259 rtx
4260 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4261 enum machine_mode cmode, rtx op2, rtx op3,
4262 enum machine_mode mode, int unsignedp)
4263 {
4264 rtx tem, subtarget, comparison, insn;
4265 enum insn_code icode;
4266 enum rtx_code reversed;
4267
4268 /* If one operand is constant, make it the second one. Only do this
4269 if the other operand is not constant as well. */
4270
4271 if (swap_commutative_operands_p (op0, op1))
4272 {
4273 tem = op0;
4274 op0 = op1;
4275 op1 = tem;
4276 code = swap_condition (code);
4277 }
4278
4279 /* get_condition will prefer to generate LT and GT even if the old
4280 comparison was against zero, so undo that canonicalization here since
4281 comparisons against zero are cheaper. */
4282 if (code == LT && op1 == const1_rtx)
4283 code = LE, op1 = const0_rtx;
4284 else if (code == GT && op1 == constm1_rtx)
4285 code = GE, op1 = const0_rtx;
4286
4287 if (cmode == VOIDmode)
4288 cmode = GET_MODE (op0);
4289
4290 if (swap_commutative_operands_p (op2, op3)
4291 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4292 != UNKNOWN))
4293 {
4294 tem = op2;
4295 op2 = op3;
4296 op3 = tem;
4297 code = reversed;
4298 }
4299
4300 if (mode == VOIDmode)
4301 mode = GET_MODE (op2);
4302
4303 icode = addcc_optab->handlers[(int) mode].insn_code;
4304
4305 if (icode == CODE_FOR_nothing)
4306 return 0;
4307
4308 if (flag_force_mem)
4309 {
4310 op2 = force_not_mem (op2);
4311 op3 = force_not_mem (op3);
4312 }
4313
4314 if (target)
4315 target = protect_from_queue (target, 1);
4316 else
4317 target = gen_reg_rtx (mode);
4318
4319 subtarget = target;
4320
4321 emit_queue ();
4322
4323 op2 = protect_from_queue (op2, 0);
4324 op3 = protect_from_queue (op3, 0);
4325
4326 /* If the insn doesn't accept these operands, put them in pseudos. */
4327
4328 if (! (*insn_data[icode].operand[0].predicate)
4329 (subtarget, insn_data[icode].operand[0].mode))
4330 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4331
4332 if (! (*insn_data[icode].operand[2].predicate)
4333 (op2, insn_data[icode].operand[2].mode))
4334 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4335
4336 if (! (*insn_data[icode].operand[3].predicate)
4337 (op3, insn_data[icode].operand[3].mode))
4338 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4339
4340 /* Everything should now be in the suitable form, so emit the compare insn
4341 and then the conditional move. */
4342
4343 comparison
4344 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4345
4346 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4347 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4348 return NULL and let the caller figure out how best to deal with this
4349 situation. */
4350 if (GET_CODE (comparison) != code)
4351 return NULL_RTX;
4352
4353 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4354
4355 /* If that failed, then give up. */
4356 if (insn == 0)
4357 return 0;
4358
4359 emit_insn (insn);
4360
4361 if (subtarget != target)
4362 convert_move (target, subtarget, 0);
4363
4364 return target;
4365 }
4366 \f
4367 /* These functions attempt to generate an insn body, rather than
4368 emitting the insn, but if the gen function already emits them, we
4369 make no attempt to turn them back into naked patterns.
4370
4371 They do not protect from queued increments,
4372 because they may be used 1) in protect_from_queue itself
4373 and 2) in other passes where there is no queue. */
4374
4375 /* Generate and return an insn body to add Y to X. */
4376
4377 rtx
4378 gen_add2_insn (rtx x, rtx y)
4379 {
4380 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4381
4382 if (! ((*insn_data[icode].operand[0].predicate)
4383 (x, insn_data[icode].operand[0].mode))
4384 || ! ((*insn_data[icode].operand[1].predicate)
4385 (x, insn_data[icode].operand[1].mode))
4386 || ! ((*insn_data[icode].operand[2].predicate)
4387 (y, insn_data[icode].operand[2].mode)))
4388 abort ();
4389
4390 return (GEN_FCN (icode) (x, x, y));
4391 }
4392
4393 /* Generate and return an insn body to add r1 and c,
4394 storing the result in r0. */
4395 rtx
4396 gen_add3_insn (rtx r0, rtx r1, rtx c)
4397 {
4398 int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
4399
4400 if (icode == CODE_FOR_nothing
4401 || ! ((*insn_data[icode].operand[0].predicate)
4402 (r0, insn_data[icode].operand[0].mode))
4403 || ! ((*insn_data[icode].operand[1].predicate)
4404 (r1, insn_data[icode].operand[1].mode))
4405 || ! ((*insn_data[icode].operand[2].predicate)
4406 (c, insn_data[icode].operand[2].mode)))
4407 return NULL_RTX;
4408
4409 return (GEN_FCN (icode) (r0, r1, c));
4410 }
4411
4412 int
4413 have_add2_insn (rtx x, rtx y)
4414 {
4415 int icode;
4416
4417 if (GET_MODE (x) == VOIDmode)
4418 abort ();
4419
4420 icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4421
4422 if (icode == CODE_FOR_nothing)
4423 return 0;
4424
4425 if (! ((*insn_data[icode].operand[0].predicate)
4426 (x, insn_data[icode].operand[0].mode))
4427 || ! ((*insn_data[icode].operand[1].predicate)
4428 (x, insn_data[icode].operand[1].mode))
4429 || ! ((*insn_data[icode].operand[2].predicate)
4430 (y, insn_data[icode].operand[2].mode)))
4431 return 0;
4432
4433 return 1;
4434 }
4435
4436 /* Generate and return an insn body to subtract Y from X. */
4437
4438 rtx
4439 gen_sub2_insn (rtx x, rtx y)
4440 {
4441 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4442
4443 if (! ((*insn_data[icode].operand[0].predicate)
4444 (x, insn_data[icode].operand[0].mode))
4445 || ! ((*insn_data[icode].operand[1].predicate)
4446 (x, insn_data[icode].operand[1].mode))
4447 || ! ((*insn_data[icode].operand[2].predicate)
4448 (y, insn_data[icode].operand[2].mode)))
4449 abort ();
4450
4451 return (GEN_FCN (icode) (x, x, y));
4452 }
4453
4454 /* Generate and return an insn body to subtract r1 and c,
4455 storing the result in r0. */
4456 rtx
4457 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4458 {
4459 int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
4460
4461 if (icode == CODE_FOR_nothing
4462 || ! ((*insn_data[icode].operand[0].predicate)
4463 (r0, insn_data[icode].operand[0].mode))
4464 || ! ((*insn_data[icode].operand[1].predicate)
4465 (r1, insn_data[icode].operand[1].mode))
4466 || ! ((*insn_data[icode].operand[2].predicate)
4467 (c, insn_data[icode].operand[2].mode)))
4468 return NULL_RTX;
4469
4470 return (GEN_FCN (icode) (r0, r1, c));
4471 }
4472
4473 int
4474 have_sub2_insn (rtx x, rtx y)
4475 {
4476 int icode;
4477
4478 if (GET_MODE (x) == VOIDmode)
4479 abort ();
4480
4481 icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4482
4483 if (icode == CODE_FOR_nothing)
4484 return 0;
4485
4486 if (! ((*insn_data[icode].operand[0].predicate)
4487 (x, insn_data[icode].operand[0].mode))
4488 || ! ((*insn_data[icode].operand[1].predicate)
4489 (x, insn_data[icode].operand[1].mode))
4490 || ! ((*insn_data[icode].operand[2].predicate)
4491 (y, insn_data[icode].operand[2].mode)))
4492 return 0;
4493
4494 return 1;
4495 }
4496
4497 /* Generate the body of an instruction to copy Y into X.
4498 It may be a list of insns, if one insn isn't enough. */
4499
4500 rtx
4501 gen_move_insn (rtx x, rtx y)
4502 {
4503 rtx seq;
4504
4505 start_sequence ();
4506 emit_move_insn_1 (x, y);
4507 seq = get_insns ();
4508 end_sequence ();
4509 return seq;
4510 }
4511 \f
4512 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4513 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4514 no such operation exists, CODE_FOR_nothing will be returned. */
4515
4516 enum insn_code
4517 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4518 int unsignedp)
4519 {
4520 convert_optab tab;
4521 #ifdef HAVE_ptr_extend
4522 if (unsignedp < 0)
4523 return CODE_FOR_ptr_extend;
4524 #endif
4525
4526 tab = unsignedp ? zext_optab : sext_optab;
4527 return tab->handlers[to_mode][from_mode].insn_code;
4528 }
4529
4530 /* Generate the body of an insn to extend Y (with mode MFROM)
4531 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4532
4533 rtx
4534 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4535 enum machine_mode mfrom, int unsignedp)
4536 {
4537 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4538 return GEN_FCN (icode) (x, y);
4539 }
4540 \f
4541 /* can_fix_p and can_float_p say whether the target machine
4542 can directly convert a given fixed point type to
4543 a given floating point type, or vice versa.
4544 The returned value is the CODE_FOR_... value to use,
4545 or CODE_FOR_nothing if these modes cannot be directly converted.
4546
4547 *TRUNCP_PTR is set to 1 if it is necessary to output
4548 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4549
4550 static enum insn_code
4551 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4552 int unsignedp, int *truncp_ptr)
4553 {
4554 convert_optab tab;
4555 enum insn_code icode;
4556
4557 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4558 icode = tab->handlers[fixmode][fltmode].insn_code;
4559 if (icode != CODE_FOR_nothing)
4560 {
4561 *truncp_ptr = 0;
4562 return icode;
4563 }
4564
4565 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4566 for this to work. We need to rework the fix* and ftrunc* patterns
4567 and documentation. */
4568 tab = unsignedp ? ufix_optab : sfix_optab;
4569 icode = tab->handlers[fixmode][fltmode].insn_code;
4570 if (icode != CODE_FOR_nothing
4571 && ftrunc_optab->handlers[fltmode].insn_code != CODE_FOR_nothing)
4572 {
4573 *truncp_ptr = 1;
4574 return icode;
4575 }
4576
4577 *truncp_ptr = 0;
4578 return CODE_FOR_nothing;
4579 }
4580
4581 static enum insn_code
4582 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4583 int unsignedp)
4584 {
4585 convert_optab tab;
4586
4587 tab = unsignedp ? ufloat_optab : sfloat_optab;
4588 return tab->handlers[fltmode][fixmode].insn_code;
4589 }
4590 \f
4591 /* Generate code to convert FROM to floating point
4592 and store in TO. FROM must be fixed point and not VOIDmode.
4593 UNSIGNEDP nonzero means regard FROM as unsigned.
4594 Normally this is done by correcting the final value
4595 if it is negative. */
4596
4597 void
4598 expand_float (rtx to, rtx from, int unsignedp)
4599 {
4600 enum insn_code icode;
4601 rtx target = to;
4602 enum machine_mode fmode, imode;
4603
4604 /* Crash now, because we won't be able to decide which mode to use. */
4605 if (GET_MODE (from) == VOIDmode)
4606 abort ();
4607
4608 /* Look for an insn to do the conversion. Do it in the specified
4609 modes if possible; otherwise convert either input, output or both to
4610 wider mode. If the integer mode is wider than the mode of FROM,
4611 we can do the conversion signed even if the input is unsigned. */
4612
4613 for (fmode = GET_MODE (to); fmode != VOIDmode;
4614 fmode = GET_MODE_WIDER_MODE (fmode))
4615 for (imode = GET_MODE (from); imode != VOIDmode;
4616 imode = GET_MODE_WIDER_MODE (imode))
4617 {
4618 int doing_unsigned = unsignedp;
4619
4620 if (fmode != GET_MODE (to)
4621 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4622 continue;
4623
4624 icode = can_float_p (fmode, imode, unsignedp);
4625 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4626 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4627
4628 if (icode != CODE_FOR_nothing)
4629 {
4630 to = protect_from_queue (to, 1);
4631 from = protect_from_queue (from, 0);
4632
4633 if (imode != GET_MODE (from))
4634 from = convert_to_mode (imode, from, unsignedp);
4635
4636 if (fmode != GET_MODE (to))
4637 target = gen_reg_rtx (fmode);
4638
4639 emit_unop_insn (icode, target, from,
4640 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4641
4642 if (target != to)
4643 convert_move (to, target, 0);
4644 return;
4645 }
4646 }
4647
4648 /* Unsigned integer, and no way to convert directly.
4649 Convert as signed, then conditionally adjust the result. */
4650 if (unsignedp)
4651 {
4652 rtx label = gen_label_rtx ();
4653 rtx temp;
4654 REAL_VALUE_TYPE offset;
4655
4656 emit_queue ();
4657
4658 to = protect_from_queue (to, 1);
4659 from = protect_from_queue (from, 0);
4660
4661 if (flag_force_mem)
4662 from = force_not_mem (from);
4663
4664 /* Look for a usable floating mode FMODE wider than the source and at
4665 least as wide as the target. Using FMODE will avoid rounding woes
4666 with unsigned values greater than the signed maximum value. */
4667
4668 for (fmode = GET_MODE (to); fmode != VOIDmode;
4669 fmode = GET_MODE_WIDER_MODE (fmode))
4670 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4671 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4672 break;
4673
4674 if (fmode == VOIDmode)
4675 {
4676 /* There is no such mode. Pretend the target is wide enough. */
4677 fmode = GET_MODE (to);
4678
4679 /* Avoid double-rounding when TO is narrower than FROM. */
4680 if ((significand_size (fmode) + 1)
4681 < GET_MODE_BITSIZE (GET_MODE (from)))
4682 {
4683 rtx temp1;
4684 rtx neglabel = gen_label_rtx ();
4685
4686 /* Don't use TARGET if it isn't a register, is a hard register,
4687 or is the wrong mode. */
4688 if (!REG_P (target)
4689 || REGNO (target) < FIRST_PSEUDO_REGISTER
4690 || GET_MODE (target) != fmode)
4691 target = gen_reg_rtx (fmode);
4692
4693 imode = GET_MODE (from);
4694 do_pending_stack_adjust ();
4695
4696 /* Test whether the sign bit is set. */
4697 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4698 0, neglabel);
4699
4700 /* The sign bit is not set. Convert as signed. */
4701 expand_float (target, from, 0);
4702 emit_jump_insn (gen_jump (label));
4703 emit_barrier ();
4704
4705 /* The sign bit is set.
4706 Convert to a usable (positive signed) value by shifting right
4707 one bit, while remembering if a nonzero bit was shifted
4708 out; i.e., compute (from & 1) | (from >> 1). */
4709
4710 emit_label (neglabel);
4711 temp = expand_binop (imode, and_optab, from, const1_rtx,
4712 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4713 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4714 NULL_RTX, 1);
4715 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4716 OPTAB_LIB_WIDEN);
4717 expand_float (target, temp, 0);
4718
4719 /* Multiply by 2 to undo the shift above. */
4720 temp = expand_binop (fmode, add_optab, target, target,
4721 target, 0, OPTAB_LIB_WIDEN);
4722 if (temp != target)
4723 emit_move_insn (target, temp);
4724
4725 do_pending_stack_adjust ();
4726 emit_label (label);
4727 goto done;
4728 }
4729 }
4730
4731 /* If we are about to do some arithmetic to correct for an
4732 unsigned operand, do it in a pseudo-register. */
4733
4734 if (GET_MODE (to) != fmode
4735 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
4736 target = gen_reg_rtx (fmode);
4737
4738 /* Convert as signed integer to floating. */
4739 expand_float (target, from, 0);
4740
4741 /* If FROM is negative (and therefore TO is negative),
4742 correct its value by 2**bitwidth. */
4743
4744 do_pending_stack_adjust ();
4745 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4746 0, label);
4747
4748
4749 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
4750 temp = expand_binop (fmode, add_optab, target,
4751 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4752 target, 0, OPTAB_LIB_WIDEN);
4753 if (temp != target)
4754 emit_move_insn (target, temp);
4755
4756 do_pending_stack_adjust ();
4757 emit_label (label);
4758 goto done;
4759 }
4760
4761 /* No hardware instruction available; call a library routine. */
4762 {
4763 rtx libfunc;
4764 rtx insns;
4765 rtx value;
4766 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
4767
4768 to = protect_from_queue (to, 1);
4769 from = protect_from_queue (from, 0);
4770
4771 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4772 from = convert_to_mode (SImode, from, unsignedp);
4773
4774 if (flag_force_mem)
4775 from = force_not_mem (from);
4776
4777 libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
4778 if (!libfunc)
4779 abort ();
4780
4781 start_sequence ();
4782
4783 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4784 GET_MODE (to), 1, from,
4785 GET_MODE (from));
4786 insns = get_insns ();
4787 end_sequence ();
4788
4789 emit_libcall_block (insns, target, value,
4790 gen_rtx_FLOAT (GET_MODE (to), from));
4791 }
4792
4793 done:
4794
4795 /* Copy result to requested destination
4796 if we have been computing in a temp location. */
4797
4798 if (target != to)
4799 {
4800 if (GET_MODE (target) == GET_MODE (to))
4801 emit_move_insn (to, target);
4802 else
4803 convert_move (to, target, 0);
4804 }
4805 }
4806 \f
4807 /* Generate code to convert FROM to fixed point and store in TO. FROM
4808 must be floating point. */
4809
4810 void
4811 expand_fix (rtx to, rtx from, int unsignedp)
4812 {
4813 enum insn_code icode;
4814 rtx target = to;
4815 enum machine_mode fmode, imode;
4816 int must_trunc = 0;
4817
4818 /* We first try to find a pair of modes, one real and one integer, at
4819 least as wide as FROM and TO, respectively, in which we can open-code
4820 this conversion. If the integer mode is wider than the mode of TO,
4821 we can do the conversion either signed or unsigned. */
4822
4823 for (fmode = GET_MODE (from); fmode != VOIDmode;
4824 fmode = GET_MODE_WIDER_MODE (fmode))
4825 for (imode = GET_MODE (to); imode != VOIDmode;
4826 imode = GET_MODE_WIDER_MODE (imode))
4827 {
4828 int doing_unsigned = unsignedp;
4829
4830 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4831 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4832 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4833
4834 if (icode != CODE_FOR_nothing)
4835 {
4836 to = protect_from_queue (to, 1);
4837 from = protect_from_queue (from, 0);
4838
4839 if (fmode != GET_MODE (from))
4840 from = convert_to_mode (fmode, from, 0);
4841
4842 if (must_trunc)
4843 {
4844 rtx temp = gen_reg_rtx (GET_MODE (from));
4845 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
4846 temp, 0);
4847 }
4848
4849 if (imode != GET_MODE (to))
4850 target = gen_reg_rtx (imode);
4851
4852 emit_unop_insn (icode, target, from,
4853 doing_unsigned ? UNSIGNED_FIX : FIX);
4854 if (target != to)
4855 convert_move (to, target, unsignedp);
4856 return;
4857 }
4858 }
4859
4860 /* For an unsigned conversion, there is one more way to do it.
4861 If we have a signed conversion, we generate code that compares
4862 the real value to the largest representable positive number. If if
4863 is smaller, the conversion is done normally. Otherwise, subtract
4864 one plus the highest signed number, convert, and add it back.
4865
4866 We only need to check all real modes, since we know we didn't find
4867 anything with a wider integer mode.
4868
4869 This code used to extend FP value into mode wider than the destination.
4870 This is not needed. Consider, for instance conversion from SFmode
4871 into DImode.
4872
4873 The hot path trought the code is dealing with inputs smaller than 2^63
4874 and doing just the conversion, so there is no bits to lose.
4875
4876 In the other path we know the value is positive in the range 2^63..2^64-1
4877 inclusive. (as for other imput overflow happens and result is undefined)
4878 So we know that the most important bit set in mantissa corresponds to
4879 2^63. The subtraction of 2^63 should not generate any rounding as it
4880 simply clears out that bit. The rest is trivial. */
4881
4882 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4883 for (fmode = GET_MODE (from); fmode != VOIDmode;
4884 fmode = GET_MODE_WIDER_MODE (fmode))
4885 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4886 &must_trunc))
4887 {
4888 int bitsize;
4889 REAL_VALUE_TYPE offset;
4890 rtx limit, lab1, lab2, insn;
4891
4892 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4893 real_2expN (&offset, bitsize - 1);
4894 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4895 lab1 = gen_label_rtx ();
4896 lab2 = gen_label_rtx ();
4897
4898 emit_queue ();
4899 to = protect_from_queue (to, 1);
4900 from = protect_from_queue (from, 0);
4901
4902 if (flag_force_mem)
4903 from = force_not_mem (from);
4904
4905 if (fmode != GET_MODE (from))
4906 from = convert_to_mode (fmode, from, 0);
4907
4908 /* See if we need to do the subtraction. */
4909 do_pending_stack_adjust ();
4910 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4911 0, lab1);
4912
4913 /* If not, do the signed "fix" and branch around fixup code. */
4914 expand_fix (to, from, 0);
4915 emit_jump_insn (gen_jump (lab2));
4916 emit_barrier ();
4917
4918 /* Otherwise, subtract 2**(N-1), convert to signed number,
4919 then add 2**(N-1). Do the addition using XOR since this
4920 will often generate better code. */
4921 emit_label (lab1);
4922 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4923 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4924 expand_fix (to, target, 0);
4925 target = expand_binop (GET_MODE (to), xor_optab, to,
4926 gen_int_mode
4927 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4928 GET_MODE (to)),
4929 to, 1, OPTAB_LIB_WIDEN);
4930
4931 if (target != to)
4932 emit_move_insn (to, target);
4933
4934 emit_label (lab2);
4935
4936 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4937 != CODE_FOR_nothing)
4938 {
4939 /* Make a place for a REG_NOTE and add it. */
4940 insn = emit_move_insn (to, to);
4941 set_unique_reg_note (insn,
4942 REG_EQUAL,
4943 gen_rtx_fmt_e (UNSIGNED_FIX,
4944 GET_MODE (to),
4945 copy_rtx (from)));
4946 }
4947
4948 return;
4949 }
4950
4951 /* We can't do it with an insn, so use a library call. But first ensure
4952 that the mode of TO is at least as wide as SImode, since those are the
4953 only library calls we know about. */
4954
4955 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4956 {
4957 target = gen_reg_rtx (SImode);
4958
4959 expand_fix (target, from, unsignedp);
4960 }
4961 else
4962 {
4963 rtx insns;
4964 rtx value;
4965 rtx libfunc;
4966
4967 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
4968 libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
4969 if (!libfunc)
4970 abort ();
4971
4972 to = protect_from_queue (to, 1);
4973 from = protect_from_queue (from, 0);
4974
4975 if (flag_force_mem)
4976 from = force_not_mem (from);
4977
4978 start_sequence ();
4979
4980 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4981 GET_MODE (to), 1, from,
4982 GET_MODE (from));
4983 insns = get_insns ();
4984 end_sequence ();
4985
4986 emit_libcall_block (insns, target, value,
4987 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4988 GET_MODE (to), from));
4989 }
4990
4991 if (target != to)
4992 {
4993 if (GET_MODE (to) == GET_MODE (target))
4994 emit_move_insn (to, target);
4995 else
4996 convert_move (to, target, 0);
4997 }
4998 }
4999 \f
5000 /* Report whether we have an instruction to perform the operation
5001 specified by CODE on operands of mode MODE. */
5002 int
5003 have_insn_for (enum rtx_code code, enum machine_mode mode)
5004 {
5005 return (code_to_optab[(int) code] != 0
5006 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
5007 != CODE_FOR_nothing));
5008 }
5009
5010 /* Create a blank optab. */
5011 static optab
5012 new_optab (void)
5013 {
5014 int i;
5015 optab op = ggc_alloc (sizeof (struct optab));
5016 for (i = 0; i < NUM_MACHINE_MODES; i++)
5017 {
5018 op->handlers[i].insn_code = CODE_FOR_nothing;
5019 op->handlers[i].libfunc = 0;
5020 }
5021
5022 return op;
5023 }
5024
5025 static convert_optab
5026 new_convert_optab (void)
5027 {
5028 int i, j;
5029 convert_optab op = ggc_alloc (sizeof (struct convert_optab));
5030 for (i = 0; i < NUM_MACHINE_MODES; i++)
5031 for (j = 0; j < NUM_MACHINE_MODES; j++)
5032 {
5033 op->handlers[i][j].insn_code = CODE_FOR_nothing;
5034 op->handlers[i][j].libfunc = 0;
5035 }
5036 return op;
5037 }
5038
5039 /* Same, but fill in its code as CODE, and write it into the
5040 code_to_optab table. */
5041 static inline optab
5042 init_optab (enum rtx_code code)
5043 {
5044 optab op = new_optab ();
5045 op->code = code;
5046 code_to_optab[(int) code] = op;
5047 return op;
5048 }
5049
5050 /* Same, but fill in its code as CODE, and do _not_ write it into
5051 the code_to_optab table. */
5052 static inline optab
5053 init_optabv (enum rtx_code code)
5054 {
5055 optab op = new_optab ();
5056 op->code = code;
5057 return op;
5058 }
5059
5060 /* Conversion optabs never go in the code_to_optab table. */
5061 static inline convert_optab
5062 init_convert_optab (enum rtx_code code)
5063 {
5064 convert_optab op = new_convert_optab ();
5065 op->code = code;
5066 return op;
5067 }
5068
5069 /* Initialize the libfunc fields of an entire group of entries in some
5070 optab. Each entry is set equal to a string consisting of a leading
5071 pair of underscores followed by a generic operation name followed by
5072 a mode name (downshifted to lowercase) followed by a single character
5073 representing the number of operands for the given operation (which is
5074 usually one of the characters '2', '3', or '4').
5075
5076 OPTABLE is the table in which libfunc fields are to be initialized.
5077 FIRST_MODE is the first machine mode index in the given optab to
5078 initialize.
5079 LAST_MODE is the last machine mode index in the given optab to
5080 initialize.
5081 OPNAME is the generic (string) name of the operation.
5082 SUFFIX is the character which specifies the number of operands for
5083 the given generic operation.
5084 */
5085
5086 static void
5087 init_libfuncs (optab optable, int first_mode, int last_mode,
5088 const char *opname, int suffix)
5089 {
5090 int mode;
5091 unsigned opname_len = strlen (opname);
5092
5093 for (mode = first_mode; (int) mode <= (int) last_mode;
5094 mode = (enum machine_mode) ((int) mode + 1))
5095 {
5096 const char *mname = GET_MODE_NAME (mode);
5097 unsigned mname_len = strlen (mname);
5098 char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
5099 char *p;
5100 const char *q;
5101
5102 p = libfunc_name;
5103 *p++ = '_';
5104 *p++ = '_';
5105 for (q = opname; *q; )
5106 *p++ = *q++;
5107 for (q = mname; *q; q++)
5108 *p++ = TOLOWER (*q);
5109 *p++ = suffix;
5110 *p = '\0';
5111
5112 optable->handlers[(int) mode].libfunc
5113 = init_one_libfunc (ggc_alloc_string (libfunc_name, p - libfunc_name));
5114 }
5115 }
5116
5117 /* Initialize the libfunc fields of an entire group of entries in some
5118 optab which correspond to all integer mode operations. The parameters
5119 have the same meaning as similarly named ones for the `init_libfuncs'
5120 routine. (See above). */
5121
5122 static void
5123 init_integral_libfuncs (optab optable, const char *opname, int suffix)
5124 {
5125 int maxsize = 2*BITS_PER_WORD;
5126 if (maxsize < LONG_LONG_TYPE_SIZE)
5127 maxsize = LONG_LONG_TYPE_SIZE;
5128 init_libfuncs (optable, word_mode,
5129 mode_for_size (maxsize, MODE_INT, 0),
5130 opname, suffix);
5131 }
5132
5133 /* Initialize the libfunc fields of an entire group of entries in some
5134 optab which correspond to all real mode operations. The parameters
5135 have the same meaning as similarly named ones for the `init_libfuncs'
5136 routine. (See above). */
5137
5138 static void
5139 init_floating_libfuncs (optab optable, const char *opname, int suffix)
5140 {
5141 init_libfuncs (optable, MIN_MODE_FLOAT, MAX_MODE_FLOAT, opname, suffix);
5142 }
5143
5144 /* Initialize the libfunc fields of an entire group of entries of an
5145 inter-mode-class conversion optab. The string formation rules are
5146 similar to the ones for init_libfuncs, above, but instead of having
5147 a mode name and an operand count these functions have two mode names
5148 and no operand count. */
5149 static void
5150 init_interclass_conv_libfuncs (convert_optab tab, const char *opname,
5151 enum mode_class from_class,
5152 enum mode_class to_class)
5153 {
5154 enum machine_mode first_from_mode = GET_CLASS_NARROWEST_MODE (from_class);
5155 enum machine_mode first_to_mode = GET_CLASS_NARROWEST_MODE (to_class);
5156 size_t opname_len = strlen (opname);
5157 size_t max_mname_len = 0;
5158
5159 enum machine_mode fmode, tmode;
5160 const char *fname, *tname;
5161 const char *q;
5162 char *libfunc_name, *suffix;
5163 char *p;
5164
5165 for (fmode = first_from_mode;
5166 fmode != VOIDmode;
5167 fmode = GET_MODE_WIDER_MODE (fmode))
5168 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (fmode)));
5169
5170 for (tmode = first_to_mode;
5171 tmode != VOIDmode;
5172 tmode = GET_MODE_WIDER_MODE (tmode))
5173 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (tmode)));
5174
5175 libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
5176 libfunc_name[0] = '_';
5177 libfunc_name[1] = '_';
5178 memcpy (&libfunc_name[2], opname, opname_len);
5179 suffix = libfunc_name + opname_len + 2;
5180
5181 for (fmode = first_from_mode; fmode != VOIDmode;
5182 fmode = GET_MODE_WIDER_MODE (fmode))
5183 for (tmode = first_to_mode; tmode != VOIDmode;
5184 tmode = GET_MODE_WIDER_MODE (tmode))
5185 {
5186 fname = GET_MODE_NAME (fmode);
5187 tname = GET_MODE_NAME (tmode);
5188
5189 p = suffix;
5190 for (q = fname; *q; p++, q++)
5191 *p = TOLOWER (*q);
5192 for (q = tname; *q; p++, q++)
5193 *p = TOLOWER (*q);
5194
5195 *p = '\0';
5196
5197 tab->handlers[tmode][fmode].libfunc
5198 = init_one_libfunc (ggc_alloc_string (libfunc_name,
5199 p - libfunc_name));
5200 }
5201 }
5202
5203 /* Initialize the libfunc fields of an entire group of entries of an
5204 intra-mode-class conversion optab. The string formation rules are
5205 similar to the ones for init_libfunc, above. WIDENING says whether
5206 the optab goes from narrow to wide modes or vice versa. These functions
5207 have two mode names _and_ an operand count. */
5208 static void
5209 init_intraclass_conv_libfuncs (convert_optab tab, const char *opname,
5210 enum mode_class class, bool widening)
5211 {
5212 enum machine_mode first_mode = GET_CLASS_NARROWEST_MODE (class);
5213 size_t opname_len = strlen (opname);
5214 size_t max_mname_len = 0;
5215
5216 enum machine_mode nmode, wmode;
5217 const char *nname, *wname;
5218 const char *q;
5219 char *libfunc_name, *suffix;
5220 char *p;
5221
5222 for (nmode = first_mode; nmode != VOIDmode;
5223 nmode = GET_MODE_WIDER_MODE (nmode))
5224 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (nmode)));
5225
5226 libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
5227 libfunc_name[0] = '_';
5228 libfunc_name[1] = '_';
5229 memcpy (&libfunc_name[2], opname, opname_len);
5230 suffix = libfunc_name + opname_len + 2;
5231
5232 for (nmode = first_mode; nmode != VOIDmode;
5233 nmode = GET_MODE_WIDER_MODE (nmode))
5234 for (wmode = GET_MODE_WIDER_MODE (nmode); wmode != VOIDmode;
5235 wmode = GET_MODE_WIDER_MODE (wmode))
5236 {
5237 nname = GET_MODE_NAME (nmode);
5238 wname = GET_MODE_NAME (wmode);
5239
5240 p = suffix;
5241 for (q = widening ? nname : wname; *q; p++, q++)
5242 *p = TOLOWER (*q);
5243 for (q = widening ? wname : nname; *q; p++, q++)
5244 *p = TOLOWER (*q);
5245
5246 *p++ = '2';
5247 *p = '\0';
5248
5249 tab->handlers[widening ? wmode : nmode]
5250 [widening ? nmode : wmode].libfunc
5251 = init_one_libfunc (ggc_alloc_string (libfunc_name,
5252 p - libfunc_name));
5253 }
5254 }
5255
5256
5257 rtx
5258 init_one_libfunc (const char *name)
5259 {
5260 rtx symbol;
5261
5262 /* Create a FUNCTION_DECL that can be passed to
5263 targetm.encode_section_info. */
5264 /* ??? We don't have any type information except for this is
5265 a function. Pretend this is "int foo()". */
5266 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
5267 build_function_type (integer_type_node, NULL_TREE));
5268 DECL_ARTIFICIAL (decl) = 1;
5269 DECL_EXTERNAL (decl) = 1;
5270 TREE_PUBLIC (decl) = 1;
5271
5272 symbol = XEXP (DECL_RTL (decl), 0);
5273
5274 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
5275 are the flags assigned by targetm.encode_section_info. */
5276 SYMBOL_REF_DECL (symbol) = 0;
5277
5278 return symbol;
5279 }
5280
5281 /* Call this to reset the function entry for one optab (OPTABLE) in mode
5282 MODE to NAME, which should be either 0 or a string constant. */
5283 void
5284 set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
5285 {
5286 if (name)
5287 optable->handlers[mode].libfunc = init_one_libfunc (name);
5288 else
5289 optable->handlers[mode].libfunc = 0;
5290 }
5291
5292 /* Call this to reset the function entry for one conversion optab
5293 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
5294 either 0 or a string constant. */
5295 void
5296 set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
5297 enum machine_mode fmode, const char *name)
5298 {
5299 if (name)
5300 optable->handlers[tmode][fmode].libfunc = init_one_libfunc (name);
5301 else
5302 optable->handlers[tmode][fmode].libfunc = 0;
5303 }
5304
5305 /* Call this once to initialize the contents of the optabs
5306 appropriately for the current target machine. */
5307
5308 void
5309 init_optabs (void)
5310 {
5311 unsigned int i;
5312
5313 /* Start by initializing all tables to contain CODE_FOR_nothing. */
5314
5315 for (i = 0; i < NUM_RTX_CODE; i++)
5316 setcc_gen_code[i] = CODE_FOR_nothing;
5317
5318 #ifdef HAVE_conditional_move
5319 for (i = 0; i < NUM_MACHINE_MODES; i++)
5320 movcc_gen_code[i] = CODE_FOR_nothing;
5321 #endif
5322
5323 add_optab = init_optab (PLUS);
5324 addv_optab = init_optabv (PLUS);
5325 sub_optab = init_optab (MINUS);
5326 subv_optab = init_optabv (MINUS);
5327 smul_optab = init_optab (MULT);
5328 smulv_optab = init_optabv (MULT);
5329 smul_highpart_optab = init_optab (UNKNOWN);
5330 umul_highpart_optab = init_optab (UNKNOWN);
5331 smul_widen_optab = init_optab (UNKNOWN);
5332 umul_widen_optab = init_optab (UNKNOWN);
5333 sdiv_optab = init_optab (DIV);
5334 sdivv_optab = init_optabv (DIV);
5335 sdivmod_optab = init_optab (UNKNOWN);
5336 udiv_optab = init_optab (UDIV);
5337 udivmod_optab = init_optab (UNKNOWN);
5338 smod_optab = init_optab (MOD);
5339 umod_optab = init_optab (UMOD);
5340 fmod_optab = init_optab (UNKNOWN);
5341 drem_optab = init_optab (UNKNOWN);
5342 ftrunc_optab = init_optab (UNKNOWN);
5343 and_optab = init_optab (AND);
5344 ior_optab = init_optab (IOR);
5345 xor_optab = init_optab (XOR);
5346 ashl_optab = init_optab (ASHIFT);
5347 ashr_optab = init_optab (ASHIFTRT);
5348 lshr_optab = init_optab (LSHIFTRT);
5349 rotl_optab = init_optab (ROTATE);
5350 rotr_optab = init_optab (ROTATERT);
5351 smin_optab = init_optab (SMIN);
5352 smax_optab = init_optab (SMAX);
5353 umin_optab = init_optab (UMIN);
5354 umax_optab = init_optab (UMAX);
5355 pow_optab = init_optab (UNKNOWN);
5356 atan2_optab = init_optab (UNKNOWN);
5357
5358 /* These three have codes assigned exclusively for the sake of
5359 have_insn_for. */
5360 mov_optab = init_optab (SET);
5361 movstrict_optab = init_optab (STRICT_LOW_PART);
5362 cmp_optab = init_optab (COMPARE);
5363
5364 ucmp_optab = init_optab (UNKNOWN);
5365 tst_optab = init_optab (UNKNOWN);
5366
5367 eq_optab = init_optab (EQ);
5368 ne_optab = init_optab (NE);
5369 gt_optab = init_optab (GT);
5370 ge_optab = init_optab (GE);
5371 lt_optab = init_optab (LT);
5372 le_optab = init_optab (LE);
5373 unord_optab = init_optab (UNORDERED);
5374
5375 neg_optab = init_optab (NEG);
5376 negv_optab = init_optabv (NEG);
5377 abs_optab = init_optab (ABS);
5378 absv_optab = init_optabv (ABS);
5379 addcc_optab = init_optab (UNKNOWN);
5380 one_cmpl_optab = init_optab (NOT);
5381 ffs_optab = init_optab (FFS);
5382 clz_optab = init_optab (CLZ);
5383 ctz_optab = init_optab (CTZ);
5384 popcount_optab = init_optab (POPCOUNT);
5385 parity_optab = init_optab (PARITY);
5386 sqrt_optab = init_optab (SQRT);
5387 floor_optab = init_optab (UNKNOWN);
5388 ceil_optab = init_optab (UNKNOWN);
5389 round_optab = init_optab (UNKNOWN);
5390 btrunc_optab = init_optab (UNKNOWN);
5391 nearbyint_optab = init_optab (UNKNOWN);
5392 sincos_optab = init_optab (UNKNOWN);
5393 sin_optab = init_optab (UNKNOWN);
5394 asin_optab = init_optab (UNKNOWN);
5395 cos_optab = init_optab (UNKNOWN);
5396 acos_optab = init_optab (UNKNOWN);
5397 exp_optab = init_optab (UNKNOWN);
5398 exp10_optab = init_optab (UNKNOWN);
5399 exp2_optab = init_optab (UNKNOWN);
5400 expm1_optab = init_optab (UNKNOWN);
5401 logb_optab = init_optab (UNKNOWN);
5402 ilogb_optab = init_optab (UNKNOWN);
5403 log_optab = init_optab (UNKNOWN);
5404 log10_optab = init_optab (UNKNOWN);
5405 log2_optab = init_optab (UNKNOWN);
5406 log1p_optab = init_optab (UNKNOWN);
5407 tan_optab = init_optab (UNKNOWN);
5408 atan_optab = init_optab (UNKNOWN);
5409 strlen_optab = init_optab (UNKNOWN);
5410 cbranch_optab = init_optab (UNKNOWN);
5411 cmov_optab = init_optab (UNKNOWN);
5412 cstore_optab = init_optab (UNKNOWN);
5413 push_optab = init_optab (UNKNOWN);
5414
5415 vec_extract_optab = init_optab (UNKNOWN);
5416 vec_set_optab = init_optab (UNKNOWN);
5417 vec_init_optab = init_optab (UNKNOWN);
5418 /* Conversions. */
5419 sext_optab = init_convert_optab (SIGN_EXTEND);
5420 zext_optab = init_convert_optab (ZERO_EXTEND);
5421 trunc_optab = init_convert_optab (TRUNCATE);
5422 sfix_optab = init_convert_optab (FIX);
5423 ufix_optab = init_convert_optab (UNSIGNED_FIX);
5424 sfixtrunc_optab = init_convert_optab (UNKNOWN);
5425 ufixtrunc_optab = init_convert_optab (UNKNOWN);
5426 sfloat_optab = init_convert_optab (FLOAT);
5427 ufloat_optab = init_convert_optab (UNSIGNED_FLOAT);
5428
5429 for (i = 0; i < NUM_MACHINE_MODES; i++)
5430 {
5431 movstr_optab[i] = CODE_FOR_nothing;
5432 clrstr_optab[i] = CODE_FOR_nothing;
5433 cmpstr_optab[i] = CODE_FOR_nothing;
5434 cmpmem_optab[i] = CODE_FOR_nothing;
5435
5436 #ifdef HAVE_SECONDARY_RELOADS
5437 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
5438 #endif
5439 }
5440
5441 /* Fill in the optabs with the insns we support. */
5442 init_all_optabs ();
5443
5444 /* Initialize the optabs with the names of the library functions. */
5445 init_integral_libfuncs (add_optab, "add", '3');
5446 init_floating_libfuncs (add_optab, "add", '3');
5447 init_integral_libfuncs (addv_optab, "addv", '3');
5448 init_floating_libfuncs (addv_optab, "add", '3');
5449 init_integral_libfuncs (sub_optab, "sub", '3');
5450 init_floating_libfuncs (sub_optab, "sub", '3');
5451 init_integral_libfuncs (subv_optab, "subv", '3');
5452 init_floating_libfuncs (subv_optab, "sub", '3');
5453 init_integral_libfuncs (smul_optab, "mul", '3');
5454 init_floating_libfuncs (smul_optab, "mul", '3');
5455 init_integral_libfuncs (smulv_optab, "mulv", '3');
5456 init_floating_libfuncs (smulv_optab, "mul", '3');
5457 init_integral_libfuncs (sdiv_optab, "div", '3');
5458 init_floating_libfuncs (sdiv_optab, "div", '3');
5459 init_integral_libfuncs (sdivv_optab, "divv", '3');
5460 init_integral_libfuncs (udiv_optab, "udiv", '3');
5461 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
5462 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
5463 init_integral_libfuncs (smod_optab, "mod", '3');
5464 init_integral_libfuncs (umod_optab, "umod", '3');
5465 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
5466 init_integral_libfuncs (and_optab, "and", '3');
5467 init_integral_libfuncs (ior_optab, "ior", '3');
5468 init_integral_libfuncs (xor_optab, "xor", '3');
5469 init_integral_libfuncs (ashl_optab, "ashl", '3');
5470 init_integral_libfuncs (ashr_optab, "ashr", '3');
5471 init_integral_libfuncs (lshr_optab, "lshr", '3');
5472 init_integral_libfuncs (smin_optab, "min", '3');
5473 init_floating_libfuncs (smin_optab, "min", '3');
5474 init_integral_libfuncs (smax_optab, "max", '3');
5475 init_floating_libfuncs (smax_optab, "max", '3');
5476 init_integral_libfuncs (umin_optab, "umin", '3');
5477 init_integral_libfuncs (umax_optab, "umax", '3');
5478 init_integral_libfuncs (neg_optab, "neg", '2');
5479 init_floating_libfuncs (neg_optab, "neg", '2');
5480 init_integral_libfuncs (negv_optab, "negv", '2');
5481 init_floating_libfuncs (negv_optab, "neg", '2');
5482 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
5483 init_integral_libfuncs (ffs_optab, "ffs", '2');
5484 init_integral_libfuncs (clz_optab, "clz", '2');
5485 init_integral_libfuncs (ctz_optab, "ctz", '2');
5486 init_integral_libfuncs (popcount_optab, "popcount", '2');
5487 init_integral_libfuncs (parity_optab, "parity", '2');
5488
5489 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
5490 init_integral_libfuncs (cmp_optab, "cmp", '2');
5491 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
5492 init_floating_libfuncs (cmp_optab, "cmp", '2');
5493
5494 /* EQ etc are floating point only. */
5495 init_floating_libfuncs (eq_optab, "eq", '2');
5496 init_floating_libfuncs (ne_optab, "ne", '2');
5497 init_floating_libfuncs (gt_optab, "gt", '2');
5498 init_floating_libfuncs (ge_optab, "ge", '2');
5499 init_floating_libfuncs (lt_optab, "lt", '2');
5500 init_floating_libfuncs (le_optab, "le", '2');
5501 init_floating_libfuncs (unord_optab, "unord", '2');
5502
5503 /* Conversions. */
5504 init_interclass_conv_libfuncs (sfloat_optab, "float", MODE_INT, MODE_FLOAT);
5505 init_interclass_conv_libfuncs (sfix_optab, "fix", MODE_FLOAT, MODE_INT);
5506 init_interclass_conv_libfuncs (ufix_optab, "fixuns", MODE_FLOAT, MODE_INT);
5507
5508 /* sext_optab is also used for FLOAT_EXTEND. */
5509 init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, true);
5510 init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, false);
5511
5512 /* Use cabs for double complex abs, since systems generally have cabs.
5513 Don't define any libcall for float complex, so that cabs will be used. */
5514 if (complex_double_type_node)
5515 abs_optab->handlers[TYPE_MODE (complex_double_type_node)].libfunc
5516 = init_one_libfunc ("cabs");
5517
5518 /* The ffs function operates on `int'. */
5519 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
5520 = init_one_libfunc ("ffs");
5521
5522 abort_libfunc = init_one_libfunc ("abort");
5523 memcpy_libfunc = init_one_libfunc ("memcpy");
5524 memmove_libfunc = init_one_libfunc ("memmove");
5525 bcopy_libfunc = init_one_libfunc ("bcopy");
5526 memcmp_libfunc = init_one_libfunc ("memcmp");
5527 bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
5528 memset_libfunc = init_one_libfunc ("memset");
5529 bzero_libfunc = init_one_libfunc ("bzero");
5530 setbits_libfunc = init_one_libfunc ("__setbits");
5531
5532 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
5533 ? "_Unwind_SjLj_Resume"
5534 : "_Unwind_Resume");
5535 #ifndef DONT_USE_BUILTIN_SETJMP
5536 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
5537 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
5538 #else
5539 setjmp_libfunc = init_one_libfunc ("setjmp");
5540 longjmp_libfunc = init_one_libfunc ("longjmp");
5541 #endif
5542 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
5543 unwind_sjlj_unregister_libfunc
5544 = init_one_libfunc ("_Unwind_SjLj_Unregister");
5545
5546 /* For function entry/exit instrumentation. */
5547 profile_function_entry_libfunc
5548 = init_one_libfunc ("__cyg_profile_func_enter");
5549 profile_function_exit_libfunc
5550 = init_one_libfunc ("__cyg_profile_func_exit");
5551
5552 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
5553
5554 if (HAVE_conditional_trap)
5555 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
5556
5557 /* Allow the target to add more libcalls or rename some, etc. */
5558 targetm.init_libfuncs ();
5559 }
5560 \f
5561 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5562 CODE. Return 0 on failure. */
5563
5564 rtx
5565 gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
5566 rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
5567 {
5568 enum machine_mode mode = GET_MODE (op1);
5569 enum insn_code icode;
5570 rtx insn;
5571
5572 if (!HAVE_conditional_trap)
5573 return 0;
5574
5575 if (mode == VOIDmode)
5576 return 0;
5577
5578 icode = cmp_optab->handlers[(int) mode].insn_code;
5579 if (icode == CODE_FOR_nothing)
5580 return 0;
5581
5582 start_sequence ();
5583 op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
5584 op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
5585 if (!op1 || !op2)
5586 {
5587 end_sequence ();
5588 return 0;
5589 }
5590 emit_insn (GEN_FCN (icode) (op1, op2));
5591
5592 PUT_CODE (trap_rtx, code);
5593 insn = gen_conditional_trap (trap_rtx, tcode);
5594 if (insn)
5595 {
5596 emit_insn (insn);
5597 insn = get_insns ();
5598 }
5599 end_sequence ();
5600
5601 return insn;
5602 }
5603
5604 #include "gt-optabs.h"
This page took 0.294579 seconds and 5 git commands to generate.