]> gcc.gnu.org Git - gcc.git/blob - gcc/loop.c
dcddba681b4ff5c40a99257282461eca7ad14695
[gcc.git] / gcc / loop.c
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
28
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
33
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "rtl.h"
40 #include "obstack.h"
41 #include "expr.h"
42 #include "insn-config.h"
43 #include "insn-flags.h"
44 #include "regs.h"
45 #include "hard-reg-set.h"
46 #include "recog.h"
47 #include "flags.h"
48 #include "real.h"
49 #include "loop.h"
50 #include "except.h"
51 #include "toplev.h"
52
53 /* Vector mapping INSN_UIDs to luids.
54 The luids are like uids but increase monotonically always.
55 We use them to see whether a jump comes from outside a given loop. */
56
57 int *uid_luid;
58
59 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
60 number the insn is contained in. */
61
62 int *uid_loop_num;
63
64 /* 1 + largest uid of any insn. */
65
66 int max_uid_for_loop;
67
68 /* 1 + luid of last insn. */
69
70 static int max_luid;
71
72 /* Number of loops detected in current function. Used as index to the
73 next few tables. */
74
75 static int max_loop_num;
76
77 /* Indexed by loop number, contains the first and last insn of each loop. */
78
79 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
80
81 /* Likewise for the continue insn */
82 static rtx *loop_number_loop_cont;
83
84 /* The first code_label that is reached in every loop iteration.
85 0 when not computed yet, initially const0_rtx if a jump couldn't be
86 followed.
87 Also set to 0 when there is no such label before the NOTE_INSN_LOOP_CONT
88 of this loop, or in verify_dominator, if a jump couldn't be followed. */
89 static rtx *loop_number_cont_dominator;
90
91 /* For each loop, gives the containing loop number, -1 if none. */
92
93 int *loop_outer_loop;
94
95 #ifdef HAVE_decrement_and_branch_on_count
96 /* Records whether resource in use by inner loop. */
97
98 int *loop_used_count_register;
99 #endif /* HAVE_decrement_and_branch_on_count */
100
101 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
102 really a loop (an insn outside the loop branches into it). */
103
104 static char *loop_invalid;
105
106 /* Indexed by loop number, links together all LABEL_REFs which refer to
107 code labels outside the loop. Used by routines that need to know all
108 loop exits, such as final_biv_value and final_giv_value.
109
110 This does not include loop exits due to return instructions. This is
111 because all bivs and givs are pseudos, and hence must be dead after a
112 return, so the presense of a return does not affect any of the
113 optimizations that use this info. It is simpler to just not include return
114 instructions on this list. */
115
116 rtx *loop_number_exit_labels;
117
118 /* Indexed by loop number, counts the number of LABEL_REFs on
119 loop_number_exit_labels for this loop and all loops nested inside it. */
120
121 int *loop_number_exit_count;
122
123 /* Nonzero if there is a subroutine call in the current loop. */
124
125 static int loop_has_call;
126
127 /* Nonzero if there is a volatile memory reference in the current
128 loop. */
129
130 static int loop_has_volatile;
131
132 /* Nonzero if there is a tablejump in the current loop. */
133
134 static int loop_has_tablejump;
135
136 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
137 current loop. A continue statement will generate a branch to
138 NEXT_INSN (loop_continue). */
139
140 static rtx loop_continue;
141
142 /* Indexed by register number, contains the number of times the reg
143 is set during the loop being scanned.
144 During code motion, a negative value indicates a reg that has been
145 made a candidate; in particular -2 means that it is an candidate that
146 we know is equal to a constant and -1 means that it is an candidate
147 not known equal to a constant.
148 After code motion, regs moved have 0 (which is accurate now)
149 while the failed candidates have the original number of times set.
150
151 Therefore, at all times, == 0 indicates an invariant register;
152 < 0 a conditionally invariant one. */
153
154 static varray_type set_in_loop;
155
156 /* Original value of set_in_loop; same except that this value
157 is not set negative for a reg whose sets have been made candidates
158 and not set to 0 for a reg that is moved. */
159
160 static varray_type n_times_set;
161
162 /* Index by register number, 1 indicates that the register
163 cannot be moved or strength reduced. */
164
165 static varray_type may_not_optimize;
166
167 /* Contains the insn in which a register was used if it was used
168 exactly once; contains const0_rtx if it was used more than once. */
169
170 static varray_type reg_single_usage;
171
172 /* Nonzero means reg N has already been moved out of one loop.
173 This reduces the desire to move it out of another. */
174
175 static char *moved_once;
176
177 /* List of MEMs that are stored in this loop. */
178
179 static rtx loop_store_mems;
180
181 /* The insn where the first of these was found. */
182 static rtx first_loop_store_insn;
183
184 typedef struct loop_mem_info {
185 rtx mem; /* The MEM itself. */
186 rtx reg; /* Corresponding pseudo, if any. */
187 int optimize; /* Nonzero if we can optimize access to this MEM. */
188 } loop_mem_info;
189
190 /* Array of MEMs that are used (read or written) in this loop, but
191 cannot be aliased by anything in this loop, except perhaps
192 themselves. In other words, if loop_mems[i] is altered during the
193 loop, it is altered by an expression that is rtx_equal_p to it. */
194
195 static loop_mem_info *loop_mems;
196
197 /* The index of the next available slot in LOOP_MEMS. */
198
199 static int loop_mems_idx;
200
201 /* The number of elements allocated in LOOP_MEMs. */
202
203 static int loop_mems_allocated;
204
205 /* Nonzero if we don't know what MEMs were changed in the current loop.
206 This happens if the loop contains a call (in which case `loop_has_call'
207 will also be set) or if we store into more than NUM_STORES MEMs. */
208
209 static int unknown_address_altered;
210
211 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
212 static int num_movables;
213
214 /* Count of memory write instructions discovered in the loop. */
215 static int num_mem_sets;
216
217 /* Number of loops contained within the current one, including itself. */
218 static int loops_enclosed;
219
220 /* Bound on pseudo register number before loop optimization.
221 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
222 int max_reg_before_loop;
223
224 /* This obstack is used in product_cheap_p to allocate its rtl. It
225 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
226 If we used the same obstack that it did, we would be deallocating
227 that array. */
228
229 static struct obstack temp_obstack;
230
231 /* This is where the pointer to the obstack being used for RTL is stored. */
232
233 extern struct obstack *rtl_obstack;
234
235 #define obstack_chunk_alloc xmalloc
236 #define obstack_chunk_free free
237 \f
238 /* During the analysis of a loop, a chain of `struct movable's
239 is made to record all the movable insns found.
240 Then the entire chain can be scanned to decide which to move. */
241
242 struct movable
243 {
244 rtx insn; /* A movable insn */
245 rtx set_src; /* The expression this reg is set from. */
246 rtx set_dest; /* The destination of this SET. */
247 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
248 of any registers used within the LIBCALL. */
249 int consec; /* Number of consecutive following insns
250 that must be moved with this one. */
251 int regno; /* The register it sets */
252 short lifetime; /* lifetime of that register;
253 may be adjusted when matching movables
254 that load the same value are found. */
255 short savings; /* Number of insns we can move for this reg,
256 including other movables that force this
257 or match this one. */
258 unsigned int cond : 1; /* 1 if only conditionally movable */
259 unsigned int force : 1; /* 1 means MUST move this insn */
260 unsigned int global : 1; /* 1 means reg is live outside this loop */
261 /* If PARTIAL is 1, GLOBAL means something different:
262 that the reg is live outside the range from where it is set
263 to the following label. */
264 unsigned int done : 1; /* 1 inhibits further processing of this */
265
266 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
267 In particular, moving it does not make it
268 invariant. */
269 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
270 load SRC, rather than copying INSN. */
271 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
272 first insn of a consecutive sets group. */
273 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
274 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
275 that we should avoid changing when clearing
276 the rest of the reg. */
277 struct movable *match; /* First entry for same value */
278 struct movable *forces; /* An insn that must be moved if this is */
279 struct movable *next;
280 };
281
282 static struct movable *the_movables;
283
284 FILE *loop_dump_stream;
285
286 /* Forward declarations. */
287
288 static void verify_dominator PROTO((int));
289 static void find_and_verify_loops PROTO((rtx));
290 static void mark_loop_jump PROTO((rtx, int));
291 static void prescan_loop PROTO((rtx, rtx));
292 static int reg_in_basic_block_p PROTO((rtx, rtx));
293 static int consec_sets_invariant_p PROTO((rtx, int, rtx));
294 static int labels_in_range_p PROTO((rtx, int));
295 static void count_one_set PROTO((rtx, rtx, varray_type, rtx *));
296
297 static void count_loop_regs_set PROTO((rtx, rtx, varray_type, varray_type,
298 int *, int));
299 static void note_addr_stored PROTO((rtx, rtx));
300 static int loop_reg_used_before_p PROTO((rtx, rtx, rtx, rtx, rtx));
301 static void scan_loop PROTO((rtx, rtx, rtx, int, int));
302 #if 0
303 static void replace_call_address PROTO((rtx, rtx, rtx));
304 #endif
305 static rtx skip_consec_insns PROTO((rtx, int));
306 static int libcall_benefit PROTO((rtx));
307 static void ignore_some_movables PROTO((struct movable *));
308 static void force_movables PROTO((struct movable *));
309 static void combine_movables PROTO((struct movable *, int));
310 static int regs_match_p PROTO((rtx, rtx, struct movable *));
311 static int rtx_equal_for_loop_p PROTO((rtx, rtx, struct movable *));
312 static void add_label_notes PROTO((rtx, rtx));
313 static void move_movables PROTO((struct movable *, int, int, rtx, rtx, int));
314 static int count_nonfixed_reads PROTO((rtx));
315 static void strength_reduce PROTO((rtx, rtx, rtx, int, rtx, rtx, rtx, int, int));
316 static void find_single_use_in_loop PROTO((rtx, rtx, varray_type));
317 static int valid_initial_value_p PROTO((rtx, rtx, int, rtx));
318 static void find_mem_givs PROTO((rtx, rtx, int, rtx, rtx));
319 static void record_biv PROTO((struct induction *, rtx, rtx, rtx, rtx, rtx *, int, int));
320 static void check_final_value PROTO((struct induction *, rtx, rtx,
321 unsigned HOST_WIDE_INT));
322 static void record_giv PROTO((struct induction *, rtx, rtx, rtx, rtx, rtx, int, enum g_types, int, rtx *, rtx, rtx));
323 static void update_giv_derive PROTO((rtx));
324 static int basic_induction_var PROTO((rtx, enum machine_mode, rtx, rtx, rtx *, rtx *, rtx **));
325 static rtx simplify_giv_expr PROTO((rtx, int *));
326 static int general_induction_var PROTO((rtx, rtx *, rtx *, rtx *, int, int *));
327 static int consec_sets_giv PROTO((int, rtx, rtx, rtx, rtx *, rtx *, rtx *));
328 static int check_dbra_loop PROTO((rtx, int, rtx, struct loop_info *));
329 static rtx express_from_1 PROTO((rtx, rtx, rtx));
330 static rtx combine_givs_p PROTO((struct induction *, struct induction *));
331 static void combine_givs PROTO((struct iv_class *));
332 struct recombine_givs_stats;
333 static int find_life_end PROTO((rtx, struct recombine_givs_stats *, rtx, rtx));
334 static void recombine_givs PROTO((struct iv_class *, rtx, rtx, int));
335 static int product_cheap_p PROTO((rtx, rtx));
336 static int maybe_eliminate_biv PROTO((struct iv_class *, rtx, rtx, int, int, int));
337 static int maybe_eliminate_biv_1 PROTO((rtx, rtx, struct iv_class *, int, rtx));
338 static int last_use_this_basic_block PROTO((rtx, rtx));
339 static void record_initial PROTO((rtx, rtx));
340 static void update_reg_last_use PROTO((rtx, rtx));
341 static rtx next_insn_in_loop PROTO((rtx, rtx, rtx, rtx));
342 static void load_mems_and_recount_loop_regs_set PROTO((rtx, rtx, rtx,
343 rtx, int *));
344 static void load_mems PROTO((rtx, rtx, rtx, rtx));
345 static int insert_loop_mem PROTO((rtx *, void *));
346 static int replace_loop_mem PROTO((rtx *, void *));
347 static int replace_label PROTO((rtx *, void *));
348
349 typedef struct rtx_and_int {
350 rtx r;
351 int i;
352 } rtx_and_int;
353
354 typedef struct rtx_pair {
355 rtx r1;
356 rtx r2;
357 } rtx_pair;
358
359 /* Nonzero iff INSN is between START and END, inclusive. */
360 #define INSN_IN_RANGE_P(INSN, START, END) \
361 (INSN_UID (INSN) < max_uid_for_loop \
362 && INSN_LUID (INSN) >= INSN_LUID (START) \
363 && INSN_LUID (INSN) <= INSN_LUID (END))
364
365 #ifdef HAVE_decrement_and_branch_on_count
366 /* Test whether BCT applicable and safe. */
367 static void insert_bct PROTO((rtx, rtx, struct loop_info *));
368
369 /* Auxiliary function that inserts the BCT pattern into the loop. */
370 static void instrument_loop_bct PROTO((rtx, rtx, rtx));
371 #endif /* HAVE_decrement_and_branch_on_count */
372
373 /* Indirect_jump_in_function is computed once per function. */
374 int indirect_jump_in_function = 0;
375 static int indirect_jump_in_function_p PROTO((rtx));
376
377 static int compute_luids PROTO((rtx, rtx, int));
378
379 static int biv_elimination_giv_has_0_offset PROTO((struct induction *,
380 struct induction *, rtx));
381 \f
382 /* Relative gain of eliminating various kinds of operations. */
383 static int add_cost;
384 #if 0
385 static int shift_cost;
386 static int mult_cost;
387 #endif
388
389 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
390 copy the value of the strength reduced giv to its original register. */
391 static int copy_cost;
392
393 /* Cost of using a register, to normalize the benefits of a giv. */
394 static int reg_address_cost;
395
396
397 void
398 init_loop ()
399 {
400 char *free_point = (char *) oballoc (1);
401 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
402
403 add_cost = rtx_cost (gen_rtx_PLUS (word_mode, reg, reg), SET);
404
405 #ifdef ADDRESS_COST
406 reg_address_cost = ADDRESS_COST (reg);
407 #else
408 reg_address_cost = rtx_cost (reg, MEM);
409 #endif
410
411 /* We multiply by 2 to reconcile the difference in scale between
412 these two ways of computing costs. Otherwise the cost of a copy
413 will be far less than the cost of an add. */
414
415 copy_cost = 2 * 2;
416
417 /* Free the objects we just allocated. */
418 obfree (free_point);
419
420 /* Initialize the obstack used for rtl in product_cheap_p. */
421 gcc_obstack_init (&temp_obstack);
422 }
423 \f
424 /* Compute the mapping from uids to luids.
425 LUIDs are numbers assigned to insns, like uids,
426 except that luids increase monotonically through the code.
427 Start at insn START and stop just before END. Assign LUIDs
428 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
429 static int
430 compute_luids (start, end, prev_luid)
431 rtx start, end;
432 int prev_luid;
433 {
434 int i;
435 rtx insn;
436
437 for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
438 {
439 if (INSN_UID (insn) >= max_uid_for_loop)
440 continue;
441 /* Don't assign luids to line-number NOTEs, so that the distance in
442 luids between two insns is not affected by -g. */
443 if (GET_CODE (insn) != NOTE
444 || NOTE_LINE_NUMBER (insn) <= 0)
445 uid_luid[INSN_UID (insn)] = ++i;
446 else
447 /* Give a line number note the same luid as preceding insn. */
448 uid_luid[INSN_UID (insn)] = i;
449 }
450 return i + 1;
451 }
452 \f
453 /* Entry point of this file. Perform loop optimization
454 on the current function. F is the first insn of the function
455 and DUMPFILE is a stream for output of a trace of actions taken
456 (or 0 if none should be output). */
457
458 void
459 loop_optimize (f, dumpfile, unroll_p, bct_p)
460 /* f is the first instruction of a chain of insns for one function */
461 rtx f;
462 FILE *dumpfile;
463 int unroll_p, bct_p;
464 {
465 register rtx insn;
466 register int i;
467
468 loop_dump_stream = dumpfile;
469
470 init_recog_no_volatile ();
471
472 max_reg_before_loop = max_reg_num ();
473
474 moved_once = (char *) alloca (max_reg_before_loop);
475 bzero (moved_once, max_reg_before_loop);
476
477 regs_may_share = 0;
478
479 /* Count the number of loops. */
480
481 max_loop_num = 0;
482 for (insn = f; insn; insn = NEXT_INSN (insn))
483 {
484 if (GET_CODE (insn) == NOTE
485 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
486 max_loop_num++;
487 }
488
489 /* Don't waste time if no loops. */
490 if (max_loop_num == 0)
491 return;
492
493 /* Get size to use for tables indexed by uids.
494 Leave some space for labels allocated by find_and_verify_loops. */
495 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
496
497 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
498 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
499
500 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
501 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
502
503 /* Allocate tables for recording each loop. We set each entry, so they need
504 not be zeroed. */
505 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
506 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
507 loop_number_loop_cont = (rtx *) alloca (max_loop_num * sizeof (rtx));
508 loop_number_cont_dominator = (rtx *) alloca (max_loop_num * sizeof (rtx));
509 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
510 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
511 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
512 loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
513
514 #ifdef HAVE_decrement_and_branch_on_count
515 /* Allocate for BCT optimization */
516 loop_used_count_register = (int *) alloca (max_loop_num * sizeof (int));
517 bzero ((char *) loop_used_count_register, max_loop_num * sizeof (int));
518 #endif /* HAVE_decrement_and_branch_on_count */
519
520 /* Find and process each loop.
521 First, find them, and record them in order of their beginnings. */
522 find_and_verify_loops (f);
523
524 /* Now find all register lifetimes. This must be done after
525 find_and_verify_loops, because it might reorder the insns in the
526 function. */
527 reg_scan (f, max_reg_num (), 1);
528
529 /* This must occur after reg_scan so that registers created by gcse
530 will have entries in the register tables.
531
532 We could have added a call to reg_scan after gcse_main in toplev.c,
533 but moving this call to init_alias_analysis is more efficient. */
534 init_alias_analysis ();
535
536 /* See if we went too far. Note that get_max_uid already returns
537 one more that the maximum uid of all insn. */
538 if (get_max_uid () > max_uid_for_loop)
539 abort ();
540 /* Now reset it to the actual size we need. See above. */
541 max_uid_for_loop = get_max_uid ();
542
543 /* find_and_verify_loops has already called compute_luids, but it might
544 have rearranged code afterwards, so we need to recompute the luids now. */
545 max_luid = compute_luids (f, NULL_RTX, 0);
546
547 /* Don't leave gaps in uid_luid for insns that have been
548 deleted. It is possible that the first or last insn
549 using some register has been deleted by cross-jumping.
550 Make sure that uid_luid for that former insn's uid
551 points to the general area where that insn used to be. */
552 for (i = 0; i < max_uid_for_loop; i++)
553 {
554 uid_luid[0] = uid_luid[i];
555 if (uid_luid[0] != 0)
556 break;
557 }
558 for (i = 0; i < max_uid_for_loop; i++)
559 if (uid_luid[i] == 0)
560 uid_luid[i] = uid_luid[i - 1];
561
562 /* Create a mapping from loops to BLOCK tree nodes. */
563 if (unroll_p && write_symbols != NO_DEBUG)
564 find_loop_tree_blocks ();
565
566 /* Determine if the function has indirect jump. On some systems
567 this prevents low overhead loop instructions from being used. */
568 indirect_jump_in_function = indirect_jump_in_function_p (f);
569
570 /* Now scan the loops, last ones first, since this means inner ones are done
571 before outer ones. */
572 for (i = max_loop_num-1; i >= 0; i--)
573 if (! loop_invalid[i] && loop_number_loop_ends[i])
574 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
575 loop_number_loop_cont[i], unroll_p, bct_p);
576
577 /* If debugging and unrolling loops, we must replicate the tree nodes
578 corresponding to the blocks inside the loop, so that the original one
579 to one mapping will remain. */
580 if (unroll_p && write_symbols != NO_DEBUG)
581 unroll_block_trees ();
582
583 end_alias_analysis ();
584 }
585 \f
586 /* Returns the next insn, in execution order, after INSN. START and
587 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
588 respectively. LOOP_TOP, if non-NULL, is the top of the loop in the
589 insn-stream; it is used with loops that are entered near the
590 bottom. */
591
592 static rtx
593 next_insn_in_loop (insn, start, end, loop_top)
594 rtx insn;
595 rtx start;
596 rtx end;
597 rtx loop_top;
598 {
599 insn = NEXT_INSN (insn);
600
601 if (insn == end)
602 {
603 if (loop_top)
604 /* Go to the top of the loop, and continue there. */
605 insn = loop_top;
606 else
607 /* We're done. */
608 insn = NULL_RTX;
609 }
610
611 if (insn == start)
612 /* We're done. */
613 insn = NULL_RTX;
614
615 return insn;
616 }
617
618 /* Optimize one loop whose start is LOOP_START and end is END.
619 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
620 NOTE_INSN_LOOP_END.
621 LOOP_CONT is the NOTE_INSN_LOOP_CONT. */
622
623 /* ??? Could also move memory writes out of loops if the destination address
624 is invariant, the source is invariant, the memory write is not volatile,
625 and if we can prove that no read inside the loop can read this address
626 before the write occurs. If there is a read of this address after the
627 write, then we can also mark the memory read as invariant. */
628
629 static void
630 scan_loop (loop_start, end, loop_cont, unroll_p, bct_p)
631 rtx loop_start, end, loop_cont;
632 int unroll_p, bct_p;
633 {
634 register int i;
635 rtx p;
636 /* 1 if we are scanning insns that could be executed zero times. */
637 int maybe_never = 0;
638 /* 1 if we are scanning insns that might never be executed
639 due to a subroutine call which might exit before they are reached. */
640 int call_passed = 0;
641 /* For a rotated loop that is entered near the bottom,
642 this is the label at the top. Otherwise it is zero. */
643 rtx loop_top = 0;
644 /* Jump insn that enters the loop, or 0 if control drops in. */
645 rtx loop_entry_jump = 0;
646 /* Place in the loop where control enters. */
647 rtx scan_start;
648 /* Number of insns in the loop. */
649 int insn_count;
650 int in_libcall = 0;
651 int tem;
652 rtx temp;
653 /* The SET from an insn, if it is the only SET in the insn. */
654 rtx set, set1;
655 /* Chain describing insns movable in current loop. */
656 struct movable *movables = 0;
657 /* Last element in `movables' -- so we can add elements at the end. */
658 struct movable *last_movable = 0;
659 /* Ratio of extra register life span we can justify
660 for saving an instruction. More if loop doesn't call subroutines
661 since in that case saving an insn makes more difference
662 and more registers are available. */
663 int threshold;
664 /* Nonzero if we are scanning instructions in a sub-loop. */
665 int loop_depth = 0;
666 int nregs;
667
668 /* Determine whether this loop starts with a jump down to a test at
669 the end. This will occur for a small number of loops with a test
670 that is too complex to duplicate in front of the loop.
671
672 We search for the first insn or label in the loop, skipping NOTEs.
673 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
674 (because we might have a loop executed only once that contains a
675 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
676 (in case we have a degenerate loop).
677
678 Note that if we mistakenly think that a loop is entered at the top
679 when, in fact, it is entered at the exit test, the only effect will be
680 slightly poorer optimization. Making the opposite error can generate
681 incorrect code. Since very few loops now start with a jump to the
682 exit test, the code here to detect that case is very conservative. */
683
684 for (p = NEXT_INSN (loop_start);
685 p != end
686 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
687 && (GET_CODE (p) != NOTE
688 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
689 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
690 p = NEXT_INSN (p))
691 ;
692
693 scan_start = p;
694
695 /* Set up variables describing this loop. */
696 prescan_loop (loop_start, end);
697 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
698
699 /* If loop has a jump before the first label,
700 the true entry is the target of that jump.
701 Start scan from there.
702 But record in LOOP_TOP the place where the end-test jumps
703 back to so we can scan that after the end of the loop. */
704 if (GET_CODE (p) == JUMP_INSN)
705 {
706 loop_entry_jump = p;
707
708 /* Loop entry must be unconditional jump (and not a RETURN) */
709 if (simplejump_p (p)
710 && JUMP_LABEL (p) != 0
711 /* Check to see whether the jump actually
712 jumps out of the loop (meaning it's no loop).
713 This case can happen for things like
714 do {..} while (0). If this label was generated previously
715 by loop, we can't tell anything about it and have to reject
716 the loop. */
717 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, end))
718 {
719 loop_top = next_label (scan_start);
720 scan_start = JUMP_LABEL (p);
721 }
722 }
723
724 /* If SCAN_START was an insn created by loop, we don't know its luid
725 as required by loop_reg_used_before_p. So skip such loops. (This
726 test may never be true, but it's best to play it safe.)
727
728 Also, skip loops where we do not start scanning at a label. This
729 test also rejects loops starting with a JUMP_INSN that failed the
730 test above. */
731
732 if (INSN_UID (scan_start) >= max_uid_for_loop
733 || GET_CODE (scan_start) != CODE_LABEL)
734 {
735 if (loop_dump_stream)
736 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
737 INSN_UID (loop_start), INSN_UID (end));
738 return;
739 }
740
741 /* Count number of times each reg is set during this loop.
742 Set VARRAY_CHAR (may_not_optimize, I) if it is not safe to move out
743 the setting of register I. Set VARRAY_RTX (reg_single_usage, I). */
744
745 /* Allocate extra space for REGS that might be created by
746 load_mems. We allocate a little extra slop as well, in the hopes
747 that even after the moving of movables creates some new registers
748 we won't have to reallocate these arrays. However, we do grow
749 the arrays, if necessary, in load_mems_recount_loop_regs_set. */
750 nregs = max_reg_num () + loop_mems_idx + 16;
751 VARRAY_INT_INIT (set_in_loop, nregs, "set_in_loop");
752 VARRAY_INT_INIT (n_times_set, nregs, "n_times_set");
753 VARRAY_CHAR_INIT (may_not_optimize, nregs, "may_not_optimize");
754 VARRAY_RTX_INIT (reg_single_usage, nregs, "reg_single_usage");
755
756 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
757 may_not_optimize, reg_single_usage, &insn_count, nregs);
758
759 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
760 {
761 VARRAY_CHAR (may_not_optimize, i) = 1;
762 VARRAY_INT (set_in_loop, i) = 1;
763 }
764
765 #ifdef AVOID_CCMODE_COPIES
766 /* Don't try to move insns which set CC registers if we should not
767 create CCmode register copies. */
768 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
769 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
770 VARRAY_CHAR (may_not_optimize, i) = 1;
771 #endif
772
773 bcopy ((char *) &set_in_loop->data,
774 (char *) &n_times_set->data, nregs * sizeof (int));
775
776 if (loop_dump_stream)
777 {
778 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
779 INSN_UID (loop_start), INSN_UID (end), insn_count);
780 if (loop_continue)
781 fprintf (loop_dump_stream, "Continue at insn %d.\n",
782 INSN_UID (loop_continue));
783 }
784
785 /* Scan through the loop finding insns that are safe to move.
786 Set set_in_loop negative for the reg being set, so that
787 this reg will be considered invariant for subsequent insns.
788 We consider whether subsequent insns use the reg
789 in deciding whether it is worth actually moving.
790
791 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
792 and therefore it is possible that the insns we are scanning
793 would never be executed. At such times, we must make sure
794 that it is safe to execute the insn once instead of zero times.
795 When MAYBE_NEVER is 0, all insns will be executed at least once
796 so that is not a problem. */
797
798 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
799 p != NULL_RTX;
800 p = next_insn_in_loop (p, scan_start, end, loop_top))
801 {
802 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
803 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
804 in_libcall = 1;
805 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
806 && find_reg_note (p, REG_RETVAL, NULL_RTX))
807 in_libcall = 0;
808
809 if (GET_CODE (p) == INSN
810 && (set = single_set (p))
811 && GET_CODE (SET_DEST (set)) == REG
812 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
813 {
814 int tem1 = 0;
815 int tem2 = 0;
816 int move_insn = 0;
817 rtx src = SET_SRC (set);
818 rtx dependencies = 0;
819
820 /* Figure out what to use as a source of this insn. If a REG_EQUIV
821 note is given or if a REG_EQUAL note with a constant operand is
822 specified, use it as the source and mark that we should move
823 this insn by calling emit_move_insn rather that duplicating the
824 insn.
825
826 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
827 is present. */
828 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
829 if (temp)
830 src = XEXP (temp, 0), move_insn = 1;
831 else
832 {
833 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
834 if (temp && CONSTANT_P (XEXP (temp, 0)))
835 src = XEXP (temp, 0), move_insn = 1;
836 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
837 {
838 src = XEXP (temp, 0);
839 /* A libcall block can use regs that don't appear in
840 the equivalent expression. To move the libcall,
841 we must move those regs too. */
842 dependencies = libcall_other_reg (p, src);
843 }
844 }
845
846 /* Don't try to optimize a register that was made
847 by loop-optimization for an inner loop.
848 We don't know its life-span, so we can't compute the benefit. */
849 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
850 ;
851 else if (/* The register is used in basic blocks other
852 than the one where it is set (meaning that
853 something after this point in the loop might
854 depend on its value before the set). */
855 ! reg_in_basic_block_p (p, SET_DEST (set))
856 /* And the set is not guaranteed to be executed one
857 the loop starts, or the value before the set is
858 needed before the set occurs...
859
860 ??? Note we have quadratic behaviour here, mitigated
861 by the fact that the previous test will often fail for
862 large loops. Rather than re-scanning the entire loop
863 each time for register usage, we should build tables
864 of the register usage and use them here instead. */
865 && (maybe_never
866 || loop_reg_used_before_p (set, p, loop_start,
867 scan_start, end)))
868 /* It is unsafe to move the set.
869
870 This code used to consider it OK to move a set of a variable
871 which was not created by the user and not used in an exit test.
872 That behavior is incorrect and was removed. */
873 ;
874 else if ((tem = invariant_p (src))
875 && (dependencies == 0
876 || (tem2 = invariant_p (dependencies)) != 0)
877 && (VARRAY_INT (set_in_loop,
878 REGNO (SET_DEST (set))) == 1
879 || (tem1
880 = consec_sets_invariant_p
881 (SET_DEST (set),
882 VARRAY_INT (set_in_loop, REGNO (SET_DEST (set))),
883 p)))
884 /* If the insn can cause a trap (such as divide by zero),
885 can't move it unless it's guaranteed to be executed
886 once loop is entered. Even a function call might
887 prevent the trap insn from being reached
888 (since it might exit!) */
889 && ! ((maybe_never || call_passed)
890 && may_trap_p (src)))
891 {
892 register struct movable *m;
893 register int regno = REGNO (SET_DEST (set));
894
895 /* A potential lossage is where we have a case where two insns
896 can be combined as long as they are both in the loop, but
897 we move one of them outside the loop. For large loops,
898 this can lose. The most common case of this is the address
899 of a function being called.
900
901 Therefore, if this register is marked as being used exactly
902 once if we are in a loop with calls (a "large loop"), see if
903 we can replace the usage of this register with the source
904 of this SET. If we can, delete this insn.
905
906 Don't do this if P has a REG_RETVAL note or if we have
907 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
908
909 if (loop_has_call
910 && VARRAY_RTX (reg_single_usage, regno) != 0
911 && VARRAY_RTX (reg_single_usage, regno) != const0_rtx
912 && REGNO_FIRST_UID (regno) == INSN_UID (p)
913 && (REGNO_LAST_UID (regno)
914 == INSN_UID (VARRAY_RTX (reg_single_usage, regno)))
915 && VARRAY_INT (set_in_loop, regno) == 1
916 && ! side_effects_p (SET_SRC (set))
917 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
918 && (! SMALL_REGISTER_CLASSES
919 || (! (GET_CODE (SET_SRC (set)) == REG
920 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
921 /* This test is not redundant; SET_SRC (set) might be
922 a call-clobbered register and the life of REGNO
923 might span a call. */
924 && ! modified_between_p (SET_SRC (set), p,
925 VARRAY_RTX
926 (reg_single_usage, regno))
927 && no_labels_between_p (p, VARRAY_RTX (reg_single_usage, regno))
928 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
929 VARRAY_RTX
930 (reg_single_usage, regno)))
931 {
932 /* Replace any usage in a REG_EQUAL note. Must copy the
933 new source, so that we don't get rtx sharing between the
934 SET_SOURCE and REG_NOTES of insn p. */
935 REG_NOTES (VARRAY_RTX (reg_single_usage, regno))
936 = replace_rtx (REG_NOTES (VARRAY_RTX
937 (reg_single_usage, regno)),
938 SET_DEST (set), copy_rtx (SET_SRC (set)));
939
940 PUT_CODE (p, NOTE);
941 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
942 NOTE_SOURCE_FILE (p) = 0;
943 VARRAY_INT (set_in_loop, regno) = 0;
944 continue;
945 }
946
947 m = (struct movable *) alloca (sizeof (struct movable));
948 m->next = 0;
949 m->insn = p;
950 m->set_src = src;
951 m->dependencies = dependencies;
952 m->set_dest = SET_DEST (set);
953 m->force = 0;
954 m->consec = VARRAY_INT (set_in_loop,
955 REGNO (SET_DEST (set))) - 1;
956 m->done = 0;
957 m->forces = 0;
958 m->partial = 0;
959 m->move_insn = move_insn;
960 m->move_insn_first = 0;
961 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
962 m->savemode = VOIDmode;
963 m->regno = regno;
964 /* Set M->cond if either invariant_p or consec_sets_invariant_p
965 returned 2 (only conditionally invariant). */
966 m->cond = ((tem | tem1 | tem2) > 1);
967 m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
968 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
969 m->match = 0;
970 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
971 - uid_luid[REGNO_FIRST_UID (regno)]);
972 m->savings = VARRAY_INT (n_times_set, regno);
973 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
974 m->savings += libcall_benefit (p);
975 VARRAY_INT (set_in_loop, regno) = move_insn ? -2 : -1;
976 /* Add M to the end of the chain MOVABLES. */
977 if (movables == 0)
978 movables = m;
979 else
980 last_movable->next = m;
981 last_movable = m;
982
983 if (m->consec > 0)
984 {
985 /* It is possible for the first instruction to have a
986 REG_EQUAL note but a non-invariant SET_SRC, so we must
987 remember the status of the first instruction in case
988 the last instruction doesn't have a REG_EQUAL note. */
989 m->move_insn_first = m->move_insn;
990
991 /* Skip this insn, not checking REG_LIBCALL notes. */
992 p = next_nonnote_insn (p);
993 /* Skip the consecutive insns, if there are any. */
994 p = skip_consec_insns (p, m->consec);
995 /* Back up to the last insn of the consecutive group. */
996 p = prev_nonnote_insn (p);
997
998 /* We must now reset m->move_insn, m->is_equiv, and possibly
999 m->set_src to correspond to the effects of all the
1000 insns. */
1001 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
1002 if (temp)
1003 m->set_src = XEXP (temp, 0), m->move_insn = 1;
1004 else
1005 {
1006 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
1007 if (temp && CONSTANT_P (XEXP (temp, 0)))
1008 m->set_src = XEXP (temp, 0), m->move_insn = 1;
1009 else
1010 m->move_insn = 0;
1011
1012 }
1013 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
1014 }
1015 }
1016 /* If this register is always set within a STRICT_LOW_PART
1017 or set to zero, then its high bytes are constant.
1018 So clear them outside the loop and within the loop
1019 just load the low bytes.
1020 We must check that the machine has an instruction to do so.
1021 Also, if the value loaded into the register
1022 depends on the same register, this cannot be done. */
1023 else if (SET_SRC (set) == const0_rtx
1024 && GET_CODE (NEXT_INSN (p)) == INSN
1025 && (set1 = single_set (NEXT_INSN (p)))
1026 && GET_CODE (set1) == SET
1027 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
1028 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
1029 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
1030 == SET_DEST (set))
1031 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
1032 {
1033 register int regno = REGNO (SET_DEST (set));
1034 if (VARRAY_INT (set_in_loop, regno) == 2)
1035 {
1036 register struct movable *m;
1037 m = (struct movable *) alloca (sizeof (struct movable));
1038 m->next = 0;
1039 m->insn = p;
1040 m->set_dest = SET_DEST (set);
1041 m->dependencies = 0;
1042 m->force = 0;
1043 m->consec = 0;
1044 m->done = 0;
1045 m->forces = 0;
1046 m->move_insn = 0;
1047 m->move_insn_first = 0;
1048 m->partial = 1;
1049 /* If the insn may not be executed on some cycles,
1050 we can't clear the whole reg; clear just high part.
1051 Not even if the reg is used only within this loop.
1052 Consider this:
1053 while (1)
1054 while (s != t) {
1055 if (foo ()) x = *s;
1056 use (x);
1057 }
1058 Clearing x before the inner loop could clobber a value
1059 being saved from the last time around the outer loop.
1060 However, if the reg is not used outside this loop
1061 and all uses of the register are in the same
1062 basic block as the store, there is no problem.
1063
1064 If this insn was made by loop, we don't know its
1065 INSN_LUID and hence must make a conservative
1066 assumption. */
1067 m->global = (INSN_UID (p) >= max_uid_for_loop
1068 || (uid_luid[REGNO_LAST_UID (regno)]
1069 > INSN_LUID (end))
1070 || (uid_luid[REGNO_FIRST_UID (regno)]
1071 < INSN_LUID (p))
1072 || (labels_in_range_p
1073 (p, uid_luid[REGNO_FIRST_UID (regno)])));
1074 if (maybe_never && m->global)
1075 m->savemode = GET_MODE (SET_SRC (set1));
1076 else
1077 m->savemode = VOIDmode;
1078 m->regno = regno;
1079 m->cond = 0;
1080 m->match = 0;
1081 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
1082 - uid_luid[REGNO_FIRST_UID (regno)]);
1083 m->savings = 1;
1084 VARRAY_INT (set_in_loop, regno) = -1;
1085 /* Add M to the end of the chain MOVABLES. */
1086 if (movables == 0)
1087 movables = m;
1088 else
1089 last_movable->next = m;
1090 last_movable = m;
1091 }
1092 }
1093 }
1094 /* Past a call insn, we get to insns which might not be executed
1095 because the call might exit. This matters for insns that trap.
1096 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
1097 so they don't count. */
1098 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
1099 call_passed = 1;
1100 /* Past a label or a jump, we get to insns for which we
1101 can't count on whether or how many times they will be
1102 executed during each iteration. Therefore, we can
1103 only move out sets of trivial variables
1104 (those not used after the loop). */
1105 /* Similar code appears twice in strength_reduce. */
1106 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1107 /* If we enter the loop in the middle, and scan around to the
1108 beginning, don't set maybe_never for that. This must be an
1109 unconditional jump, otherwise the code at the top of the
1110 loop might never be executed. Unconditional jumps are
1111 followed a by barrier then loop end. */
1112 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
1113 && NEXT_INSN (NEXT_INSN (p)) == end
1114 && simplejump_p (p)))
1115 maybe_never = 1;
1116 else if (GET_CODE (p) == NOTE)
1117 {
1118 /* At the virtual top of a converted loop, insns are again known to
1119 be executed: logically, the loop begins here even though the exit
1120 code has been duplicated. */
1121 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1122 maybe_never = call_passed = 0;
1123 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1124 loop_depth++;
1125 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1126 loop_depth--;
1127 }
1128 }
1129
1130 /* If one movable subsumes another, ignore that other. */
1131
1132 ignore_some_movables (movables);
1133
1134 /* For each movable insn, see if the reg that it loads
1135 leads when it dies right into another conditionally movable insn.
1136 If so, record that the second insn "forces" the first one,
1137 since the second can be moved only if the first is. */
1138
1139 force_movables (movables);
1140
1141 /* See if there are multiple movable insns that load the same value.
1142 If there are, make all but the first point at the first one
1143 through the `match' field, and add the priorities of them
1144 all together as the priority of the first. */
1145
1146 combine_movables (movables, nregs);
1147
1148 /* Now consider each movable insn to decide whether it is worth moving.
1149 Store 0 in set_in_loop for each reg that is moved.
1150
1151 Generally this increases code size, so do not move moveables when
1152 optimizing for code size. */
1153
1154 if (! optimize_size)
1155 move_movables (movables, threshold,
1156 insn_count, loop_start, end, nregs);
1157
1158 /* Now candidates that still are negative are those not moved.
1159 Change set_in_loop to indicate that those are not actually invariant. */
1160 for (i = 0; i < nregs; i++)
1161 if (VARRAY_INT (set_in_loop, i) < 0)
1162 VARRAY_INT (set_in_loop, i) = VARRAY_INT (n_times_set, i);
1163
1164 /* Now that we've moved some things out of the loop, we might be able to
1165 hoist even more memory references. */
1166 load_mems_and_recount_loop_regs_set (scan_start, end, loop_top,
1167 loop_start, &insn_count);
1168
1169 if (flag_strength_reduce)
1170 {
1171 the_movables = movables;
1172 strength_reduce (scan_start, end, loop_top,
1173 insn_count, loop_start, end, loop_cont, unroll_p, bct_p);
1174 }
1175
1176 VARRAY_FREE (reg_single_usage);
1177 VARRAY_FREE (set_in_loop);
1178 VARRAY_FREE (n_times_set);
1179 VARRAY_FREE (may_not_optimize);
1180 }
1181 \f
1182 /* Add elements to *OUTPUT to record all the pseudo-regs
1183 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1184
1185 void
1186 record_excess_regs (in_this, not_in_this, output)
1187 rtx in_this, not_in_this;
1188 rtx *output;
1189 {
1190 enum rtx_code code;
1191 char *fmt;
1192 int i;
1193
1194 code = GET_CODE (in_this);
1195
1196 switch (code)
1197 {
1198 case PC:
1199 case CC0:
1200 case CONST_INT:
1201 case CONST_DOUBLE:
1202 case CONST:
1203 case SYMBOL_REF:
1204 case LABEL_REF:
1205 return;
1206
1207 case REG:
1208 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1209 && ! reg_mentioned_p (in_this, not_in_this))
1210 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1211 return;
1212
1213 default:
1214 break;
1215 }
1216
1217 fmt = GET_RTX_FORMAT (code);
1218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1219 {
1220 int j;
1221
1222 switch (fmt[i])
1223 {
1224 case 'E':
1225 for (j = 0; j < XVECLEN (in_this, i); j++)
1226 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1227 break;
1228
1229 case 'e':
1230 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1231 break;
1232 }
1233 }
1234 }
1235 \f
1236 /* Check what regs are referred to in the libcall block ending with INSN,
1237 aside from those mentioned in the equivalent value.
1238 If there are none, return 0.
1239 If there are one or more, return an EXPR_LIST containing all of them. */
1240
1241 rtx
1242 libcall_other_reg (insn, equiv)
1243 rtx insn, equiv;
1244 {
1245 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1246 rtx p = XEXP (note, 0);
1247 rtx output = 0;
1248
1249 /* First, find all the regs used in the libcall block
1250 that are not mentioned as inputs to the result. */
1251
1252 while (p != insn)
1253 {
1254 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1255 || GET_CODE (p) == CALL_INSN)
1256 record_excess_regs (PATTERN (p), equiv, &output);
1257 p = NEXT_INSN (p);
1258 }
1259
1260 return output;
1261 }
1262 \f
1263 /* Return 1 if all uses of REG
1264 are between INSN and the end of the basic block. */
1265
1266 static int
1267 reg_in_basic_block_p (insn, reg)
1268 rtx insn, reg;
1269 {
1270 int regno = REGNO (reg);
1271 rtx p;
1272
1273 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1274 return 0;
1275
1276 /* Search this basic block for the already recorded last use of the reg. */
1277 for (p = insn; p; p = NEXT_INSN (p))
1278 {
1279 switch (GET_CODE (p))
1280 {
1281 case NOTE:
1282 break;
1283
1284 case INSN:
1285 case CALL_INSN:
1286 /* Ordinary insn: if this is the last use, we win. */
1287 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1288 return 1;
1289 break;
1290
1291 case JUMP_INSN:
1292 /* Jump insn: if this is the last use, we win. */
1293 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1294 return 1;
1295 /* Otherwise, it's the end of the basic block, so we lose. */
1296 return 0;
1297
1298 case CODE_LABEL:
1299 case BARRIER:
1300 /* It's the end of the basic block, so we lose. */
1301 return 0;
1302
1303 default:
1304 break;
1305 }
1306 }
1307
1308 /* The "last use" doesn't follow the "first use"?? */
1309 abort ();
1310 }
1311 \f
1312 /* Compute the benefit of eliminating the insns in the block whose
1313 last insn is LAST. This may be a group of insns used to compute a
1314 value directly or can contain a library call. */
1315
1316 static int
1317 libcall_benefit (last)
1318 rtx last;
1319 {
1320 rtx insn;
1321 int benefit = 0;
1322
1323 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1324 insn != last; insn = NEXT_INSN (insn))
1325 {
1326 if (GET_CODE (insn) == CALL_INSN)
1327 benefit += 10; /* Assume at least this many insns in a library
1328 routine. */
1329 else if (GET_CODE (insn) == INSN
1330 && GET_CODE (PATTERN (insn)) != USE
1331 && GET_CODE (PATTERN (insn)) != CLOBBER)
1332 benefit++;
1333 }
1334
1335 return benefit;
1336 }
1337 \f
1338 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1339
1340 static rtx
1341 skip_consec_insns (insn, count)
1342 rtx insn;
1343 int count;
1344 {
1345 for (; count > 0; count--)
1346 {
1347 rtx temp;
1348
1349 /* If first insn of libcall sequence, skip to end. */
1350 /* Do this at start of loop, since INSN is guaranteed to
1351 be an insn here. */
1352 if (GET_CODE (insn) != NOTE
1353 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1354 insn = XEXP (temp, 0);
1355
1356 do insn = NEXT_INSN (insn);
1357 while (GET_CODE (insn) == NOTE);
1358 }
1359
1360 return insn;
1361 }
1362
1363 /* Ignore any movable whose insn falls within a libcall
1364 which is part of another movable.
1365 We make use of the fact that the movable for the libcall value
1366 was made later and so appears later on the chain. */
1367
1368 static void
1369 ignore_some_movables (movables)
1370 struct movable *movables;
1371 {
1372 register struct movable *m, *m1;
1373
1374 for (m = movables; m; m = m->next)
1375 {
1376 /* Is this a movable for the value of a libcall? */
1377 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1378 if (note)
1379 {
1380 rtx insn;
1381 /* Check for earlier movables inside that range,
1382 and mark them invalid. We cannot use LUIDs here because
1383 insns created by loop.c for prior loops don't have LUIDs.
1384 Rather than reject all such insns from movables, we just
1385 explicitly check each insn in the libcall (since invariant
1386 libcalls aren't that common). */
1387 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1388 for (m1 = movables; m1 != m; m1 = m1->next)
1389 if (m1->insn == insn)
1390 m1->done = 1;
1391 }
1392 }
1393 }
1394
1395 /* For each movable insn, see if the reg that it loads
1396 leads when it dies right into another conditionally movable insn.
1397 If so, record that the second insn "forces" the first one,
1398 since the second can be moved only if the first is. */
1399
1400 static void
1401 force_movables (movables)
1402 struct movable *movables;
1403 {
1404 register struct movable *m, *m1;
1405 for (m1 = movables; m1; m1 = m1->next)
1406 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1407 if (!m1->partial && !m1->done)
1408 {
1409 int regno = m1->regno;
1410 for (m = m1->next; m; m = m->next)
1411 /* ??? Could this be a bug? What if CSE caused the
1412 register of M1 to be used after this insn?
1413 Since CSE does not update regno_last_uid,
1414 this insn M->insn might not be where it dies.
1415 But very likely this doesn't matter; what matters is
1416 that M's reg is computed from M1's reg. */
1417 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1418 && !m->done)
1419 break;
1420 if (m != 0 && m->set_src == m1->set_dest
1421 /* If m->consec, m->set_src isn't valid. */
1422 && m->consec == 0)
1423 m = 0;
1424
1425 /* Increase the priority of the moving the first insn
1426 since it permits the second to be moved as well. */
1427 if (m != 0)
1428 {
1429 m->forces = m1;
1430 m1->lifetime += m->lifetime;
1431 m1->savings += m->savings;
1432 }
1433 }
1434 }
1435 \f
1436 /* Find invariant expressions that are equal and can be combined into
1437 one register. */
1438
1439 static void
1440 combine_movables (movables, nregs)
1441 struct movable *movables;
1442 int nregs;
1443 {
1444 register struct movable *m;
1445 char *matched_regs = (char *) alloca (nregs);
1446 enum machine_mode mode;
1447
1448 /* Regs that are set more than once are not allowed to match
1449 or be matched. I'm no longer sure why not. */
1450 /* Perhaps testing m->consec_sets would be more appropriate here? */
1451
1452 for (m = movables; m; m = m->next)
1453 if (m->match == 0 && VARRAY_INT (n_times_set, m->regno) == 1 && !m->partial)
1454 {
1455 register struct movable *m1;
1456 int regno = m->regno;
1457
1458 bzero (matched_regs, nregs);
1459 matched_regs[regno] = 1;
1460
1461 /* We want later insns to match the first one. Don't make the first
1462 one match any later ones. So start this loop at m->next. */
1463 for (m1 = m->next; m1; m1 = m1->next)
1464 if (m != m1 && m1->match == 0 && VARRAY_INT (n_times_set, m1->regno) == 1
1465 /* A reg used outside the loop mustn't be eliminated. */
1466 && !m1->global
1467 /* A reg used for zero-extending mustn't be eliminated. */
1468 && !m1->partial
1469 && (matched_regs[m1->regno]
1470 ||
1471 (
1472 /* Can combine regs with different modes loaded from the
1473 same constant only if the modes are the same or
1474 if both are integer modes with M wider or the same
1475 width as M1. The check for integer is redundant, but
1476 safe, since the only case of differing destination
1477 modes with equal sources is when both sources are
1478 VOIDmode, i.e., CONST_INT. */
1479 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1480 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1481 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1482 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1483 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1484 /* See if the source of M1 says it matches M. */
1485 && ((GET_CODE (m1->set_src) == REG
1486 && matched_regs[REGNO (m1->set_src)])
1487 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1488 movables))))
1489 && ((m->dependencies == m1->dependencies)
1490 || rtx_equal_p (m->dependencies, m1->dependencies)))
1491 {
1492 m->lifetime += m1->lifetime;
1493 m->savings += m1->savings;
1494 m1->done = 1;
1495 m1->match = m;
1496 matched_regs[m1->regno] = 1;
1497 }
1498 }
1499
1500 /* Now combine the regs used for zero-extension.
1501 This can be done for those not marked `global'
1502 provided their lives don't overlap. */
1503
1504 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1505 mode = GET_MODE_WIDER_MODE (mode))
1506 {
1507 register struct movable *m0 = 0;
1508
1509 /* Combine all the registers for extension from mode MODE.
1510 Don't combine any that are used outside this loop. */
1511 for (m = movables; m; m = m->next)
1512 if (m->partial && ! m->global
1513 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1514 {
1515 register struct movable *m1;
1516 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1517 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1518
1519 if (m0 == 0)
1520 {
1521 /* First one: don't check for overlap, just record it. */
1522 m0 = m;
1523 continue;
1524 }
1525
1526 /* Make sure they extend to the same mode.
1527 (Almost always true.) */
1528 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1529 continue;
1530
1531 /* We already have one: check for overlap with those
1532 already combined together. */
1533 for (m1 = movables; m1 != m; m1 = m1->next)
1534 if (m1 == m0 || (m1->partial && m1->match == m0))
1535 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1536 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1537 goto overlap;
1538
1539 /* No overlap: we can combine this with the others. */
1540 m0->lifetime += m->lifetime;
1541 m0->savings += m->savings;
1542 m->done = 1;
1543 m->match = m0;
1544
1545 overlap: ;
1546 }
1547 }
1548 }
1549 \f
1550 /* Return 1 if regs X and Y will become the same if moved. */
1551
1552 static int
1553 regs_match_p (x, y, movables)
1554 rtx x, y;
1555 struct movable *movables;
1556 {
1557 int xn = REGNO (x);
1558 int yn = REGNO (y);
1559 struct movable *mx, *my;
1560
1561 for (mx = movables; mx; mx = mx->next)
1562 if (mx->regno == xn)
1563 break;
1564
1565 for (my = movables; my; my = my->next)
1566 if (my->regno == yn)
1567 break;
1568
1569 return (mx && my
1570 && ((mx->match == my->match && mx->match != 0)
1571 || mx->match == my
1572 || mx == my->match));
1573 }
1574
1575 /* Return 1 if X and Y are identical-looking rtx's.
1576 This is the Lisp function EQUAL for rtx arguments.
1577
1578 If two registers are matching movables or a movable register and an
1579 equivalent constant, consider them equal. */
1580
1581 static int
1582 rtx_equal_for_loop_p (x, y, movables)
1583 rtx x, y;
1584 struct movable *movables;
1585 {
1586 register int i;
1587 register int j;
1588 register struct movable *m;
1589 register enum rtx_code code;
1590 register char *fmt;
1591
1592 if (x == y)
1593 return 1;
1594 if (x == 0 || y == 0)
1595 return 0;
1596
1597 code = GET_CODE (x);
1598
1599 /* If we have a register and a constant, they may sometimes be
1600 equal. */
1601 if (GET_CODE (x) == REG && VARRAY_INT (set_in_loop, REGNO (x)) == -2
1602 && CONSTANT_P (y))
1603 {
1604 for (m = movables; m; m = m->next)
1605 if (m->move_insn && m->regno == REGNO (x)
1606 && rtx_equal_p (m->set_src, y))
1607 return 1;
1608 }
1609 else if (GET_CODE (y) == REG && VARRAY_INT (set_in_loop, REGNO (y)) == -2
1610 && CONSTANT_P (x))
1611 {
1612 for (m = movables; m; m = m->next)
1613 if (m->move_insn && m->regno == REGNO (y)
1614 && rtx_equal_p (m->set_src, x))
1615 return 1;
1616 }
1617
1618 /* Otherwise, rtx's of different codes cannot be equal. */
1619 if (code != GET_CODE (y))
1620 return 0;
1621
1622 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1623 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1624
1625 if (GET_MODE (x) != GET_MODE (y))
1626 return 0;
1627
1628 /* These three types of rtx's can be compared nonrecursively. */
1629 if (code == REG)
1630 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1631
1632 if (code == LABEL_REF)
1633 return XEXP (x, 0) == XEXP (y, 0);
1634 if (code == SYMBOL_REF)
1635 return XSTR (x, 0) == XSTR (y, 0);
1636
1637 /* Compare the elements. If any pair of corresponding elements
1638 fail to match, return 0 for the whole things. */
1639
1640 fmt = GET_RTX_FORMAT (code);
1641 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1642 {
1643 switch (fmt[i])
1644 {
1645 case 'w':
1646 if (XWINT (x, i) != XWINT (y, i))
1647 return 0;
1648 break;
1649
1650 case 'i':
1651 if (XINT (x, i) != XINT (y, i))
1652 return 0;
1653 break;
1654
1655 case 'E':
1656 /* Two vectors must have the same length. */
1657 if (XVECLEN (x, i) != XVECLEN (y, i))
1658 return 0;
1659
1660 /* And the corresponding elements must match. */
1661 for (j = 0; j < XVECLEN (x, i); j++)
1662 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1663 return 0;
1664 break;
1665
1666 case 'e':
1667 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1668 return 0;
1669 break;
1670
1671 case 's':
1672 if (strcmp (XSTR (x, i), XSTR (y, i)))
1673 return 0;
1674 break;
1675
1676 case 'u':
1677 /* These are just backpointers, so they don't matter. */
1678 break;
1679
1680 case '0':
1681 break;
1682
1683 /* It is believed that rtx's at this level will never
1684 contain anything but integers and other rtx's,
1685 except for within LABEL_REFs and SYMBOL_REFs. */
1686 default:
1687 abort ();
1688 }
1689 }
1690 return 1;
1691 }
1692 \f
1693 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1694 insns in INSNS which use thet reference. */
1695
1696 static void
1697 add_label_notes (x, insns)
1698 rtx x;
1699 rtx insns;
1700 {
1701 enum rtx_code code = GET_CODE (x);
1702 int i, j;
1703 char *fmt;
1704 rtx insn;
1705
1706 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1707 {
1708 /* This code used to ignore labels that referred to dispatch tables to
1709 avoid flow generating (slighly) worse code.
1710
1711 We no longer ignore such label references (see LABEL_REF handling in
1712 mark_jump_label for additional information). */
1713 for (insn = insns; insn; insn = NEXT_INSN (insn))
1714 if (reg_mentioned_p (XEXP (x, 0), insn))
1715 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
1716 REG_NOTES (insn));
1717 }
1718
1719 fmt = GET_RTX_FORMAT (code);
1720 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1721 {
1722 if (fmt[i] == 'e')
1723 add_label_notes (XEXP (x, i), insns);
1724 else if (fmt[i] == 'E')
1725 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1726 add_label_notes (XVECEXP (x, i, j), insns);
1727 }
1728 }
1729 \f
1730 /* Scan MOVABLES, and move the insns that deserve to be moved.
1731 If two matching movables are combined, replace one reg with the
1732 other throughout. */
1733
1734 static void
1735 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1736 struct movable *movables;
1737 int threshold;
1738 int insn_count;
1739 rtx loop_start;
1740 rtx end;
1741 int nregs;
1742 {
1743 rtx new_start = 0;
1744 register struct movable *m;
1745 register rtx p;
1746 /* Map of pseudo-register replacements to handle combining
1747 when we move several insns that load the same value
1748 into different pseudo-registers. */
1749 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1750 char *already_moved = (char *) alloca (nregs);
1751
1752 bzero (already_moved, nregs);
1753 bzero ((char *) reg_map, nregs * sizeof (rtx));
1754
1755 num_movables = 0;
1756
1757 for (m = movables; m; m = m->next)
1758 {
1759 /* Describe this movable insn. */
1760
1761 if (loop_dump_stream)
1762 {
1763 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1764 INSN_UID (m->insn), m->regno, m->lifetime);
1765 if (m->consec > 0)
1766 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1767 if (m->cond)
1768 fprintf (loop_dump_stream, "cond ");
1769 if (m->force)
1770 fprintf (loop_dump_stream, "force ");
1771 if (m->global)
1772 fprintf (loop_dump_stream, "global ");
1773 if (m->done)
1774 fprintf (loop_dump_stream, "done ");
1775 if (m->move_insn)
1776 fprintf (loop_dump_stream, "move-insn ");
1777 if (m->match)
1778 fprintf (loop_dump_stream, "matches %d ",
1779 INSN_UID (m->match->insn));
1780 if (m->forces)
1781 fprintf (loop_dump_stream, "forces %d ",
1782 INSN_UID (m->forces->insn));
1783 }
1784
1785 /* Count movables. Value used in heuristics in strength_reduce. */
1786 num_movables++;
1787
1788 /* Ignore the insn if it's already done (it matched something else).
1789 Otherwise, see if it is now safe to move. */
1790
1791 if (!m->done
1792 && (! m->cond
1793 || (1 == invariant_p (m->set_src)
1794 && (m->dependencies == 0
1795 || 1 == invariant_p (m->dependencies))
1796 && (m->consec == 0
1797 || 1 == consec_sets_invariant_p (m->set_dest,
1798 m->consec + 1,
1799 m->insn))))
1800 && (! m->forces || m->forces->done))
1801 {
1802 register int regno;
1803 register rtx p;
1804 int savings = m->savings;
1805
1806 /* We have an insn that is safe to move.
1807 Compute its desirability. */
1808
1809 p = m->insn;
1810 regno = m->regno;
1811
1812 if (loop_dump_stream)
1813 fprintf (loop_dump_stream, "savings %d ", savings);
1814
1815 if (moved_once[regno] && loop_dump_stream)
1816 fprintf (loop_dump_stream, "halved since already moved ");
1817
1818 /* An insn MUST be moved if we already moved something else
1819 which is safe only if this one is moved too: that is,
1820 if already_moved[REGNO] is nonzero. */
1821
1822 /* An insn is desirable to move if the new lifetime of the
1823 register is no more than THRESHOLD times the old lifetime.
1824 If it's not desirable, it means the loop is so big
1825 that moving won't speed things up much,
1826 and it is liable to make register usage worse. */
1827
1828 /* It is also desirable to move if it can be moved at no
1829 extra cost because something else was already moved. */
1830
1831 if (already_moved[regno]
1832 || flag_move_all_movables
1833 || (threshold * savings * m->lifetime) >=
1834 (moved_once[regno] ? insn_count * 2 : insn_count)
1835 || (m->forces && m->forces->done
1836 && VARRAY_INT (n_times_set, m->forces->regno) == 1))
1837 {
1838 int count;
1839 register struct movable *m1;
1840 rtx first;
1841
1842 /* Now move the insns that set the reg. */
1843
1844 if (m->partial && m->match)
1845 {
1846 rtx newpat, i1;
1847 rtx r1, r2;
1848 /* Find the end of this chain of matching regs.
1849 Thus, we load each reg in the chain from that one reg.
1850 And that reg is loaded with 0 directly,
1851 since it has ->match == 0. */
1852 for (m1 = m; m1->match; m1 = m1->match);
1853 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1854 SET_DEST (PATTERN (m1->insn)));
1855 i1 = emit_insn_before (newpat, loop_start);
1856
1857 /* Mark the moved, invariant reg as being allowed to
1858 share a hard reg with the other matching invariant. */
1859 REG_NOTES (i1) = REG_NOTES (m->insn);
1860 r1 = SET_DEST (PATTERN (m->insn));
1861 r2 = SET_DEST (PATTERN (m1->insn));
1862 regs_may_share
1863 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1864 gen_rtx_EXPR_LIST (VOIDmode, r2,
1865 regs_may_share));
1866 delete_insn (m->insn);
1867
1868 if (new_start == 0)
1869 new_start = i1;
1870
1871 if (loop_dump_stream)
1872 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1873 }
1874 /* If we are to re-generate the item being moved with a
1875 new move insn, first delete what we have and then emit
1876 the move insn before the loop. */
1877 else if (m->move_insn)
1878 {
1879 rtx i1, temp;
1880
1881 for (count = m->consec; count >= 0; count--)
1882 {
1883 /* If this is the first insn of a library call sequence,
1884 skip to the end. */
1885 if (GET_CODE (p) != NOTE
1886 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1887 p = XEXP (temp, 0);
1888
1889 /* If this is the last insn of a libcall sequence, then
1890 delete every insn in the sequence except the last.
1891 The last insn is handled in the normal manner. */
1892 if (GET_CODE (p) != NOTE
1893 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1894 {
1895 temp = XEXP (temp, 0);
1896 while (temp != p)
1897 temp = delete_insn (temp);
1898 }
1899
1900 temp = p;
1901 p = delete_insn (p);
1902
1903 /* simplify_giv_expr expects that it can walk the insns
1904 at m->insn forwards and see this old sequence we are
1905 tossing here. delete_insn does preserve the next
1906 pointers, but when we skip over a NOTE we must fix
1907 it up. Otherwise that code walks into the non-deleted
1908 insn stream. */
1909 while (p && GET_CODE (p) == NOTE)
1910 p = NEXT_INSN (temp) = NEXT_INSN (p);
1911 }
1912
1913 start_sequence ();
1914 emit_move_insn (m->set_dest, m->set_src);
1915 temp = get_insns ();
1916 end_sequence ();
1917
1918 add_label_notes (m->set_src, temp);
1919
1920 i1 = emit_insns_before (temp, loop_start);
1921 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1922 REG_NOTES (i1)
1923 = gen_rtx_EXPR_LIST (m->is_equiv ? REG_EQUIV : REG_EQUAL,
1924 m->set_src, REG_NOTES (i1));
1925
1926 if (loop_dump_stream)
1927 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1928
1929 /* The more regs we move, the less we like moving them. */
1930 threshold -= 3;
1931 }
1932 else
1933 {
1934 for (count = m->consec; count >= 0; count--)
1935 {
1936 rtx i1, temp;
1937
1938 /* If first insn of libcall sequence, skip to end. */
1939 /* Do this at start of loop, since p is guaranteed to
1940 be an insn here. */
1941 if (GET_CODE (p) != NOTE
1942 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1943 p = XEXP (temp, 0);
1944
1945 /* If last insn of libcall sequence, move all
1946 insns except the last before the loop. The last
1947 insn is handled in the normal manner. */
1948 if (GET_CODE (p) != NOTE
1949 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1950 {
1951 rtx fn_address = 0;
1952 rtx fn_reg = 0;
1953 rtx fn_address_insn = 0;
1954
1955 first = 0;
1956 for (temp = XEXP (temp, 0); temp != p;
1957 temp = NEXT_INSN (temp))
1958 {
1959 rtx body;
1960 rtx n;
1961 rtx next;
1962
1963 if (GET_CODE (temp) == NOTE)
1964 continue;
1965
1966 body = PATTERN (temp);
1967
1968 /* Find the next insn after TEMP,
1969 not counting USE or NOTE insns. */
1970 for (next = NEXT_INSN (temp); next != p;
1971 next = NEXT_INSN (next))
1972 if (! (GET_CODE (next) == INSN
1973 && GET_CODE (PATTERN (next)) == USE)
1974 && GET_CODE (next) != NOTE)
1975 break;
1976
1977 /* If that is the call, this may be the insn
1978 that loads the function address.
1979
1980 Extract the function address from the insn
1981 that loads it into a register.
1982 If this insn was cse'd, we get incorrect code.
1983
1984 So emit a new move insn that copies the
1985 function address into the register that the
1986 call insn will use. flow.c will delete any
1987 redundant stores that we have created. */
1988 if (GET_CODE (next) == CALL_INSN
1989 && GET_CODE (body) == SET
1990 && GET_CODE (SET_DEST (body)) == REG
1991 && (n = find_reg_note (temp, REG_EQUAL,
1992 NULL_RTX)))
1993 {
1994 fn_reg = SET_SRC (body);
1995 if (GET_CODE (fn_reg) != REG)
1996 fn_reg = SET_DEST (body);
1997 fn_address = XEXP (n, 0);
1998 fn_address_insn = temp;
1999 }
2000 /* We have the call insn.
2001 If it uses the register we suspect it might,
2002 load it with the correct address directly. */
2003 if (GET_CODE (temp) == CALL_INSN
2004 && fn_address != 0
2005 && reg_referenced_p (fn_reg, body))
2006 emit_insn_after (gen_move_insn (fn_reg,
2007 fn_address),
2008 fn_address_insn);
2009
2010 if (GET_CODE (temp) == CALL_INSN)
2011 {
2012 i1 = emit_call_insn_before (body, loop_start);
2013 /* Because the USAGE information potentially
2014 contains objects other than hard registers
2015 we need to copy it. */
2016 if (CALL_INSN_FUNCTION_USAGE (temp))
2017 CALL_INSN_FUNCTION_USAGE (i1)
2018 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
2019 }
2020 else
2021 i1 = emit_insn_before (body, loop_start);
2022 if (first == 0)
2023 first = i1;
2024 if (temp == fn_address_insn)
2025 fn_address_insn = i1;
2026 REG_NOTES (i1) = REG_NOTES (temp);
2027 delete_insn (temp);
2028 }
2029 if (new_start == 0)
2030 new_start = first;
2031 }
2032 if (m->savemode != VOIDmode)
2033 {
2034 /* P sets REG to zero; but we should clear only
2035 the bits that are not covered by the mode
2036 m->savemode. */
2037 rtx reg = m->set_dest;
2038 rtx sequence;
2039 rtx tem;
2040
2041 start_sequence ();
2042 tem = expand_binop
2043 (GET_MODE (reg), and_optab, reg,
2044 GEN_INT ((((HOST_WIDE_INT) 1
2045 << GET_MODE_BITSIZE (m->savemode)))
2046 - 1),
2047 reg, 1, OPTAB_LIB_WIDEN);
2048 if (tem == 0)
2049 abort ();
2050 if (tem != reg)
2051 emit_move_insn (reg, tem);
2052 sequence = gen_sequence ();
2053 end_sequence ();
2054 i1 = emit_insn_before (sequence, loop_start);
2055 }
2056 else if (GET_CODE (p) == CALL_INSN)
2057 {
2058 i1 = emit_call_insn_before (PATTERN (p), loop_start);
2059 /* Because the USAGE information potentially
2060 contains objects other than hard registers
2061 we need to copy it. */
2062 if (CALL_INSN_FUNCTION_USAGE (p))
2063 CALL_INSN_FUNCTION_USAGE (i1)
2064 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
2065 }
2066 else if (count == m->consec && m->move_insn_first)
2067 {
2068 /* The SET_SRC might not be invariant, so we must
2069 use the REG_EQUAL note. */
2070 start_sequence ();
2071 emit_move_insn (m->set_dest, m->set_src);
2072 temp = get_insns ();
2073 end_sequence ();
2074
2075 add_label_notes (m->set_src, temp);
2076
2077 i1 = emit_insns_before (temp, loop_start);
2078 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2079 REG_NOTES (i1)
2080 = gen_rtx_EXPR_LIST ((m->is_equiv ? REG_EQUIV
2081 : REG_EQUAL),
2082 m->set_src, REG_NOTES (i1));
2083 }
2084 else
2085 i1 = emit_insn_before (PATTERN (p), loop_start);
2086
2087 if (REG_NOTES (i1) == 0)
2088 {
2089 REG_NOTES (i1) = REG_NOTES (p);
2090
2091 /* If there is a REG_EQUAL note present whose value
2092 is not loop invariant, then delete it, since it
2093 may cause problems with later optimization passes.
2094 It is possible for cse to create such notes
2095 like this as a result of record_jump_cond. */
2096
2097 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2098 && ! invariant_p (XEXP (temp, 0)))
2099 remove_note (i1, temp);
2100 }
2101
2102 if (new_start == 0)
2103 new_start = i1;
2104
2105 if (loop_dump_stream)
2106 fprintf (loop_dump_stream, " moved to %d",
2107 INSN_UID (i1));
2108
2109 /* If library call, now fix the REG_NOTES that contain
2110 insn pointers, namely REG_LIBCALL on FIRST
2111 and REG_RETVAL on I1. */
2112 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2113 {
2114 XEXP (temp, 0) = first;
2115 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2116 XEXP (temp, 0) = i1;
2117 }
2118
2119 temp = p;
2120 delete_insn (p);
2121 p = NEXT_INSN (p);
2122
2123 /* simplify_giv_expr expects that it can walk the insns
2124 at m->insn forwards and see this old sequence we are
2125 tossing here. delete_insn does preserve the next
2126 pointers, but when we skip over a NOTE we must fix
2127 it up. Otherwise that code walks into the non-deleted
2128 insn stream. */
2129 while (p && GET_CODE (p) == NOTE)
2130 p = NEXT_INSN (temp) = NEXT_INSN (p);
2131 }
2132
2133 /* The more regs we move, the less we like moving them. */
2134 threshold -= 3;
2135 }
2136
2137 /* Any other movable that loads the same register
2138 MUST be moved. */
2139 already_moved[regno] = 1;
2140
2141 /* This reg has been moved out of one loop. */
2142 moved_once[regno] = 1;
2143
2144 /* The reg set here is now invariant. */
2145 if (! m->partial)
2146 VARRAY_INT (set_in_loop, regno) = 0;
2147
2148 m->done = 1;
2149
2150 /* Change the length-of-life info for the register
2151 to say it lives at least the full length of this loop.
2152 This will help guide optimizations in outer loops. */
2153
2154 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2155 /* This is the old insn before all the moved insns.
2156 We can't use the moved insn because it is out of range
2157 in uid_luid. Only the old insns have luids. */
2158 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2159 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
2160 REGNO_LAST_UID (regno) = INSN_UID (end);
2161
2162 /* Combine with this moved insn any other matching movables. */
2163
2164 if (! m->partial)
2165 for (m1 = movables; m1; m1 = m1->next)
2166 if (m1->match == m)
2167 {
2168 rtx temp;
2169
2170 /* Schedule the reg loaded by M1
2171 for replacement so that shares the reg of M.
2172 If the modes differ (only possible in restricted
2173 circumstances, make a SUBREG.
2174
2175 Note this assumes that the target dependent files
2176 treat REG and SUBREG equally, including within
2177 GO_IF_LEGITIMATE_ADDRESS and in all the
2178 predicates since we never verify that replacing the
2179 original register with a SUBREG results in a
2180 recognizable insn. */
2181 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2182 reg_map[m1->regno] = m->set_dest;
2183 else
2184 reg_map[m1->regno]
2185 = gen_lowpart_common (GET_MODE (m1->set_dest),
2186 m->set_dest);
2187
2188 /* Get rid of the matching insn
2189 and prevent further processing of it. */
2190 m1->done = 1;
2191
2192 /* if library call, delete all insn except last, which
2193 is deleted below */
2194 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2195 NULL_RTX)))
2196 {
2197 for (temp = XEXP (temp, 0); temp != m1->insn;
2198 temp = NEXT_INSN (temp))
2199 delete_insn (temp);
2200 }
2201 delete_insn (m1->insn);
2202
2203 /* Any other movable that loads the same register
2204 MUST be moved. */
2205 already_moved[m1->regno] = 1;
2206
2207 /* The reg merged here is now invariant,
2208 if the reg it matches is invariant. */
2209 if (! m->partial)
2210 VARRAY_INT (set_in_loop, m1->regno) = 0;
2211 }
2212 }
2213 else if (loop_dump_stream)
2214 fprintf (loop_dump_stream, "not desirable");
2215 }
2216 else if (loop_dump_stream && !m->match)
2217 fprintf (loop_dump_stream, "not safe");
2218
2219 if (loop_dump_stream)
2220 fprintf (loop_dump_stream, "\n");
2221 }
2222
2223 if (new_start == 0)
2224 new_start = loop_start;
2225
2226 /* Go through all the instructions in the loop, making
2227 all the register substitutions scheduled in REG_MAP. */
2228 for (p = new_start; p != end; p = NEXT_INSN (p))
2229 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2230 || GET_CODE (p) == CALL_INSN)
2231 {
2232 replace_regs (PATTERN (p), reg_map, nregs, 0);
2233 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2234 INSN_CODE (p) = -1;
2235 }
2236 }
2237 \f
2238 #if 0
2239 /* Scan X and replace the address of any MEM in it with ADDR.
2240 REG is the address that MEM should have before the replacement. */
2241
2242 static void
2243 replace_call_address (x, reg, addr)
2244 rtx x, reg, addr;
2245 {
2246 register enum rtx_code code;
2247 register int i;
2248 register char *fmt;
2249
2250 if (x == 0)
2251 return;
2252 code = GET_CODE (x);
2253 switch (code)
2254 {
2255 case PC:
2256 case CC0:
2257 case CONST_INT:
2258 case CONST_DOUBLE:
2259 case CONST:
2260 case SYMBOL_REF:
2261 case LABEL_REF:
2262 case REG:
2263 return;
2264
2265 case SET:
2266 /* Short cut for very common case. */
2267 replace_call_address (XEXP (x, 1), reg, addr);
2268 return;
2269
2270 case CALL:
2271 /* Short cut for very common case. */
2272 replace_call_address (XEXP (x, 0), reg, addr);
2273 return;
2274
2275 case MEM:
2276 /* If this MEM uses a reg other than the one we expected,
2277 something is wrong. */
2278 if (XEXP (x, 0) != reg)
2279 abort ();
2280 XEXP (x, 0) = addr;
2281 return;
2282
2283 default:
2284 break;
2285 }
2286
2287 fmt = GET_RTX_FORMAT (code);
2288 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2289 {
2290 if (fmt[i] == 'e')
2291 replace_call_address (XEXP (x, i), reg, addr);
2292 if (fmt[i] == 'E')
2293 {
2294 register int j;
2295 for (j = 0; j < XVECLEN (x, i); j++)
2296 replace_call_address (XVECEXP (x, i, j), reg, addr);
2297 }
2298 }
2299 }
2300 #endif
2301 \f
2302 /* Return the number of memory refs to addresses that vary
2303 in the rtx X. */
2304
2305 static int
2306 count_nonfixed_reads (x)
2307 rtx x;
2308 {
2309 register enum rtx_code code;
2310 register int i;
2311 register char *fmt;
2312 int value;
2313
2314 if (x == 0)
2315 return 0;
2316
2317 code = GET_CODE (x);
2318 switch (code)
2319 {
2320 case PC:
2321 case CC0:
2322 case CONST_INT:
2323 case CONST_DOUBLE:
2324 case CONST:
2325 case SYMBOL_REF:
2326 case LABEL_REF:
2327 case REG:
2328 return 0;
2329
2330 case MEM:
2331 return ((invariant_p (XEXP (x, 0)) != 1)
2332 + count_nonfixed_reads (XEXP (x, 0)));
2333
2334 default:
2335 break;
2336 }
2337
2338 value = 0;
2339 fmt = GET_RTX_FORMAT (code);
2340 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2341 {
2342 if (fmt[i] == 'e')
2343 value += count_nonfixed_reads (XEXP (x, i));
2344 if (fmt[i] == 'E')
2345 {
2346 register int j;
2347 for (j = 0; j < XVECLEN (x, i); j++)
2348 value += count_nonfixed_reads (XVECEXP (x, i, j));
2349 }
2350 }
2351 return value;
2352 }
2353
2354 \f
2355 #if 0
2356 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2357 Replace it with an instruction to load just the low bytes
2358 if the machine supports such an instruction,
2359 and insert above LOOP_START an instruction to clear the register. */
2360
2361 static void
2362 constant_high_bytes (p, loop_start)
2363 rtx p, loop_start;
2364 {
2365 register rtx new;
2366 register int insn_code_number;
2367
2368 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2369 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2370
2371 new = gen_rtx_SET (VOIDmode,
2372 gen_rtx_STRICT_LOW_PART (VOIDmode,
2373 gen_rtx_SUBREG (GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2374 SET_DEST (PATTERN (p)),
2375 0)),
2376 XEXP (SET_SRC (PATTERN (p)), 0));
2377 insn_code_number = recog (new, p);
2378
2379 if (insn_code_number)
2380 {
2381 register int i;
2382
2383 /* Clear destination register before the loop. */
2384 emit_insn_before (gen_rtx_SET (VOIDmode, SET_DEST (PATTERN (p)),
2385 const0_rtx),
2386 loop_start);
2387
2388 /* Inside the loop, just load the low part. */
2389 PATTERN (p) = new;
2390 }
2391 }
2392 #endif
2393 \f
2394 /* Scan a loop setting the variables `unknown_address_altered',
2395 `num_mem_sets', `loop_continue', `loops_enclosed', `loop_has_call',
2396 `loop_has_volatile', and `loop_has_tablejump'.
2397 Also, fill in the array `loop_mems' and the list `loop_store_mems'. */
2398
2399 static void
2400 prescan_loop (start, end)
2401 rtx start, end;
2402 {
2403 register int level = 1;
2404 rtx insn;
2405 int loop_has_multiple_exit_targets = 0;
2406 /* The label after END. Jumping here is just like falling off the
2407 end of the loop. We use next_nonnote_insn instead of next_label
2408 as a hedge against the (pathological) case where some actual insn
2409 might end up between the two. */
2410 rtx exit_target = next_nonnote_insn (end);
2411 if (exit_target == NULL_RTX || GET_CODE (exit_target) != CODE_LABEL)
2412 loop_has_multiple_exit_targets = 1;
2413
2414 unknown_address_altered = 0;
2415 loop_has_call = 0;
2416 loop_has_volatile = 0;
2417 loop_has_tablejump = 0;
2418 loop_store_mems = NULL_RTX;
2419 first_loop_store_insn = NULL_RTX;
2420 loop_mems_idx = 0;
2421
2422 num_mem_sets = 0;
2423 loops_enclosed = 1;
2424 loop_continue = 0;
2425
2426 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2427 insn = NEXT_INSN (insn))
2428 {
2429 if (GET_CODE (insn) == NOTE)
2430 {
2431 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2432 {
2433 ++level;
2434 /* Count number of loops contained in this one. */
2435 loops_enclosed++;
2436 }
2437 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2438 {
2439 --level;
2440 if (level == 0)
2441 {
2442 end = insn;
2443 break;
2444 }
2445 }
2446 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2447 {
2448 if (level == 1)
2449 loop_continue = insn;
2450 }
2451 }
2452 else if (GET_CODE (insn) == CALL_INSN)
2453 {
2454 if (! CONST_CALL_P (insn))
2455 unknown_address_altered = 1;
2456 loop_has_call = 1;
2457 }
2458 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2459 {
2460 rtx label1 = NULL_RTX;
2461 rtx label2 = NULL_RTX;
2462
2463 if (volatile_refs_p (PATTERN (insn)))
2464 loop_has_volatile = 1;
2465
2466 if (GET_CODE (insn) == JUMP_INSN
2467 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2468 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2469 loop_has_tablejump = 1;
2470
2471 note_stores (PATTERN (insn), note_addr_stored);
2472 if (! first_loop_store_insn && loop_store_mems)
2473 first_loop_store_insn = insn;
2474
2475 if (! loop_has_multiple_exit_targets
2476 && GET_CODE (insn) == JUMP_INSN
2477 && GET_CODE (PATTERN (insn)) == SET
2478 && SET_DEST (PATTERN (insn)) == pc_rtx)
2479 {
2480 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2481 {
2482 label1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2483 label2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2484 }
2485 else
2486 {
2487 label1 = SET_SRC (PATTERN (insn));
2488 }
2489
2490 do {
2491 if (label1 && label1 != pc_rtx)
2492 {
2493 if (GET_CODE (label1) != LABEL_REF)
2494 {
2495 /* Something tricky. */
2496 loop_has_multiple_exit_targets = 1;
2497 break;
2498 }
2499 else if (XEXP (label1, 0) != exit_target
2500 && LABEL_OUTSIDE_LOOP_P (label1))
2501 {
2502 /* A jump outside the current loop. */
2503 loop_has_multiple_exit_targets = 1;
2504 break;
2505 }
2506 }
2507
2508 label1 = label2;
2509 label2 = NULL_RTX;
2510 } while (label1);
2511 }
2512 }
2513 else if (GET_CODE (insn) == RETURN)
2514 loop_has_multiple_exit_targets = 1;
2515 }
2516
2517 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2518 if (/* We can't tell what MEMs are aliased by what. */
2519 !unknown_address_altered
2520 /* An exception thrown by a called function might land us
2521 anywhere. */
2522 && !loop_has_call
2523 /* We don't want loads for MEMs moved to a location before the
2524 one at which their stack memory becomes allocated. (Note
2525 that this is not a problem for malloc, etc., since those
2526 require actual function calls. */
2527 && !current_function_calls_alloca
2528 /* There are ways to leave the loop other than falling off the
2529 end. */
2530 && !loop_has_multiple_exit_targets)
2531 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2532 insn = NEXT_INSN (insn))
2533 for_each_rtx (&insn, insert_loop_mem, 0);
2534 }
2535 \f
2536 /* LOOP_NUMBER_CONT_DOMINATOR is now the last label between the loop start
2537 and the continue note that is a the destination of a (cond)jump after
2538 the continue note. If there is any (cond)jump between the loop start
2539 and what we have so far as LOOP_NUMBER_CONT_DOMINATOR that has a
2540 target between LOOP_DOMINATOR and the continue note, move
2541 LOOP_NUMBER_CONT_DOMINATOR forward to that label; if a jump's
2542 destination cannot be determined, clear LOOP_NUMBER_CONT_DOMINATOR. */
2543
2544 static void
2545 verify_dominator (loop_number)
2546 int loop_number;
2547 {
2548 rtx insn;
2549
2550 if (! loop_number_cont_dominator[loop_number])
2551 /* This can happen for an empty loop, e.g. in
2552 gcc.c-torture/compile/920410-2.c */
2553 return;
2554 if (loop_number_cont_dominator[loop_number] == const0_rtx)
2555 {
2556 loop_number_cont_dominator[loop_number] = 0;
2557 return;
2558 }
2559 for (insn = loop_number_loop_starts[loop_number];
2560 insn != loop_number_cont_dominator[loop_number];
2561 insn = NEXT_INSN (insn))
2562 {
2563 if (GET_CODE (insn) == JUMP_INSN
2564 && GET_CODE (PATTERN (insn)) != RETURN)
2565 {
2566 rtx label = JUMP_LABEL (insn);
2567 int label_luid = INSN_LUID (label);
2568
2569 if (! condjump_p (insn)
2570 && ! condjump_in_parallel_p (insn))
2571 {
2572 loop_number_cont_dominator[loop_number] = NULL_RTX;
2573 return;
2574 }
2575 if (label_luid < INSN_LUID (loop_number_loop_cont[loop_number])
2576 && (label_luid
2577 > INSN_LUID (loop_number_cont_dominator[loop_number])))
2578 loop_number_cont_dominator[loop_number] = label;
2579 }
2580 }
2581 }
2582
2583 /* Scan the function looking for loops. Record the start and end of each loop.
2584 Also mark as invalid loops any loops that contain a setjmp or are branched
2585 to from outside the loop. */
2586
2587 static void
2588 find_and_verify_loops (f)
2589 rtx f;
2590 {
2591 rtx insn, label;
2592 int current_loop = -1;
2593 int next_loop = -1;
2594 int loop;
2595
2596 compute_luids (f, NULL_RTX, 0);
2597
2598 /* If there are jumps to undefined labels,
2599 treat them as jumps out of any/all loops.
2600 This also avoids writing past end of tables when there are no loops. */
2601 uid_loop_num[0] = -1;
2602
2603 /* Find boundaries of loops, mark which loops are contained within
2604 loops, and invalidate loops that have setjmp. */
2605
2606 for (insn = f; insn; insn = NEXT_INSN (insn))
2607 {
2608 if (GET_CODE (insn) == NOTE)
2609 switch (NOTE_LINE_NUMBER (insn))
2610 {
2611 case NOTE_INSN_LOOP_BEG:
2612 loop_number_loop_starts[++next_loop] = insn;
2613 loop_number_loop_ends[next_loop] = 0;
2614 loop_number_loop_cont[next_loop] = 0;
2615 loop_number_cont_dominator[next_loop] = 0;
2616 loop_outer_loop[next_loop] = current_loop;
2617 loop_invalid[next_loop] = 0;
2618 loop_number_exit_labels[next_loop] = 0;
2619 loop_number_exit_count[next_loop] = 0;
2620 current_loop = next_loop;
2621 break;
2622
2623 case NOTE_INSN_SETJMP:
2624 /* In this case, we must invalidate our current loop and any
2625 enclosing loop. */
2626 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2627 {
2628 loop_invalid[loop] = 1;
2629 if (loop_dump_stream)
2630 fprintf (loop_dump_stream,
2631 "\nLoop at %d ignored due to setjmp.\n",
2632 INSN_UID (loop_number_loop_starts[loop]));
2633 }
2634 break;
2635
2636 case NOTE_INSN_LOOP_CONT:
2637 loop_number_loop_cont[current_loop] = insn;
2638 break;
2639 case NOTE_INSN_LOOP_END:
2640 if (current_loop == -1)
2641 abort ();
2642
2643 loop_number_loop_ends[current_loop] = insn;
2644 verify_dominator (current_loop);
2645 current_loop = loop_outer_loop[current_loop];
2646 break;
2647
2648 default:
2649 break;
2650 }
2651 /* If for any loop, this is a jump insn between the NOTE_INSN_LOOP_CONT
2652 and NOTE_INSN_LOOP_END notes, update loop_number_loop_dominator. */
2653 else if (GET_CODE (insn) == JUMP_INSN
2654 && GET_CODE (PATTERN (insn)) != RETURN
2655 && current_loop >= 0)
2656 {
2657 int this_loop;
2658 rtx label = JUMP_LABEL (insn);
2659
2660 if (! condjump_p (insn) && ! condjump_in_parallel_p (insn))
2661 label = NULL_RTX;
2662
2663 this_loop = current_loop;
2664 do
2665 {
2666 /* First see if we care about this loop. */
2667 if (loop_number_loop_cont[this_loop]
2668 && loop_number_cont_dominator[this_loop] != const0_rtx)
2669 {
2670 /* If the jump destination is not known, invalidate
2671 loop_number_const_dominator. */
2672 if (! label)
2673 loop_number_cont_dominator[this_loop] = const0_rtx;
2674 else
2675 /* Check if the destination is between loop start and
2676 cont. */
2677 if ((INSN_LUID (label)
2678 < INSN_LUID (loop_number_loop_cont[this_loop]))
2679 && (INSN_LUID (label)
2680 > INSN_LUID (loop_number_loop_starts[this_loop]))
2681 /* And if there is no later destination already
2682 recorded. */
2683 && (! loop_number_cont_dominator[this_loop]
2684 || (INSN_LUID (label)
2685 > INSN_LUID (loop_number_cont_dominator
2686 [this_loop]))))
2687 loop_number_cont_dominator[this_loop] = label;
2688 }
2689 this_loop = loop_outer_loop[this_loop];
2690 }
2691 while (this_loop >= 0);
2692 }
2693
2694 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2695 enclosing loop, but this doesn't matter. */
2696 uid_loop_num[INSN_UID (insn)] = current_loop;
2697 }
2698
2699 /* Any loop containing a label used in an initializer must be invalidated,
2700 because it can be jumped into from anywhere. */
2701
2702 for (label = forced_labels; label; label = XEXP (label, 1))
2703 {
2704 int loop_num;
2705
2706 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2707 loop_num != -1;
2708 loop_num = loop_outer_loop[loop_num])
2709 loop_invalid[loop_num] = 1;
2710 }
2711
2712 /* Any loop containing a label used for an exception handler must be
2713 invalidated, because it can be jumped into from anywhere. */
2714
2715 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2716 {
2717 int loop_num;
2718
2719 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2720 loop_num != -1;
2721 loop_num = loop_outer_loop[loop_num])
2722 loop_invalid[loop_num] = 1;
2723 }
2724
2725 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2726 loop that it is not contained within, that loop is marked invalid.
2727 If any INSN or CALL_INSN uses a label's address, then the loop containing
2728 that label is marked invalid, because it could be jumped into from
2729 anywhere.
2730
2731 Also look for blocks of code ending in an unconditional branch that
2732 exits the loop. If such a block is surrounded by a conditional
2733 branch around the block, move the block elsewhere (see below) and
2734 invert the jump to point to the code block. This may eliminate a
2735 label in our loop and will simplify processing by both us and a
2736 possible second cse pass. */
2737
2738 for (insn = f; insn; insn = NEXT_INSN (insn))
2739 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2740 {
2741 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2742
2743 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2744 {
2745 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2746 if (note)
2747 {
2748 int loop_num;
2749
2750 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2751 loop_num != -1;
2752 loop_num = loop_outer_loop[loop_num])
2753 loop_invalid[loop_num] = 1;
2754 }
2755 }
2756
2757 if (GET_CODE (insn) != JUMP_INSN)
2758 continue;
2759
2760 mark_loop_jump (PATTERN (insn), this_loop_num);
2761
2762 /* See if this is an unconditional branch outside the loop. */
2763 if (this_loop_num != -1
2764 && (GET_CODE (PATTERN (insn)) == RETURN
2765 || (simplejump_p (insn)
2766 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2767 != this_loop_num)))
2768 && get_max_uid () < max_uid_for_loop)
2769 {
2770 rtx p;
2771 rtx our_next = next_real_insn (insn);
2772 int dest_loop;
2773 int outer_loop = -1;
2774
2775 /* Go backwards until we reach the start of the loop, a label,
2776 or a JUMP_INSN. */
2777 for (p = PREV_INSN (insn);
2778 GET_CODE (p) != CODE_LABEL
2779 && ! (GET_CODE (p) == NOTE
2780 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2781 && GET_CODE (p) != JUMP_INSN;
2782 p = PREV_INSN (p))
2783 ;
2784
2785 /* Check for the case where we have a jump to an inner nested
2786 loop, and do not perform the optimization in that case. */
2787
2788 if (JUMP_LABEL (insn))
2789 {
2790 dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
2791 if (dest_loop != -1)
2792 {
2793 for (outer_loop = dest_loop; outer_loop != -1;
2794 outer_loop = loop_outer_loop[outer_loop])
2795 if (outer_loop == this_loop_num)
2796 break;
2797 }
2798 }
2799
2800 /* Make sure that the target of P is within the current loop. */
2801
2802 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2803 && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
2804 outer_loop = this_loop_num;
2805
2806 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2807 we have a block of code to try to move.
2808
2809 We look backward and then forward from the target of INSN
2810 to find a BARRIER at the same loop depth as the target.
2811 If we find such a BARRIER, we make a new label for the start
2812 of the block, invert the jump in P and point it to that label,
2813 and move the block of code to the spot we found. */
2814
2815 if (outer_loop == -1
2816 && GET_CODE (p) == JUMP_INSN
2817 && JUMP_LABEL (p) != 0
2818 /* Just ignore jumps to labels that were never emitted.
2819 These always indicate compilation errors. */
2820 && INSN_UID (JUMP_LABEL (p)) != 0
2821 && condjump_p (p)
2822 && ! simplejump_p (p)
2823 && next_real_insn (JUMP_LABEL (p)) == our_next)
2824 {
2825 rtx target
2826 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2827 int target_loop_num = uid_loop_num[INSN_UID (target)];
2828 rtx loc;
2829
2830 for (loc = target; loc; loc = PREV_INSN (loc))
2831 if (GET_CODE (loc) == BARRIER
2832 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2833 break;
2834
2835 if (loc == 0)
2836 for (loc = target; loc; loc = NEXT_INSN (loc))
2837 if (GET_CODE (loc) == BARRIER
2838 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2839 break;
2840
2841 if (loc)
2842 {
2843 rtx cond_label = JUMP_LABEL (p);
2844 rtx new_label = get_label_after (p);
2845
2846 /* Ensure our label doesn't go away. */
2847 LABEL_NUSES (cond_label)++;
2848
2849 /* Verify that uid_loop_num is large enough and that
2850 we can invert P. */
2851 if (invert_jump (p, new_label))
2852 {
2853 rtx q, r;
2854
2855 /* If no suitable BARRIER was found, create a suitable
2856 one before TARGET. Since TARGET is a fall through
2857 path, we'll need to insert an jump around our block
2858 and a add a BARRIER before TARGET.
2859
2860 This creates an extra unconditional jump outside
2861 the loop. However, the benefits of removing rarely
2862 executed instructions from inside the loop usually
2863 outweighs the cost of the extra unconditional jump
2864 outside the loop. */
2865 if (loc == 0)
2866 {
2867 rtx temp;
2868
2869 temp = gen_jump (JUMP_LABEL (insn));
2870 temp = emit_jump_insn_before (temp, target);
2871 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2872 LABEL_NUSES (JUMP_LABEL (insn))++;
2873 loc = emit_barrier_before (target);
2874 }
2875
2876 /* Include the BARRIER after INSN and copy the
2877 block after LOC. */
2878 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2879 reorder_insns (new_label, NEXT_INSN (insn), loc);
2880
2881 /* All those insns are now in TARGET_LOOP_NUM. */
2882 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2883 q = NEXT_INSN (q))
2884 uid_loop_num[INSN_UID (q)] = target_loop_num;
2885
2886 /* The label jumped to by INSN is no longer a loop exit.
2887 Unless INSN does not have a label (e.g., it is a
2888 RETURN insn), search loop_number_exit_labels to find
2889 its label_ref, and remove it. Also turn off
2890 LABEL_OUTSIDE_LOOP_P bit. */
2891 if (JUMP_LABEL (insn))
2892 {
2893 int loop_num;
2894
2895 for (q = 0,
2896 r = loop_number_exit_labels[this_loop_num];
2897 r; q = r, r = LABEL_NEXTREF (r))
2898 if (XEXP (r, 0) == JUMP_LABEL (insn))
2899 {
2900 LABEL_OUTSIDE_LOOP_P (r) = 0;
2901 if (q)
2902 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2903 else
2904 loop_number_exit_labels[this_loop_num]
2905 = LABEL_NEXTREF (r);
2906 break;
2907 }
2908
2909 for (loop_num = this_loop_num;
2910 loop_num != -1 && loop_num != target_loop_num;
2911 loop_num = loop_outer_loop[loop_num])
2912 loop_number_exit_count[loop_num]--;
2913
2914 /* If we didn't find it, then something is wrong. */
2915 if (! r)
2916 abort ();
2917 }
2918
2919 /* P is now a jump outside the loop, so it must be put
2920 in loop_number_exit_labels, and marked as such.
2921 The easiest way to do this is to just call
2922 mark_loop_jump again for P. */
2923 mark_loop_jump (PATTERN (p), this_loop_num);
2924
2925 /* If INSN now jumps to the insn after it,
2926 delete INSN. */
2927 if (JUMP_LABEL (insn) != 0
2928 && (next_real_insn (JUMP_LABEL (insn))
2929 == next_real_insn (insn)))
2930 delete_insn (insn);
2931 }
2932
2933 /* Continue the loop after where the conditional
2934 branch used to jump, since the only branch insn
2935 in the block (if it still remains) is an inter-loop
2936 branch and hence needs no processing. */
2937 insn = NEXT_INSN (cond_label);
2938
2939 if (--LABEL_NUSES (cond_label) == 0)
2940 delete_insn (cond_label);
2941
2942 /* This loop will be continued with NEXT_INSN (insn). */
2943 insn = PREV_INSN (insn);
2944 }
2945 }
2946 }
2947 }
2948 }
2949
2950 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2951 loops it is contained in, mark the target loop invalid.
2952
2953 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2954
2955 static void
2956 mark_loop_jump (x, loop_num)
2957 rtx x;
2958 int loop_num;
2959 {
2960 int dest_loop;
2961 int outer_loop;
2962 int i;
2963
2964 switch (GET_CODE (x))
2965 {
2966 case PC:
2967 case USE:
2968 case CLOBBER:
2969 case REG:
2970 case MEM:
2971 case CONST_INT:
2972 case CONST_DOUBLE:
2973 case RETURN:
2974 return;
2975
2976 case CONST:
2977 /* There could be a label reference in here. */
2978 mark_loop_jump (XEXP (x, 0), loop_num);
2979 return;
2980
2981 case PLUS:
2982 case MINUS:
2983 case MULT:
2984 mark_loop_jump (XEXP (x, 0), loop_num);
2985 mark_loop_jump (XEXP (x, 1), loop_num);
2986 return;
2987
2988 case LO_SUM:
2989 /* This may refer to a LABEL_REF or SYMBOL_REF. */
2990 mark_loop_jump (XEXP (x, 1), loop_num);
2991 return;
2992
2993 case SIGN_EXTEND:
2994 case ZERO_EXTEND:
2995 mark_loop_jump (XEXP (x, 0), loop_num);
2996 return;
2997
2998 case LABEL_REF:
2999 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
3000
3001 /* Link together all labels that branch outside the loop. This
3002 is used by final_[bg]iv_value and the loop unrolling code. Also
3003 mark this LABEL_REF so we know that this branch should predict
3004 false. */
3005
3006 /* A check to make sure the label is not in an inner nested loop,
3007 since this does not count as a loop exit. */
3008 if (dest_loop != -1)
3009 {
3010 for (outer_loop = dest_loop; outer_loop != -1;
3011 outer_loop = loop_outer_loop[outer_loop])
3012 if (outer_loop == loop_num)
3013 break;
3014 }
3015 else
3016 outer_loop = -1;
3017
3018 if (loop_num != -1 && outer_loop == -1)
3019 {
3020 LABEL_OUTSIDE_LOOP_P (x) = 1;
3021 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
3022 loop_number_exit_labels[loop_num] = x;
3023
3024 for (outer_loop = loop_num;
3025 outer_loop != -1 && outer_loop != dest_loop;
3026 outer_loop = loop_outer_loop[outer_loop])
3027 loop_number_exit_count[outer_loop]++;
3028 }
3029
3030 /* If this is inside a loop, but not in the current loop or one enclosed
3031 by it, it invalidates at least one loop. */
3032
3033 if (dest_loop == -1)
3034 return;
3035
3036 /* We must invalidate every nested loop containing the target of this
3037 label, except those that also contain the jump insn. */
3038
3039 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
3040 {
3041 /* Stop when we reach a loop that also contains the jump insn. */
3042 for (outer_loop = loop_num; outer_loop != -1;
3043 outer_loop = loop_outer_loop[outer_loop])
3044 if (dest_loop == outer_loop)
3045 return;
3046
3047 /* If we get here, we know we need to invalidate a loop. */
3048 if (loop_dump_stream && ! loop_invalid[dest_loop])
3049 fprintf (loop_dump_stream,
3050 "\nLoop at %d ignored due to multiple entry points.\n",
3051 INSN_UID (loop_number_loop_starts[dest_loop]));
3052
3053 loop_invalid[dest_loop] = 1;
3054 }
3055 return;
3056
3057 case SET:
3058 /* If this is not setting pc, ignore. */
3059 if (SET_DEST (x) == pc_rtx)
3060 mark_loop_jump (SET_SRC (x), loop_num);
3061 return;
3062
3063 case IF_THEN_ELSE:
3064 mark_loop_jump (XEXP (x, 1), loop_num);
3065 mark_loop_jump (XEXP (x, 2), loop_num);
3066 return;
3067
3068 case PARALLEL:
3069 case ADDR_VEC:
3070 for (i = 0; i < XVECLEN (x, 0); i++)
3071 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
3072 return;
3073
3074 case ADDR_DIFF_VEC:
3075 for (i = 0; i < XVECLEN (x, 1); i++)
3076 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
3077 return;
3078
3079 default:
3080 /* Strictly speaking this is not a jump into the loop, only a possible
3081 jump out of the loop. However, we have no way to link the destination
3082 of this jump onto the list of exit labels. To be safe we mark this
3083 loop and any containing loops as invalid. */
3084 if (loop_num != -1)
3085 {
3086 for (outer_loop = loop_num; outer_loop != -1;
3087 outer_loop = loop_outer_loop[outer_loop])
3088 {
3089 if (loop_dump_stream && ! loop_invalid[outer_loop])
3090 fprintf (loop_dump_stream,
3091 "\nLoop at %d ignored due to unknown exit jump.\n",
3092 INSN_UID (loop_number_loop_starts[outer_loop]));
3093 loop_invalid[outer_loop] = 1;
3094 }
3095 }
3096 return;
3097 }
3098 }
3099 \f
3100 /* Return nonzero if there is a label in the range from
3101 insn INSN to and including the insn whose luid is END
3102 INSN must have an assigned luid (i.e., it must not have
3103 been previously created by loop.c). */
3104
3105 static int
3106 labels_in_range_p (insn, end)
3107 rtx insn;
3108 int end;
3109 {
3110 while (insn && INSN_LUID (insn) <= end)
3111 {
3112 if (GET_CODE (insn) == CODE_LABEL)
3113 return 1;
3114 insn = NEXT_INSN (insn);
3115 }
3116
3117 return 0;
3118 }
3119
3120 /* Record that a memory reference X is being set. */
3121
3122 static void
3123 note_addr_stored (x, y)
3124 rtx x;
3125 rtx y ATTRIBUTE_UNUSED;
3126 {
3127 if (x == 0 || GET_CODE (x) != MEM)
3128 return;
3129
3130 /* Count number of memory writes.
3131 This affects heuristics in strength_reduce. */
3132 num_mem_sets++;
3133
3134 /* BLKmode MEM means all memory is clobbered. */
3135 if (GET_MODE (x) == BLKmode)
3136 unknown_address_altered = 1;
3137
3138 if (unknown_address_altered)
3139 return;
3140
3141 loop_store_mems = gen_rtx_EXPR_LIST (VOIDmode, x, loop_store_mems);
3142 }
3143 \f
3144 /* Return nonzero if the rtx X is invariant over the current loop.
3145
3146 The value is 2 if we refer to something only conditionally invariant.
3147
3148 If `unknown_address_altered' is nonzero, no memory ref is invariant.
3149 Otherwise, a memory ref is invariant if it does not conflict with
3150 anything stored in `loop_store_mems'. */
3151
3152 int
3153 invariant_p (x)
3154 register rtx x;
3155 {
3156 register int i;
3157 register enum rtx_code code;
3158 register char *fmt;
3159 int conditional = 0;
3160 rtx mem_list_entry;
3161
3162 if (x == 0)
3163 return 1;
3164 code = GET_CODE (x);
3165 switch (code)
3166 {
3167 case CONST_INT:
3168 case CONST_DOUBLE:
3169 case SYMBOL_REF:
3170 case CONST:
3171 return 1;
3172
3173 case LABEL_REF:
3174 /* A LABEL_REF is normally invariant, however, if we are unrolling
3175 loops, and this label is inside the loop, then it isn't invariant.
3176 This is because each unrolled copy of the loop body will have
3177 a copy of this label. If this was invariant, then an insn loading
3178 the address of this label into a register might get moved outside
3179 the loop, and then each loop body would end up using the same label.
3180
3181 We don't know the loop bounds here though, so just fail for all
3182 labels. */
3183 if (flag_unroll_loops)
3184 return 0;
3185 else
3186 return 1;
3187
3188 case PC:
3189 case CC0:
3190 case UNSPEC_VOLATILE:
3191 return 0;
3192
3193 case REG:
3194 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3195 since the reg might be set by initialization within the loop. */
3196
3197 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3198 || x == arg_pointer_rtx)
3199 && ! current_function_has_nonlocal_goto)
3200 return 1;
3201
3202 if (loop_has_call
3203 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3204 return 0;
3205
3206 if (VARRAY_INT (set_in_loop, REGNO (x)) < 0)
3207 return 2;
3208
3209 return VARRAY_INT (set_in_loop, REGNO (x)) == 0;
3210
3211 case MEM:
3212 /* Volatile memory references must be rejected. Do this before
3213 checking for read-only items, so that volatile read-only items
3214 will be rejected also. */
3215 if (MEM_VOLATILE_P (x))
3216 return 0;
3217
3218 /* Read-only items (such as constants in a constant pool) are
3219 invariant if their address is. */
3220 if (RTX_UNCHANGING_P (x))
3221 break;
3222
3223 /* If we had a subroutine call, any location in memory could have been
3224 clobbered. */
3225 if (unknown_address_altered)
3226 return 0;
3227
3228 /* See if there is any dependence between a store and this load. */
3229 mem_list_entry = loop_store_mems;
3230 while (mem_list_entry)
3231 {
3232 if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
3233 x, rtx_varies_p))
3234 return 0;
3235 mem_list_entry = XEXP (mem_list_entry, 1);
3236 }
3237
3238 /* It's not invalidated by a store in memory
3239 but we must still verify the address is invariant. */
3240 break;
3241
3242 case ASM_OPERANDS:
3243 /* Don't mess with insns declared volatile. */
3244 if (MEM_VOLATILE_P (x))
3245 return 0;
3246 break;
3247
3248 default:
3249 break;
3250 }
3251
3252 fmt = GET_RTX_FORMAT (code);
3253 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3254 {
3255 if (fmt[i] == 'e')
3256 {
3257 int tem = invariant_p (XEXP (x, i));
3258 if (tem == 0)
3259 return 0;
3260 if (tem == 2)
3261 conditional = 1;
3262 }
3263 else if (fmt[i] == 'E')
3264 {
3265 register int j;
3266 for (j = 0; j < XVECLEN (x, i); j++)
3267 {
3268 int tem = invariant_p (XVECEXP (x, i, j));
3269 if (tem == 0)
3270 return 0;
3271 if (tem == 2)
3272 conditional = 1;
3273 }
3274
3275 }
3276 }
3277
3278 return 1 + conditional;
3279 }
3280
3281 \f
3282 /* Return nonzero if all the insns in the loop that set REG
3283 are INSN and the immediately following insns,
3284 and if each of those insns sets REG in an invariant way
3285 (not counting uses of REG in them).
3286
3287 The value is 2 if some of these insns are only conditionally invariant.
3288
3289 We assume that INSN itself is the first set of REG
3290 and that its source is invariant. */
3291
3292 static int
3293 consec_sets_invariant_p (reg, n_sets, insn)
3294 int n_sets;
3295 rtx reg, insn;
3296 {
3297 register rtx p = insn;
3298 register int regno = REGNO (reg);
3299 rtx temp;
3300 /* Number of sets we have to insist on finding after INSN. */
3301 int count = n_sets - 1;
3302 int old = VARRAY_INT (set_in_loop, regno);
3303 int value = 0;
3304 int this;
3305
3306 /* If N_SETS hit the limit, we can't rely on its value. */
3307 if (n_sets == 127)
3308 return 0;
3309
3310 VARRAY_INT (set_in_loop, regno) = 0;
3311
3312 while (count > 0)
3313 {
3314 register enum rtx_code code;
3315 rtx set;
3316
3317 p = NEXT_INSN (p);
3318 code = GET_CODE (p);
3319
3320 /* If library call, skip to end of it. */
3321 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3322 p = XEXP (temp, 0);
3323
3324 this = 0;
3325 if (code == INSN
3326 && (set = single_set (p))
3327 && GET_CODE (SET_DEST (set)) == REG
3328 && REGNO (SET_DEST (set)) == regno)
3329 {
3330 this = invariant_p (SET_SRC (set));
3331 if (this != 0)
3332 value |= this;
3333 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3334 {
3335 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3336 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3337 notes are OK. */
3338 this = (CONSTANT_P (XEXP (temp, 0))
3339 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3340 && invariant_p (XEXP (temp, 0))));
3341 if (this != 0)
3342 value |= this;
3343 }
3344 }
3345 if (this != 0)
3346 count--;
3347 else if (code != NOTE)
3348 {
3349 VARRAY_INT (set_in_loop, regno) = old;
3350 return 0;
3351 }
3352 }
3353
3354 VARRAY_INT (set_in_loop, regno) = old;
3355 /* If invariant_p ever returned 2, we return 2. */
3356 return 1 + (value & 2);
3357 }
3358
3359 #if 0
3360 /* I don't think this condition is sufficient to allow INSN
3361 to be moved, so we no longer test it. */
3362
3363 /* Return 1 if all insns in the basic block of INSN and following INSN
3364 that set REG are invariant according to TABLE. */
3365
3366 static int
3367 all_sets_invariant_p (reg, insn, table)
3368 rtx reg, insn;
3369 short *table;
3370 {
3371 register rtx p = insn;
3372 register int regno = REGNO (reg);
3373
3374 while (1)
3375 {
3376 register enum rtx_code code;
3377 p = NEXT_INSN (p);
3378 code = GET_CODE (p);
3379 if (code == CODE_LABEL || code == JUMP_INSN)
3380 return 1;
3381 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3382 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3383 && REGNO (SET_DEST (PATTERN (p))) == regno)
3384 {
3385 if (!invariant_p (SET_SRC (PATTERN (p)), table))
3386 return 0;
3387 }
3388 }
3389 }
3390 #endif /* 0 */
3391 \f
3392 /* Look at all uses (not sets) of registers in X. For each, if it is
3393 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3394 a different insn, set USAGE[REGNO] to const0_rtx. */
3395
3396 static void
3397 find_single_use_in_loop (insn, x, usage)
3398 rtx insn;
3399 rtx x;
3400 varray_type usage;
3401 {
3402 enum rtx_code code = GET_CODE (x);
3403 char *fmt = GET_RTX_FORMAT (code);
3404 int i, j;
3405
3406 if (code == REG)
3407 VARRAY_RTX (usage, REGNO (x))
3408 = (VARRAY_RTX (usage, REGNO (x)) != 0
3409 && VARRAY_RTX (usage, REGNO (x)) != insn)
3410 ? const0_rtx : insn;
3411
3412 else if (code == SET)
3413 {
3414 /* Don't count SET_DEST if it is a REG; otherwise count things
3415 in SET_DEST because if a register is partially modified, it won't
3416 show up as a potential movable so we don't care how USAGE is set
3417 for it. */
3418 if (GET_CODE (SET_DEST (x)) != REG)
3419 find_single_use_in_loop (insn, SET_DEST (x), usage);
3420 find_single_use_in_loop (insn, SET_SRC (x), usage);
3421 }
3422 else
3423 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3424 {
3425 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3426 find_single_use_in_loop (insn, XEXP (x, i), usage);
3427 else if (fmt[i] == 'E')
3428 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3429 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3430 }
3431 }
3432 \f
3433 /* Count and record any set in X which is contained in INSN. Update
3434 MAY_NOT_MOVE and LAST_SET for any register set in X. */
3435
3436 static void
3437 count_one_set (insn, x, may_not_move, last_set)
3438 rtx insn, x;
3439 varray_type may_not_move;
3440 rtx *last_set;
3441 {
3442 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3443 /* Don't move a reg that has an explicit clobber.
3444 It's not worth the pain to try to do it correctly. */
3445 VARRAY_CHAR (may_not_move, REGNO (XEXP (x, 0))) = 1;
3446
3447 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3448 {
3449 rtx dest = SET_DEST (x);
3450 while (GET_CODE (dest) == SUBREG
3451 || GET_CODE (dest) == ZERO_EXTRACT
3452 || GET_CODE (dest) == SIGN_EXTRACT
3453 || GET_CODE (dest) == STRICT_LOW_PART)
3454 dest = XEXP (dest, 0);
3455 if (GET_CODE (dest) == REG)
3456 {
3457 register int regno = REGNO (dest);
3458 /* If this is the first setting of this reg
3459 in current basic block, and it was set before,
3460 it must be set in two basic blocks, so it cannot
3461 be moved out of the loop. */
3462 if (VARRAY_INT (set_in_loop, regno) > 0
3463 && last_set[regno] == 0)
3464 VARRAY_CHAR (may_not_move, regno) = 1;
3465 /* If this is not first setting in current basic block,
3466 see if reg was used in between previous one and this.
3467 If so, neither one can be moved. */
3468 if (last_set[regno] != 0
3469 && reg_used_between_p (dest, last_set[regno], insn))
3470 VARRAY_CHAR (may_not_move, regno) = 1;
3471 if (VARRAY_INT (set_in_loop, regno) < 127)
3472 ++VARRAY_INT (set_in_loop, regno);
3473 last_set[regno] = insn;
3474 }
3475 }
3476 }
3477
3478 /* Increment SET_IN_LOOP at the index of each register
3479 that is modified by an insn between FROM and TO.
3480 If the value of an element of SET_IN_LOOP becomes 127 or more,
3481 stop incrementing it, to avoid overflow.
3482
3483 Store in SINGLE_USAGE[I] the single insn in which register I is
3484 used, if it is only used once. Otherwise, it is set to 0 (for no
3485 uses) or const0_rtx for more than one use. This parameter may be zero,
3486 in which case this processing is not done.
3487
3488 Store in *COUNT_PTR the number of actual instruction
3489 in the loop. We use this to decide what is worth moving out. */
3490
3491 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3492 In that case, it is the insn that last set reg n. */
3493
3494 static void
3495 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3496 register rtx from, to;
3497 varray_type may_not_move;
3498 varray_type single_usage;
3499 int *count_ptr;
3500 int nregs;
3501 {
3502 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
3503 register rtx insn;
3504 register int count = 0;
3505
3506 bzero ((char *) last_set, nregs * sizeof (rtx));
3507 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3508 {
3509 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3510 {
3511 ++count;
3512
3513 /* Record registers that have exactly one use. */
3514 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3515
3516 /* Include uses in REG_EQUAL notes. */
3517 if (REG_NOTES (insn))
3518 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3519
3520 if (GET_CODE (PATTERN (insn)) == SET
3521 || GET_CODE (PATTERN (insn)) == CLOBBER)
3522 count_one_set (insn, PATTERN (insn), may_not_move, last_set);
3523 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3524 {
3525 register int i;
3526 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3527 count_one_set (insn, XVECEXP (PATTERN (insn), 0, i),
3528 may_not_move, last_set);
3529 }
3530 }
3531
3532 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3533 bzero ((char *) last_set, nregs * sizeof (rtx));
3534 }
3535 *count_ptr = count;
3536 }
3537 \f
3538 /* Given a loop that is bounded by LOOP_START and LOOP_END
3539 and that is entered at SCAN_START,
3540 return 1 if the register set in SET contained in insn INSN is used by
3541 any insn that precedes INSN in cyclic order starting
3542 from the loop entry point.
3543
3544 We don't want to use INSN_LUID here because if we restrict INSN to those
3545 that have a valid INSN_LUID, it means we cannot move an invariant out
3546 from an inner loop past two loops. */
3547
3548 static int
3549 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3550 rtx set, insn, loop_start, scan_start, loop_end;
3551 {
3552 rtx reg = SET_DEST (set);
3553 rtx p;
3554
3555 /* Scan forward checking for register usage. If we hit INSN, we
3556 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3557 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3558 {
3559 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3560 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3561 return 1;
3562
3563 if (p == loop_end)
3564 p = loop_start;
3565 }
3566
3567 return 0;
3568 }
3569 \f
3570 /* A "basic induction variable" or biv is a pseudo reg that is set
3571 (within this loop) only by incrementing or decrementing it. */
3572 /* A "general induction variable" or giv is a pseudo reg whose
3573 value is a linear function of a biv. */
3574
3575 /* Bivs are recognized by `basic_induction_var';
3576 Givs by `general_induction_var'. */
3577
3578 /* Indexed by register number, indicates whether or not register is an
3579 induction variable, and if so what type. */
3580
3581 varray_type reg_iv_type;
3582
3583 /* Indexed by register number, contains pointer to `struct induction'
3584 if register is an induction variable. This holds general info for
3585 all induction variables. */
3586
3587 varray_type reg_iv_info;
3588
3589 /* Indexed by register number, contains pointer to `struct iv_class'
3590 if register is a basic induction variable. This holds info describing
3591 the class (a related group) of induction variables that the biv belongs
3592 to. */
3593
3594 struct iv_class **reg_biv_class;
3595
3596 /* The head of a list which links together (via the next field)
3597 every iv class for the current loop. */
3598
3599 struct iv_class *loop_iv_list;
3600
3601 /* Givs made from biv increments are always splittable for loop unrolling.
3602 Since there is no regscan info for them, we have to keep track of them
3603 separately. */
3604 int first_increment_giv, last_increment_giv;
3605
3606 /* Communication with routines called via `note_stores'. */
3607
3608 static rtx note_insn;
3609
3610 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3611
3612 static rtx addr_placeholder;
3613
3614 /* ??? Unfinished optimizations, and possible future optimizations,
3615 for the strength reduction code. */
3616
3617 /* ??? The interaction of biv elimination, and recognition of 'constant'
3618 bivs, may cause problems. */
3619
3620 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3621 performance problems.
3622
3623 Perhaps don't eliminate things that can be combined with an addressing
3624 mode. Find all givs that have the same biv, mult_val, and add_val;
3625 then for each giv, check to see if its only use dies in a following
3626 memory address. If so, generate a new memory address and check to see
3627 if it is valid. If it is valid, then store the modified memory address,
3628 otherwise, mark the giv as not done so that it will get its own iv. */
3629
3630 /* ??? Could try to optimize branches when it is known that a biv is always
3631 positive. */
3632
3633 /* ??? When replace a biv in a compare insn, we should replace with closest
3634 giv so that an optimized branch can still be recognized by the combiner,
3635 e.g. the VAX acb insn. */
3636
3637 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3638 was rerun in loop_optimize whenever a register was added or moved.
3639 Also, some of the optimizations could be a little less conservative. */
3640 \f
3641 /* Perform strength reduction and induction variable elimination.
3642
3643 Pseudo registers created during this function will be beyond the last
3644 valid index in several tables including n_times_set and regno_last_uid.
3645 This does not cause a problem here, because the added registers cannot be
3646 givs outside of their loop, and hence will never be reconsidered.
3647 But scan_loop must check regnos to make sure they are in bounds.
3648
3649 SCAN_START is the first instruction in the loop, as the loop would
3650 actually be executed. END is the NOTE_INSN_LOOP_END. LOOP_TOP is
3651 the first instruction in the loop, as it is layed out in the
3652 instruction stream. LOOP_START is the NOTE_INSN_LOOP_BEG.
3653 LOOP_CONT is the NOTE_INSN_LOOP_CONT. */
3654
3655 static void
3656 strength_reduce (scan_start, end, loop_top, insn_count,
3657 loop_start, loop_end, loop_cont, unroll_p, bct_p)
3658 rtx scan_start;
3659 rtx end;
3660 rtx loop_top;
3661 int insn_count;
3662 rtx loop_start;
3663 rtx loop_end;
3664 rtx loop_cont;
3665 int unroll_p, bct_p ATTRIBUTE_UNUSED;
3666 {
3667 rtx p;
3668 rtx set;
3669 rtx inc_val;
3670 rtx mult_val;
3671 rtx dest_reg;
3672 rtx *location;
3673 /* This is 1 if current insn is not executed at least once for every loop
3674 iteration. */
3675 int not_every_iteration = 0;
3676 /* This is 1 if current insn may be executed more than once for every
3677 loop iteration. */
3678 int maybe_multiple = 0;
3679 /* This is 1 if we have past a branch back to the top of the loop
3680 (aka a loop latch). */
3681 int past_loop_latch = 0;
3682 /* Temporary list pointers for traversing loop_iv_list. */
3683 struct iv_class *bl, **backbl;
3684 /* Ratio of extra register life span we can justify
3685 for saving an instruction. More if loop doesn't call subroutines
3686 since in that case saving an insn makes more difference
3687 and more registers are available. */
3688 /* ??? could set this to last value of threshold in move_movables */
3689 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3690 /* Map of pseudo-register replacements. */
3691 rtx *reg_map;
3692 int reg_map_size;
3693 int call_seen;
3694 rtx test;
3695 rtx end_insert_before;
3696 int loop_depth = 0;
3697 int n_extra_increment;
3698 struct loop_info loop_iteration_info;
3699 struct loop_info *loop_info = &loop_iteration_info;
3700
3701 /* If scan_start points to the loop exit test, we have to be wary of
3702 subversive use of gotos inside expression statements. */
3703 if (prev_nonnote_insn (scan_start) != prev_nonnote_insn (loop_start))
3704 maybe_multiple = back_branch_in_range_p (scan_start, loop_start, loop_end);
3705
3706 VARRAY_INT_INIT (reg_iv_type, max_reg_before_loop, "reg_iv_type");
3707 VARRAY_GENERIC_PTR_INIT (reg_iv_info, max_reg_before_loop, "reg_iv_info");
3708 reg_biv_class = (struct iv_class **)
3709 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3710 bzero ((char *) reg_biv_class, (max_reg_before_loop
3711 * sizeof (struct iv_class *)));
3712
3713 loop_iv_list = 0;
3714 addr_placeholder = gen_reg_rtx (Pmode);
3715
3716 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3717 must be put before this insn, so that they will appear in the right
3718 order (i.e. loop order).
3719
3720 If loop_end is the end of the current function, then emit a
3721 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3722 dummy note insn. */
3723 if (NEXT_INSN (loop_end) != 0)
3724 end_insert_before = NEXT_INSN (loop_end);
3725 else
3726 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3727
3728 /* Scan through loop to find all possible bivs. */
3729
3730 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
3731 p != NULL_RTX;
3732 p = next_insn_in_loop (p, scan_start, end, loop_top))
3733 {
3734 if (GET_CODE (p) == INSN
3735 && (set = single_set (p))
3736 && GET_CODE (SET_DEST (set)) == REG)
3737 {
3738 dest_reg = SET_DEST (set);
3739 if (REGNO (dest_reg) < max_reg_before_loop
3740 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3741 && REG_IV_TYPE (REGNO (dest_reg)) != NOT_BASIC_INDUCT)
3742 {
3743 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3744 dest_reg, p, &inc_val, &mult_val,
3745 &location))
3746 {
3747 /* It is a possible basic induction variable.
3748 Create and initialize an induction structure for it. */
3749
3750 struct induction *v
3751 = (struct induction *) alloca (sizeof (struct induction));
3752
3753 record_biv (v, p, dest_reg, inc_val, mult_val, location,
3754 not_every_iteration, maybe_multiple);
3755 REG_IV_TYPE (REGNO (dest_reg)) = BASIC_INDUCT;
3756 }
3757 else if (REGNO (dest_reg) < max_reg_before_loop)
3758 REG_IV_TYPE (REGNO (dest_reg)) = NOT_BASIC_INDUCT;
3759 }
3760 }
3761
3762 /* Past CODE_LABEL, we get to insns that may be executed multiple
3763 times. The only way we can be sure that they can't is if every
3764 jump insn between here and the end of the loop either
3765 returns, exits the loop, is a jump to a location that is still
3766 behind the label, or is a jump to the loop start. */
3767
3768 if (GET_CODE (p) == CODE_LABEL)
3769 {
3770 rtx insn = p;
3771
3772 maybe_multiple = 0;
3773
3774 while (1)
3775 {
3776 insn = NEXT_INSN (insn);
3777 if (insn == scan_start)
3778 break;
3779 if (insn == end)
3780 {
3781 if (loop_top != 0)
3782 insn = loop_top;
3783 else
3784 break;
3785 if (insn == scan_start)
3786 break;
3787 }
3788
3789 if (GET_CODE (insn) == JUMP_INSN
3790 && GET_CODE (PATTERN (insn)) != RETURN
3791 && (! condjump_p (insn)
3792 || (JUMP_LABEL (insn) != 0
3793 && JUMP_LABEL (insn) != scan_start
3794 && ! loop_insn_first_p (p, JUMP_LABEL (insn)))))
3795 {
3796 maybe_multiple = 1;
3797 break;
3798 }
3799 }
3800 }
3801
3802 /* Past a jump, we get to insns for which we can't count
3803 on whether they will be executed during each iteration. */
3804 /* This code appears twice in strength_reduce. There is also similar
3805 code in scan_loop. */
3806 if (GET_CODE (p) == JUMP_INSN
3807 /* If we enter the loop in the middle, and scan around to the
3808 beginning, don't set not_every_iteration for that.
3809 This can be any kind of jump, since we want to know if insns
3810 will be executed if the loop is executed. */
3811 && ! (JUMP_LABEL (p) == loop_top
3812 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3813 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3814 {
3815 rtx label = 0;
3816
3817 /* If this is a jump outside the loop, then it also doesn't
3818 matter. Check to see if the target of this branch is on the
3819 loop_number_exits_labels list. */
3820
3821 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3822 label;
3823 label = LABEL_NEXTREF (label))
3824 if (XEXP (label, 0) == JUMP_LABEL (p))
3825 break;
3826
3827 if (! label)
3828 not_every_iteration = 1;
3829 }
3830
3831 else if (GET_CODE (p) == NOTE)
3832 {
3833 /* At the virtual top of a converted loop, insns are again known to
3834 be executed each iteration: logically, the loop begins here
3835 even though the exit code has been duplicated.
3836
3837 Insns are also again known to be executed each iteration at
3838 the LOOP_CONT note. */
3839 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
3840 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
3841 && loop_depth == 0)
3842 not_every_iteration = 0;
3843 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3844 loop_depth++;
3845 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3846 loop_depth--;
3847 }
3848
3849 /* Note if we pass a loop latch. If we do, then we can not clear
3850 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
3851 a loop since a jump before the last CODE_LABEL may have started
3852 a new loop iteration.
3853
3854 Note that LOOP_TOP is only set for rotated loops and we need
3855 this check for all loops, so compare against the CODE_LABEL
3856 which immediately follows LOOP_START. */
3857 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == NEXT_INSN (loop_start))
3858 past_loop_latch = 1;
3859
3860 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3861 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3862 or not an insn is known to be executed each iteration of the
3863 loop, whether or not any iterations are known to occur.
3864
3865 Therefore, if we have just passed a label and have no more labels
3866 between here and the test insn of the loop, and we have not passed
3867 a jump to the top of the loop, then we know these insns will be
3868 executed each iteration. */
3869
3870 if (not_every_iteration
3871 && ! past_loop_latch
3872 && GET_CODE (p) == CODE_LABEL
3873 && no_labels_between_p (p, loop_end)
3874 && loop_insn_first_p (p, loop_cont))
3875 not_every_iteration = 0;
3876 }
3877
3878 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3879 Make a sanity check against n_times_set. */
3880 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3881 {
3882 if (REG_IV_TYPE (bl->regno) != BASIC_INDUCT
3883 /* Above happens if register modified by subreg, etc. */
3884 /* Make sure it is not recognized as a basic induction var: */
3885 || VARRAY_INT (n_times_set, bl->regno) != bl->biv_count
3886 /* If never incremented, it is invariant that we decided not to
3887 move. So leave it alone. */
3888 || ! bl->incremented)
3889 {
3890 if (loop_dump_stream)
3891 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3892 bl->regno,
3893 (REG_IV_TYPE (bl->regno) != BASIC_INDUCT
3894 ? "not induction variable"
3895 : (! bl->incremented ? "never incremented"
3896 : "count error")));
3897
3898 REG_IV_TYPE (bl->regno) = NOT_BASIC_INDUCT;
3899 *backbl = bl->next;
3900 }
3901 else
3902 {
3903 backbl = &bl->next;
3904
3905 if (loop_dump_stream)
3906 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3907 }
3908 }
3909
3910 /* Exit if there are no bivs. */
3911 if (! loop_iv_list)
3912 {
3913 /* Can still unroll the loop anyways, but indicate that there is no
3914 strength reduction info available. */
3915 if (unroll_p)
3916 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
3917 loop_info, 0);
3918
3919 return;
3920 }
3921
3922 /* Find initial value for each biv by searching backwards from loop_start,
3923 halting at first label. Also record any test condition. */
3924
3925 call_seen = 0;
3926 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3927 {
3928 note_insn = p;
3929
3930 if (GET_CODE (p) == CALL_INSN)
3931 call_seen = 1;
3932
3933 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3934 || GET_CODE (p) == CALL_INSN)
3935 note_stores (PATTERN (p), record_initial);
3936
3937 /* Record any test of a biv that branches around the loop if no store
3938 between it and the start of loop. We only care about tests with
3939 constants and registers and only certain of those. */
3940 if (GET_CODE (p) == JUMP_INSN
3941 && JUMP_LABEL (p) != 0
3942 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3943 && (test = get_condition_for_loop (p)) != 0
3944 && GET_CODE (XEXP (test, 0)) == REG
3945 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3946 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3947 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3948 && bl->init_insn == 0)
3949 {
3950 /* If an NE test, we have an initial value! */
3951 if (GET_CODE (test) == NE)
3952 {
3953 bl->init_insn = p;
3954 bl->init_set = gen_rtx_SET (VOIDmode,
3955 XEXP (test, 0), XEXP (test, 1));
3956 }
3957 else
3958 bl->initial_test = test;
3959 }
3960 }
3961
3962 /* Look at the each biv and see if we can say anything better about its
3963 initial value from any initializing insns set up above. (This is done
3964 in two passes to avoid missing SETs in a PARALLEL.) */
3965 for (backbl = &loop_iv_list; (bl = *backbl); backbl = &bl->next)
3966 {
3967 rtx src;
3968 rtx note;
3969
3970 if (! bl->init_insn)
3971 continue;
3972
3973 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
3974 is a constant, use the value of that. */
3975 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
3976 && CONSTANT_P (XEXP (note, 0)))
3977 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
3978 && CONSTANT_P (XEXP (note, 0))))
3979 src = XEXP (note, 0);
3980 else
3981 src = SET_SRC (bl->init_set);
3982
3983 if (loop_dump_stream)
3984 fprintf (loop_dump_stream,
3985 "Biv %d initialized at insn %d: initial value ",
3986 bl->regno, INSN_UID (bl->init_insn));
3987
3988 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3989 || GET_MODE (src) == VOIDmode)
3990 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3991 {
3992 bl->initial_value = src;
3993
3994 if (loop_dump_stream)
3995 {
3996 if (GET_CODE (src) == CONST_INT)
3997 {
3998 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (src));
3999 fputc ('\n', loop_dump_stream);
4000 }
4001 else
4002 {
4003 print_rtl (loop_dump_stream, src);
4004 fprintf (loop_dump_stream, "\n");
4005 }
4006 }
4007 }
4008 else
4009 {
4010 struct iv_class *bl2 = 0;
4011 rtx increment;
4012
4013 /* Biv initial value is not a simple move. If it is the sum of
4014 another biv and a constant, check if both bivs are incremented
4015 in lockstep. Then we are actually looking at a giv.
4016 For simplicity, we only handle the case where there is but a
4017 single increment, and the register is not used elsewhere. */
4018 if (bl->biv_count == 1
4019 && bl->regno < max_reg_before_loop
4020 && uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4021 && GET_CODE (src) == PLUS
4022 && GET_CODE (XEXP (src, 0)) == REG
4023 && CONSTANT_P (XEXP (src, 1))
4024 && ((increment = biv_total_increment (bl, loop_start, loop_end))
4025 != NULL_RTX))
4026 {
4027 int regno = REGNO (XEXP (src, 0));
4028
4029 for (bl2 = loop_iv_list; bl2; bl2 = bl2->next)
4030 if (bl2->regno == regno)
4031 break;
4032 }
4033
4034 /* Now, can we transform this biv into a giv? */
4035 if (bl2
4036 && bl2->biv_count == 1
4037 && rtx_equal_p (increment,
4038 biv_total_increment (bl2, loop_start, loop_end))
4039 /* init_insn is only set to insns that are before loop_start
4040 without any intervening labels. */
4041 && ! reg_set_between_p (bl2->biv->src_reg,
4042 PREV_INSN (bl->init_insn), loop_start)
4043 /* The register from BL2 must be set before the register from
4044 BL is set, or we must be able to move the latter set after
4045 the former set. Currently there can't be any labels
4046 in-between when biv_toal_increment returns nonzero both times
4047 but we test it here in case some day some real cfg analysis
4048 gets used to set always_computable. */
4049 && ((loop_insn_first_p (bl2->biv->insn, bl->biv->insn)
4050 && no_labels_between_p (bl2->biv->insn, bl->biv->insn))
4051 || (! reg_used_between_p (bl->biv->src_reg, bl->biv->insn,
4052 bl2->biv->insn)
4053 && no_jumps_between_p (bl->biv->insn, bl2->biv->insn)))
4054 && validate_change (bl->biv->insn,
4055 &SET_SRC (single_set (bl->biv->insn)),
4056 copy_rtx (src), 0))
4057 {
4058 int loop_num = uid_loop_num[INSN_UID (loop_start)];
4059 rtx dominator = loop_number_cont_dominator[loop_num];
4060 rtx giv = bl->biv->src_reg;
4061 rtx giv_insn = bl->biv->insn;
4062 rtx after_giv = NEXT_INSN (giv_insn);
4063
4064 if (loop_dump_stream)
4065 fprintf (loop_dump_stream, "is giv of biv %d\n", bl2->regno);
4066 /* Let this giv be discovered by the generic code. */
4067 REG_IV_TYPE (bl->regno) = UNKNOWN_INDUCT;
4068 reg_biv_class[bl->regno] = NULL_PTR;
4069 /* We can get better optimization if we can move the giv setting
4070 before the first giv use. */
4071 if (dominator
4072 && ! loop_insn_first_p (dominator, scan_start)
4073 && ! reg_set_between_p (bl2->biv->src_reg, loop_start,
4074 dominator)
4075 && ! reg_used_between_p (giv, loop_start, dominator)
4076 && ! reg_used_between_p (giv, giv_insn, loop_end))
4077 {
4078 rtx p;
4079 rtx next;
4080
4081 for (next = NEXT_INSN (dominator); ; next = NEXT_INSN (next))
4082 {
4083 if ((GET_RTX_CLASS (GET_CODE (next)) == 'i'
4084 && (reg_mentioned_p (giv, PATTERN (next))
4085 || reg_set_p (bl2->biv->src_reg, next)))
4086 || GET_CODE (next) == JUMP_INSN)
4087 break;
4088 #ifdef HAVE_cc0
4089 if (GET_RTX_CLASS (GET_CODE (next)) != 'i'
4090 || ! sets_cc0_p (PATTERN (next)))
4091 #endif
4092 dominator = next;
4093 }
4094 if (loop_dump_stream)
4095 fprintf (loop_dump_stream, "move after insn %d\n",
4096 INSN_UID (dominator));
4097 /* Avoid problems with luids by actually moving the insn
4098 and adjusting all luids in the range. */
4099 reorder_insns (giv_insn, giv_insn, dominator);
4100 for (p = dominator; INSN_UID (p) >= max_uid_for_loop; )
4101 p = PREV_INSN (p);
4102 compute_luids (giv_insn, after_giv, INSN_LUID (p));
4103 /* If the only purpose of the init insn is to initialize
4104 this giv, delete it. */
4105 if (single_set (bl->init_insn)
4106 && ! reg_used_between_p (giv, bl->init_insn, loop_start))
4107 delete_insn (bl->init_insn);
4108 }
4109 else if (! loop_insn_first_p (bl2->biv->insn, bl->biv->insn))
4110 {
4111 rtx p = PREV_INSN (giv_insn);
4112 while (INSN_UID (p) >= max_uid_for_loop)
4113 p = PREV_INSN (p);
4114 reorder_insns (giv_insn, giv_insn, bl2->biv->insn);
4115 compute_luids (after_giv, NEXT_INSN (giv_insn),
4116 INSN_LUID (p));
4117 }
4118 /* Remove this biv from the chain. */
4119 if (bl->next)
4120 {
4121 /* We move the following giv from *bl->next into *bl.
4122 We have to update reg_biv_class for that moved biv
4123 to point to its new address. */
4124 *bl = *bl->next;
4125 reg_biv_class[bl->regno] = bl;
4126 }
4127 else
4128 {
4129 *backbl = 0;
4130 break;
4131 }
4132 }
4133
4134 /* If we can't make it a giv,
4135 let biv keep initial value of "itself". */
4136 else if (loop_dump_stream)
4137 fprintf (loop_dump_stream, "is complex\n");
4138 }
4139 }
4140
4141 /* If a biv is unconditionally incremented several times in a row, convert
4142 all but the last increment into a giv. */
4143
4144 /* Get an upper bound for the number of registers
4145 we might have after all bivs have been processed. */
4146 first_increment_giv = max_reg_num ();
4147 for (n_extra_increment = 0, bl = loop_iv_list; bl; bl = bl->next)
4148 n_extra_increment += bl->biv_count - 1;
4149
4150 /* If the loop contains volatile memory references do not allow any
4151 replacements to take place, since this could loose the volatile markers. */
4152 if (n_extra_increment && ! loop_has_volatile)
4153 {
4154 int nregs = first_increment_giv + n_extra_increment;
4155
4156 /* Reallocate reg_iv_type and reg_iv_info. */
4157 VARRAY_GROW (reg_iv_type, nregs);
4158 VARRAY_GROW (reg_iv_info, nregs);
4159
4160 for (bl = loop_iv_list; bl; bl = bl->next)
4161 {
4162 struct induction **vp, *v, *next;
4163 int biv_dead_after_loop = 0;
4164
4165 /* The biv increments lists are in reverse order. Fix this first. */
4166 for (v = bl->biv, bl->biv = 0; v; v = next)
4167 {
4168 next = v->next_iv;
4169 v->next_iv = bl->biv;
4170 bl->biv = v;
4171 }
4172
4173 /* We must guard against the case that an early exit between v->insn
4174 and next->insn leaves the biv live after the loop, since that
4175 would mean that we'd be missing an increment for the final
4176 value. The following test to set biv_dead_after_loop is like
4177 the first part of the test to set bl->eliminable.
4178 We don't check here if we can calculate the final value, since
4179 this can't succeed if we already know that there is a jump
4180 between v->insn and next->insn, yet next->always_executed is
4181 set and next->maybe_multiple is cleared. Such a combination
4182 implies that the jump destination is outside the loop.
4183 If we want to make this check more sophisticated, we should
4184 check each branch between v->insn and next->insn individually
4185 to see if the biv is dead at its destination. */
4186
4187 if (uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4188 && bl->init_insn
4189 && INSN_UID (bl->init_insn) < max_uid_for_loop
4190 && (uid_luid[REGNO_FIRST_UID (bl->regno)]
4191 >= INSN_LUID (bl->init_insn))
4192 #ifdef HAVE_decrement_and_branch_until_zero
4193 && ! bl->nonneg
4194 #endif
4195 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4196 biv_dead_after_loop = 1;
4197
4198 for (vp = &bl->biv, next = *vp; v = next, next = v->next_iv;)
4199 {
4200 HOST_WIDE_INT offset;
4201 rtx set, add_val, old_reg, dest_reg, last_use_insn;
4202 int old_regno, new_regno;
4203
4204 if (! v->always_executed
4205 || v->maybe_multiple
4206 || GET_CODE (v->add_val) != CONST_INT
4207 || ! next->always_executed
4208 || next->maybe_multiple
4209 || ! CONSTANT_P (next->add_val)
4210 || v->mult_val != const1_rtx
4211 || next->mult_val != const1_rtx
4212 || ! (biv_dead_after_loop
4213 || no_jumps_between_p (v->insn, next->insn)))
4214 {
4215 vp = &v->next_iv;
4216 continue;
4217 }
4218 offset = INTVAL (v->add_val);
4219 set = single_set (v->insn);
4220 add_val = plus_constant (next->add_val, offset);
4221 old_reg = v->dest_reg;
4222 dest_reg = gen_reg_rtx (v->mode);
4223
4224 /* Unlike reg_iv_type / reg_iv_info, the other three arrays
4225 have been allocated with some slop space, so we may not
4226 actually need to reallocate them. If we do, the following
4227 if statement will be executed just once in this loop. */
4228 if ((unsigned) max_reg_num () > n_times_set->num_elements)
4229 {
4230 /* Grow all the remaining arrays. */
4231 VARRAY_GROW (set_in_loop, nregs);
4232 VARRAY_GROW (n_times_set, nregs);
4233 VARRAY_GROW (may_not_optimize, nregs);
4234 VARRAY_GROW (reg_single_usage, nregs);
4235 }
4236
4237 if (! validate_change (next->insn, next->location, add_val, 0))
4238 {
4239 vp = &v->next_iv;
4240 continue;
4241 }
4242
4243 /* Here we can try to eliminate the increment by combining
4244 it into the uses. */
4245
4246 /* Set last_use_insn so that we can check against it. */
4247
4248 for (last_use_insn = v->insn, p = NEXT_INSN (v->insn);
4249 p != next->insn;
4250 p = next_insn_in_loop (p, scan_start, end, loop_top))
4251 {
4252 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
4253 continue;
4254 if (reg_mentioned_p (old_reg, PATTERN (p)))
4255 {
4256 last_use_insn = p;
4257 }
4258 }
4259
4260 /* If we can't get the LUIDs for the insns, we can't
4261 calculate the lifetime. This is likely from unrolling
4262 of an inner loop, so there is little point in making this
4263 a DEST_REG giv anyways. */
4264 if (INSN_UID (v->insn) >= max_uid_for_loop
4265 || INSN_UID (last_use_insn) >= max_uid_for_loop
4266 || ! validate_change (v->insn, &SET_DEST (set), dest_reg, 0))
4267 {
4268 /* Change the increment at NEXT back to what it was. */
4269 if (! validate_change (next->insn, next->location,
4270 next->add_val, 0))
4271 abort ();
4272 vp = &v->next_iv;
4273 continue;
4274 }
4275 next->add_val = add_val;
4276 v->dest_reg = dest_reg;
4277 v->giv_type = DEST_REG;
4278 v->location = &SET_SRC (set);
4279 v->cant_derive = 0;
4280 v->combined_with = 0;
4281 v->maybe_dead = 0;
4282 v->derive_adjustment = 0;
4283 v->same = 0;
4284 v->ignore = 0;
4285 v->new_reg = 0;
4286 v->final_value = 0;
4287 v->same_insn = 0;
4288 v->auto_inc_opt = 0;
4289 v->unrolled = 0;
4290 v->shared = 0;
4291 v->derived_from = 0;
4292 v->always_computable = 1;
4293 v->always_executed = 1;
4294 v->replaceable = 1;
4295 v->no_const_addval = 0;
4296
4297 old_regno = REGNO (old_reg);
4298 new_regno = REGNO (dest_reg);
4299 VARRAY_INT (set_in_loop, old_regno)--;
4300 VARRAY_INT (set_in_loop, new_regno) = 1;
4301 VARRAY_INT (n_times_set, old_regno)--;
4302 VARRAY_INT (n_times_set, new_regno) = 1;
4303 VARRAY_CHAR (may_not_optimize, new_regno) = 0;
4304
4305 REG_IV_TYPE (new_regno) = GENERAL_INDUCT;
4306 REG_IV_INFO (new_regno) = v;
4307
4308 /* Remove the increment from the list of biv increments,
4309 and record it as a giv. */
4310 *vp = next;
4311 bl->biv_count--;
4312 v->next_iv = bl->giv;
4313 bl->giv = v;
4314 bl->giv_count++;
4315 v->benefit = rtx_cost (SET_SRC (set), SET);
4316 bl->total_benefit += v->benefit;
4317
4318 /* Now replace the biv with DEST_REG in all insns between
4319 the replaced increment and the next increment, and
4320 remember the last insn that needed a replacement. */
4321 for (last_use_insn = v->insn, p = NEXT_INSN (v->insn);
4322 p != next->insn;
4323 p = next_insn_in_loop (p, scan_start, end, loop_top))
4324 {
4325 rtx note;
4326
4327 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
4328 continue;
4329 if (reg_mentioned_p (old_reg, PATTERN (p)))
4330 {
4331 last_use_insn = p;
4332 if (! validate_replace_rtx (old_reg, dest_reg, p))
4333 abort ();
4334 }
4335 for (note = REG_NOTES (p); note; note = XEXP (note, 1))
4336 {
4337 if (GET_CODE (note) == EXPR_LIST)
4338 XEXP (note, 0)
4339 = replace_rtx (XEXP (note, 0), old_reg, dest_reg);
4340 }
4341 }
4342
4343 v->last_use = last_use_insn;
4344 v->lifetime = INSN_LUID (v->insn) - INSN_LUID (last_use_insn);
4345 /* If the lifetime is zero, it means that this register is really
4346 a dead store. So mark this as a giv that can be ignored.
4347 This will not prevent the biv from being eliminated. */
4348 if (v->lifetime == 0)
4349 v->ignore = 1;
4350
4351 if (loop_dump_stream)
4352 fprintf (loop_dump_stream,
4353 "Increment %d of biv %d converted to giv %d.\n\n",
4354 INSN_UID (v->insn), old_regno, new_regno);
4355 }
4356 }
4357 }
4358 last_increment_giv = max_reg_num () - 1;
4359
4360 /* Search the loop for general induction variables. */
4361
4362 /* A register is a giv if: it is only set once, it is a function of a
4363 biv and a constant (or invariant), and it is not a biv. */
4364
4365 not_every_iteration = 0;
4366 loop_depth = 0;
4367 p = scan_start;
4368 while (1)
4369 {
4370 p = NEXT_INSN (p);
4371 /* At end of a straight-in loop, we are done.
4372 At end of a loop entered at the bottom, scan the top. */
4373 if (p == scan_start)
4374 break;
4375 if (p == end)
4376 {
4377 if (loop_top != 0)
4378 p = loop_top;
4379 else
4380 break;
4381 if (p == scan_start)
4382 break;
4383 }
4384
4385 /* Look for a general induction variable in a register. */
4386 if (GET_CODE (p) == INSN
4387 && (set = single_set (p))
4388 && GET_CODE (SET_DEST (set)) == REG
4389 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
4390 {
4391 rtx src_reg;
4392 rtx add_val;
4393 rtx mult_val;
4394 int benefit;
4395 rtx regnote = 0;
4396 rtx last_consec_insn;
4397
4398 dest_reg = SET_DEST (set);
4399 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
4400 continue;
4401
4402 if (/* SET_SRC is a giv. */
4403 (general_induction_var (SET_SRC (set), &src_reg, &add_val,
4404 &mult_val, 0, &benefit)
4405 /* Equivalent expression is a giv. */
4406 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
4407 && general_induction_var (XEXP (regnote, 0), &src_reg,
4408 &add_val, &mult_val, 0,
4409 &benefit)))
4410 /* Don't try to handle any regs made by loop optimization.
4411 We have nothing on them in regno_first_uid, etc. */
4412 && REGNO (dest_reg) < max_reg_before_loop
4413 /* Don't recognize a BASIC_INDUCT_VAR here. */
4414 && dest_reg != src_reg
4415 /* This must be the only place where the register is set. */
4416 && (VARRAY_INT (n_times_set, REGNO (dest_reg)) == 1
4417 /* or all sets must be consecutive and make a giv. */
4418 || (benefit = consec_sets_giv (benefit, p,
4419 src_reg, dest_reg,
4420 &add_val, &mult_val,
4421 &last_consec_insn))))
4422 {
4423 struct induction *v
4424 = (struct induction *) alloca (sizeof (struct induction));
4425
4426 /* If this is a library call, increase benefit. */
4427 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
4428 benefit += libcall_benefit (p);
4429
4430 /* Skip the consecutive insns, if there are any. */
4431 if (VARRAY_INT (n_times_set, REGNO (dest_reg)) != 1)
4432 p = last_consec_insn;
4433
4434 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
4435 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
4436 loop_end);
4437
4438 }
4439 }
4440
4441 #ifndef DONT_REDUCE_ADDR
4442 /* Look for givs which are memory addresses. */
4443 /* This resulted in worse code on a VAX 8600. I wonder if it
4444 still does. */
4445 if (GET_CODE (p) == INSN)
4446 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
4447 loop_end);
4448 #endif
4449
4450 /* Update the status of whether giv can derive other givs. This can
4451 change when we pass a label or an insn that updates a biv. */
4452 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4453 || GET_CODE (p) == CODE_LABEL)
4454 update_giv_derive (p);
4455
4456 /* Past a jump, we get to insns for which we can't count
4457 on whether they will be executed during each iteration. */
4458 /* This code appears twice in strength_reduce. There is also similar
4459 code in scan_loop. */
4460 if (GET_CODE (p) == JUMP_INSN
4461 /* If we enter the loop in the middle, and scan around to the
4462 beginning, don't set not_every_iteration for that.
4463 This can be any kind of jump, since we want to know if insns
4464 will be executed if the loop is executed. */
4465 && ! (JUMP_LABEL (p) == loop_top
4466 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
4467 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
4468 {
4469 rtx label = 0;
4470
4471 /* If this is a jump outside the loop, then it also doesn't
4472 matter. Check to see if the target of this branch is on the
4473 loop_number_exits_labels list. */
4474
4475 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
4476 label;
4477 label = LABEL_NEXTREF (label))
4478 if (XEXP (label, 0) == JUMP_LABEL (p))
4479 break;
4480
4481 if (! label)
4482 not_every_iteration = 1;
4483 }
4484
4485 else if (GET_CODE (p) == NOTE)
4486 {
4487 /* At the virtual top of a converted loop, insns are again known to
4488 be executed each iteration: logically, the loop begins here
4489 even though the exit code has been duplicated.
4490
4491 Insns are also again known to be executed each iteration at
4492 the LOOP_CONT note. */
4493 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
4494 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
4495 && loop_depth == 0)
4496 not_every_iteration = 0;
4497 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
4498 loop_depth++;
4499 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
4500 loop_depth--;
4501 }
4502
4503 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4504 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4505 or not an insn is known to be executed each iteration of the
4506 loop, whether or not any iterations are known to occur.
4507
4508 Therefore, if we have just passed a label and have no more labels
4509 between here and the test insn of the loop, we know these insns
4510 will be executed each iteration. */
4511
4512 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
4513 && no_labels_between_p (p, loop_end)
4514 && loop_insn_first_p (p, loop_cont))
4515 not_every_iteration = 0;
4516 }
4517
4518 /* Try to calculate and save the number of loop iterations. This is
4519 set to zero if the actual number can not be calculated. This must
4520 be called after all giv's have been identified, since otherwise it may
4521 fail if the iteration variable is a giv. */
4522
4523 loop_iterations (loop_start, loop_end, loop_info);
4524
4525 /* Now for each giv for which we still don't know whether or not it is
4526 replaceable, check to see if it is replaceable because its final value
4527 can be calculated. This must be done after loop_iterations is called,
4528 so that final_giv_value will work correctly. */
4529
4530 for (bl = loop_iv_list; bl; bl = bl->next)
4531 {
4532 struct induction *v;
4533
4534 for (v = bl->giv; v; v = v->next_iv)
4535 if (! v->replaceable && ! v->not_replaceable)
4536 check_final_value (v, loop_start, loop_end, loop_info->n_iterations);
4537 }
4538
4539 /* Try to prove that the loop counter variable (if any) is always
4540 nonnegative; if so, record that fact with a REG_NONNEG note
4541 so that "decrement and branch until zero" insn can be used. */
4542 check_dbra_loop (loop_end, insn_count, loop_start, loop_info);
4543
4544 /* Create reg_map to hold substitutions for replaceable giv regs.
4545 Some givs might have been made from biv increments, so look at
4546 reg_iv_type for a suitable size. */
4547 reg_map_size = reg_iv_type->num_elements;
4548 reg_map = (rtx *) alloca (reg_map_size * sizeof (rtx));
4549 bzero ((char *) reg_map, reg_map_size * sizeof (rtx));
4550
4551 /* Examine each iv class for feasibility of strength reduction/induction
4552 variable elimination. */
4553
4554 for (bl = loop_iv_list; bl; bl = bl->next)
4555 {
4556 struct induction *v;
4557 int benefit;
4558 int all_reduced;
4559 rtx final_value = 0;
4560 unsigned nregs;
4561
4562 /* Test whether it will be possible to eliminate this biv
4563 provided all givs are reduced. This is possible if either
4564 the reg is not used outside the loop, or we can compute
4565 what its final value will be.
4566
4567 For architectures with a decrement_and_branch_until_zero insn,
4568 don't do this if we put a REG_NONNEG note on the endtest for
4569 this biv. */
4570
4571 /* Compare against bl->init_insn rather than loop_start.
4572 We aren't concerned with any uses of the biv between
4573 init_insn and loop_start since these won't be affected
4574 by the value of the biv elsewhere in the function, so
4575 long as init_insn doesn't use the biv itself.
4576 March 14, 1989 -- self@bayes.arc.nasa.gov */
4577
4578 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4579 && bl->init_insn
4580 && INSN_UID (bl->init_insn) < max_uid_for_loop
4581 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
4582 #ifdef HAVE_decrement_and_branch_until_zero
4583 && ! bl->nonneg
4584 #endif
4585 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4586 || ((final_value = final_biv_value (bl, loop_start, loop_end,
4587 loop_info->n_iterations))
4588 #ifdef HAVE_decrement_and_branch_until_zero
4589 && ! bl->nonneg
4590 #endif
4591 ))
4592 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
4593 threshold, insn_count);
4594 else
4595 {
4596 if (loop_dump_stream)
4597 {
4598 fprintf (loop_dump_stream,
4599 "Cannot eliminate biv %d.\n",
4600 bl->regno);
4601 fprintf (loop_dump_stream,
4602 "First use: insn %d, last use: insn %d.\n",
4603 REGNO_FIRST_UID (bl->regno),
4604 REGNO_LAST_UID (bl->regno));
4605 }
4606 }
4607
4608 /* Combine all giv's for this iv_class. */
4609 combine_givs (bl);
4610
4611 /* This will be true at the end, if all givs which depend on this
4612 biv have been strength reduced.
4613 We can't (currently) eliminate the biv unless this is so. */
4614 all_reduced = 1;
4615
4616 /* Check each giv in this class to see if we will benefit by reducing
4617 it. Skip giv's combined with others. */
4618 for (v = bl->giv; v; v = v->next_iv)
4619 {
4620 struct induction *tv;
4621
4622 if (v->ignore || v->same)
4623 continue;
4624
4625 benefit = v->benefit;
4626
4627 /* Reduce benefit if not replaceable, since we will insert
4628 a move-insn to replace the insn that calculates this giv.
4629 Don't do this unless the giv is a user variable, since it
4630 will often be marked non-replaceable because of the duplication
4631 of the exit code outside the loop. In such a case, the copies
4632 we insert are dead and will be deleted. So they don't have
4633 a cost. Similar situations exist. */
4634 /* ??? The new final_[bg]iv_value code does a much better job
4635 of finding replaceable giv's, and hence this code may no longer
4636 be necessary. */
4637 if (! v->replaceable && ! bl->eliminable
4638 && REG_USERVAR_P (v->dest_reg))
4639 benefit -= copy_cost;
4640
4641 /* Decrease the benefit to count the add-insns that we will
4642 insert to increment the reduced reg for the giv. */
4643 benefit -= add_cost * bl->biv_count;
4644
4645 /* Decide whether to strength-reduce this giv or to leave the code
4646 unchanged (recompute it from the biv each time it is used).
4647 This decision can be made independently for each giv. */
4648
4649 #ifdef AUTO_INC_DEC
4650 /* Attempt to guess whether autoincrement will handle some of the
4651 new add insns; if so, increase BENEFIT (undo the subtraction of
4652 add_cost that was done above). */
4653 if (v->giv_type == DEST_ADDR
4654 && GET_CODE (v->mult_val) == CONST_INT)
4655 {
4656 if (HAVE_POST_INCREMENT
4657 && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4658 benefit += add_cost * bl->biv_count;
4659 else if (HAVE_PRE_INCREMENT
4660 && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4661 benefit += add_cost * bl->biv_count;
4662 else if (HAVE_POST_DECREMENT
4663 && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4664 benefit += add_cost * bl->biv_count;
4665 else if (HAVE_PRE_DECREMENT
4666 && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4667 benefit += add_cost * bl->biv_count;
4668 }
4669 #endif
4670
4671 /* If an insn is not to be strength reduced, then set its ignore
4672 flag, and clear all_reduced. */
4673
4674 /* A giv that depends on a reversed biv must be reduced if it is
4675 used after the loop exit, otherwise, it would have the wrong
4676 value after the loop exit. To make it simple, just reduce all
4677 of such giv's whether or not we know they are used after the loop
4678 exit. */
4679
4680 if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
4681 && ! bl->reversed )
4682 {
4683 if (loop_dump_stream)
4684 fprintf (loop_dump_stream,
4685 "giv of insn %d not worth while, %d vs %d.\n",
4686 INSN_UID (v->insn),
4687 v->lifetime * threshold * benefit, insn_count);
4688 v->ignore = 1;
4689 all_reduced = 0;
4690 }
4691 else
4692 {
4693 /* Check that we can increment the reduced giv without a
4694 multiply insn. If not, reject it. */
4695
4696 for (tv = bl->biv; tv; tv = tv->next_iv)
4697 if (tv->mult_val == const1_rtx
4698 && ! product_cheap_p (tv->add_val, v->mult_val))
4699 {
4700 if (loop_dump_stream)
4701 fprintf (loop_dump_stream,
4702 "giv of insn %d: would need a multiply.\n",
4703 INSN_UID (v->insn));
4704 v->ignore = 1;
4705 all_reduced = 0;
4706 break;
4707 }
4708 }
4709 }
4710
4711 /* Check for givs whose first use is their definition and whose
4712 last use is the definition of another giv. If so, it is likely
4713 dead and should not be used to derive another giv nor to
4714 eliminate a biv. */
4715 for (v = bl->giv; v; v = v->next_iv)
4716 {
4717 if (v->ignore
4718 || (v->same && v->same->ignore))
4719 continue;
4720
4721 if (v->last_use)
4722 {
4723 struct induction *v1;
4724
4725 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4726 if (v->last_use == v1->insn)
4727 v->maybe_dead = 1;
4728 }
4729 else if (v->giv_type == DEST_REG
4730 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4731 {
4732 struct induction *v1;
4733
4734 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4735 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4736 v->maybe_dead = 1;
4737 }
4738 }
4739
4740 /* Now that we know which givs will be reduced, try to rearrange the
4741 combinations to reduce register pressure.
4742 recombine_givs calls find_life_end, which needs reg_iv_type and
4743 reg_iv_info to be valid for all pseudos. We do the necessary
4744 reallocation here since it allows to check if there are still
4745 more bivs to process. */
4746 nregs = max_reg_num ();
4747 if (nregs > reg_iv_type->num_elements)
4748 {
4749 /* If there are still more bivs to process, allocate some slack
4750 space so that we're not constantly reallocating these arrays. */
4751 if (bl->next)
4752 nregs += nregs / 4;
4753 /* Reallocate reg_iv_type and reg_iv_info. */
4754 VARRAY_GROW (reg_iv_type, nregs);
4755 VARRAY_GROW (reg_iv_info, nregs);
4756 }
4757 recombine_givs (bl, loop_start, loop_end, unroll_p);
4758
4759 /* Reduce each giv that we decided to reduce. */
4760
4761 for (v = bl->giv; v; v = v->next_iv)
4762 {
4763 struct induction *tv;
4764 if (! v->ignore && v->same == 0)
4765 {
4766 int auto_inc_opt = 0;
4767
4768 /* If the code for derived givs immediately below has already
4769 allocated a new_reg, we must keep it. */
4770 if (! v->new_reg)
4771 v->new_reg = gen_reg_rtx (v->mode);
4772
4773 if (v->derived_from)
4774 {
4775 struct induction *d = v->derived_from;
4776
4777 /* In case d->dest_reg is not replaceable, we have
4778 to replace it in v->insn now. */
4779 if (! d->new_reg)
4780 d->new_reg = gen_reg_rtx (d->mode);
4781 PATTERN (v->insn)
4782 = replace_rtx (PATTERN (v->insn), d->dest_reg, d->new_reg);
4783 PATTERN (v->insn)
4784 = replace_rtx (PATTERN (v->insn), v->dest_reg, v->new_reg);
4785 /* For each place where the biv is incremented, add an
4786 insn to set the new, reduced reg for the giv.
4787 We used to do this only for biv_count != 1, but
4788 this fails when there is a giv after a single biv
4789 increment, e.g. when the last giv was expressed as
4790 pre-decrement. */
4791 for (tv = bl->biv; tv; tv = tv->next_iv)
4792 {
4793 /* We always emit reduced giv increments before the
4794 biv increment when bl->biv_count != 1. So by
4795 emitting the add insns for derived givs after the
4796 biv increment, they pick up the updated value of
4797 the reduced giv.
4798 If the reduced giv is processed with
4799 auto_inc_opt == 1, then it is incremented earlier
4800 than the biv, hence we'll still pick up the right
4801 value.
4802 If it's processed with auto_inc_opt == -1,
4803 that implies that the biv increment is before the
4804 first reduced giv's use. The derived giv's lifetime
4805 is after the reduced giv's lifetime, hence in this
4806 case, the biv increment doesn't matter. */
4807 emit_insn_after (copy_rtx (PATTERN (v->insn)), tv->insn);
4808 }
4809 continue;
4810 }
4811
4812 #ifdef AUTO_INC_DEC
4813 /* If the target has auto-increment addressing modes, and
4814 this is an address giv, then try to put the increment
4815 immediately after its use, so that flow can create an
4816 auto-increment addressing mode. */
4817 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4818 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4819 /* We don't handle reversed biv's because bl->biv->insn
4820 does not have a valid INSN_LUID. */
4821 && ! bl->reversed
4822 && v->always_executed && ! v->maybe_multiple
4823 && INSN_UID (v->insn) < max_uid_for_loop)
4824 {
4825 /* If other giv's have been combined with this one, then
4826 this will work only if all uses of the other giv's occur
4827 before this giv's insn. This is difficult to check.
4828
4829 We simplify this by looking for the common case where
4830 there is one DEST_REG giv, and this giv's insn is the
4831 last use of the dest_reg of that DEST_REG giv. If the
4832 increment occurs after the address giv, then we can
4833 perform the optimization. (Otherwise, the increment
4834 would have to go before other_giv, and we would not be
4835 able to combine it with the address giv to get an
4836 auto-inc address.) */
4837 if (v->combined_with)
4838 {
4839 struct induction *other_giv = 0;
4840
4841 for (tv = bl->giv; tv; tv = tv->next_iv)
4842 if (tv->same == v)
4843 {
4844 if (other_giv)
4845 break;
4846 else
4847 other_giv = tv;
4848 }
4849 if (! tv && other_giv
4850 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4851 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4852 == INSN_UID (v->insn))
4853 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4854 auto_inc_opt = 1;
4855 }
4856 /* Check for case where increment is before the address
4857 giv. Do this test in "loop order". */
4858 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4859 && (INSN_LUID (v->insn) < INSN_LUID (scan_start)
4860 || (INSN_LUID (bl->biv->insn)
4861 > INSN_LUID (scan_start))))
4862 || (INSN_LUID (v->insn) < INSN_LUID (scan_start)
4863 && (INSN_LUID (scan_start)
4864 < INSN_LUID (bl->biv->insn))))
4865 auto_inc_opt = -1;
4866 else
4867 auto_inc_opt = 1;
4868
4869 #ifdef HAVE_cc0
4870 {
4871 rtx prev;
4872
4873 /* We can't put an insn immediately after one setting
4874 cc0, or immediately before one using cc0. */
4875 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4876 || (auto_inc_opt == -1
4877 && (prev = prev_nonnote_insn (v->insn)) != 0
4878 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4879 && sets_cc0_p (PATTERN (prev))))
4880 auto_inc_opt = 0;
4881 }
4882 #endif
4883
4884 if (auto_inc_opt)
4885 v->auto_inc_opt = 1;
4886 }
4887 #endif
4888
4889 /* For each place where the biv is incremented, add an insn
4890 to increment the new, reduced reg for the giv. */
4891 for (tv = bl->biv; tv; tv = tv->next_iv)
4892 {
4893 rtx insert_before;
4894
4895 if (! auto_inc_opt)
4896 insert_before = tv->insn;
4897 else if (auto_inc_opt == 1)
4898 insert_before = NEXT_INSN (v->insn);
4899 else
4900 insert_before = v->insn;
4901
4902 if (tv->mult_val == const1_rtx)
4903 emit_iv_add_mult (tv->add_val, v->mult_val,
4904 v->new_reg, v->new_reg, insert_before);
4905 else /* tv->mult_val == const0_rtx */
4906 /* A multiply is acceptable here
4907 since this is presumed to be seldom executed. */
4908 emit_iv_add_mult (tv->add_val, v->mult_val,
4909 v->add_val, v->new_reg, insert_before);
4910 }
4911
4912 /* Add code at loop start to initialize giv's reduced reg. */
4913
4914 emit_iv_add_mult (bl->initial_value, v->mult_val,
4915 v->add_val, v->new_reg, loop_start);
4916 }
4917 }
4918
4919 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4920 as not reduced.
4921
4922 For each giv register that can be reduced now: if replaceable,
4923 substitute reduced reg wherever the old giv occurs;
4924 else add new move insn "giv_reg = reduced_reg". */
4925
4926 for (v = bl->giv; v; v = v->next_iv)
4927 {
4928 if (v->same && v->same->ignore)
4929 v->ignore = 1;
4930
4931 if (v->ignore)
4932 continue;
4933
4934 /* Update expression if this was combined, in case other giv was
4935 replaced. */
4936 if (v->same)
4937 v->new_reg = replace_rtx (v->new_reg,
4938 v->same->dest_reg, v->same->new_reg);
4939
4940 if (v->giv_type == DEST_ADDR)
4941 /* Store reduced reg as the address in the memref where we found
4942 this giv. */
4943 validate_change (v->insn, v->location, v->new_reg, 0);
4944 else if (v->replaceable)
4945 {
4946 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4947
4948 #if 0
4949 /* I can no longer duplicate the original problem. Perhaps
4950 this is unnecessary now? */
4951
4952 /* Replaceable; it isn't strictly necessary to delete the old
4953 insn and emit a new one, because v->dest_reg is now dead.
4954
4955 However, especially when unrolling loops, the special
4956 handling for (set REG0 REG1) in the second cse pass may
4957 make v->dest_reg live again. To avoid this problem, emit
4958 an insn to set the original giv reg from the reduced giv.
4959 We can not delete the original insn, since it may be part
4960 of a LIBCALL, and the code in flow that eliminates dead
4961 libcalls will fail if it is deleted. */
4962 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4963 v->insn);
4964 #endif
4965 }
4966 else
4967 {
4968 /* Not replaceable; emit an insn to set the original giv reg from
4969 the reduced giv, same as above. */
4970 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4971 v->insn);
4972 }
4973
4974 /* When a loop is reversed, givs which depend on the reversed
4975 biv, and which are live outside the loop, must be set to their
4976 correct final value. This insn is only needed if the giv is
4977 not replaceable. The correct final value is the same as the
4978 value that the giv starts the reversed loop with. */
4979 if (bl->reversed && ! v->replaceable)
4980 emit_iv_add_mult (bl->initial_value, v->mult_val,
4981 v->add_val, v->dest_reg, end_insert_before);
4982 else if (v->final_value)
4983 {
4984 rtx insert_before;
4985
4986 /* If the loop has multiple exits, emit the insn before the
4987 loop to ensure that it will always be executed no matter
4988 how the loop exits. Otherwise, emit the insn after the loop,
4989 since this is slightly more efficient. */
4990 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4991 insert_before = loop_start;
4992 else
4993 insert_before = end_insert_before;
4994 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4995 insert_before);
4996
4997 #if 0
4998 /* If the insn to set the final value of the giv was emitted
4999 before the loop, then we must delete the insn inside the loop
5000 that sets it. If this is a LIBCALL, then we must delete
5001 every insn in the libcall. Note, however, that
5002 final_giv_value will only succeed when there are multiple
5003 exits if the giv is dead at each exit, hence it does not
5004 matter that the original insn remains because it is dead
5005 anyways. */
5006 /* Delete the insn inside the loop that sets the giv since
5007 the giv is now set before (or after) the loop. */
5008 delete_insn (v->insn);
5009 #endif
5010 }
5011
5012 if (loop_dump_stream)
5013 {
5014 fprintf (loop_dump_stream, "giv at %d reduced to ",
5015 INSN_UID (v->insn));
5016 print_rtl (loop_dump_stream, v->new_reg);
5017 fprintf (loop_dump_stream, "\n");
5018 }
5019 }
5020
5021 /* All the givs based on the biv bl have been reduced if they
5022 merit it. */
5023
5024 /* For each giv not marked as maybe dead that has been combined with a
5025 second giv, clear any "maybe dead" mark on that second giv.
5026 v->new_reg will either be or refer to the register of the giv it
5027 combined with.
5028
5029 Doing this clearing avoids problems in biv elimination where a
5030 giv's new_reg is a complex value that can't be put in the insn but
5031 the giv combined with (with a reg as new_reg) is marked maybe_dead.
5032 Since the register will be used in either case, we'd prefer it be
5033 used from the simpler giv. */
5034
5035 for (v = bl->giv; v; v = v->next_iv)
5036 if (! v->maybe_dead && v->same)
5037 v->same->maybe_dead = 0;
5038
5039 /* Try to eliminate the biv, if it is a candidate.
5040 This won't work if ! all_reduced,
5041 since the givs we planned to use might not have been reduced.
5042
5043 We have to be careful that we didn't initially think we could eliminate
5044 this biv because of a giv that we now think may be dead and shouldn't
5045 be used as a biv replacement.
5046
5047 Also, there is the possibility that we may have a giv that looks
5048 like it can be used to eliminate a biv, but the resulting insn
5049 isn't valid. This can happen, for example, on the 88k, where a
5050 JUMP_INSN can compare a register only with zero. Attempts to
5051 replace it with a compare with a constant will fail.
5052
5053 Note that in cases where this call fails, we may have replaced some
5054 of the occurrences of the biv with a giv, but no harm was done in
5055 doing so in the rare cases where it can occur. */
5056
5057 if (all_reduced == 1 && bl->eliminable
5058 && maybe_eliminate_biv (bl, loop_start, end, 1,
5059 threshold, insn_count))
5060
5061 {
5062 /* ?? If we created a new test to bypass the loop entirely,
5063 or otherwise drop straight in, based on this test, then
5064 we might want to rewrite it also. This way some later
5065 pass has more hope of removing the initialization of this
5066 biv entirely. */
5067
5068 /* If final_value != 0, then the biv may be used after loop end
5069 and we must emit an insn to set it just in case.
5070
5071 Reversed bivs already have an insn after the loop setting their
5072 value, so we don't need another one. We can't calculate the
5073 proper final value for such a biv here anyways. */
5074 if (final_value != 0 && ! bl->reversed)
5075 {
5076 rtx insert_before;
5077
5078 /* If the loop has multiple exits, emit the insn before the
5079 loop to ensure that it will always be executed no matter
5080 how the loop exits. Otherwise, emit the insn after the
5081 loop, since this is slightly more efficient. */
5082 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
5083 insert_before = loop_start;
5084 else
5085 insert_before = end_insert_before;
5086
5087 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
5088 end_insert_before);
5089 }
5090
5091 #if 0
5092 /* Delete all of the instructions inside the loop which set
5093 the biv, as they are all dead. If is safe to delete them,
5094 because an insn setting a biv will never be part of a libcall. */
5095 /* However, deleting them will invalidate the regno_last_uid info,
5096 so keeping them around is more convenient. Final_biv_value
5097 will only succeed when there are multiple exits if the biv
5098 is dead at each exit, hence it does not matter that the original
5099 insn remains, because it is dead anyways. */
5100 for (v = bl->biv; v; v = v->next_iv)
5101 delete_insn (v->insn);
5102 #endif
5103
5104 if (loop_dump_stream)
5105 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
5106 bl->regno);
5107 }
5108 }
5109
5110 /* Go through all the instructions in the loop, making all the
5111 register substitutions scheduled in REG_MAP. */
5112
5113 for (p = loop_start; p != end; p = NEXT_INSN (p))
5114 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5115 || GET_CODE (p) == CALL_INSN)
5116 {
5117 replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
5118 replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
5119 INSN_CODE (p) = -1;
5120 }
5121
5122 /* Unroll loops from within strength reduction so that we can use the
5123 induction variable information that strength_reduce has already
5124 collected. */
5125
5126 if (unroll_p)
5127 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
5128 loop_info, 1);
5129
5130 #ifdef HAVE_decrement_and_branch_on_count
5131 /* Instrument the loop with BCT insn. */
5132 if (HAVE_decrement_and_branch_on_count && bct_p
5133 && flag_branch_on_count_reg)
5134 insert_bct (loop_start, loop_end, loop_info);
5135 #endif /* HAVE_decrement_and_branch_on_count */
5136
5137 if (loop_dump_stream)
5138 fprintf (loop_dump_stream, "\n");
5139 VARRAY_FREE (reg_iv_type);
5140 VARRAY_FREE (reg_iv_info);
5141 }
5142 \f
5143 /* Return 1 if X is a valid source for an initial value (or as value being
5144 compared against in an initial test).
5145
5146 X must be either a register or constant and must not be clobbered between
5147 the current insn and the start of the loop.
5148
5149 INSN is the insn containing X. */
5150
5151 static int
5152 valid_initial_value_p (x, insn, call_seen, loop_start)
5153 rtx x;
5154 rtx insn;
5155 int call_seen;
5156 rtx loop_start;
5157 {
5158 if (CONSTANT_P (x))
5159 return 1;
5160
5161 /* Only consider pseudos we know about initialized in insns whose luids
5162 we know. */
5163 if (GET_CODE (x) != REG
5164 || REGNO (x) >= max_reg_before_loop)
5165 return 0;
5166
5167 /* Don't use call-clobbered registers across a call which clobbers it. On
5168 some machines, don't use any hard registers at all. */
5169 if (REGNO (x) < FIRST_PSEUDO_REGISTER
5170 && (SMALL_REGISTER_CLASSES
5171 || (call_used_regs[REGNO (x)] && call_seen)))
5172 return 0;
5173
5174 /* Don't use registers that have been clobbered before the start of the
5175 loop. */
5176 if (reg_set_between_p (x, insn, loop_start))
5177 return 0;
5178
5179 return 1;
5180 }
5181 \f
5182 /* Scan X for memory refs and check each memory address
5183 as a possible giv. INSN is the insn whose pattern X comes from.
5184 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
5185 every loop iteration. */
5186
5187 static void
5188 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
5189 rtx x;
5190 rtx insn;
5191 int not_every_iteration;
5192 rtx loop_start, loop_end;
5193 {
5194 register int i, j;
5195 register enum rtx_code code;
5196 register char *fmt;
5197
5198 if (x == 0)
5199 return;
5200
5201 code = GET_CODE (x);
5202 switch (code)
5203 {
5204 case REG:
5205 case CONST_INT:
5206 case CONST:
5207 case CONST_DOUBLE:
5208 case SYMBOL_REF:
5209 case LABEL_REF:
5210 case PC:
5211 case CC0:
5212 case ADDR_VEC:
5213 case ADDR_DIFF_VEC:
5214 case USE:
5215 case CLOBBER:
5216 return;
5217
5218 case MEM:
5219 {
5220 rtx src_reg;
5221 rtx add_val;
5222 rtx mult_val;
5223 int benefit;
5224
5225 /* This code used to disable creating GIVs with mult_val == 1 and
5226 add_val == 0. However, this leads to lost optimizations when
5227 it comes time to combine a set of related DEST_ADDR GIVs, since
5228 this one would not be seen. */
5229
5230 if (general_induction_var (XEXP (x, 0), &src_reg, &add_val,
5231 &mult_val, 1, &benefit))
5232 {
5233 /* Found one; record it. */
5234 struct induction *v
5235 = (struct induction *) oballoc (sizeof (struct induction));
5236
5237 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
5238 add_val, benefit, DEST_ADDR, not_every_iteration,
5239 &XEXP (x, 0), loop_start, loop_end);
5240
5241 v->mem_mode = GET_MODE (x);
5242 }
5243 }
5244 return;
5245
5246 default:
5247 break;
5248 }
5249
5250 /* Recursively scan the subexpressions for other mem refs. */
5251
5252 fmt = GET_RTX_FORMAT (code);
5253 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5254 if (fmt[i] == 'e')
5255 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
5256 loop_end);
5257 else if (fmt[i] == 'E')
5258 for (j = 0; j < XVECLEN (x, i); j++)
5259 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
5260 loop_start, loop_end);
5261 }
5262 \f
5263 /* Fill in the data about one biv update.
5264 V is the `struct induction' in which we record the biv. (It is
5265 allocated by the caller, with alloca.)
5266 INSN is the insn that sets it.
5267 DEST_REG is the biv's reg.
5268
5269 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
5270 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
5271 being set to INC_VAL.
5272
5273 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
5274 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
5275 can be executed more than once per iteration. If MAYBE_MULTIPLE
5276 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
5277 executed exactly once per iteration. */
5278
5279 static void
5280 record_biv (v, insn, dest_reg, inc_val, mult_val, location,
5281 not_every_iteration, maybe_multiple)
5282 struct induction *v;
5283 rtx insn;
5284 rtx dest_reg;
5285 rtx inc_val;
5286 rtx mult_val;
5287 rtx *location;
5288 int not_every_iteration;
5289 int maybe_multiple;
5290 {
5291 struct iv_class *bl;
5292
5293 v->insn = insn;
5294 v->src_reg = dest_reg;
5295 v->dest_reg = dest_reg;
5296 v->mult_val = mult_val;
5297 v->add_val = inc_val;
5298 v->location = location;
5299 v->mode = GET_MODE (dest_reg);
5300 v->always_computable = ! not_every_iteration;
5301 v->always_executed = ! not_every_iteration;
5302 v->maybe_multiple = maybe_multiple;
5303
5304 /* Add this to the reg's iv_class, creating a class
5305 if this is the first incrementation of the reg. */
5306
5307 bl = reg_biv_class[REGNO (dest_reg)];
5308 if (bl == 0)
5309 {
5310 /* Create and initialize new iv_class. */
5311
5312 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
5313
5314 bl->regno = REGNO (dest_reg);
5315 bl->biv = 0;
5316 bl->giv = 0;
5317 bl->biv_count = 0;
5318 bl->giv_count = 0;
5319
5320 /* Set initial value to the reg itself. */
5321 bl->initial_value = dest_reg;
5322 /* We haven't seen the initializing insn yet */
5323 bl->init_insn = 0;
5324 bl->init_set = 0;
5325 bl->initial_test = 0;
5326 bl->incremented = 0;
5327 bl->eliminable = 0;
5328 bl->nonneg = 0;
5329 bl->reversed = 0;
5330 bl->total_benefit = 0;
5331
5332 /* Add this class to loop_iv_list. */
5333 bl->next = loop_iv_list;
5334 loop_iv_list = bl;
5335
5336 /* Put it in the array of biv register classes. */
5337 reg_biv_class[REGNO (dest_reg)] = bl;
5338 }
5339
5340 /* Update IV_CLASS entry for this biv. */
5341 v->next_iv = bl->biv;
5342 bl->biv = v;
5343 bl->biv_count++;
5344 if (mult_val == const1_rtx)
5345 bl->incremented = 1;
5346
5347 if (loop_dump_stream)
5348 {
5349 fprintf (loop_dump_stream,
5350 "Insn %d: possible biv, reg %d,",
5351 INSN_UID (insn), REGNO (dest_reg));
5352 if (GET_CODE (inc_val) == CONST_INT)
5353 {
5354 fprintf (loop_dump_stream, " const =");
5355 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (inc_val));
5356 fputc ('\n', loop_dump_stream);
5357 }
5358 else
5359 {
5360 fprintf (loop_dump_stream, " const = ");
5361 print_rtl (loop_dump_stream, inc_val);
5362 fprintf (loop_dump_stream, "\n");
5363 }
5364 }
5365 }
5366 \f
5367 /* Fill in the data about one giv.
5368 V is the `struct induction' in which we record the giv. (It is
5369 allocated by the caller, with alloca.)
5370 INSN is the insn that sets it.
5371 BENEFIT estimates the savings from deleting this insn.
5372 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
5373 into a register or is used as a memory address.
5374
5375 SRC_REG is the biv reg which the giv is computed from.
5376 DEST_REG is the giv's reg (if the giv is stored in a reg).
5377 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
5378 LOCATION points to the place where this giv's value appears in INSN. */
5379
5380 static void
5381 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
5382 type, not_every_iteration, location, loop_start, loop_end)
5383 struct induction *v;
5384 rtx insn;
5385 rtx src_reg;
5386 rtx dest_reg;
5387 rtx mult_val, add_val;
5388 int benefit;
5389 enum g_types type;
5390 int not_every_iteration;
5391 rtx *location;
5392 rtx loop_start, loop_end;
5393 {
5394 struct induction *b;
5395 struct iv_class *bl;
5396 rtx set = single_set (insn);
5397
5398 v->insn = insn;
5399 v->src_reg = src_reg;
5400 v->giv_type = type;
5401 v->dest_reg = dest_reg;
5402 v->mult_val = mult_val;
5403 v->add_val = add_val;
5404 v->benefit = benefit;
5405 v->location = location;
5406 v->cant_derive = 0;
5407 v->combined_with = 0;
5408 v->maybe_multiple = 0;
5409 v->maybe_dead = 0;
5410 v->derive_adjustment = 0;
5411 v->same = 0;
5412 v->ignore = 0;
5413 v->new_reg = 0;
5414 v->final_value = 0;
5415 v->same_insn = 0;
5416 v->auto_inc_opt = 0;
5417 v->unrolled = 0;
5418 v->shared = 0;
5419 v->derived_from = 0;
5420 v->last_use = 0;
5421
5422 /* The v->always_computable field is used in update_giv_derive, to
5423 determine whether a giv can be used to derive another giv. For a
5424 DEST_REG giv, INSN computes a new value for the giv, so its value
5425 isn't computable if INSN insn't executed every iteration.
5426 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
5427 it does not compute a new value. Hence the value is always computable
5428 regardless of whether INSN is executed each iteration. */
5429
5430 if (type == DEST_ADDR)
5431 v->always_computable = 1;
5432 else
5433 v->always_computable = ! not_every_iteration;
5434
5435 v->always_executed = ! not_every_iteration;
5436
5437 if (type == DEST_ADDR)
5438 {
5439 v->mode = GET_MODE (*location);
5440 v->lifetime = 1;
5441 }
5442 else /* type == DEST_REG */
5443 {
5444 v->mode = GET_MODE (SET_DEST (set));
5445
5446 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
5447 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
5448
5449 /* If the lifetime is zero, it means that this register is
5450 really a dead store. So mark this as a giv that can be
5451 ignored. This will not prevent the biv from being eliminated. */
5452 if (v->lifetime == 0)
5453 v->ignore = 1;
5454
5455 REG_IV_TYPE (REGNO (dest_reg)) = GENERAL_INDUCT;
5456 REG_IV_INFO (REGNO (dest_reg)) = v;
5457 }
5458
5459 /* Add the giv to the class of givs computed from one biv. */
5460
5461 bl = reg_biv_class[REGNO (src_reg)];
5462 if (bl)
5463 {
5464 v->next_iv = bl->giv;
5465 bl->giv = v;
5466 /* Don't count DEST_ADDR. This is supposed to count the number of
5467 insns that calculate givs. */
5468 if (type == DEST_REG)
5469 bl->giv_count++;
5470 bl->total_benefit += benefit;
5471 }
5472 else
5473 /* Fatal error, biv missing for this giv? */
5474 abort ();
5475
5476 if (type == DEST_ADDR)
5477 v->replaceable = 1;
5478 else
5479 {
5480 /* The giv can be replaced outright by the reduced register only if all
5481 of the following conditions are true:
5482 - the insn that sets the giv is always executed on any iteration
5483 on which the giv is used at all
5484 (there are two ways to deduce this:
5485 either the insn is executed on every iteration,
5486 or all uses follow that insn in the same basic block),
5487 - the giv is not used outside the loop
5488 - no assignments to the biv occur during the giv's lifetime. */
5489
5490 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
5491 /* Previous line always fails if INSN was moved by loop opt. */
5492 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
5493 && (! not_every_iteration
5494 || last_use_this_basic_block (dest_reg, insn)))
5495 {
5496 /* Now check that there are no assignments to the biv within the
5497 giv's lifetime. This requires two separate checks. */
5498
5499 /* Check each biv update, and fail if any are between the first
5500 and last use of the giv.
5501
5502 If this loop contains an inner loop that was unrolled, then
5503 the insn modifying the biv may have been emitted by the loop
5504 unrolling code, and hence does not have a valid luid. Just
5505 mark the biv as not replaceable in this case. It is not very
5506 useful as a biv, because it is used in two different loops.
5507 It is very unlikely that we would be able to optimize the giv
5508 using this biv anyways. */
5509
5510 v->replaceable = 1;
5511 for (b = bl->biv; b; b = b->next_iv)
5512 {
5513 if (INSN_UID (b->insn) >= max_uid_for_loop
5514 || ((uid_luid[INSN_UID (b->insn)]
5515 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
5516 && (uid_luid[INSN_UID (b->insn)]
5517 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
5518 {
5519 v->replaceable = 0;
5520 v->not_replaceable = 1;
5521 break;
5522 }
5523 }
5524
5525 /* If there are any backwards branches that go from after the
5526 biv update to before it, then this giv is not replaceable. */
5527 if (v->replaceable)
5528 for (b = bl->biv; b; b = b->next_iv)
5529 if (back_branch_in_range_p (b->insn, loop_start, loop_end))
5530 {
5531 v->replaceable = 0;
5532 v->not_replaceable = 1;
5533 break;
5534 }
5535 }
5536 else
5537 {
5538 /* May still be replaceable, we don't have enough info here to
5539 decide. */
5540 v->replaceable = 0;
5541 v->not_replaceable = 0;
5542 }
5543 }
5544
5545 /* Record whether the add_val contains a const_int, for later use by
5546 combine_givs. */
5547 {
5548 rtx tem = add_val;
5549
5550 v->no_const_addval = 1;
5551 if (tem == const0_rtx)
5552 ;
5553 else if (GET_CODE (tem) == CONST_INT)
5554 v->no_const_addval = 0;
5555 else if (GET_CODE (tem) == PLUS)
5556 {
5557 while (1)
5558 {
5559 if (GET_CODE (XEXP (tem, 0)) == PLUS)
5560 tem = XEXP (tem, 0);
5561 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
5562 tem = XEXP (tem, 1);
5563 else
5564 break;
5565 }
5566 if (GET_CODE (XEXP (tem, 1)) == CONST_INT)
5567 v->no_const_addval = 0;
5568 }
5569 }
5570
5571 if (loop_dump_stream)
5572 {
5573 if (type == DEST_REG)
5574 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
5575 INSN_UID (insn), REGNO (dest_reg));
5576 else
5577 fprintf (loop_dump_stream, "Insn %d: dest address",
5578 INSN_UID (insn));
5579
5580 fprintf (loop_dump_stream, " src reg %d benefit %d",
5581 REGNO (src_reg), v->benefit);
5582 fprintf (loop_dump_stream, " lifetime %d",
5583 v->lifetime);
5584
5585 if (v->replaceable)
5586 fprintf (loop_dump_stream, " replaceable");
5587
5588 if (v->no_const_addval)
5589 fprintf (loop_dump_stream, " ncav");
5590
5591 if (GET_CODE (mult_val) == CONST_INT)
5592 {
5593 fprintf (loop_dump_stream, " mult ");
5594 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (mult_val));
5595 }
5596 else
5597 {
5598 fprintf (loop_dump_stream, " mult ");
5599 print_rtl (loop_dump_stream, mult_val);
5600 }
5601
5602 if (GET_CODE (add_val) == CONST_INT)
5603 {
5604 fprintf (loop_dump_stream, " add ");
5605 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (add_val));
5606 }
5607 else
5608 {
5609 fprintf (loop_dump_stream, " add ");
5610 print_rtl (loop_dump_stream, add_val);
5611 }
5612 }
5613
5614 if (loop_dump_stream)
5615 fprintf (loop_dump_stream, "\n");
5616
5617 }
5618
5619
5620 /* All this does is determine whether a giv can be made replaceable because
5621 its final value can be calculated. This code can not be part of record_giv
5622 above, because final_giv_value requires that the number of loop iterations
5623 be known, and that can not be accurately calculated until after all givs
5624 have been identified. */
5625
5626 static void
5627 check_final_value (v, loop_start, loop_end, n_iterations)
5628 struct induction *v;
5629 rtx loop_start, loop_end;
5630 unsigned HOST_WIDE_INT n_iterations;
5631 {
5632 struct iv_class *bl;
5633 rtx final_value = 0;
5634
5635 bl = reg_biv_class[REGNO (v->src_reg)];
5636
5637 /* DEST_ADDR givs will never reach here, because they are always marked
5638 replaceable above in record_giv. */
5639
5640 /* The giv can be replaced outright by the reduced register only if all
5641 of the following conditions are true:
5642 - the insn that sets the giv is always executed on any iteration
5643 on which the giv is used at all
5644 (there are two ways to deduce this:
5645 either the insn is executed on every iteration,
5646 or all uses follow that insn in the same basic block),
5647 - its final value can be calculated (this condition is different
5648 than the one above in record_giv)
5649 - no assignments to the biv occur during the giv's lifetime. */
5650
5651 #if 0
5652 /* This is only called now when replaceable is known to be false. */
5653 /* Clear replaceable, so that it won't confuse final_giv_value. */
5654 v->replaceable = 0;
5655 #endif
5656
5657 if ((final_value = final_giv_value (v, loop_start, loop_end, n_iterations))
5658 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
5659 {
5660 int biv_increment_seen = 0;
5661 rtx p = v->insn;
5662 rtx last_giv_use;
5663
5664 v->replaceable = 1;
5665
5666 /* When trying to determine whether or not a biv increment occurs
5667 during the lifetime of the giv, we can ignore uses of the variable
5668 outside the loop because final_value is true. Hence we can not
5669 use regno_last_uid and regno_first_uid as above in record_giv. */
5670
5671 /* Search the loop to determine whether any assignments to the
5672 biv occur during the giv's lifetime. Start with the insn
5673 that sets the giv, and search around the loop until we come
5674 back to that insn again.
5675
5676 Also fail if there is a jump within the giv's lifetime that jumps
5677 to somewhere outside the lifetime but still within the loop. This
5678 catches spaghetti code where the execution order is not linear, and
5679 hence the above test fails. Here we assume that the giv lifetime
5680 does not extend from one iteration of the loop to the next, so as
5681 to make the test easier. Since the lifetime isn't known yet,
5682 this requires two loops. See also record_giv above. */
5683
5684 last_giv_use = v->insn;
5685
5686 while (1)
5687 {
5688 p = NEXT_INSN (p);
5689 if (p == loop_end)
5690 p = NEXT_INSN (loop_start);
5691 if (p == v->insn)
5692 break;
5693
5694 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5695 || GET_CODE (p) == CALL_INSN)
5696 {
5697 if (biv_increment_seen)
5698 {
5699 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5700 {
5701 v->replaceable = 0;
5702 v->not_replaceable = 1;
5703 break;
5704 }
5705 }
5706 else if (reg_set_p (v->src_reg, PATTERN (p)))
5707 biv_increment_seen = 1;
5708 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5709 last_giv_use = p;
5710 }
5711 }
5712
5713 /* Now that the lifetime of the giv is known, check for branches
5714 from within the lifetime to outside the lifetime if it is still
5715 replaceable. */
5716
5717 if (v->replaceable)
5718 {
5719 p = v->insn;
5720 while (1)
5721 {
5722 p = NEXT_INSN (p);
5723 if (p == loop_end)
5724 p = NEXT_INSN (loop_start);
5725 if (p == last_giv_use)
5726 break;
5727
5728 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
5729 && LABEL_NAME (JUMP_LABEL (p))
5730 && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
5731 && loop_insn_first_p (loop_start, JUMP_LABEL (p)))
5732 || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
5733 && loop_insn_first_p (JUMP_LABEL (p), loop_end))))
5734 {
5735 v->replaceable = 0;
5736 v->not_replaceable = 1;
5737
5738 if (loop_dump_stream)
5739 fprintf (loop_dump_stream,
5740 "Found branch outside giv lifetime.\n");
5741
5742 break;
5743 }
5744 }
5745 }
5746
5747 /* If it is replaceable, then save the final value. */
5748 if (v->replaceable)
5749 v->final_value = final_value;
5750 }
5751
5752 if (loop_dump_stream && v->replaceable)
5753 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
5754 INSN_UID (v->insn), REGNO (v->dest_reg));
5755 }
5756 \f
5757 /* Update the status of whether a giv can derive other givs.
5758
5759 We need to do something special if there is or may be an update to the biv
5760 between the time the giv is defined and the time it is used to derive
5761 another giv.
5762
5763 In addition, a giv that is only conditionally set is not allowed to
5764 derive another giv once a label has been passed.
5765
5766 The cases we look at are when a label or an update to a biv is passed. */
5767
5768 static void
5769 update_giv_derive (p)
5770 rtx p;
5771 {
5772 struct iv_class *bl;
5773 struct induction *biv, *giv;
5774 rtx tem;
5775 int dummy;
5776
5777 /* Search all IV classes, then all bivs, and finally all givs.
5778
5779 There are three cases we are concerned with. First we have the situation
5780 of a giv that is only updated conditionally. In that case, it may not
5781 derive any givs after a label is passed.
5782
5783 The second case is when a biv update occurs, or may occur, after the
5784 definition of a giv. For certain biv updates (see below) that are
5785 known to occur between the giv definition and use, we can adjust the
5786 giv definition. For others, or when the biv update is conditional,
5787 we must prevent the giv from deriving any other givs. There are two
5788 sub-cases within this case.
5789
5790 If this is a label, we are concerned with any biv update that is done
5791 conditionally, since it may be done after the giv is defined followed by
5792 a branch here (actually, we need to pass both a jump and a label, but
5793 this extra tracking doesn't seem worth it).
5794
5795 If this is a jump, we are concerned about any biv update that may be
5796 executed multiple times. We are actually only concerned about
5797 backward jumps, but it is probably not worth performing the test
5798 on the jump again here.
5799
5800 If this is a biv update, we must adjust the giv status to show that a
5801 subsequent biv update was performed. If this adjustment cannot be done,
5802 the giv cannot derive further givs. */
5803
5804 for (bl = loop_iv_list; bl; bl = bl->next)
5805 for (biv = bl->biv; biv; biv = biv->next_iv)
5806 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5807 || biv->insn == p)
5808 {
5809 for (giv = bl->giv; giv; giv = giv->next_iv)
5810 {
5811 /* If cant_derive is already true, there is no point in
5812 checking all of these conditions again. */
5813 if (giv->cant_derive)
5814 continue;
5815
5816 /* If this giv is conditionally set and we have passed a label,
5817 it cannot derive anything. */
5818 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5819 giv->cant_derive = 1;
5820
5821 /* Skip givs that have mult_val == 0, since
5822 they are really invariants. Also skip those that are
5823 replaceable, since we know their lifetime doesn't contain
5824 any biv update. */
5825 else if (giv->mult_val == const0_rtx || giv->replaceable)
5826 continue;
5827
5828 /* The only way we can allow this giv to derive another
5829 is if this is a biv increment and we can form the product
5830 of biv->add_val and giv->mult_val. In this case, we will
5831 be able to compute a compensation. */
5832 else if (biv->insn == p)
5833 {
5834 tem = 0;
5835
5836 if (biv->mult_val == const1_rtx)
5837 tem = simplify_giv_expr (gen_rtx_MULT (giv->mode,
5838 biv->add_val,
5839 giv->mult_val),
5840 &dummy);
5841
5842 if (tem && giv->derive_adjustment)
5843 tem = simplify_giv_expr (gen_rtx_PLUS (giv->mode, tem,
5844 giv->derive_adjustment),
5845 &dummy);
5846 if (tem)
5847 giv->derive_adjustment = tem;
5848 else
5849 giv->cant_derive = 1;
5850 }
5851 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5852 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5853 giv->cant_derive = 1;
5854 }
5855 }
5856 }
5857 \f
5858 /* Check whether an insn is an increment legitimate for a basic induction var.
5859 X is the source of insn P, or a part of it.
5860 MODE is the mode in which X should be interpreted.
5861
5862 DEST_REG is the putative biv, also the destination of the insn.
5863 We accept patterns of these forms:
5864 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5865 REG = INVARIANT + REG
5866
5867 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5868 store the additive term into *INC_VAL, and store the place where
5869 we found the additive term into *LOCATION.
5870
5871 If X is an assignment of an invariant into DEST_REG, we set
5872 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5873
5874 We also want to detect a BIV when it corresponds to a variable
5875 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5876 of the variable may be a PLUS that adds a SUBREG of that variable to
5877 an invariant and then sign- or zero-extends the result of the PLUS
5878 into the variable.
5879
5880 Most GIVs in such cases will be in the promoted mode, since that is the
5881 probably the natural computation mode (and almost certainly the mode
5882 used for addresses) on the machine. So we view the pseudo-reg containing
5883 the variable as the BIV, as if it were simply incremented.
5884
5885 Note that treating the entire pseudo as a BIV will result in making
5886 simple increments to any GIVs based on it. However, if the variable
5887 overflows in its declared mode but not its promoted mode, the result will
5888 be incorrect. This is acceptable if the variable is signed, since
5889 overflows in such cases are undefined, but not if it is unsigned, since
5890 those overflows are defined. So we only check for SIGN_EXTEND and
5891 not ZERO_EXTEND.
5892
5893 If we cannot find a biv, we return 0. */
5894
5895 static int
5896 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val, location)
5897 register rtx x;
5898 enum machine_mode mode;
5899 rtx p;
5900 rtx dest_reg;
5901 rtx *inc_val;
5902 rtx *mult_val;
5903 rtx **location;
5904 {
5905 register enum rtx_code code;
5906 rtx *argp, arg;
5907 rtx insn, set = 0;
5908
5909 code = GET_CODE (x);
5910 switch (code)
5911 {
5912 case PLUS:
5913 if (rtx_equal_p (XEXP (x, 0), dest_reg)
5914 || (GET_CODE (XEXP (x, 0)) == SUBREG
5915 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5916 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5917 {
5918 argp = &XEXP (x, 1);
5919 }
5920 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
5921 || (GET_CODE (XEXP (x, 1)) == SUBREG
5922 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5923 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5924 {
5925 argp = &XEXP (x, 0);
5926 }
5927 else
5928 return 0;
5929
5930 arg = *argp;
5931 if (invariant_p (arg) != 1)
5932 return 0;
5933
5934 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5935 *mult_val = const1_rtx;
5936 *location = argp;
5937 return 1;
5938
5939 case SUBREG:
5940 /* If this is a SUBREG for a promoted variable, check the inner
5941 value. */
5942 if (SUBREG_PROMOTED_VAR_P (x))
5943 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
5944 dest_reg, p, inc_val, mult_val, location);
5945 return 0;
5946
5947 case REG:
5948 /* If this register is assigned in a previous insn, look at its
5949 source, but don't go outside the loop or past a label. */
5950
5951 insn = p;
5952 while (1)
5953 {
5954 do {
5955 insn = PREV_INSN (insn);
5956 } while (insn && GET_CODE (insn) == NOTE
5957 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5958
5959 if (!insn)
5960 break;
5961 set = single_set (insn);
5962 if (set == 0)
5963 break;
5964
5965 if ((SET_DEST (set) == x
5966 || (GET_CODE (SET_DEST (set)) == SUBREG
5967 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
5968 <= UNITS_PER_WORD)
5969 && SUBREG_REG (SET_DEST (set)) == x))
5970 && basic_induction_var (SET_SRC (set),
5971 (GET_MODE (SET_SRC (set)) == VOIDmode
5972 ? GET_MODE (x)
5973 : GET_MODE (SET_SRC (set))),
5974 dest_reg, insn,
5975 inc_val, mult_val, location))
5976 return 1;
5977 }
5978 /* ... fall through ... */
5979
5980 /* Can accept constant setting of biv only when inside inner most loop.
5981 Otherwise, a biv of an inner loop may be incorrectly recognized
5982 as a biv of the outer loop,
5983 causing code to be moved INTO the inner loop. */
5984 case MEM:
5985 if (invariant_p (x) != 1)
5986 return 0;
5987 case CONST_INT:
5988 case SYMBOL_REF:
5989 case CONST:
5990 /* convert_modes aborts if we try to convert to or from CCmode, so just
5991 exclude that case. It is very unlikely that a condition code value
5992 would be a useful iterator anyways. */
5993 if (loops_enclosed == 1
5994 && GET_MODE_CLASS (mode) != MODE_CC
5995 && GET_MODE_CLASS (GET_MODE (dest_reg)) != MODE_CC)
5996 {
5997 /* Possible bug here? Perhaps we don't know the mode of X. */
5998 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5999 *mult_val = const0_rtx;
6000 return 1;
6001 }
6002 else
6003 return 0;
6004
6005 case SIGN_EXTEND:
6006 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6007 dest_reg, p, inc_val, mult_val, location);
6008
6009 case ASHIFTRT:
6010 /* Similar, since this can be a sign extension. */
6011 for (insn = PREV_INSN (p);
6012 (insn && GET_CODE (insn) == NOTE
6013 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6014 insn = PREV_INSN (insn))
6015 ;
6016
6017 if (insn)
6018 set = single_set (insn);
6019
6020 if (set && SET_DEST (set) == XEXP (x, 0)
6021 && GET_CODE (XEXP (x, 1)) == CONST_INT
6022 && INTVAL (XEXP (x, 1)) >= 0
6023 && GET_CODE (SET_SRC (set)) == ASHIFT
6024 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
6025 return basic_induction_var (XEXP (SET_SRC (set), 0),
6026 GET_MODE (XEXP (x, 0)),
6027 dest_reg, insn, inc_val, mult_val,
6028 location);
6029 return 0;
6030
6031 default:
6032 return 0;
6033 }
6034 }
6035 \f
6036 /* A general induction variable (giv) is any quantity that is a linear
6037 function of a basic induction variable,
6038 i.e. giv = biv * mult_val + add_val.
6039 The coefficients can be any loop invariant quantity.
6040 A giv need not be computed directly from the biv;
6041 it can be computed by way of other givs. */
6042
6043 /* Determine whether X computes a giv.
6044 If it does, return a nonzero value
6045 which is the benefit from eliminating the computation of X;
6046 set *SRC_REG to the register of the biv that it is computed from;
6047 set *ADD_VAL and *MULT_VAL to the coefficients,
6048 such that the value of X is biv * mult + add; */
6049
6050 static int
6051 general_induction_var (x, src_reg, add_val, mult_val, is_addr, pbenefit)
6052 rtx x;
6053 rtx *src_reg;
6054 rtx *add_val;
6055 rtx *mult_val;
6056 int is_addr;
6057 int *pbenefit;
6058 {
6059 rtx orig_x = x;
6060 char *storage;
6061
6062 /* If this is an invariant, forget it, it isn't a giv. */
6063 if (invariant_p (x) == 1)
6064 return 0;
6065
6066 /* See if the expression could be a giv and get its form.
6067 Mark our place on the obstack in case we don't find a giv. */
6068 storage = (char *) oballoc (0);
6069 *pbenefit = 0;
6070 x = simplify_giv_expr (x, pbenefit);
6071 if (x == 0)
6072 {
6073 obfree (storage);
6074 return 0;
6075 }
6076
6077 switch (GET_CODE (x))
6078 {
6079 case USE:
6080 case CONST_INT:
6081 /* Since this is now an invariant and wasn't before, it must be a giv
6082 with MULT_VAL == 0. It doesn't matter which BIV we associate this
6083 with. */
6084 *src_reg = loop_iv_list->biv->dest_reg;
6085 *mult_val = const0_rtx;
6086 *add_val = x;
6087 break;
6088
6089 case REG:
6090 /* This is equivalent to a BIV. */
6091 *src_reg = x;
6092 *mult_val = const1_rtx;
6093 *add_val = const0_rtx;
6094 break;
6095
6096 case PLUS:
6097 /* Either (plus (biv) (invar)) or
6098 (plus (mult (biv) (invar_1)) (invar_2)). */
6099 if (GET_CODE (XEXP (x, 0)) == MULT)
6100 {
6101 *src_reg = XEXP (XEXP (x, 0), 0);
6102 *mult_val = XEXP (XEXP (x, 0), 1);
6103 }
6104 else
6105 {
6106 *src_reg = XEXP (x, 0);
6107 *mult_val = const1_rtx;
6108 }
6109 *add_val = XEXP (x, 1);
6110 break;
6111
6112 case MULT:
6113 /* ADD_VAL is zero. */
6114 *src_reg = XEXP (x, 0);
6115 *mult_val = XEXP (x, 1);
6116 *add_val = const0_rtx;
6117 break;
6118
6119 default:
6120 abort ();
6121 }
6122
6123 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
6124 unless they are CONST_INT). */
6125 if (GET_CODE (*add_val) == USE)
6126 *add_val = XEXP (*add_val, 0);
6127 if (GET_CODE (*mult_val) == USE)
6128 *mult_val = XEXP (*mult_val, 0);
6129
6130 if (is_addr)
6131 {
6132 #ifdef ADDRESS_COST
6133 *pbenefit += ADDRESS_COST (orig_x) - reg_address_cost;
6134 #else
6135 *pbenefit += rtx_cost (orig_x, MEM) - reg_address_cost;
6136 #endif
6137 }
6138 else
6139 *pbenefit += rtx_cost (orig_x, SET);
6140
6141 /* Always return true if this is a giv so it will be detected as such,
6142 even if the benefit is zero or negative. This allows elimination
6143 of bivs that might otherwise not be eliminated. */
6144 return 1;
6145 }
6146 \f
6147 /* Given an expression, X, try to form it as a linear function of a biv.
6148 We will canonicalize it to be of the form
6149 (plus (mult (BIV) (invar_1))
6150 (invar_2))
6151 with possible degeneracies.
6152
6153 The invariant expressions must each be of a form that can be used as a
6154 machine operand. We surround then with a USE rtx (a hack, but localized
6155 and certainly unambiguous!) if not a CONST_INT for simplicity in this
6156 routine; it is the caller's responsibility to strip them.
6157
6158 If no such canonicalization is possible (i.e., two biv's are used or an
6159 expression that is neither invariant nor a biv or giv), this routine
6160 returns 0.
6161
6162 For a non-zero return, the result will have a code of CONST_INT, USE,
6163 REG (for a BIV), PLUS, or MULT. No other codes will occur.
6164
6165 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
6166
6167 static rtx sge_plus PROTO ((enum machine_mode, rtx, rtx));
6168 static rtx sge_plus_constant PROTO ((rtx, rtx));
6169
6170 static rtx
6171 simplify_giv_expr (x, benefit)
6172 rtx x;
6173 int *benefit;
6174 {
6175 enum machine_mode mode = GET_MODE (x);
6176 rtx arg0, arg1;
6177 rtx tem;
6178
6179 /* If this is not an integer mode, or if we cannot do arithmetic in this
6180 mode, this can't be a giv. */
6181 if (mode != VOIDmode
6182 && (GET_MODE_CLASS (mode) != MODE_INT
6183 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
6184 return NULL_RTX;
6185
6186 switch (GET_CODE (x))
6187 {
6188 case PLUS:
6189 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
6190 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
6191 if (arg0 == 0 || arg1 == 0)
6192 return NULL_RTX;
6193
6194 /* Put constant last, CONST_INT last if both constant. */
6195 if ((GET_CODE (arg0) == USE
6196 || GET_CODE (arg0) == CONST_INT)
6197 && ! ((GET_CODE (arg0) == USE
6198 && GET_CODE (arg1) == USE)
6199 || GET_CODE (arg1) == CONST_INT))
6200 tem = arg0, arg0 = arg1, arg1 = tem;
6201
6202 /* Handle addition of zero, then addition of an invariant. */
6203 if (arg1 == const0_rtx)
6204 return arg0;
6205 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
6206 switch (GET_CODE (arg0))
6207 {
6208 case CONST_INT:
6209 case USE:
6210 /* Adding two invariants must result in an invariant, so enclose
6211 addition operation inside a USE and return it. */
6212 if (GET_CODE (arg0) == USE)
6213 arg0 = XEXP (arg0, 0);
6214 if (GET_CODE (arg1) == USE)
6215 arg1 = XEXP (arg1, 0);
6216
6217 if (GET_CODE (arg0) == CONST_INT)
6218 tem = arg0, arg0 = arg1, arg1 = tem;
6219 if (GET_CODE (arg1) == CONST_INT)
6220 tem = sge_plus_constant (arg0, arg1);
6221 else
6222 tem = sge_plus (mode, arg0, arg1);
6223
6224 if (GET_CODE (tem) != CONST_INT)
6225 tem = gen_rtx_USE (mode, tem);
6226 return tem;
6227
6228 case REG:
6229 case MULT:
6230 /* biv + invar or mult + invar. Return sum. */
6231 return gen_rtx_PLUS (mode, arg0, arg1);
6232
6233 case PLUS:
6234 /* (a + invar_1) + invar_2. Associate. */
6235 return simplify_giv_expr (
6236 gen_rtx_PLUS (mode, XEXP (arg0, 0),
6237 gen_rtx_PLUS (mode, XEXP (arg0, 1), arg1)),
6238 benefit);
6239
6240 default:
6241 abort ();
6242 }
6243
6244 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
6245 MULT to reduce cases. */
6246 if (GET_CODE (arg0) == REG)
6247 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
6248 if (GET_CODE (arg1) == REG)
6249 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
6250
6251 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
6252 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
6253 Recurse to associate the second PLUS. */
6254 if (GET_CODE (arg1) == MULT)
6255 tem = arg0, arg0 = arg1, arg1 = tem;
6256
6257 if (GET_CODE (arg1) == PLUS)
6258 return simplify_giv_expr (gen_rtx_PLUS (mode,
6259 gen_rtx_PLUS (mode, arg0,
6260 XEXP (arg1, 0)),
6261 XEXP (arg1, 1)),
6262 benefit);
6263
6264 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
6265 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
6266 return NULL_RTX;
6267
6268 if (!rtx_equal_p (arg0, arg1))
6269 return NULL_RTX;
6270
6271 return simplify_giv_expr (gen_rtx_MULT (mode,
6272 XEXP (arg0, 0),
6273 gen_rtx_PLUS (mode,
6274 XEXP (arg0, 1),
6275 XEXP (arg1, 1))),
6276 benefit);
6277
6278 case MINUS:
6279 /* Handle "a - b" as "a + b * (-1)". */
6280 return simplify_giv_expr (gen_rtx_PLUS (mode,
6281 XEXP (x, 0),
6282 gen_rtx_MULT (mode, XEXP (x, 1),
6283 constm1_rtx)),
6284 benefit);
6285
6286 case MULT:
6287 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
6288 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
6289 if (arg0 == 0 || arg1 == 0)
6290 return NULL_RTX;
6291
6292 /* Put constant last, CONST_INT last if both constant. */
6293 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
6294 && GET_CODE (arg1) != CONST_INT)
6295 tem = arg0, arg0 = arg1, arg1 = tem;
6296
6297 /* If second argument is not now constant, not giv. */
6298 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
6299 return NULL_RTX;
6300
6301 /* Handle multiply by 0 or 1. */
6302 if (arg1 == const0_rtx)
6303 return const0_rtx;
6304
6305 else if (arg1 == const1_rtx)
6306 return arg0;
6307
6308 switch (GET_CODE (arg0))
6309 {
6310 case REG:
6311 /* biv * invar. Done. */
6312 return gen_rtx_MULT (mode, arg0, arg1);
6313
6314 case CONST_INT:
6315 /* Product of two constants. */
6316 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
6317
6318 case USE:
6319 /* invar * invar. It is a giv, but very few of these will
6320 actually pay off, so limit to simple registers. */
6321 if (GET_CODE (arg1) != CONST_INT)
6322 return NULL_RTX;
6323
6324 arg0 = XEXP (arg0, 0);
6325 if (GET_CODE (arg0) == REG)
6326 tem = gen_rtx_MULT (mode, arg0, arg1);
6327 else if (GET_CODE (arg0) == MULT
6328 && GET_CODE (XEXP (arg0, 0)) == REG
6329 && GET_CODE (XEXP (arg0, 1)) == CONST_INT)
6330 {
6331 tem = gen_rtx_MULT (mode, XEXP (arg0, 0),
6332 GEN_INT (INTVAL (XEXP (arg0, 1))
6333 * INTVAL (arg1)));
6334 }
6335 else
6336 return NULL_RTX;
6337 return gen_rtx_USE (mode, tem);
6338
6339 case MULT:
6340 /* (a * invar_1) * invar_2. Associate. */
6341 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (arg0, 0),
6342 gen_rtx_MULT (mode,
6343 XEXP (arg0, 1),
6344 arg1)),
6345 benefit);
6346
6347 case PLUS:
6348 /* (a + invar_1) * invar_2. Distribute. */
6349 return simplify_giv_expr (gen_rtx_PLUS (mode,
6350 gen_rtx_MULT (mode,
6351 XEXP (arg0, 0),
6352 arg1),
6353 gen_rtx_MULT (mode,
6354 XEXP (arg0, 1),
6355 arg1)),
6356 benefit);
6357
6358 default:
6359 abort ();
6360 }
6361
6362 case ASHIFT:
6363 /* Shift by constant is multiply by power of two. */
6364 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6365 return 0;
6366
6367 return simplify_giv_expr (gen_rtx_MULT (mode,
6368 XEXP (x, 0),
6369 GEN_INT ((HOST_WIDE_INT) 1
6370 << INTVAL (XEXP (x, 1)))),
6371 benefit);
6372
6373 case NEG:
6374 /* "-a" is "a * (-1)" */
6375 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
6376 benefit);
6377
6378 case NOT:
6379 /* "~a" is "-a - 1". Silly, but easy. */
6380 return simplify_giv_expr (gen_rtx_MINUS (mode,
6381 gen_rtx_NEG (mode, XEXP (x, 0)),
6382 const1_rtx),
6383 benefit);
6384
6385 case USE:
6386 /* Already in proper form for invariant. */
6387 return x;
6388
6389 case REG:
6390 /* If this is a new register, we can't deal with it. */
6391 if (REGNO (x) >= max_reg_before_loop)
6392 return 0;
6393
6394 /* Check for biv or giv. */
6395 switch (REG_IV_TYPE (REGNO (x)))
6396 {
6397 case BASIC_INDUCT:
6398 return x;
6399 case GENERAL_INDUCT:
6400 {
6401 struct induction *v = REG_IV_INFO (REGNO (x));
6402
6403 /* Form expression from giv and add benefit. Ensure this giv
6404 can derive another and subtract any needed adjustment if so. */
6405 *benefit += v->benefit;
6406 if (v->cant_derive)
6407 return 0;
6408
6409 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode, v->src_reg,
6410 v->mult_val),
6411 v->add_val);
6412 if (v->derive_adjustment)
6413 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
6414 return simplify_giv_expr (tem, benefit);
6415 }
6416
6417 default:
6418 /* If it isn't an induction variable, and it is invariant, we
6419 may be able to simplify things further by looking through
6420 the bits we just moved outside the loop. */
6421 if (invariant_p (x) == 1)
6422 {
6423 struct movable *m;
6424
6425 for (m = the_movables; m ; m = m->next)
6426 if (rtx_equal_p (x, m->set_dest))
6427 {
6428 /* Ok, we found a match. Substitute and simplify. */
6429
6430 /* If we match another movable, we must use that, as
6431 this one is going away. */
6432 if (m->match)
6433 return simplify_giv_expr (m->match->set_dest, benefit);
6434
6435 /* If consec is non-zero, this is a member of a group of
6436 instructions that were moved together. We handle this
6437 case only to the point of seeking to the last insn and
6438 looking for a REG_EQUAL. Fail if we don't find one. */
6439 if (m->consec != 0)
6440 {
6441 int i = m->consec;
6442 tem = m->insn;
6443 do { tem = NEXT_INSN (tem); } while (--i > 0);
6444
6445 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
6446 if (tem)
6447 tem = XEXP (tem, 0);
6448 }
6449 else
6450 {
6451 tem = single_set (m->insn);
6452 if (tem)
6453 tem = SET_SRC (tem);
6454 }
6455
6456 if (tem)
6457 {
6458 /* What we are most interested in is pointer
6459 arithmetic on invariants -- only take
6460 patterns we may be able to do something with. */
6461 if (GET_CODE (tem) == PLUS
6462 || GET_CODE (tem) == MULT
6463 || GET_CODE (tem) == ASHIFT
6464 || GET_CODE (tem) == CONST_INT
6465 || GET_CODE (tem) == SYMBOL_REF)
6466 {
6467 tem = simplify_giv_expr (tem, benefit);
6468 if (tem)
6469 return tem;
6470 }
6471 else if (GET_CODE (tem) == CONST
6472 && GET_CODE (XEXP (tem, 0)) == PLUS
6473 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
6474 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
6475 {
6476 tem = simplify_giv_expr (XEXP (tem, 0), benefit);
6477 if (tem)
6478 return tem;
6479 }
6480 }
6481 break;
6482 }
6483 }
6484 break;
6485 }
6486
6487 /* Fall through to general case. */
6488 default:
6489 /* If invariant, return as USE (unless CONST_INT).
6490 Otherwise, not giv. */
6491 if (GET_CODE (x) == USE)
6492 x = XEXP (x, 0);
6493
6494 if (invariant_p (x) == 1)
6495 {
6496 if (GET_CODE (x) == CONST_INT)
6497 return x;
6498 if (GET_CODE (x) == CONST
6499 && GET_CODE (XEXP (x, 0)) == PLUS
6500 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
6501 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
6502 x = XEXP (x, 0);
6503 return gen_rtx_USE (mode, x);
6504 }
6505 else
6506 return 0;
6507 }
6508 }
6509
6510 /* This routine folds invariants such that there is only ever one
6511 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6512
6513 static rtx
6514 sge_plus_constant (x, c)
6515 rtx x, c;
6516 {
6517 if (GET_CODE (x) == CONST_INT)
6518 return GEN_INT (INTVAL (x) + INTVAL (c));
6519 else if (GET_CODE (x) != PLUS)
6520 return gen_rtx_PLUS (GET_MODE (x), x, c);
6521 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6522 {
6523 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
6524 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
6525 }
6526 else if (GET_CODE (XEXP (x, 0)) == PLUS
6527 || GET_CODE (XEXP (x, 1)) != PLUS)
6528 {
6529 return gen_rtx_PLUS (GET_MODE (x),
6530 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
6531 }
6532 else
6533 {
6534 return gen_rtx_PLUS (GET_MODE (x),
6535 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
6536 }
6537 }
6538
6539 static rtx
6540 sge_plus (mode, x, y)
6541 enum machine_mode mode;
6542 rtx x, y;
6543 {
6544 while (GET_CODE (y) == PLUS)
6545 {
6546 rtx a = XEXP (y, 0);
6547 if (GET_CODE (a) == CONST_INT)
6548 x = sge_plus_constant (x, a);
6549 else
6550 x = gen_rtx_PLUS (mode, x, a);
6551 y = XEXP (y, 1);
6552 }
6553 if (GET_CODE (y) == CONST_INT)
6554 x = sge_plus_constant (x, y);
6555 else
6556 x = gen_rtx_PLUS (mode, x, y);
6557 return x;
6558 }
6559 \f
6560 /* Help detect a giv that is calculated by several consecutive insns;
6561 for example,
6562 giv = biv * M
6563 giv = giv + A
6564 The caller has already identified the first insn P as having a giv as dest;
6565 we check that all other insns that set the same register follow
6566 immediately after P, that they alter nothing else,
6567 and that the result of the last is still a giv.
6568
6569 The value is 0 if the reg set in P is not really a giv.
6570 Otherwise, the value is the amount gained by eliminating
6571 all the consecutive insns that compute the value.
6572
6573 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6574 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6575
6576 The coefficients of the ultimate giv value are stored in
6577 *MULT_VAL and *ADD_VAL. */
6578
6579 static int
6580 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
6581 add_val, mult_val, last_consec_insn)
6582 int first_benefit;
6583 rtx p;
6584 rtx src_reg;
6585 rtx dest_reg;
6586 rtx *add_val;
6587 rtx *mult_val;
6588 rtx *last_consec_insn;
6589 {
6590 int count;
6591 enum rtx_code code;
6592 int benefit;
6593 rtx temp;
6594 rtx set;
6595
6596 /* Indicate that this is a giv so that we can update the value produced in
6597 each insn of the multi-insn sequence.
6598
6599 This induction structure will be used only by the call to
6600 general_induction_var below, so we can allocate it on our stack.
6601 If this is a giv, our caller will replace the induct var entry with
6602 a new induction structure. */
6603 struct induction *v
6604 = (struct induction *) alloca (sizeof (struct induction));
6605 v->src_reg = src_reg;
6606 v->mult_val = *mult_val;
6607 v->add_val = *add_val;
6608 v->benefit = first_benefit;
6609 v->cant_derive = 0;
6610 v->derive_adjustment = 0;
6611
6612 REG_IV_TYPE (REGNO (dest_reg)) = GENERAL_INDUCT;
6613 REG_IV_INFO (REGNO (dest_reg)) = v;
6614
6615 count = VARRAY_INT (n_times_set, REGNO (dest_reg)) - 1;
6616
6617 while (count > 0)
6618 {
6619 p = NEXT_INSN (p);
6620 code = GET_CODE (p);
6621
6622 /* If libcall, skip to end of call sequence. */
6623 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
6624 p = XEXP (temp, 0);
6625
6626 if (code == INSN
6627 && (set = single_set (p))
6628 && GET_CODE (SET_DEST (set)) == REG
6629 && SET_DEST (set) == dest_reg
6630 && (general_induction_var (SET_SRC (set), &src_reg,
6631 add_val, mult_val, 0, &benefit)
6632 /* Giv created by equivalent expression. */
6633 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
6634 && general_induction_var (XEXP (temp, 0), &src_reg,
6635 add_val, mult_val, 0, &benefit)))
6636 && src_reg == v->src_reg)
6637 {
6638 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
6639 benefit += libcall_benefit (p);
6640
6641 count--;
6642 v->mult_val = *mult_val;
6643 v->add_val = *add_val;
6644 v->benefit = benefit;
6645 }
6646 else if (code != NOTE)
6647 {
6648 /* Allow insns that set something other than this giv to a
6649 constant. Such insns are needed on machines which cannot
6650 include long constants and should not disqualify a giv. */
6651 if (code == INSN
6652 && (set = single_set (p))
6653 && SET_DEST (set) != dest_reg
6654 && CONSTANT_P (SET_SRC (set)))
6655 continue;
6656
6657 REG_IV_TYPE (REGNO (dest_reg)) = UNKNOWN_INDUCT;
6658 return 0;
6659 }
6660 }
6661
6662 *last_consec_insn = p;
6663 return v->benefit;
6664 }
6665 \f
6666 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6667 represented by G1. If no such expression can be found, or it is clear that
6668 it cannot possibly be a valid address, 0 is returned.
6669
6670 To perform the computation, we note that
6671 G1 = x * v + a and
6672 G2 = y * v + b
6673 where `v' is the biv.
6674
6675 So G2 = (y/b) * G1 + (b - a*y/x).
6676
6677 Note that MULT = y/x.
6678
6679 Update: A and B are now allowed to be additive expressions such that
6680 B contains all variables in A. That is, computing B-A will not require
6681 subtracting variables. */
6682
6683 static rtx
6684 express_from_1 (a, b, mult)
6685 rtx a, b, mult;
6686 {
6687 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
6688
6689 if (mult == const0_rtx)
6690 return b;
6691
6692 /* If MULT is not 1, we cannot handle A with non-constants, since we
6693 would then be required to subtract multiples of the registers in A.
6694 This is theoretically possible, and may even apply to some Fortran
6695 constructs, but it is a lot of work and we do not attempt it here. */
6696
6697 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
6698 return NULL_RTX;
6699
6700 /* In general these structures are sorted top to bottom (down the PLUS
6701 chain), but not left to right across the PLUS. If B is a higher
6702 order giv than A, we can strip one level and recurse. If A is higher
6703 order, we'll eventually bail out, but won't know that until the end.
6704 If they are the same, we'll strip one level around this loop. */
6705
6706 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
6707 {
6708 rtx ra, rb, oa, ob, tmp;
6709
6710 ra = XEXP (a, 0), oa = XEXP (a, 1);
6711 if (GET_CODE (ra) == PLUS)
6712 tmp = ra, ra = oa, oa = tmp;
6713
6714 rb = XEXP (b, 0), ob = XEXP (b, 1);
6715 if (GET_CODE (rb) == PLUS)
6716 tmp = rb, rb = ob, ob = tmp;
6717
6718 if (rtx_equal_p (ra, rb))
6719 /* We matched: remove one reg completely. */
6720 a = oa, b = ob;
6721 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
6722 /* An alternate match. */
6723 a = oa, b = rb;
6724 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
6725 /* An alternate match. */
6726 a = ra, b = ob;
6727 else
6728 {
6729 /* Indicates an extra register in B. Strip one level from B and
6730 recurse, hoping B was the higher order expression. */
6731 ob = express_from_1 (a, ob, mult);
6732 if (ob == NULL_RTX)
6733 return NULL_RTX;
6734 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
6735 }
6736 }
6737
6738 /* Here we are at the last level of A, go through the cases hoping to
6739 get rid of everything but a constant. */
6740
6741 if (GET_CODE (a) == PLUS)
6742 {
6743 rtx ra, oa;
6744
6745 ra = XEXP (a, 0), oa = XEXP (a, 1);
6746 if (rtx_equal_p (oa, b))
6747 oa = ra;
6748 else if (!rtx_equal_p (ra, b))
6749 return NULL_RTX;
6750
6751 if (GET_CODE (oa) != CONST_INT)
6752 return NULL_RTX;
6753
6754 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
6755 }
6756 else if (GET_CODE (a) == CONST_INT)
6757 {
6758 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
6759 }
6760 else if (GET_CODE (b) == PLUS)
6761 {
6762 if (rtx_equal_p (a, XEXP (b, 0)))
6763 return XEXP (b, 1);
6764 else if (rtx_equal_p (a, XEXP (b, 1)))
6765 return XEXP (b, 0);
6766 else
6767 return NULL_RTX;
6768 }
6769 else if (rtx_equal_p (a, b))
6770 return const0_rtx;
6771
6772 return NULL_RTX;
6773 }
6774
6775 rtx
6776 express_from (g1, g2)
6777 struct induction *g1, *g2;
6778 {
6779 rtx mult, add;
6780
6781 /* The value that G1 will be multiplied by must be a constant integer. Also,
6782 the only chance we have of getting a valid address is if b*c/a (see above
6783 for notation) is also an integer. */
6784 if (GET_CODE (g1->mult_val) == CONST_INT
6785 && GET_CODE (g2->mult_val) == CONST_INT)
6786 {
6787 if (g1->mult_val == const0_rtx
6788 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
6789 return NULL_RTX;
6790 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
6791 }
6792 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
6793 mult = const1_rtx;
6794 else
6795 {
6796 /* ??? Find out if the one is a multiple of the other? */
6797 return NULL_RTX;
6798 }
6799
6800 add = express_from_1 (g1->add_val, g2->add_val, mult);
6801 if (add == NULL_RTX)
6802 return NULL_RTX;
6803
6804 /* Form simplified final result. */
6805 if (mult == const0_rtx)
6806 return add;
6807 else if (mult == const1_rtx)
6808 mult = g1->dest_reg;
6809 else
6810 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
6811
6812 if (add == const0_rtx)
6813 return mult;
6814 else
6815 {
6816 if (GET_CODE (add) == PLUS
6817 && CONSTANT_P (XEXP (add, 1)))
6818 {
6819 rtx tem = XEXP (add, 1);
6820 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
6821 add = tem;
6822 }
6823
6824 return gen_rtx_PLUS (g2->mode, mult, add);
6825 }
6826
6827 }
6828 \f
6829 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6830 represented by G1. This indicates that G2 should be combined with G1 and
6831 that G2 can use (either directly or via an address expression) a register
6832 used to represent G1. */
6833
6834 static rtx
6835 combine_givs_p (g1, g2)
6836 struct induction *g1, *g2;
6837 {
6838 rtx tem = express_from (g1, g2);
6839
6840 /* If these givs are identical, they can be combined. We use the results
6841 of express_from because the addends are not in a canonical form, so
6842 rtx_equal_p is a weaker test. */
6843 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
6844 combination to be the other way round. */
6845 if (tem == g1->dest_reg
6846 && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
6847 {
6848 return g1->dest_reg;
6849 }
6850
6851 /* If G2 can be expressed as a function of G1 and that function is valid
6852 as an address and no more expensive than using a register for G2,
6853 the expression of G2 in terms of G1 can be used. */
6854 if (tem != NULL_RTX
6855 && g2->giv_type == DEST_ADDR
6856 && memory_address_p (g2->mem_mode, tem)
6857 /* ??? Looses, especially with -fforce-addr, where *g2->location
6858 will always be a register, and so anything more complicated
6859 gets discarded. */
6860 #if 0
6861 #ifdef ADDRESS_COST
6862 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location)
6863 #else
6864 && rtx_cost (tem, MEM) <= rtx_cost (*g2->location, MEM)
6865 #endif
6866 #endif
6867 )
6868 {
6869 return tem;
6870 }
6871
6872 return NULL_RTX;
6873 }
6874 \f
6875 struct combine_givs_stats
6876 {
6877 int giv_number;
6878 int total_benefit;
6879 };
6880
6881 static int
6882 cmp_combine_givs_stats (x, y)
6883 struct combine_givs_stats *x, *y;
6884 {
6885 int d;
6886 d = y->total_benefit - x->total_benefit;
6887 /* Stabilize the sort. */
6888 if (!d)
6889 d = x->giv_number - y->giv_number;
6890 return d;
6891 }
6892
6893 /* Check all pairs of givs for iv_class BL and see if any can be combined with
6894 any other. If so, point SAME to the giv combined with and set NEW_REG to
6895 be an expression (in terms of the other giv's DEST_REG) equivalent to the
6896 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
6897
6898 static void
6899 combine_givs (bl)
6900 struct iv_class *bl;
6901 {
6902 /* Additional benefit to add for being combined multiple times. */
6903 const int extra_benefit = 3;
6904
6905 struct induction *g1, *g2, **giv_array;
6906 int i, j, k, giv_count;
6907 struct combine_givs_stats *stats;
6908 rtx *can_combine;
6909
6910 /* Count givs, because bl->giv_count is incorrect here. */
6911 giv_count = 0;
6912 for (g1 = bl->giv; g1; g1 = g1->next_iv)
6913 if (!g1->ignore)
6914 giv_count++;
6915
6916 giv_array
6917 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
6918 i = 0;
6919 for (g1 = bl->giv; g1; g1 = g1->next_iv)
6920 if (!g1->ignore)
6921 giv_array[i++] = g1;
6922
6923 stats = (struct combine_givs_stats *) alloca (giv_count * sizeof (*stats));
6924 bzero ((char *) stats, giv_count * sizeof (*stats));
6925
6926 can_combine = (rtx *) alloca (giv_count * giv_count * sizeof(rtx));
6927 bzero ((char *) can_combine, giv_count * giv_count * sizeof(rtx));
6928
6929 for (i = 0; i < giv_count; i++)
6930 {
6931 int this_benefit;
6932 rtx single_use;
6933
6934 g1 = giv_array[i];
6935 stats[i].giv_number = i;
6936
6937 /* If a DEST_REG GIV is used only once, do not allow it to combine
6938 with anything, for in doing so we will gain nothing that cannot
6939 be had by simply letting the GIV with which we would have combined
6940 to be reduced on its own. The losage shows up in particular with
6941 DEST_ADDR targets on hosts with reg+reg addressing, though it can
6942 be seen elsewhere as well. */
6943 if (g1->giv_type == DEST_REG
6944 && (single_use = VARRAY_RTX (reg_single_usage, REGNO (g1->dest_reg)))
6945 && single_use != const0_rtx)
6946 continue;
6947
6948 this_benefit = g1->benefit;
6949 /* Add an additional weight for zero addends. */
6950 if (g1->no_const_addval)
6951 this_benefit += 1;
6952
6953 for (j = 0; j < giv_count; j++)
6954 {
6955 rtx this_combine;
6956
6957 g2 = giv_array[j];
6958 if (g1 != g2
6959 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
6960 {
6961 can_combine[i*giv_count + j] = this_combine;
6962 this_benefit += g2->benefit + extra_benefit;
6963 }
6964 }
6965 stats[i].total_benefit = this_benefit;
6966 }
6967
6968 /* Iterate, combining until we can't. */
6969 restart:
6970 qsort (stats, giv_count, sizeof(*stats), cmp_combine_givs_stats);
6971
6972 if (loop_dump_stream)
6973 {
6974 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
6975 for (k = 0; k < giv_count; k++)
6976 {
6977 g1 = giv_array[stats[k].giv_number];
6978 if (!g1->combined_with && !g1->same)
6979 fprintf (loop_dump_stream, " {%d, %d}",
6980 INSN_UID (giv_array[stats[k].giv_number]->insn),
6981 stats[k].total_benefit);
6982 }
6983 putc ('\n', loop_dump_stream);
6984 }
6985
6986 for (k = 0; k < giv_count; k++)
6987 {
6988 int g1_add_benefit = 0;
6989
6990 i = stats[k].giv_number;
6991 g1 = giv_array[i];
6992
6993 /* If it has already been combined, skip. */
6994 if (g1->combined_with || g1->same)
6995 continue;
6996
6997 for (j = 0; j < giv_count; j++)
6998 {
6999 g2 = giv_array[j];
7000 if (g1 != g2 && can_combine[i*giv_count + j]
7001 /* If it has already been combined, skip. */
7002 && ! g2->same && ! g2->combined_with)
7003 {
7004 int l;
7005
7006 g2->new_reg = can_combine[i*giv_count + j];
7007 g2->same = g1;
7008 g1->combined_with++;
7009 g1->lifetime += g2->lifetime;
7010
7011 g1_add_benefit += g2->benefit;
7012
7013 /* ??? The new final_[bg]iv_value code does a much better job
7014 of finding replaceable giv's, and hence this code may no
7015 longer be necessary. */
7016 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
7017 g1_add_benefit -= copy_cost;
7018
7019 /* To help optimize the next set of combinations, remove
7020 this giv from the benefits of other potential mates. */
7021 for (l = 0; l < giv_count; ++l)
7022 {
7023 int m = stats[l].giv_number;
7024 if (can_combine[m*giv_count + j])
7025 stats[l].total_benefit -= g2->benefit + extra_benefit;
7026 }
7027
7028 if (loop_dump_stream)
7029 fprintf (loop_dump_stream,
7030 "giv at %d combined with giv at %d\n",
7031 INSN_UID (g2->insn), INSN_UID (g1->insn));
7032 }
7033 }
7034
7035 /* To help optimize the next set of combinations, remove
7036 this giv from the benefits of other potential mates. */
7037 if (g1->combined_with)
7038 {
7039 for (j = 0; j < giv_count; ++j)
7040 {
7041 int m = stats[j].giv_number;
7042 if (can_combine[m*giv_count + i])
7043 stats[j].total_benefit -= g1->benefit + extra_benefit;
7044 }
7045
7046 g1->benefit += g1_add_benefit;
7047
7048 /* We've finished with this giv, and everything it touched.
7049 Restart the combination so that proper weights for the
7050 rest of the givs are properly taken into account. */
7051 /* ??? Ideally we would compact the arrays at this point, so
7052 as to not cover old ground. But sanely compacting
7053 can_combine is tricky. */
7054 goto restart;
7055 }
7056 }
7057 }
7058 \f
7059 struct recombine_givs_stats
7060 {
7061 int giv_number;
7062 int start_luid, end_luid;
7063 };
7064
7065 /* Used below as comparison function for qsort. We want a ascending luid
7066 when scanning the array starting at the end, thus the arguments are
7067 used in reverse. */
7068 static int
7069 cmp_recombine_givs_stats (x, y)
7070 struct recombine_givs_stats *x, *y;
7071 {
7072 int d;
7073 d = y->start_luid - x->start_luid;
7074 /* Stabilize the sort. */
7075 if (!d)
7076 d = y->giv_number - x->giv_number;
7077 return d;
7078 }
7079
7080 /* Scan X, which is a part of INSN, for the end of life of a giv. Also
7081 look for the start of life of a giv where the start has not been seen
7082 yet to unlock the search for the end of its life.
7083 Only consider givs that belong to BIV.
7084 Return the total number of lifetime ends that have been found. */
7085 static int
7086 find_life_end (x, stats, insn, biv)
7087 rtx x, insn, biv;
7088 struct recombine_givs_stats *stats;
7089 {
7090 enum rtx_code code;
7091 char *fmt;
7092 int i, j;
7093 int retval;
7094
7095 code = GET_CODE (x);
7096 switch (code)
7097 {
7098 case SET:
7099 {
7100 rtx reg = SET_DEST (x);
7101 if (GET_CODE (reg) == REG)
7102 {
7103 int regno = REGNO (reg);
7104 struct induction *v = REG_IV_INFO (regno);
7105
7106 if (REG_IV_TYPE (regno) == GENERAL_INDUCT
7107 && ! v->ignore
7108 && v->src_reg == biv
7109 && stats[v->ix].end_luid <= 0)
7110 {
7111 /* If we see a 0 here for end_luid, it means that we have
7112 scanned the entire loop without finding any use at all.
7113 We must not predicate this code on a start_luid match
7114 since that would make the test fail for givs that have
7115 been hoisted out of inner loops. */
7116 if (stats[v->ix].end_luid == 0)
7117 {
7118 stats[v->ix].end_luid = stats[v->ix].start_luid;
7119 return 1 + find_life_end (SET_SRC (x), stats, insn, biv);
7120 }
7121 else if (stats[v->ix].start_luid == INSN_LUID (insn))
7122 stats[v->ix].end_luid = 0;
7123 }
7124 return find_life_end (SET_SRC (x), stats, insn, biv);
7125 }
7126 break;
7127 }
7128 case REG:
7129 {
7130 int regno = REGNO (x);
7131 struct induction *v = REG_IV_INFO (regno);
7132
7133 if (REG_IV_TYPE (regno) == GENERAL_INDUCT
7134 && ! v->ignore
7135 && v->src_reg == biv
7136 && stats[v->ix].end_luid == 0)
7137 {
7138 while (INSN_UID (insn) >= max_uid_for_loop)
7139 insn = NEXT_INSN (insn);
7140 stats[v->ix].end_luid = INSN_LUID (insn);
7141 return 1;
7142 }
7143 return 0;
7144 }
7145 case LABEL_REF:
7146 case CONST_DOUBLE:
7147 case CONST_INT:
7148 case CONST:
7149 return 0;
7150 default:
7151 break;
7152 }
7153 fmt = GET_RTX_FORMAT (code);
7154 retval = 0;
7155 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7156 {
7157 if (fmt[i] == 'e')
7158 retval += find_life_end (XEXP (x, i), stats, insn, biv);
7159
7160 else if (fmt[i] == 'E')
7161 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7162 retval += find_life_end (XVECEXP (x, i, j), stats, insn, biv);
7163 }
7164 return retval;
7165 }
7166
7167 /* For each giv that has been combined with another, look if
7168 we can combine it with the most recently used one instead.
7169 This tends to shorten giv lifetimes, and helps the next step:
7170 try to derive givs from other givs. */
7171 static void
7172 recombine_givs (bl, loop_start, loop_end, unroll_p)
7173 struct iv_class *bl;
7174 rtx loop_start, loop_end;
7175 int unroll_p;
7176 {
7177 struct induction *v, **giv_array, *last_giv;
7178 struct recombine_givs_stats *stats;
7179 int giv_count;
7180 int i, rescan;
7181 int ends_need_computing;
7182
7183 for (giv_count = 0, v = bl->giv; v; v = v->next_iv)
7184 {
7185 if (! v->ignore)
7186 giv_count++;
7187 }
7188 giv_array
7189 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
7190 stats = (struct recombine_givs_stats *) alloca (giv_count * sizeof *stats);
7191
7192 /* Initialize stats and set up the ix field for each giv in stats to name
7193 the corresponding index into stats. */
7194 for (i = 0, v = bl->giv; v; v = v->next_iv)
7195 {
7196 rtx p;
7197
7198 if (v->ignore)
7199 continue;
7200 giv_array[i] = v;
7201 stats[i].giv_number = i;
7202 /* If this giv has been hoisted out of an inner loop, use the luid of
7203 the previous insn. */
7204 for (p = v->insn; INSN_UID (p) >= max_uid_for_loop; )
7205 p = PREV_INSN (p);
7206 stats[i].start_luid = INSN_LUID (p);
7207 i++;
7208 }
7209
7210 qsort (stats, giv_count, sizeof(*stats), cmp_recombine_givs_stats);
7211
7212 /* Set up the ix field for each giv in stats to name
7213 the corresponding index into stats, and
7214 do the actual most-recently-used recombination. */
7215 for (last_giv = 0, i = giv_count - 1; i >= 0; i--)
7216 {
7217 v = giv_array[stats[i].giv_number];
7218 v->ix = i;
7219 if (v->same)
7220 {
7221 struct induction *old_same = v->same;
7222 rtx new_combine;
7223
7224 /* combine_givs_p actually says if we can make this transformation.
7225 The other tests are here only to avoid keeping a giv alive
7226 that could otherwise be eliminated. */
7227 if (last_giv
7228 && ((old_same->maybe_dead && ! old_same->combined_with)
7229 || ! last_giv->maybe_dead
7230 || last_giv->combined_with)
7231 && (new_combine = combine_givs_p (last_giv, v)))
7232 {
7233 old_same->combined_with--;
7234 v->new_reg = new_combine;
7235 v->same = last_giv;
7236 last_giv->combined_with++;
7237 /* No need to update lifetimes / benefits here since we have
7238 already decided what to reduce. */
7239
7240 if (loop_dump_stream)
7241 {
7242 fprintf (loop_dump_stream,
7243 "giv at %d recombined with giv at %d as ",
7244 INSN_UID (v->insn), INSN_UID (last_giv->insn));
7245 print_rtl (loop_dump_stream, v->new_reg);
7246 putc ('\n', loop_dump_stream);
7247 }
7248 continue;
7249 }
7250 v = v->same;
7251 }
7252 else if (v->giv_type != DEST_REG)
7253 continue;
7254 if (! last_giv
7255 || (last_giv->maybe_dead && ! last_giv->combined_with)
7256 || ! v->maybe_dead
7257 || v->combined_with)
7258 last_giv = v;
7259 }
7260
7261 ends_need_computing = 0;
7262 /* For each DEST_REG giv, compute lifetime starts, and try to compute
7263 lifetime ends from regscan info. */
7264 for (i = 0, v = bl->giv; v; v = v->next_iv)
7265 {
7266 if (v->ignore)
7267 continue;
7268 if (v->giv_type == DEST_ADDR)
7269 {
7270 /* Loop unrolling of an inner loop can even create new DEST_REG
7271 givs. */
7272 rtx p;
7273 for (p = v->insn; INSN_UID (p) >= max_uid_for_loop; )
7274 p = PREV_INSN (p);
7275 stats[i].start_luid = stats[i].end_luid = INSN_LUID (p);
7276 if (p != v->insn)
7277 stats[i].end_luid++;
7278 }
7279 else /* v->giv_type == DEST_REG */
7280 {
7281 if (v->last_use)
7282 {
7283 stats[i].start_luid = INSN_LUID (v->insn);
7284 stats[i].end_luid = INSN_LUID (v->last_use);
7285 }
7286 else if (INSN_UID (v->insn) >= max_uid_for_loop)
7287 {
7288 rtx p;
7289 /* This insn has been created by loop optimization on an inner
7290 loop. We don't have a proper start_luid that will match
7291 when we see the first set. But we do know that there will
7292 be no use before the set, so we can set end_luid to 0 so that
7293 we'll start looking for the last use right away. */
7294 for (p = PREV_INSN (v->insn); INSN_UID (p) >= max_uid_for_loop; )
7295 p = PREV_INSN (p);
7296 stats[i].start_luid = INSN_LUID (p);
7297 stats[i].end_luid = 0;
7298 ends_need_computing++;
7299 }
7300 else
7301 {
7302 int regno = REGNO (v->dest_reg);
7303 int count = VARRAY_INT (n_times_set, regno) - 1;
7304 rtx p = v->insn;
7305
7306 /* Find the first insn that sets the giv, so that we can verify
7307 if this giv's lifetime wraps around the loop. We also need
7308 the luid of the first setting insn in order to detect the
7309 last use properly. */
7310 while (count)
7311 {
7312 p = prev_nonnote_insn (p);
7313 if (reg_set_p (v->dest_reg, p))
7314 count--;
7315 }
7316
7317 stats[i].start_luid = INSN_LUID (p);
7318 if (stats[i].start_luid > uid_luid[REGNO_FIRST_UID (regno)])
7319 {
7320 stats[i].end_luid = -1;
7321 ends_need_computing++;
7322 }
7323 else
7324 {
7325 stats[i].end_luid = uid_luid[REGNO_LAST_UID (regno)];
7326 if (stats[i].end_luid > INSN_LUID (loop_end))
7327 {
7328 stats[i].end_luid = -1;
7329 ends_need_computing++;
7330 }
7331 }
7332 }
7333 }
7334 i++;
7335 }
7336
7337 /* If the regscan information was unconclusive for one or more DEST_REG
7338 givs, scan the all insn in the loop to find out lifetime ends. */
7339 if (ends_need_computing)
7340 {
7341 rtx biv = bl->biv->src_reg;
7342 rtx p = loop_end;
7343
7344 do
7345 {
7346 if (p == loop_start)
7347 p = loop_end;
7348 p = PREV_INSN (p);
7349 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
7350 continue;
7351 ends_need_computing -= find_life_end (PATTERN (p), stats, p, biv);
7352 }
7353 while (ends_need_computing);
7354 }
7355
7356 /* Set start_luid back to the last insn that sets the giv. This allows
7357 more combinations. */
7358 for (i = 0, v = bl->giv; v; v = v->next_iv)
7359 {
7360 if (v->ignore)
7361 continue;
7362 if (INSN_UID (v->insn) < max_uid_for_loop)
7363 stats[i].start_luid = INSN_LUID (v->insn);
7364 i++;
7365 }
7366
7367 /* Now adjust lifetime ends by taking combined givs into account. */
7368 for (i = 0, v = bl->giv; v; v = v->next_iv)
7369 {
7370 unsigned luid;
7371 int j;
7372
7373 if (v->ignore)
7374 continue;
7375 if (v->same && ! v->same->ignore)
7376 {
7377 j = v->same->ix;
7378 luid = stats[i].start_luid;
7379 /* Use unsigned arithmetic to model loop wrap-around. */
7380 if (luid - stats[j].start_luid
7381 > (unsigned) stats[j].end_luid - stats[j].start_luid)
7382 stats[j].end_luid = luid;
7383 }
7384 i++;
7385 }
7386
7387 qsort (stats, giv_count, sizeof(*stats), cmp_recombine_givs_stats);
7388
7389 /* Try to derive DEST_REG givs from previous DEST_REG givs with the
7390 same mult_val and non-overlapping lifetime. This reduces register
7391 pressure.
7392 Once we find a DEST_REG giv that is suitable to derive others from,
7393 we set last_giv to this giv, and try to derive as many other DEST_REG
7394 givs from it without joining overlapping lifetimes. If we then
7395 encounter a DEST_REG giv that we can't derive, we set rescan to the
7396 index for this giv (unless rescan is already set).
7397 When we are finished with the current LAST_GIV (i.e. the inner loop
7398 terminates), we start again with rescan, which then becomes the new
7399 LAST_GIV. */
7400 for (i = giv_count - 1; i >= 0; i = rescan)
7401 {
7402 int life_start, life_end;
7403
7404 for (last_giv = 0, rescan = -1; i >= 0; i--)
7405 {
7406 rtx sum;
7407
7408 v = giv_array[stats[i].giv_number];
7409 if (v->giv_type != DEST_REG || v->derived_from || v->same)
7410 continue;
7411 if (! last_giv)
7412 {
7413 /* Don't use a giv that's likely to be dead to derive
7414 others - that would be likely to keep that giv alive. */
7415 if (! v->maybe_dead || v->combined_with)
7416 {
7417 last_giv = v;
7418 life_start = stats[i].start_luid;
7419 life_end = stats[i].end_luid;
7420 }
7421 continue;
7422 }
7423 /* Use unsigned arithmetic to model loop wrap around. */
7424 if (((unsigned) stats[i].start_luid - life_start
7425 >= (unsigned) life_end - life_start)
7426 && ((unsigned) stats[i].end_luid - life_start
7427 > (unsigned) life_end - life_start)
7428 /* Check that the giv insn we're about to use for deriving
7429 precedes all uses of that giv. Note that initializing the
7430 derived giv would defeat the purpose of reducing register
7431 pressure.
7432 ??? We could arrange to move the insn. */
7433 && ((unsigned) stats[i].end_luid - INSN_LUID (loop_start)
7434 > (unsigned) stats[i].start_luid - INSN_LUID (loop_start))
7435 && rtx_equal_p (last_giv->mult_val, v->mult_val)
7436 /* ??? Could handle libcalls, but would need more logic. */
7437 && ! find_reg_note (v->insn, REG_RETVAL, NULL_RTX)
7438 /* We would really like to know if for any giv that v
7439 is combined with, v->insn or any intervening biv increment
7440 dominates that combined giv. However, we
7441 don't have this detailed control flow information.
7442 N.B. since last_giv will be reduced, it is valid
7443 anywhere in the loop, so we don't need to check the
7444 validity of last_giv.
7445 We rely here on the fact that v->always_executed implies that
7446 there is no jump to someplace else in the loop before the
7447 giv insn, and hence any insn that is executed before the
7448 giv insn in the loop will have a lower luid. */
7449 && (v->always_executed || ! v->combined_with)
7450 && (sum = express_from (last_giv, v))
7451 /* Make sure we don't make the add more expensive. ADD_COST
7452 doesn't take different costs of registers and constants into
7453 account, so compare the cost of the actual SET_SRCs. */
7454 && (rtx_cost (sum, SET)
7455 <= rtx_cost (SET_SRC (single_set (v->insn)), SET))
7456 /* ??? unroll can't understand anything but reg + const_int
7457 sums. It would be cleaner to fix unroll. */
7458 && ((GET_CODE (sum) == PLUS
7459 && GET_CODE (XEXP (sum, 0)) == REG
7460 && GET_CODE (XEXP (sum, 1)) == CONST_INT)
7461 || ! unroll_p)
7462 && validate_change (v->insn, &PATTERN (v->insn),
7463 gen_rtx_SET (VOIDmode, v->dest_reg, sum), 0))
7464 {
7465 v->derived_from = last_giv;
7466 life_end = stats[i].end_luid;
7467
7468 if (loop_dump_stream)
7469 {
7470 fprintf (loop_dump_stream,
7471 "giv at %d derived from %d as ",
7472 INSN_UID (v->insn), INSN_UID (last_giv->insn));
7473 print_rtl (loop_dump_stream, sum);
7474 putc ('\n', loop_dump_stream);
7475 }
7476 }
7477 else if (rescan < 0)
7478 rescan = i;
7479 }
7480 }
7481 }
7482 \f
7483 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
7484
7485 void
7486 emit_iv_add_mult (b, m, a, reg, insert_before)
7487 rtx b; /* initial value of basic induction variable */
7488 rtx m; /* multiplicative constant */
7489 rtx a; /* additive constant */
7490 rtx reg; /* destination register */
7491 rtx insert_before;
7492 {
7493 rtx seq;
7494 rtx result;
7495
7496 /* Prevent unexpected sharing of these rtx. */
7497 a = copy_rtx (a);
7498 b = copy_rtx (b);
7499
7500 /* Increase the lifetime of any invariants moved further in code. */
7501 update_reg_last_use (a, insert_before);
7502 update_reg_last_use (b, insert_before);
7503 update_reg_last_use (m, insert_before);
7504
7505 start_sequence ();
7506 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
7507 if (reg != result)
7508 emit_move_insn (reg, result);
7509 seq = gen_sequence ();
7510 end_sequence ();
7511
7512 emit_insn_before (seq, insert_before);
7513
7514 /* It is entirely possible that the expansion created lots of new
7515 registers. Iterate over the sequence we just created and
7516 record them all. */
7517
7518 if (GET_CODE (seq) == SEQUENCE)
7519 {
7520 int i;
7521 for (i = 0; i < XVECLEN (seq, 0); ++i)
7522 {
7523 rtx set = single_set (XVECEXP (seq, 0, i));
7524 if (set && GET_CODE (SET_DEST (set)) == REG)
7525 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
7526 }
7527 }
7528 else if (GET_CODE (seq) == SET
7529 && GET_CODE (SET_DEST (seq)) == REG)
7530 record_base_value (REGNO (SET_DEST (seq)), SET_SRC (seq), 0);
7531 }
7532 \f
7533 /* Test whether A * B can be computed without
7534 an actual multiply insn. Value is 1 if so. */
7535
7536 static int
7537 product_cheap_p (a, b)
7538 rtx a;
7539 rtx b;
7540 {
7541 int i;
7542 rtx tmp;
7543 struct obstack *old_rtl_obstack = rtl_obstack;
7544 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
7545 int win = 1;
7546
7547 /* If only one is constant, make it B. */
7548 if (GET_CODE (a) == CONST_INT)
7549 tmp = a, a = b, b = tmp;
7550
7551 /* If first constant, both constant, so don't need multiply. */
7552 if (GET_CODE (a) == CONST_INT)
7553 return 1;
7554
7555 /* If second not constant, neither is constant, so would need multiply. */
7556 if (GET_CODE (b) != CONST_INT)
7557 return 0;
7558
7559 /* One operand is constant, so might not need multiply insn. Generate the
7560 code for the multiply and see if a call or multiply, or long sequence
7561 of insns is generated. */
7562
7563 rtl_obstack = &temp_obstack;
7564 start_sequence ();
7565 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
7566 tmp = gen_sequence ();
7567 end_sequence ();
7568
7569 if (GET_CODE (tmp) == SEQUENCE)
7570 {
7571 if (XVEC (tmp, 0) == 0)
7572 win = 1;
7573 else if (XVECLEN (tmp, 0) > 3)
7574 win = 0;
7575 else
7576 for (i = 0; i < XVECLEN (tmp, 0); i++)
7577 {
7578 rtx insn = XVECEXP (tmp, 0, i);
7579
7580 if (GET_CODE (insn) != INSN
7581 || (GET_CODE (PATTERN (insn)) == SET
7582 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
7583 || (GET_CODE (PATTERN (insn)) == PARALLEL
7584 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
7585 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
7586 {
7587 win = 0;
7588 break;
7589 }
7590 }
7591 }
7592 else if (GET_CODE (tmp) == SET
7593 && GET_CODE (SET_SRC (tmp)) == MULT)
7594 win = 0;
7595 else if (GET_CODE (tmp) == PARALLEL
7596 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
7597 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
7598 win = 0;
7599
7600 /* Free any storage we obtained in generating this multiply and restore rtl
7601 allocation to its normal obstack. */
7602 obstack_free (&temp_obstack, storage);
7603 rtl_obstack = old_rtl_obstack;
7604
7605 return win;
7606 }
7607 \f
7608 /* Check to see if loop can be terminated by a "decrement and branch until
7609 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7610 Also try reversing an increment loop to a decrement loop
7611 to see if the optimization can be performed.
7612 Value is nonzero if optimization was performed. */
7613
7614 /* This is useful even if the architecture doesn't have such an insn,
7615 because it might change a loops which increments from 0 to n to a loop
7616 which decrements from n to 0. A loop that decrements to zero is usually
7617 faster than one that increments from zero. */
7618
7619 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7620 such as approx_final_value, biv_total_increment, loop_iterations, and
7621 final_[bg]iv_value. */
7622
7623 static int
7624 check_dbra_loop (loop_end, insn_count, loop_start, loop_info)
7625 rtx loop_end;
7626 int insn_count;
7627 rtx loop_start;
7628 struct loop_info *loop_info;
7629 {
7630 struct iv_class *bl;
7631 rtx reg;
7632 rtx jump_label;
7633 rtx final_value;
7634 rtx start_value;
7635 rtx new_add_val;
7636 rtx comparison;
7637 rtx before_comparison;
7638 rtx p;
7639 rtx jump;
7640 rtx first_compare;
7641 int compare_and_branch;
7642
7643 /* If last insn is a conditional branch, and the insn before tests a
7644 register value, try to optimize it. Otherwise, we can't do anything. */
7645
7646 jump = PREV_INSN (loop_end);
7647 comparison = get_condition_for_loop (jump);
7648 if (comparison == 0)
7649 return 0;
7650
7651 /* Try to compute whether the compare/branch at the loop end is one or
7652 two instructions. */
7653 get_condition (jump, &first_compare);
7654 if (first_compare == jump)
7655 compare_and_branch = 1;
7656 else if (first_compare == prev_nonnote_insn (jump))
7657 compare_and_branch = 2;
7658 else
7659 return 0;
7660
7661 /* Check all of the bivs to see if the compare uses one of them.
7662 Skip biv's set more than once because we can't guarantee that
7663 it will be zero on the last iteration. Also skip if the biv is
7664 used between its update and the test insn. */
7665
7666 for (bl = loop_iv_list; bl; bl = bl->next)
7667 {
7668 if (bl->biv_count == 1
7669 && bl->biv->dest_reg == XEXP (comparison, 0)
7670 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
7671 first_compare))
7672 break;
7673 }
7674
7675 if (! bl)
7676 return 0;
7677
7678 /* Look for the case where the basic induction variable is always
7679 nonnegative, and equals zero on the last iteration.
7680 In this case, add a reg_note REG_NONNEG, which allows the
7681 m68k DBRA instruction to be used. */
7682
7683 if (((GET_CODE (comparison) == GT
7684 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
7685 && INTVAL (XEXP (comparison, 1)) == -1)
7686 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
7687 && GET_CODE (bl->biv->add_val) == CONST_INT
7688 && INTVAL (bl->biv->add_val) < 0)
7689 {
7690 /* Initial value must be greater than 0,
7691 init_val % -dec_value == 0 to ensure that it equals zero on
7692 the last iteration */
7693
7694 if (GET_CODE (bl->initial_value) == CONST_INT
7695 && INTVAL (bl->initial_value) > 0
7696 && (INTVAL (bl->initial_value)
7697 % (-INTVAL (bl->biv->add_val))) == 0)
7698 {
7699 /* register always nonnegative, add REG_NOTE to branch */
7700 REG_NOTES (PREV_INSN (loop_end))
7701 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
7702 REG_NOTES (PREV_INSN (loop_end)));
7703 bl->nonneg = 1;
7704
7705 return 1;
7706 }
7707
7708 /* If the decrement is 1 and the value was tested as >= 0 before
7709 the loop, then we can safely optimize. */
7710 for (p = loop_start; p; p = PREV_INSN (p))
7711 {
7712 if (GET_CODE (p) == CODE_LABEL)
7713 break;
7714 if (GET_CODE (p) != JUMP_INSN)
7715 continue;
7716
7717 before_comparison = get_condition_for_loop (p);
7718 if (before_comparison
7719 && XEXP (before_comparison, 0) == bl->biv->dest_reg
7720 && GET_CODE (before_comparison) == LT
7721 && XEXP (before_comparison, 1) == const0_rtx
7722 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
7723 && INTVAL (bl->biv->add_val) == -1)
7724 {
7725 REG_NOTES (PREV_INSN (loop_end))
7726 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
7727 REG_NOTES (PREV_INSN (loop_end)));
7728 bl->nonneg = 1;
7729
7730 return 1;
7731 }
7732 }
7733 }
7734 else if (INTVAL (bl->biv->add_val) > 0)
7735 {
7736 /* Try to change inc to dec, so can apply above optimization. */
7737 /* Can do this if:
7738 all registers modified are induction variables or invariant,
7739 all memory references have non-overlapping addresses
7740 (obviously true if only one write)
7741 allow 2 insns for the compare/jump at the end of the loop. */
7742 /* Also, we must avoid any instructions which use both the reversed
7743 biv and another biv. Such instructions will fail if the loop is
7744 reversed. We meet this condition by requiring that either
7745 no_use_except_counting is true, or else that there is only
7746 one biv. */
7747 int num_nonfixed_reads = 0;
7748 /* 1 if the iteration var is used only to count iterations. */
7749 int no_use_except_counting = 0;
7750 /* 1 if the loop has no memory store, or it has a single memory store
7751 which is reversible. */
7752 int reversible_mem_store = 1;
7753
7754 if (bl->giv_count == 0
7755 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
7756 {
7757 rtx bivreg = regno_reg_rtx[bl->regno];
7758
7759 /* If there are no givs for this biv, and the only exit is the
7760 fall through at the end of the loop, then
7761 see if perhaps there are no uses except to count. */
7762 no_use_except_counting = 1;
7763 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7764 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
7765 {
7766 rtx set = single_set (p);
7767
7768 if (set && GET_CODE (SET_DEST (set)) == REG
7769 && REGNO (SET_DEST (set)) == bl->regno)
7770 /* An insn that sets the biv is okay. */
7771 ;
7772 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
7773 || p == prev_nonnote_insn (loop_end))
7774 /* Don't bother about the end test. */
7775 ;
7776 else if (reg_mentioned_p (bivreg, PATTERN (p)))
7777 {
7778 no_use_except_counting = 0;
7779 break;
7780 }
7781 }
7782 }
7783
7784 if (no_use_except_counting)
7785 ; /* no need to worry about MEMs. */
7786 else if (num_mem_sets <= 1)
7787 {
7788 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7789 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
7790 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
7791
7792 /* If the loop has a single store, and the destination address is
7793 invariant, then we can't reverse the loop, because this address
7794 might then have the wrong value at loop exit.
7795 This would work if the source was invariant also, however, in that
7796 case, the insn should have been moved out of the loop. */
7797
7798 if (num_mem_sets == 1)
7799 {
7800 struct induction *v;
7801
7802 reversible_mem_store
7803 = (! unknown_address_altered
7804 && ! invariant_p (XEXP (XEXP (loop_store_mems, 0), 0)));
7805
7806 /* If the store depends on a register that is set after the
7807 store, it depends on the initial value, and is thus not
7808 reversible. */
7809 for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
7810 {
7811 if (v->giv_type == DEST_REG
7812 && reg_mentioned_p (v->dest_reg,
7813 XEXP (loop_store_mems, 0))
7814 && loop_insn_first_p (first_loop_store_insn, v->insn))
7815 reversible_mem_store = 0;
7816 }
7817 }
7818 }
7819 else
7820 return 0;
7821
7822 /* This code only acts for innermost loops. Also it simplifies
7823 the memory address check by only reversing loops with
7824 zero or one memory access.
7825 Two memory accesses could involve parts of the same array,
7826 and that can't be reversed.
7827 If the biv is used only for counting, than we don't need to worry
7828 about all these things. */
7829
7830 if ((num_nonfixed_reads <= 1
7831 && !loop_has_call
7832 && !loop_has_volatile
7833 && reversible_mem_store
7834 && (bl->giv_count + bl->biv_count + num_mem_sets
7835 + num_movables + compare_and_branch == insn_count)
7836 && (bl == loop_iv_list && bl->next == 0))
7837 || no_use_except_counting)
7838 {
7839 rtx tem;
7840
7841 /* Loop can be reversed. */
7842 if (loop_dump_stream)
7843 fprintf (loop_dump_stream, "Can reverse loop\n");
7844
7845 /* Now check other conditions:
7846
7847 The increment must be a constant, as must the initial value,
7848 and the comparison code must be LT.
7849
7850 This test can probably be improved since +/- 1 in the constant
7851 can be obtained by changing LT to LE and vice versa; this is
7852 confusing. */
7853
7854 if (comparison
7855 /* for constants, LE gets turned into LT */
7856 && (GET_CODE (comparison) == LT
7857 || (GET_CODE (comparison) == LE
7858 && no_use_except_counting)))
7859 {
7860 HOST_WIDE_INT add_val, add_adjust, comparison_val;
7861 rtx initial_value, comparison_value;
7862 int nonneg = 0;
7863 enum rtx_code cmp_code;
7864 int comparison_const_width;
7865 unsigned HOST_WIDE_INT comparison_sign_mask;
7866
7867 add_val = INTVAL (bl->biv->add_val);
7868 comparison_value = XEXP (comparison, 1);
7869 if (GET_MODE (comparison_value) == VOIDmode)
7870 comparison_const_width
7871 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
7872 else
7873 comparison_const_width
7874 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
7875 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
7876 comparison_const_width = HOST_BITS_PER_WIDE_INT;
7877 comparison_sign_mask
7878 = (unsigned HOST_WIDE_INT)1 << (comparison_const_width - 1);
7879
7880 /* If the comparison value is not a loop invariant, then we
7881 can not reverse this loop.
7882
7883 ??? If the insns which initialize the comparison value as
7884 a whole compute an invariant result, then we could move
7885 them out of the loop and proceed with loop reversal. */
7886 if (!invariant_p (comparison_value))
7887 return 0;
7888
7889 if (GET_CODE (comparison_value) == CONST_INT)
7890 comparison_val = INTVAL (comparison_value);
7891 initial_value = bl->initial_value;
7892
7893 /* Normalize the initial value if it is an integer and
7894 has no other use except as a counter. This will allow
7895 a few more loops to be reversed. */
7896 if (no_use_except_counting
7897 && GET_CODE (comparison_value) == CONST_INT
7898 && GET_CODE (initial_value) == CONST_INT)
7899 {
7900 comparison_val = comparison_val - INTVAL (bl->initial_value);
7901 /* The code below requires comparison_val to be a multiple
7902 of add_val in order to do the loop reversal, so
7903 round up comparison_val to a multiple of add_val.
7904 Since comparison_value is constant, we know that the
7905 current comparison code is LT. */
7906 comparison_val = comparison_val + add_val - 1;
7907 comparison_val
7908 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
7909 /* We postpone overflow checks for COMPARISON_VAL here;
7910 even if there is an overflow, we might still be able to
7911 reverse the loop, if converting the loop exit test to
7912 NE is possible. */
7913 initial_value = const0_rtx;
7914 }
7915
7916 /* First check if we can do a vanilla loop reversal. */
7917 if (initial_value == const0_rtx
7918 /* If we have a decrement_and_branch_on_count, prefer
7919 the NE test, since this will allow that instruction to
7920 be generated. Note that we must use a vanilla loop
7921 reversal if the biv is used to calculate a giv or has
7922 a non-counting use. */
7923 #if ! defined (HAVE_decrement_and_branch_until_zero) && defined (HAVE_decrement_and_branch_on_count)
7924 && (! (add_val == 1 && loop_info->vtop
7925 && (bl->biv_count == 0
7926 || no_use_except_counting)))
7927 #endif
7928 && GET_CODE (comparison_value) == CONST_INT
7929 /* Now do postponed overflow checks on COMPARISON_VAL. */
7930 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
7931 & comparison_sign_mask))
7932 {
7933 /* Register will always be nonnegative, with value
7934 0 on last iteration */
7935 add_adjust = add_val;
7936 nonneg = 1;
7937 cmp_code = GE;
7938 }
7939 else if (add_val == 1 && loop_info->vtop
7940 && (bl->biv_count == 0
7941 || no_use_except_counting))
7942 {
7943 add_adjust = 0;
7944 cmp_code = NE;
7945 }
7946 else
7947 return 0;
7948
7949 if (GET_CODE (comparison) == LE)
7950 add_adjust -= add_val;
7951
7952 /* If the initial value is not zero, or if the comparison
7953 value is not an exact multiple of the increment, then we
7954 can not reverse this loop. */
7955 if (initial_value == const0_rtx
7956 && GET_CODE (comparison_value) == CONST_INT)
7957 {
7958 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
7959 return 0;
7960 }
7961 else
7962 {
7963 if (! no_use_except_counting || add_val != 1)
7964 return 0;
7965 }
7966
7967 final_value = comparison_value;
7968
7969 /* Reset these in case we normalized the initial value
7970 and comparison value above. */
7971 if (GET_CODE (comparison_value) == CONST_INT
7972 && GET_CODE (initial_value) == CONST_INT)
7973 {
7974 comparison_value = GEN_INT (comparison_val);
7975 final_value
7976 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
7977 }
7978 bl->initial_value = initial_value;
7979
7980 /* Save some info needed to produce the new insns. */
7981 reg = bl->biv->dest_reg;
7982 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
7983 if (jump_label == pc_rtx)
7984 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
7985 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
7986
7987 /* Set start_value; if this is not a CONST_INT, we need
7988 to generate a SUB.
7989 Initialize biv to start_value before loop start.
7990 The old initializing insn will be deleted as a
7991 dead store by flow.c. */
7992 if (initial_value == const0_rtx
7993 && GET_CODE (comparison_value) == CONST_INT)
7994 {
7995 start_value = GEN_INT (comparison_val - add_adjust);
7996 emit_insn_before (gen_move_insn (reg, start_value),
7997 loop_start);
7998 }
7999 else if (GET_CODE (initial_value) == CONST_INT)
8000 {
8001 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
8002 enum machine_mode mode = GET_MODE (reg);
8003 enum insn_code icode
8004 = add_optab->handlers[(int) mode].insn_code;
8005 if (! (*insn_operand_predicate[icode][0]) (reg, mode)
8006 || ! ((*insn_operand_predicate[icode][1])
8007 (comparison_value, mode))
8008 || ! (*insn_operand_predicate[icode][2]) (offset, mode))
8009 return 0;
8010 start_value
8011 = gen_rtx_PLUS (mode, comparison_value, offset);
8012 emit_insn_before ((GEN_FCN (icode)
8013 (reg, comparison_value, offset)),
8014 loop_start);
8015 if (GET_CODE (comparison) == LE)
8016 final_value = gen_rtx_PLUS (mode, comparison_value,
8017 GEN_INT (add_val));
8018 }
8019 else if (! add_adjust)
8020 {
8021 enum machine_mode mode = GET_MODE (reg);
8022 enum insn_code icode
8023 = sub_optab->handlers[(int) mode].insn_code;
8024 if (! (*insn_operand_predicate[icode][0]) (reg, mode)
8025 || ! ((*insn_operand_predicate[icode][1])
8026 (comparison_value, mode))
8027 || ! ((*insn_operand_predicate[icode][2])
8028 (initial_value, mode)))
8029 return 0;
8030 start_value
8031 = gen_rtx_MINUS (mode, comparison_value, initial_value);
8032 emit_insn_before ((GEN_FCN (icode)
8033 (reg, comparison_value, initial_value)),
8034 loop_start);
8035 }
8036 else
8037 /* We could handle the other cases too, but it'll be
8038 better to have a testcase first. */
8039 return 0;
8040
8041 /* We may not have a single insn which can increment a reg, so
8042 create a sequence to hold all the insns from expand_inc. */
8043 start_sequence ();
8044 expand_inc (reg, new_add_val);
8045 tem = gen_sequence ();
8046 end_sequence ();
8047
8048 p = emit_insn_before (tem, bl->biv->insn);
8049 delete_insn (bl->biv->insn);
8050
8051 /* Update biv info to reflect its new status. */
8052 bl->biv->insn = p;
8053 bl->initial_value = start_value;
8054 bl->biv->add_val = new_add_val;
8055
8056 /* Update loop info. */
8057 loop_info->initial_value = reg;
8058 loop_info->initial_equiv_value = reg;
8059 loop_info->final_value = const0_rtx;
8060 loop_info->final_equiv_value = const0_rtx;
8061 loop_info->comparison_value = const0_rtx;
8062 loop_info->comparison_code = cmp_code;
8063 loop_info->increment = new_add_val;
8064
8065 /* Inc LABEL_NUSES so that delete_insn will
8066 not delete the label. */
8067 LABEL_NUSES (XEXP (jump_label, 0)) ++;
8068
8069 /* Emit an insn after the end of the loop to set the biv's
8070 proper exit value if it is used anywhere outside the loop. */
8071 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
8072 || ! bl->init_insn
8073 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
8074 emit_insn_after (gen_move_insn (reg, final_value),
8075 loop_end);
8076
8077 /* Delete compare/branch at end of loop. */
8078 delete_insn (PREV_INSN (loop_end));
8079 if (compare_and_branch == 2)
8080 delete_insn (first_compare);
8081
8082 /* Add new compare/branch insn at end of loop. */
8083 start_sequence ();
8084 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
8085 GET_MODE (reg), 0, 0,
8086 XEXP (jump_label, 0));
8087 tem = gen_sequence ();
8088 end_sequence ();
8089 emit_jump_insn_before (tem, loop_end);
8090
8091 for (tem = PREV_INSN (loop_end);
8092 tem && GET_CODE (tem) != JUMP_INSN;
8093 tem = PREV_INSN (tem))
8094 ;
8095
8096 if (tem)
8097 JUMP_LABEL (tem) = XEXP (jump_label, 0);
8098
8099 if (nonneg)
8100 {
8101 if (tem)
8102 {
8103 /* Increment of LABEL_NUSES done above. */
8104 /* Register is now always nonnegative,
8105 so add REG_NONNEG note to the branch. */
8106 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
8107 REG_NOTES (tem));
8108 }
8109 bl->nonneg = 1;
8110 }
8111
8112 /* Mark that this biv has been reversed. Each giv which depends
8113 on this biv, and which is also live past the end of the loop
8114 will have to be fixed up. */
8115
8116 bl->reversed = 1;
8117
8118 if (loop_dump_stream)
8119 {
8120 fprintf (loop_dump_stream, "Reversed loop");
8121 if (bl->nonneg)
8122 fprintf (loop_dump_stream, " and added reg_nonneg\n");
8123 else
8124 fprintf (loop_dump_stream, "\n");
8125 }
8126
8127 return 1;
8128 }
8129 }
8130 }
8131
8132 return 0;
8133 }
8134 \f
8135 /* Verify whether the biv BL appears to be eliminable,
8136 based on the insns in the loop that refer to it.
8137 LOOP_START is the first insn of the loop, and END is the end insn.
8138
8139 If ELIMINATE_P is non-zero, actually do the elimination.
8140
8141 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
8142 determine whether invariant insns should be placed inside or at the
8143 start of the loop. */
8144
8145 static int
8146 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
8147 struct iv_class *bl;
8148 rtx loop_start;
8149 rtx end;
8150 int eliminate_p;
8151 int threshold, insn_count;
8152 {
8153 rtx reg = bl->biv->dest_reg;
8154 rtx p;
8155
8156 /* Scan all insns in the loop, stopping if we find one that uses the
8157 biv in a way that we cannot eliminate. */
8158
8159 for (p = loop_start; p != end; p = NEXT_INSN (p))
8160 {
8161 enum rtx_code code = GET_CODE (p);
8162 rtx where = threshold >= insn_count ? loop_start : p;
8163
8164 /* If this is a libcall that sets a giv, skip ahead to its end. */
8165 if (GET_RTX_CLASS (code) == 'i')
8166 {
8167 rtx note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
8168
8169 if (note)
8170 {
8171 rtx last = XEXP (note, 0);
8172 rtx set = single_set (last);
8173
8174 if (set && GET_CODE (SET_DEST (set)) == REG)
8175 {
8176 int regno = REGNO (SET_DEST (set));
8177
8178 if (regno < max_reg_before_loop
8179 && REG_IV_TYPE (regno) == GENERAL_INDUCT
8180 && REG_IV_INFO (regno)->src_reg == bl->biv->src_reg)
8181 p = last;
8182 }
8183 }
8184 }
8185 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
8186 && reg_mentioned_p (reg, PATTERN (p))
8187 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
8188 {
8189 if (loop_dump_stream)
8190 fprintf (loop_dump_stream,
8191 "Cannot eliminate biv %d: biv used in insn %d.\n",
8192 bl->regno, INSN_UID (p));
8193 break;
8194 }
8195 }
8196
8197 if (p == end)
8198 {
8199 if (loop_dump_stream)
8200 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
8201 bl->regno, eliminate_p ? "was" : "can be");
8202 return 1;
8203 }
8204
8205 return 0;
8206 }
8207 \f
8208 /* INSN and REFERENCE are instructions in the same insn chain.
8209 Return non-zero if INSN is first. */
8210
8211 int
8212 loop_insn_first_p (insn, reference)
8213 rtx insn, reference;
8214 {
8215 rtx p, q;
8216
8217 for (p = insn, q = reference; ;)
8218 {
8219 /* Start with test for not first so that INSN == REFERENCE yields not
8220 first. */
8221 if (q == insn || ! p)
8222 return 0;
8223 if (p == reference || ! q)
8224 return 1;
8225
8226 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
8227 previous insn, hence the <= comparison below does not work if
8228 P is a note. */
8229 if (INSN_UID (p) < max_uid_for_loop
8230 && INSN_UID (q) < max_uid_for_loop
8231 && GET_CODE (p) != NOTE)
8232 return INSN_LUID (p) <= INSN_LUID (q);
8233
8234 if (INSN_UID (p) >= max_uid_for_loop
8235 || GET_CODE (p) == NOTE)
8236 p = NEXT_INSN (p);
8237 if (INSN_UID (q) >= max_uid_for_loop)
8238 q = NEXT_INSN (q);
8239 }
8240 }
8241
8242 /* We are trying to eliminate BIV in INSN using GIV. Return non-zero if
8243 the offset that we have to take into account due to auto-increment /
8244 div derivation is zero. */
8245 static int
8246 biv_elimination_giv_has_0_offset (biv, giv, insn)
8247 struct induction *biv, *giv;
8248 rtx insn;
8249 {
8250 /* If the giv V had the auto-inc address optimization applied
8251 to it, and INSN occurs between the giv insn and the biv
8252 insn, then we'd have to adjust the value used here.
8253 This is rare, so we don't bother to make this possible. */
8254 if (giv->auto_inc_opt
8255 && ((loop_insn_first_p (giv->insn, insn)
8256 && loop_insn_first_p (insn, biv->insn))
8257 || (loop_insn_first_p (biv->insn, insn)
8258 && loop_insn_first_p (insn, giv->insn))))
8259 return 0;
8260
8261 /* If the giv V was derived from another giv, and INSN does
8262 not occur between the giv insn and the biv insn, then we'd
8263 have to adjust the value used here. This is rare, so we don't
8264 bother to make this possible. */
8265 if (giv->derived_from
8266 && ! (giv->always_executed
8267 && loop_insn_first_p (giv->insn, insn)
8268 && loop_insn_first_p (insn, biv->insn)))
8269 return 0;
8270 if (giv->same
8271 && giv->same->derived_from
8272 && ! (giv->same->always_executed
8273 && loop_insn_first_p (giv->same->insn, insn)
8274 && loop_insn_first_p (insn, biv->insn)))
8275 return 0;
8276
8277 return 1;
8278 }
8279
8280 /* If BL appears in X (part of the pattern of INSN), see if we can
8281 eliminate its use. If so, return 1. If not, return 0.
8282
8283 If BIV does not appear in X, return 1.
8284
8285 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
8286 where extra insns should be added. Depending on how many items have been
8287 moved out of the loop, it will either be before INSN or at the start of
8288 the loop. */
8289
8290 static int
8291 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
8292 rtx x, insn;
8293 struct iv_class *bl;
8294 int eliminate_p;
8295 rtx where;
8296 {
8297 enum rtx_code code = GET_CODE (x);
8298 rtx reg = bl->biv->dest_reg;
8299 enum machine_mode mode = GET_MODE (reg);
8300 struct induction *v;
8301 rtx arg, tem;
8302 #ifdef HAVE_cc0
8303 rtx new;
8304 #endif
8305 int arg_operand;
8306 char *fmt;
8307 int i, j;
8308
8309 switch (code)
8310 {
8311 case REG:
8312 /* If we haven't already been able to do something with this BIV,
8313 we can't eliminate it. */
8314 if (x == reg)
8315 return 0;
8316 return 1;
8317
8318 case SET:
8319 /* If this sets the BIV, it is not a problem. */
8320 if (SET_DEST (x) == reg)
8321 return 1;
8322
8323 /* If this is an insn that defines a giv, it is also ok because
8324 it will go away when the giv is reduced. */
8325 for (v = bl->giv; v; v = v->next_iv)
8326 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
8327 return 1;
8328
8329 #ifdef HAVE_cc0
8330 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
8331 {
8332 /* Can replace with any giv that was reduced and
8333 that has (MULT_VAL != 0) and (ADD_VAL == 0).
8334 Require a constant for MULT_VAL, so we know it's nonzero.
8335 ??? We disable this optimization to avoid potential
8336 overflows. */
8337
8338 for (v = bl->giv; v; v = v->next_iv)
8339 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
8340 && v->add_val == const0_rtx
8341 && ! v->ignore && ! v->maybe_dead && v->always_computable
8342 && v->mode == mode
8343 && 0)
8344 {
8345 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8346 continue;
8347
8348 if (! eliminate_p)
8349 return 1;
8350
8351 /* If the giv has the opposite direction of change,
8352 then reverse the comparison. */
8353 if (INTVAL (v->mult_val) < 0)
8354 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
8355 const0_rtx, v->new_reg);
8356 else
8357 new = v->new_reg;
8358
8359 /* We can probably test that giv's reduced reg. */
8360 if (validate_change (insn, &SET_SRC (x), new, 0))
8361 return 1;
8362 }
8363
8364 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
8365 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
8366 Require a constant for MULT_VAL, so we know it's nonzero.
8367 ??? Do this only if ADD_VAL is a pointer to avoid a potential
8368 overflow problem. */
8369
8370 for (v = bl->giv; v; v = v->next_iv)
8371 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
8372 && ! v->ignore && ! v->maybe_dead && v->always_computable
8373 && v->mode == mode
8374 && (GET_CODE (v->add_val) == SYMBOL_REF
8375 || GET_CODE (v->add_val) == LABEL_REF
8376 || GET_CODE (v->add_val) == CONST
8377 || (GET_CODE (v->add_val) == REG
8378 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
8379 {
8380 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8381 continue;
8382
8383 if (! eliminate_p)
8384 return 1;
8385
8386 /* If the giv has the opposite direction of change,
8387 then reverse the comparison. */
8388 if (INTVAL (v->mult_val) < 0)
8389 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
8390 v->new_reg);
8391 else
8392 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
8393 copy_rtx (v->add_val));
8394
8395 /* Replace biv with the giv's reduced register. */
8396 update_reg_last_use (v->add_val, insn);
8397 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8398 return 1;
8399
8400 /* Insn doesn't support that constant or invariant. Copy it
8401 into a register (it will be a loop invariant.) */
8402 tem = gen_reg_rtx (GET_MODE (v->new_reg));
8403
8404 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
8405 where);
8406
8407 /* Substitute the new register for its invariant value in
8408 the compare expression. */
8409 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
8410 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8411 return 1;
8412 }
8413 }
8414 #endif
8415 break;
8416
8417 case COMPARE:
8418 case EQ: case NE:
8419 case GT: case GE: case GTU: case GEU:
8420 case LT: case LE: case LTU: case LEU:
8421 /* See if either argument is the biv. */
8422 if (XEXP (x, 0) == reg)
8423 arg = XEXP (x, 1), arg_operand = 1;
8424 else if (XEXP (x, 1) == reg)
8425 arg = XEXP (x, 0), arg_operand = 0;
8426 else
8427 break;
8428
8429 if (CONSTANT_P (arg))
8430 {
8431 /* First try to replace with any giv that has constant positive
8432 mult_val and constant add_val. We might be able to support
8433 negative mult_val, but it seems complex to do it in general. */
8434
8435 for (v = bl->giv; v; v = v->next_iv)
8436 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
8437 && (GET_CODE (v->add_val) == SYMBOL_REF
8438 || GET_CODE (v->add_val) == LABEL_REF
8439 || GET_CODE (v->add_val) == CONST
8440 || (GET_CODE (v->add_val) == REG
8441 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
8442 && ! v->ignore && ! v->maybe_dead && v->always_computable
8443 && v->mode == mode)
8444 {
8445 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8446 continue;
8447
8448 if (! eliminate_p)
8449 return 1;
8450
8451 /* Replace biv with the giv's reduced reg. */
8452 XEXP (x, 1-arg_operand) = v->new_reg;
8453
8454 /* If all constants are actually constant integers and
8455 the derived constant can be directly placed in the COMPARE,
8456 do so. */
8457 if (GET_CODE (arg) == CONST_INT
8458 && GET_CODE (v->mult_val) == CONST_INT
8459 && GET_CODE (v->add_val) == CONST_INT
8460 && validate_change (insn, &XEXP (x, arg_operand),
8461 GEN_INT (INTVAL (arg)
8462 * INTVAL (v->mult_val)
8463 + INTVAL (v->add_val)), 0))
8464 return 1;
8465
8466 /* Otherwise, load it into a register. */
8467 tem = gen_reg_rtx (mode);
8468 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
8469 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
8470 return 1;
8471
8472 /* If that failed, put back the change we made above. */
8473 XEXP (x, 1-arg_operand) = reg;
8474 }
8475
8476 /* Look for giv with positive constant mult_val and nonconst add_val.
8477 Insert insns to calculate new compare value.
8478 ??? Turn this off due to possible overflow. */
8479
8480 for (v = bl->giv; v; v = v->next_iv)
8481 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
8482 && ! v->ignore && ! v->maybe_dead && v->always_computable
8483 && v->mode == mode
8484 && 0)
8485 {
8486 rtx tem;
8487
8488 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8489 continue;
8490
8491 if (! eliminate_p)
8492 return 1;
8493
8494 tem = gen_reg_rtx (mode);
8495
8496 /* Replace biv with giv's reduced register. */
8497 validate_change (insn, &XEXP (x, 1 - arg_operand),
8498 v->new_reg, 1);
8499
8500 /* Compute value to compare against. */
8501 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
8502 /* Use it in this insn. */
8503 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8504 if (apply_change_group ())
8505 return 1;
8506 }
8507 }
8508 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
8509 {
8510 if (invariant_p (arg) == 1)
8511 {
8512 /* Look for giv with constant positive mult_val and nonconst
8513 add_val. Insert insns to compute new compare value.
8514 ??? Turn this off due to possible overflow. */
8515
8516 for (v = bl->giv; v; v = v->next_iv)
8517 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
8518 && ! v->ignore && ! v->maybe_dead && v->always_computable
8519 && v->mode == mode
8520 && 0)
8521 {
8522 rtx tem;
8523
8524 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8525 continue;
8526
8527 if (! eliminate_p)
8528 return 1;
8529
8530 tem = gen_reg_rtx (mode);
8531
8532 /* Replace biv with giv's reduced register. */
8533 validate_change (insn, &XEXP (x, 1 - arg_operand),
8534 v->new_reg, 1);
8535
8536 /* Compute value to compare against. */
8537 emit_iv_add_mult (arg, v->mult_val, v->add_val,
8538 tem, where);
8539 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8540 if (apply_change_group ())
8541 return 1;
8542 }
8543 }
8544
8545 /* This code has problems. Basically, you can't know when
8546 seeing if we will eliminate BL, whether a particular giv
8547 of ARG will be reduced. If it isn't going to be reduced,
8548 we can't eliminate BL. We can try forcing it to be reduced,
8549 but that can generate poor code.
8550
8551 The problem is that the benefit of reducing TV, below should
8552 be increased if BL can actually be eliminated, but this means
8553 we might have to do a topological sort of the order in which
8554 we try to process biv. It doesn't seem worthwhile to do
8555 this sort of thing now. */
8556
8557 #if 0
8558 /* Otherwise the reg compared with had better be a biv. */
8559 if (GET_CODE (arg) != REG
8560 || REG_IV_TYPE (REGNO (arg)) != BASIC_INDUCT)
8561 return 0;
8562
8563 /* Look for a pair of givs, one for each biv,
8564 with identical coefficients. */
8565 for (v = bl->giv; v; v = v->next_iv)
8566 {
8567 struct induction *tv;
8568
8569 if (v->ignore || v->maybe_dead || v->mode != mode)
8570 continue;
8571
8572 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
8573 if (! tv->ignore && ! tv->maybe_dead
8574 && rtx_equal_p (tv->mult_val, v->mult_val)
8575 && rtx_equal_p (tv->add_val, v->add_val)
8576 && tv->mode == mode)
8577 {
8578 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8579 continue;
8580
8581 if (! eliminate_p)
8582 return 1;
8583
8584 /* Replace biv with its giv's reduced reg. */
8585 XEXP (x, 1-arg_operand) = v->new_reg;
8586 /* Replace other operand with the other giv's
8587 reduced reg. */
8588 XEXP (x, arg_operand) = tv->new_reg;
8589 return 1;
8590 }
8591 }
8592 #endif
8593 }
8594
8595 /* If we get here, the biv can't be eliminated. */
8596 return 0;
8597
8598 case MEM:
8599 /* If this address is a DEST_ADDR giv, it doesn't matter if the
8600 biv is used in it, since it will be replaced. */
8601 for (v = bl->giv; v; v = v->next_iv)
8602 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
8603 return 1;
8604 break;
8605
8606 default:
8607 break;
8608 }
8609
8610 /* See if any subexpression fails elimination. */
8611 fmt = GET_RTX_FORMAT (code);
8612 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8613 {
8614 switch (fmt[i])
8615 {
8616 case 'e':
8617 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
8618 eliminate_p, where))
8619 return 0;
8620 break;
8621
8622 case 'E':
8623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8624 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
8625 eliminate_p, where))
8626 return 0;
8627 break;
8628 }
8629 }
8630
8631 return 1;
8632 }
8633 \f
8634 /* Return nonzero if the last use of REG
8635 is in an insn following INSN in the same basic block. */
8636
8637 static int
8638 last_use_this_basic_block (reg, insn)
8639 rtx reg;
8640 rtx insn;
8641 {
8642 rtx n;
8643 for (n = insn;
8644 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
8645 n = NEXT_INSN (n))
8646 {
8647 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
8648 return 1;
8649 }
8650 return 0;
8651 }
8652 \f
8653 /* Called via `note_stores' to record the initial value of a biv. Here we
8654 just record the location of the set and process it later. */
8655
8656 static void
8657 record_initial (dest, set)
8658 rtx dest;
8659 rtx set;
8660 {
8661 struct iv_class *bl;
8662
8663 if (GET_CODE (dest) != REG
8664 || REGNO (dest) >= max_reg_before_loop
8665 || REG_IV_TYPE (REGNO (dest)) != BASIC_INDUCT)
8666 return;
8667
8668 bl = reg_biv_class[REGNO (dest)];
8669
8670 /* If this is the first set found, record it. */
8671 if (bl->init_insn == 0)
8672 {
8673 bl->init_insn = note_insn;
8674 bl->init_set = set;
8675 }
8676 }
8677 \f
8678 /* If any of the registers in X are "old" and currently have a last use earlier
8679 than INSN, update them to have a last use of INSN. Their actual last use
8680 will be the previous insn but it will not have a valid uid_luid so we can't
8681 use it. */
8682
8683 static void
8684 update_reg_last_use (x, insn)
8685 rtx x;
8686 rtx insn;
8687 {
8688 /* Check for the case where INSN does not have a valid luid. In this case,
8689 there is no need to modify the regno_last_uid, as this can only happen
8690 when code is inserted after the loop_end to set a pseudo's final value,
8691 and hence this insn will never be the last use of x. */
8692 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
8693 && INSN_UID (insn) < max_uid_for_loop
8694 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
8695 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
8696 else
8697 {
8698 register int i, j;
8699 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
8700 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
8701 {
8702 if (fmt[i] == 'e')
8703 update_reg_last_use (XEXP (x, i), insn);
8704 else if (fmt[i] == 'E')
8705 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8706 update_reg_last_use (XVECEXP (x, i, j), insn);
8707 }
8708 }
8709 }
8710 \f
8711 /* Given a jump insn JUMP, return the condition that will cause it to branch
8712 to its JUMP_LABEL. If the condition cannot be understood, or is an
8713 inequality floating-point comparison which needs to be reversed, 0 will
8714 be returned.
8715
8716 If EARLIEST is non-zero, it is a pointer to a place where the earliest
8717 insn used in locating the condition was found. If a replacement test
8718 of the condition is desired, it should be placed in front of that
8719 insn and we will be sure that the inputs are still valid.
8720
8721 The condition will be returned in a canonical form to simplify testing by
8722 callers. Specifically:
8723
8724 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
8725 (2) Both operands will be machine operands; (cc0) will have been replaced.
8726 (3) If an operand is a constant, it will be the second operand.
8727 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
8728 for GE, GEU, and LEU. */
8729
8730 rtx
8731 get_condition (jump, earliest)
8732 rtx jump;
8733 rtx *earliest;
8734 {
8735 enum rtx_code code;
8736 rtx prev = jump;
8737 rtx set;
8738 rtx tem;
8739 rtx op0, op1;
8740 int reverse_code = 0;
8741 int did_reverse_condition = 0;
8742 enum machine_mode mode;
8743
8744 /* If this is not a standard conditional jump, we can't parse it. */
8745 if (GET_CODE (jump) != JUMP_INSN
8746 || ! condjump_p (jump) || simplejump_p (jump))
8747 return 0;
8748
8749 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
8750 mode = GET_MODE (XEXP (SET_SRC (PATTERN (jump)), 0));
8751 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
8752 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
8753
8754 if (earliest)
8755 *earliest = jump;
8756
8757 /* If this branches to JUMP_LABEL when the condition is false, reverse
8758 the condition. */
8759 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
8760 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
8761 code = reverse_condition (code), did_reverse_condition ^= 1;
8762
8763 /* If we are comparing a register with zero, see if the register is set
8764 in the previous insn to a COMPARE or a comparison operation. Perform
8765 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
8766 in cse.c */
8767
8768 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
8769 {
8770 /* Set non-zero when we find something of interest. */
8771 rtx x = 0;
8772
8773 #ifdef HAVE_cc0
8774 /* If comparison with cc0, import actual comparison from compare
8775 insn. */
8776 if (op0 == cc0_rtx)
8777 {
8778 if ((prev = prev_nonnote_insn (prev)) == 0
8779 || GET_CODE (prev) != INSN
8780 || (set = single_set (prev)) == 0
8781 || SET_DEST (set) != cc0_rtx)
8782 return 0;
8783
8784 op0 = SET_SRC (set);
8785 op1 = CONST0_RTX (GET_MODE (op0));
8786 if (earliest)
8787 *earliest = prev;
8788 }
8789 #endif
8790
8791 /* If this is a COMPARE, pick up the two things being compared. */
8792 if (GET_CODE (op0) == COMPARE)
8793 {
8794 op1 = XEXP (op0, 1);
8795 op0 = XEXP (op0, 0);
8796 continue;
8797 }
8798 else if (GET_CODE (op0) != REG)
8799 break;
8800
8801 /* Go back to the previous insn. Stop if it is not an INSN. We also
8802 stop if it isn't a single set or if it has a REG_INC note because
8803 we don't want to bother dealing with it. */
8804
8805 if ((prev = prev_nonnote_insn (prev)) == 0
8806 || GET_CODE (prev) != INSN
8807 || FIND_REG_INC_NOTE (prev, 0)
8808 || (set = single_set (prev)) == 0)
8809 break;
8810
8811 /* If this is setting OP0, get what it sets it to if it looks
8812 relevant. */
8813 if (rtx_equal_p (SET_DEST (set), op0))
8814 {
8815 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
8816
8817 /* ??? We may not combine comparisons done in a CCmode with
8818 comparisons not done in a CCmode. This is to aid targets
8819 like Alpha that have an IEEE compliant EQ instruction, and
8820 a non-IEEE compliant BEQ instruction. The use of CCmode is
8821 actually artificial, simply to prevent the combination, but
8822 should not affect other platforms.
8823
8824 However, we must allow VOIDmode comparisons to match either
8825 CCmode or non-CCmode comparison, because some ports have
8826 modeless comparisons inside branch patterns.
8827
8828 ??? This mode check should perhaps look more like the mode check
8829 in simplify_comparison in combine. */
8830
8831 if ((GET_CODE (SET_SRC (set)) == COMPARE
8832 || (((code == NE
8833 || (code == LT
8834 && GET_MODE_CLASS (inner_mode) == MODE_INT
8835 && (GET_MODE_BITSIZE (inner_mode)
8836 <= HOST_BITS_PER_WIDE_INT)
8837 && (STORE_FLAG_VALUE
8838 & ((HOST_WIDE_INT) 1
8839 << (GET_MODE_BITSIZE (inner_mode) - 1))))
8840 #ifdef FLOAT_STORE_FLAG_VALUE
8841 || (code == LT
8842 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
8843 && FLOAT_STORE_FLAG_VALUE < 0)
8844 #endif
8845 ))
8846 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
8847 && (((GET_MODE_CLASS (mode) == MODE_CC)
8848 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
8849 || mode == VOIDmode || inner_mode == VOIDmode))
8850 x = SET_SRC (set);
8851 else if (((code == EQ
8852 || (code == GE
8853 && (GET_MODE_BITSIZE (inner_mode)
8854 <= HOST_BITS_PER_WIDE_INT)
8855 && GET_MODE_CLASS (inner_mode) == MODE_INT
8856 && (STORE_FLAG_VALUE
8857 & ((HOST_WIDE_INT) 1
8858 << (GET_MODE_BITSIZE (inner_mode) - 1))))
8859 #ifdef FLOAT_STORE_FLAG_VALUE
8860 || (code == GE
8861 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
8862 && FLOAT_STORE_FLAG_VALUE < 0)
8863 #endif
8864 ))
8865 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
8866 && (((GET_MODE_CLASS (mode) == MODE_CC)
8867 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
8868 || mode == VOIDmode || inner_mode == VOIDmode))
8869
8870 {
8871 /* We might have reversed a LT to get a GE here. But this wasn't
8872 actually the comparison of data, so we don't flag that we
8873 have had to reverse the condition. */
8874 did_reverse_condition ^= 1;
8875 reverse_code = 1;
8876 x = SET_SRC (set);
8877 }
8878 else
8879 break;
8880 }
8881
8882 else if (reg_set_p (op0, prev))
8883 /* If this sets OP0, but not directly, we have to give up. */
8884 break;
8885
8886 if (x)
8887 {
8888 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
8889 code = GET_CODE (x);
8890 if (reverse_code)
8891 {
8892 code = reverse_condition (code);
8893 did_reverse_condition ^= 1;
8894 reverse_code = 0;
8895 }
8896
8897 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
8898 if (earliest)
8899 *earliest = prev;
8900 }
8901 }
8902
8903 /* If constant is first, put it last. */
8904 if (CONSTANT_P (op0))
8905 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
8906
8907 /* If OP0 is the result of a comparison, we weren't able to find what
8908 was really being compared, so fail. */
8909 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
8910 return 0;
8911
8912 /* Canonicalize any ordered comparison with integers involving equality
8913 if we can do computations in the relevant mode and we do not
8914 overflow. */
8915
8916 if (GET_CODE (op1) == CONST_INT
8917 && GET_MODE (op0) != VOIDmode
8918 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
8919 {
8920 HOST_WIDE_INT const_val = INTVAL (op1);
8921 unsigned HOST_WIDE_INT uconst_val = const_val;
8922 unsigned HOST_WIDE_INT max_val
8923 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
8924
8925 switch (code)
8926 {
8927 case LE:
8928 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
8929 code = LT, op1 = GEN_INT (const_val + 1);
8930 break;
8931
8932 /* When cross-compiling, const_val might be sign-extended from
8933 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
8934 case GE:
8935 if ((HOST_WIDE_INT) (const_val & max_val)
8936 != (((HOST_WIDE_INT) 1
8937 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
8938 code = GT, op1 = GEN_INT (const_val - 1);
8939 break;
8940
8941 case LEU:
8942 if (uconst_val < max_val)
8943 code = LTU, op1 = GEN_INT (uconst_val + 1);
8944 break;
8945
8946 case GEU:
8947 if (uconst_val != 0)
8948 code = GTU, op1 = GEN_INT (uconst_val - 1);
8949 break;
8950
8951 default:
8952 break;
8953 }
8954 }
8955
8956 /* If this was floating-point and we reversed anything other than an
8957 EQ or NE, return zero. */
8958 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
8959 && did_reverse_condition && code != NE && code != EQ
8960 && ! flag_fast_math
8961 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
8962 return 0;
8963
8964 #ifdef HAVE_cc0
8965 /* Never return CC0; return zero instead. */
8966 if (op0 == cc0_rtx)
8967 return 0;
8968 #endif
8969
8970 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
8971 }
8972
8973 /* Similar to above routine, except that we also put an invariant last
8974 unless both operands are invariants. */
8975
8976 rtx
8977 get_condition_for_loop (x)
8978 rtx x;
8979 {
8980 rtx comparison = get_condition (x, NULL_PTR);
8981
8982 if (comparison == 0
8983 || ! invariant_p (XEXP (comparison, 0))
8984 || invariant_p (XEXP (comparison, 1)))
8985 return comparison;
8986
8987 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
8988 XEXP (comparison, 1), XEXP (comparison, 0));
8989 }
8990
8991 #ifdef HAVE_decrement_and_branch_on_count
8992 /* Instrument loop for insertion of bct instruction. We distinguish between
8993 loops with compile-time bounds and those with run-time bounds.
8994 Information from loop_iterations() is used to compute compile-time bounds.
8995 Run-time bounds should use loop preconditioning, but currently ignored.
8996 */
8997
8998 static void
8999 insert_bct (loop_start, loop_end, loop_info)
9000 rtx loop_start, loop_end;
9001 struct loop_info *loop_info;
9002 {
9003 int i;
9004 unsigned HOST_WIDE_INT n_iterations;
9005
9006 int increment_direction, compare_direction;
9007
9008 /* If the loop condition is <= or >=, the number of iteration
9009 is 1 more than the range of the bounds of the loop. */
9010 int add_iteration = 0;
9011
9012 enum machine_mode loop_var_mode = word_mode;
9013
9014 int loop_num = uid_loop_num [INSN_UID (loop_start)];
9015
9016 /* It's impossible to instrument a competely unrolled loop. */
9017 if (loop_info->unroll_number == -1)
9018 return;
9019
9020 /* Make sure that the count register is not in use. */
9021 if (loop_used_count_register [loop_num])
9022 {
9023 if (loop_dump_stream)
9024 fprintf (loop_dump_stream,
9025 "insert_bct %d: BCT instrumentation failed: count register already in use\n",
9026 loop_num);
9027 return;
9028 }
9029
9030 /* Make sure that the function has no indirect jumps. */
9031 if (indirect_jump_in_function)
9032 {
9033 if (loop_dump_stream)
9034 fprintf (loop_dump_stream,
9035 "insert_bct %d: BCT instrumentation failed: indirect jump in function\n",
9036 loop_num);
9037 return;
9038 }
9039
9040 /* Make sure that the last loop insn is a conditional jump. */
9041 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
9042 || ! condjump_p (PREV_INSN (loop_end))
9043 || simplejump_p (PREV_INSN (loop_end)))
9044 {
9045 if (loop_dump_stream)
9046 fprintf (loop_dump_stream,
9047 "insert_bct %d: BCT instrumentation failed: invalid jump at loop end\n",
9048 loop_num);
9049 return;
9050 }
9051
9052 /* Make sure that the loop does not contain a function call
9053 (the count register might be altered by the called function). */
9054 if (loop_has_call)
9055 {
9056 if (loop_dump_stream)
9057 fprintf (loop_dump_stream,
9058 "insert_bct %d: BCT instrumentation failed: function call in loop\n",
9059 loop_num);
9060 return;
9061 }
9062
9063 /* Make sure that the loop does not jump via a table.
9064 (the count register might be used to perform the branch on table). */
9065 if (loop_has_tablejump)
9066 {
9067 if (loop_dump_stream)
9068 fprintf (loop_dump_stream,
9069 "insert_bct %d: BCT instrumentation failed: computed branch in the loop\n",
9070 loop_num);
9071 return;
9072 }
9073
9074 /* Account for loop unrolling in instrumented iteration count. */
9075 if (loop_info->unroll_number > 1)
9076 n_iterations = loop_info->n_iterations / loop_info->unroll_number;
9077 else
9078 n_iterations = loop_info->n_iterations;
9079
9080 if (n_iterations != 0 && n_iterations < 3)
9081 {
9082 /* Allow an enclosing outer loop to benefit if possible. */
9083 if (loop_dump_stream)
9084 fprintf (loop_dump_stream,
9085 "insert_bct %d: Too few iterations to benefit from BCT optimization\n",
9086 loop_num);
9087 return;
9088 }
9089
9090 /* Try to instrument the loop. */
9091
9092 /* Handle the simpler case, where the bounds are known at compile time. */
9093 if (n_iterations > 0)
9094 {
9095 /* Mark all enclosing loops that they cannot use count register. */
9096 for (i = loop_num; i != -1; i = loop_outer_loop[i])
9097 loop_used_count_register[i] = 1;
9098 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
9099 return;
9100 }
9101
9102 /* Handle the more complex case, that the bounds are NOT known
9103 at compile time. In this case we generate run_time calculation
9104 of the number of iterations. */
9105
9106 if (loop_info->iteration_var == 0)
9107 {
9108 if (loop_dump_stream)
9109 fprintf (loop_dump_stream,
9110 "insert_bct %d: BCT Runtime Instrumentation failed: no loop iteration variable found\n",
9111 loop_num);
9112 return;
9113 }
9114
9115 if (GET_MODE_CLASS (GET_MODE (loop_info->iteration_var)) != MODE_INT
9116 || GET_MODE_SIZE (GET_MODE (loop_info->iteration_var)) != UNITS_PER_WORD)
9117 {
9118 if (loop_dump_stream)
9119 fprintf (loop_dump_stream,
9120 "insert_bct %d: BCT Runtime Instrumentation failed: loop variable not integer\n",
9121 loop_num);
9122 return;
9123 }
9124
9125 /* With runtime bounds, if the compare is of the form '!=' we give up */
9126 if (loop_info->comparison_code == NE)
9127 {
9128 if (loop_dump_stream)
9129 fprintf (loop_dump_stream,
9130 "insert_bct %d: BCT Runtime Instrumentation failed: runtime bounds with != comparison\n",
9131 loop_num);
9132 return;
9133 }
9134 /* Use common loop preconditioning code instead. */
9135 #if 0
9136 else
9137 {
9138 /* We rely on the existence of run-time guard to ensure that the
9139 loop executes at least once. */
9140 rtx sequence;
9141 rtx iterations_num_reg;
9142
9143 unsigned HOST_WIDE_INT increment_value_abs
9144 = INTVAL (increment) * increment_direction;
9145
9146 /* make sure that the increment is a power of two, otherwise (an
9147 expensive) divide is needed. */
9148 if (exact_log2 (increment_value_abs) == -1)
9149 {
9150 if (loop_dump_stream)
9151 fprintf (loop_dump_stream,
9152 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
9153 return;
9154 }
9155
9156 /* compute the number of iterations */
9157 start_sequence ();
9158 {
9159 rtx temp_reg;
9160
9161 /* Again, the number of iterations is calculated by:
9162 ;
9163 ; compare-val - initial-val + (increment -1) + additional-iteration
9164 ; num_iterations = -----------------------------------------------------------------
9165 ; increment
9166 */
9167 /* ??? Do we have to call copy_rtx here before passing rtx to
9168 expand_binop? */
9169 if (compare_direction > 0)
9170 {
9171 /* <, <= :the loop variable is increasing */
9172 temp_reg = expand_binop (loop_var_mode, sub_optab,
9173 comparison_value, initial_value,
9174 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9175 }
9176 else
9177 {
9178 temp_reg = expand_binop (loop_var_mode, sub_optab,
9179 initial_value, comparison_value,
9180 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9181 }
9182
9183 if (increment_value_abs - 1 + add_iteration != 0)
9184 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
9185 GEN_INT (increment_value_abs - 1
9186 + add_iteration),
9187 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9188
9189 if (increment_value_abs != 1)
9190 {
9191 /* ??? This will generate an expensive divide instruction for
9192 most targets. The original authors apparently expected this
9193 to be a shift, since they test for power-of-2 divisors above,
9194 but just naively generating a divide instruction will not give
9195 a shift. It happens to work for the PowerPC target because
9196 the rs6000.md file has a divide pattern that emits shifts.
9197 It will probably not work for any other target. */
9198 iterations_num_reg = expand_binop (loop_var_mode, sdiv_optab,
9199 temp_reg,
9200 GEN_INT (increment_value_abs),
9201 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9202 }
9203 else
9204 iterations_num_reg = temp_reg;
9205 }
9206 sequence = gen_sequence ();
9207 end_sequence ();
9208 emit_insn_before (sequence, loop_start);
9209 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
9210 }
9211
9212 return;
9213 #endif /* Complex case */
9214 }
9215
9216 /* Instrument loop by inserting a bct in it as follows:
9217 1. A new counter register is created.
9218 2. In the head of the loop the new variable is initialized to the value
9219 passed in the loop_num_iterations parameter.
9220 3. At the end of the loop, comparison of the register with 0 is generated.
9221 The created comparison follows the pattern defined for the
9222 decrement_and_branch_on_count insn, so this insn will be generated.
9223 4. The branch on the old variable are deleted. The compare must remain
9224 because it might be used elsewhere. If the loop-variable or condition
9225 register are used elsewhere, they will be eliminated by flow. */
9226
9227 static void
9228 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
9229 rtx loop_start, loop_end;
9230 rtx loop_num_iterations;
9231 {
9232 rtx counter_reg;
9233 rtx start_label;
9234 rtx sequence;
9235
9236 if (HAVE_decrement_and_branch_on_count)
9237 {
9238 if (loop_dump_stream)
9239 {
9240 fputs ("instrument_bct: Inserting BCT (", loop_dump_stream);
9241 if (GET_CODE (loop_num_iterations) == CONST_INT)
9242 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
9243 INTVAL (loop_num_iterations));
9244 else
9245 fputs ("runtime", loop_dump_stream);
9246 fputs (" iterations)", loop_dump_stream);
9247 }
9248
9249 /* Discard original jump to continue loop. Original compare result
9250 may still be live, so it cannot be discarded explicitly. */
9251 delete_insn (PREV_INSN (loop_end));
9252
9253 /* Insert the label which will delimit the start of the loop. */
9254 start_label = gen_label_rtx ();
9255 emit_label_after (start_label, loop_start);
9256
9257 /* Insert initialization of the count register into the loop header. */
9258 start_sequence ();
9259 counter_reg = gen_reg_rtx (word_mode);
9260 emit_insn (gen_move_insn (counter_reg, loop_num_iterations));
9261 sequence = gen_sequence ();
9262 end_sequence ();
9263 emit_insn_before (sequence, loop_start);
9264
9265 /* Insert new comparison on the count register instead of the
9266 old one, generating the needed BCT pattern (that will be
9267 later recognized by assembly generation phase). */
9268 emit_jump_insn_before (gen_decrement_and_branch_on_count (counter_reg,
9269 start_label),
9270 loop_end);
9271 LABEL_NUSES (start_label)++;
9272 }
9273
9274 }
9275 #endif /* HAVE_decrement_and_branch_on_count */
9276
9277 /* Scan the function and determine whether it has indirect (computed) jumps.
9278
9279 This is taken mostly from flow.c; similar code exists elsewhere
9280 in the compiler. It may be useful to put this into rtlanal.c. */
9281 static int
9282 indirect_jump_in_function_p (start)
9283 rtx start;
9284 {
9285 rtx insn;
9286
9287 for (insn = start; insn; insn = NEXT_INSN (insn))
9288 if (computed_jump_p (insn))
9289 return 1;
9290
9291 return 0;
9292 }
9293
9294 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
9295 documentation for LOOP_MEMS for the definition of `appropriate'.
9296 This function is called from prescan_loop via for_each_rtx. */
9297
9298 static int
9299 insert_loop_mem (mem, data)
9300 rtx *mem;
9301 void *data ATTRIBUTE_UNUSED;
9302 {
9303 int i;
9304 rtx m = *mem;
9305
9306 if (m == NULL_RTX)
9307 return 0;
9308
9309 switch (GET_CODE (m))
9310 {
9311 case MEM:
9312 break;
9313
9314 case CONST_DOUBLE:
9315 /* We're not interested in the MEM associated with a
9316 CONST_DOUBLE, so there's no need to traverse into this. */
9317 return -1;
9318
9319 default:
9320 /* This is not a MEM. */
9321 return 0;
9322 }
9323
9324 /* See if we've already seen this MEM. */
9325 for (i = 0; i < loop_mems_idx; ++i)
9326 if (rtx_equal_p (m, loop_mems[i].mem))
9327 {
9328 if (GET_MODE (m) != GET_MODE (loop_mems[i].mem))
9329 /* The modes of the two memory accesses are different. If
9330 this happens, something tricky is going on, and we just
9331 don't optimize accesses to this MEM. */
9332 loop_mems[i].optimize = 0;
9333
9334 return 0;
9335 }
9336
9337 /* Resize the array, if necessary. */
9338 if (loop_mems_idx == loop_mems_allocated)
9339 {
9340 if (loop_mems_allocated != 0)
9341 loop_mems_allocated *= 2;
9342 else
9343 loop_mems_allocated = 32;
9344
9345 loop_mems = (loop_mem_info*)
9346 xrealloc (loop_mems,
9347 loop_mems_allocated * sizeof (loop_mem_info));
9348 }
9349
9350 /* Actually insert the MEM. */
9351 loop_mems[loop_mems_idx].mem = m;
9352 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
9353 because we can't put it in a register. We still store it in the
9354 table, though, so that if we see the same address later, but in a
9355 non-BLK mode, we'll not think we can optimize it at that point. */
9356 loop_mems[loop_mems_idx].optimize = (GET_MODE (m) != BLKmode);
9357 loop_mems[loop_mems_idx].reg = NULL_RTX;
9358 ++loop_mems_idx;
9359
9360 return 0;
9361 }
9362
9363 /* Like load_mems, but also ensures that SET_IN_LOOP,
9364 MAY_NOT_OPTIMIZE, REG_SINGLE_USAGE, and INSN_COUNT have the correct
9365 values after load_mems. */
9366
9367 static void
9368 load_mems_and_recount_loop_regs_set (scan_start, end, loop_top, start,
9369 insn_count)
9370 rtx scan_start;
9371 rtx end;
9372 rtx loop_top;
9373 rtx start;
9374 int *insn_count;
9375 {
9376 int nregs = max_reg_num ();
9377
9378 load_mems (scan_start, end, loop_top, start);
9379
9380 /* Recalculate set_in_loop and friends since load_mems may have
9381 created new registers. */
9382 if (max_reg_num () > nregs)
9383 {
9384 int i;
9385 int old_nregs;
9386
9387 old_nregs = nregs;
9388 nregs = max_reg_num ();
9389
9390 if ((unsigned) nregs > set_in_loop->num_elements)
9391 {
9392 /* Grow all the arrays. */
9393 VARRAY_GROW (set_in_loop, nregs);
9394 VARRAY_GROW (n_times_set, nregs);
9395 VARRAY_GROW (may_not_optimize, nregs);
9396 VARRAY_GROW (reg_single_usage, nregs);
9397 }
9398 /* Clear the arrays */
9399 bzero ((char *) &set_in_loop->data, nregs * sizeof (int));
9400 bzero ((char *) &may_not_optimize->data, nregs * sizeof (char));
9401 bzero ((char *) &reg_single_usage->data, nregs * sizeof (rtx));
9402
9403 count_loop_regs_set (loop_top ? loop_top : start, end,
9404 may_not_optimize, reg_single_usage,
9405 insn_count, nregs);
9406
9407 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
9408 {
9409 VARRAY_CHAR (may_not_optimize, i) = 1;
9410 VARRAY_INT (set_in_loop, i) = 1;
9411 }
9412
9413 #ifdef AVOID_CCMODE_COPIES
9414 /* Don't try to move insns which set CC registers if we should not
9415 create CCmode register copies. */
9416 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
9417 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
9418 VARRAY_CHAR (may_not_optimize, i) = 1;
9419 #endif
9420
9421 /* Set n_times_set for the new registers. */
9422 bcopy ((char *) (&set_in_loop->data.i[0] + old_nregs),
9423 (char *) (&n_times_set->data.i[0] + old_nregs),
9424 (nregs - old_nregs) * sizeof (int));
9425 }
9426 }
9427
9428 /* Move MEMs into registers for the duration of the loop. SCAN_START
9429 is the first instruction in the loop (as it is executed). The
9430 other parameters are as for next_insn_in_loop. */
9431
9432 static void
9433 load_mems (scan_start, end, loop_top, start)
9434 rtx scan_start;
9435 rtx end;
9436 rtx loop_top;
9437 rtx start;
9438 {
9439 int maybe_never = 0;
9440 int i;
9441 rtx p;
9442 rtx label = NULL_RTX;
9443 rtx end_label;
9444
9445 if (loop_mems_idx > 0)
9446 {
9447 /* Nonzero if the next instruction may never be executed. */
9448 int next_maybe_never = 0;
9449
9450 /* Check to see if it's possible that some instructions in the
9451 loop are never executed. */
9452 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
9453 p != NULL_RTX && !maybe_never;
9454 p = next_insn_in_loop (p, scan_start, end, loop_top))
9455 {
9456 if (GET_CODE (p) == CODE_LABEL)
9457 maybe_never = 1;
9458 else if (GET_CODE (p) == JUMP_INSN
9459 /* If we enter the loop in the middle, and scan
9460 around to the beginning, don't set maybe_never
9461 for that. This must be an unconditional jump,
9462 otherwise the code at the top of the loop might
9463 never be executed. Unconditional jumps are
9464 followed a by barrier then loop end. */
9465 && ! (GET_CODE (p) == JUMP_INSN
9466 && JUMP_LABEL (p) == loop_top
9467 && NEXT_INSN (NEXT_INSN (p)) == end
9468 && simplejump_p (p)))
9469 {
9470 if (!condjump_p (p))
9471 /* Something complicated. */
9472 maybe_never = 1;
9473 else
9474 /* If there are any more instructions in the loop, they
9475 might not be reached. */
9476 next_maybe_never = 1;
9477 }
9478 else if (next_maybe_never)
9479 maybe_never = 1;
9480 }
9481
9482 /* Actually move the MEMs. */
9483 for (i = 0; i < loop_mems_idx; ++i)
9484 {
9485 int written = 0;
9486 rtx reg;
9487 rtx mem = loop_mems[i].mem;
9488 rtx mem_list_entry;
9489
9490 if (MEM_VOLATILE_P (mem)
9491 || invariant_p (XEXP (mem, 0)) != 1)
9492 /* There's no telling whether or not MEM is modified. */
9493 loop_mems[i].optimize = 0;
9494
9495 /* Go through the MEMs written to in the loop to see if this
9496 one is aliased by one of them. */
9497 mem_list_entry = loop_store_mems;
9498 while (mem_list_entry)
9499 {
9500 if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
9501 written = 1;
9502 else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
9503 mem, rtx_varies_p))
9504 {
9505 /* MEM is indeed aliased by this store. */
9506 loop_mems[i].optimize = 0;
9507 break;
9508 }
9509 mem_list_entry = XEXP (mem_list_entry, 1);
9510 }
9511
9512 /* If this MEM is written to, we must be sure that there
9513 are no reads from another MEM that aliases this one. */
9514 if (loop_mems[i].optimize && written)
9515 {
9516 int j;
9517
9518 for (j = 0; j < loop_mems_idx; ++j)
9519 {
9520 if (j == i)
9521 continue;
9522 else if (true_dependence (mem,
9523 VOIDmode,
9524 loop_mems[j].mem,
9525 rtx_varies_p))
9526 {
9527 /* It's not safe to hoist loop_mems[i] out of
9528 the loop because writes to it might not be
9529 seen by reads from loop_mems[j]. */
9530 loop_mems[i].optimize = 0;
9531 break;
9532 }
9533 }
9534 }
9535
9536 if (maybe_never && may_trap_p (mem))
9537 /* We can't access the MEM outside the loop; it might
9538 cause a trap that wouldn't have happened otherwise. */
9539 loop_mems[i].optimize = 0;
9540
9541 if (!loop_mems[i].optimize)
9542 /* We thought we were going to lift this MEM out of the
9543 loop, but later discovered that we could not. */
9544 continue;
9545
9546 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9547 order to keep scan_loop from moving stores to this MEM
9548 out of the loop just because this REG is neither a
9549 user-variable nor used in the loop test. */
9550 reg = gen_reg_rtx (GET_MODE (mem));
9551 REG_USERVAR_P (reg) = 1;
9552 loop_mems[i].reg = reg;
9553
9554 /* Now, replace all references to the MEM with the
9555 corresponding pesudos. */
9556 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
9557 p != NULL_RTX;
9558 p = next_insn_in_loop (p, scan_start, end, loop_top))
9559 {
9560 rtx_and_int ri;
9561 ri.r = p;
9562 ri.i = i;
9563 for_each_rtx (&p, replace_loop_mem, &ri);
9564 }
9565
9566 if (!apply_change_group ())
9567 /* We couldn't replace all occurrences of the MEM. */
9568 loop_mems[i].optimize = 0;
9569 else
9570 {
9571 rtx set;
9572
9573 /* Load the memory immediately before START, which is
9574 the NOTE_LOOP_BEG. */
9575 set = gen_move_insn (reg, mem);
9576 emit_insn_before (set, start);
9577
9578 if (written)
9579 {
9580 if (label == NULL_RTX)
9581 {
9582 /* We must compute the former
9583 right-after-the-end label before we insert
9584 the new one. */
9585 end_label = next_label (end);
9586 label = gen_label_rtx ();
9587 emit_label_after (label, end);
9588 }
9589
9590 /* Store the memory immediately after END, which is
9591 the NOTE_LOOP_END. */
9592 set = gen_move_insn (copy_rtx (mem), reg);
9593 emit_insn_after (set, label);
9594 }
9595
9596 if (loop_dump_stream)
9597 {
9598 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
9599 REGNO (reg), (written ? "r/w" : "r/o"));
9600 print_rtl (loop_dump_stream, mem);
9601 fputc ('\n', loop_dump_stream);
9602 }
9603 }
9604 }
9605 }
9606
9607 if (label != NULL_RTX)
9608 {
9609 /* Now, we need to replace all references to the previous exit
9610 label with the new one. */
9611 rtx_pair rr;
9612 rr.r1 = end_label;
9613 rr.r2 = label;
9614
9615 for (p = start; p != end; p = NEXT_INSN (p))
9616 {
9617 for_each_rtx (&p, replace_label, &rr);
9618
9619 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
9620 field. This is not handled by for_each_rtx because it doesn't
9621 handle unprinted ('0') fields. We need to update JUMP_LABEL
9622 because the immediately following unroll pass will use it.
9623 replace_label would not work anyways, because that only handles
9624 LABEL_REFs. */
9625 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
9626 JUMP_LABEL (p) = label;
9627 }
9628 }
9629 }
9630
9631 /* Replace MEM with its associated pseudo register. This function is
9632 called from load_mems via for_each_rtx. DATA is actually an
9633 rtx_and_int * describing the instruction currently being scanned
9634 and the MEM we are currently replacing. */
9635
9636 static int
9637 replace_loop_mem (mem, data)
9638 rtx *mem;
9639 void *data;
9640 {
9641 rtx_and_int *ri;
9642 rtx insn;
9643 int i;
9644 rtx m = *mem;
9645
9646 if (m == NULL_RTX)
9647 return 0;
9648
9649 switch (GET_CODE (m))
9650 {
9651 case MEM:
9652 break;
9653
9654 case CONST_DOUBLE:
9655 /* We're not interested in the MEM associated with a
9656 CONST_DOUBLE, so there's no need to traverse into one. */
9657 return -1;
9658
9659 default:
9660 /* This is not a MEM. */
9661 return 0;
9662 }
9663
9664 ri = (rtx_and_int*) data;
9665 i = ri->i;
9666
9667 if (!rtx_equal_p (loop_mems[i].mem, m))
9668 /* This is not the MEM we are currently replacing. */
9669 return 0;
9670
9671 insn = ri->r;
9672
9673 /* Actually replace the MEM. */
9674 validate_change (insn, mem, loop_mems[i].reg, 1);
9675
9676 return 0;
9677 }
9678
9679 /* Replace occurrences of the old exit label for the loop with the new
9680 one. DATA is an rtx_pair containing the old and new labels,
9681 respectively. */
9682
9683 static int
9684 replace_label (x, data)
9685 rtx *x;
9686 void *data;
9687 {
9688 rtx l = *x;
9689 rtx old_label = ((rtx_pair*) data)->r1;
9690 rtx new_label = ((rtx_pair*) data)->r2;
9691
9692 if (l == NULL_RTX)
9693 return 0;
9694
9695 if (GET_CODE (l) != LABEL_REF)
9696 return 0;
9697
9698 if (XEXP (l, 0) != old_label)
9699 return 0;
9700
9701 XEXP (l, 0) = new_label;
9702 ++LABEL_NUSES (new_label);
9703 --LABEL_NUSES (old_label);
9704
9705 return 0;
9706 }
9707
This page took 0.509046 seconds and 4 git commands to generate.