]> gcc.gnu.org Git - gcc.git/blob - gcc/loop.c
jcf-dump.c (main): Test for correct condition after output file creation.
[gcc.git] / gcc / loop.c
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-99, 2000 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
28
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
33
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "rtl.h"
40 #include "tm_p.h"
41 #include "obstack.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "basic-block.h"
45 #include "insn-config.h"
46 #include "insn-flags.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "recog.h"
50 #include "flags.h"
51 #include "real.h"
52 #include "loop.h"
53 #include "except.h"
54 #include "toplev.h"
55
56 /* Vector mapping INSN_UIDs to luids.
57 The luids are like uids but increase monotonically always.
58 We use them to see whether a jump comes from outside a given loop. */
59
60 int *uid_luid;
61
62 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
63 number the insn is contained in. */
64
65 struct loop **uid_loop;
66
67 /* 1 + largest uid of any insn. */
68
69 int max_uid_for_loop;
70
71 /* 1 + luid of last insn. */
72
73 static int max_luid;
74
75 /* Number of loops detected in current function. Used as index to the
76 next few tables. */
77
78 static int max_loop_num;
79
80 /* Indexed by register number, contains the number of times the reg
81 is set during the loop being scanned.
82 During code motion, a negative value indicates a reg that has been
83 made a candidate; in particular -2 means that it is an candidate that
84 we know is equal to a constant and -1 means that it is an candidate
85 not known equal to a constant.
86 After code motion, regs moved have 0 (which is accurate now)
87 while the failed candidates have the original number of times set.
88
89 Therefore, at all times, == 0 indicates an invariant register;
90 < 0 a conditionally invariant one. */
91
92 static varray_type set_in_loop;
93
94 /* Original value of set_in_loop; same except that this value
95 is not set negative for a reg whose sets have been made candidates
96 and not set to 0 for a reg that is moved. */
97
98 static varray_type n_times_set;
99
100 /* Index by register number, 1 indicates that the register
101 cannot be moved or strength reduced. */
102
103 static varray_type may_not_optimize;
104
105 /* Contains the insn in which a register was used if it was used
106 exactly once; contains const0_rtx if it was used more than once. */
107
108 static varray_type reg_single_usage;
109
110 /* Nonzero means reg N has already been moved out of one loop.
111 This reduces the desire to move it out of another. */
112
113 static char *moved_once;
114
115 /* List of MEMs that are stored in this loop. */
116
117 static rtx loop_store_mems;
118
119 /* The insn where the first of these was found. */
120 static rtx first_loop_store_insn;
121
122 typedef struct loop_mem_info {
123 rtx mem; /* The MEM itself. */
124 rtx reg; /* Corresponding pseudo, if any. */
125 int optimize; /* Nonzero if we can optimize access to this MEM. */
126 } loop_mem_info;
127
128 /* Array of MEMs that are used (read or written) in this loop, but
129 cannot be aliased by anything in this loop, except perhaps
130 themselves. In other words, if loop_mems[i] is altered during the
131 loop, it is altered by an expression that is rtx_equal_p to it. */
132
133 static loop_mem_info *loop_mems;
134
135 /* The index of the next available slot in LOOP_MEMS. */
136
137 static int loop_mems_idx;
138
139 /* The number of elements allocated in LOOP_MEMs. */
140
141 static int loop_mems_allocated;
142
143 /* Nonzero if we don't know what MEMs were changed in the current
144 loop. This happens if the loop contains a call (in which case
145 `loop_info->has_call' will also be set) or if we store into more
146 than NUM_STORES MEMs. */
147
148 static int unknown_address_altered;
149
150 /* The above doesn't count any readonly memory locations that are stored.
151 This does. */
152
153 static int unknown_constant_address_altered;
154
155 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
156 static int num_movables;
157
158 /* Count of memory write instructions discovered in the loop. */
159 static int num_mem_sets;
160
161 /* Bound on pseudo register number before loop optimization.
162 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
163 int max_reg_before_loop;
164
165 /* The value to pass to the next call of reg_scan_update. */
166 static int loop_max_reg;
167
168 /* This obstack is used in product_cheap_p to allocate its rtl. It
169 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
170 If we used the same obstack that it did, we would be deallocating
171 that array. */
172
173 static struct obstack temp_obstack;
174
175 /* This is where the pointer to the obstack being used for RTL is stored. */
176
177 extern struct obstack *rtl_obstack;
178
179 #define obstack_chunk_alloc xmalloc
180 #define obstack_chunk_free free
181 \f
182 /* During the analysis of a loop, a chain of `struct movable's
183 is made to record all the movable insns found.
184 Then the entire chain can be scanned to decide which to move. */
185
186 struct movable
187 {
188 rtx insn; /* A movable insn */
189 rtx set_src; /* The expression this reg is set from. */
190 rtx set_dest; /* The destination of this SET. */
191 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
192 of any registers used within the LIBCALL. */
193 int consec; /* Number of consecutive following insns
194 that must be moved with this one. */
195 int regno; /* The register it sets */
196 short lifetime; /* lifetime of that register;
197 may be adjusted when matching movables
198 that load the same value are found. */
199 short savings; /* Number of insns we can move for this reg,
200 including other movables that force this
201 or match this one. */
202 unsigned int cond : 1; /* 1 if only conditionally movable */
203 unsigned int force : 1; /* 1 means MUST move this insn */
204 unsigned int global : 1; /* 1 means reg is live outside this loop */
205 /* If PARTIAL is 1, GLOBAL means something different:
206 that the reg is live outside the range from where it is set
207 to the following label. */
208 unsigned int done : 1; /* 1 inhibits further processing of this */
209
210 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
211 In particular, moving it does not make it
212 invariant. */
213 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
214 load SRC, rather than copying INSN. */
215 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
216 first insn of a consecutive sets group. */
217 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
218 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
219 that we should avoid changing when clearing
220 the rest of the reg. */
221 struct movable *match; /* First entry for same value */
222 struct movable *forces; /* An insn that must be moved if this is */
223 struct movable *next;
224 };
225
226 static struct movable *the_movables;
227
228 FILE *loop_dump_stream;
229
230 /* Forward declarations. */
231
232 static void verify_dominator PARAMS ((struct loop *));
233 static void find_and_verify_loops PARAMS ((rtx, struct loops *));
234 static void mark_loop_jump PARAMS ((rtx, struct loop *));
235 static void prescan_loop PARAMS ((struct loop *));
236 static int reg_in_basic_block_p PARAMS ((rtx, rtx));
237 static int consec_sets_invariant_p PARAMS ((const struct loop *,
238 rtx, int, rtx));
239 static int labels_in_range_p PARAMS ((rtx, int));
240 static void count_one_set PARAMS ((rtx, rtx, varray_type, rtx *));
241
242 static void count_loop_regs_set PARAMS ((rtx, rtx, varray_type, varray_type,
243 int *, int));
244 static void note_addr_stored PARAMS ((rtx, rtx, void *));
245 static void note_set_pseudo_multiple_uses PARAMS ((rtx, rtx, void *));
246 static int loop_reg_used_before_p PARAMS ((const struct loop *, rtx, rtx));
247 static void scan_loop PARAMS ((struct loop*, int, int));
248 #if 0
249 static void replace_call_address PARAMS ((rtx, rtx, rtx));
250 #endif
251 static rtx skip_consec_insns PARAMS ((rtx, int));
252 static int libcall_benefit PARAMS ((rtx));
253 static void ignore_some_movables PARAMS ((struct movable *));
254 static void force_movables PARAMS ((struct movable *));
255 static void combine_movables PARAMS ((struct movable *, int));
256 static int regs_match_p PARAMS ((rtx, rtx, struct movable *));
257 static int rtx_equal_for_loop_p PARAMS ((rtx, rtx, struct movable *));
258 static void add_label_notes PARAMS ((rtx, rtx));
259 static void move_movables PARAMS ((struct loop *loop, struct movable *,
260 int, int, int));
261 static int count_nonfixed_reads PARAMS ((const struct loop *, rtx));
262 static void strength_reduce PARAMS ((struct loop *, int, int, int));
263 static void find_single_use_in_loop PARAMS ((rtx, rtx, varray_type));
264 static int valid_initial_value_p PARAMS ((rtx, rtx, int, rtx));
265 static void find_mem_givs PARAMS ((const struct loop *, rtx, rtx, int, int));
266 static void record_biv PARAMS ((struct induction *, rtx, rtx, rtx, rtx, rtx *,
267 int, int, int));
268 static void check_final_value PARAMS ((const struct loop *,
269 struct induction *));
270 static void record_giv PARAMS ((const struct loop *, struct induction *,
271 rtx, rtx, rtx, rtx, rtx, int, enum g_types,
272 int, int, rtx *));
273 static void update_giv_derive PARAMS ((const struct loop *, rtx));
274 static int basic_induction_var PARAMS ((const struct loop *, rtx,
275 enum machine_mode, rtx, rtx,
276 rtx *, rtx *, rtx **, int *));
277 static rtx simplify_giv_expr PARAMS ((const struct loop *, rtx, int *));
278 static int general_induction_var PARAMS ((const struct loop *loop, rtx, rtx *,
279 rtx *, rtx *, int, int *));
280 static int consec_sets_giv PARAMS ((const struct loop *, int, rtx,
281 rtx, rtx, rtx *, rtx *, rtx *));
282 static int check_dbra_loop PARAMS ((struct loop *, int));
283 static rtx express_from_1 PARAMS ((rtx, rtx, rtx));
284 static rtx combine_givs_p PARAMS ((struct induction *, struct induction *));
285 static void combine_givs PARAMS ((struct iv_class *));
286 struct recombine_givs_stats;
287 static int find_life_end PARAMS ((rtx, struct recombine_givs_stats *,
288 rtx, rtx));
289 static void recombine_givs PARAMS ((const struct loop *, struct iv_class *,
290 int));
291 static int product_cheap_p PARAMS ((rtx, rtx));
292 static int maybe_eliminate_biv PARAMS ((const struct loop *, struct iv_class *,
293 int, int, int));
294 static int maybe_eliminate_biv_1 PARAMS ((const struct loop *, rtx, rtx,
295 struct iv_class *, int, rtx));
296 static int last_use_this_basic_block PARAMS ((rtx, rtx));
297 static void record_initial PARAMS ((rtx, rtx, void *));
298 static void update_reg_last_use PARAMS ((rtx, rtx));
299 static rtx next_insn_in_loop PARAMS ((const struct loop *, rtx));
300 static void load_mems_and_recount_loop_regs_set PARAMS ((const struct loop*,
301 int *));
302 static void load_mems PARAMS ((const struct loop *));
303 static int insert_loop_mem PARAMS ((rtx *, void *));
304 static int replace_loop_mem PARAMS ((rtx *, void *));
305 static int replace_loop_reg PARAMS ((rtx *, void *));
306 static void note_reg_stored PARAMS ((rtx, rtx, void *));
307 static void try_copy_prop PARAMS ((const struct loop *, rtx, int));
308 static int replace_label PARAMS ((rtx *, void *));
309
310 typedef struct rtx_and_int {
311 rtx r;
312 int i;
313 } rtx_and_int;
314
315 typedef struct rtx_pair {
316 rtx r1;
317 rtx r2;
318 } rtx_pair;
319
320 /* Nonzero iff INSN is between START and END, inclusive. */
321 #define INSN_IN_RANGE_P(INSN, START, END) \
322 (INSN_UID (INSN) < max_uid_for_loop \
323 && INSN_LUID (INSN) >= INSN_LUID (START) \
324 && INSN_LUID (INSN) <= INSN_LUID (END))
325
326 #ifdef HAVE_decrement_and_branch_on_count
327 /* Test whether BCT applicable and safe. */
328 static void insert_bct PARAMS ((struct loop *));
329
330 /* Auxiliary function that inserts the BCT pattern into the loop. */
331 static void instrument_loop_bct PARAMS ((rtx, rtx, rtx));
332 #endif /* HAVE_decrement_and_branch_on_count */
333
334 /* Indirect_jump_in_function is computed once per function. */
335 int indirect_jump_in_function = 0;
336 static int indirect_jump_in_function_p PARAMS ((rtx));
337
338 static int compute_luids PARAMS ((rtx, rtx, int));
339
340 static int biv_elimination_giv_has_0_offset PARAMS ((struct induction *,
341 struct induction *, rtx));
342 \f
343 /* Relative gain of eliminating various kinds of operations. */
344 static int add_cost;
345 #if 0
346 static int shift_cost;
347 static int mult_cost;
348 #endif
349
350 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
351 copy the value of the strength reduced giv to its original register. */
352 static int copy_cost;
353
354 /* Cost of using a register, to normalize the benefits of a giv. */
355 static int reg_address_cost;
356
357
358 void
359 init_loop ()
360 {
361 char *free_point = (char *) oballoc (1);
362 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
363
364 add_cost = rtx_cost (gen_rtx_PLUS (word_mode, reg, reg), SET);
365
366 #ifdef ADDRESS_COST
367 reg_address_cost = ADDRESS_COST (reg);
368 #else
369 reg_address_cost = rtx_cost (reg, MEM);
370 #endif
371
372 /* We multiply by 2 to reconcile the difference in scale between
373 these two ways of computing costs. Otherwise the cost of a copy
374 will be far less than the cost of an add. */
375
376 copy_cost = 2 * 2;
377
378 /* Free the objects we just allocated. */
379 obfree (free_point);
380
381 /* Initialize the obstack used for rtl in product_cheap_p. */
382 gcc_obstack_init (&temp_obstack);
383 }
384 \f
385 /* Compute the mapping from uids to luids.
386 LUIDs are numbers assigned to insns, like uids,
387 except that luids increase monotonically through the code.
388 Start at insn START and stop just before END. Assign LUIDs
389 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
390 static int
391 compute_luids (start, end, prev_luid)
392 rtx start, end;
393 int prev_luid;
394 {
395 int i;
396 rtx insn;
397
398 for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
399 {
400 if (INSN_UID (insn) >= max_uid_for_loop)
401 continue;
402 /* Don't assign luids to line-number NOTEs, so that the distance in
403 luids between two insns is not affected by -g. */
404 if (GET_CODE (insn) != NOTE
405 || NOTE_LINE_NUMBER (insn) <= 0)
406 uid_luid[INSN_UID (insn)] = ++i;
407 else
408 /* Give a line number note the same luid as preceding insn. */
409 uid_luid[INSN_UID (insn)] = i;
410 }
411 return i + 1;
412 }
413 \f
414 /* Entry point of this file. Perform loop optimization
415 on the current function. F is the first insn of the function
416 and DUMPFILE is a stream for output of a trace of actions taken
417 (or 0 if none should be output). */
418
419 void
420 loop_optimize (f, dumpfile, unroll_p, bct_p)
421 /* f is the first instruction of a chain of insns for one function */
422 rtx f;
423 FILE *dumpfile;
424 int unroll_p, bct_p;
425 {
426 register rtx insn;
427 register int i;
428 struct loops loops_data;
429 struct loops *loops = &loops_data;
430 struct loop_info *loops_info;
431
432 loop_dump_stream = dumpfile;
433
434 init_recog_no_volatile ();
435
436 max_reg_before_loop = max_reg_num ();
437 loop_max_reg = max_reg_before_loop;
438
439 regs_may_share = 0;
440
441 /* Count the number of loops. */
442
443 max_loop_num = 0;
444 for (insn = f; insn; insn = NEXT_INSN (insn))
445 {
446 if (GET_CODE (insn) == NOTE
447 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
448 max_loop_num++;
449 }
450
451 /* Don't waste time if no loops. */
452 if (max_loop_num == 0)
453 return;
454
455 loops->num = max_loop_num;
456
457 moved_once = (char *) xcalloc (max_reg_before_loop, sizeof (char));
458
459 /* Get size to use for tables indexed by uids.
460 Leave some space for labels allocated by find_and_verify_loops. */
461 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
462
463 uid_luid = (int *) xcalloc (max_uid_for_loop, sizeof (int));
464 uid_loop = (struct loop **) xcalloc (max_uid_for_loop,
465 sizeof (struct loop *));
466
467 /* Allocate storage for array of loops. */
468 loops->array = (struct loop *)
469 xcalloc (loops->num, sizeof (struct loop));
470
471 /* Find and process each loop.
472 First, find them, and record them in order of their beginnings. */
473 find_and_verify_loops (f, loops);
474
475 /* Allocate and initialize auxiliary loop information. */
476 loops_info = xcalloc (loops->num, sizeof (struct loop_info));
477 for (i = 0; i < loops->num; i++)
478 loops->array[i].aux = loops_info + i;
479
480 /* Now find all register lifetimes. This must be done after
481 find_and_verify_loops, because it might reorder the insns in the
482 function. */
483 reg_scan (f, max_reg_before_loop, 1);
484
485 /* This must occur after reg_scan so that registers created by gcse
486 will have entries in the register tables.
487
488 We could have added a call to reg_scan after gcse_main in toplev.c,
489 but moving this call to init_alias_analysis is more efficient. */
490 init_alias_analysis ();
491
492 /* See if we went too far. Note that get_max_uid already returns
493 one more that the maximum uid of all insn. */
494 if (get_max_uid () > max_uid_for_loop)
495 abort ();
496 /* Now reset it to the actual size we need. See above. */
497 max_uid_for_loop = get_max_uid ();
498
499 /* find_and_verify_loops has already called compute_luids, but it
500 might have rearranged code afterwards, so we need to recompute
501 the luids now. */
502 max_luid = compute_luids (f, NULL_RTX, 0);
503
504 /* Don't leave gaps in uid_luid for insns that have been
505 deleted. It is possible that the first or last insn
506 using some register has been deleted by cross-jumping.
507 Make sure that uid_luid for that former insn's uid
508 points to the general area where that insn used to be. */
509 for (i = 0; i < max_uid_for_loop; i++)
510 {
511 uid_luid[0] = uid_luid[i];
512 if (uid_luid[0] != 0)
513 break;
514 }
515 for (i = 0; i < max_uid_for_loop; i++)
516 if (uid_luid[i] == 0)
517 uid_luid[i] = uid_luid[i - 1];
518
519 /* If debugging and unrolling loops, we must replicate the tree
520 nodes corresponding to the BLOCKs inside the loop, so that the
521 original one to one mapping will remain. We sometimes unroll
522 loops even when unroll_p is false, so we must always do this when
523 debugging. */
524 if (write_symbols != NO_DEBUG)
525 find_loop_tree_blocks ();
526
527 /* Determine if the function has indirect jump. On some systems
528 this prevents low overhead loop instructions from being used. */
529 indirect_jump_in_function = indirect_jump_in_function_p (f);
530
531 /* Now scan the loops, last ones first, since this means inner ones are done
532 before outer ones. */
533 for (i = max_loop_num - 1; i >= 0; i--)
534 {
535 struct loop *loop = &loops->array[i];
536
537 if (! loop->invalid && loop->end)
538 scan_loop (loop, unroll_p, bct_p);
539 }
540
541 /* Replicate the BLOCKs. */
542 if (write_symbols != NO_DEBUG)
543 unroll_block_trees ();
544
545 end_alias_analysis ();
546
547 /* Clean up. */
548 free (moved_once);
549 free (uid_luid);
550 free (uid_loop);
551 free (loops_info);
552 free (loops->array);
553 }
554 \f
555 /* Returns the next insn, in execution order, after INSN. START and
556 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
557 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
558 insn-stream; it is used with loops that are entered near the
559 bottom. */
560
561 static rtx
562 next_insn_in_loop (loop, insn)
563 const struct loop *loop;
564 rtx insn;
565 {
566 insn = NEXT_INSN (insn);
567
568 if (insn == loop->end)
569 {
570 if (loop->top)
571 /* Go to the top of the loop, and continue there. */
572 insn = loop->top;
573 else
574 /* We're done. */
575 insn = NULL_RTX;
576 }
577
578 if (insn == loop->scan_start)
579 /* We're done. */
580 insn = NULL_RTX;
581
582 return insn;
583 }
584
585 /* Optimize one loop described by LOOP. */
586
587 /* ??? Could also move memory writes out of loops if the destination address
588 is invariant, the source is invariant, the memory write is not volatile,
589 and if we can prove that no read inside the loop can read this address
590 before the write occurs. If there is a read of this address after the
591 write, then we can also mark the memory read as invariant. */
592
593 static void
594 scan_loop (loop, unroll_p, bct_p)
595 struct loop *loop;
596 int unroll_p, bct_p;
597 {
598 register int i;
599 rtx loop_start = loop->start;
600 rtx loop_end = loop->end;
601 /* Additional information about the current loop being processed
602 that is used to compute the number of loop iterations for loop
603 unrolling and doloop optimization. */
604 struct loop_info *loop_info = LOOP_INFO (loop);
605 rtx p;
606 /* 1 if we are scanning insns that could be executed zero times. */
607 int maybe_never = 0;
608 /* 1 if we are scanning insns that might never be executed
609 due to a subroutine call which might exit before they are reached. */
610 int call_passed = 0;
611 /* Jump insn that enters the loop, or 0 if control drops in. */
612 rtx loop_entry_jump = 0;
613 /* Number of insns in the loop. */
614 int insn_count;
615 int in_libcall = 0;
616 int tem;
617 rtx temp, update_start, update_end;
618 /* The SET from an insn, if it is the only SET in the insn. */
619 rtx set, set1;
620 /* Chain describing insns movable in current loop. */
621 struct movable *movables = 0;
622 /* Last element in `movables' -- so we can add elements at the end. */
623 struct movable *last_movable = 0;
624 /* Ratio of extra register life span we can justify
625 for saving an instruction. More if loop doesn't call subroutines
626 since in that case saving an insn makes more difference
627 and more registers are available. */
628 int threshold;
629 /* Nonzero if we are scanning instructions in a sub-loop. */
630 int loop_depth = 0;
631 int nregs;
632
633 loop->top = 0;
634
635 /* Determine whether this loop starts with a jump down to a test at
636 the end. This will occur for a small number of loops with a test
637 that is too complex to duplicate in front of the loop.
638
639 We search for the first insn or label in the loop, skipping NOTEs.
640 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
641 (because we might have a loop executed only once that contains a
642 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
643 (in case we have a degenerate loop).
644
645 Note that if we mistakenly think that a loop is entered at the top
646 when, in fact, it is entered at the exit test, the only effect will be
647 slightly poorer optimization. Making the opposite error can generate
648 incorrect code. Since very few loops now start with a jump to the
649 exit test, the code here to detect that case is very conservative. */
650
651 for (p = NEXT_INSN (loop_start);
652 p != loop_end
653 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
654 && (GET_CODE (p) != NOTE
655 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
656 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
657 p = NEXT_INSN (p))
658 ;
659
660 loop->scan_start = p;
661
662 /* Set up variables describing this loop. */
663 prescan_loop (loop);
664 threshold = (loop_info->has_call ? 1 : 2) * (1 + n_non_fixed_regs);
665
666 /* If loop has a jump before the first label,
667 the true entry is the target of that jump.
668 Start scan from there.
669 But record in LOOP->TOP the place where the end-test jumps
670 back to so we can scan that after the end of the loop. */
671 if (GET_CODE (p) == JUMP_INSN)
672 {
673 loop_entry_jump = p;
674
675 /* Loop entry must be unconditional jump (and not a RETURN) */
676 if (simplejump_p (p)
677 && JUMP_LABEL (p) != 0
678 /* Check to see whether the jump actually
679 jumps out of the loop (meaning it's no loop).
680 This case can happen for things like
681 do {..} while (0). If this label was generated previously
682 by loop, we can't tell anything about it and have to reject
683 the loop. */
684 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, loop_end))
685 {
686 loop->top = next_label (loop->scan_start);
687 loop->scan_start = JUMP_LABEL (p);
688 }
689 }
690
691 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
692 as required by loop_reg_used_before_p. So skip such loops. (This
693 test may never be true, but it's best to play it safe.)
694
695 Also, skip loops where we do not start scanning at a label. This
696 test also rejects loops starting with a JUMP_INSN that failed the
697 test above. */
698
699 if (INSN_UID (loop->scan_start) >= max_uid_for_loop
700 || GET_CODE (loop->scan_start) != CODE_LABEL)
701 {
702 if (loop_dump_stream)
703 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
704 INSN_UID (loop_start), INSN_UID (loop_end));
705 return;
706 }
707
708 /* Count number of times each reg is set during this loop.
709 Set VARRAY_CHAR (may_not_optimize, I) if it is not safe to move out
710 the setting of register I. Set VARRAY_RTX (reg_single_usage, I). */
711
712 /* Allocate extra space for REGS that might be created by
713 load_mems. We allocate a little extra slop as well, in the hopes
714 that even after the moving of movables creates some new registers
715 we won't have to reallocate these arrays. However, we do grow
716 the arrays, if necessary, in load_mems_recount_loop_regs_set. */
717 nregs = max_reg_num () + loop_mems_idx + 16;
718 VARRAY_INT_INIT (set_in_loop, nregs, "set_in_loop");
719 VARRAY_INT_INIT (n_times_set, nregs, "n_times_set");
720 VARRAY_CHAR_INIT (may_not_optimize, nregs, "may_not_optimize");
721 VARRAY_RTX_INIT (reg_single_usage, nregs, "reg_single_usage");
722
723 count_loop_regs_set (loop->top ? loop->top : loop->start, loop->end,
724 may_not_optimize, reg_single_usage, &insn_count, nregs);
725
726 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
727 {
728 VARRAY_CHAR (may_not_optimize, i) = 1;
729 VARRAY_INT (set_in_loop, i) = 1;
730 }
731
732 #ifdef AVOID_CCMODE_COPIES
733 /* Don't try to move insns which set CC registers if we should not
734 create CCmode register copies. */
735 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
736 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
737 VARRAY_CHAR (may_not_optimize, i) = 1;
738 #endif
739
740 bcopy ((char *) &set_in_loop->data,
741 (char *) &n_times_set->data, nregs * sizeof (int));
742
743 if (loop_dump_stream)
744 {
745 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
746 INSN_UID (loop_start), INSN_UID (loop_end), insn_count);
747 if (loop->cont)
748 fprintf (loop_dump_stream, "Continue at insn %d.\n",
749 INSN_UID (loop->cont));
750 }
751
752 /* Scan through the loop finding insns that are safe to move.
753 Set set_in_loop negative for the reg being set, so that
754 this reg will be considered invariant for subsequent insns.
755 We consider whether subsequent insns use the reg
756 in deciding whether it is worth actually moving.
757
758 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
759 and therefore it is possible that the insns we are scanning
760 would never be executed. At such times, we must make sure
761 that it is safe to execute the insn once instead of zero times.
762 When MAYBE_NEVER is 0, all insns will be executed at least once
763 so that is not a problem. */
764
765 for (p = next_insn_in_loop (loop, loop->scan_start);
766 p != NULL_RTX;
767 p = next_insn_in_loop (loop, p))
768 {
769 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
770 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
771 in_libcall = 1;
772 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
773 && find_reg_note (p, REG_RETVAL, NULL_RTX))
774 in_libcall = 0;
775
776 if (GET_CODE (p) == INSN
777 && (set = single_set (p))
778 && GET_CODE (SET_DEST (set)) == REG
779 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
780 {
781 int tem1 = 0;
782 int tem2 = 0;
783 int move_insn = 0;
784 rtx src = SET_SRC (set);
785 rtx dependencies = 0;
786
787 /* Figure out what to use as a source of this insn. If a REG_EQUIV
788 note is given or if a REG_EQUAL note with a constant operand is
789 specified, use it as the source and mark that we should move
790 this insn by calling emit_move_insn rather that duplicating the
791 insn.
792
793 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
794 is present. */
795 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
796 if (temp)
797 src = XEXP (temp, 0), move_insn = 1;
798 else
799 {
800 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
801 if (temp && CONSTANT_P (XEXP (temp, 0)))
802 src = XEXP (temp, 0), move_insn = 1;
803 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
804 {
805 src = XEXP (temp, 0);
806 /* A libcall block can use regs that don't appear in
807 the equivalent expression. To move the libcall,
808 we must move those regs too. */
809 dependencies = libcall_other_reg (p, src);
810 }
811 }
812
813 /* Don't try to optimize a register that was made
814 by loop-optimization for an inner loop.
815 We don't know its life-span, so we can't compute the benefit. */
816 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
817 ;
818 else if (/* The register is used in basic blocks other
819 than the one where it is set (meaning that
820 something after this point in the loop might
821 depend on its value before the set). */
822 ! reg_in_basic_block_p (p, SET_DEST (set))
823 /* And the set is not guaranteed to be executed one
824 the loop starts, or the value before the set is
825 needed before the set occurs...
826
827 ??? Note we have quadratic behaviour here, mitigated
828 by the fact that the previous test will often fail for
829 large loops. Rather than re-scanning the entire loop
830 each time for register usage, we should build tables
831 of the register usage and use them here instead. */
832 && (maybe_never
833 || loop_reg_used_before_p (loop, set, p)))
834 /* It is unsafe to move the set.
835
836 This code used to consider it OK to move a set of a variable
837 which was not created by the user and not used in an exit test.
838 That behavior is incorrect and was removed. */
839 ;
840 else if ((tem = loop_invariant_p (loop, src))
841 && (dependencies == 0
842 || (tem2 = loop_invariant_p (loop, dependencies)) != 0)
843 && (VARRAY_INT (set_in_loop,
844 REGNO (SET_DEST (set))) == 1
845 || (tem1
846 = consec_sets_invariant_p
847 (loop, SET_DEST (set),
848 VARRAY_INT (set_in_loop, REGNO (SET_DEST (set))),
849 p)))
850 /* If the insn can cause a trap (such as divide by zero),
851 can't move it unless it's guaranteed to be executed
852 once loop is entered. Even a function call might
853 prevent the trap insn from being reached
854 (since it might exit!) */
855 && ! ((maybe_never || call_passed)
856 && may_trap_p (src)))
857 {
858 register struct movable *m;
859 register int regno = REGNO (SET_DEST (set));
860
861 /* A potential lossage is where we have a case where two insns
862 can be combined as long as they are both in the loop, but
863 we move one of them outside the loop. For large loops,
864 this can lose. The most common case of this is the address
865 of a function being called.
866
867 Therefore, if this register is marked as being used exactly
868 once if we are in a loop with calls (a "large loop"), see if
869 we can replace the usage of this register with the source
870 of this SET. If we can, delete this insn.
871
872 Don't do this if P has a REG_RETVAL note or if we have
873 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
874
875 if (loop_info->has_call
876 && VARRAY_RTX (reg_single_usage, regno) != 0
877 && VARRAY_RTX (reg_single_usage, regno) != const0_rtx
878 && REGNO_FIRST_UID (regno) == INSN_UID (p)
879 && (REGNO_LAST_UID (regno)
880 == INSN_UID (VARRAY_RTX (reg_single_usage, regno)))
881 && VARRAY_INT (set_in_loop, regno) == 1
882 && ! side_effects_p (SET_SRC (set))
883 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
884 && (! SMALL_REGISTER_CLASSES
885 || (! (GET_CODE (SET_SRC (set)) == REG
886 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
887 /* This test is not redundant; SET_SRC (set) might be
888 a call-clobbered register and the life of REGNO
889 might span a call. */
890 && ! modified_between_p (SET_SRC (set), p,
891 VARRAY_RTX
892 (reg_single_usage, regno))
893 && no_labels_between_p (p, VARRAY_RTX (reg_single_usage, regno))
894 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
895 VARRAY_RTX
896 (reg_single_usage, regno)))
897 {
898 /* Replace any usage in a REG_EQUAL note. Must copy the
899 new source, so that we don't get rtx sharing between the
900 SET_SOURCE and REG_NOTES of insn p. */
901 REG_NOTES (VARRAY_RTX (reg_single_usage, regno))
902 = replace_rtx (REG_NOTES (VARRAY_RTX
903 (reg_single_usage, regno)),
904 SET_DEST (set), copy_rtx (SET_SRC (set)));
905
906 PUT_CODE (p, NOTE);
907 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
908 NOTE_SOURCE_FILE (p) = 0;
909 VARRAY_INT (set_in_loop, regno) = 0;
910 continue;
911 }
912
913 m = (struct movable *) alloca (sizeof (struct movable));
914 m->next = 0;
915 m->insn = p;
916 m->set_src = src;
917 m->dependencies = dependencies;
918 m->set_dest = SET_DEST (set);
919 m->force = 0;
920 m->consec = VARRAY_INT (set_in_loop,
921 REGNO (SET_DEST (set))) - 1;
922 m->done = 0;
923 m->forces = 0;
924 m->partial = 0;
925 m->move_insn = move_insn;
926 m->move_insn_first = 0;
927 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
928 m->savemode = VOIDmode;
929 m->regno = regno;
930 /* Set M->cond if either loop_invariant_p
931 or consec_sets_invariant_p returned 2
932 (only conditionally invariant). */
933 m->cond = ((tem | tem1 | tem2) > 1);
934 m->global = (uid_luid[REGNO_LAST_UID (regno)]
935 > INSN_LUID (loop_end)
936 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
937 m->match = 0;
938 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
939 - uid_luid[REGNO_FIRST_UID (regno)]);
940 m->savings = VARRAY_INT (n_times_set, regno);
941 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
942 m->savings += libcall_benefit (p);
943 VARRAY_INT (set_in_loop, regno) = move_insn ? -2 : -1;
944 /* Add M to the end of the chain MOVABLES. */
945 if (movables == 0)
946 movables = m;
947 else
948 last_movable->next = m;
949 last_movable = m;
950
951 if (m->consec > 0)
952 {
953 /* It is possible for the first instruction to have a
954 REG_EQUAL note but a non-invariant SET_SRC, so we must
955 remember the status of the first instruction in case
956 the last instruction doesn't have a REG_EQUAL note. */
957 m->move_insn_first = m->move_insn;
958
959 /* Skip this insn, not checking REG_LIBCALL notes. */
960 p = next_nonnote_insn (p);
961 /* Skip the consecutive insns, if there are any. */
962 p = skip_consec_insns (p, m->consec);
963 /* Back up to the last insn of the consecutive group. */
964 p = prev_nonnote_insn (p);
965
966 /* We must now reset m->move_insn, m->is_equiv, and possibly
967 m->set_src to correspond to the effects of all the
968 insns. */
969 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
970 if (temp)
971 m->set_src = XEXP (temp, 0), m->move_insn = 1;
972 else
973 {
974 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
975 if (temp && CONSTANT_P (XEXP (temp, 0)))
976 m->set_src = XEXP (temp, 0), m->move_insn = 1;
977 else
978 m->move_insn = 0;
979
980 }
981 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
982 }
983 }
984 /* If this register is always set within a STRICT_LOW_PART
985 or set to zero, then its high bytes are constant.
986 So clear them outside the loop and within the loop
987 just load the low bytes.
988 We must check that the machine has an instruction to do so.
989 Also, if the value loaded into the register
990 depends on the same register, this cannot be done. */
991 else if (SET_SRC (set) == const0_rtx
992 && GET_CODE (NEXT_INSN (p)) == INSN
993 && (set1 = single_set (NEXT_INSN (p)))
994 && GET_CODE (set1) == SET
995 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
996 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
997 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
998 == SET_DEST (set))
999 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
1000 {
1001 register int regno = REGNO (SET_DEST (set));
1002 if (VARRAY_INT (set_in_loop, regno) == 2)
1003 {
1004 register struct movable *m;
1005 m = (struct movable *) alloca (sizeof (struct movable));
1006 m->next = 0;
1007 m->insn = p;
1008 m->set_dest = SET_DEST (set);
1009 m->dependencies = 0;
1010 m->force = 0;
1011 m->consec = 0;
1012 m->done = 0;
1013 m->forces = 0;
1014 m->move_insn = 0;
1015 m->move_insn_first = 0;
1016 m->partial = 1;
1017 /* If the insn may not be executed on some cycles,
1018 we can't clear the whole reg; clear just high part.
1019 Not even if the reg is used only within this loop.
1020 Consider this:
1021 while (1)
1022 while (s != t) {
1023 if (foo ()) x = *s;
1024 use (x);
1025 }
1026 Clearing x before the inner loop could clobber a value
1027 being saved from the last time around the outer loop.
1028 However, if the reg is not used outside this loop
1029 and all uses of the register are in the same
1030 basic block as the store, there is no problem.
1031
1032 If this insn was made by loop, we don't know its
1033 INSN_LUID and hence must make a conservative
1034 assumption. */
1035 m->global = (INSN_UID (p) >= max_uid_for_loop
1036 || (uid_luid[REGNO_LAST_UID (regno)]
1037 > INSN_LUID (loop_end))
1038 || (uid_luid[REGNO_FIRST_UID (regno)]
1039 < INSN_LUID (p))
1040 || (labels_in_range_p
1041 (p, uid_luid[REGNO_FIRST_UID (regno)])));
1042 if (maybe_never && m->global)
1043 m->savemode = GET_MODE (SET_SRC (set1));
1044 else
1045 m->savemode = VOIDmode;
1046 m->regno = regno;
1047 m->cond = 0;
1048 m->match = 0;
1049 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
1050 - uid_luid[REGNO_FIRST_UID (regno)]);
1051 m->savings = 1;
1052 VARRAY_INT (set_in_loop, regno) = -1;
1053 /* Add M to the end of the chain MOVABLES. */
1054 if (movables == 0)
1055 movables = m;
1056 else
1057 last_movable->next = m;
1058 last_movable = m;
1059 }
1060 }
1061 }
1062 /* Past a call insn, we get to insns which might not be executed
1063 because the call might exit. This matters for insns that trap.
1064 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
1065 so they don't count. */
1066 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
1067 call_passed = 1;
1068 /* Past a label or a jump, we get to insns for which we
1069 can't count on whether or how many times they will be
1070 executed during each iteration. Therefore, we can
1071 only move out sets of trivial variables
1072 (those not used after the loop). */
1073 /* Similar code appears twice in strength_reduce. */
1074 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1075 /* If we enter the loop in the middle, and scan around to the
1076 beginning, don't set maybe_never for that. This must be an
1077 unconditional jump, otherwise the code at the top of the
1078 loop might never be executed. Unconditional jumps are
1079 followed a by barrier then loop end. */
1080 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop->top
1081 && NEXT_INSN (NEXT_INSN (p)) == loop_end
1082 && simplejump_p (p)))
1083 maybe_never = 1;
1084 else if (GET_CODE (p) == NOTE)
1085 {
1086 /* At the virtual top of a converted loop, insns are again known to
1087 be executed: logically, the loop begins here even though the exit
1088 code has been duplicated. */
1089 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1090 maybe_never = call_passed = 0;
1091 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1092 loop_depth++;
1093 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1094 loop_depth--;
1095 }
1096 }
1097
1098 /* If one movable subsumes another, ignore that other. */
1099
1100 ignore_some_movables (movables);
1101
1102 /* For each movable insn, see if the reg that it loads
1103 leads when it dies right into another conditionally movable insn.
1104 If so, record that the second insn "forces" the first one,
1105 since the second can be moved only if the first is. */
1106
1107 force_movables (movables);
1108
1109 /* See if there are multiple movable insns that load the same value.
1110 If there are, make all but the first point at the first one
1111 through the `match' field, and add the priorities of them
1112 all together as the priority of the first. */
1113
1114 combine_movables (movables, nregs);
1115
1116 /* Now consider each movable insn to decide whether it is worth moving.
1117 Store 0 in set_in_loop for each reg that is moved.
1118
1119 Generally this increases code size, so do not move moveables when
1120 optimizing for code size. */
1121
1122 if (! optimize_size)
1123 move_movables (loop, movables, threshold, insn_count, nregs);
1124
1125 /* Now candidates that still are negative are those not moved.
1126 Change set_in_loop to indicate that those are not actually invariant. */
1127 for (i = 0; i < nregs; i++)
1128 if (VARRAY_INT (set_in_loop, i) < 0)
1129 VARRAY_INT (set_in_loop, i) = VARRAY_INT (n_times_set, i);
1130
1131 /* Now that we've moved some things out of the loop, we might be able to
1132 hoist even more memory references. */
1133 load_mems_and_recount_loop_regs_set (loop, &insn_count);
1134
1135 for (update_start = loop_start;
1136 PREV_INSN (update_start)
1137 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1138 update_start = PREV_INSN (update_start))
1139 ;
1140 update_end = NEXT_INSN (loop_end);
1141
1142 reg_scan_update (update_start, update_end, loop_max_reg);
1143 loop_max_reg = max_reg_num ();
1144
1145 if (flag_strength_reduce)
1146 {
1147 the_movables = movables;
1148 strength_reduce (loop, insn_count, unroll_p, bct_p);
1149
1150 reg_scan_update (update_start, update_end, loop_max_reg);
1151 loop_max_reg = max_reg_num ();
1152 }
1153
1154 VARRAY_FREE (reg_single_usage);
1155 VARRAY_FREE (set_in_loop);
1156 VARRAY_FREE (n_times_set);
1157 VARRAY_FREE (may_not_optimize);
1158 }
1159 \f
1160 /* Add elements to *OUTPUT to record all the pseudo-regs
1161 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1162
1163 void
1164 record_excess_regs (in_this, not_in_this, output)
1165 rtx in_this, not_in_this;
1166 rtx *output;
1167 {
1168 enum rtx_code code;
1169 const char *fmt;
1170 int i;
1171
1172 code = GET_CODE (in_this);
1173
1174 switch (code)
1175 {
1176 case PC:
1177 case CC0:
1178 case CONST_INT:
1179 case CONST_DOUBLE:
1180 case CONST:
1181 case SYMBOL_REF:
1182 case LABEL_REF:
1183 return;
1184
1185 case REG:
1186 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1187 && ! reg_mentioned_p (in_this, not_in_this))
1188 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1189 return;
1190
1191 default:
1192 break;
1193 }
1194
1195 fmt = GET_RTX_FORMAT (code);
1196 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1197 {
1198 int j;
1199
1200 switch (fmt[i])
1201 {
1202 case 'E':
1203 for (j = 0; j < XVECLEN (in_this, i); j++)
1204 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1205 break;
1206
1207 case 'e':
1208 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1209 break;
1210 }
1211 }
1212 }
1213 \f
1214 /* Check what regs are referred to in the libcall block ending with INSN,
1215 aside from those mentioned in the equivalent value.
1216 If there are none, return 0.
1217 If there are one or more, return an EXPR_LIST containing all of them. */
1218
1219 rtx
1220 libcall_other_reg (insn, equiv)
1221 rtx insn, equiv;
1222 {
1223 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1224 rtx p = XEXP (note, 0);
1225 rtx output = 0;
1226
1227 /* First, find all the regs used in the libcall block
1228 that are not mentioned as inputs to the result. */
1229
1230 while (p != insn)
1231 {
1232 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1233 || GET_CODE (p) == CALL_INSN)
1234 record_excess_regs (PATTERN (p), equiv, &output);
1235 p = NEXT_INSN (p);
1236 }
1237
1238 return output;
1239 }
1240 \f
1241 /* Return 1 if all uses of REG
1242 are between INSN and the end of the basic block. */
1243
1244 static int
1245 reg_in_basic_block_p (insn, reg)
1246 rtx insn, reg;
1247 {
1248 int regno = REGNO (reg);
1249 rtx p;
1250
1251 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1252 return 0;
1253
1254 /* Search this basic block for the already recorded last use of the reg. */
1255 for (p = insn; p; p = NEXT_INSN (p))
1256 {
1257 switch (GET_CODE (p))
1258 {
1259 case NOTE:
1260 break;
1261
1262 case INSN:
1263 case CALL_INSN:
1264 /* Ordinary insn: if this is the last use, we win. */
1265 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1266 return 1;
1267 break;
1268
1269 case JUMP_INSN:
1270 /* Jump insn: if this is the last use, we win. */
1271 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1272 return 1;
1273 /* Otherwise, it's the end of the basic block, so we lose. */
1274 return 0;
1275
1276 case CODE_LABEL:
1277 case BARRIER:
1278 /* It's the end of the basic block, so we lose. */
1279 return 0;
1280
1281 default:
1282 break;
1283 }
1284 }
1285
1286 /* The "last use" doesn't follow the "first use"?? */
1287 abort ();
1288 }
1289 \f
1290 /* Compute the benefit of eliminating the insns in the block whose
1291 last insn is LAST. This may be a group of insns used to compute a
1292 value directly or can contain a library call. */
1293
1294 static int
1295 libcall_benefit (last)
1296 rtx last;
1297 {
1298 rtx insn;
1299 int benefit = 0;
1300
1301 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1302 insn != last; insn = NEXT_INSN (insn))
1303 {
1304 if (GET_CODE (insn) == CALL_INSN)
1305 benefit += 10; /* Assume at least this many insns in a library
1306 routine. */
1307 else if (GET_CODE (insn) == INSN
1308 && GET_CODE (PATTERN (insn)) != USE
1309 && GET_CODE (PATTERN (insn)) != CLOBBER)
1310 benefit++;
1311 }
1312
1313 return benefit;
1314 }
1315 \f
1316 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1317
1318 static rtx
1319 skip_consec_insns (insn, count)
1320 rtx insn;
1321 int count;
1322 {
1323 for (; count > 0; count--)
1324 {
1325 rtx temp;
1326
1327 /* If first insn of libcall sequence, skip to end. */
1328 /* Do this at start of loop, since INSN is guaranteed to
1329 be an insn here. */
1330 if (GET_CODE (insn) != NOTE
1331 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1332 insn = XEXP (temp, 0);
1333
1334 do insn = NEXT_INSN (insn);
1335 while (GET_CODE (insn) == NOTE);
1336 }
1337
1338 return insn;
1339 }
1340
1341 /* Ignore any movable whose insn falls within a libcall
1342 which is part of another movable.
1343 We make use of the fact that the movable for the libcall value
1344 was made later and so appears later on the chain. */
1345
1346 static void
1347 ignore_some_movables (movables)
1348 struct movable *movables;
1349 {
1350 register struct movable *m, *m1;
1351
1352 for (m = movables; m; m = m->next)
1353 {
1354 /* Is this a movable for the value of a libcall? */
1355 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1356 if (note)
1357 {
1358 rtx insn;
1359 /* Check for earlier movables inside that range,
1360 and mark them invalid. We cannot use LUIDs here because
1361 insns created by loop.c for prior loops don't have LUIDs.
1362 Rather than reject all such insns from movables, we just
1363 explicitly check each insn in the libcall (since invariant
1364 libcalls aren't that common). */
1365 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1366 for (m1 = movables; m1 != m; m1 = m1->next)
1367 if (m1->insn == insn)
1368 m1->done = 1;
1369 }
1370 }
1371 }
1372
1373 /* For each movable insn, see if the reg that it loads
1374 leads when it dies right into another conditionally movable insn.
1375 If so, record that the second insn "forces" the first one,
1376 since the second can be moved only if the first is. */
1377
1378 static void
1379 force_movables (movables)
1380 struct movable *movables;
1381 {
1382 register struct movable *m, *m1;
1383 for (m1 = movables; m1; m1 = m1->next)
1384 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1385 if (!m1->partial && !m1->done)
1386 {
1387 int regno = m1->regno;
1388 for (m = m1->next; m; m = m->next)
1389 /* ??? Could this be a bug? What if CSE caused the
1390 register of M1 to be used after this insn?
1391 Since CSE does not update regno_last_uid,
1392 this insn M->insn might not be where it dies.
1393 But very likely this doesn't matter; what matters is
1394 that M's reg is computed from M1's reg. */
1395 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1396 && !m->done)
1397 break;
1398 if (m != 0 && m->set_src == m1->set_dest
1399 /* If m->consec, m->set_src isn't valid. */
1400 && m->consec == 0)
1401 m = 0;
1402
1403 /* Increase the priority of the moving the first insn
1404 since it permits the second to be moved as well. */
1405 if (m != 0)
1406 {
1407 m->forces = m1;
1408 m1->lifetime += m->lifetime;
1409 m1->savings += m->savings;
1410 }
1411 }
1412 }
1413 \f
1414 /* Find invariant expressions that are equal and can be combined into
1415 one register. */
1416
1417 static void
1418 combine_movables (movables, nregs)
1419 struct movable *movables;
1420 int nregs;
1421 {
1422 register struct movable *m;
1423 char *matched_regs = (char *) xmalloc (nregs);
1424 enum machine_mode mode;
1425
1426 /* Regs that are set more than once are not allowed to match
1427 or be matched. I'm no longer sure why not. */
1428 /* Perhaps testing m->consec_sets would be more appropriate here? */
1429
1430 for (m = movables; m; m = m->next)
1431 if (m->match == 0 && VARRAY_INT (n_times_set, m->regno) == 1 && !m->partial)
1432 {
1433 register struct movable *m1;
1434 int regno = m->regno;
1435
1436 bzero (matched_regs, nregs);
1437 matched_regs[regno] = 1;
1438
1439 /* We want later insns to match the first one. Don't make the first
1440 one match any later ones. So start this loop at m->next. */
1441 for (m1 = m->next; m1; m1 = m1->next)
1442 if (m != m1 && m1->match == 0 && VARRAY_INT (n_times_set, m1->regno) == 1
1443 /* A reg used outside the loop mustn't be eliminated. */
1444 && !m1->global
1445 /* A reg used for zero-extending mustn't be eliminated. */
1446 && !m1->partial
1447 && (matched_regs[m1->regno]
1448 ||
1449 (
1450 /* Can combine regs with different modes loaded from the
1451 same constant only if the modes are the same or
1452 if both are integer modes with M wider or the same
1453 width as M1. The check for integer is redundant, but
1454 safe, since the only case of differing destination
1455 modes with equal sources is when both sources are
1456 VOIDmode, i.e., CONST_INT. */
1457 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1458 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1459 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1460 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1461 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1462 /* See if the source of M1 says it matches M. */
1463 && ((GET_CODE (m1->set_src) == REG
1464 && matched_regs[REGNO (m1->set_src)])
1465 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1466 movables))))
1467 && ((m->dependencies == m1->dependencies)
1468 || rtx_equal_p (m->dependencies, m1->dependencies)))
1469 {
1470 m->lifetime += m1->lifetime;
1471 m->savings += m1->savings;
1472 m1->done = 1;
1473 m1->match = m;
1474 matched_regs[m1->regno] = 1;
1475 }
1476 }
1477
1478 /* Now combine the regs used for zero-extension.
1479 This can be done for those not marked `global'
1480 provided their lives don't overlap. */
1481
1482 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1483 mode = GET_MODE_WIDER_MODE (mode))
1484 {
1485 register struct movable *m0 = 0;
1486
1487 /* Combine all the registers for extension from mode MODE.
1488 Don't combine any that are used outside this loop. */
1489 for (m = movables; m; m = m->next)
1490 if (m->partial && ! m->global
1491 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1492 {
1493 register struct movable *m1;
1494 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1495 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1496
1497 if (m0 == 0)
1498 {
1499 /* First one: don't check for overlap, just record it. */
1500 m0 = m;
1501 continue;
1502 }
1503
1504 /* Make sure they extend to the same mode.
1505 (Almost always true.) */
1506 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1507 continue;
1508
1509 /* We already have one: check for overlap with those
1510 already combined together. */
1511 for (m1 = movables; m1 != m; m1 = m1->next)
1512 if (m1 == m0 || (m1->partial && m1->match == m0))
1513 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1514 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1515 goto overlap;
1516
1517 /* No overlap: we can combine this with the others. */
1518 m0->lifetime += m->lifetime;
1519 m0->savings += m->savings;
1520 m->done = 1;
1521 m->match = m0;
1522
1523 overlap: ;
1524 }
1525 }
1526
1527 /* Clean up. */
1528 free (matched_regs);
1529 }
1530 \f
1531 /* Return 1 if regs X and Y will become the same if moved. */
1532
1533 static int
1534 regs_match_p (x, y, movables)
1535 rtx x, y;
1536 struct movable *movables;
1537 {
1538 int xn = REGNO (x);
1539 int yn = REGNO (y);
1540 struct movable *mx, *my;
1541
1542 for (mx = movables; mx; mx = mx->next)
1543 if (mx->regno == xn)
1544 break;
1545
1546 for (my = movables; my; my = my->next)
1547 if (my->regno == yn)
1548 break;
1549
1550 return (mx && my
1551 && ((mx->match == my->match && mx->match != 0)
1552 || mx->match == my
1553 || mx == my->match));
1554 }
1555
1556 /* Return 1 if X and Y are identical-looking rtx's.
1557 This is the Lisp function EQUAL for rtx arguments.
1558
1559 If two registers are matching movables or a movable register and an
1560 equivalent constant, consider them equal. */
1561
1562 static int
1563 rtx_equal_for_loop_p (x, y, movables)
1564 rtx x, y;
1565 struct movable *movables;
1566 {
1567 register int i;
1568 register int j;
1569 register struct movable *m;
1570 register enum rtx_code code;
1571 register const char *fmt;
1572
1573 if (x == y)
1574 return 1;
1575 if (x == 0 || y == 0)
1576 return 0;
1577
1578 code = GET_CODE (x);
1579
1580 /* If we have a register and a constant, they may sometimes be
1581 equal. */
1582 if (GET_CODE (x) == REG && VARRAY_INT (set_in_loop, REGNO (x)) == -2
1583 && CONSTANT_P (y))
1584 {
1585 for (m = movables; m; m = m->next)
1586 if (m->move_insn && m->regno == REGNO (x)
1587 && rtx_equal_p (m->set_src, y))
1588 return 1;
1589 }
1590 else if (GET_CODE (y) == REG && VARRAY_INT (set_in_loop, REGNO (y)) == -2
1591 && CONSTANT_P (x))
1592 {
1593 for (m = movables; m; m = m->next)
1594 if (m->move_insn && m->regno == REGNO (y)
1595 && rtx_equal_p (m->set_src, x))
1596 return 1;
1597 }
1598
1599 /* Otherwise, rtx's of different codes cannot be equal. */
1600 if (code != GET_CODE (y))
1601 return 0;
1602
1603 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1604 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1605
1606 if (GET_MODE (x) != GET_MODE (y))
1607 return 0;
1608
1609 /* These three types of rtx's can be compared nonrecursively. */
1610 if (code == REG)
1611 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1612
1613 if (code == LABEL_REF)
1614 return XEXP (x, 0) == XEXP (y, 0);
1615 if (code == SYMBOL_REF)
1616 return XSTR (x, 0) == XSTR (y, 0);
1617
1618 /* Compare the elements. If any pair of corresponding elements
1619 fail to match, return 0 for the whole things. */
1620
1621 fmt = GET_RTX_FORMAT (code);
1622 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1623 {
1624 switch (fmt[i])
1625 {
1626 case 'w':
1627 if (XWINT (x, i) != XWINT (y, i))
1628 return 0;
1629 break;
1630
1631 case 'i':
1632 if (XINT (x, i) != XINT (y, i))
1633 return 0;
1634 break;
1635
1636 case 'E':
1637 /* Two vectors must have the same length. */
1638 if (XVECLEN (x, i) != XVECLEN (y, i))
1639 return 0;
1640
1641 /* And the corresponding elements must match. */
1642 for (j = 0; j < XVECLEN (x, i); j++)
1643 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1644 return 0;
1645 break;
1646
1647 case 'e':
1648 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1649 return 0;
1650 break;
1651
1652 case 's':
1653 if (strcmp (XSTR (x, i), XSTR (y, i)))
1654 return 0;
1655 break;
1656
1657 case 'u':
1658 /* These are just backpointers, so they don't matter. */
1659 break;
1660
1661 case '0':
1662 break;
1663
1664 /* It is believed that rtx's at this level will never
1665 contain anything but integers and other rtx's,
1666 except for within LABEL_REFs and SYMBOL_REFs. */
1667 default:
1668 abort ();
1669 }
1670 }
1671 return 1;
1672 }
1673 \f
1674 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1675 insns in INSNS which use the reference. */
1676
1677 static void
1678 add_label_notes (x, insns)
1679 rtx x;
1680 rtx insns;
1681 {
1682 enum rtx_code code = GET_CODE (x);
1683 int i, j;
1684 const char *fmt;
1685 rtx insn;
1686
1687 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1688 {
1689 /* This code used to ignore labels that referred to dispatch tables to
1690 avoid flow generating (slighly) worse code.
1691
1692 We no longer ignore such label references (see LABEL_REF handling in
1693 mark_jump_label for additional information). */
1694 for (insn = insns; insn; insn = NEXT_INSN (insn))
1695 if (reg_mentioned_p (XEXP (x, 0), insn))
1696 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
1697 REG_NOTES (insn));
1698 }
1699
1700 fmt = GET_RTX_FORMAT (code);
1701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1702 {
1703 if (fmt[i] == 'e')
1704 add_label_notes (XEXP (x, i), insns);
1705 else if (fmt[i] == 'E')
1706 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1707 add_label_notes (XVECEXP (x, i, j), insns);
1708 }
1709 }
1710 \f
1711 /* Scan MOVABLES, and move the insns that deserve to be moved.
1712 If two matching movables are combined, replace one reg with the
1713 other throughout. */
1714
1715 static void
1716 move_movables (loop, movables, threshold, insn_count, nregs)
1717 struct loop *loop;
1718 struct movable *movables;
1719 int threshold;
1720 int insn_count;
1721 int nregs;
1722 {
1723 rtx new_start = 0;
1724 register struct movable *m;
1725 register rtx p;
1726 rtx loop_start = loop->start;
1727 rtx loop_end = loop->end;
1728 /* Map of pseudo-register replacements to handle combining
1729 when we move several insns that load the same value
1730 into different pseudo-registers. */
1731 rtx *reg_map = (rtx *) xcalloc (nregs, sizeof (rtx));
1732 char *already_moved = (char *) xcalloc (nregs, sizeof (char));
1733
1734 num_movables = 0;
1735
1736 for (m = movables; m; m = m->next)
1737 {
1738 /* Describe this movable insn. */
1739
1740 if (loop_dump_stream)
1741 {
1742 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1743 INSN_UID (m->insn), m->regno, m->lifetime);
1744 if (m->consec > 0)
1745 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1746 if (m->cond)
1747 fprintf (loop_dump_stream, "cond ");
1748 if (m->force)
1749 fprintf (loop_dump_stream, "force ");
1750 if (m->global)
1751 fprintf (loop_dump_stream, "global ");
1752 if (m->done)
1753 fprintf (loop_dump_stream, "done ");
1754 if (m->move_insn)
1755 fprintf (loop_dump_stream, "move-insn ");
1756 if (m->match)
1757 fprintf (loop_dump_stream, "matches %d ",
1758 INSN_UID (m->match->insn));
1759 if (m->forces)
1760 fprintf (loop_dump_stream, "forces %d ",
1761 INSN_UID (m->forces->insn));
1762 }
1763
1764 /* Count movables. Value used in heuristics in strength_reduce. */
1765 num_movables++;
1766
1767 /* Ignore the insn if it's already done (it matched something else).
1768 Otherwise, see if it is now safe to move. */
1769
1770 if (!m->done
1771 && (! m->cond
1772 || (1 == loop_invariant_p (loop, m->set_src)
1773 && (m->dependencies == 0
1774 || 1 == loop_invariant_p (loop, m->dependencies))
1775 && (m->consec == 0
1776 || 1 == consec_sets_invariant_p (loop, m->set_dest,
1777 m->consec + 1,
1778 m->insn))))
1779 && (! m->forces || m->forces->done))
1780 {
1781 register int regno;
1782 register rtx p;
1783 int savings = m->savings;
1784
1785 /* We have an insn that is safe to move.
1786 Compute its desirability. */
1787
1788 p = m->insn;
1789 regno = m->regno;
1790
1791 if (loop_dump_stream)
1792 fprintf (loop_dump_stream, "savings %d ", savings);
1793
1794 if (moved_once[regno] && loop_dump_stream)
1795 fprintf (loop_dump_stream, "halved since already moved ");
1796
1797 /* An insn MUST be moved if we already moved something else
1798 which is safe only if this one is moved too: that is,
1799 if already_moved[REGNO] is nonzero. */
1800
1801 /* An insn is desirable to move if the new lifetime of the
1802 register is no more than THRESHOLD times the old lifetime.
1803 If it's not desirable, it means the loop is so big
1804 that moving won't speed things up much,
1805 and it is liable to make register usage worse. */
1806
1807 /* It is also desirable to move if it can be moved at no
1808 extra cost because something else was already moved. */
1809
1810 if (already_moved[regno]
1811 || flag_move_all_movables
1812 || (threshold * savings * m->lifetime) >=
1813 (moved_once[regno] ? insn_count * 2 : insn_count)
1814 || (m->forces && m->forces->done
1815 && VARRAY_INT (n_times_set, m->forces->regno) == 1))
1816 {
1817 int count;
1818 register struct movable *m1;
1819 rtx first = NULL_RTX;
1820
1821 /* Now move the insns that set the reg. */
1822
1823 if (m->partial && m->match)
1824 {
1825 rtx newpat, i1;
1826 rtx r1, r2;
1827 /* Find the end of this chain of matching regs.
1828 Thus, we load each reg in the chain from that one reg.
1829 And that reg is loaded with 0 directly,
1830 since it has ->match == 0. */
1831 for (m1 = m; m1->match; m1 = m1->match);
1832 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1833 SET_DEST (PATTERN (m1->insn)));
1834 i1 = emit_insn_before (newpat, loop_start);
1835
1836 /* Mark the moved, invariant reg as being allowed to
1837 share a hard reg with the other matching invariant. */
1838 REG_NOTES (i1) = REG_NOTES (m->insn);
1839 r1 = SET_DEST (PATTERN (m->insn));
1840 r2 = SET_DEST (PATTERN (m1->insn));
1841 regs_may_share
1842 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1843 gen_rtx_EXPR_LIST (VOIDmode, r2,
1844 regs_may_share));
1845 delete_insn (m->insn);
1846
1847 if (new_start == 0)
1848 new_start = i1;
1849
1850 if (loop_dump_stream)
1851 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1852 }
1853 /* If we are to re-generate the item being moved with a
1854 new move insn, first delete what we have and then emit
1855 the move insn before the loop. */
1856 else if (m->move_insn)
1857 {
1858 rtx i1, temp;
1859
1860 for (count = m->consec; count >= 0; count--)
1861 {
1862 /* If this is the first insn of a library call sequence,
1863 skip to the end. */
1864 if (GET_CODE (p) != NOTE
1865 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1866 p = XEXP (temp, 0);
1867
1868 /* If this is the last insn of a libcall sequence, then
1869 delete every insn in the sequence except the last.
1870 The last insn is handled in the normal manner. */
1871 if (GET_CODE (p) != NOTE
1872 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1873 {
1874 temp = XEXP (temp, 0);
1875 while (temp != p)
1876 temp = delete_insn (temp);
1877 }
1878
1879 temp = p;
1880 p = delete_insn (p);
1881
1882 /* simplify_giv_expr expects that it can walk the insns
1883 at m->insn forwards and see this old sequence we are
1884 tossing here. delete_insn does preserve the next
1885 pointers, but when we skip over a NOTE we must fix
1886 it up. Otherwise that code walks into the non-deleted
1887 insn stream. */
1888 while (p && GET_CODE (p) == NOTE)
1889 p = NEXT_INSN (temp) = NEXT_INSN (p);
1890 }
1891
1892 start_sequence ();
1893 emit_move_insn (m->set_dest, m->set_src);
1894 temp = get_insns ();
1895 end_sequence ();
1896
1897 add_label_notes (m->set_src, temp);
1898
1899 i1 = emit_insns_before (temp, loop_start);
1900 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1901 REG_NOTES (i1)
1902 = gen_rtx_EXPR_LIST (m->is_equiv ? REG_EQUIV : REG_EQUAL,
1903 m->set_src, REG_NOTES (i1));
1904
1905 if (loop_dump_stream)
1906 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1907
1908 /* The more regs we move, the less we like moving them. */
1909 threshold -= 3;
1910 }
1911 else
1912 {
1913 for (count = m->consec; count >= 0; count--)
1914 {
1915 rtx i1, temp;
1916
1917 /* If first insn of libcall sequence, skip to end. */
1918 /* Do this at start of loop, since p is guaranteed to
1919 be an insn here. */
1920 if (GET_CODE (p) != NOTE
1921 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1922 p = XEXP (temp, 0);
1923
1924 /* If last insn of libcall sequence, move all
1925 insns except the last before the loop. The last
1926 insn is handled in the normal manner. */
1927 if (GET_CODE (p) != NOTE
1928 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1929 {
1930 rtx fn_address = 0;
1931 rtx fn_reg = 0;
1932 rtx fn_address_insn = 0;
1933
1934 first = 0;
1935 for (temp = XEXP (temp, 0); temp != p;
1936 temp = NEXT_INSN (temp))
1937 {
1938 rtx body;
1939 rtx n;
1940 rtx next;
1941
1942 if (GET_CODE (temp) == NOTE)
1943 continue;
1944
1945 body = PATTERN (temp);
1946
1947 /* Find the next insn after TEMP,
1948 not counting USE or NOTE insns. */
1949 for (next = NEXT_INSN (temp); next != p;
1950 next = NEXT_INSN (next))
1951 if (! (GET_CODE (next) == INSN
1952 && GET_CODE (PATTERN (next)) == USE)
1953 && GET_CODE (next) != NOTE)
1954 break;
1955
1956 /* If that is the call, this may be the insn
1957 that loads the function address.
1958
1959 Extract the function address from the insn
1960 that loads it into a register.
1961 If this insn was cse'd, we get incorrect code.
1962
1963 So emit a new move insn that copies the
1964 function address into the register that the
1965 call insn will use. flow.c will delete any
1966 redundant stores that we have created. */
1967 if (GET_CODE (next) == CALL_INSN
1968 && GET_CODE (body) == SET
1969 && GET_CODE (SET_DEST (body)) == REG
1970 && (n = find_reg_note (temp, REG_EQUAL,
1971 NULL_RTX)))
1972 {
1973 fn_reg = SET_SRC (body);
1974 if (GET_CODE (fn_reg) != REG)
1975 fn_reg = SET_DEST (body);
1976 fn_address = XEXP (n, 0);
1977 fn_address_insn = temp;
1978 }
1979 /* We have the call insn.
1980 If it uses the register we suspect it might,
1981 load it with the correct address directly. */
1982 if (GET_CODE (temp) == CALL_INSN
1983 && fn_address != 0
1984 && reg_referenced_p (fn_reg, body))
1985 emit_insn_after (gen_move_insn (fn_reg,
1986 fn_address),
1987 fn_address_insn);
1988
1989 if (GET_CODE (temp) == CALL_INSN)
1990 {
1991 i1 = emit_call_insn_before (body, loop_start);
1992 /* Because the USAGE information potentially
1993 contains objects other than hard registers
1994 we need to copy it. */
1995 if (CALL_INSN_FUNCTION_USAGE (temp))
1996 CALL_INSN_FUNCTION_USAGE (i1)
1997 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1998 }
1999 else
2000 i1 = emit_insn_before (body, loop_start);
2001 if (first == 0)
2002 first = i1;
2003 if (temp == fn_address_insn)
2004 fn_address_insn = i1;
2005 REG_NOTES (i1) = REG_NOTES (temp);
2006 delete_insn (temp);
2007 }
2008 if (new_start == 0)
2009 new_start = first;
2010 }
2011 if (m->savemode != VOIDmode)
2012 {
2013 /* P sets REG to zero; but we should clear only
2014 the bits that are not covered by the mode
2015 m->savemode. */
2016 rtx reg = m->set_dest;
2017 rtx sequence;
2018 rtx tem;
2019
2020 start_sequence ();
2021 tem = expand_binop
2022 (GET_MODE (reg), and_optab, reg,
2023 GEN_INT ((((HOST_WIDE_INT) 1
2024 << GET_MODE_BITSIZE (m->savemode)))
2025 - 1),
2026 reg, 1, OPTAB_LIB_WIDEN);
2027 if (tem == 0)
2028 abort ();
2029 if (tem != reg)
2030 emit_move_insn (reg, tem);
2031 sequence = gen_sequence ();
2032 end_sequence ();
2033 i1 = emit_insn_before (sequence, loop_start);
2034 }
2035 else if (GET_CODE (p) == CALL_INSN)
2036 {
2037 i1 = emit_call_insn_before (PATTERN (p), loop_start);
2038 /* Because the USAGE information potentially
2039 contains objects other than hard registers
2040 we need to copy it. */
2041 if (CALL_INSN_FUNCTION_USAGE (p))
2042 CALL_INSN_FUNCTION_USAGE (i1)
2043 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
2044 }
2045 else if (count == m->consec && m->move_insn_first)
2046 {
2047 /* The SET_SRC might not be invariant, so we must
2048 use the REG_EQUAL note. */
2049 start_sequence ();
2050 emit_move_insn (m->set_dest, m->set_src);
2051 temp = get_insns ();
2052 end_sequence ();
2053
2054 add_label_notes (m->set_src, temp);
2055
2056 i1 = emit_insns_before (temp, loop_start);
2057 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2058 REG_NOTES (i1)
2059 = gen_rtx_EXPR_LIST ((m->is_equiv ? REG_EQUIV
2060 : REG_EQUAL),
2061 m->set_src, REG_NOTES (i1));
2062 }
2063 else
2064 i1 = emit_insn_before (PATTERN (p), loop_start);
2065
2066 if (REG_NOTES (i1) == 0)
2067 {
2068 REG_NOTES (i1) = REG_NOTES (p);
2069
2070 /* If there is a REG_EQUAL note present whose value
2071 is not loop invariant, then delete it, since it
2072 may cause problems with later optimization passes.
2073 It is possible for cse to create such notes
2074 like this as a result of record_jump_cond. */
2075
2076 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2077 && ! loop_invariant_p (loop, XEXP (temp, 0)))
2078 remove_note (i1, temp);
2079 }
2080
2081 if (new_start == 0)
2082 new_start = i1;
2083
2084 if (loop_dump_stream)
2085 fprintf (loop_dump_stream, " moved to %d",
2086 INSN_UID (i1));
2087
2088 /* If library call, now fix the REG_NOTES that contain
2089 insn pointers, namely REG_LIBCALL on FIRST
2090 and REG_RETVAL on I1. */
2091 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2092 {
2093 XEXP (temp, 0) = first;
2094 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2095 XEXP (temp, 0) = i1;
2096 }
2097
2098 temp = p;
2099 delete_insn (p);
2100 p = NEXT_INSN (p);
2101
2102 /* simplify_giv_expr expects that it can walk the insns
2103 at m->insn forwards and see this old sequence we are
2104 tossing here. delete_insn does preserve the next
2105 pointers, but when we skip over a NOTE we must fix
2106 it up. Otherwise that code walks into the non-deleted
2107 insn stream. */
2108 while (p && GET_CODE (p) == NOTE)
2109 p = NEXT_INSN (temp) = NEXT_INSN (p);
2110 }
2111
2112 /* The more regs we move, the less we like moving them. */
2113 threshold -= 3;
2114 }
2115
2116 /* Any other movable that loads the same register
2117 MUST be moved. */
2118 already_moved[regno] = 1;
2119
2120 /* This reg has been moved out of one loop. */
2121 moved_once[regno] = 1;
2122
2123 /* The reg set here is now invariant. */
2124 if (! m->partial)
2125 VARRAY_INT (set_in_loop, regno) = 0;
2126
2127 m->done = 1;
2128
2129 /* Change the length-of-life info for the register
2130 to say it lives at least the full length of this loop.
2131 This will help guide optimizations in outer loops. */
2132
2133 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2134 /* This is the old insn before all the moved insns.
2135 We can't use the moved insn because it is out of range
2136 in uid_luid. Only the old insns have luids. */
2137 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2138 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (loop_end))
2139 REGNO_LAST_UID (regno) = INSN_UID (loop_end);
2140
2141 /* Combine with this moved insn any other matching movables. */
2142
2143 if (! m->partial)
2144 for (m1 = movables; m1; m1 = m1->next)
2145 if (m1->match == m)
2146 {
2147 rtx temp;
2148
2149 /* Schedule the reg loaded by M1
2150 for replacement so that shares the reg of M.
2151 If the modes differ (only possible in restricted
2152 circumstances, make a SUBREG.
2153
2154 Note this assumes that the target dependent files
2155 treat REG and SUBREG equally, including within
2156 GO_IF_LEGITIMATE_ADDRESS and in all the
2157 predicates since we never verify that replacing the
2158 original register with a SUBREG results in a
2159 recognizable insn. */
2160 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2161 reg_map[m1->regno] = m->set_dest;
2162 else
2163 reg_map[m1->regno]
2164 = gen_lowpart_common (GET_MODE (m1->set_dest),
2165 m->set_dest);
2166
2167 /* Get rid of the matching insn
2168 and prevent further processing of it. */
2169 m1->done = 1;
2170
2171 /* if library call, delete all insn except last, which
2172 is deleted below */
2173 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2174 NULL_RTX)))
2175 {
2176 for (temp = XEXP (temp, 0); temp != m1->insn;
2177 temp = NEXT_INSN (temp))
2178 delete_insn (temp);
2179 }
2180 delete_insn (m1->insn);
2181
2182 /* Any other movable that loads the same register
2183 MUST be moved. */
2184 already_moved[m1->regno] = 1;
2185
2186 /* The reg merged here is now invariant,
2187 if the reg it matches is invariant. */
2188 if (! m->partial)
2189 VARRAY_INT (set_in_loop, m1->regno) = 0;
2190 }
2191 }
2192 else if (loop_dump_stream)
2193 fprintf (loop_dump_stream, "not desirable");
2194 }
2195 else if (loop_dump_stream && !m->match)
2196 fprintf (loop_dump_stream, "not safe");
2197
2198 if (loop_dump_stream)
2199 fprintf (loop_dump_stream, "\n");
2200 }
2201
2202 if (new_start == 0)
2203 new_start = loop_start;
2204
2205 /* Go through all the instructions in the loop, making
2206 all the register substitutions scheduled in REG_MAP. */
2207 for (p = new_start; p != loop_end; p = NEXT_INSN (p))
2208 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2209 || GET_CODE (p) == CALL_INSN)
2210 {
2211 replace_regs (PATTERN (p), reg_map, nregs, 0);
2212 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2213 INSN_CODE (p) = -1;
2214 }
2215
2216 /* Clean up. */
2217 free (reg_map);
2218 free (already_moved);
2219 }
2220 \f
2221 #if 0
2222 /* Scan X and replace the address of any MEM in it with ADDR.
2223 REG is the address that MEM should have before the replacement. */
2224
2225 static void
2226 replace_call_address (x, reg, addr)
2227 rtx x, reg, addr;
2228 {
2229 register enum rtx_code code;
2230 register int i;
2231 register const char *fmt;
2232
2233 if (x == 0)
2234 return;
2235 code = GET_CODE (x);
2236 switch (code)
2237 {
2238 case PC:
2239 case CC0:
2240 case CONST_INT:
2241 case CONST_DOUBLE:
2242 case CONST:
2243 case SYMBOL_REF:
2244 case LABEL_REF:
2245 case REG:
2246 return;
2247
2248 case SET:
2249 /* Short cut for very common case. */
2250 replace_call_address (XEXP (x, 1), reg, addr);
2251 return;
2252
2253 case CALL:
2254 /* Short cut for very common case. */
2255 replace_call_address (XEXP (x, 0), reg, addr);
2256 return;
2257
2258 case MEM:
2259 /* If this MEM uses a reg other than the one we expected,
2260 something is wrong. */
2261 if (XEXP (x, 0) != reg)
2262 abort ();
2263 XEXP (x, 0) = addr;
2264 return;
2265
2266 default:
2267 break;
2268 }
2269
2270 fmt = GET_RTX_FORMAT (code);
2271 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2272 {
2273 if (fmt[i] == 'e')
2274 replace_call_address (XEXP (x, i), reg, addr);
2275 else if (fmt[i] == 'E')
2276 {
2277 register int j;
2278 for (j = 0; j < XVECLEN (x, i); j++)
2279 replace_call_address (XVECEXP (x, i, j), reg, addr);
2280 }
2281 }
2282 }
2283 #endif
2284 \f
2285 /* Return the number of memory refs to addresses that vary
2286 in the rtx X. */
2287
2288 static int
2289 count_nonfixed_reads (loop, x)
2290 const struct loop *loop;
2291 rtx x;
2292 {
2293 register enum rtx_code code;
2294 register int i;
2295 register const char *fmt;
2296 int value;
2297
2298 if (x == 0)
2299 return 0;
2300
2301 code = GET_CODE (x);
2302 switch (code)
2303 {
2304 case PC:
2305 case CC0:
2306 case CONST_INT:
2307 case CONST_DOUBLE:
2308 case CONST:
2309 case SYMBOL_REF:
2310 case LABEL_REF:
2311 case REG:
2312 return 0;
2313
2314 case MEM:
2315 return ((loop_invariant_p (loop, XEXP (x, 0)) != 1)
2316 + count_nonfixed_reads (loop, XEXP (x, 0)));
2317
2318 default:
2319 break;
2320 }
2321
2322 value = 0;
2323 fmt = GET_RTX_FORMAT (code);
2324 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2325 {
2326 if (fmt[i] == 'e')
2327 value += count_nonfixed_reads (loop, XEXP (x, i));
2328 if (fmt[i] == 'E')
2329 {
2330 register int j;
2331 for (j = 0; j < XVECLEN (x, i); j++)
2332 value += count_nonfixed_reads (loop, XVECEXP (x, i, j));
2333 }
2334 }
2335 return value;
2336 }
2337
2338 \f
2339 #if 0
2340 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2341 Replace it with an instruction to load just the low bytes
2342 if the machine supports such an instruction,
2343 and insert above LOOP_START an instruction to clear the register. */
2344
2345 static void
2346 constant_high_bytes (p, loop_start)
2347 rtx p, loop_start;
2348 {
2349 register rtx new;
2350 register int insn_code_number;
2351
2352 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2353 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2354
2355 new
2356 = gen_rtx_SET
2357 (VOIDmode,
2358 gen_rtx_STRICT_LOW_PART
2359 (VOIDmode,
2360 gen_rtx_SUBREG (GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2361 SET_DEST (PATTERN (p)), 0)),
2362 XEXP (SET_SRC (PATTERN (p)), 0));
2363
2364 insn_code_number = recog (new, p);
2365
2366 if (insn_code_number)
2367 {
2368 register int i;
2369
2370 /* Clear destination register before the loop. */
2371 emit_insn_before (gen_rtx_SET (VOIDmode,
2372 SET_DEST (PATTERN (p)), const0_rtx),
2373 loop_start);
2374
2375 /* Inside the loop, just load the low part. */
2376 PATTERN (p) = new;
2377 }
2378 }
2379 #endif
2380 \f
2381 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2382 `has_call', `has_volatile', and `has_tablejump' within LOOP.
2383 Set the global variables `unknown_address_altered',
2384 `unknown_constant_address_altered', and `num_mem_sets'. Also, fill
2385 in the array `loop_mems' and the list `loop_store_mems'. */
2386
2387 static void
2388 prescan_loop (loop)
2389 struct loop *loop;
2390 {
2391 register int level = 1;
2392 rtx insn;
2393 struct loop_info *loop_info = LOOP_INFO (loop);
2394 rtx start = loop->start;
2395 rtx end = loop->end;
2396 /* The label after END. Jumping here is just like falling off the
2397 end of the loop. We use next_nonnote_insn instead of next_label
2398 as a hedge against the (pathological) case where some actual insn
2399 might end up between the two. */
2400 rtx exit_target = next_nonnote_insn (end);
2401
2402 loop_info->has_indirect_jump = indirect_jump_in_function;
2403 loop_info->has_call = 0;
2404 loop_info->has_volatile = 0;
2405 loop_info->has_tablejump = 0;
2406 loop_info->has_multiple_exit_targets = 0;
2407 loop->cont = 0;
2408 loop->vtop = 0;
2409 loop->level = 1;
2410
2411 unknown_address_altered = 0;
2412 unknown_constant_address_altered = 0;
2413 loop_store_mems = NULL_RTX;
2414 first_loop_store_insn = NULL_RTX;
2415 loop_mems_idx = 0;
2416 num_mem_sets = 0;
2417
2418 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2419 insn = NEXT_INSN (insn))
2420 {
2421 if (GET_CODE (insn) == NOTE)
2422 {
2423 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2424 {
2425 ++level;
2426 /* Count number of loops contained in this one. */
2427 loop->level++;
2428 }
2429 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2430 {
2431 --level;
2432 if (level == 0)
2433 {
2434 end = insn;
2435 break;
2436 }
2437 }
2438 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2439 {
2440 if (level == 1)
2441 loop->cont = insn;
2442 }
2443 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP)
2444 {
2445 /* If there is a NOTE_INSN_LOOP_VTOP, then this is a for
2446 or while style loop, with a loop exit test at the
2447 start. Thus, we can assume that the loop condition
2448 was true when the loop was entered. */
2449 if (level == 1)
2450 loop->vtop = insn;
2451 }
2452 }
2453 else if (GET_CODE (insn) == CALL_INSN)
2454 {
2455 if (! CONST_CALL_P (insn))
2456 unknown_address_altered = 1;
2457 loop_info->has_call = 1;
2458 }
2459 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2460 {
2461 rtx label1 = NULL_RTX;
2462 rtx label2 = NULL_RTX;
2463
2464 if (volatile_refs_p (PATTERN (insn)))
2465 loop_info->has_volatile = 1;
2466
2467 if (GET_CODE (insn) == JUMP_INSN
2468 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2469 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2470 loop_info->has_tablejump = 1;
2471
2472 note_stores (PATTERN (insn), note_addr_stored, NULL);
2473 if (! first_loop_store_insn && loop_store_mems)
2474 first_loop_store_insn = insn;
2475
2476 if (! loop_info->has_multiple_exit_targets
2477 && GET_CODE (insn) == JUMP_INSN
2478 && GET_CODE (PATTERN (insn)) == SET
2479 && SET_DEST (PATTERN (insn)) == pc_rtx)
2480 {
2481 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2482 {
2483 label1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2484 label2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2485 }
2486 else
2487 {
2488 label1 = SET_SRC (PATTERN (insn));
2489 }
2490
2491 do {
2492 if (label1 && label1 != pc_rtx)
2493 {
2494 if (GET_CODE (label1) != LABEL_REF)
2495 {
2496 /* Something tricky. */
2497 loop_info->has_multiple_exit_targets = 1;
2498 break;
2499 }
2500 else if (XEXP (label1, 0) != exit_target
2501 && LABEL_OUTSIDE_LOOP_P (label1))
2502 {
2503 /* A jump outside the current loop. */
2504 loop_info->has_multiple_exit_targets = 1;
2505 break;
2506 }
2507 }
2508
2509 label1 = label2;
2510 label2 = NULL_RTX;
2511 } while (label1);
2512 }
2513 }
2514 else if (GET_CODE (insn) == RETURN)
2515 loop_info->has_multiple_exit_targets = 1;
2516 }
2517
2518 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2519 if (/* We can't tell what MEMs are aliased by what. */
2520 ! unknown_address_altered
2521 /* An exception thrown by a called function might land us
2522 anywhere. */
2523 && ! loop_info->has_call
2524 /* We don't want loads for MEMs moved to a location before the
2525 one at which their stack memory becomes allocated. (Note
2526 that this is not a problem for malloc, etc., since those
2527 require actual function calls. */
2528 && ! current_function_calls_alloca
2529 /* There are ways to leave the loop other than falling off the
2530 end. */
2531 && ! loop_info->has_multiple_exit_targets)
2532 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2533 insn = NEXT_INSN (insn))
2534 for_each_rtx (&insn, insert_loop_mem, 0);
2535 }
2536 \f
2537 /* LOOP->CONT_DOMINATOR is now the last label between the loop start
2538 and the continue note that is a the destination of a (cond)jump after
2539 the continue note. If there is any (cond)jump between the loop start
2540 and what we have so far as LOOP->CONT_DOMINATOR that has a
2541 target between LOOP->DOMINATOR and the continue note, move
2542 LOOP->CONT_DOMINATOR forward to that label; if a jump's
2543 destination cannot be determined, clear LOOP->CONT_DOMINATOR. */
2544
2545 static void
2546 verify_dominator (loop)
2547 struct loop *loop;
2548 {
2549 rtx insn;
2550
2551 if (! loop->cont_dominator)
2552 /* This can happen for an empty loop, e.g. in
2553 gcc.c-torture/compile/920410-2.c */
2554 return;
2555 if (loop->cont_dominator == const0_rtx)
2556 {
2557 loop->cont_dominator = 0;
2558 return;
2559 }
2560 for (insn = loop->start; insn != loop->cont_dominator;
2561 insn = NEXT_INSN (insn))
2562 {
2563 if (GET_CODE (insn) == JUMP_INSN
2564 && GET_CODE (PATTERN (insn)) != RETURN)
2565 {
2566 rtx label = JUMP_LABEL (insn);
2567 int label_luid;
2568
2569 /* If it is not a jump we can easily understand or for
2570 which we do not have jump target information in the JUMP_LABEL
2571 field (consider ADDR_VEC and ADDR_DIFF_VEC insns), then clear
2572 LOOP->CONT_DOMINATOR. */
2573 if ((! condjump_p (insn)
2574 && ! condjump_in_parallel_p (insn))
2575 || label == NULL_RTX)
2576 {
2577 loop->cont_dominator = NULL_RTX;
2578 return;
2579 }
2580
2581 label_luid = INSN_LUID (label);
2582 if (label_luid < INSN_LUID (loop->cont)
2583 && (label_luid
2584 > INSN_LUID (loop->cont)))
2585 loop->cont_dominator = label;
2586 }
2587 }
2588 }
2589
2590 /* Scan the function looking for loops. Record the start and end of each loop.
2591 Also mark as invalid loops any loops that contain a setjmp or are branched
2592 to from outside the loop. */
2593
2594 static void
2595 find_and_verify_loops (f, loops)
2596 rtx f;
2597 struct loops *loops;
2598 {
2599 rtx insn;
2600 rtx label;
2601 int num_loops;
2602 struct loop *current_loop;
2603 struct loop *next_loop;
2604 struct loop *loop;
2605
2606 num_loops = loops->num;
2607
2608 compute_luids (f, NULL_RTX, 0);
2609
2610 /* If there are jumps to undefined labels,
2611 treat them as jumps out of any/all loops.
2612 This also avoids writing past end of tables when there are no loops. */
2613 uid_loop[0] = NULL;
2614
2615 /* Find boundaries of loops, mark which loops are contained within
2616 loops, and invalidate loops that have setjmp. */
2617
2618 num_loops = 0;
2619 current_loop = NULL;
2620 for (insn = f; insn; insn = NEXT_INSN (insn))
2621 {
2622 if (GET_CODE (insn) == NOTE)
2623 switch (NOTE_LINE_NUMBER (insn))
2624 {
2625 case NOTE_INSN_LOOP_BEG:
2626 next_loop = loops->array + num_loops;
2627 next_loop->num = num_loops;
2628 num_loops++;
2629 next_loop->start = insn;
2630 next_loop->outer = current_loop;
2631 current_loop = next_loop;
2632 break;
2633
2634 case NOTE_INSN_SETJMP:
2635 /* In this case, we must invalidate our current loop and any
2636 enclosing loop. */
2637 for (loop = current_loop; loop; loop = loop->outer)
2638 {
2639 loop->invalid = 1;
2640 if (loop_dump_stream)
2641 fprintf (loop_dump_stream,
2642 "\nLoop at %d ignored due to setjmp.\n",
2643 INSN_UID (loop->start));
2644 }
2645 break;
2646
2647 case NOTE_INSN_LOOP_CONT:
2648 current_loop->cont = insn;
2649 break;
2650 case NOTE_INSN_LOOP_END:
2651 if (! current_loop)
2652 abort ();
2653
2654 current_loop->end = insn;
2655 verify_dominator (current_loop);
2656 current_loop = current_loop->outer;
2657 break;
2658
2659 default:
2660 break;
2661 }
2662 /* If for any loop, this is a jump insn between the NOTE_INSN_LOOP_CONT
2663 and NOTE_INSN_LOOP_END notes, update loop->dominator. */
2664 else if (GET_CODE (insn) == JUMP_INSN
2665 && GET_CODE (PATTERN (insn)) != RETURN
2666 && current_loop)
2667 {
2668 rtx label = JUMP_LABEL (insn);
2669
2670 if (! condjump_p (insn) && ! condjump_in_parallel_p (insn))
2671 label = NULL_RTX;
2672
2673 loop = current_loop;
2674 do
2675 {
2676 /* First see if we care about this loop. */
2677 if (loop->cont && loop->cont_dominator != const0_rtx)
2678 {
2679 /* If the jump destination is not known, invalidate
2680 loop->const_dominator. */
2681 if (! label)
2682 loop->cont_dominator = const0_rtx;
2683 else
2684 /* Check if the destination is between loop start and
2685 cont. */
2686 if ((INSN_LUID (label)
2687 < INSN_LUID (loop->cont))
2688 && (INSN_LUID (label)
2689 > INSN_LUID (loop->start))
2690 /* And if there is no later destination already
2691 recorded. */
2692 && (! loop->cont_dominator
2693 || (INSN_LUID (label)
2694 > INSN_LUID (loop->cont_dominator))))
2695 loop->cont_dominator = label;
2696 }
2697 loop = loop->outer;
2698 }
2699 while (loop);
2700 }
2701
2702 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2703 enclosing loop, but this doesn't matter. */
2704 uid_loop[INSN_UID (insn)] = current_loop;
2705 }
2706
2707 /* Any loop containing a label used in an initializer must be invalidated,
2708 because it can be jumped into from anywhere. */
2709
2710 for (label = forced_labels; label; label = XEXP (label, 1))
2711 {
2712 for (loop = uid_loop[INSN_UID (XEXP (label, 0))];
2713 loop; loop = loop->outer)
2714 loop->invalid = 1;
2715 }
2716
2717 /* Any loop containing a label used for an exception handler must be
2718 invalidated, because it can be jumped into from anywhere. */
2719
2720 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2721 {
2722 for (loop = uid_loop[INSN_UID (XEXP (label, 0))];
2723 loop; loop = loop->outer)
2724 loop->invalid = 1;
2725 }
2726
2727 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2728 loop that it is not contained within, that loop is marked invalid.
2729 If any INSN or CALL_INSN uses a label's address, then the loop containing
2730 that label is marked invalid, because it could be jumped into from
2731 anywhere.
2732
2733 Also look for blocks of code ending in an unconditional branch that
2734 exits the loop. If such a block is surrounded by a conditional
2735 branch around the block, move the block elsewhere (see below) and
2736 invert the jump to point to the code block. This may eliminate a
2737 label in our loop and will simplify processing by both us and a
2738 possible second cse pass. */
2739
2740 for (insn = f; insn; insn = NEXT_INSN (insn))
2741 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2742 {
2743 struct loop *this_loop = uid_loop[INSN_UID (insn)];
2744
2745 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2746 {
2747 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2748 if (note)
2749 {
2750 for (loop = uid_loop[INSN_UID (XEXP (note, 0))];
2751 loop; loop = loop->outer)
2752 loop->invalid = 1;
2753 }
2754 }
2755
2756 if (GET_CODE (insn) != JUMP_INSN)
2757 continue;
2758
2759 mark_loop_jump (PATTERN (insn), this_loop);
2760
2761 /* See if this is an unconditional branch outside the loop. */
2762 if (this_loop
2763 && (GET_CODE (PATTERN (insn)) == RETURN
2764 || (simplejump_p (insn)
2765 && (uid_loop[INSN_UID (JUMP_LABEL (insn))]
2766 != this_loop)))
2767 && get_max_uid () < max_uid_for_loop)
2768 {
2769 rtx p;
2770 rtx our_next = next_real_insn (insn);
2771 rtx last_insn_to_move = NEXT_INSN (insn);
2772 struct loop *dest_loop;
2773 struct loop *outer_loop = NULL;
2774
2775 /* Go backwards until we reach the start of the loop, a label,
2776 or a JUMP_INSN. */
2777 for (p = PREV_INSN (insn);
2778 GET_CODE (p) != CODE_LABEL
2779 && ! (GET_CODE (p) == NOTE
2780 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2781 && GET_CODE (p) != JUMP_INSN;
2782 p = PREV_INSN (p))
2783 ;
2784
2785 /* Check for the case where we have a jump to an inner nested
2786 loop, and do not perform the optimization in that case. */
2787
2788 if (JUMP_LABEL (insn))
2789 {
2790 dest_loop = uid_loop[INSN_UID (JUMP_LABEL (insn))];
2791 if (dest_loop)
2792 {
2793 for (outer_loop = dest_loop; outer_loop;
2794 outer_loop = outer_loop->outer)
2795 if (outer_loop == this_loop)
2796 break;
2797 }
2798 }
2799
2800 /* Make sure that the target of P is within the current loop. */
2801
2802 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2803 && uid_loop[INSN_UID (JUMP_LABEL (p))] != this_loop)
2804 outer_loop = this_loop;
2805
2806 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2807 we have a block of code to try to move.
2808
2809 We look backward and then forward from the target of INSN
2810 to find a BARRIER at the same loop depth as the target.
2811 If we find such a BARRIER, we make a new label for the start
2812 of the block, invert the jump in P and point it to that label,
2813 and move the block of code to the spot we found. */
2814
2815 if (! outer_loop
2816 && GET_CODE (p) == JUMP_INSN
2817 && JUMP_LABEL (p) != 0
2818 /* Just ignore jumps to labels that were never emitted.
2819 These always indicate compilation errors. */
2820 && INSN_UID (JUMP_LABEL (p)) != 0
2821 && condjump_p (p)
2822 && ! simplejump_p (p)
2823 && next_real_insn (JUMP_LABEL (p)) == our_next
2824 /* If it's not safe to move the sequence, then we
2825 mustn't try. */
2826 && insns_safe_to_move_p (p, NEXT_INSN (insn),
2827 &last_insn_to_move))
2828 {
2829 rtx target
2830 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2831 struct loop *target_loop = uid_loop[INSN_UID (target)];
2832 rtx loc, loc2;
2833
2834 for (loc = target; loc; loc = PREV_INSN (loc))
2835 if (GET_CODE (loc) == BARRIER
2836 /* Don't move things inside a tablejump. */
2837 && ((loc2 = next_nonnote_insn (loc)) == 0
2838 || GET_CODE (loc2) != CODE_LABEL
2839 || (loc2 = next_nonnote_insn (loc2)) == 0
2840 || GET_CODE (loc2) != JUMP_INSN
2841 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2842 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2843 && uid_loop[INSN_UID (loc)] == target_loop)
2844 break;
2845
2846 if (loc == 0)
2847 for (loc = target; loc; loc = NEXT_INSN (loc))
2848 if (GET_CODE (loc) == BARRIER
2849 /* Don't move things inside a tablejump. */
2850 && ((loc2 = next_nonnote_insn (loc)) == 0
2851 || GET_CODE (loc2) != CODE_LABEL
2852 || (loc2 = next_nonnote_insn (loc2)) == 0
2853 || GET_CODE (loc2) != JUMP_INSN
2854 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2855 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2856 && uid_loop[INSN_UID (loc)] == target_loop)
2857 break;
2858
2859 if (loc)
2860 {
2861 rtx cond_label = JUMP_LABEL (p);
2862 rtx new_label = get_label_after (p);
2863
2864 /* Ensure our label doesn't go away. */
2865 LABEL_NUSES (cond_label)++;
2866
2867 /* Verify that uid_loop is large enough and that
2868 we can invert P. */
2869 if (invert_jump (p, new_label))
2870 {
2871 rtx q, r;
2872
2873 /* If no suitable BARRIER was found, create a suitable
2874 one before TARGET. Since TARGET is a fall through
2875 path, we'll need to insert an jump around our block
2876 and a add a BARRIER before TARGET.
2877
2878 This creates an extra unconditional jump outside
2879 the loop. However, the benefits of removing rarely
2880 executed instructions from inside the loop usually
2881 outweighs the cost of the extra unconditional jump
2882 outside the loop. */
2883 if (loc == 0)
2884 {
2885 rtx temp;
2886
2887 temp = gen_jump (JUMP_LABEL (insn));
2888 temp = emit_jump_insn_before (temp, target);
2889 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2890 LABEL_NUSES (JUMP_LABEL (insn))++;
2891 loc = emit_barrier_before (target);
2892 }
2893
2894 /* Include the BARRIER after INSN and copy the
2895 block after LOC. */
2896 new_label = squeeze_notes (new_label,
2897 last_insn_to_move);
2898 reorder_insns (new_label, last_insn_to_move, loc);
2899
2900 /* All those insns are now in TARGET_LOOP. */
2901 for (q = new_label;
2902 q != NEXT_INSN (last_insn_to_move);
2903 q = NEXT_INSN (q))
2904 uid_loop[INSN_UID (q)] = target_loop;
2905
2906 /* The label jumped to by INSN is no longer a loop exit.
2907 Unless INSN does not have a label (e.g., it is a
2908 RETURN insn), search loop->exit_labels to find
2909 its label_ref, and remove it. Also turn off
2910 LABEL_OUTSIDE_LOOP_P bit. */
2911 if (JUMP_LABEL (insn))
2912 {
2913 for (q = 0,
2914 r = this_loop->exit_labels;
2915 r; q = r, r = LABEL_NEXTREF (r))
2916 if (XEXP (r, 0) == JUMP_LABEL (insn))
2917 {
2918 LABEL_OUTSIDE_LOOP_P (r) = 0;
2919 if (q)
2920 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2921 else
2922 this_loop->exit_labels = LABEL_NEXTREF (r);
2923 break;
2924 }
2925
2926 for (loop = this_loop; loop && loop != target_loop;
2927 loop = loop->outer)
2928 loop->exit_count--;
2929
2930 /* If we didn't find it, then something is
2931 wrong. */
2932 if (! r)
2933 abort ();
2934 }
2935
2936 /* P is now a jump outside the loop, so it must be put
2937 in loop->exit_labels, and marked as such.
2938 The easiest way to do this is to just call
2939 mark_loop_jump again for P. */
2940 mark_loop_jump (PATTERN (p), this_loop);
2941
2942 /* If INSN now jumps to the insn after it,
2943 delete INSN. */
2944 if (JUMP_LABEL (insn) != 0
2945 && (next_real_insn (JUMP_LABEL (insn))
2946 == next_real_insn (insn)))
2947 delete_insn (insn);
2948 }
2949
2950 /* Continue the loop after where the conditional
2951 branch used to jump, since the only branch insn
2952 in the block (if it still remains) is an inter-loop
2953 branch and hence needs no processing. */
2954 insn = NEXT_INSN (cond_label);
2955
2956 if (--LABEL_NUSES (cond_label) == 0)
2957 delete_insn (cond_label);
2958
2959 /* This loop will be continued with NEXT_INSN (insn). */
2960 insn = PREV_INSN (insn);
2961 }
2962 }
2963 }
2964 }
2965 }
2966
2967 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2968 loops it is contained in, mark the target loop invalid.
2969
2970 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2971
2972 static void
2973 mark_loop_jump (x, loop)
2974 rtx x;
2975 struct loop *loop;
2976 {
2977 struct loop *dest_loop;
2978 struct loop *outer_loop;
2979 int i;
2980
2981 switch (GET_CODE (x))
2982 {
2983 case PC:
2984 case USE:
2985 case CLOBBER:
2986 case REG:
2987 case MEM:
2988 case CONST_INT:
2989 case CONST_DOUBLE:
2990 case RETURN:
2991 return;
2992
2993 case CONST:
2994 /* There could be a label reference in here. */
2995 mark_loop_jump (XEXP (x, 0), loop);
2996 return;
2997
2998 case PLUS:
2999 case MINUS:
3000 case MULT:
3001 mark_loop_jump (XEXP (x, 0), loop);
3002 mark_loop_jump (XEXP (x, 1), loop);
3003 return;
3004
3005 case LO_SUM:
3006 /* This may refer to a LABEL_REF or SYMBOL_REF. */
3007 mark_loop_jump (XEXP (x, 1), loop);
3008 return;
3009
3010 case SIGN_EXTEND:
3011 case ZERO_EXTEND:
3012 mark_loop_jump (XEXP (x, 0), loop);
3013 return;
3014
3015 case LABEL_REF:
3016 dest_loop = uid_loop[INSN_UID (XEXP (x, 0))];
3017
3018 /* Link together all labels that branch outside the loop. This
3019 is used by final_[bg]iv_value and the loop unrolling code. Also
3020 mark this LABEL_REF so we know that this branch should predict
3021 false. */
3022
3023 /* A check to make sure the label is not in an inner nested loop,
3024 since this does not count as a loop exit. */
3025 if (dest_loop)
3026 {
3027 for (outer_loop = dest_loop; outer_loop;
3028 outer_loop = outer_loop->outer)
3029 if (outer_loop == loop)
3030 break;
3031 }
3032 else
3033 outer_loop = NULL;
3034
3035 if (loop && ! outer_loop)
3036 {
3037 LABEL_OUTSIDE_LOOP_P (x) = 1;
3038 LABEL_NEXTREF (x) = loop->exit_labels;
3039 loop->exit_labels = x;
3040
3041 for (outer_loop = loop;
3042 outer_loop && outer_loop != dest_loop;
3043 outer_loop = outer_loop->outer)
3044 outer_loop->exit_count++;
3045 }
3046
3047 /* If this is inside a loop, but not in the current loop or one enclosed
3048 by it, it invalidates at least one loop. */
3049
3050 if (! dest_loop)
3051 return;
3052
3053 /* We must invalidate every nested loop containing the target of this
3054 label, except those that also contain the jump insn. */
3055
3056 for (; dest_loop; dest_loop = dest_loop->outer)
3057 {
3058 /* Stop when we reach a loop that also contains the jump insn. */
3059 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3060 if (dest_loop == outer_loop)
3061 return;
3062
3063 /* If we get here, we know we need to invalidate a loop. */
3064 if (loop_dump_stream && ! dest_loop->invalid)
3065 fprintf (loop_dump_stream,
3066 "\nLoop at %d ignored due to multiple entry points.\n",
3067 INSN_UID (dest_loop->start));
3068
3069 dest_loop->invalid = 1;
3070 }
3071 return;
3072
3073 case SET:
3074 /* If this is not setting pc, ignore. */
3075 if (SET_DEST (x) == pc_rtx)
3076 mark_loop_jump (SET_SRC (x), loop);
3077 return;
3078
3079 case IF_THEN_ELSE:
3080 mark_loop_jump (XEXP (x, 1), loop);
3081 mark_loop_jump (XEXP (x, 2), loop);
3082 return;
3083
3084 case PARALLEL:
3085 case ADDR_VEC:
3086 for (i = 0; i < XVECLEN (x, 0); i++)
3087 mark_loop_jump (XVECEXP (x, 0, i), loop);
3088 return;
3089
3090 case ADDR_DIFF_VEC:
3091 for (i = 0; i < XVECLEN (x, 1); i++)
3092 mark_loop_jump (XVECEXP (x, 1, i), loop);
3093 return;
3094
3095 default:
3096 /* Strictly speaking this is not a jump into the loop, only a possible
3097 jump out of the loop. However, we have no way to link the destination
3098 of this jump onto the list of exit labels. To be safe we mark this
3099 loop and any containing loops as invalid. */
3100 if (loop)
3101 {
3102 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3103 {
3104 if (loop_dump_stream && ! outer_loop->invalid)
3105 fprintf (loop_dump_stream,
3106 "\nLoop at %d ignored due to unknown exit jump.\n",
3107 INSN_UID (outer_loop->start));
3108 outer_loop->invalid = 1;
3109 }
3110 }
3111 return;
3112 }
3113 }
3114 \f
3115 /* Return nonzero if there is a label in the range from
3116 insn INSN to and including the insn whose luid is END
3117 INSN must have an assigned luid (i.e., it must not have
3118 been previously created by loop.c). */
3119
3120 static int
3121 labels_in_range_p (insn, end)
3122 rtx insn;
3123 int end;
3124 {
3125 while (insn && INSN_LUID (insn) <= end)
3126 {
3127 if (GET_CODE (insn) == CODE_LABEL)
3128 return 1;
3129 insn = NEXT_INSN (insn);
3130 }
3131
3132 return 0;
3133 }
3134
3135 /* Record that a memory reference X is being set. */
3136
3137 static void
3138 note_addr_stored (x, y, data)
3139 rtx x;
3140 rtx y ATTRIBUTE_UNUSED;
3141 void *data ATTRIBUTE_UNUSED;
3142 {
3143 if (x == 0 || GET_CODE (x) != MEM)
3144 return;
3145
3146 /* Count number of memory writes.
3147 This affects heuristics in strength_reduce. */
3148 num_mem_sets++;
3149
3150 /* BLKmode MEM means all memory is clobbered. */
3151 if (GET_MODE (x) == BLKmode)
3152 {
3153 if (RTX_UNCHANGING_P (x))
3154 unknown_constant_address_altered = 1;
3155 else
3156 unknown_address_altered = 1;
3157
3158 return;
3159 }
3160
3161 loop_store_mems = gen_rtx_EXPR_LIST (VOIDmode, x, loop_store_mems);
3162 }
3163
3164 /* X is a value modified by an INSN that references a biv inside a loop
3165 exit test (ie, X is somehow related to the value of the biv). If X
3166 is a pseudo that is used more than once, then the biv is (effectively)
3167 used more than once. DATA is really an `int *', and is set if the
3168 biv is used more than once. */
3169
3170 static void
3171 note_set_pseudo_multiple_uses (x, y, data)
3172 rtx x;
3173 rtx y ATTRIBUTE_UNUSED;
3174 void *data;
3175 {
3176 if (x == 0)
3177 return;
3178
3179 while (GET_CODE (x) == STRICT_LOW_PART
3180 || GET_CODE (x) == SIGN_EXTRACT
3181 || GET_CODE (x) == ZERO_EXTRACT
3182 || GET_CODE (x) == SUBREG)
3183 x = XEXP (x, 0);
3184
3185 if (GET_CODE (x) != REG || REGNO (x) < FIRST_PSEUDO_REGISTER)
3186 return;
3187
3188 /* If we do not have usage information, or if we know the register
3189 is used more than once, note that fact for check_dbra_loop. */
3190 if (REGNO (x) >= max_reg_before_loop
3191 || ! VARRAY_RTX (reg_single_usage, REGNO (x))
3192 || VARRAY_RTX (reg_single_usage, REGNO (x)) == const0_rtx)
3193 *((int *) data) = 1;
3194 }
3195 \f
3196 /* Return nonzero if the rtx X is invariant over the current loop.
3197
3198 The value is 2 if we refer to something only conditionally invariant.
3199
3200 If `unknown_address_altered' is nonzero, no memory ref is invariant.
3201 Otherwise, a memory ref is invariant if it does not conflict with
3202 anything stored in `loop_store_mems'. */
3203
3204 int
3205 loop_invariant_p (loop, x)
3206 const struct loop *loop;
3207 register rtx x;
3208 {
3209 register int i;
3210 register enum rtx_code code;
3211 register const char *fmt;
3212 int conditional = 0;
3213 rtx mem_list_entry;
3214
3215 if (x == 0)
3216 return 1;
3217 code = GET_CODE (x);
3218 switch (code)
3219 {
3220 case CONST_INT:
3221 case CONST_DOUBLE:
3222 case SYMBOL_REF:
3223 case CONST:
3224 return 1;
3225
3226 case LABEL_REF:
3227 /* A LABEL_REF is normally invariant, however, if we are unrolling
3228 loops, and this label is inside the loop, then it isn't invariant.
3229 This is because each unrolled copy of the loop body will have
3230 a copy of this label. If this was invariant, then an insn loading
3231 the address of this label into a register might get moved outside
3232 the loop, and then each loop body would end up using the same label.
3233
3234 We don't know the loop bounds here though, so just fail for all
3235 labels. */
3236 if (flag_unroll_loops)
3237 return 0;
3238 else
3239 return 1;
3240
3241 case PC:
3242 case CC0:
3243 case UNSPEC_VOLATILE:
3244 return 0;
3245
3246 case REG:
3247 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3248 since the reg might be set by initialization within the loop. */
3249
3250 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3251 || x == arg_pointer_rtx)
3252 && ! current_function_has_nonlocal_goto)
3253 return 1;
3254
3255 if (LOOP_INFO (loop)->has_call
3256 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3257 return 0;
3258
3259 if (VARRAY_INT (set_in_loop, REGNO (x)) < 0)
3260 return 2;
3261
3262 return VARRAY_INT (set_in_loop, REGNO (x)) == 0;
3263
3264 case MEM:
3265 /* Volatile memory references must be rejected. Do this before
3266 checking for read-only items, so that volatile read-only items
3267 will be rejected also. */
3268 if (MEM_VOLATILE_P (x))
3269 return 0;
3270
3271 /* If we had a subroutine call, any location in memory could
3272 have been clobbered. We used to test here for volatile and
3273 readonly, but true_dependence knows how to do that better
3274 than we do. */
3275 if (RTX_UNCHANGING_P (x)
3276 ? unknown_constant_address_altered : unknown_address_altered)
3277 return 0;
3278
3279 /* See if there is any dependence between a store and this load. */
3280 mem_list_entry = loop_store_mems;
3281 while (mem_list_entry)
3282 {
3283 if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
3284 x, rtx_varies_p))
3285 return 0;
3286
3287 mem_list_entry = XEXP (mem_list_entry, 1);
3288 }
3289
3290 /* It's not invalidated by a store in memory
3291 but we must still verify the address is invariant. */
3292 break;
3293
3294 case ASM_OPERANDS:
3295 /* Don't mess with insns declared volatile. */
3296 if (MEM_VOLATILE_P (x))
3297 return 0;
3298 break;
3299
3300 default:
3301 break;
3302 }
3303
3304 fmt = GET_RTX_FORMAT (code);
3305 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3306 {
3307 if (fmt[i] == 'e')
3308 {
3309 int tem = loop_invariant_p (loop, XEXP (x, i));
3310 if (tem == 0)
3311 return 0;
3312 if (tem == 2)
3313 conditional = 1;
3314 }
3315 else if (fmt[i] == 'E')
3316 {
3317 register int j;
3318 for (j = 0; j < XVECLEN (x, i); j++)
3319 {
3320 int tem = loop_invariant_p (loop, XVECEXP (x, i, j));
3321 if (tem == 0)
3322 return 0;
3323 if (tem == 2)
3324 conditional = 1;
3325 }
3326
3327 }
3328 }
3329
3330 return 1 + conditional;
3331 }
3332
3333 \f
3334 /* Return nonzero if all the insns in the loop that set REG
3335 are INSN and the immediately following insns,
3336 and if each of those insns sets REG in an invariant way
3337 (not counting uses of REG in them).
3338
3339 The value is 2 if some of these insns are only conditionally invariant.
3340
3341 We assume that INSN itself is the first set of REG
3342 and that its source is invariant. */
3343
3344 static int
3345 consec_sets_invariant_p (loop, reg, n_sets, insn)
3346 const struct loop *loop;
3347 int n_sets;
3348 rtx reg, insn;
3349 {
3350 register rtx p = insn;
3351 register int regno = REGNO (reg);
3352 rtx temp;
3353 /* Number of sets we have to insist on finding after INSN. */
3354 int count = n_sets - 1;
3355 int old = VARRAY_INT (set_in_loop, regno);
3356 int value = 0;
3357 int this;
3358
3359 /* If N_SETS hit the limit, we can't rely on its value. */
3360 if (n_sets == 127)
3361 return 0;
3362
3363 VARRAY_INT (set_in_loop, regno) = 0;
3364
3365 while (count > 0)
3366 {
3367 register enum rtx_code code;
3368 rtx set;
3369
3370 p = NEXT_INSN (p);
3371 code = GET_CODE (p);
3372
3373 /* If library call, skip to end of it. */
3374 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3375 p = XEXP (temp, 0);
3376
3377 this = 0;
3378 if (code == INSN
3379 && (set = single_set (p))
3380 && GET_CODE (SET_DEST (set)) == REG
3381 && REGNO (SET_DEST (set)) == regno)
3382 {
3383 this = loop_invariant_p (loop, SET_SRC (set));
3384 if (this != 0)
3385 value |= this;
3386 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3387 {
3388 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3389 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3390 notes are OK. */
3391 this = (CONSTANT_P (XEXP (temp, 0))
3392 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3393 && loop_invariant_p (loop, XEXP (temp, 0))));
3394 if (this != 0)
3395 value |= this;
3396 }
3397 }
3398 if (this != 0)
3399 count--;
3400 else if (code != NOTE)
3401 {
3402 VARRAY_INT (set_in_loop, regno) = old;
3403 return 0;
3404 }
3405 }
3406
3407 VARRAY_INT (set_in_loop, regno) = old;
3408 /* If loop_invariant_p ever returned 2, we return 2. */
3409 return 1 + (value & 2);
3410 }
3411
3412 #if 0
3413 /* I don't think this condition is sufficient to allow INSN
3414 to be moved, so we no longer test it. */
3415
3416 /* Return 1 if all insns in the basic block of INSN and following INSN
3417 that set REG are invariant according to TABLE. */
3418
3419 static int
3420 all_sets_invariant_p (reg, insn, table)
3421 rtx reg, insn;
3422 short *table;
3423 {
3424 register rtx p = insn;
3425 register int regno = REGNO (reg);
3426
3427 while (1)
3428 {
3429 register enum rtx_code code;
3430 p = NEXT_INSN (p);
3431 code = GET_CODE (p);
3432 if (code == CODE_LABEL || code == JUMP_INSN)
3433 return 1;
3434 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3435 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3436 && REGNO (SET_DEST (PATTERN (p))) == regno)
3437 {
3438 if (! loop_invariant_p (loop, SET_SRC (PATTERN (p)), table))
3439 return 0;
3440 }
3441 }
3442 }
3443 #endif /* 0 */
3444 \f
3445 /* Look at all uses (not sets) of registers in X. For each, if it is
3446 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3447 a different insn, set USAGE[REGNO] to const0_rtx. */
3448
3449 static void
3450 find_single_use_in_loop (insn, x, usage)
3451 rtx insn;
3452 rtx x;
3453 varray_type usage;
3454 {
3455 enum rtx_code code = GET_CODE (x);
3456 const char *fmt = GET_RTX_FORMAT (code);
3457 int i, j;
3458
3459 if (code == REG)
3460 VARRAY_RTX (usage, REGNO (x))
3461 = (VARRAY_RTX (usage, REGNO (x)) != 0
3462 && VARRAY_RTX (usage, REGNO (x)) != insn)
3463 ? const0_rtx : insn;
3464
3465 else if (code == SET)
3466 {
3467 /* Don't count SET_DEST if it is a REG; otherwise count things
3468 in SET_DEST because if a register is partially modified, it won't
3469 show up as a potential movable so we don't care how USAGE is set
3470 for it. */
3471 if (GET_CODE (SET_DEST (x)) != REG)
3472 find_single_use_in_loop (insn, SET_DEST (x), usage);
3473 find_single_use_in_loop (insn, SET_SRC (x), usage);
3474 }
3475 else
3476 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3477 {
3478 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3479 find_single_use_in_loop (insn, XEXP (x, i), usage);
3480 else if (fmt[i] == 'E')
3481 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3482 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3483 }
3484 }
3485 \f
3486 /* Count and record any set in X which is contained in INSN. Update
3487 MAY_NOT_MOVE and LAST_SET for any register set in X. */
3488
3489 static void
3490 count_one_set (insn, x, may_not_move, last_set)
3491 rtx insn, x;
3492 varray_type may_not_move;
3493 rtx *last_set;
3494 {
3495 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3496 /* Don't move a reg that has an explicit clobber.
3497 It's not worth the pain to try to do it correctly. */
3498 VARRAY_CHAR (may_not_move, REGNO (XEXP (x, 0))) = 1;
3499
3500 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3501 {
3502 rtx dest = SET_DEST (x);
3503 while (GET_CODE (dest) == SUBREG
3504 || GET_CODE (dest) == ZERO_EXTRACT
3505 || GET_CODE (dest) == SIGN_EXTRACT
3506 || GET_CODE (dest) == STRICT_LOW_PART)
3507 dest = XEXP (dest, 0);
3508 if (GET_CODE (dest) == REG)
3509 {
3510 register int regno = REGNO (dest);
3511 /* If this is the first setting of this reg
3512 in current basic block, and it was set before,
3513 it must be set in two basic blocks, so it cannot
3514 be moved out of the loop. */
3515 if (VARRAY_INT (set_in_loop, regno) > 0
3516 && last_set[regno] == 0)
3517 VARRAY_CHAR (may_not_move, regno) = 1;
3518 /* If this is not first setting in current basic block,
3519 see if reg was used in between previous one and this.
3520 If so, neither one can be moved. */
3521 if (last_set[regno] != 0
3522 && reg_used_between_p (dest, last_set[regno], insn))
3523 VARRAY_CHAR (may_not_move, regno) = 1;
3524 if (VARRAY_INT (set_in_loop, regno) < 127)
3525 ++VARRAY_INT (set_in_loop, regno);
3526 last_set[regno] = insn;
3527 }
3528 }
3529 }
3530
3531 /* Increment SET_IN_LOOP at the index of each register
3532 that is modified by an insn between FROM and TO.
3533 If the value of an element of SET_IN_LOOP becomes 127 or more,
3534 stop incrementing it, to avoid overflow.
3535
3536 Store in SINGLE_USAGE[I] the single insn in which register I is
3537 used, if it is only used once. Otherwise, it is set to 0 (for no
3538 uses) or const0_rtx for more than one use. This parameter may be zero,
3539 in which case this processing is not done.
3540
3541 Store in *COUNT_PTR the number of actual instruction
3542 in the loop. We use this to decide what is worth moving out. */
3543
3544 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3545 In that case, it is the insn that last set reg n. */
3546
3547 static void
3548 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3549 register rtx from, to;
3550 varray_type may_not_move;
3551 varray_type single_usage;
3552 int *count_ptr;
3553 int nregs;
3554 {
3555 register rtx *last_set = (rtx *) xcalloc (nregs, sizeof (rtx));
3556 register rtx insn;
3557 register int count = 0;
3558
3559 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3560 {
3561 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3562 {
3563 ++count;
3564
3565 /* Record registers that have exactly one use. */
3566 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3567
3568 /* Include uses in REG_EQUAL notes. */
3569 if (REG_NOTES (insn))
3570 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3571
3572 if (GET_CODE (PATTERN (insn)) == SET
3573 || GET_CODE (PATTERN (insn)) == CLOBBER)
3574 count_one_set (insn, PATTERN (insn), may_not_move, last_set);
3575 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3576 {
3577 register int i;
3578 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3579 count_one_set (insn, XVECEXP (PATTERN (insn), 0, i),
3580 may_not_move, last_set);
3581 }
3582 }
3583
3584 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3585 bzero ((char *) last_set, nregs * sizeof (rtx));
3586 }
3587 *count_ptr = count;
3588
3589 /* Clean up. */
3590 free (last_set);
3591 }
3592 \f
3593 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3594 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3595 contained in insn INSN is used by any insn that precedes INSN in
3596 cyclic order starting from the loop entry point.
3597
3598 We don't want to use INSN_LUID here because if we restrict INSN to those
3599 that have a valid INSN_LUID, it means we cannot move an invariant out
3600 from an inner loop past two loops. */
3601
3602 static int
3603 loop_reg_used_before_p (loop, set, insn)
3604 const struct loop *loop;
3605 rtx set, insn;
3606 {
3607 rtx reg = SET_DEST (set);
3608 rtx p;
3609
3610 /* Scan forward checking for register usage. If we hit INSN, we
3611 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3612 for (p = loop->scan_start; p != insn; p = NEXT_INSN (p))
3613 {
3614 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3615 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3616 return 1;
3617
3618 if (p == loop->end)
3619 p = loop->start;
3620 }
3621
3622 return 0;
3623 }
3624 \f
3625 /* A "basic induction variable" or biv is a pseudo reg that is set
3626 (within this loop) only by incrementing or decrementing it. */
3627 /* A "general induction variable" or giv is a pseudo reg whose
3628 value is a linear function of a biv. */
3629
3630 /* Bivs are recognized by `basic_induction_var';
3631 Givs by `general_induction_var'. */
3632
3633 /* Indexed by register number, indicates whether or not register is an
3634 induction variable, and if so what type. */
3635
3636 varray_type reg_iv_type;
3637
3638 /* Indexed by register number, contains pointer to `struct induction'
3639 if register is an induction variable. This holds general info for
3640 all induction variables. */
3641
3642 varray_type reg_iv_info;
3643
3644 /* Indexed by register number, contains pointer to `struct iv_class'
3645 if register is a basic induction variable. This holds info describing
3646 the class (a related group) of induction variables that the biv belongs
3647 to. */
3648
3649 struct iv_class **reg_biv_class;
3650
3651 /* The head of a list which links together (via the next field)
3652 every iv class for the current loop. */
3653
3654 struct iv_class *loop_iv_list;
3655
3656 /* Givs made from biv increments are always splittable for loop unrolling.
3657 Since there is no regscan info for them, we have to keep track of them
3658 separately. */
3659 int first_increment_giv, last_increment_giv;
3660
3661 /* Communication with routines called via `note_stores'. */
3662
3663 static rtx note_insn;
3664
3665 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3666
3667 static rtx addr_placeholder;
3668
3669 /* ??? Unfinished optimizations, and possible future optimizations,
3670 for the strength reduction code. */
3671
3672 /* ??? The interaction of biv elimination, and recognition of 'constant'
3673 bivs, may cause problems. */
3674
3675 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3676 performance problems.
3677
3678 Perhaps don't eliminate things that can be combined with an addressing
3679 mode. Find all givs that have the same biv, mult_val, and add_val;
3680 then for each giv, check to see if its only use dies in a following
3681 memory address. If so, generate a new memory address and check to see
3682 if it is valid. If it is valid, then store the modified memory address,
3683 otherwise, mark the giv as not done so that it will get its own iv. */
3684
3685 /* ??? Could try to optimize branches when it is known that a biv is always
3686 positive. */
3687
3688 /* ??? When replace a biv in a compare insn, we should replace with closest
3689 giv so that an optimized branch can still be recognized by the combiner,
3690 e.g. the VAX acb insn. */
3691
3692 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3693 was rerun in loop_optimize whenever a register was added or moved.
3694 Also, some of the optimizations could be a little less conservative. */
3695 \f
3696 /* Perform strength reduction and induction variable elimination.
3697
3698 Pseudo registers created during this function will be beyond the last
3699 valid index in several tables including n_times_set and regno_last_uid.
3700 This does not cause a problem here, because the added registers cannot be
3701 givs outside of their loop, and hence will never be reconsidered.
3702 But scan_loop must check regnos to make sure they are in bounds. */
3703
3704 static void
3705 strength_reduce (loop, insn_count, unroll_p, bct_p)
3706 struct loop *loop;
3707 int insn_count;
3708 int unroll_p, bct_p ATTRIBUTE_UNUSED;
3709 {
3710 rtx p;
3711 rtx set;
3712 rtx inc_val;
3713 rtx mult_val;
3714 rtx dest_reg;
3715 rtx *location;
3716 /* This is 1 if current insn is not executed at least once for every loop
3717 iteration. */
3718 int not_every_iteration = 0;
3719 /* This is 1 if current insn may be executed more than once for every
3720 loop iteration. */
3721 int maybe_multiple = 0;
3722 /* This is 1 if we have past a branch back to the top of the loop
3723 (aka a loop latch). */
3724 int past_loop_latch = 0;
3725 /* Temporary list pointers for traversing loop_iv_list. */
3726 struct iv_class *bl, **backbl;
3727 struct loop_info *loop_info = LOOP_INFO (loop);
3728 /* Ratio of extra register life span we can justify
3729 for saving an instruction. More if loop doesn't call subroutines
3730 since in that case saving an insn makes more difference
3731 and more registers are available. */
3732 /* ??? could set this to last value of threshold in move_movables */
3733 int threshold = (loop_info->has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3734 /* Map of pseudo-register replacements. */
3735 rtx *reg_map = NULL;
3736 int reg_map_size;
3737 int call_seen;
3738 rtx test;
3739 rtx end_insert_before;
3740 int loop_depth = 0;
3741 int n_extra_increment;
3742 int unrolled_insn_copies = 0;
3743 rtx loop_start = loop->start;
3744 rtx loop_end = loop->end;
3745 rtx loop_scan_start = loop->scan_start;
3746 rtx loop_top = loop->top;
3747 rtx loop_cont = loop->cont;
3748
3749 /* If loop_scan_start points to the loop exit test, we have to be wary of
3750 subversive use of gotos inside expression statements. */
3751 if (prev_nonnote_insn (loop_scan_start) != prev_nonnote_insn (loop_start))
3752 maybe_multiple = back_branch_in_range_p (loop, loop_scan_start);
3753
3754 VARRAY_INT_INIT (reg_iv_type, max_reg_before_loop, "reg_iv_type");
3755 VARRAY_GENERIC_PTR_INIT (reg_iv_info, max_reg_before_loop, "reg_iv_info");
3756 reg_biv_class = (struct iv_class **)
3757 xcalloc (max_reg_before_loop, sizeof (struct iv_class *));
3758
3759 loop_iv_list = 0;
3760 addr_placeholder = gen_reg_rtx (Pmode);
3761
3762 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3763 must be put before this insn, so that they will appear in the right
3764 order (i.e. loop order).
3765
3766 If loop_end is the end of the current function, then emit a
3767 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3768 dummy note insn. */
3769 if (NEXT_INSN (loop_end) != 0)
3770 end_insert_before = NEXT_INSN (loop_end);
3771 else
3772 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3773
3774 /* Scan through loop to find all possible bivs. */
3775
3776 for (p = next_insn_in_loop (loop, loop_scan_start);
3777 p != NULL_RTX;
3778 p = next_insn_in_loop (loop, p))
3779 {
3780 if (GET_CODE (p) == INSN
3781 && (set = single_set (p))
3782 && GET_CODE (SET_DEST (set)) == REG)
3783 {
3784 dest_reg = SET_DEST (set);
3785 if (REGNO (dest_reg) < max_reg_before_loop
3786 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3787 && REG_IV_TYPE (REGNO (dest_reg)) != NOT_BASIC_INDUCT)
3788 {
3789 int multi_insn_incr = 0;
3790
3791 if (basic_induction_var (loop, SET_SRC (set),
3792 GET_MODE (SET_SRC (set)),
3793 dest_reg, p, &inc_val, &mult_val,
3794 &location, &multi_insn_incr))
3795 {
3796 /* It is a possible basic induction variable.
3797 Create and initialize an induction structure for it. */
3798
3799 struct induction *v
3800 = (struct induction *) alloca (sizeof (struct induction));
3801
3802 record_biv (v, p, dest_reg, inc_val, mult_val, location,
3803 not_every_iteration, maybe_multiple,
3804 multi_insn_incr);
3805 REG_IV_TYPE (REGNO (dest_reg)) = BASIC_INDUCT;
3806 }
3807 else if (REGNO (dest_reg) < max_reg_before_loop)
3808 REG_IV_TYPE (REGNO (dest_reg)) = NOT_BASIC_INDUCT;
3809 }
3810 }
3811
3812 /* Past CODE_LABEL, we get to insns that may be executed multiple
3813 times. The only way we can be sure that they can't is if every
3814 jump insn between here and the end of the loop either
3815 returns, exits the loop, is a jump to a location that is still
3816 behind the label, or is a jump to the loop start. */
3817
3818 if (GET_CODE (p) == CODE_LABEL)
3819 {
3820 rtx insn = p;
3821
3822 maybe_multiple = 0;
3823
3824 while (1)
3825 {
3826 insn = NEXT_INSN (insn);
3827 if (insn == loop_scan_start)
3828 break;
3829 if (insn == loop_end)
3830 {
3831 if (loop_top != 0)
3832 insn = loop_top;
3833 else
3834 break;
3835 if (insn == loop_scan_start)
3836 break;
3837 }
3838
3839 if (GET_CODE (insn) == JUMP_INSN
3840 && GET_CODE (PATTERN (insn)) != RETURN
3841 && (! condjump_p (insn)
3842 || (JUMP_LABEL (insn) != 0
3843 && JUMP_LABEL (insn) != loop_scan_start
3844 && ! loop_insn_first_p (p, JUMP_LABEL (insn)))))
3845 {
3846 maybe_multiple = 1;
3847 break;
3848 }
3849 }
3850 }
3851
3852 /* Past a jump, we get to insns for which we can't count
3853 on whether they will be executed during each iteration. */
3854 /* This code appears twice in strength_reduce. There is also similar
3855 code in scan_loop. */
3856 if (GET_CODE (p) == JUMP_INSN
3857 /* If we enter the loop in the middle, and scan around to the
3858 beginning, don't set not_every_iteration for that.
3859 This can be any kind of jump, since we want to know if insns
3860 will be executed if the loop is executed. */
3861 && ! (JUMP_LABEL (p) == loop_top
3862 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3863 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3864 {
3865 rtx label = 0;
3866
3867 /* If this is a jump outside the loop, then it also doesn't
3868 matter. Check to see if the target of this branch is on the
3869 loop->exits_labels list. */
3870
3871 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
3872 if (XEXP (label, 0) == JUMP_LABEL (p))
3873 break;
3874
3875 if (! label)
3876 not_every_iteration = 1;
3877 }
3878
3879 else if (GET_CODE (p) == NOTE)
3880 {
3881 /* At the virtual top of a converted loop, insns are again known to
3882 be executed each iteration: logically, the loop begins here
3883 even though the exit code has been duplicated.
3884
3885 Insns are also again known to be executed each iteration at
3886 the LOOP_CONT note. */
3887 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
3888 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
3889 && loop_depth == 0)
3890 not_every_iteration = 0;
3891 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3892 loop_depth++;
3893 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3894 loop_depth--;
3895 }
3896
3897 /* Note if we pass a loop latch. If we do, then we can not clear
3898 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
3899 a loop since a jump before the last CODE_LABEL may have started
3900 a new loop iteration.
3901
3902 Note that LOOP_TOP is only set for rotated loops and we need
3903 this check for all loops, so compare against the CODE_LABEL
3904 which immediately follows LOOP_START. */
3905 if (GET_CODE (p) == JUMP_INSN
3906 && JUMP_LABEL (p) == NEXT_INSN (loop_start))
3907 past_loop_latch = 1;
3908
3909 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3910 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3911 or not an insn is known to be executed each iteration of the
3912 loop, whether or not any iterations are known to occur.
3913
3914 Therefore, if we have just passed a label and have no more labels
3915 between here and the test insn of the loop, and we have not passed
3916 a jump to the top of the loop, then we know these insns will be
3917 executed each iteration. */
3918
3919 if (not_every_iteration
3920 && ! past_loop_latch
3921 && GET_CODE (p) == CODE_LABEL
3922 && no_labels_between_p (p, loop_end)
3923 && loop_insn_first_p (p, loop_cont))
3924 not_every_iteration = 0;
3925 }
3926
3927 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3928 Make a sanity check against n_times_set. */
3929 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3930 {
3931 int fail = 0;
3932
3933 if (REG_IV_TYPE (bl->regno) != BASIC_INDUCT
3934 /* Above happens if register modified by subreg, etc. */
3935 /* Make sure it is not recognized as a basic induction var: */
3936 || VARRAY_INT (n_times_set, bl->regno) != bl->biv_count
3937 /* If never incremented, it is invariant that we decided not to
3938 move. So leave it alone. */
3939 || ! bl->incremented)
3940 fail = 1;
3941 else if (bl->biv_count > 1)
3942 {
3943 /* ??? If we have multiple increments for this BIV, and any of
3944 them take multiple insns to perform the increment, drop the
3945 BIV, since the bit below that converts the extra increments
3946 into GIVs can't handle the multiple insn increment. */
3947
3948 struct induction *v;
3949 for (v = bl->biv; v ; v = v->next_iv)
3950 if (v->multi_insn_incr)
3951 fail = 1;
3952 }
3953
3954 if (fail)
3955 {
3956 if (loop_dump_stream)
3957 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3958 bl->regno,
3959 (REG_IV_TYPE (bl->regno) != BASIC_INDUCT
3960 ? "not induction variable"
3961 : (! bl->incremented ? "never incremented"
3962 : "count error")));
3963
3964 REG_IV_TYPE (bl->regno) = NOT_BASIC_INDUCT;
3965 *backbl = bl->next;
3966 }
3967 else
3968 {
3969 backbl = &bl->next;
3970
3971 if (loop_dump_stream)
3972 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3973 }
3974 }
3975
3976 /* Exit if there are no bivs. */
3977 if (! loop_iv_list)
3978 {
3979 /* Can still unroll the loop anyways, but indicate that there is no
3980 strength reduction info available. */
3981 if (unroll_p)
3982 unroll_loop (loop, insn_count, end_insert_before, 0);
3983
3984 goto egress;
3985 }
3986
3987 /* Find initial value for each biv by searching backwards from loop_start,
3988 halting at first label. Also record any test condition. */
3989
3990 call_seen = 0;
3991 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3992 {
3993 note_insn = p;
3994
3995 if (GET_CODE (p) == CALL_INSN)
3996 call_seen = 1;
3997
3998 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3999 || GET_CODE (p) == CALL_INSN)
4000 note_stores (PATTERN (p), record_initial, NULL);
4001
4002 /* Record any test of a biv that branches around the loop if no store
4003 between it and the start of loop. We only care about tests with
4004 constants and registers and only certain of those. */
4005 if (GET_CODE (p) == JUMP_INSN
4006 && JUMP_LABEL (p) != 0
4007 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
4008 && (test = get_condition_for_loop (loop, p)) != 0
4009 && GET_CODE (XEXP (test, 0)) == REG
4010 && REGNO (XEXP (test, 0)) < max_reg_before_loop
4011 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
4012 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
4013 && bl->init_insn == 0)
4014 {
4015 /* If an NE test, we have an initial value! */
4016 if (GET_CODE (test) == NE)
4017 {
4018 bl->init_insn = p;
4019 bl->init_set = gen_rtx_SET (VOIDmode,
4020 XEXP (test, 0), XEXP (test, 1));
4021 }
4022 else
4023 bl->initial_test = test;
4024 }
4025 }
4026
4027 /* Look at the each biv and see if we can say anything better about its
4028 initial value from any initializing insns set up above. (This is done
4029 in two passes to avoid missing SETs in a PARALLEL.) */
4030 for (backbl = &loop_iv_list; (bl = *backbl); backbl = &bl->next)
4031 {
4032 rtx src;
4033 rtx note;
4034
4035 if (! bl->init_insn)
4036 continue;
4037
4038 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
4039 is a constant, use the value of that. */
4040 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
4041 && CONSTANT_P (XEXP (note, 0)))
4042 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
4043 && CONSTANT_P (XEXP (note, 0))))
4044 src = XEXP (note, 0);
4045 else
4046 src = SET_SRC (bl->init_set);
4047
4048 if (loop_dump_stream)
4049 fprintf (loop_dump_stream,
4050 "Biv %d initialized at insn %d: initial value ",
4051 bl->regno, INSN_UID (bl->init_insn));
4052
4053 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
4054 || GET_MODE (src) == VOIDmode)
4055 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
4056 {
4057 bl->initial_value = src;
4058
4059 if (loop_dump_stream)
4060 {
4061 if (GET_CODE (src) == CONST_INT)
4062 {
4063 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (src));
4064 fputc ('\n', loop_dump_stream);
4065 }
4066 else
4067 {
4068 print_rtl (loop_dump_stream, src);
4069 fprintf (loop_dump_stream, "\n");
4070 }
4071 }
4072 }
4073 else
4074 {
4075 struct iv_class *bl2 = 0;
4076 rtx increment = NULL_RTX;
4077
4078 /* Biv initial value is not a simple move. If it is the sum of
4079 another biv and a constant, check if both bivs are incremented
4080 in lockstep. Then we are actually looking at a giv.
4081 For simplicity, we only handle the case where there is but a
4082 single increment, and the register is not used elsewhere. */
4083 if (bl->biv_count == 1
4084 && bl->regno < max_reg_before_loop
4085 && uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4086 && GET_CODE (src) == PLUS
4087 && GET_CODE (XEXP (src, 0)) == REG
4088 && CONSTANT_P (XEXP (src, 1))
4089 && ((increment = biv_total_increment (bl)) != NULL_RTX))
4090 {
4091 int regno = REGNO (XEXP (src, 0));
4092
4093 for (bl2 = loop_iv_list; bl2; bl2 = bl2->next)
4094 if (bl2->regno == regno)
4095 break;
4096 }
4097
4098 /* Now, can we transform this biv into a giv? */
4099 if (bl2
4100 && bl2->biv_count == 1
4101 && rtx_equal_p (increment, biv_total_increment (bl2))
4102 /* init_insn is only set to insns that are before loop_start
4103 without any intervening labels. */
4104 && ! reg_set_between_p (bl2->biv->src_reg,
4105 PREV_INSN (bl->init_insn), loop_start)
4106 /* The register from BL2 must be set before the register from
4107 BL is set, or we must be able to move the latter set after
4108 the former set. Currently there can't be any labels
4109 in-between when biv_total_increment returns nonzero both times
4110 but we test it here in case some day some real cfg analysis
4111 gets used to set always_computable. */
4112 && (loop_insn_first_p (bl2->biv->insn, bl->biv->insn)
4113 ? no_labels_between_p (bl2->biv->insn, bl->biv->insn)
4114 : (! reg_used_between_p (bl->biv->src_reg, bl->biv->insn,
4115 bl2->biv->insn)
4116 && no_jumps_between_p (bl->biv->insn, bl2->biv->insn)))
4117 && validate_change (bl->biv->insn,
4118 &SET_SRC (single_set (bl->biv->insn)),
4119 copy_rtx (src), 0))
4120 {
4121 rtx dominator = loop->cont_dominator;
4122 rtx giv = bl->biv->src_reg;
4123 rtx giv_insn = bl->biv->insn;
4124 rtx after_giv = NEXT_INSN (giv_insn);
4125
4126 if (loop_dump_stream)
4127 fprintf (loop_dump_stream, "is giv of biv %d\n", bl2->regno);
4128 /* Let this giv be discovered by the generic code. */
4129 REG_IV_TYPE (bl->regno) = UNKNOWN_INDUCT;
4130 reg_biv_class[bl->regno] = (struct iv_class *) NULL_PTR;
4131 /* We can get better optimization if we can move the giv setting
4132 before the first giv use. */
4133 if (dominator
4134 && ! loop_insn_first_p (dominator, loop_scan_start)
4135 && ! reg_set_between_p (bl2->biv->src_reg, loop_start,
4136 dominator)
4137 && ! reg_used_between_p (giv, loop_start, dominator)
4138 && ! reg_used_between_p (giv, giv_insn, loop_end))
4139 {
4140 rtx p;
4141 rtx next;
4142
4143 for (next = NEXT_INSN (dominator); ; next = NEXT_INSN (next))
4144 {
4145 if ((GET_RTX_CLASS (GET_CODE (next)) == 'i'
4146 && (reg_mentioned_p (giv, PATTERN (next))
4147 || reg_set_p (bl2->biv->src_reg, next)))
4148 || GET_CODE (next) == JUMP_INSN)
4149 break;
4150 #ifdef HAVE_cc0
4151 if (GET_RTX_CLASS (GET_CODE (next)) != 'i'
4152 || ! sets_cc0_p (PATTERN (next)))
4153 #endif
4154 dominator = next;
4155 }
4156 if (loop_dump_stream)
4157 fprintf (loop_dump_stream, "move after insn %d\n",
4158 INSN_UID (dominator));
4159 /* Avoid problems with luids by actually moving the insn
4160 and adjusting all luids in the range. */
4161 reorder_insns (giv_insn, giv_insn, dominator);
4162 for (p = dominator; INSN_UID (p) >= max_uid_for_loop; )
4163 p = PREV_INSN (p);
4164 compute_luids (giv_insn, after_giv, INSN_LUID (p));
4165 /* If the only purpose of the init insn is to initialize
4166 this giv, delete it. */
4167 if (single_set (bl->init_insn)
4168 && ! reg_used_between_p (giv, bl->init_insn, loop_start))
4169 delete_insn (bl->init_insn);
4170 }
4171 else if (! loop_insn_first_p (bl2->biv->insn, bl->biv->insn))
4172 {
4173 rtx p = PREV_INSN (giv_insn);
4174 while (INSN_UID (p) >= max_uid_for_loop)
4175 p = PREV_INSN (p);
4176 reorder_insns (giv_insn, giv_insn, bl2->biv->insn);
4177 compute_luids (after_giv, NEXT_INSN (giv_insn),
4178 INSN_LUID (p));
4179 }
4180 /* Remove this biv from the chain. */
4181 if (bl->next)
4182 {
4183 /* We move the following giv from *bl->next into *bl.
4184 We have to update reg_biv_class for that moved biv
4185 to point to its new address. */
4186 *bl = *bl->next;
4187 reg_biv_class[bl->regno] = bl;
4188 }
4189 else
4190 {
4191 *backbl = 0;
4192 break;
4193 }
4194 }
4195
4196 /* If we can't make it a giv,
4197 let biv keep initial value of "itself". */
4198 else if (loop_dump_stream)
4199 fprintf (loop_dump_stream, "is complex\n");
4200 }
4201 }
4202
4203 /* If a biv is unconditionally incremented several times in a row, convert
4204 all but the last increment into a giv. */
4205
4206 /* Get an upper bound for the number of registers
4207 we might have after all bivs have been processed. */
4208 first_increment_giv = max_reg_num ();
4209 for (n_extra_increment = 0, bl = loop_iv_list; bl; bl = bl->next)
4210 n_extra_increment += bl->biv_count - 1;
4211
4212 /* If the loop contains volatile memory references do not allow any
4213 replacements to take place, since this could loose the volatile
4214 markers. */
4215 if (n_extra_increment && ! loop_info->has_volatile)
4216 {
4217 int nregs = first_increment_giv + n_extra_increment;
4218
4219 /* Reallocate reg_iv_type and reg_iv_info. */
4220 VARRAY_GROW (reg_iv_type, nregs);
4221 VARRAY_GROW (reg_iv_info, nregs);
4222
4223 for (bl = loop_iv_list; bl; bl = bl->next)
4224 {
4225 struct induction **vp, *v, *next;
4226 int biv_dead_after_loop = 0;
4227
4228 /* The biv increments lists are in reverse order. Fix this
4229 first. */
4230 for (v = bl->biv, bl->biv = 0; v; v = next)
4231 {
4232 next = v->next_iv;
4233 v->next_iv = bl->biv;
4234 bl->biv = v;
4235 }
4236
4237 /* We must guard against the case that an early exit between v->insn
4238 and next->insn leaves the biv live after the loop, since that
4239 would mean that we'd be missing an increment for the final
4240 value. The following test to set biv_dead_after_loop is like
4241 the first part of the test to set bl->eliminable.
4242 We don't check here if we can calculate the final value, since
4243 this can't succeed if we already know that there is a jump
4244 between v->insn and next->insn, yet next->always_executed is
4245 set and next->maybe_multiple is cleared. Such a combination
4246 implies that the jump destination is outside the loop.
4247 If we want to make this check more sophisticated, we should
4248 check each branch between v->insn and next->insn individually
4249 to see if the biv is dead at its destination. */
4250
4251 if (uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4252 && bl->init_insn
4253 && INSN_UID (bl->init_insn) < max_uid_for_loop
4254 && (uid_luid[REGNO_FIRST_UID (bl->regno)]
4255 >= INSN_LUID (bl->init_insn))
4256 #ifdef HAVE_decrement_and_branch_until_zero
4257 && ! bl->nonneg
4258 #endif
4259 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4260 biv_dead_after_loop = 1;
4261
4262 for (vp = &bl->biv, next = *vp; v = next, next = v->next_iv;)
4263 {
4264 HOST_WIDE_INT offset;
4265 rtx set, add_val, old_reg, dest_reg, last_use_insn, note;
4266 int old_regno, new_regno;
4267
4268 if (! v->always_executed
4269 || v->maybe_multiple
4270 || GET_CODE (v->add_val) != CONST_INT
4271 || ! next->always_executed
4272 || next->maybe_multiple
4273 || ! CONSTANT_P (next->add_val)
4274 || v->mult_val != const1_rtx
4275 || next->mult_val != const1_rtx
4276 || ! (biv_dead_after_loop
4277 || no_jumps_between_p (v->insn, next->insn)))
4278 {
4279 vp = &v->next_iv;
4280 continue;
4281 }
4282 offset = INTVAL (v->add_val);
4283 set = single_set (v->insn);
4284 add_val = plus_constant (next->add_val, offset);
4285 old_reg = v->dest_reg;
4286 dest_reg = gen_reg_rtx (v->mode);
4287
4288 /* Unlike reg_iv_type / reg_iv_info, the other three arrays
4289 have been allocated with some slop space, so we may not
4290 actually need to reallocate them. If we do, the following
4291 if statement will be executed just once in this loop. */
4292 if ((unsigned) max_reg_num () > n_times_set->num_elements)
4293 {
4294 /* Grow all the remaining arrays. */
4295 VARRAY_GROW (set_in_loop, nregs);
4296 VARRAY_GROW (n_times_set, nregs);
4297 VARRAY_GROW (may_not_optimize, nregs);
4298 VARRAY_GROW (reg_single_usage, nregs);
4299 }
4300
4301 if (! validate_change (next->insn, next->location, add_val, 0))
4302 {
4303 vp = &v->next_iv;
4304 continue;
4305 }
4306
4307 /* Here we can try to eliminate the increment by combining
4308 it into the uses. */
4309
4310 /* Set last_use_insn so that we can check against it. */
4311
4312 for (last_use_insn = v->insn, p = NEXT_INSN (v->insn);
4313 p != next->insn;
4314 p = next_insn_in_loop (loop, p))
4315 {
4316 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
4317 continue;
4318 if (reg_mentioned_p (old_reg, PATTERN (p)))
4319 {
4320 last_use_insn = p;
4321 }
4322 }
4323
4324 /* If we can't get the LUIDs for the insns, we can't
4325 calculate the lifetime. This is likely from unrolling
4326 of an inner loop, so there is little point in making this
4327 a DEST_REG giv anyways. */
4328 if (INSN_UID (v->insn) >= max_uid_for_loop
4329 || INSN_UID (last_use_insn) >= max_uid_for_loop
4330 || ! validate_change (v->insn, &SET_DEST (set), dest_reg, 0))
4331 {
4332 /* Change the increment at NEXT back to what it was. */
4333 if (! validate_change (next->insn, next->location,
4334 next->add_val, 0))
4335 abort ();
4336 vp = &v->next_iv;
4337 continue;
4338 }
4339 next->add_val = add_val;
4340 v->dest_reg = dest_reg;
4341 v->giv_type = DEST_REG;
4342 v->location = &SET_SRC (set);
4343 v->cant_derive = 0;
4344 v->combined_with = 0;
4345 v->maybe_dead = 0;
4346 v->derive_adjustment = 0;
4347 v->same = 0;
4348 v->ignore = 0;
4349 v->new_reg = 0;
4350 v->final_value = 0;
4351 v->same_insn = 0;
4352 v->auto_inc_opt = 0;
4353 v->unrolled = 0;
4354 v->shared = 0;
4355 v->derived_from = 0;
4356 v->always_computable = 1;
4357 v->always_executed = 1;
4358 v->replaceable = 1;
4359 v->no_const_addval = 0;
4360
4361 old_regno = REGNO (old_reg);
4362 new_regno = REGNO (dest_reg);
4363 VARRAY_INT (set_in_loop, old_regno)--;
4364 VARRAY_INT (set_in_loop, new_regno) = 1;
4365 VARRAY_INT (n_times_set, old_regno)--;
4366 VARRAY_INT (n_times_set, new_regno) = 1;
4367 VARRAY_CHAR (may_not_optimize, new_regno) = 0;
4368
4369 REG_IV_TYPE (new_regno) = GENERAL_INDUCT;
4370 REG_IV_INFO (new_regno) = v;
4371
4372 /* If next_insn has a REG_EQUAL note that mentiones OLD_REG,
4373 it must be replaced. */
4374 note = find_reg_note (next->insn, REG_EQUAL, NULL_RTX);
4375 if (note && reg_mentioned_p (old_reg, XEXP (note, 0)))
4376 XEXP (note, 0) = copy_rtx (SET_SRC (single_set (next->insn)));
4377
4378 /* Remove the increment from the list of biv increments,
4379 and record it as a giv. */
4380 *vp = next;
4381 bl->biv_count--;
4382 v->next_iv = bl->giv;
4383 bl->giv = v;
4384 bl->giv_count++;
4385 v->benefit = rtx_cost (SET_SRC (set), SET);
4386 bl->total_benefit += v->benefit;
4387
4388 /* Now replace the biv with DEST_REG in all insns between
4389 the replaced increment and the next increment, and
4390 remember the last insn that needed a replacement. */
4391 for (last_use_insn = v->insn, p = NEXT_INSN (v->insn);
4392 p != next->insn;
4393 p = next_insn_in_loop (loop, p))
4394 {
4395 rtx note;
4396
4397 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
4398 continue;
4399 if (reg_mentioned_p (old_reg, PATTERN (p)))
4400 {
4401 last_use_insn = p;
4402 if (! validate_replace_rtx (old_reg, dest_reg, p))
4403 abort ();
4404 }
4405 for (note = REG_NOTES (p); note; note = XEXP (note, 1))
4406 {
4407 if (GET_CODE (note) == EXPR_LIST)
4408 XEXP (note, 0)
4409 = replace_rtx (XEXP (note, 0), old_reg, dest_reg);
4410 }
4411 }
4412
4413 v->last_use = last_use_insn;
4414 v->lifetime = INSN_LUID (last_use_insn) - INSN_LUID (v->insn);
4415 /* If the lifetime is zero, it means that this register is really
4416 a dead store. So mark this as a giv that can be ignored.
4417 This will not prevent the biv from being eliminated. */
4418 if (v->lifetime == 0)
4419 v->ignore = 1;
4420
4421 if (loop_dump_stream)
4422 fprintf (loop_dump_stream,
4423 "Increment %d of biv %d converted to giv %d.\n",
4424 INSN_UID (v->insn), old_regno, new_regno);
4425 }
4426 }
4427 }
4428 last_increment_giv = max_reg_num () - 1;
4429
4430 /* Search the loop for general induction variables. */
4431
4432 /* A register is a giv if: it is only set once, it is a function of a
4433 biv and a constant (or invariant), and it is not a biv. */
4434
4435 not_every_iteration = 0;
4436 loop_depth = 0;
4437 maybe_multiple = 0;
4438 p = loop_scan_start;
4439 while (1)
4440 {
4441 p = NEXT_INSN (p);
4442 /* At end of a straight-in loop, we are done.
4443 At end of a loop entered at the bottom, scan the top. */
4444 if (p == loop_scan_start)
4445 break;
4446 if (p == loop_end)
4447 {
4448 if (loop_top != 0)
4449 p = loop_top;
4450 else
4451 break;
4452 if (p == loop_scan_start)
4453 break;
4454 }
4455
4456 /* Look for a general induction variable in a register. */
4457 if (GET_CODE (p) == INSN
4458 && (set = single_set (p))
4459 && GET_CODE (SET_DEST (set)) == REG
4460 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
4461 {
4462 rtx src_reg;
4463 rtx add_val;
4464 rtx mult_val;
4465 int benefit;
4466 rtx regnote = 0;
4467 rtx last_consec_insn;
4468
4469 dest_reg = SET_DEST (set);
4470 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
4471 continue;
4472
4473 if (/* SET_SRC is a giv. */
4474 (general_induction_var (loop, SET_SRC (set), &src_reg, &add_val,
4475 &mult_val, 0, &benefit)
4476 /* Equivalent expression is a giv. */
4477 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
4478 && general_induction_var (loop, XEXP (regnote, 0), &src_reg,
4479 &add_val, &mult_val, 0,
4480 &benefit)))
4481 /* Don't try to handle any regs made by loop optimization.
4482 We have nothing on them in regno_first_uid, etc. */
4483 && REGNO (dest_reg) < max_reg_before_loop
4484 /* Don't recognize a BASIC_INDUCT_VAR here. */
4485 && dest_reg != src_reg
4486 /* This must be the only place where the register is set. */
4487 && (VARRAY_INT (n_times_set, REGNO (dest_reg)) == 1
4488 /* or all sets must be consecutive and make a giv. */
4489 || (benefit = consec_sets_giv (loop, benefit, p,
4490 src_reg, dest_reg,
4491 &add_val, &mult_val,
4492 &last_consec_insn))))
4493 {
4494 struct induction *v
4495 = (struct induction *) alloca (sizeof (struct induction));
4496
4497 /* If this is a library call, increase benefit. */
4498 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
4499 benefit += libcall_benefit (p);
4500
4501 /* Skip the consecutive insns, if there are any. */
4502 if (VARRAY_INT (n_times_set, REGNO (dest_reg)) != 1)
4503 p = last_consec_insn;
4504
4505 record_giv (loop, v, p, src_reg, dest_reg, mult_val, add_val,
4506 benefit, DEST_REG, not_every_iteration,
4507 maybe_multiple, NULL_PTR);
4508
4509 }
4510 }
4511
4512 #ifndef DONT_REDUCE_ADDR
4513 /* Look for givs which are memory addresses. */
4514 /* This resulted in worse code on a VAX 8600. I wonder if it
4515 still does. */
4516 if (GET_CODE (p) == INSN)
4517 find_mem_givs (loop, PATTERN (p), p, not_every_iteration,
4518 maybe_multiple);
4519 #endif
4520
4521 /* Update the status of whether giv can derive other givs. This can
4522 change when we pass a label or an insn that updates a biv. */
4523 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4524 || GET_CODE (p) == CODE_LABEL)
4525 update_giv_derive (loop, p);
4526
4527 /* Past CODE_LABEL, we get to insns that may be executed multiple
4528 times. The only way we can be sure that they can't is if every
4529 every jump insn between here and the end of the loop either
4530 returns, exits the loop, is a forward jump, or is a jump
4531 to the loop start. */
4532
4533 if (GET_CODE (p) == CODE_LABEL)
4534 {
4535 rtx insn = p;
4536
4537 maybe_multiple = 0;
4538
4539 while (1)
4540 {
4541 insn = NEXT_INSN (insn);
4542 if (insn == loop_scan_start)
4543 break;
4544 if (insn == loop_end)
4545 {
4546 if (loop_top != 0)
4547 insn = loop_top;
4548 else
4549 break;
4550 if (insn == loop_scan_start)
4551 break;
4552 }
4553
4554 if (GET_CODE (insn) == JUMP_INSN
4555 && GET_CODE (PATTERN (insn)) != RETURN
4556 && (! condjump_p (insn)
4557 || (JUMP_LABEL (insn) != 0
4558 && JUMP_LABEL (insn) != loop_scan_start
4559 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
4560 || INSN_UID (insn) >= max_uid_for_loop
4561 || (INSN_LUID (JUMP_LABEL (insn))
4562 < INSN_LUID (insn))))))
4563 {
4564 maybe_multiple = 1;
4565 break;
4566 }
4567 }
4568 }
4569
4570 /* Past a jump, we get to insns for which we can't count
4571 on whether they will be executed during each iteration. */
4572 /* This code appears twice in strength_reduce. There is also similar
4573 code in scan_loop. */
4574 if (GET_CODE (p) == JUMP_INSN
4575 /* If we enter the loop in the middle, and scan around to the
4576 beginning, don't set not_every_iteration for that.
4577 This can be any kind of jump, since we want to know if insns
4578 will be executed if the loop is executed. */
4579 && ! (JUMP_LABEL (p) == loop_top
4580 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
4581 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
4582 {
4583 rtx label = 0;
4584
4585 /* If this is a jump outside the loop, then it also doesn't
4586 matter. Check to see if the target of this branch is on the
4587 loop->exits_labels list. */
4588
4589 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
4590 if (XEXP (label, 0) == JUMP_LABEL (p))
4591 break;
4592
4593 if (! label)
4594 not_every_iteration = 1;
4595 }
4596
4597 else if (GET_CODE (p) == NOTE)
4598 {
4599 /* At the virtual top of a converted loop, insns are again known to
4600 be executed each iteration: logically, the loop begins here
4601 even though the exit code has been duplicated.
4602
4603 Insns are also again known to be executed each iteration at
4604 the LOOP_CONT note. */
4605 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
4606 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
4607 && loop_depth == 0)
4608 not_every_iteration = 0;
4609 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
4610 loop_depth++;
4611 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
4612 loop_depth--;
4613 }
4614
4615 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4616 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4617 or not an insn is known to be executed each iteration of the
4618 loop, whether or not any iterations are known to occur.
4619
4620 Therefore, if we have just passed a label and have no more labels
4621 between here and the test insn of the loop, we know these insns
4622 will be executed each iteration. */
4623
4624 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
4625 && no_labels_between_p (p, loop_end)
4626 && loop_insn_first_p (p, loop_cont))
4627 not_every_iteration = 0;
4628 }
4629
4630 /* Try to calculate and save the number of loop iterations. This is
4631 set to zero if the actual number can not be calculated. This must
4632 be called after all giv's have been identified, since otherwise it may
4633 fail if the iteration variable is a giv. */
4634
4635 loop_iterations (loop);
4636
4637 /* Now for each giv for which we still don't know whether or not it is
4638 replaceable, check to see if it is replaceable because its final value
4639 can be calculated. This must be done after loop_iterations is called,
4640 so that final_giv_value will work correctly. */
4641
4642 for (bl = loop_iv_list; bl; bl = bl->next)
4643 {
4644 struct induction *v;
4645
4646 for (v = bl->giv; v; v = v->next_iv)
4647 if (! v->replaceable && ! v->not_replaceable)
4648 check_final_value (loop, v);
4649 }
4650
4651 /* Try to prove that the loop counter variable (if any) is always
4652 nonnegative; if so, record that fact with a REG_NONNEG note
4653 so that "decrement and branch until zero" insn can be used. */
4654 check_dbra_loop (loop, insn_count);
4655
4656 /* Create reg_map to hold substitutions for replaceable giv regs.
4657 Some givs might have been made from biv increments, so look at
4658 reg_iv_type for a suitable size. */
4659 reg_map_size = reg_iv_type->num_elements;
4660 reg_map = (rtx *) xcalloc (reg_map_size, sizeof (rtx));
4661
4662 /* Examine each iv class for feasibility of strength reduction/induction
4663 variable elimination. */
4664
4665 for (bl = loop_iv_list; bl; bl = bl->next)
4666 {
4667 struct induction *v;
4668 int benefit;
4669 int all_reduced;
4670 rtx final_value = 0;
4671 unsigned int nregs;
4672
4673 /* Test whether it will be possible to eliminate this biv
4674 provided all givs are reduced. This is possible if either
4675 the reg is not used outside the loop, or we can compute
4676 what its final value will be.
4677
4678 For architectures with a decrement_and_branch_until_zero insn,
4679 don't do this if we put a REG_NONNEG note on the endtest for
4680 this biv. */
4681
4682 /* Compare against bl->init_insn rather than loop_start.
4683 We aren't concerned with any uses of the biv between
4684 init_insn and loop_start since these won't be affected
4685 by the value of the biv elsewhere in the function, so
4686 long as init_insn doesn't use the biv itself.
4687 March 14, 1989 -- self@bayes.arc.nasa.gov */
4688
4689 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4690 && bl->init_insn
4691 && INSN_UID (bl->init_insn) < max_uid_for_loop
4692 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
4693 #ifdef HAVE_decrement_and_branch_until_zero
4694 && ! bl->nonneg
4695 #endif
4696 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4697 || ((final_value = final_biv_value (loop, bl))
4698 #ifdef HAVE_decrement_and_branch_until_zero
4699 && ! bl->nonneg
4700 #endif
4701 ))
4702 bl->eliminable = maybe_eliminate_biv (loop, bl, 0, threshold,
4703 insn_count);
4704 else
4705 {
4706 if (loop_dump_stream)
4707 {
4708 fprintf (loop_dump_stream,
4709 "Cannot eliminate biv %d.\n",
4710 bl->regno);
4711 fprintf (loop_dump_stream,
4712 "First use: insn %d, last use: insn %d.\n",
4713 REGNO_FIRST_UID (bl->regno),
4714 REGNO_LAST_UID (bl->regno));
4715 }
4716 }
4717
4718 /* Combine all giv's for this iv_class. */
4719 combine_givs (bl);
4720
4721 /* This will be true at the end, if all givs which depend on this
4722 biv have been strength reduced.
4723 We can't (currently) eliminate the biv unless this is so. */
4724 all_reduced = 1;
4725
4726 /* Check each giv in this class to see if we will benefit by reducing
4727 it. Skip giv's combined with others. */
4728 for (v = bl->giv; v; v = v->next_iv)
4729 {
4730 struct induction *tv;
4731
4732 if (v->ignore || v->same)
4733 continue;
4734
4735 benefit = v->benefit;
4736
4737 /* Reduce benefit if not replaceable, since we will insert
4738 a move-insn to replace the insn that calculates this giv.
4739 Don't do this unless the giv is a user variable, since it
4740 will often be marked non-replaceable because of the duplication
4741 of the exit code outside the loop. In such a case, the copies
4742 we insert are dead and will be deleted. So they don't have
4743 a cost. Similar situations exist. */
4744 /* ??? The new final_[bg]iv_value code does a much better job
4745 of finding replaceable giv's, and hence this code may no longer
4746 be necessary. */
4747 if (! v->replaceable && ! bl->eliminable
4748 && REG_USERVAR_P (v->dest_reg))
4749 benefit -= copy_cost;
4750
4751 /* Decrease the benefit to count the add-insns that we will
4752 insert to increment the reduced reg for the giv. */
4753 benefit -= add_cost * bl->biv_count;
4754
4755 /* Decide whether to strength-reduce this giv or to leave the code
4756 unchanged (recompute it from the biv each time it is used).
4757 This decision can be made independently for each giv. */
4758
4759 #ifdef AUTO_INC_DEC
4760 /* Attempt to guess whether autoincrement will handle some of the
4761 new add insns; if so, increase BENEFIT (undo the subtraction of
4762 add_cost that was done above). */
4763 if (v->giv_type == DEST_ADDR
4764 && GET_CODE (v->mult_val) == CONST_INT)
4765 {
4766 if (HAVE_POST_INCREMENT
4767 && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4768 benefit += add_cost * bl->biv_count;
4769 else if (HAVE_PRE_INCREMENT
4770 && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4771 benefit += add_cost * bl->biv_count;
4772 else if (HAVE_POST_DECREMENT
4773 && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4774 benefit += add_cost * bl->biv_count;
4775 else if (HAVE_PRE_DECREMENT
4776 && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4777 benefit += add_cost * bl->biv_count;
4778 }
4779 #endif
4780
4781 /* If an insn is not to be strength reduced, then set its ignore
4782 flag, and clear all_reduced. */
4783
4784 /* A giv that depends on a reversed biv must be reduced if it is
4785 used after the loop exit, otherwise, it would have the wrong
4786 value after the loop exit. To make it simple, just reduce all
4787 of such giv's whether or not we know they are used after the loop
4788 exit. */
4789
4790 if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
4791 && ! bl->reversed )
4792 {
4793 if (loop_dump_stream)
4794 fprintf (loop_dump_stream,
4795 "giv of insn %d not worth while, %d vs %d.\n",
4796 INSN_UID (v->insn),
4797 v->lifetime * threshold * benefit, insn_count);
4798 v->ignore = 1;
4799 all_reduced = 0;
4800 }
4801 else
4802 {
4803 /* Check that we can increment the reduced giv without a
4804 multiply insn. If not, reject it. */
4805
4806 for (tv = bl->biv; tv; tv = tv->next_iv)
4807 if (tv->mult_val == const1_rtx
4808 && ! product_cheap_p (tv->add_val, v->mult_val))
4809 {
4810 if (loop_dump_stream)
4811 fprintf (loop_dump_stream,
4812 "giv of insn %d: would need a multiply.\n",
4813 INSN_UID (v->insn));
4814 v->ignore = 1;
4815 all_reduced = 0;
4816 break;
4817 }
4818 }
4819 }
4820
4821 /* Check for givs whose first use is their definition and whose
4822 last use is the definition of another giv. If so, it is likely
4823 dead and should not be used to derive another giv nor to
4824 eliminate a biv. */
4825 for (v = bl->giv; v; v = v->next_iv)
4826 {
4827 if (v->ignore
4828 || (v->same && v->same->ignore))
4829 continue;
4830
4831 if (v->last_use)
4832 {
4833 struct induction *v1;
4834
4835 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4836 if (v->last_use == v1->insn)
4837 v->maybe_dead = 1;
4838 }
4839 else if (v->giv_type == DEST_REG
4840 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4841 {
4842 struct induction *v1;
4843
4844 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4845 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4846 v->maybe_dead = 1;
4847 }
4848 }
4849
4850 /* Now that we know which givs will be reduced, try to rearrange the
4851 combinations to reduce register pressure.
4852 recombine_givs calls find_life_end, which needs reg_iv_type and
4853 reg_iv_info to be valid for all pseudos. We do the necessary
4854 reallocation here since it allows to check if there are still
4855 more bivs to process. */
4856 nregs = max_reg_num ();
4857 if (nregs > reg_iv_type->num_elements)
4858 {
4859 /* If there are still more bivs to process, allocate some slack
4860 space so that we're not constantly reallocating these arrays. */
4861 if (bl->next)
4862 nregs += nregs / 4;
4863 /* Reallocate reg_iv_type and reg_iv_info. */
4864 VARRAY_GROW (reg_iv_type, nregs);
4865 VARRAY_GROW (reg_iv_info, nregs);
4866 }
4867 recombine_givs (loop, bl, unroll_p);
4868
4869 /* Reduce each giv that we decided to reduce. */
4870
4871 for (v = bl->giv; v; v = v->next_iv)
4872 {
4873 struct induction *tv;
4874 if (! v->ignore && v->same == 0)
4875 {
4876 int auto_inc_opt = 0;
4877
4878 /* If the code for derived givs immediately below has already
4879 allocated a new_reg, we must keep it. */
4880 if (! v->new_reg)
4881 v->new_reg = gen_reg_rtx (v->mode);
4882
4883 if (v->derived_from)
4884 {
4885 struct induction *d = v->derived_from;
4886
4887 /* In case d->dest_reg is not replaceable, we have
4888 to replace it in v->insn now. */
4889 if (! d->new_reg)
4890 d->new_reg = gen_reg_rtx (d->mode);
4891 PATTERN (v->insn)
4892 = replace_rtx (PATTERN (v->insn), d->dest_reg, d->new_reg);
4893 PATTERN (v->insn)
4894 = replace_rtx (PATTERN (v->insn), v->dest_reg, v->new_reg);
4895 /* For each place where the biv is incremented, add an
4896 insn to set the new, reduced reg for the giv.
4897 We used to do this only for biv_count != 1, but
4898 this fails when there is a giv after a single biv
4899 increment, e.g. when the last giv was expressed as
4900 pre-decrement. */
4901 for (tv = bl->biv; tv; tv = tv->next_iv)
4902 {
4903 /* We always emit reduced giv increments before the
4904 biv increment when bl->biv_count != 1. So by
4905 emitting the add insns for derived givs after the
4906 biv increment, they pick up the updated value of
4907 the reduced giv.
4908 If the reduced giv is processed with
4909 auto_inc_opt == 1, then it is incremented earlier
4910 than the biv, hence we'll still pick up the right
4911 value.
4912 If it's processed with auto_inc_opt == -1,
4913 that implies that the biv increment is before the
4914 first reduced giv's use. The derived giv's lifetime
4915 is after the reduced giv's lifetime, hence in this
4916 case, the biv increment doesn't matter. */
4917 emit_insn_after (copy_rtx (PATTERN (v->insn)), tv->insn);
4918 }
4919 continue;
4920 }
4921
4922 #ifdef AUTO_INC_DEC
4923 /* If the target has auto-increment addressing modes, and
4924 this is an address giv, then try to put the increment
4925 immediately after its use, so that flow can create an
4926 auto-increment addressing mode. */
4927 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4928 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4929 /* We don't handle reversed biv's because bl->biv->insn
4930 does not have a valid INSN_LUID. */
4931 && ! bl->reversed
4932 && v->always_executed && ! v->maybe_multiple
4933 && INSN_UID (v->insn) < max_uid_for_loop)
4934 {
4935 /* If other giv's have been combined with this one, then
4936 this will work only if all uses of the other giv's occur
4937 before this giv's insn. This is difficult to check.
4938
4939 We simplify this by looking for the common case where
4940 there is one DEST_REG giv, and this giv's insn is the
4941 last use of the dest_reg of that DEST_REG giv. If the
4942 increment occurs after the address giv, then we can
4943 perform the optimization. (Otherwise, the increment
4944 would have to go before other_giv, and we would not be
4945 able to combine it with the address giv to get an
4946 auto-inc address.) */
4947 if (v->combined_with)
4948 {
4949 struct induction *other_giv = 0;
4950
4951 for (tv = bl->giv; tv; tv = tv->next_iv)
4952 if (tv->same == v)
4953 {
4954 if (other_giv)
4955 break;
4956 else
4957 other_giv = tv;
4958 }
4959 if (! tv && other_giv
4960 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4961 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4962 == INSN_UID (v->insn))
4963 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4964 auto_inc_opt = 1;
4965 }
4966 /* Check for case where increment is before the address
4967 giv. Do this test in "loop order". */
4968 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4969 && (INSN_LUID (v->insn) < INSN_LUID (loop_scan_start)
4970 || (INSN_LUID (bl->biv->insn)
4971 > INSN_LUID (loop_scan_start))))
4972 || (INSN_LUID (v->insn) < INSN_LUID (loop_scan_start)
4973 && (INSN_LUID (loop_scan_start)
4974 < INSN_LUID (bl->biv->insn))))
4975 auto_inc_opt = -1;
4976 else
4977 auto_inc_opt = 1;
4978
4979 #ifdef HAVE_cc0
4980 {
4981 rtx prev;
4982
4983 /* We can't put an insn immediately after one setting
4984 cc0, or immediately before one using cc0. */
4985 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4986 || (auto_inc_opt == -1
4987 && (prev = prev_nonnote_insn (v->insn)) != 0
4988 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4989 && sets_cc0_p (PATTERN (prev))))
4990 auto_inc_opt = 0;
4991 }
4992 #endif
4993
4994 if (auto_inc_opt)
4995 v->auto_inc_opt = 1;
4996 }
4997 #endif
4998
4999 /* For each place where the biv is incremented, add an insn
5000 to increment the new, reduced reg for the giv. */
5001 for (tv = bl->biv; tv; tv = tv->next_iv)
5002 {
5003 rtx insert_before;
5004
5005 if (! auto_inc_opt)
5006 insert_before = tv->insn;
5007 else if (auto_inc_opt == 1)
5008 insert_before = NEXT_INSN (v->insn);
5009 else
5010 insert_before = v->insn;
5011
5012 if (tv->mult_val == const1_rtx)
5013 emit_iv_add_mult (tv->add_val, v->mult_val,
5014 v->new_reg, v->new_reg, insert_before);
5015 else /* tv->mult_val == const0_rtx */
5016 /* A multiply is acceptable here
5017 since this is presumed to be seldom executed. */
5018 emit_iv_add_mult (tv->add_val, v->mult_val,
5019 v->add_val, v->new_reg, insert_before);
5020 }
5021
5022 /* Add code at loop start to initialize giv's reduced reg. */
5023
5024 emit_iv_add_mult (bl->initial_value, v->mult_val,
5025 v->add_val, v->new_reg, loop_start);
5026 }
5027 }
5028
5029 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
5030 as not reduced.
5031
5032 For each giv register that can be reduced now: if replaceable,
5033 substitute reduced reg wherever the old giv occurs;
5034 else add new move insn "giv_reg = reduced_reg". */
5035
5036 for (v = bl->giv; v; v = v->next_iv)
5037 {
5038 if (v->same && v->same->ignore)
5039 v->ignore = 1;
5040
5041 if (v->ignore)
5042 continue;
5043
5044 /* Update expression if this was combined, in case other giv was
5045 replaced. */
5046 if (v->same)
5047 v->new_reg = replace_rtx (v->new_reg,
5048 v->same->dest_reg, v->same->new_reg);
5049
5050 if (v->giv_type == DEST_ADDR)
5051 /* Store reduced reg as the address in the memref where we found
5052 this giv. */
5053 validate_change (v->insn, v->location, v->new_reg, 0);
5054 else if (v->replaceable)
5055 {
5056 reg_map[REGNO (v->dest_reg)] = v->new_reg;
5057
5058 #if 0
5059 /* I can no longer duplicate the original problem. Perhaps
5060 this is unnecessary now? */
5061
5062 /* Replaceable; it isn't strictly necessary to delete the old
5063 insn and emit a new one, because v->dest_reg is now dead.
5064
5065 However, especially when unrolling loops, the special
5066 handling for (set REG0 REG1) in the second cse pass may
5067 make v->dest_reg live again. To avoid this problem, emit
5068 an insn to set the original giv reg from the reduced giv.
5069 We can not delete the original insn, since it may be part
5070 of a LIBCALL, and the code in flow that eliminates dead
5071 libcalls will fail if it is deleted. */
5072 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
5073 v->insn);
5074 #endif
5075 }
5076 else
5077 {
5078 /* Not replaceable; emit an insn to set the original giv reg from
5079 the reduced giv, same as above. */
5080 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
5081 v->insn);
5082 }
5083
5084 /* When a loop is reversed, givs which depend on the reversed
5085 biv, and which are live outside the loop, must be set to their
5086 correct final value. This insn is only needed if the giv is
5087 not replaceable. The correct final value is the same as the
5088 value that the giv starts the reversed loop with. */
5089 if (bl->reversed && ! v->replaceable)
5090 emit_iv_add_mult (bl->initial_value, v->mult_val,
5091 v->add_val, v->dest_reg, end_insert_before);
5092 else if (v->final_value)
5093 {
5094 rtx insert_before;
5095
5096 /* If the loop has multiple exits, emit the insn before the
5097 loop to ensure that it will always be executed no matter
5098 how the loop exits. Otherwise, emit the insn after the loop,
5099 since this is slightly more efficient. */
5100 if (loop->exit_count)
5101 insert_before = loop_start;
5102 else
5103 insert_before = end_insert_before;
5104 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
5105 insert_before);
5106
5107 #if 0
5108 /* If the insn to set the final value of the giv was emitted
5109 before the loop, then we must delete the insn inside the loop
5110 that sets it. If this is a LIBCALL, then we must delete
5111 every insn in the libcall. Note, however, that
5112 final_giv_value will only succeed when there are multiple
5113 exits if the giv is dead at each exit, hence it does not
5114 matter that the original insn remains because it is dead
5115 anyways. */
5116 /* Delete the insn inside the loop that sets the giv since
5117 the giv is now set before (or after) the loop. */
5118 delete_insn (v->insn);
5119 #endif
5120 }
5121
5122 if (loop_dump_stream)
5123 {
5124 fprintf (loop_dump_stream, "giv at %d reduced to ",
5125 INSN_UID (v->insn));
5126 print_rtl (loop_dump_stream, v->new_reg);
5127 fprintf (loop_dump_stream, "\n");
5128 }
5129 }
5130
5131 /* All the givs based on the biv bl have been reduced if they
5132 merit it. */
5133
5134 /* For each giv not marked as maybe dead that has been combined with a
5135 second giv, clear any "maybe dead" mark on that second giv.
5136 v->new_reg will either be or refer to the register of the giv it
5137 combined with.
5138
5139 Doing this clearing avoids problems in biv elimination where a
5140 giv's new_reg is a complex value that can't be put in the insn but
5141 the giv combined with (with a reg as new_reg) is marked maybe_dead.
5142 Since the register will be used in either case, we'd prefer it be
5143 used from the simpler giv. */
5144
5145 for (v = bl->giv; v; v = v->next_iv)
5146 if (! v->maybe_dead && v->same)
5147 v->same->maybe_dead = 0;
5148
5149 /* Try to eliminate the biv, if it is a candidate.
5150 This won't work if ! all_reduced,
5151 since the givs we planned to use might not have been reduced.
5152
5153 We have to be careful that we didn't initially think we could eliminate
5154 this biv because of a giv that we now think may be dead and shouldn't
5155 be used as a biv replacement.
5156
5157 Also, there is the possibility that we may have a giv that looks
5158 like it can be used to eliminate a biv, but the resulting insn
5159 isn't valid. This can happen, for example, on the 88k, where a
5160 JUMP_INSN can compare a register only with zero. Attempts to
5161 replace it with a compare with a constant will fail.
5162
5163 Note that in cases where this call fails, we may have replaced some
5164 of the occurrences of the biv with a giv, but no harm was done in
5165 doing so in the rare cases where it can occur. */
5166
5167 if (all_reduced == 1 && bl->eliminable
5168 && maybe_eliminate_biv (loop, bl, 1, threshold, insn_count))
5169 {
5170 /* ?? If we created a new test to bypass the loop entirely,
5171 or otherwise drop straight in, based on this test, then
5172 we might want to rewrite it also. This way some later
5173 pass has more hope of removing the initialization of this
5174 biv entirely. */
5175
5176 /* If final_value != 0, then the biv may be used after loop end
5177 and we must emit an insn to set it just in case.
5178
5179 Reversed bivs already have an insn after the loop setting their
5180 value, so we don't need another one. We can't calculate the
5181 proper final value for such a biv here anyways. */
5182 if (final_value != 0 && ! bl->reversed)
5183 {
5184 rtx insert_before;
5185
5186 /* If the loop has multiple exits, emit the insn before the
5187 loop to ensure that it will always be executed no matter
5188 how the loop exits. Otherwise, emit the insn after the
5189 loop, since this is slightly more efficient. */
5190 if (loop->exit_count)
5191 insert_before = loop_start;
5192 else
5193 insert_before = end_insert_before;
5194
5195 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
5196 end_insert_before);
5197 }
5198
5199 #if 0
5200 /* Delete all of the instructions inside the loop which set
5201 the biv, as they are all dead. If is safe to delete them,
5202 because an insn setting a biv will never be part of a libcall. */
5203 /* However, deleting them will invalidate the regno_last_uid info,
5204 so keeping them around is more convenient. Final_biv_value
5205 will only succeed when there are multiple exits if the biv
5206 is dead at each exit, hence it does not matter that the original
5207 insn remains, because it is dead anyways. */
5208 for (v = bl->biv; v; v = v->next_iv)
5209 delete_insn (v->insn);
5210 #endif
5211
5212 if (loop_dump_stream)
5213 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
5214 bl->regno);
5215 }
5216 }
5217
5218 /* Go through all the instructions in the loop, making all the
5219 register substitutions scheduled in REG_MAP. */
5220
5221 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5222 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5223 || GET_CODE (p) == CALL_INSN)
5224 {
5225 replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
5226 replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
5227 INSN_CODE (p) = -1;
5228 }
5229
5230 if (loop_info->n_iterations > 0)
5231 {
5232 /* When we completely unroll a loop we will likely not need the increment
5233 of the loop BIV and we will not need the conditional branch at the
5234 end of the loop. */
5235 unrolled_insn_copies = insn_count - 2;
5236
5237 #ifdef HAVE_cc0
5238 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
5239 need the comparison before the conditional branch at the end of the
5240 loop. */
5241 unrolled_insn_copies -= 1;
5242 #endif
5243
5244 /* We'll need one copy for each loop iteration. */
5245 unrolled_insn_copies *= loop_info->n_iterations;
5246
5247 /* A little slop to account for the ability to remove initialization
5248 code, better CSE, and other secondary benefits of completely
5249 unrolling some loops. */
5250 unrolled_insn_copies -= 1;
5251
5252 /* Clamp the value. */
5253 if (unrolled_insn_copies < 0)
5254 unrolled_insn_copies = 0;
5255 }
5256
5257 /* Unroll loops from within strength reduction so that we can use the
5258 induction variable information that strength_reduce has already
5259 collected. Always unroll loops that would be as small or smaller
5260 unrolled than when rolled. */
5261 if (unroll_p
5262 || (loop_info->n_iterations > 0
5263 && unrolled_insn_copies <= insn_count))
5264 unroll_loop (loop, insn_count, end_insert_before, 1);
5265
5266 #ifdef HAVE_decrement_and_branch_on_count
5267 /* Instrument the loop with BCT insn. */
5268 if (HAVE_decrement_and_branch_on_count && bct_p
5269 && flag_branch_on_count_reg)
5270 insert_bct (loop);
5271 #endif /* HAVE_decrement_and_branch_on_count */
5272
5273 if (loop_dump_stream)
5274 fprintf (loop_dump_stream, "\n");
5275
5276 egress:
5277 VARRAY_FREE (reg_iv_type);
5278 VARRAY_FREE (reg_iv_info);
5279 free (reg_biv_class);
5280 if (reg_map)
5281 free (reg_map);
5282 }
5283 \f
5284 /* Return 1 if X is a valid source for an initial value (or as value being
5285 compared against in an initial test).
5286
5287 X must be either a register or constant and must not be clobbered between
5288 the current insn and the start of the loop.
5289
5290 INSN is the insn containing X. */
5291
5292 static int
5293 valid_initial_value_p (x, insn, call_seen, loop_start)
5294 rtx x;
5295 rtx insn;
5296 int call_seen;
5297 rtx loop_start;
5298 {
5299 if (CONSTANT_P (x))
5300 return 1;
5301
5302 /* Only consider pseudos we know about initialized in insns whose luids
5303 we know. */
5304 if (GET_CODE (x) != REG
5305 || REGNO (x) >= max_reg_before_loop)
5306 return 0;
5307
5308 /* Don't use call-clobbered registers across a call which clobbers it. On
5309 some machines, don't use any hard registers at all. */
5310 if (REGNO (x) < FIRST_PSEUDO_REGISTER
5311 && (SMALL_REGISTER_CLASSES
5312 || (call_used_regs[REGNO (x)] && call_seen)))
5313 return 0;
5314
5315 /* Don't use registers that have been clobbered before the start of the
5316 loop. */
5317 if (reg_set_between_p (x, insn, loop_start))
5318 return 0;
5319
5320 return 1;
5321 }
5322 \f
5323 /* Scan X for memory refs and check each memory address
5324 as a possible giv. INSN is the insn whose pattern X comes from.
5325 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
5326 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
5327 more thanonce in each loop iteration. */
5328
5329 static void
5330 find_mem_givs (loop, x, insn, not_every_iteration, maybe_multiple)
5331 const struct loop *loop;
5332 rtx x;
5333 rtx insn;
5334 int not_every_iteration, maybe_multiple;
5335 {
5336 register int i, j;
5337 register enum rtx_code code;
5338 register const char *fmt;
5339
5340 if (x == 0)
5341 return;
5342
5343 code = GET_CODE (x);
5344 switch (code)
5345 {
5346 case REG:
5347 case CONST_INT:
5348 case CONST:
5349 case CONST_DOUBLE:
5350 case SYMBOL_REF:
5351 case LABEL_REF:
5352 case PC:
5353 case CC0:
5354 case ADDR_VEC:
5355 case ADDR_DIFF_VEC:
5356 case USE:
5357 case CLOBBER:
5358 return;
5359
5360 case MEM:
5361 {
5362 rtx src_reg;
5363 rtx add_val;
5364 rtx mult_val;
5365 int benefit;
5366
5367 /* This code used to disable creating GIVs with mult_val == 1 and
5368 add_val == 0. However, this leads to lost optimizations when
5369 it comes time to combine a set of related DEST_ADDR GIVs, since
5370 this one would not be seen. */
5371
5372 if (general_induction_var (loop, XEXP (x, 0), &src_reg, &add_val,
5373 &mult_val, 1, &benefit))
5374 {
5375 /* Found one; record it. */
5376 struct induction *v
5377 = (struct induction *) oballoc (sizeof (struct induction));
5378
5379 record_giv (loop, v, insn, src_reg, addr_placeholder, mult_val,
5380 add_val, benefit, DEST_ADDR, not_every_iteration,
5381 maybe_multiple, &XEXP (x, 0));
5382
5383 v->mem_mode = GET_MODE (x);
5384 }
5385 }
5386 return;
5387
5388 default:
5389 break;
5390 }
5391
5392 /* Recursively scan the subexpressions for other mem refs. */
5393
5394 fmt = GET_RTX_FORMAT (code);
5395 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5396 if (fmt[i] == 'e')
5397 find_mem_givs (loop, XEXP (x, i), insn, not_every_iteration,
5398 maybe_multiple);
5399 else if (fmt[i] == 'E')
5400 for (j = 0; j < XVECLEN (x, i); j++)
5401 find_mem_givs (loop, XVECEXP (x, i, j), insn, not_every_iteration,
5402 maybe_multiple);
5403 }
5404 \f
5405 /* Fill in the data about one biv update.
5406 V is the `struct induction' in which we record the biv. (It is
5407 allocated by the caller, with alloca.)
5408 INSN is the insn that sets it.
5409 DEST_REG is the biv's reg.
5410
5411 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
5412 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
5413 being set to INC_VAL.
5414
5415 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
5416 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
5417 can be executed more than once per iteration. If MAYBE_MULTIPLE
5418 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
5419 executed exactly once per iteration. */
5420
5421 static void
5422 record_biv (v, insn, dest_reg, inc_val, mult_val, location,
5423 not_every_iteration, maybe_multiple, multi_insn_incr)
5424 struct induction *v;
5425 rtx insn;
5426 rtx dest_reg;
5427 rtx inc_val;
5428 rtx mult_val;
5429 rtx *location;
5430 int not_every_iteration;
5431 int maybe_multiple;
5432 int multi_insn_incr;
5433 {
5434 struct iv_class *bl;
5435
5436 v->insn = insn;
5437 v->src_reg = dest_reg;
5438 v->dest_reg = dest_reg;
5439 v->mult_val = mult_val;
5440 v->add_val = inc_val;
5441 v->location = location;
5442 v->mode = GET_MODE (dest_reg);
5443 v->always_computable = ! not_every_iteration;
5444 v->always_executed = ! not_every_iteration;
5445 v->maybe_multiple = maybe_multiple;
5446 v->multi_insn_incr = multi_insn_incr;
5447
5448 /* Add this to the reg's iv_class, creating a class
5449 if this is the first incrementation of the reg. */
5450
5451 bl = reg_biv_class[REGNO (dest_reg)];
5452 if (bl == 0)
5453 {
5454 /* Create and initialize new iv_class. */
5455
5456 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
5457
5458 bl->regno = REGNO (dest_reg);
5459 bl->biv = 0;
5460 bl->giv = 0;
5461 bl->biv_count = 0;
5462 bl->giv_count = 0;
5463
5464 /* Set initial value to the reg itself. */
5465 bl->initial_value = dest_reg;
5466 /* We haven't seen the initializing insn yet */
5467 bl->init_insn = 0;
5468 bl->init_set = 0;
5469 bl->initial_test = 0;
5470 bl->incremented = 0;
5471 bl->eliminable = 0;
5472 bl->nonneg = 0;
5473 bl->reversed = 0;
5474 bl->total_benefit = 0;
5475
5476 /* Add this class to loop_iv_list. */
5477 bl->next = loop_iv_list;
5478 loop_iv_list = bl;
5479
5480 /* Put it in the array of biv register classes. */
5481 reg_biv_class[REGNO (dest_reg)] = bl;
5482 }
5483
5484 /* Update IV_CLASS entry for this biv. */
5485 v->next_iv = bl->biv;
5486 bl->biv = v;
5487 bl->biv_count++;
5488 if (mult_val == const1_rtx)
5489 bl->incremented = 1;
5490
5491 if (loop_dump_stream)
5492 {
5493 fprintf (loop_dump_stream,
5494 "Insn %d: possible biv, reg %d,",
5495 INSN_UID (insn), REGNO (dest_reg));
5496 if (GET_CODE (inc_val) == CONST_INT)
5497 {
5498 fprintf (loop_dump_stream, " const =");
5499 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (inc_val));
5500 fputc ('\n', loop_dump_stream);
5501 }
5502 else
5503 {
5504 fprintf (loop_dump_stream, " const = ");
5505 print_rtl (loop_dump_stream, inc_val);
5506 fprintf (loop_dump_stream, "\n");
5507 }
5508 }
5509 }
5510 \f
5511 /* Fill in the data about one giv.
5512 V is the `struct induction' in which we record the giv. (It is
5513 allocated by the caller, with alloca.)
5514 INSN is the insn that sets it.
5515 BENEFIT estimates the savings from deleting this insn.
5516 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
5517 into a register or is used as a memory address.
5518
5519 SRC_REG is the biv reg which the giv is computed from.
5520 DEST_REG is the giv's reg (if the giv is stored in a reg).
5521 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
5522 LOCATION points to the place where this giv's value appears in INSN. */
5523
5524 static void
5525 record_giv (loop, v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
5526 type, not_every_iteration, maybe_multiple, location)
5527 const struct loop *loop;
5528 struct induction *v;
5529 rtx insn;
5530 rtx src_reg;
5531 rtx dest_reg;
5532 rtx mult_val, add_val;
5533 int benefit;
5534 enum g_types type;
5535 int not_every_iteration, maybe_multiple;
5536 rtx *location;
5537 {
5538 struct induction *b;
5539 struct iv_class *bl;
5540 rtx set = single_set (insn);
5541
5542 v->insn = insn;
5543 v->src_reg = src_reg;
5544 v->giv_type = type;
5545 v->dest_reg = dest_reg;
5546 v->mult_val = mult_val;
5547 v->add_val = add_val;
5548 v->benefit = benefit;
5549 v->location = location;
5550 v->cant_derive = 0;
5551 v->combined_with = 0;
5552 v->maybe_multiple = maybe_multiple;
5553 v->multi_insn_incr = 0;
5554 v->maybe_dead = 0;
5555 v->derive_adjustment = 0;
5556 v->same = 0;
5557 v->ignore = 0;
5558 v->new_reg = 0;
5559 v->final_value = 0;
5560 v->same_insn = 0;
5561 v->auto_inc_opt = 0;
5562 v->unrolled = 0;
5563 v->shared = 0;
5564 v->derived_from = 0;
5565 v->last_use = 0;
5566
5567 /* The v->always_computable field is used in update_giv_derive, to
5568 determine whether a giv can be used to derive another giv. For a
5569 DEST_REG giv, INSN computes a new value for the giv, so its value
5570 isn't computable if INSN insn't executed every iteration.
5571 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
5572 it does not compute a new value. Hence the value is always computable
5573 regardless of whether INSN is executed each iteration. */
5574
5575 if (type == DEST_ADDR)
5576 v->always_computable = 1;
5577 else
5578 v->always_computable = ! not_every_iteration;
5579
5580 v->always_executed = ! not_every_iteration;
5581
5582 if (type == DEST_ADDR)
5583 {
5584 v->mode = GET_MODE (*location);
5585 v->lifetime = 1;
5586 }
5587 else /* type == DEST_REG */
5588 {
5589 v->mode = GET_MODE (SET_DEST (set));
5590
5591 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
5592 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
5593
5594 /* If the lifetime is zero, it means that this register is
5595 really a dead store. So mark this as a giv that can be
5596 ignored. This will not prevent the biv from being eliminated. */
5597 if (v->lifetime == 0)
5598 v->ignore = 1;
5599
5600 REG_IV_TYPE (REGNO (dest_reg)) = GENERAL_INDUCT;
5601 REG_IV_INFO (REGNO (dest_reg)) = v;
5602 }
5603
5604 /* Add the giv to the class of givs computed from one biv. */
5605
5606 bl = reg_biv_class[REGNO (src_reg)];
5607 if (bl)
5608 {
5609 v->next_iv = bl->giv;
5610 bl->giv = v;
5611 /* Don't count DEST_ADDR. This is supposed to count the number of
5612 insns that calculate givs. */
5613 if (type == DEST_REG)
5614 bl->giv_count++;
5615 bl->total_benefit += benefit;
5616 }
5617 else
5618 /* Fatal error, biv missing for this giv? */
5619 abort ();
5620
5621 if (type == DEST_ADDR)
5622 v->replaceable = 1;
5623 else
5624 {
5625 /* The giv can be replaced outright by the reduced register only if all
5626 of the following conditions are true:
5627 - the insn that sets the giv is always executed on any iteration
5628 on which the giv is used at all
5629 (there are two ways to deduce this:
5630 either the insn is executed on every iteration,
5631 or all uses follow that insn in the same basic block),
5632 - the giv is not used outside the loop
5633 - no assignments to the biv occur during the giv's lifetime. */
5634
5635 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
5636 /* Previous line always fails if INSN was moved by loop opt. */
5637 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
5638 < INSN_LUID (loop->end)
5639 && (! not_every_iteration
5640 || last_use_this_basic_block (dest_reg, insn)))
5641 {
5642 /* Now check that there are no assignments to the biv within the
5643 giv's lifetime. This requires two separate checks. */
5644
5645 /* Check each biv update, and fail if any are between the first
5646 and last use of the giv.
5647
5648 If this loop contains an inner loop that was unrolled, then
5649 the insn modifying the biv may have been emitted by the loop
5650 unrolling code, and hence does not have a valid luid. Just
5651 mark the biv as not replaceable in this case. It is not very
5652 useful as a biv, because it is used in two different loops.
5653 It is very unlikely that we would be able to optimize the giv
5654 using this biv anyways. */
5655
5656 v->replaceable = 1;
5657 for (b = bl->biv; b; b = b->next_iv)
5658 {
5659 if (INSN_UID (b->insn) >= max_uid_for_loop
5660 || ((uid_luid[INSN_UID (b->insn)]
5661 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
5662 && (uid_luid[INSN_UID (b->insn)]
5663 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
5664 {
5665 v->replaceable = 0;
5666 v->not_replaceable = 1;
5667 break;
5668 }
5669 }
5670
5671 /* If there are any backwards branches that go from after the
5672 biv update to before it, then this giv is not replaceable. */
5673 if (v->replaceable)
5674 for (b = bl->biv; b; b = b->next_iv)
5675 if (back_branch_in_range_p (loop, b->insn))
5676 {
5677 v->replaceable = 0;
5678 v->not_replaceable = 1;
5679 break;
5680 }
5681 }
5682 else
5683 {
5684 /* May still be replaceable, we don't have enough info here to
5685 decide. */
5686 v->replaceable = 0;
5687 v->not_replaceable = 0;
5688 }
5689 }
5690
5691 /* Record whether the add_val contains a const_int, for later use by
5692 combine_givs. */
5693 {
5694 rtx tem = add_val;
5695
5696 v->no_const_addval = 1;
5697 if (tem == const0_rtx)
5698 ;
5699 else if (GET_CODE (tem) == CONST_INT)
5700 v->no_const_addval = 0;
5701 else if (GET_CODE (tem) == PLUS)
5702 {
5703 while (1)
5704 {
5705 if (GET_CODE (XEXP (tem, 0)) == PLUS)
5706 tem = XEXP (tem, 0);
5707 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
5708 tem = XEXP (tem, 1);
5709 else
5710 break;
5711 }
5712 if (GET_CODE (XEXP (tem, 1)) == CONST_INT)
5713 v->no_const_addval = 0;
5714 }
5715 }
5716
5717 if (loop_dump_stream)
5718 {
5719 if (type == DEST_REG)
5720 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
5721 INSN_UID (insn), REGNO (dest_reg));
5722 else
5723 fprintf (loop_dump_stream, "Insn %d: dest address",
5724 INSN_UID (insn));
5725
5726 fprintf (loop_dump_stream, " src reg %d benefit %d",
5727 REGNO (src_reg), v->benefit);
5728 fprintf (loop_dump_stream, " lifetime %d",
5729 v->lifetime);
5730
5731 if (v->replaceable)
5732 fprintf (loop_dump_stream, " replaceable");
5733
5734 if (v->no_const_addval)
5735 fprintf (loop_dump_stream, " ncav");
5736
5737 if (GET_CODE (mult_val) == CONST_INT)
5738 {
5739 fprintf (loop_dump_stream, " mult ");
5740 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (mult_val));
5741 }
5742 else
5743 {
5744 fprintf (loop_dump_stream, " mult ");
5745 print_rtl (loop_dump_stream, mult_val);
5746 }
5747
5748 if (GET_CODE (add_val) == CONST_INT)
5749 {
5750 fprintf (loop_dump_stream, " add ");
5751 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (add_val));
5752 }
5753 else
5754 {
5755 fprintf (loop_dump_stream, " add ");
5756 print_rtl (loop_dump_stream, add_val);
5757 }
5758 }
5759
5760 if (loop_dump_stream)
5761 fprintf (loop_dump_stream, "\n");
5762
5763 }
5764
5765
5766 /* All this does is determine whether a giv can be made replaceable because
5767 its final value can be calculated. This code can not be part of record_giv
5768 above, because final_giv_value requires that the number of loop iterations
5769 be known, and that can not be accurately calculated until after all givs
5770 have been identified. */
5771
5772 static void
5773 check_final_value (loop, v)
5774 const struct loop *loop;
5775 struct induction *v;
5776 {
5777 struct iv_class *bl;
5778 rtx final_value = 0;
5779
5780 bl = reg_biv_class[REGNO (v->src_reg)];
5781
5782 /* DEST_ADDR givs will never reach here, because they are always marked
5783 replaceable above in record_giv. */
5784
5785 /* The giv can be replaced outright by the reduced register only if all
5786 of the following conditions are true:
5787 - the insn that sets the giv is always executed on any iteration
5788 on which the giv is used at all
5789 (there are two ways to deduce this:
5790 either the insn is executed on every iteration,
5791 or all uses follow that insn in the same basic block),
5792 - its final value can be calculated (this condition is different
5793 than the one above in record_giv)
5794 - no assignments to the biv occur during the giv's lifetime. */
5795
5796 #if 0
5797 /* This is only called now when replaceable is known to be false. */
5798 /* Clear replaceable, so that it won't confuse final_giv_value. */
5799 v->replaceable = 0;
5800 #endif
5801
5802 if ((final_value = final_giv_value (loop, v))
5803 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
5804 {
5805 int biv_increment_seen = 0;
5806 rtx p = v->insn;
5807 rtx last_giv_use;
5808
5809 v->replaceable = 1;
5810
5811 /* When trying to determine whether or not a biv increment occurs
5812 during the lifetime of the giv, we can ignore uses of the variable
5813 outside the loop because final_value is true. Hence we can not
5814 use regno_last_uid and regno_first_uid as above in record_giv. */
5815
5816 /* Search the loop to determine whether any assignments to the
5817 biv occur during the giv's lifetime. Start with the insn
5818 that sets the giv, and search around the loop until we come
5819 back to that insn again.
5820
5821 Also fail if there is a jump within the giv's lifetime that jumps
5822 to somewhere outside the lifetime but still within the loop. This
5823 catches spaghetti code where the execution order is not linear, and
5824 hence the above test fails. Here we assume that the giv lifetime
5825 does not extend from one iteration of the loop to the next, so as
5826 to make the test easier. Since the lifetime isn't known yet,
5827 this requires two loops. See also record_giv above. */
5828
5829 last_giv_use = v->insn;
5830
5831 while (1)
5832 {
5833 p = NEXT_INSN (p);
5834 if (p == loop->end)
5835 p = NEXT_INSN (loop->start);
5836 if (p == v->insn)
5837 break;
5838
5839 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5840 || GET_CODE (p) == CALL_INSN)
5841 {
5842 if (biv_increment_seen)
5843 {
5844 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5845 {
5846 v->replaceable = 0;
5847 v->not_replaceable = 1;
5848 break;
5849 }
5850 }
5851 else if (reg_set_p (v->src_reg, PATTERN (p)))
5852 biv_increment_seen = 1;
5853 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5854 last_giv_use = p;
5855 }
5856 }
5857
5858 /* Now that the lifetime of the giv is known, check for branches
5859 from within the lifetime to outside the lifetime if it is still
5860 replaceable. */
5861
5862 if (v->replaceable)
5863 {
5864 p = v->insn;
5865 while (1)
5866 {
5867 p = NEXT_INSN (p);
5868 if (p == loop->end)
5869 p = NEXT_INSN (loop->start);
5870 if (p == last_giv_use)
5871 break;
5872
5873 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
5874 && LABEL_NAME (JUMP_LABEL (p))
5875 && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
5876 && loop_insn_first_p (loop->start, JUMP_LABEL (p)))
5877 || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
5878 && loop_insn_first_p (JUMP_LABEL (p), loop->end))))
5879 {
5880 v->replaceable = 0;
5881 v->not_replaceable = 1;
5882
5883 if (loop_dump_stream)
5884 fprintf (loop_dump_stream,
5885 "Found branch outside giv lifetime.\n");
5886
5887 break;
5888 }
5889 }
5890 }
5891
5892 /* If it is replaceable, then save the final value. */
5893 if (v->replaceable)
5894 v->final_value = final_value;
5895 }
5896
5897 if (loop_dump_stream && v->replaceable)
5898 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
5899 INSN_UID (v->insn), REGNO (v->dest_reg));
5900 }
5901 \f
5902 /* Update the status of whether a giv can derive other givs.
5903
5904 We need to do something special if there is or may be an update to the biv
5905 between the time the giv is defined and the time it is used to derive
5906 another giv.
5907
5908 In addition, a giv that is only conditionally set is not allowed to
5909 derive another giv once a label has been passed.
5910
5911 The cases we look at are when a label or an update to a biv is passed. */
5912
5913 static void
5914 update_giv_derive (loop, p)
5915 const struct loop *loop;
5916 rtx p;
5917 {
5918 struct iv_class *bl;
5919 struct induction *biv, *giv;
5920 rtx tem;
5921 int dummy;
5922
5923 /* Search all IV classes, then all bivs, and finally all givs.
5924
5925 There are three cases we are concerned with. First we have the situation
5926 of a giv that is only updated conditionally. In that case, it may not
5927 derive any givs after a label is passed.
5928
5929 The second case is when a biv update occurs, or may occur, after the
5930 definition of a giv. For certain biv updates (see below) that are
5931 known to occur between the giv definition and use, we can adjust the
5932 giv definition. For others, or when the biv update is conditional,
5933 we must prevent the giv from deriving any other givs. There are two
5934 sub-cases within this case.
5935
5936 If this is a label, we are concerned with any biv update that is done
5937 conditionally, since it may be done after the giv is defined followed by
5938 a branch here (actually, we need to pass both a jump and a label, but
5939 this extra tracking doesn't seem worth it).
5940
5941 If this is a jump, we are concerned about any biv update that may be
5942 executed multiple times. We are actually only concerned about
5943 backward jumps, but it is probably not worth performing the test
5944 on the jump again here.
5945
5946 If this is a biv update, we must adjust the giv status to show that a
5947 subsequent biv update was performed. If this adjustment cannot be done,
5948 the giv cannot derive further givs. */
5949
5950 for (bl = loop_iv_list; bl; bl = bl->next)
5951 for (biv = bl->biv; biv; biv = biv->next_iv)
5952 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5953 || biv->insn == p)
5954 {
5955 for (giv = bl->giv; giv; giv = giv->next_iv)
5956 {
5957 /* If cant_derive is already true, there is no point in
5958 checking all of these conditions again. */
5959 if (giv->cant_derive)
5960 continue;
5961
5962 /* If this giv is conditionally set and we have passed a label,
5963 it cannot derive anything. */
5964 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5965 giv->cant_derive = 1;
5966
5967 /* Skip givs that have mult_val == 0, since
5968 they are really invariants. Also skip those that are
5969 replaceable, since we know their lifetime doesn't contain
5970 any biv update. */
5971 else if (giv->mult_val == const0_rtx || giv->replaceable)
5972 continue;
5973
5974 /* The only way we can allow this giv to derive another
5975 is if this is a biv increment and we can form the product
5976 of biv->add_val and giv->mult_val. In this case, we will
5977 be able to compute a compensation. */
5978 else if (biv->insn == p)
5979 {
5980 tem = 0;
5981
5982 if (biv->mult_val == const1_rtx)
5983 tem = simplify_giv_expr (loop,
5984 gen_rtx_MULT (giv->mode,
5985 biv->add_val,
5986 giv->mult_val),
5987 &dummy);
5988
5989 if (tem && giv->derive_adjustment)
5990 tem = simplify_giv_expr
5991 (loop,
5992 gen_rtx_PLUS (giv->mode, tem, giv->derive_adjustment),
5993 &dummy);
5994
5995 if (tem)
5996 giv->derive_adjustment = tem;
5997 else
5998 giv->cant_derive = 1;
5999 }
6000 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
6001 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
6002 giv->cant_derive = 1;
6003 }
6004 }
6005 }
6006 \f
6007 /* Check whether an insn is an increment legitimate for a basic induction var.
6008 X is the source of insn P, or a part of it.
6009 MODE is the mode in which X should be interpreted.
6010
6011 DEST_REG is the putative biv, also the destination of the insn.
6012 We accept patterns of these forms:
6013 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
6014 REG = INVARIANT + REG
6015
6016 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
6017 store the additive term into *INC_VAL, and store the place where
6018 we found the additive term into *LOCATION.
6019
6020 If X is an assignment of an invariant into DEST_REG, we set
6021 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
6022
6023 We also want to detect a BIV when it corresponds to a variable
6024 whose mode was promoted via PROMOTED_MODE. In that case, an increment
6025 of the variable may be a PLUS that adds a SUBREG of that variable to
6026 an invariant and then sign- or zero-extends the result of the PLUS
6027 into the variable.
6028
6029 Most GIVs in such cases will be in the promoted mode, since that is the
6030 probably the natural computation mode (and almost certainly the mode
6031 used for addresses) on the machine. So we view the pseudo-reg containing
6032 the variable as the BIV, as if it were simply incremented.
6033
6034 Note that treating the entire pseudo as a BIV will result in making
6035 simple increments to any GIVs based on it. However, if the variable
6036 overflows in its declared mode but not its promoted mode, the result will
6037 be incorrect. This is acceptable if the variable is signed, since
6038 overflows in such cases are undefined, but not if it is unsigned, since
6039 those overflows are defined. So we only check for SIGN_EXTEND and
6040 not ZERO_EXTEND.
6041
6042 If we cannot find a biv, we return 0. */
6043
6044 static int
6045 basic_induction_var (loop, x, mode, dest_reg, p, inc_val, mult_val,
6046 location, multi_insn_incr)
6047 const struct loop *loop;
6048 register rtx x;
6049 enum machine_mode mode;
6050 rtx dest_reg;
6051 rtx p;
6052 rtx *inc_val;
6053 rtx *mult_val;
6054 rtx **location;
6055 int *multi_insn_incr;
6056 {
6057 register enum rtx_code code;
6058 rtx *argp, arg;
6059 rtx insn, set = 0;
6060
6061 code = GET_CODE (x);
6062 *location = NULL;
6063 switch (code)
6064 {
6065 case PLUS:
6066 if (rtx_equal_p (XEXP (x, 0), dest_reg)
6067 || (GET_CODE (XEXP (x, 0)) == SUBREG
6068 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
6069 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
6070 {
6071 argp = &XEXP (x, 1);
6072 }
6073 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
6074 || (GET_CODE (XEXP (x, 1)) == SUBREG
6075 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
6076 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
6077 {
6078 argp = &XEXP (x, 0);
6079 }
6080 else
6081 return 0;
6082
6083 arg = *argp;
6084 if (loop_invariant_p (loop, arg) != 1)
6085 return 0;
6086
6087 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
6088 *mult_val = const1_rtx;
6089 *location = argp;
6090 return 1;
6091
6092 case SUBREG:
6093 /* If this is a SUBREG for a promoted variable, check the inner
6094 value. */
6095 if (SUBREG_PROMOTED_VAR_P (x))
6096 return basic_induction_var (loop, SUBREG_REG (x),
6097 GET_MODE (SUBREG_REG (x)),
6098 dest_reg, p, inc_val, mult_val, location,
6099 multi_insn_incr);
6100 return 0;
6101
6102 case REG:
6103 /* If this register is assigned in a previous insn, look at its
6104 source, but don't go outside the loop or past a label. */
6105
6106 insn = p;
6107 while (1)
6108 {
6109 do {
6110 insn = PREV_INSN (insn);
6111 } while (insn && GET_CODE (insn) == NOTE
6112 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6113
6114 if (!insn)
6115 break;
6116 set = single_set (insn);
6117 if (set == 0)
6118 break;
6119
6120 if ((SET_DEST (set) == x
6121 || (GET_CODE (SET_DEST (set)) == SUBREG
6122 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
6123 <= UNITS_PER_WORD)
6124 && (GET_MODE_CLASS (GET_MODE (SET_DEST (set)))
6125 == MODE_INT)
6126 && SUBREG_REG (SET_DEST (set)) == x))
6127 && basic_induction_var (loop, SET_SRC (set),
6128 (GET_MODE (SET_SRC (set)) == VOIDmode
6129 ? GET_MODE (x)
6130 : GET_MODE (SET_SRC (set))),
6131 dest_reg, insn,
6132 inc_val, mult_val, location,
6133 multi_insn_incr))
6134 {
6135 *multi_insn_incr = 1;
6136 return 1;
6137 }
6138 }
6139 /* ... fall through ... */
6140
6141 /* Can accept constant setting of biv only when inside inner most loop.
6142 Otherwise, a biv of an inner loop may be incorrectly recognized
6143 as a biv of the outer loop,
6144 causing code to be moved INTO the inner loop. */
6145 case MEM:
6146 if (loop_invariant_p (loop, x) != 1)
6147 return 0;
6148 case CONST_INT:
6149 case SYMBOL_REF:
6150 case CONST:
6151 /* convert_modes aborts if we try to convert to or from CCmode, so just
6152 exclude that case. It is very unlikely that a condition code value
6153 would be a useful iterator anyways. */
6154 if (loop->level == 1
6155 && GET_MODE_CLASS (mode) != MODE_CC
6156 && GET_MODE_CLASS (GET_MODE (dest_reg)) != MODE_CC)
6157 {
6158 /* Possible bug here? Perhaps we don't know the mode of X. */
6159 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
6160 *mult_val = const0_rtx;
6161 return 1;
6162 }
6163 else
6164 return 0;
6165
6166 case SIGN_EXTEND:
6167 return basic_induction_var (loop, XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6168 dest_reg, p, inc_val, mult_val, location,
6169 multi_insn_incr);
6170
6171 case ASHIFTRT:
6172 /* Similar, since this can be a sign extension. */
6173 for (insn = PREV_INSN (p);
6174 (insn && GET_CODE (insn) == NOTE
6175 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6176 insn = PREV_INSN (insn))
6177 ;
6178
6179 if (insn)
6180 set = single_set (insn);
6181
6182 if (set && SET_DEST (set) == XEXP (x, 0)
6183 && GET_CODE (XEXP (x, 1)) == CONST_INT
6184 && INTVAL (XEXP (x, 1)) >= 0
6185 && GET_CODE (SET_SRC (set)) == ASHIFT
6186 && XEXP (x, 1) == XEXP (SET_SRC (set), 1)
6187 && basic_induction_var (loop, XEXP (SET_SRC (set), 0),
6188 GET_MODE (XEXP (x, 0)),
6189 dest_reg, insn, inc_val, mult_val,
6190 location, multi_insn_incr))
6191 {
6192 *multi_insn_incr = 1;
6193 return 1;
6194 }
6195 return 0;
6196
6197 default:
6198 return 0;
6199 }
6200 }
6201 \f
6202 /* A general induction variable (giv) is any quantity that is a linear
6203 function of a basic induction variable,
6204 i.e. giv = biv * mult_val + add_val.
6205 The coefficients can be any loop invariant quantity.
6206 A giv need not be computed directly from the biv;
6207 it can be computed by way of other givs. */
6208
6209 /* Determine whether X computes a giv.
6210 If it does, return a nonzero value
6211 which is the benefit from eliminating the computation of X;
6212 set *SRC_REG to the register of the biv that it is computed from;
6213 set *ADD_VAL and *MULT_VAL to the coefficients,
6214 such that the value of X is biv * mult + add; */
6215
6216 static int
6217 general_induction_var (loop, x, src_reg, add_val, mult_val, is_addr, pbenefit)
6218 const struct loop *loop;
6219 rtx x;
6220 rtx *src_reg;
6221 rtx *add_val;
6222 rtx *mult_val;
6223 int is_addr;
6224 int *pbenefit;
6225 {
6226 rtx orig_x = x;
6227 char *storage;
6228
6229 /* If this is an invariant, forget it, it isn't a giv. */
6230 if (loop_invariant_p (loop, x) == 1)
6231 return 0;
6232
6233 /* See if the expression could be a giv and get its form.
6234 Mark our place on the obstack in case we don't find a giv. */
6235 storage = (char *) oballoc (0);
6236 *pbenefit = 0;
6237 x = simplify_giv_expr (loop, x, pbenefit);
6238 if (x == 0)
6239 {
6240 obfree (storage);
6241 return 0;
6242 }
6243
6244 switch (GET_CODE (x))
6245 {
6246 case USE:
6247 case CONST_INT:
6248 /* Since this is now an invariant and wasn't before, it must be a giv
6249 with MULT_VAL == 0. It doesn't matter which BIV we associate this
6250 with. */
6251 *src_reg = loop_iv_list->biv->dest_reg;
6252 *mult_val = const0_rtx;
6253 *add_val = x;
6254 break;
6255
6256 case REG:
6257 /* This is equivalent to a BIV. */
6258 *src_reg = x;
6259 *mult_val = const1_rtx;
6260 *add_val = const0_rtx;
6261 break;
6262
6263 case PLUS:
6264 /* Either (plus (biv) (invar)) or
6265 (plus (mult (biv) (invar_1)) (invar_2)). */
6266 if (GET_CODE (XEXP (x, 0)) == MULT)
6267 {
6268 *src_reg = XEXP (XEXP (x, 0), 0);
6269 *mult_val = XEXP (XEXP (x, 0), 1);
6270 }
6271 else
6272 {
6273 *src_reg = XEXP (x, 0);
6274 *mult_val = const1_rtx;
6275 }
6276 *add_val = XEXP (x, 1);
6277 break;
6278
6279 case MULT:
6280 /* ADD_VAL is zero. */
6281 *src_reg = XEXP (x, 0);
6282 *mult_val = XEXP (x, 1);
6283 *add_val = const0_rtx;
6284 break;
6285
6286 default:
6287 abort ();
6288 }
6289
6290 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
6291 unless they are CONST_INT). */
6292 if (GET_CODE (*add_val) == USE)
6293 *add_val = XEXP (*add_val, 0);
6294 if (GET_CODE (*mult_val) == USE)
6295 *mult_val = XEXP (*mult_val, 0);
6296
6297 if (is_addr)
6298 {
6299 #ifdef ADDRESS_COST
6300 *pbenefit += ADDRESS_COST (orig_x) - reg_address_cost;
6301 #else
6302 *pbenefit += rtx_cost (orig_x, MEM) - reg_address_cost;
6303 #endif
6304 }
6305 else
6306 *pbenefit += rtx_cost (orig_x, SET);
6307
6308 /* Always return true if this is a giv so it will be detected as such,
6309 even if the benefit is zero or negative. This allows elimination
6310 of bivs that might otherwise not be eliminated. */
6311 return 1;
6312 }
6313 \f
6314 /* Given an expression, X, try to form it as a linear function of a biv.
6315 We will canonicalize it to be of the form
6316 (plus (mult (BIV) (invar_1))
6317 (invar_2))
6318 with possible degeneracies.
6319
6320 The invariant expressions must each be of a form that can be used as a
6321 machine operand. We surround then with a USE rtx (a hack, but localized
6322 and certainly unambiguous!) if not a CONST_INT for simplicity in this
6323 routine; it is the caller's responsibility to strip them.
6324
6325 If no such canonicalization is possible (i.e., two biv's are used or an
6326 expression that is neither invariant nor a biv or giv), this routine
6327 returns 0.
6328
6329 For a non-zero return, the result will have a code of CONST_INT, USE,
6330 REG (for a BIV), PLUS, or MULT. No other codes will occur.
6331
6332 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
6333
6334 static rtx sge_plus PARAMS ((enum machine_mode, rtx, rtx));
6335 static rtx sge_plus_constant PARAMS ((rtx, rtx));
6336 static int cmp_combine_givs_stats PARAMS ((const PTR, const PTR));
6337 static int cmp_recombine_givs_stats PARAMS ((const PTR, const PTR));
6338
6339 static rtx
6340 simplify_giv_expr (loop, x, benefit)
6341 const struct loop *loop;
6342 rtx x;
6343 int *benefit;
6344 {
6345 enum machine_mode mode = GET_MODE (x);
6346 rtx arg0, arg1;
6347 rtx tem;
6348
6349 /* If this is not an integer mode, or if we cannot do arithmetic in this
6350 mode, this can't be a giv. */
6351 if (mode != VOIDmode
6352 && (GET_MODE_CLASS (mode) != MODE_INT
6353 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
6354 return NULL_RTX;
6355
6356 switch (GET_CODE (x))
6357 {
6358 case PLUS:
6359 arg0 = simplify_giv_expr (loop, XEXP (x, 0), benefit);
6360 arg1 = simplify_giv_expr (loop, XEXP (x, 1), benefit);
6361 if (arg0 == 0 || arg1 == 0)
6362 return NULL_RTX;
6363
6364 /* Put constant last, CONST_INT last if both constant. */
6365 if ((GET_CODE (arg0) == USE
6366 || GET_CODE (arg0) == CONST_INT)
6367 && ! ((GET_CODE (arg0) == USE
6368 && GET_CODE (arg1) == USE)
6369 || GET_CODE (arg1) == CONST_INT))
6370 tem = arg0, arg0 = arg1, arg1 = tem;
6371
6372 /* Handle addition of zero, then addition of an invariant. */
6373 if (arg1 == const0_rtx)
6374 return arg0;
6375 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
6376 switch (GET_CODE (arg0))
6377 {
6378 case CONST_INT:
6379 case USE:
6380 /* Adding two invariants must result in an invariant, so enclose
6381 addition operation inside a USE and return it. */
6382 if (GET_CODE (arg0) == USE)
6383 arg0 = XEXP (arg0, 0);
6384 if (GET_CODE (arg1) == USE)
6385 arg1 = XEXP (arg1, 0);
6386
6387 if (GET_CODE (arg0) == CONST_INT)
6388 tem = arg0, arg0 = arg1, arg1 = tem;
6389 if (GET_CODE (arg1) == CONST_INT)
6390 tem = sge_plus_constant (arg0, arg1);
6391 else
6392 tem = sge_plus (mode, arg0, arg1);
6393
6394 if (GET_CODE (tem) != CONST_INT)
6395 tem = gen_rtx_USE (mode, tem);
6396 return tem;
6397
6398 case REG:
6399 case MULT:
6400 /* biv + invar or mult + invar. Return sum. */
6401 return gen_rtx_PLUS (mode, arg0, arg1);
6402
6403 case PLUS:
6404 /* (a + invar_1) + invar_2. Associate. */
6405 return
6406 simplify_giv_expr (loop,
6407 gen_rtx_PLUS (mode,
6408 XEXP (arg0, 0),
6409 gen_rtx_PLUS (mode,
6410 XEXP (arg0, 1),
6411 arg1)),
6412 benefit);
6413
6414 default:
6415 abort ();
6416 }
6417
6418 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
6419 MULT to reduce cases. */
6420 if (GET_CODE (arg0) == REG)
6421 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
6422 if (GET_CODE (arg1) == REG)
6423 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
6424
6425 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
6426 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
6427 Recurse to associate the second PLUS. */
6428 if (GET_CODE (arg1) == MULT)
6429 tem = arg0, arg0 = arg1, arg1 = tem;
6430
6431 if (GET_CODE (arg1) == PLUS)
6432 return
6433 simplify_giv_expr (loop,
6434 gen_rtx_PLUS (mode,
6435 gen_rtx_PLUS (mode, arg0,
6436 XEXP (arg1, 0)),
6437 XEXP (arg1, 1)),
6438 benefit);
6439
6440 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
6441 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
6442 return NULL_RTX;
6443
6444 if (!rtx_equal_p (arg0, arg1))
6445 return NULL_RTX;
6446
6447 return simplify_giv_expr (loop,
6448 gen_rtx_MULT (mode,
6449 XEXP (arg0, 0),
6450 gen_rtx_PLUS (mode,
6451 XEXP (arg0, 1),
6452 XEXP (arg1, 1))),
6453 benefit);
6454
6455 case MINUS:
6456 /* Handle "a - b" as "a + b * (-1)". */
6457 return simplify_giv_expr (loop,
6458 gen_rtx_PLUS (mode,
6459 XEXP (x, 0),
6460 gen_rtx_MULT (mode,
6461 XEXP (x, 1),
6462 constm1_rtx)),
6463 benefit);
6464
6465 case MULT:
6466 arg0 = simplify_giv_expr (loop, XEXP (x, 0), benefit);
6467 arg1 = simplify_giv_expr (loop, XEXP (x, 1), benefit);
6468 if (arg0 == 0 || arg1 == 0)
6469 return NULL_RTX;
6470
6471 /* Put constant last, CONST_INT last if both constant. */
6472 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
6473 && GET_CODE (arg1) != CONST_INT)
6474 tem = arg0, arg0 = arg1, arg1 = tem;
6475
6476 /* If second argument is not now constant, not giv. */
6477 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
6478 return NULL_RTX;
6479
6480 /* Handle multiply by 0 or 1. */
6481 if (arg1 == const0_rtx)
6482 return const0_rtx;
6483
6484 else if (arg1 == const1_rtx)
6485 return arg0;
6486
6487 switch (GET_CODE (arg0))
6488 {
6489 case REG:
6490 /* biv * invar. Done. */
6491 return gen_rtx_MULT (mode, arg0, arg1);
6492
6493 case CONST_INT:
6494 /* Product of two constants. */
6495 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
6496
6497 case USE:
6498 /* invar * invar. It is a giv, but very few of these will
6499 actually pay off, so limit to simple registers. */
6500 if (GET_CODE (arg1) != CONST_INT)
6501 return NULL_RTX;
6502
6503 arg0 = XEXP (arg0, 0);
6504 if (GET_CODE (arg0) == REG)
6505 tem = gen_rtx_MULT (mode, arg0, arg1);
6506 else if (GET_CODE (arg0) == MULT
6507 && GET_CODE (XEXP (arg0, 0)) == REG
6508 && GET_CODE (XEXP (arg0, 1)) == CONST_INT)
6509 {
6510 tem = gen_rtx_MULT (mode, XEXP (arg0, 0),
6511 GEN_INT (INTVAL (XEXP (arg0, 1))
6512 * INTVAL (arg1)));
6513 }
6514 else
6515 return NULL_RTX;
6516 return gen_rtx_USE (mode, tem);
6517
6518 case MULT:
6519 /* (a * invar_1) * invar_2. Associate. */
6520 return simplify_giv_expr (loop,
6521 gen_rtx_MULT (mode,
6522 XEXP (arg0, 0),
6523 gen_rtx_MULT (mode,
6524 XEXP (arg0, 1),
6525 arg1)),
6526 benefit);
6527
6528 case PLUS:
6529 /* (a + invar_1) * invar_2. Distribute. */
6530 return simplify_giv_expr (loop,
6531 gen_rtx_PLUS (mode,
6532 gen_rtx_MULT (mode,
6533 XEXP (arg0, 0),
6534 arg1),
6535 gen_rtx_MULT (mode,
6536 XEXP (arg0, 1),
6537 arg1)),
6538 benefit);
6539
6540 default:
6541 abort ();
6542 }
6543
6544 case ASHIFT:
6545 /* Shift by constant is multiply by power of two. */
6546 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6547 return 0;
6548
6549 return
6550 simplify_giv_expr (loop,
6551 gen_rtx_MULT (mode,
6552 XEXP (x, 0),
6553 GEN_INT ((HOST_WIDE_INT) 1
6554 << INTVAL (XEXP (x, 1)))),
6555 benefit);
6556
6557 case NEG:
6558 /* "-a" is "a * (-1)" */
6559 return simplify_giv_expr (loop,
6560 gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
6561 benefit);
6562
6563 case NOT:
6564 /* "~a" is "-a - 1". Silly, but easy. */
6565 return simplify_giv_expr (loop,
6566 gen_rtx_MINUS (mode,
6567 gen_rtx_NEG (mode, XEXP (x, 0)),
6568 const1_rtx),
6569 benefit);
6570
6571 case USE:
6572 /* Already in proper form for invariant. */
6573 return x;
6574
6575 case REG:
6576 /* If this is a new register, we can't deal with it. */
6577 if (REGNO (x) >= max_reg_before_loop)
6578 return 0;
6579
6580 /* Check for biv or giv. */
6581 switch (REG_IV_TYPE (REGNO (x)))
6582 {
6583 case BASIC_INDUCT:
6584 return x;
6585 case GENERAL_INDUCT:
6586 {
6587 struct induction *v = REG_IV_INFO (REGNO (x));
6588
6589 /* Form expression from giv and add benefit. Ensure this giv
6590 can derive another and subtract any needed adjustment if so. */
6591 *benefit += v->benefit;
6592 if (v->cant_derive)
6593 return 0;
6594
6595 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
6596 v->src_reg, v->mult_val),
6597 v->add_val);
6598
6599 if (v->derive_adjustment)
6600 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
6601 return simplify_giv_expr (loop, tem, benefit);
6602 }
6603
6604 default:
6605 /* If it isn't an induction variable, and it is invariant, we
6606 may be able to simplify things further by looking through
6607 the bits we just moved outside the loop. */
6608 if (loop_invariant_p (loop, x) == 1)
6609 {
6610 struct movable *m;
6611
6612 for (m = the_movables; m ; m = m->next)
6613 if (rtx_equal_p (x, m->set_dest))
6614 {
6615 /* Ok, we found a match. Substitute and simplify. */
6616
6617 /* If we match another movable, we must use that, as
6618 this one is going away. */
6619 if (m->match)
6620 return simplify_giv_expr (loop, m->match->set_dest,
6621 benefit);
6622
6623 /* If consec is non-zero, this is a member of a group of
6624 instructions that were moved together. We handle this
6625 case only to the point of seeking to the last insn and
6626 looking for a REG_EQUAL. Fail if we don't find one. */
6627 if (m->consec != 0)
6628 {
6629 int i = m->consec;
6630 tem = m->insn;
6631 do { tem = NEXT_INSN (tem); } while (--i > 0);
6632
6633 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
6634 if (tem)
6635 tem = XEXP (tem, 0);
6636 }
6637 else
6638 {
6639 tem = single_set (m->insn);
6640 if (tem)
6641 tem = SET_SRC (tem);
6642 }
6643
6644 if (tem)
6645 {
6646 /* What we are most interested in is pointer
6647 arithmetic on invariants -- only take
6648 patterns we may be able to do something with. */
6649 if (GET_CODE (tem) == PLUS
6650 || GET_CODE (tem) == MULT
6651 || GET_CODE (tem) == ASHIFT
6652 || GET_CODE (tem) == CONST_INT
6653 || GET_CODE (tem) == SYMBOL_REF)
6654 {
6655 tem = simplify_giv_expr (loop, tem, benefit);
6656 if (tem)
6657 return tem;
6658 }
6659 else if (GET_CODE (tem) == CONST
6660 && GET_CODE (XEXP (tem, 0)) == PLUS
6661 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
6662 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
6663 {
6664 tem = simplify_giv_expr (loop, XEXP (tem, 0),
6665 benefit);
6666 if (tem)
6667 return tem;
6668 }
6669 }
6670 break;
6671 }
6672 }
6673 break;
6674 }
6675
6676 /* Fall through to general case. */
6677 default:
6678 /* If invariant, return as USE (unless CONST_INT).
6679 Otherwise, not giv. */
6680 if (GET_CODE (x) == USE)
6681 x = XEXP (x, 0);
6682
6683 if (loop_invariant_p (loop, x) == 1)
6684 {
6685 if (GET_CODE (x) == CONST_INT)
6686 return x;
6687 if (GET_CODE (x) == CONST
6688 && GET_CODE (XEXP (x, 0)) == PLUS
6689 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
6690 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
6691 x = XEXP (x, 0);
6692 return gen_rtx_USE (mode, x);
6693 }
6694 else
6695 return 0;
6696 }
6697 }
6698
6699 /* This routine folds invariants such that there is only ever one
6700 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6701
6702 static rtx
6703 sge_plus_constant (x, c)
6704 rtx x, c;
6705 {
6706 if (GET_CODE (x) == CONST_INT)
6707 return GEN_INT (INTVAL (x) + INTVAL (c));
6708 else if (GET_CODE (x) != PLUS)
6709 return gen_rtx_PLUS (GET_MODE (x), x, c);
6710 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6711 {
6712 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
6713 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
6714 }
6715 else if (GET_CODE (XEXP (x, 0)) == PLUS
6716 || GET_CODE (XEXP (x, 1)) != PLUS)
6717 {
6718 return gen_rtx_PLUS (GET_MODE (x),
6719 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
6720 }
6721 else
6722 {
6723 return gen_rtx_PLUS (GET_MODE (x),
6724 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
6725 }
6726 }
6727
6728 static rtx
6729 sge_plus (mode, x, y)
6730 enum machine_mode mode;
6731 rtx x, y;
6732 {
6733 while (GET_CODE (y) == PLUS)
6734 {
6735 rtx a = XEXP (y, 0);
6736 if (GET_CODE (a) == CONST_INT)
6737 x = sge_plus_constant (x, a);
6738 else
6739 x = gen_rtx_PLUS (mode, x, a);
6740 y = XEXP (y, 1);
6741 }
6742 if (GET_CODE (y) == CONST_INT)
6743 x = sge_plus_constant (x, y);
6744 else
6745 x = gen_rtx_PLUS (mode, x, y);
6746 return x;
6747 }
6748 \f
6749 /* Help detect a giv that is calculated by several consecutive insns;
6750 for example,
6751 giv = biv * M
6752 giv = giv + A
6753 The caller has already identified the first insn P as having a giv as dest;
6754 we check that all other insns that set the same register follow
6755 immediately after P, that they alter nothing else,
6756 and that the result of the last is still a giv.
6757
6758 The value is 0 if the reg set in P is not really a giv.
6759 Otherwise, the value is the amount gained by eliminating
6760 all the consecutive insns that compute the value.
6761
6762 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6763 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6764
6765 The coefficients of the ultimate giv value are stored in
6766 *MULT_VAL and *ADD_VAL. */
6767
6768 static int
6769 consec_sets_giv (loop, first_benefit, p, src_reg, dest_reg,
6770 add_val, mult_val, last_consec_insn)
6771 const struct loop *loop;
6772 int first_benefit;
6773 rtx p;
6774 rtx src_reg;
6775 rtx dest_reg;
6776 rtx *add_val;
6777 rtx *mult_val;
6778 rtx *last_consec_insn;
6779 {
6780 int count;
6781 enum rtx_code code;
6782 int benefit;
6783 rtx temp;
6784 rtx set;
6785
6786 /* Indicate that this is a giv so that we can update the value produced in
6787 each insn of the multi-insn sequence.
6788
6789 This induction structure will be used only by the call to
6790 general_induction_var below, so we can allocate it on our stack.
6791 If this is a giv, our caller will replace the induct var entry with
6792 a new induction structure. */
6793 struct induction *v
6794 = (struct induction *) alloca (sizeof (struct induction));
6795 v->src_reg = src_reg;
6796 v->mult_val = *mult_val;
6797 v->add_val = *add_val;
6798 v->benefit = first_benefit;
6799 v->cant_derive = 0;
6800 v->derive_adjustment = 0;
6801
6802 REG_IV_TYPE (REGNO (dest_reg)) = GENERAL_INDUCT;
6803 REG_IV_INFO (REGNO (dest_reg)) = v;
6804
6805 count = VARRAY_INT (n_times_set, REGNO (dest_reg)) - 1;
6806
6807 while (count > 0)
6808 {
6809 p = NEXT_INSN (p);
6810 code = GET_CODE (p);
6811
6812 /* If libcall, skip to end of call sequence. */
6813 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
6814 p = XEXP (temp, 0);
6815
6816 if (code == INSN
6817 && (set = single_set (p))
6818 && GET_CODE (SET_DEST (set)) == REG
6819 && SET_DEST (set) == dest_reg
6820 && (general_induction_var (loop, SET_SRC (set), &src_reg,
6821 add_val, mult_val, 0, &benefit)
6822 /* Giv created by equivalent expression. */
6823 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
6824 && general_induction_var (loop, XEXP (temp, 0), &src_reg,
6825 add_val, mult_val, 0, &benefit)))
6826 && src_reg == v->src_reg)
6827 {
6828 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
6829 benefit += libcall_benefit (p);
6830
6831 count--;
6832 v->mult_val = *mult_val;
6833 v->add_val = *add_val;
6834 v->benefit = benefit;
6835 }
6836 else if (code != NOTE)
6837 {
6838 /* Allow insns that set something other than this giv to a
6839 constant. Such insns are needed on machines which cannot
6840 include long constants and should not disqualify a giv. */
6841 if (code == INSN
6842 && (set = single_set (p))
6843 && SET_DEST (set) != dest_reg
6844 && CONSTANT_P (SET_SRC (set)))
6845 continue;
6846
6847 REG_IV_TYPE (REGNO (dest_reg)) = UNKNOWN_INDUCT;
6848 return 0;
6849 }
6850 }
6851
6852 *last_consec_insn = p;
6853 return v->benefit;
6854 }
6855 \f
6856 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6857 represented by G1. If no such expression can be found, or it is clear that
6858 it cannot possibly be a valid address, 0 is returned.
6859
6860 To perform the computation, we note that
6861 G1 = x * v + a and
6862 G2 = y * v + b
6863 where `v' is the biv.
6864
6865 So G2 = (y/b) * G1 + (b - a*y/x).
6866
6867 Note that MULT = y/x.
6868
6869 Update: A and B are now allowed to be additive expressions such that
6870 B contains all variables in A. That is, computing B-A will not require
6871 subtracting variables. */
6872
6873 static rtx
6874 express_from_1 (a, b, mult)
6875 rtx a, b, mult;
6876 {
6877 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
6878
6879 if (mult == const0_rtx)
6880 return b;
6881
6882 /* If MULT is not 1, we cannot handle A with non-constants, since we
6883 would then be required to subtract multiples of the registers in A.
6884 This is theoretically possible, and may even apply to some Fortran
6885 constructs, but it is a lot of work and we do not attempt it here. */
6886
6887 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
6888 return NULL_RTX;
6889
6890 /* In general these structures are sorted top to bottom (down the PLUS
6891 chain), but not left to right across the PLUS. If B is a higher
6892 order giv than A, we can strip one level and recurse. If A is higher
6893 order, we'll eventually bail out, but won't know that until the end.
6894 If they are the same, we'll strip one level around this loop. */
6895
6896 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
6897 {
6898 rtx ra, rb, oa, ob, tmp;
6899
6900 ra = XEXP (a, 0), oa = XEXP (a, 1);
6901 if (GET_CODE (ra) == PLUS)
6902 tmp = ra, ra = oa, oa = tmp;
6903
6904 rb = XEXP (b, 0), ob = XEXP (b, 1);
6905 if (GET_CODE (rb) == PLUS)
6906 tmp = rb, rb = ob, ob = tmp;
6907
6908 if (rtx_equal_p (ra, rb))
6909 /* We matched: remove one reg completely. */
6910 a = oa, b = ob;
6911 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
6912 /* An alternate match. */
6913 a = oa, b = rb;
6914 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
6915 /* An alternate match. */
6916 a = ra, b = ob;
6917 else
6918 {
6919 /* Indicates an extra register in B. Strip one level from B and
6920 recurse, hoping B was the higher order expression. */
6921 ob = express_from_1 (a, ob, mult);
6922 if (ob == NULL_RTX)
6923 return NULL_RTX;
6924 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
6925 }
6926 }
6927
6928 /* Here we are at the last level of A, go through the cases hoping to
6929 get rid of everything but a constant. */
6930
6931 if (GET_CODE (a) == PLUS)
6932 {
6933 rtx ra, oa;
6934
6935 ra = XEXP (a, 0), oa = XEXP (a, 1);
6936 if (rtx_equal_p (oa, b))
6937 oa = ra;
6938 else if (!rtx_equal_p (ra, b))
6939 return NULL_RTX;
6940
6941 if (GET_CODE (oa) != CONST_INT)
6942 return NULL_RTX;
6943
6944 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
6945 }
6946 else if (GET_CODE (a) == CONST_INT)
6947 {
6948 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
6949 }
6950 else if (GET_CODE (b) == PLUS)
6951 {
6952 if (rtx_equal_p (a, XEXP (b, 0)))
6953 return XEXP (b, 1);
6954 else if (rtx_equal_p (a, XEXP (b, 1)))
6955 return XEXP (b, 0);
6956 else
6957 return NULL_RTX;
6958 }
6959 else if (rtx_equal_p (a, b))
6960 return const0_rtx;
6961
6962 return NULL_RTX;
6963 }
6964
6965 rtx
6966 express_from (g1, g2)
6967 struct induction *g1, *g2;
6968 {
6969 rtx mult, add;
6970
6971 /* The value that G1 will be multiplied by must be a constant integer. Also,
6972 the only chance we have of getting a valid address is if b*c/a (see above
6973 for notation) is also an integer. */
6974 if (GET_CODE (g1->mult_val) == CONST_INT
6975 && GET_CODE (g2->mult_val) == CONST_INT)
6976 {
6977 if (g1->mult_val == const0_rtx
6978 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
6979 return NULL_RTX;
6980 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
6981 }
6982 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
6983 mult = const1_rtx;
6984 else
6985 {
6986 /* ??? Find out if the one is a multiple of the other? */
6987 return NULL_RTX;
6988 }
6989
6990 add = express_from_1 (g1->add_val, g2->add_val, mult);
6991 if (add == NULL_RTX)
6992 {
6993 /* Failed. If we've got a multiplication factor between G1 and G2,
6994 scale G1's addend and try again. */
6995 if (INTVAL (mult) > 1)
6996 {
6997 rtx g1_add_val = g1->add_val;
6998 if (GET_CODE (g1_add_val) == MULT
6999 && GET_CODE (XEXP (g1_add_val, 1)) == CONST_INT)
7000 {
7001 HOST_WIDE_INT m;
7002 m = INTVAL (mult) * INTVAL (XEXP (g1_add_val, 1));
7003 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val),
7004 XEXP (g1_add_val, 0), GEN_INT (m));
7005 }
7006 else
7007 {
7008 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val), g1_add_val,
7009 mult);
7010 }
7011
7012 add = express_from_1 (g1_add_val, g2->add_val, const1_rtx);
7013 }
7014 }
7015 if (add == NULL_RTX)
7016 return NULL_RTX;
7017
7018 /* Form simplified final result. */
7019 if (mult == const0_rtx)
7020 return add;
7021 else if (mult == const1_rtx)
7022 mult = g1->dest_reg;
7023 else
7024 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
7025
7026 if (add == const0_rtx)
7027 return mult;
7028 else
7029 {
7030 if (GET_CODE (add) == PLUS
7031 && CONSTANT_P (XEXP (add, 1)))
7032 {
7033 rtx tem = XEXP (add, 1);
7034 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
7035 add = tem;
7036 }
7037
7038 return gen_rtx_PLUS (g2->mode, mult, add);
7039 }
7040
7041 }
7042 \f
7043 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7044 represented by G1. This indicates that G2 should be combined with G1 and
7045 that G2 can use (either directly or via an address expression) a register
7046 used to represent G1. */
7047
7048 static rtx
7049 combine_givs_p (g1, g2)
7050 struct induction *g1, *g2;
7051 {
7052 rtx tem = express_from (g1, g2);
7053
7054 /* If these givs are identical, they can be combined. We use the results
7055 of express_from because the addends are not in a canonical form, so
7056 rtx_equal_p is a weaker test. */
7057 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
7058 combination to be the other way round. */
7059 if (tem == g1->dest_reg
7060 && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
7061 {
7062 return g1->dest_reg;
7063 }
7064
7065 /* If G2 can be expressed as a function of G1 and that function is valid
7066 as an address and no more expensive than using a register for G2,
7067 the expression of G2 in terms of G1 can be used. */
7068 if (tem != NULL_RTX
7069 && g2->giv_type == DEST_ADDR
7070 && memory_address_p (g2->mem_mode, tem)
7071 /* ??? Looses, especially with -fforce-addr, where *g2->location
7072 will always be a register, and so anything more complicated
7073 gets discarded. */
7074 #if 0
7075 #ifdef ADDRESS_COST
7076 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location)
7077 #else
7078 && rtx_cost (tem, MEM) <= rtx_cost (*g2->location, MEM)
7079 #endif
7080 #endif
7081 )
7082 {
7083 return tem;
7084 }
7085
7086 return NULL_RTX;
7087 }
7088 \f
7089 struct combine_givs_stats
7090 {
7091 int giv_number;
7092 int total_benefit;
7093 };
7094
7095 static int
7096 cmp_combine_givs_stats (xp, yp)
7097 const PTR xp;
7098 const PTR yp;
7099 {
7100 const struct combine_givs_stats * const x =
7101 (const struct combine_givs_stats *) xp;
7102 const struct combine_givs_stats * const y =
7103 (const struct combine_givs_stats *) yp;
7104 int d;
7105 d = y->total_benefit - x->total_benefit;
7106 /* Stabilize the sort. */
7107 if (!d)
7108 d = x->giv_number - y->giv_number;
7109 return d;
7110 }
7111
7112 /* Check all pairs of givs for iv_class BL and see if any can be combined with
7113 any other. If so, point SAME to the giv combined with and set NEW_REG to
7114 be an expression (in terms of the other giv's DEST_REG) equivalent to the
7115 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
7116
7117 static void
7118 combine_givs (bl)
7119 struct iv_class *bl;
7120 {
7121 /* Additional benefit to add for being combined multiple times. */
7122 const int extra_benefit = 3;
7123
7124 struct induction *g1, *g2, **giv_array;
7125 int i, j, k, giv_count;
7126 struct combine_givs_stats *stats;
7127 rtx *can_combine;
7128
7129 /* Count givs, because bl->giv_count is incorrect here. */
7130 giv_count = 0;
7131 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7132 if (!g1->ignore)
7133 giv_count++;
7134
7135 giv_array
7136 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
7137 i = 0;
7138 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7139 if (!g1->ignore)
7140 giv_array[i++] = g1;
7141
7142 stats = (struct combine_givs_stats *) xcalloc (giv_count, sizeof (*stats));
7143 can_combine = (rtx *) xcalloc (giv_count, giv_count * sizeof(rtx));
7144
7145 for (i = 0; i < giv_count; i++)
7146 {
7147 int this_benefit;
7148 rtx single_use;
7149
7150 g1 = giv_array[i];
7151 stats[i].giv_number = i;
7152
7153 /* If a DEST_REG GIV is used only once, do not allow it to combine
7154 with anything, for in doing so we will gain nothing that cannot
7155 be had by simply letting the GIV with which we would have combined
7156 to be reduced on its own. The losage shows up in particular with
7157 DEST_ADDR targets on hosts with reg+reg addressing, though it can
7158 be seen elsewhere as well. */
7159 if (g1->giv_type == DEST_REG
7160 && (single_use = VARRAY_RTX (reg_single_usage, REGNO (g1->dest_reg)))
7161 && single_use != const0_rtx)
7162 continue;
7163
7164 this_benefit = g1->benefit;
7165 /* Add an additional weight for zero addends. */
7166 if (g1->no_const_addval)
7167 this_benefit += 1;
7168
7169 for (j = 0; j < giv_count; j++)
7170 {
7171 rtx this_combine;
7172
7173 g2 = giv_array[j];
7174 if (g1 != g2
7175 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
7176 {
7177 can_combine[i*giv_count + j] = this_combine;
7178 this_benefit += g2->benefit + extra_benefit;
7179 }
7180 }
7181 stats[i].total_benefit = this_benefit;
7182 }
7183
7184 /* Iterate, combining until we can't. */
7185 restart:
7186 qsort (stats, giv_count, sizeof(*stats), cmp_combine_givs_stats);
7187
7188 if (loop_dump_stream)
7189 {
7190 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
7191 for (k = 0; k < giv_count; k++)
7192 {
7193 g1 = giv_array[stats[k].giv_number];
7194 if (!g1->combined_with && !g1->same)
7195 fprintf (loop_dump_stream, " {%d, %d}",
7196 INSN_UID (giv_array[stats[k].giv_number]->insn),
7197 stats[k].total_benefit);
7198 }
7199 putc ('\n', loop_dump_stream);
7200 }
7201
7202 for (k = 0; k < giv_count; k++)
7203 {
7204 int g1_add_benefit = 0;
7205
7206 i = stats[k].giv_number;
7207 g1 = giv_array[i];
7208
7209 /* If it has already been combined, skip. */
7210 if (g1->combined_with || g1->same)
7211 continue;
7212
7213 for (j = 0; j < giv_count; j++)
7214 {
7215 g2 = giv_array[j];
7216 if (g1 != g2 && can_combine[i*giv_count + j]
7217 /* If it has already been combined, skip. */
7218 && ! g2->same && ! g2->combined_with)
7219 {
7220 int l;
7221
7222 g2->new_reg = can_combine[i*giv_count + j];
7223 g2->same = g1;
7224 g1->combined_with++;
7225 g1->lifetime += g2->lifetime;
7226
7227 g1_add_benefit += g2->benefit;
7228
7229 /* ??? The new final_[bg]iv_value code does a much better job
7230 of finding replaceable giv's, and hence this code may no
7231 longer be necessary. */
7232 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
7233 g1_add_benefit -= copy_cost;
7234
7235 /* To help optimize the next set of combinations, remove
7236 this giv from the benefits of other potential mates. */
7237 for (l = 0; l < giv_count; ++l)
7238 {
7239 int m = stats[l].giv_number;
7240 if (can_combine[m*giv_count + j])
7241 stats[l].total_benefit -= g2->benefit + extra_benefit;
7242 }
7243
7244 if (loop_dump_stream)
7245 fprintf (loop_dump_stream,
7246 "giv at %d combined with giv at %d\n",
7247 INSN_UID (g2->insn), INSN_UID (g1->insn));
7248 }
7249 }
7250
7251 /* To help optimize the next set of combinations, remove
7252 this giv from the benefits of other potential mates. */
7253 if (g1->combined_with)
7254 {
7255 for (j = 0; j < giv_count; ++j)
7256 {
7257 int m = stats[j].giv_number;
7258 if (can_combine[m*giv_count + i])
7259 stats[j].total_benefit -= g1->benefit + extra_benefit;
7260 }
7261
7262 g1->benefit += g1_add_benefit;
7263
7264 /* We've finished with this giv, and everything it touched.
7265 Restart the combination so that proper weights for the
7266 rest of the givs are properly taken into account. */
7267 /* ??? Ideally we would compact the arrays at this point, so
7268 as to not cover old ground. But sanely compacting
7269 can_combine is tricky. */
7270 goto restart;
7271 }
7272 }
7273
7274 /* Clean up. */
7275 free (stats);
7276 free (can_combine);
7277 }
7278 \f
7279 struct recombine_givs_stats
7280 {
7281 int giv_number;
7282 int start_luid, end_luid;
7283 };
7284
7285 /* Used below as comparison function for qsort. We want a ascending luid
7286 when scanning the array starting at the end, thus the arguments are
7287 used in reverse. */
7288 static int
7289 cmp_recombine_givs_stats (xp, yp)
7290 const PTR xp;
7291 const PTR yp;
7292 {
7293 const struct recombine_givs_stats * const x =
7294 (const struct recombine_givs_stats *) xp;
7295 const struct recombine_givs_stats * const y =
7296 (const struct recombine_givs_stats *) yp;
7297 int d;
7298 d = y->start_luid - x->start_luid;
7299 /* Stabilize the sort. */
7300 if (!d)
7301 d = y->giv_number - x->giv_number;
7302 return d;
7303 }
7304
7305 /* Scan X, which is a part of INSN, for the end of life of a giv. Also
7306 look for the start of life of a giv where the start has not been seen
7307 yet to unlock the search for the end of its life.
7308 Only consider givs that belong to BIV.
7309 Return the total number of lifetime ends that have been found. */
7310 static int
7311 find_life_end (x, stats, insn, biv)
7312 rtx x, insn, biv;
7313 struct recombine_givs_stats *stats;
7314 {
7315 enum rtx_code code;
7316 const char *fmt;
7317 int i, j;
7318 int retval;
7319
7320 code = GET_CODE (x);
7321 switch (code)
7322 {
7323 case SET:
7324 {
7325 rtx reg = SET_DEST (x);
7326 if (GET_CODE (reg) == REG)
7327 {
7328 int regno = REGNO (reg);
7329 struct induction *v = REG_IV_INFO (regno);
7330
7331 if (REG_IV_TYPE (regno) == GENERAL_INDUCT
7332 && ! v->ignore
7333 && v->src_reg == biv
7334 && stats[v->ix].end_luid <= 0)
7335 {
7336 /* If we see a 0 here for end_luid, it means that we have
7337 scanned the entire loop without finding any use at all.
7338 We must not predicate this code on a start_luid match
7339 since that would make the test fail for givs that have
7340 been hoisted out of inner loops. */
7341 if (stats[v->ix].end_luid == 0)
7342 {
7343 stats[v->ix].end_luid = stats[v->ix].start_luid;
7344 return 1 + find_life_end (SET_SRC (x), stats, insn, biv);
7345 }
7346 else if (stats[v->ix].start_luid == INSN_LUID (insn))
7347 stats[v->ix].end_luid = 0;
7348 }
7349 return find_life_end (SET_SRC (x), stats, insn, biv);
7350 }
7351 break;
7352 }
7353 case REG:
7354 {
7355 int regno = REGNO (x);
7356 struct induction *v = REG_IV_INFO (regno);
7357
7358 if (REG_IV_TYPE (regno) == GENERAL_INDUCT
7359 && ! v->ignore
7360 && v->src_reg == biv
7361 && stats[v->ix].end_luid == 0)
7362 {
7363 while (INSN_UID (insn) >= max_uid_for_loop)
7364 insn = NEXT_INSN (insn);
7365 stats[v->ix].end_luid = INSN_LUID (insn);
7366 return 1;
7367 }
7368 return 0;
7369 }
7370 case LABEL_REF:
7371 case CONST_DOUBLE:
7372 case CONST_INT:
7373 case CONST:
7374 return 0;
7375 default:
7376 break;
7377 }
7378 fmt = GET_RTX_FORMAT (code);
7379 retval = 0;
7380 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7381 {
7382 if (fmt[i] == 'e')
7383 retval += find_life_end (XEXP (x, i), stats, insn, biv);
7384
7385 else if (fmt[i] == 'E')
7386 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7387 retval += find_life_end (XVECEXP (x, i, j), stats, insn, biv);
7388 }
7389 return retval;
7390 }
7391
7392 /* For each giv that has been combined with another, look if
7393 we can combine it with the most recently used one instead.
7394 This tends to shorten giv lifetimes, and helps the next step:
7395 try to derive givs from other givs. */
7396 static void
7397 recombine_givs (loop, bl, unroll_p)
7398 const struct loop *loop;
7399 struct iv_class *bl;
7400 int unroll_p;
7401 {
7402 struct induction *v, **giv_array, *last_giv;
7403 struct recombine_givs_stats *stats;
7404 int giv_count;
7405 int i, rescan;
7406 int ends_need_computing;
7407
7408 for (giv_count = 0, v = bl->giv; v; v = v->next_iv)
7409 {
7410 if (! v->ignore)
7411 giv_count++;
7412 }
7413 giv_array
7414 = (struct induction **) xmalloc (giv_count * sizeof (struct induction *));
7415 stats = (struct recombine_givs_stats *) xmalloc (giv_count * sizeof *stats);
7416
7417 /* Initialize stats and set up the ix field for each giv in stats to name
7418 the corresponding index into stats. */
7419 for (i = 0, v = bl->giv; v; v = v->next_iv)
7420 {
7421 rtx p;
7422
7423 if (v->ignore)
7424 continue;
7425 giv_array[i] = v;
7426 stats[i].giv_number = i;
7427 /* If this giv has been hoisted out of an inner loop, use the luid of
7428 the previous insn. */
7429 for (p = v->insn; INSN_UID (p) >= max_uid_for_loop; )
7430 p = PREV_INSN (p);
7431 stats[i].start_luid = INSN_LUID (p);
7432 i++;
7433 }
7434
7435 qsort (stats, giv_count, sizeof(*stats), cmp_recombine_givs_stats);
7436
7437 /* Set up the ix field for each giv in stats to name
7438 the corresponding index into stats, and
7439 do the actual most-recently-used recombination. */
7440 for (last_giv = 0, i = giv_count - 1; i >= 0; i--)
7441 {
7442 v = giv_array[stats[i].giv_number];
7443 v->ix = i;
7444 if (v->same)
7445 {
7446 struct induction *old_same = v->same;
7447 rtx new_combine;
7448
7449 /* combine_givs_p actually says if we can make this transformation.
7450 The other tests are here only to avoid keeping a giv alive
7451 that could otherwise be eliminated. */
7452 if (last_giv
7453 && ((old_same->maybe_dead && ! old_same->combined_with)
7454 || ! last_giv->maybe_dead
7455 || last_giv->combined_with)
7456 && (new_combine = combine_givs_p (last_giv, v)))
7457 {
7458 old_same->combined_with--;
7459 v->new_reg = new_combine;
7460 v->same = last_giv;
7461 last_giv->combined_with++;
7462 /* No need to update lifetimes / benefits here since we have
7463 already decided what to reduce. */
7464
7465 if (loop_dump_stream)
7466 {
7467 fprintf (loop_dump_stream,
7468 "giv at %d recombined with giv at %d as ",
7469 INSN_UID (v->insn), INSN_UID (last_giv->insn));
7470 print_rtl (loop_dump_stream, v->new_reg);
7471 putc ('\n', loop_dump_stream);
7472 }
7473 continue;
7474 }
7475 v = v->same;
7476 }
7477 else if (v->giv_type != DEST_REG)
7478 continue;
7479 if (! last_giv
7480 || (last_giv->maybe_dead && ! last_giv->combined_with)
7481 || ! v->maybe_dead
7482 || v->combined_with)
7483 last_giv = v;
7484 }
7485
7486 ends_need_computing = 0;
7487 /* For each DEST_REG giv, compute lifetime starts, and try to compute
7488 lifetime ends from regscan info. */
7489 for (i = giv_count - 1; i >= 0; i--)
7490 {
7491 v = giv_array[stats[i].giv_number];
7492 if (v->ignore)
7493 continue;
7494 if (v->giv_type == DEST_ADDR)
7495 {
7496 /* Loop unrolling of an inner loop can even create new DEST_REG
7497 givs. */
7498 rtx p;
7499 for (p = v->insn; INSN_UID (p) >= max_uid_for_loop; )
7500 p = PREV_INSN (p);
7501 stats[i].start_luid = stats[i].end_luid = INSN_LUID (p);
7502 if (p != v->insn)
7503 stats[i].end_luid++;
7504 }
7505 else /* v->giv_type == DEST_REG */
7506 {
7507 if (v->last_use)
7508 {
7509 stats[i].start_luid = INSN_LUID (v->insn);
7510 stats[i].end_luid = INSN_LUID (v->last_use);
7511 }
7512 else if (INSN_UID (v->insn) >= max_uid_for_loop)
7513 {
7514 rtx p;
7515 /* This insn has been created by loop optimization on an inner
7516 loop. We don't have a proper start_luid that will match
7517 when we see the first set. But we do know that there will
7518 be no use before the set, so we can set end_luid to 0 so that
7519 we'll start looking for the last use right away. */
7520 for (p = PREV_INSN (v->insn); INSN_UID (p) >= max_uid_for_loop; )
7521 p = PREV_INSN (p);
7522 stats[i].start_luid = INSN_LUID (p);
7523 stats[i].end_luid = 0;
7524 ends_need_computing++;
7525 }
7526 else
7527 {
7528 int regno = REGNO (v->dest_reg);
7529 int count = VARRAY_INT (n_times_set, regno) - 1;
7530 rtx p = v->insn;
7531
7532 /* Find the first insn that sets the giv, so that we can verify
7533 if this giv's lifetime wraps around the loop. We also need
7534 the luid of the first setting insn in order to detect the
7535 last use properly. */
7536 while (count)
7537 {
7538 p = prev_nonnote_insn (p);
7539 if (reg_set_p (v->dest_reg, p))
7540 count--;
7541 }
7542
7543 stats[i].start_luid = INSN_LUID (p);
7544 if (stats[i].start_luid > uid_luid[REGNO_FIRST_UID (regno)])
7545 {
7546 stats[i].end_luid = -1;
7547 ends_need_computing++;
7548 }
7549 else
7550 {
7551 stats[i].end_luid = uid_luid[REGNO_LAST_UID (regno)];
7552 if (stats[i].end_luid > INSN_LUID (loop->end))
7553 {
7554 stats[i].end_luid = -1;
7555 ends_need_computing++;
7556 }
7557 }
7558 }
7559 }
7560 }
7561
7562 /* If the regscan information was unconclusive for one or more DEST_REG
7563 givs, scan the all insn in the loop to find out lifetime ends. */
7564 if (ends_need_computing)
7565 {
7566 rtx biv = bl->biv->src_reg;
7567 rtx p = loop->end;
7568
7569 do
7570 {
7571 if (p == loop->start)
7572 p = loop->end;
7573 p = PREV_INSN (p);
7574 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
7575 continue;
7576 ends_need_computing -= find_life_end (PATTERN (p), stats, p, biv);
7577 }
7578 while (ends_need_computing);
7579 }
7580
7581 /* Set start_luid back to the last insn that sets the giv. This allows
7582 more combinations. */
7583 for (i = giv_count - 1; i >= 0; i--)
7584 {
7585 v = giv_array[stats[i].giv_number];
7586 if (v->ignore)
7587 continue;
7588 if (INSN_UID (v->insn) < max_uid_for_loop)
7589 stats[i].start_luid = INSN_LUID (v->insn);
7590 }
7591
7592 /* Now adjust lifetime ends by taking combined givs into account. */
7593 for (i = giv_count - 1; i >= 0; i--)
7594 {
7595 unsigned luid;
7596 int j;
7597
7598 v = giv_array[stats[i].giv_number];
7599 if (v->ignore)
7600 continue;
7601 if (v->same && ! v->same->ignore)
7602 {
7603 j = v->same->ix;
7604 luid = stats[i].start_luid;
7605 /* Use unsigned arithmetic to model loop wrap-around. */
7606 if (luid - stats[j].start_luid
7607 > (unsigned) stats[j].end_luid - stats[j].start_luid)
7608 stats[j].end_luid = luid;
7609 }
7610 }
7611
7612 qsort (stats, giv_count, sizeof(*stats), cmp_recombine_givs_stats);
7613
7614 /* Try to derive DEST_REG givs from previous DEST_REG givs with the
7615 same mult_val and non-overlapping lifetime. This reduces register
7616 pressure.
7617 Once we find a DEST_REG giv that is suitable to derive others from,
7618 we set last_giv to this giv, and try to derive as many other DEST_REG
7619 givs from it without joining overlapping lifetimes. If we then
7620 encounter a DEST_REG giv that we can't derive, we set rescan to the
7621 index for this giv (unless rescan is already set).
7622 When we are finished with the current LAST_GIV (i.e. the inner loop
7623 terminates), we start again with rescan, which then becomes the new
7624 LAST_GIV. */
7625 for (i = giv_count - 1; i >= 0; i = rescan)
7626 {
7627 int life_start = 0, life_end = 0;
7628
7629 for (last_giv = 0, rescan = -1; i >= 0; i--)
7630 {
7631 rtx sum;
7632
7633 v = giv_array[stats[i].giv_number];
7634 if (v->giv_type != DEST_REG || v->derived_from || v->same)
7635 continue;
7636 if (! last_giv)
7637 {
7638 /* Don't use a giv that's likely to be dead to derive
7639 others - that would be likely to keep that giv alive. */
7640 if (! v->maybe_dead || v->combined_with)
7641 {
7642 last_giv = v;
7643 life_start = stats[i].start_luid;
7644 life_end = stats[i].end_luid;
7645 }
7646 continue;
7647 }
7648 /* Use unsigned arithmetic to model loop wrap around. */
7649 if (((unsigned) stats[i].start_luid - life_start
7650 >= (unsigned) life_end - life_start)
7651 && ((unsigned) stats[i].end_luid - life_start
7652 > (unsigned) life_end - life_start)
7653 /* Check that the giv insn we're about to use for deriving
7654 precedes all uses of that giv. Note that initializing the
7655 derived giv would defeat the purpose of reducing register
7656 pressure.
7657 ??? We could arrange to move the insn. */
7658 && ((unsigned) stats[i].end_luid - INSN_LUID (loop->start)
7659 > (unsigned) stats[i].start_luid - INSN_LUID (loop->start))
7660 && rtx_equal_p (last_giv->mult_val, v->mult_val)
7661 /* ??? Could handle libcalls, but would need more logic. */
7662 && ! find_reg_note (v->insn, REG_RETVAL, NULL_RTX)
7663 /* We would really like to know if for any giv that v
7664 is combined with, v->insn or any intervening biv increment
7665 dominates that combined giv. However, we
7666 don't have this detailed control flow information.
7667 N.B. since last_giv will be reduced, it is valid
7668 anywhere in the loop, so we don't need to check the
7669 validity of last_giv.
7670 We rely here on the fact that v->always_executed implies that
7671 there is no jump to someplace else in the loop before the
7672 giv insn, and hence any insn that is executed before the
7673 giv insn in the loop will have a lower luid. */
7674 && (v->always_executed || ! v->combined_with)
7675 && (sum = express_from (last_giv, v))
7676 /* Make sure we don't make the add more expensive. ADD_COST
7677 doesn't take different costs of registers and constants into
7678 account, so compare the cost of the actual SET_SRCs. */
7679 && (rtx_cost (sum, SET)
7680 <= rtx_cost (SET_SRC (single_set (v->insn)), SET))
7681 /* ??? unroll can't understand anything but reg + const_int
7682 sums. It would be cleaner to fix unroll. */
7683 && ((GET_CODE (sum) == PLUS
7684 && GET_CODE (XEXP (sum, 0)) == REG
7685 && GET_CODE (XEXP (sum, 1)) == CONST_INT)
7686 || ! unroll_p)
7687 && validate_change (v->insn, &PATTERN (v->insn),
7688 gen_rtx_SET (VOIDmode, v->dest_reg, sum), 0))
7689 {
7690 v->derived_from = last_giv;
7691 life_end = stats[i].end_luid;
7692
7693 if (loop_dump_stream)
7694 {
7695 fprintf (loop_dump_stream,
7696 "giv at %d derived from %d as ",
7697 INSN_UID (v->insn), INSN_UID (last_giv->insn));
7698 print_rtl (loop_dump_stream, sum);
7699 putc ('\n', loop_dump_stream);
7700 }
7701 }
7702 else if (rescan < 0)
7703 rescan = i;
7704 }
7705 }
7706
7707 /* Clean up. */
7708 free (giv_array);
7709 free (stats);
7710 }
7711 \f
7712 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
7713
7714 void
7715 emit_iv_add_mult (b, m, a, reg, insert_before)
7716 rtx b; /* initial value of basic induction variable */
7717 rtx m; /* multiplicative constant */
7718 rtx a; /* additive constant */
7719 rtx reg; /* destination register */
7720 rtx insert_before;
7721 {
7722 rtx seq;
7723 rtx result;
7724
7725 /* Prevent unexpected sharing of these rtx. */
7726 a = copy_rtx (a);
7727 b = copy_rtx (b);
7728
7729 /* Increase the lifetime of any invariants moved further in code. */
7730 update_reg_last_use (a, insert_before);
7731 update_reg_last_use (b, insert_before);
7732 update_reg_last_use (m, insert_before);
7733
7734 start_sequence ();
7735 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
7736 if (reg != result)
7737 emit_move_insn (reg, result);
7738 seq = gen_sequence ();
7739 end_sequence ();
7740
7741 emit_insn_before (seq, insert_before);
7742
7743 /* It is entirely possible that the expansion created lots of new
7744 registers. Iterate over the sequence we just created and
7745 record them all. */
7746
7747 if (GET_CODE (seq) == SEQUENCE)
7748 {
7749 int i;
7750 for (i = 0; i < XVECLEN (seq, 0); ++i)
7751 {
7752 rtx set = single_set (XVECEXP (seq, 0, i));
7753 if (set && GET_CODE (SET_DEST (set)) == REG)
7754 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
7755 }
7756 }
7757 else if (GET_CODE (seq) == SET
7758 && GET_CODE (SET_DEST (seq)) == REG)
7759 record_base_value (REGNO (SET_DEST (seq)), SET_SRC (seq), 0);
7760 }
7761 \f
7762 /* Test whether A * B can be computed without
7763 an actual multiply insn. Value is 1 if so. */
7764
7765 static int
7766 product_cheap_p (a, b)
7767 rtx a;
7768 rtx b;
7769 {
7770 int i;
7771 rtx tmp;
7772 struct obstack *old_rtl_obstack = rtl_obstack;
7773 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
7774 int win = 1;
7775
7776 /* If only one is constant, make it B. */
7777 if (GET_CODE (a) == CONST_INT)
7778 tmp = a, a = b, b = tmp;
7779
7780 /* If first constant, both constant, so don't need multiply. */
7781 if (GET_CODE (a) == CONST_INT)
7782 return 1;
7783
7784 /* If second not constant, neither is constant, so would need multiply. */
7785 if (GET_CODE (b) != CONST_INT)
7786 return 0;
7787
7788 /* One operand is constant, so might not need multiply insn. Generate the
7789 code for the multiply and see if a call or multiply, or long sequence
7790 of insns is generated. */
7791
7792 rtl_obstack = &temp_obstack;
7793 start_sequence ();
7794 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
7795 tmp = gen_sequence ();
7796 end_sequence ();
7797
7798 if (GET_CODE (tmp) == SEQUENCE)
7799 {
7800 if (XVEC (tmp, 0) == 0)
7801 win = 1;
7802 else if (XVECLEN (tmp, 0) > 3)
7803 win = 0;
7804 else
7805 for (i = 0; i < XVECLEN (tmp, 0); i++)
7806 {
7807 rtx insn = XVECEXP (tmp, 0, i);
7808
7809 if (GET_CODE (insn) != INSN
7810 || (GET_CODE (PATTERN (insn)) == SET
7811 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
7812 || (GET_CODE (PATTERN (insn)) == PARALLEL
7813 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
7814 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
7815 {
7816 win = 0;
7817 break;
7818 }
7819 }
7820 }
7821 else if (GET_CODE (tmp) == SET
7822 && GET_CODE (SET_SRC (tmp)) == MULT)
7823 win = 0;
7824 else if (GET_CODE (tmp) == PARALLEL
7825 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
7826 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
7827 win = 0;
7828
7829 /* Free any storage we obtained in generating this multiply and restore rtl
7830 allocation to its normal obstack. */
7831 obstack_free (&temp_obstack, storage);
7832 rtl_obstack = old_rtl_obstack;
7833
7834 return win;
7835 }
7836 \f
7837 /* Check to see if loop can be terminated by a "decrement and branch until
7838 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7839 Also try reversing an increment loop to a decrement loop
7840 to see if the optimization can be performed.
7841 Value is nonzero if optimization was performed. */
7842
7843 /* This is useful even if the architecture doesn't have such an insn,
7844 because it might change a loops which increments from 0 to n to a loop
7845 which decrements from n to 0. A loop that decrements to zero is usually
7846 faster than one that increments from zero. */
7847
7848 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7849 such as approx_final_value, biv_total_increment, loop_iterations, and
7850 final_[bg]iv_value. */
7851
7852 static int
7853 check_dbra_loop (loop, insn_count)
7854 struct loop *loop;
7855 int insn_count;
7856 {
7857 struct iv_class *bl;
7858 rtx reg;
7859 rtx jump_label;
7860 rtx final_value;
7861 rtx start_value;
7862 rtx new_add_val;
7863 rtx comparison;
7864 rtx before_comparison;
7865 rtx p;
7866 rtx jump;
7867 rtx first_compare;
7868 int compare_and_branch;
7869 rtx loop_start = loop->start;
7870 rtx loop_end = loop->end;
7871 struct loop_info *loop_info = LOOP_INFO (loop);
7872
7873 /* If last insn is a conditional branch, and the insn before tests a
7874 register value, try to optimize it. Otherwise, we can't do anything. */
7875
7876 jump = PREV_INSN (loop_end);
7877 comparison = get_condition_for_loop (loop, jump);
7878 if (comparison == 0)
7879 return 0;
7880
7881 /* Try to compute whether the compare/branch at the loop end is one or
7882 two instructions. */
7883 get_condition (jump, &first_compare);
7884 if (first_compare == jump)
7885 compare_and_branch = 1;
7886 else if (first_compare == prev_nonnote_insn (jump))
7887 compare_and_branch = 2;
7888 else
7889 return 0;
7890
7891 /* Check all of the bivs to see if the compare uses one of them.
7892 Skip biv's set more than once because we can't guarantee that
7893 it will be zero on the last iteration. Also skip if the biv is
7894 used between its update and the test insn. */
7895
7896 for (bl = loop_iv_list; bl; bl = bl->next)
7897 {
7898 if (bl->biv_count == 1
7899 && ! bl->biv->maybe_multiple
7900 && bl->biv->dest_reg == XEXP (comparison, 0)
7901 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
7902 first_compare))
7903 break;
7904 }
7905
7906 if (! bl)
7907 return 0;
7908
7909 /* Look for the case where the basic induction variable is always
7910 nonnegative, and equals zero on the last iteration.
7911 In this case, add a reg_note REG_NONNEG, which allows the
7912 m68k DBRA instruction to be used. */
7913
7914 if (((GET_CODE (comparison) == GT
7915 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
7916 && INTVAL (XEXP (comparison, 1)) == -1)
7917 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
7918 && GET_CODE (bl->biv->add_val) == CONST_INT
7919 && INTVAL (bl->biv->add_val) < 0)
7920 {
7921 /* Initial value must be greater than 0,
7922 init_val % -dec_value == 0 to ensure that it equals zero on
7923 the last iteration */
7924
7925 if (GET_CODE (bl->initial_value) == CONST_INT
7926 && INTVAL (bl->initial_value) > 0
7927 && (INTVAL (bl->initial_value)
7928 % (-INTVAL (bl->biv->add_val))) == 0)
7929 {
7930 /* register always nonnegative, add REG_NOTE to branch */
7931 REG_NOTES (PREV_INSN (loop_end))
7932 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
7933 REG_NOTES (PREV_INSN (loop_end)));
7934 bl->nonneg = 1;
7935
7936 return 1;
7937 }
7938
7939 /* If the decrement is 1 and the value was tested as >= 0 before
7940 the loop, then we can safely optimize. */
7941 for (p = loop_start; p; p = PREV_INSN (p))
7942 {
7943 if (GET_CODE (p) == CODE_LABEL)
7944 break;
7945 if (GET_CODE (p) != JUMP_INSN)
7946 continue;
7947
7948 before_comparison = get_condition_for_loop (loop, p);
7949 if (before_comparison
7950 && XEXP (before_comparison, 0) == bl->biv->dest_reg
7951 && GET_CODE (before_comparison) == LT
7952 && XEXP (before_comparison, 1) == const0_rtx
7953 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
7954 && INTVAL (bl->biv->add_val) == -1)
7955 {
7956 REG_NOTES (PREV_INSN (loop_end))
7957 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
7958 REG_NOTES (PREV_INSN (loop_end)));
7959 bl->nonneg = 1;
7960
7961 return 1;
7962 }
7963 }
7964 }
7965 else if (GET_CODE (bl->biv->add_val) == CONST_INT
7966 && INTVAL (bl->biv->add_val) > 0)
7967 {
7968 /* Try to change inc to dec, so can apply above optimization. */
7969 /* Can do this if:
7970 all registers modified are induction variables or invariant,
7971 all memory references have non-overlapping addresses
7972 (obviously true if only one write)
7973 allow 2 insns for the compare/jump at the end of the loop. */
7974 /* Also, we must avoid any instructions which use both the reversed
7975 biv and another biv. Such instructions will fail if the loop is
7976 reversed. We meet this condition by requiring that either
7977 no_use_except_counting is true, or else that there is only
7978 one biv. */
7979 int num_nonfixed_reads = 0;
7980 /* 1 if the iteration var is used only to count iterations. */
7981 int no_use_except_counting = 0;
7982 /* 1 if the loop has no memory store, or it has a single memory store
7983 which is reversible. */
7984 int reversible_mem_store = 1;
7985
7986 if (bl->giv_count == 0 && ! loop->exit_count)
7987 {
7988 rtx bivreg = regno_reg_rtx[bl->regno];
7989
7990 /* If there are no givs for this biv, and the only exit is the
7991 fall through at the end of the loop, then
7992 see if perhaps there are no uses except to count. */
7993 no_use_except_counting = 1;
7994 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7995 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
7996 {
7997 rtx set = single_set (p);
7998
7999 if (set && GET_CODE (SET_DEST (set)) == REG
8000 && REGNO (SET_DEST (set)) == bl->regno)
8001 /* An insn that sets the biv is okay. */
8002 ;
8003 else if ((p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
8004 || p == prev_nonnote_insn (loop_end))
8005 && reg_mentioned_p (bivreg, PATTERN (p)))
8006 {
8007 /* If either of these insns uses the biv and sets a pseudo
8008 that has more than one usage, then the biv has uses
8009 other than counting since it's used to derive a value
8010 that is used more than one time. */
8011 int note_set_pseudo_multiple_uses_retval = 0;
8012 note_stores (PATTERN (p), note_set_pseudo_multiple_uses,
8013 &note_set_pseudo_multiple_uses_retval);
8014 if (note_set_pseudo_multiple_uses_retval)
8015 {
8016 no_use_except_counting = 0;
8017 break;
8018 }
8019 }
8020 else if (reg_mentioned_p (bivreg, PATTERN (p)))
8021 {
8022 no_use_except_counting = 0;
8023 break;
8024 }
8025 }
8026 }
8027
8028 if (no_use_except_counting)
8029 ; /* no need to worry about MEMs. */
8030 else if (num_mem_sets <= 1)
8031 {
8032 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8033 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
8034 num_nonfixed_reads += count_nonfixed_reads (loop, PATTERN (p));
8035
8036 /* If the loop has a single store, and the destination address is
8037 invariant, then we can't reverse the loop, because this address
8038 might then have the wrong value at loop exit.
8039 This would work if the source was invariant also, however, in that
8040 case, the insn should have been moved out of the loop. */
8041
8042 if (num_mem_sets == 1)
8043 {
8044 struct induction *v;
8045
8046 reversible_mem_store
8047 = (! unknown_address_altered
8048 && ! unknown_constant_address_altered
8049 && ! loop_invariant_p (loop,
8050 XEXP (XEXP (loop_store_mems, 0),
8051 0)));
8052
8053 /* If the store depends on a register that is set after the
8054 store, it depends on the initial value, and is thus not
8055 reversible. */
8056 for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
8057 {
8058 if (v->giv_type == DEST_REG
8059 && reg_mentioned_p (v->dest_reg,
8060 PATTERN (first_loop_store_insn))
8061 && loop_insn_first_p (first_loop_store_insn, v->insn))
8062 reversible_mem_store = 0;
8063 }
8064 }
8065 }
8066 else
8067 return 0;
8068
8069 /* This code only acts for innermost loops. Also it simplifies
8070 the memory address check by only reversing loops with
8071 zero or one memory access.
8072 Two memory accesses could involve parts of the same array,
8073 and that can't be reversed.
8074 If the biv is used only for counting, than we don't need to worry
8075 about all these things. */
8076
8077 if ((num_nonfixed_reads <= 1
8078 && ! loop_info->has_call
8079 && ! loop_info->has_volatile
8080 && reversible_mem_store
8081 && (bl->giv_count + bl->biv_count + num_mem_sets
8082 + num_movables + compare_and_branch == insn_count)
8083 && (bl == loop_iv_list && bl->next == 0))
8084 || no_use_except_counting)
8085 {
8086 rtx tem;
8087
8088 /* Loop can be reversed. */
8089 if (loop_dump_stream)
8090 fprintf (loop_dump_stream, "Can reverse loop\n");
8091
8092 /* Now check other conditions:
8093
8094 The increment must be a constant, as must the initial value,
8095 and the comparison code must be LT.
8096
8097 This test can probably be improved since +/- 1 in the constant
8098 can be obtained by changing LT to LE and vice versa; this is
8099 confusing. */
8100
8101 if (comparison
8102 /* for constants, LE gets turned into LT */
8103 && (GET_CODE (comparison) == LT
8104 || (GET_CODE (comparison) == LE
8105 && no_use_except_counting)))
8106 {
8107 HOST_WIDE_INT add_val, add_adjust, comparison_val = 0;
8108 rtx initial_value, comparison_value;
8109 int nonneg = 0;
8110 enum rtx_code cmp_code;
8111 int comparison_const_width;
8112 unsigned HOST_WIDE_INT comparison_sign_mask;
8113
8114 add_val = INTVAL (bl->biv->add_val);
8115 comparison_value = XEXP (comparison, 1);
8116 if (GET_MODE (comparison_value) == VOIDmode)
8117 comparison_const_width
8118 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
8119 else
8120 comparison_const_width
8121 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
8122 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
8123 comparison_const_width = HOST_BITS_PER_WIDE_INT;
8124 comparison_sign_mask
8125 = (unsigned HOST_WIDE_INT)1 << (comparison_const_width - 1);
8126
8127 /* If the comparison value is not a loop invariant, then we
8128 can not reverse this loop.
8129
8130 ??? If the insns which initialize the comparison value as
8131 a whole compute an invariant result, then we could move
8132 them out of the loop and proceed with loop reversal. */
8133 if (! loop_invariant_p (loop, comparison_value))
8134 return 0;
8135
8136 if (GET_CODE (comparison_value) == CONST_INT)
8137 comparison_val = INTVAL (comparison_value);
8138 initial_value = bl->initial_value;
8139
8140 /* Normalize the initial value if it is an integer and
8141 has no other use except as a counter. This will allow
8142 a few more loops to be reversed. */
8143 if (no_use_except_counting
8144 && GET_CODE (comparison_value) == CONST_INT
8145 && GET_CODE (initial_value) == CONST_INT)
8146 {
8147 comparison_val = comparison_val - INTVAL (bl->initial_value);
8148 /* The code below requires comparison_val to be a multiple
8149 of add_val in order to do the loop reversal, so
8150 round up comparison_val to a multiple of add_val.
8151 Since comparison_value is constant, we know that the
8152 current comparison code is LT. */
8153 comparison_val = comparison_val + add_val - 1;
8154 comparison_val
8155 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
8156 /* We postpone overflow checks for COMPARISON_VAL here;
8157 even if there is an overflow, we might still be able to
8158 reverse the loop, if converting the loop exit test to
8159 NE is possible. */
8160 initial_value = const0_rtx;
8161 }
8162
8163 /* First check if we can do a vanilla loop reversal. */
8164 if (initial_value == const0_rtx
8165 /* If we have a decrement_and_branch_on_count,
8166 prefer the NE test, since this will allow that
8167 instruction to be generated. Note that we must
8168 use a vanilla loop reversal if the biv is used to
8169 calculate a giv or has a non-counting use. */
8170 #if ! defined (HAVE_decrement_and_branch_until_zero) \
8171 && defined (HAVE_decrement_and_branch_on_count)
8172 && (! (add_val == 1 && loop->vtop
8173 && (bl->biv_count == 0
8174 || no_use_except_counting)))
8175 #endif
8176 && GET_CODE (comparison_value) == CONST_INT
8177 /* Now do postponed overflow checks on COMPARISON_VAL. */
8178 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
8179 & comparison_sign_mask))
8180 {
8181 /* Register will always be nonnegative, with value
8182 0 on last iteration */
8183 add_adjust = add_val;
8184 nonneg = 1;
8185 cmp_code = GE;
8186 }
8187 else if (add_val == 1 && loop->vtop
8188 && (bl->biv_count == 0
8189 || no_use_except_counting))
8190 {
8191 add_adjust = 0;
8192 cmp_code = NE;
8193 }
8194 else
8195 return 0;
8196
8197 if (GET_CODE (comparison) == LE)
8198 add_adjust -= add_val;
8199
8200 /* If the initial value is not zero, or if the comparison
8201 value is not an exact multiple of the increment, then we
8202 can not reverse this loop. */
8203 if (initial_value == const0_rtx
8204 && GET_CODE (comparison_value) == CONST_INT)
8205 {
8206 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
8207 return 0;
8208 }
8209 else
8210 {
8211 if (! no_use_except_counting || add_val != 1)
8212 return 0;
8213 }
8214
8215 final_value = comparison_value;
8216
8217 /* Reset these in case we normalized the initial value
8218 and comparison value above. */
8219 if (GET_CODE (comparison_value) == CONST_INT
8220 && GET_CODE (initial_value) == CONST_INT)
8221 {
8222 comparison_value = GEN_INT (comparison_val);
8223 final_value
8224 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
8225 }
8226 bl->initial_value = initial_value;
8227
8228 /* Save some info needed to produce the new insns. */
8229 reg = bl->biv->dest_reg;
8230 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
8231 if (jump_label == pc_rtx)
8232 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
8233 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
8234
8235 /* Set start_value; if this is not a CONST_INT, we need
8236 to generate a SUB.
8237 Initialize biv to start_value before loop start.
8238 The old initializing insn will be deleted as a
8239 dead store by flow.c. */
8240 if (initial_value == const0_rtx
8241 && GET_CODE (comparison_value) == CONST_INT)
8242 {
8243 start_value = GEN_INT (comparison_val - add_adjust);
8244 emit_insn_before (gen_move_insn (reg, start_value),
8245 loop_start);
8246 }
8247 else if (GET_CODE (initial_value) == CONST_INT)
8248 {
8249 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
8250 enum machine_mode mode = GET_MODE (reg);
8251 enum insn_code icode
8252 = add_optab->handlers[(int) mode].insn_code;
8253
8254 if (! (*insn_data[icode].operand[0].predicate) (reg, mode)
8255 || ! ((*insn_data[icode].operand[1].predicate)
8256 (comparison_value, mode))
8257 || ! ((*insn_data[icode].operand[2].predicate)
8258 (offset, mode)))
8259 return 0;
8260 start_value
8261 = gen_rtx_PLUS (mode, comparison_value, offset);
8262 emit_insn_before ((GEN_FCN (icode)
8263 (reg, comparison_value, offset)),
8264 loop_start);
8265 if (GET_CODE (comparison) == LE)
8266 final_value = gen_rtx_PLUS (mode, comparison_value,
8267 GEN_INT (add_val));
8268 }
8269 else if (! add_adjust)
8270 {
8271 enum machine_mode mode = GET_MODE (reg);
8272 enum insn_code icode
8273 = sub_optab->handlers[(int) mode].insn_code;
8274 if (! (*insn_data[icode].operand[0].predicate) (reg, mode)
8275 || ! ((*insn_data[icode].operand[1].predicate)
8276 (comparison_value, mode))
8277 || ! ((*insn_data[icode].operand[2].predicate)
8278 (initial_value, mode)))
8279 return 0;
8280 start_value
8281 = gen_rtx_MINUS (mode, comparison_value, initial_value);
8282 emit_insn_before ((GEN_FCN (icode)
8283 (reg, comparison_value, initial_value)),
8284 loop_start);
8285 }
8286 else
8287 /* We could handle the other cases too, but it'll be
8288 better to have a testcase first. */
8289 return 0;
8290
8291 /* We may not have a single insn which can increment a reg, so
8292 create a sequence to hold all the insns from expand_inc. */
8293 start_sequence ();
8294 expand_inc (reg, new_add_val);
8295 tem = gen_sequence ();
8296 end_sequence ();
8297
8298 p = emit_insn_before (tem, bl->biv->insn);
8299 delete_insn (bl->biv->insn);
8300
8301 /* Update biv info to reflect its new status. */
8302 bl->biv->insn = p;
8303 bl->initial_value = start_value;
8304 bl->biv->add_val = new_add_val;
8305
8306 /* Update loop info. */
8307 loop_info->initial_value = reg;
8308 loop_info->initial_equiv_value = reg;
8309 loop_info->final_value = const0_rtx;
8310 loop_info->final_equiv_value = const0_rtx;
8311 loop_info->comparison_value = const0_rtx;
8312 loop_info->comparison_code = cmp_code;
8313 loop_info->increment = new_add_val;
8314
8315 /* Inc LABEL_NUSES so that delete_insn will
8316 not delete the label. */
8317 LABEL_NUSES (XEXP (jump_label, 0)) ++;
8318
8319 /* Emit an insn after the end of the loop to set the biv's
8320 proper exit value if it is used anywhere outside the loop. */
8321 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
8322 || ! bl->init_insn
8323 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
8324 emit_insn_after (gen_move_insn (reg, final_value),
8325 loop_end);
8326
8327 /* Delete compare/branch at end of loop. */
8328 delete_insn (PREV_INSN (loop_end));
8329 if (compare_and_branch == 2)
8330 delete_insn (first_compare);
8331
8332 /* Add new compare/branch insn at end of loop. */
8333 start_sequence ();
8334 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
8335 GET_MODE (reg), 0, 0,
8336 XEXP (jump_label, 0));
8337 tem = gen_sequence ();
8338 end_sequence ();
8339 emit_jump_insn_before (tem, loop_end);
8340
8341 for (tem = PREV_INSN (loop_end);
8342 tem && GET_CODE (tem) != JUMP_INSN;
8343 tem = PREV_INSN (tem))
8344 ;
8345
8346 if (tem)
8347 JUMP_LABEL (tem) = XEXP (jump_label, 0);
8348
8349 if (nonneg)
8350 {
8351 if (tem)
8352 {
8353 /* Increment of LABEL_NUSES done above. */
8354 /* Register is now always nonnegative,
8355 so add REG_NONNEG note to the branch. */
8356 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
8357 REG_NOTES (tem));
8358 }
8359 bl->nonneg = 1;
8360 }
8361
8362 /* No insn may reference both the reversed and another biv or it
8363 will fail (see comment near the top of the loop reversal
8364 code).
8365 Earlier on, we have verified that the biv has no use except
8366 counting, or it is the only biv in this function.
8367 However, the code that computes no_use_except_counting does
8368 not verify reg notes. It's possible to have an insn that
8369 references another biv, and has a REG_EQUAL note with an
8370 expression based on the reversed biv. To avoid this case,
8371 remove all REG_EQUAL notes based on the reversed biv
8372 here. */
8373 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8374 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
8375 {
8376 rtx *pnote;
8377 rtx set = single_set (p);
8378 /* If this is a set of a GIV based on the reversed biv, any
8379 REG_EQUAL notes should still be correct. */
8380 if (! set
8381 || GET_CODE (SET_DEST (set)) != REG
8382 || (size_t) REGNO (SET_DEST (set)) >= reg_iv_type->num_elements
8383 || REG_IV_TYPE (REGNO (SET_DEST (set))) != GENERAL_INDUCT
8384 || REG_IV_INFO (REGNO (SET_DEST (set)))->src_reg != bl->biv->src_reg)
8385 for (pnote = &REG_NOTES (p); *pnote;)
8386 {
8387 if (REG_NOTE_KIND (*pnote) == REG_EQUAL
8388 && reg_mentioned_p (regno_reg_rtx[bl->regno],
8389 XEXP (*pnote, 0)))
8390 *pnote = XEXP (*pnote, 1);
8391 else
8392 pnote = &XEXP (*pnote, 1);
8393 }
8394 }
8395
8396 /* Mark that this biv has been reversed. Each giv which depends
8397 on this biv, and which is also live past the end of the loop
8398 will have to be fixed up. */
8399
8400 bl->reversed = 1;
8401
8402 if (loop_dump_stream)
8403 {
8404 fprintf (loop_dump_stream, "Reversed loop");
8405 if (bl->nonneg)
8406 fprintf (loop_dump_stream, " and added reg_nonneg\n");
8407 else
8408 fprintf (loop_dump_stream, "\n");
8409 }
8410
8411 return 1;
8412 }
8413 }
8414 }
8415
8416 return 0;
8417 }
8418 \f
8419 /* Verify whether the biv BL appears to be eliminable,
8420 based on the insns in the loop that refer to it.
8421
8422 If ELIMINATE_P is non-zero, actually do the elimination.
8423
8424 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
8425 determine whether invariant insns should be placed inside or at the
8426 start of the loop. */
8427
8428 static int
8429 maybe_eliminate_biv (loop, bl, eliminate_p, threshold, insn_count)
8430 const struct loop *loop;
8431 struct iv_class *bl;
8432 int eliminate_p;
8433 int threshold, insn_count;
8434 {
8435 rtx reg = bl->biv->dest_reg;
8436 rtx loop_start = loop->start;
8437 rtx loop_end = loop->end;
8438 rtx p;
8439
8440 /* Scan all insns in the loop, stopping if we find one that uses the
8441 biv in a way that we cannot eliminate. */
8442
8443 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8444 {
8445 enum rtx_code code = GET_CODE (p);
8446 rtx where = threshold >= insn_count ? loop_start : p;
8447
8448 /* If this is a libcall that sets a giv, skip ahead to its end. */
8449 if (GET_RTX_CLASS (code) == 'i')
8450 {
8451 rtx note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
8452
8453 if (note)
8454 {
8455 rtx last = XEXP (note, 0);
8456 rtx set = single_set (last);
8457
8458 if (set && GET_CODE (SET_DEST (set)) == REG)
8459 {
8460 int regno = REGNO (SET_DEST (set));
8461
8462 if (regno < max_reg_before_loop
8463 && REG_IV_TYPE (regno) == GENERAL_INDUCT
8464 && REG_IV_INFO (regno)->src_reg == bl->biv->src_reg)
8465 p = last;
8466 }
8467 }
8468 }
8469 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
8470 && reg_mentioned_p (reg, PATTERN (p))
8471 && ! maybe_eliminate_biv_1 (loop, PATTERN (p), p, bl,
8472 eliminate_p, where))
8473 {
8474 if (loop_dump_stream)
8475 fprintf (loop_dump_stream,
8476 "Cannot eliminate biv %d: biv used in insn %d.\n",
8477 bl->regno, INSN_UID (p));
8478 break;
8479 }
8480 }
8481
8482 if (p == loop_end)
8483 {
8484 if (loop_dump_stream)
8485 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
8486 bl->regno, eliminate_p ? "was" : "can be");
8487 return 1;
8488 }
8489
8490 return 0;
8491 }
8492 \f
8493 /* INSN and REFERENCE are instructions in the same insn chain.
8494 Return non-zero if INSN is first. */
8495
8496 int
8497 loop_insn_first_p (insn, reference)
8498 rtx insn, reference;
8499 {
8500 rtx p, q;
8501
8502 for (p = insn, q = reference; ;)
8503 {
8504 /* Start with test for not first so that INSN == REFERENCE yields not
8505 first. */
8506 if (q == insn || ! p)
8507 return 0;
8508 if (p == reference || ! q)
8509 return 1;
8510
8511 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
8512 previous insn, hence the <= comparison below does not work if
8513 P is a note. */
8514 if (INSN_UID (p) < max_uid_for_loop
8515 && INSN_UID (q) < max_uid_for_loop
8516 && GET_CODE (p) != NOTE)
8517 return INSN_LUID (p) <= INSN_LUID (q);
8518
8519 if (INSN_UID (p) >= max_uid_for_loop
8520 || GET_CODE (p) == NOTE)
8521 p = NEXT_INSN (p);
8522 if (INSN_UID (q) >= max_uid_for_loop)
8523 q = NEXT_INSN (q);
8524 }
8525 }
8526
8527 /* We are trying to eliminate BIV in INSN using GIV. Return non-zero if
8528 the offset that we have to take into account due to auto-increment /
8529 div derivation is zero. */
8530 static int
8531 biv_elimination_giv_has_0_offset (biv, giv, insn)
8532 struct induction *biv, *giv;
8533 rtx insn;
8534 {
8535 /* If the giv V had the auto-inc address optimization applied
8536 to it, and INSN occurs between the giv insn and the biv
8537 insn, then we'd have to adjust the value used here.
8538 This is rare, so we don't bother to make this possible. */
8539 if (giv->auto_inc_opt
8540 && ((loop_insn_first_p (giv->insn, insn)
8541 && loop_insn_first_p (insn, biv->insn))
8542 || (loop_insn_first_p (biv->insn, insn)
8543 && loop_insn_first_p (insn, giv->insn))))
8544 return 0;
8545
8546 /* If the giv V was derived from another giv, and INSN does
8547 not occur between the giv insn and the biv insn, then we'd
8548 have to adjust the value used here. This is rare, so we don't
8549 bother to make this possible. */
8550 if (giv->derived_from
8551 && ! (giv->always_executed
8552 && loop_insn_first_p (giv->insn, insn)
8553 && loop_insn_first_p (insn, biv->insn)))
8554 return 0;
8555 if (giv->same
8556 && giv->same->derived_from
8557 && ! (giv->same->always_executed
8558 && loop_insn_first_p (giv->same->insn, insn)
8559 && loop_insn_first_p (insn, biv->insn)))
8560 return 0;
8561
8562 return 1;
8563 }
8564
8565 /* If BL appears in X (part of the pattern of INSN), see if we can
8566 eliminate its use. If so, return 1. If not, return 0.
8567
8568 If BIV does not appear in X, return 1.
8569
8570 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
8571 where extra insns should be added. Depending on how many items have been
8572 moved out of the loop, it will either be before INSN or at the start of
8573 the loop. */
8574
8575 static int
8576 maybe_eliminate_biv_1 (loop, x, insn, bl, eliminate_p, where)
8577 const struct loop *loop;
8578 rtx x, insn;
8579 struct iv_class *bl;
8580 int eliminate_p;
8581 rtx where;
8582 {
8583 enum rtx_code code = GET_CODE (x);
8584 rtx reg = bl->biv->dest_reg;
8585 enum machine_mode mode = GET_MODE (reg);
8586 struct induction *v;
8587 rtx arg, tem;
8588 #ifdef HAVE_cc0
8589 rtx new;
8590 #endif
8591 int arg_operand;
8592 const char *fmt;
8593 int i, j;
8594
8595 switch (code)
8596 {
8597 case REG:
8598 /* If we haven't already been able to do something with this BIV,
8599 we can't eliminate it. */
8600 if (x == reg)
8601 return 0;
8602 return 1;
8603
8604 case SET:
8605 /* If this sets the BIV, it is not a problem. */
8606 if (SET_DEST (x) == reg)
8607 return 1;
8608
8609 /* If this is an insn that defines a giv, it is also ok because
8610 it will go away when the giv is reduced. */
8611 for (v = bl->giv; v; v = v->next_iv)
8612 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
8613 return 1;
8614
8615 #ifdef HAVE_cc0
8616 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
8617 {
8618 /* Can replace with any giv that was reduced and
8619 that has (MULT_VAL != 0) and (ADD_VAL == 0).
8620 Require a constant for MULT_VAL, so we know it's nonzero.
8621 ??? We disable this optimization to avoid potential
8622 overflows. */
8623
8624 for (v = bl->giv; v; v = v->next_iv)
8625 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
8626 && v->add_val == const0_rtx
8627 && ! v->ignore && ! v->maybe_dead && v->always_computable
8628 && v->mode == mode
8629 && 0)
8630 {
8631 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8632 continue;
8633
8634 if (! eliminate_p)
8635 return 1;
8636
8637 /* If the giv has the opposite direction of change,
8638 then reverse the comparison. */
8639 if (INTVAL (v->mult_val) < 0)
8640 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
8641 const0_rtx, v->new_reg);
8642 else
8643 new = v->new_reg;
8644
8645 /* We can probably test that giv's reduced reg. */
8646 if (validate_change (insn, &SET_SRC (x), new, 0))
8647 return 1;
8648 }
8649
8650 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
8651 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
8652 Require a constant for MULT_VAL, so we know it's nonzero.
8653 ??? Do this only if ADD_VAL is a pointer to avoid a potential
8654 overflow problem. */
8655
8656 for (v = bl->giv; v; v = v->next_iv)
8657 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
8658 && ! v->ignore && ! v->maybe_dead && v->always_computable
8659 && v->mode == mode
8660 && (GET_CODE (v->add_val) == SYMBOL_REF
8661 || GET_CODE (v->add_val) == LABEL_REF
8662 || GET_CODE (v->add_val) == CONST
8663 || (GET_CODE (v->add_val) == REG
8664 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
8665 {
8666 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8667 continue;
8668
8669 if (! eliminate_p)
8670 return 1;
8671
8672 /* If the giv has the opposite direction of change,
8673 then reverse the comparison. */
8674 if (INTVAL (v->mult_val) < 0)
8675 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
8676 v->new_reg);
8677 else
8678 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
8679 copy_rtx (v->add_val));
8680
8681 /* Replace biv with the giv's reduced register. */
8682 update_reg_last_use (v->add_val, insn);
8683 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8684 return 1;
8685
8686 /* Insn doesn't support that constant or invariant. Copy it
8687 into a register (it will be a loop invariant.) */
8688 tem = gen_reg_rtx (GET_MODE (v->new_reg));
8689
8690 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
8691 where);
8692
8693 /* Substitute the new register for its invariant value in
8694 the compare expression. */
8695 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
8696 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8697 return 1;
8698 }
8699 }
8700 #endif
8701 break;
8702
8703 case COMPARE:
8704 case EQ: case NE:
8705 case GT: case GE: case GTU: case GEU:
8706 case LT: case LE: case LTU: case LEU:
8707 /* See if either argument is the biv. */
8708 if (XEXP (x, 0) == reg)
8709 arg = XEXP (x, 1), arg_operand = 1;
8710 else if (XEXP (x, 1) == reg)
8711 arg = XEXP (x, 0), arg_operand = 0;
8712 else
8713 break;
8714
8715 if (CONSTANT_P (arg))
8716 {
8717 /* First try to replace with any giv that has constant positive
8718 mult_val and constant add_val. We might be able to support
8719 negative mult_val, but it seems complex to do it in general. */
8720
8721 for (v = bl->giv; v; v = v->next_iv)
8722 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
8723 && (GET_CODE (v->add_val) == SYMBOL_REF
8724 || GET_CODE (v->add_val) == LABEL_REF
8725 || GET_CODE (v->add_val) == CONST
8726 || (GET_CODE (v->add_val) == REG
8727 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
8728 && ! v->ignore && ! v->maybe_dead && v->always_computable
8729 && v->mode == mode)
8730 {
8731 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8732 continue;
8733
8734 if (! eliminate_p)
8735 return 1;
8736
8737 /* Replace biv with the giv's reduced reg. */
8738 XEXP (x, 1-arg_operand) = v->new_reg;
8739
8740 /* If all constants are actually constant integers and
8741 the derived constant can be directly placed in the COMPARE,
8742 do so. */
8743 if (GET_CODE (arg) == CONST_INT
8744 && GET_CODE (v->mult_val) == CONST_INT
8745 && GET_CODE (v->add_val) == CONST_INT
8746 && validate_change (insn, &XEXP (x, arg_operand),
8747 GEN_INT (INTVAL (arg)
8748 * INTVAL (v->mult_val)
8749 + INTVAL (v->add_val)), 0))
8750 return 1;
8751
8752 /* Otherwise, load it into a register. */
8753 tem = gen_reg_rtx (mode);
8754 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
8755 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
8756 return 1;
8757
8758 /* If that failed, put back the change we made above. */
8759 XEXP (x, 1-arg_operand) = reg;
8760 }
8761
8762 /* Look for giv with positive constant mult_val and nonconst add_val.
8763 Insert insns to calculate new compare value.
8764 ??? Turn this off due to possible overflow. */
8765
8766 for (v = bl->giv; v; v = v->next_iv)
8767 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
8768 && ! v->ignore && ! v->maybe_dead && v->always_computable
8769 && v->mode == mode
8770 && 0)
8771 {
8772 rtx tem;
8773
8774 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8775 continue;
8776
8777 if (! eliminate_p)
8778 return 1;
8779
8780 tem = gen_reg_rtx (mode);
8781
8782 /* Replace biv with giv's reduced register. */
8783 validate_change (insn, &XEXP (x, 1 - arg_operand),
8784 v->new_reg, 1);
8785
8786 /* Compute value to compare against. */
8787 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
8788 /* Use it in this insn. */
8789 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8790 if (apply_change_group ())
8791 return 1;
8792 }
8793 }
8794 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
8795 {
8796 if (loop_invariant_p (loop, arg) == 1)
8797 {
8798 /* Look for giv with constant positive mult_val and nonconst
8799 add_val. Insert insns to compute new compare value.
8800 ??? Turn this off due to possible overflow. */
8801
8802 for (v = bl->giv; v; v = v->next_iv)
8803 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
8804 && ! v->ignore && ! v->maybe_dead && v->always_computable
8805 && v->mode == mode
8806 && 0)
8807 {
8808 rtx tem;
8809
8810 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8811 continue;
8812
8813 if (! eliminate_p)
8814 return 1;
8815
8816 tem = gen_reg_rtx (mode);
8817
8818 /* Replace biv with giv's reduced register. */
8819 validate_change (insn, &XEXP (x, 1 - arg_operand),
8820 v->new_reg, 1);
8821
8822 /* Compute value to compare against. */
8823 emit_iv_add_mult (arg, v->mult_val, v->add_val,
8824 tem, where);
8825 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8826 if (apply_change_group ())
8827 return 1;
8828 }
8829 }
8830
8831 /* This code has problems. Basically, you can't know when
8832 seeing if we will eliminate BL, whether a particular giv
8833 of ARG will be reduced. If it isn't going to be reduced,
8834 we can't eliminate BL. We can try forcing it to be reduced,
8835 but that can generate poor code.
8836
8837 The problem is that the benefit of reducing TV, below should
8838 be increased if BL can actually be eliminated, but this means
8839 we might have to do a topological sort of the order in which
8840 we try to process biv. It doesn't seem worthwhile to do
8841 this sort of thing now. */
8842
8843 #if 0
8844 /* Otherwise the reg compared with had better be a biv. */
8845 if (GET_CODE (arg) != REG
8846 || REG_IV_TYPE (REGNO (arg)) != BASIC_INDUCT)
8847 return 0;
8848
8849 /* Look for a pair of givs, one for each biv,
8850 with identical coefficients. */
8851 for (v = bl->giv; v; v = v->next_iv)
8852 {
8853 struct induction *tv;
8854
8855 if (v->ignore || v->maybe_dead || v->mode != mode)
8856 continue;
8857
8858 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
8859 if (! tv->ignore && ! tv->maybe_dead
8860 && rtx_equal_p (tv->mult_val, v->mult_val)
8861 && rtx_equal_p (tv->add_val, v->add_val)
8862 && tv->mode == mode)
8863 {
8864 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8865 continue;
8866
8867 if (! eliminate_p)
8868 return 1;
8869
8870 /* Replace biv with its giv's reduced reg. */
8871 XEXP (x, 1-arg_operand) = v->new_reg;
8872 /* Replace other operand with the other giv's
8873 reduced reg. */
8874 XEXP (x, arg_operand) = tv->new_reg;
8875 return 1;
8876 }
8877 }
8878 #endif
8879 }
8880
8881 /* If we get here, the biv can't be eliminated. */
8882 return 0;
8883
8884 case MEM:
8885 /* If this address is a DEST_ADDR giv, it doesn't matter if the
8886 biv is used in it, since it will be replaced. */
8887 for (v = bl->giv; v; v = v->next_iv)
8888 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
8889 return 1;
8890 break;
8891
8892 default:
8893 break;
8894 }
8895
8896 /* See if any subexpression fails elimination. */
8897 fmt = GET_RTX_FORMAT (code);
8898 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8899 {
8900 switch (fmt[i])
8901 {
8902 case 'e':
8903 if (! maybe_eliminate_biv_1 (loop, XEXP (x, i), insn, bl,
8904 eliminate_p, where))
8905 return 0;
8906 break;
8907
8908 case 'E':
8909 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8910 if (! maybe_eliminate_biv_1 (loop, XVECEXP (x, i, j), insn, bl,
8911 eliminate_p, where))
8912 return 0;
8913 break;
8914 }
8915 }
8916
8917 return 1;
8918 }
8919 \f
8920 /* Return nonzero if the last use of REG
8921 is in an insn following INSN in the same basic block. */
8922
8923 static int
8924 last_use_this_basic_block (reg, insn)
8925 rtx reg;
8926 rtx insn;
8927 {
8928 rtx n;
8929 for (n = insn;
8930 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
8931 n = NEXT_INSN (n))
8932 {
8933 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
8934 return 1;
8935 }
8936 return 0;
8937 }
8938 \f
8939 /* Called via `note_stores' to record the initial value of a biv. Here we
8940 just record the location of the set and process it later. */
8941
8942 static void
8943 record_initial (dest, set, data)
8944 rtx dest;
8945 rtx set;
8946 void *data ATTRIBUTE_UNUSED;
8947 {
8948 struct iv_class *bl;
8949
8950 if (GET_CODE (dest) != REG
8951 || REGNO (dest) >= max_reg_before_loop
8952 || REG_IV_TYPE (REGNO (dest)) != BASIC_INDUCT)
8953 return;
8954
8955 bl = reg_biv_class[REGNO (dest)];
8956
8957 /* If this is the first set found, record it. */
8958 if (bl->init_insn == 0)
8959 {
8960 bl->init_insn = note_insn;
8961 bl->init_set = set;
8962 }
8963 }
8964 \f
8965 /* If any of the registers in X are "old" and currently have a last use earlier
8966 than INSN, update them to have a last use of INSN. Their actual last use
8967 will be the previous insn but it will not have a valid uid_luid so we can't
8968 use it. */
8969
8970 static void
8971 update_reg_last_use (x, insn)
8972 rtx x;
8973 rtx insn;
8974 {
8975 /* Check for the case where INSN does not have a valid luid. In this case,
8976 there is no need to modify the regno_last_uid, as this can only happen
8977 when code is inserted after the loop_end to set a pseudo's final value,
8978 and hence this insn will never be the last use of x. */
8979 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
8980 && INSN_UID (insn) < max_uid_for_loop
8981 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
8982 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
8983 else
8984 {
8985 register int i, j;
8986 register const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
8987 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
8988 {
8989 if (fmt[i] == 'e')
8990 update_reg_last_use (XEXP (x, i), insn);
8991 else if (fmt[i] == 'E')
8992 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8993 update_reg_last_use (XVECEXP (x, i, j), insn);
8994 }
8995 }
8996 }
8997 \f
8998 /* Given an insn INSN and condition COND, return the condition in a
8999 canonical form to simplify testing by callers. Specifically:
9000
9001 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
9002 (2) Both operands will be machine operands; (cc0) will have been replaced.
9003 (3) If an operand is a constant, it will be the second operand.
9004 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
9005 for GE, GEU, and LEU.
9006
9007 If the condition cannot be understood, or is an inequality floating-point
9008 comparison which needs to be reversed, 0 will be returned.
9009
9010 If REVERSE is non-zero, then reverse the condition prior to canonizing it.
9011
9012 If EARLIEST is non-zero, it is a pointer to a place where the earliest
9013 insn used in locating the condition was found. If a replacement test
9014 of the condition is desired, it should be placed in front of that
9015 insn and we will be sure that the inputs are still valid. */
9016
9017 rtx
9018 canonicalize_condition (insn, cond, reverse, earliest)
9019 rtx insn;
9020 rtx cond;
9021 int reverse;
9022 rtx *earliest;
9023 {
9024 enum rtx_code code;
9025 rtx prev = insn;
9026 rtx set;
9027 rtx tem;
9028 rtx op0, op1;
9029 int reverse_code = 0;
9030 int did_reverse_condition = 0;
9031 enum machine_mode mode;
9032
9033 code = GET_CODE (cond);
9034 mode = GET_MODE (cond);
9035 op0 = XEXP (cond, 0);
9036 op1 = XEXP (cond, 1);
9037
9038 if (reverse)
9039 {
9040 code = reverse_condition (code);
9041 did_reverse_condition ^= 1;
9042 }
9043
9044 if (earliest)
9045 *earliest = insn;
9046
9047 /* If we are comparing a register with zero, see if the register is set
9048 in the previous insn to a COMPARE or a comparison operation. Perform
9049 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
9050 in cse.c */
9051
9052 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
9053 {
9054 /* Set non-zero when we find something of interest. */
9055 rtx x = 0;
9056
9057 #ifdef HAVE_cc0
9058 /* If comparison with cc0, import actual comparison from compare
9059 insn. */
9060 if (op0 == cc0_rtx)
9061 {
9062 if ((prev = prev_nonnote_insn (prev)) == 0
9063 || GET_CODE (prev) != INSN
9064 || (set = single_set (prev)) == 0
9065 || SET_DEST (set) != cc0_rtx)
9066 return 0;
9067
9068 op0 = SET_SRC (set);
9069 op1 = CONST0_RTX (GET_MODE (op0));
9070 if (earliest)
9071 *earliest = prev;
9072 }
9073 #endif
9074
9075 /* If this is a COMPARE, pick up the two things being compared. */
9076 if (GET_CODE (op0) == COMPARE)
9077 {
9078 op1 = XEXP (op0, 1);
9079 op0 = XEXP (op0, 0);
9080 continue;
9081 }
9082 else if (GET_CODE (op0) != REG)
9083 break;
9084
9085 /* Go back to the previous insn. Stop if it is not an INSN. We also
9086 stop if it isn't a single set or if it has a REG_INC note because
9087 we don't want to bother dealing with it. */
9088
9089 if ((prev = prev_nonnote_insn (prev)) == 0
9090 || GET_CODE (prev) != INSN
9091 || FIND_REG_INC_NOTE (prev, 0)
9092 || (set = single_set (prev)) == 0)
9093 break;
9094
9095 /* If this is setting OP0, get what it sets it to if it looks
9096 relevant. */
9097 if (rtx_equal_p (SET_DEST (set), op0))
9098 {
9099 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
9100
9101 /* ??? We may not combine comparisons done in a CCmode with
9102 comparisons not done in a CCmode. This is to aid targets
9103 like Alpha that have an IEEE compliant EQ instruction, and
9104 a non-IEEE compliant BEQ instruction. The use of CCmode is
9105 actually artificial, simply to prevent the combination, but
9106 should not affect other platforms.
9107
9108 However, we must allow VOIDmode comparisons to match either
9109 CCmode or non-CCmode comparison, because some ports have
9110 modeless comparisons inside branch patterns.
9111
9112 ??? This mode check should perhaps look more like the mode check
9113 in simplify_comparison in combine. */
9114
9115 if ((GET_CODE (SET_SRC (set)) == COMPARE
9116 || (((code == NE
9117 || (code == LT
9118 && GET_MODE_CLASS (inner_mode) == MODE_INT
9119 && (GET_MODE_BITSIZE (inner_mode)
9120 <= HOST_BITS_PER_WIDE_INT)
9121 && (STORE_FLAG_VALUE
9122 & ((HOST_WIDE_INT) 1
9123 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9124 #ifdef FLOAT_STORE_FLAG_VALUE
9125 || (code == LT
9126 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9127 && (REAL_VALUE_NEGATIVE
9128 (FLOAT_STORE_FLAG_VALUE (inner_mode))))
9129 #endif
9130 ))
9131 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
9132 && (((GET_MODE_CLASS (mode) == MODE_CC)
9133 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9134 || mode == VOIDmode || inner_mode == VOIDmode))
9135 x = SET_SRC (set);
9136 else if (((code == EQ
9137 || (code == GE
9138 && (GET_MODE_BITSIZE (inner_mode)
9139 <= HOST_BITS_PER_WIDE_INT)
9140 && GET_MODE_CLASS (inner_mode) == MODE_INT
9141 && (STORE_FLAG_VALUE
9142 & ((HOST_WIDE_INT) 1
9143 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9144 #ifdef FLOAT_STORE_FLAG_VALUE
9145 || (code == GE
9146 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9147 && (REAL_VALUE_NEGATIVE
9148 (FLOAT_STORE_FLAG_VALUE (inner_mode))))
9149 #endif
9150 ))
9151 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
9152 && (((GET_MODE_CLASS (mode) == MODE_CC)
9153 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9154 || mode == VOIDmode || inner_mode == VOIDmode))
9155
9156 {
9157 /* We might have reversed a LT to get a GE here. But this wasn't
9158 actually the comparison of data, so we don't flag that we
9159 have had to reverse the condition. */
9160 did_reverse_condition ^= 1;
9161 reverse_code = 1;
9162 x = SET_SRC (set);
9163 }
9164 else
9165 break;
9166 }
9167
9168 else if (reg_set_p (op0, prev))
9169 /* If this sets OP0, but not directly, we have to give up. */
9170 break;
9171
9172 if (x)
9173 {
9174 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9175 code = GET_CODE (x);
9176 if (reverse_code)
9177 {
9178 code = reverse_condition (code);
9179 if (code == UNKNOWN)
9180 return 0;
9181 did_reverse_condition ^= 1;
9182 reverse_code = 0;
9183 }
9184
9185 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
9186 if (earliest)
9187 *earliest = prev;
9188 }
9189 }
9190
9191 /* If constant is first, put it last. */
9192 if (CONSTANT_P (op0))
9193 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
9194
9195 /* If OP0 is the result of a comparison, we weren't able to find what
9196 was really being compared, so fail. */
9197 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
9198 return 0;
9199
9200 /* Canonicalize any ordered comparison with integers involving equality
9201 if we can do computations in the relevant mode and we do not
9202 overflow. */
9203
9204 if (GET_CODE (op1) == CONST_INT
9205 && GET_MODE (op0) != VOIDmode
9206 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9207 {
9208 HOST_WIDE_INT const_val = INTVAL (op1);
9209 unsigned HOST_WIDE_INT uconst_val = const_val;
9210 unsigned HOST_WIDE_INT max_val
9211 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
9212
9213 switch (code)
9214 {
9215 case LE:
9216 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
9217 code = LT, op1 = GEN_INT (const_val + 1);
9218 break;
9219
9220 /* When cross-compiling, const_val might be sign-extended from
9221 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
9222 case GE:
9223 if ((HOST_WIDE_INT) (const_val & max_val)
9224 != (((HOST_WIDE_INT) 1
9225 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
9226 code = GT, op1 = GEN_INT (const_val - 1);
9227 break;
9228
9229 case LEU:
9230 if (uconst_val < max_val)
9231 code = LTU, op1 = GEN_INT (uconst_val + 1);
9232 break;
9233
9234 case GEU:
9235 if (uconst_val != 0)
9236 code = GTU, op1 = GEN_INT (uconst_val - 1);
9237 break;
9238
9239 default:
9240 break;
9241 }
9242 }
9243
9244 /* If this was floating-point and we reversed anything other than an
9245 EQ or NE or (UN)ORDERED, return zero. */
9246 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
9247 && did_reverse_condition
9248 && code != NE && code != EQ && code != UNORDERED && code != ORDERED
9249 && ! flag_fast_math
9250 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
9251 return 0;
9252
9253 #ifdef HAVE_cc0
9254 /* Never return CC0; return zero instead. */
9255 if (op0 == cc0_rtx)
9256 return 0;
9257 #endif
9258
9259 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
9260 }
9261
9262 /* Given a jump insn JUMP, return the condition that will cause it to branch
9263 to its JUMP_LABEL. If the condition cannot be understood, or is an
9264 inequality floating-point comparison which needs to be reversed, 0 will
9265 be returned.
9266
9267 If EARLIEST is non-zero, it is a pointer to a place where the earliest
9268 insn used in locating the condition was found. If a replacement test
9269 of the condition is desired, it should be placed in front of that
9270 insn and we will be sure that the inputs are still valid. */
9271
9272 rtx
9273 get_condition (jump, earliest)
9274 rtx jump;
9275 rtx *earliest;
9276 {
9277 rtx cond;
9278 int reverse;
9279
9280 /* If this is not a standard conditional jump, we can't parse it. */
9281 if (GET_CODE (jump) != JUMP_INSN
9282 || ! condjump_p (jump) || simplejump_p (jump))
9283 return 0;
9284
9285 cond = XEXP (SET_SRC (PATTERN (jump)), 0);
9286
9287 /* If this branches to JUMP_LABEL when the condition is false, reverse
9288 the condition. */
9289 reverse
9290 = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
9291 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump);
9292
9293 return canonicalize_condition (jump, cond, reverse, earliest);
9294 }
9295
9296 /* Similar to above routine, except that we also put an invariant last
9297 unless both operands are invariants. */
9298
9299 rtx
9300 get_condition_for_loop (loop, x)
9301 const struct loop *loop;
9302 rtx x;
9303 {
9304 rtx comparison = get_condition (x, NULL_PTR);
9305
9306 if (comparison == 0
9307 || ! loop_invariant_p (loop, XEXP (comparison, 0))
9308 || loop_invariant_p (loop, XEXP (comparison, 1)))
9309 return comparison;
9310
9311 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
9312 XEXP (comparison, 1), XEXP (comparison, 0));
9313 }
9314
9315 #ifdef HAVE_decrement_and_branch_on_count
9316 /* Instrument loop for insertion of bct instruction. We distinguish between
9317 loops with compile-time bounds and those with run-time bounds.
9318 Information from loop_iterations() is used to compute compile-time bounds.
9319 Run-time bounds should use loop preconditioning, but currently ignored.
9320 */
9321
9322 static void
9323 insert_bct (loop)
9324 struct loop *loop;
9325 {
9326 unsigned HOST_WIDE_INT n_iterations;
9327 rtx loop_start = loop->start;
9328 rtx loop_end = loop->end;
9329 struct loop_info *loop_info = LOOP_INFO (loop);
9330 int loop_num = loop->num;
9331
9332 #if 0
9333 int increment_direction, compare_direction;
9334 /* If the loop condition is <= or >=, the number of iteration
9335 is 1 more than the range of the bounds of the loop. */
9336 int add_iteration = 0;
9337 enum machine_mode loop_var_mode = word_mode;
9338 #endif
9339
9340 /* It's impossible to instrument a competely unrolled loop. */
9341 if (loop_info->unroll_number == loop_info->n_iterations)
9342 return;
9343
9344 /* Make sure that the count register is not in use. */
9345 if (loop_info->used_count_register)
9346 {
9347 if (loop_dump_stream)
9348 fprintf (loop_dump_stream,
9349 "insert_bct %d: BCT instrumentation failed: count register already in use\n",
9350 loop_num);
9351 return;
9352 }
9353
9354 /* Make sure that the function has no indirect jumps. */
9355 if (indirect_jump_in_function)
9356 {
9357 if (loop_dump_stream)
9358 fprintf (loop_dump_stream,
9359 "insert_bct %d: BCT instrumentation failed: indirect jump in function\n",
9360 loop_num);
9361 return;
9362 }
9363
9364 /* Make sure that the last loop insn is a conditional jump. */
9365 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
9366 || ! condjump_p (PREV_INSN (loop_end))
9367 || simplejump_p (PREV_INSN (loop_end)))
9368 {
9369 if (loop_dump_stream)
9370 fprintf (loop_dump_stream,
9371 "insert_bct %d: BCT instrumentation failed: invalid jump at loop end\n",
9372 loop_num);
9373 return;
9374 }
9375
9376 /* Make sure that the loop does not contain a function call
9377 (the count register might be altered by the called function). */
9378 if (loop_info->has_call)
9379 {
9380 if (loop_dump_stream)
9381 fprintf (loop_dump_stream,
9382 "insert_bct %d: BCT instrumentation failed: function call in loop\n",
9383 loop_num);
9384 return;
9385 }
9386
9387 /* Make sure that the loop does not jump via a table.
9388 (the count register might be used to perform the branch on table). */
9389 if (loop_info->has_tablejump)
9390 {
9391 if (loop_dump_stream)
9392 fprintf (loop_dump_stream,
9393 "insert_bct %d: BCT instrumentation failed: computed branch in the loop\n",
9394 loop_num);
9395 return;
9396 }
9397
9398 /* Account for loop unrolling in instrumented iteration count. */
9399 if (loop_info->unroll_number > 1)
9400 n_iterations = loop_info->n_iterations / loop_info->unroll_number;
9401 else
9402 n_iterations = loop_info->n_iterations;
9403
9404 if (n_iterations != 0 && n_iterations < 3)
9405 {
9406 /* Allow an enclosing outer loop to benefit if possible. */
9407 if (loop_dump_stream)
9408 fprintf (loop_dump_stream,
9409 "insert_bct %d: Too few iterations to benefit from BCT optimization\n",
9410 loop_num);
9411 return;
9412 }
9413
9414 /* Try to instrument the loop. */
9415
9416 /* Handle the simpler case, where the bounds are known at compile time. */
9417 if (n_iterations > 0)
9418 {
9419 struct loop *outer_loop;
9420 struct loop_info *outer_loop_info;
9421
9422 /* Mark all enclosing loops that they cannot use count register. */
9423 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
9424 {
9425 outer_loop_info = LOOP_INFO (outer_loop);
9426 outer_loop_info->used_count_register = 1;
9427 }
9428 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
9429 return;
9430 }
9431
9432 /* Handle the more complex case, that the bounds are NOT known
9433 at compile time. In this case we generate run_time calculation
9434 of the number of iterations. */
9435
9436 if (loop_info->iteration_var == 0)
9437 {
9438 if (loop_dump_stream)
9439 fprintf (loop_dump_stream,
9440 "insert_bct %d: BCT Runtime Instrumentation failed: no loop iteration variable found\n",
9441 loop_num);
9442 return;
9443 }
9444
9445 if (GET_MODE_CLASS (GET_MODE (loop_info->iteration_var)) != MODE_INT
9446 || GET_MODE_SIZE (GET_MODE (loop_info->iteration_var)) != UNITS_PER_WORD)
9447 {
9448 if (loop_dump_stream)
9449 fprintf (loop_dump_stream,
9450 "insert_bct %d: BCT Runtime Instrumentation failed: loop variable not integer\n",
9451 loop_num);
9452 return;
9453 }
9454
9455 /* With runtime bounds, if the compare is of the form '!=' we give up */
9456 if (loop_info->comparison_code == NE)
9457 {
9458 if (loop_dump_stream)
9459 fprintf (loop_dump_stream,
9460 "insert_bct %d: BCT Runtime Instrumentation failed: runtime bounds with != comparison\n",
9461 loop_num);
9462 return;
9463 }
9464 /* Use common loop preconditioning code instead. */
9465 #if 0
9466 else
9467 {
9468 /* We rely on the existence of run-time guard to ensure that the
9469 loop executes at least once. */
9470 rtx sequence;
9471 rtx iterations_num_reg;
9472
9473 unsigned HOST_WIDE_INT increment_value_abs
9474 = INTVAL (increment) * increment_direction;
9475
9476 /* make sure that the increment is a power of two, otherwise (an
9477 expensive) divide is needed. */
9478 if (exact_log2 (increment_value_abs) == -1)
9479 {
9480 if (loop_dump_stream)
9481 fprintf (loop_dump_stream,
9482 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
9483 return;
9484 }
9485
9486 /* compute the number of iterations */
9487 start_sequence ();
9488 {
9489 rtx temp_reg;
9490
9491 /* Again, the number of iterations is calculated by:
9492 ;
9493 ; compare-val - initial-val + (increment -1) + additional-iteration
9494 ; num_iterations = -----------------------------------------------------------------
9495 ; increment
9496 */
9497 /* ??? Do we have to call copy_rtx here before passing rtx to
9498 expand_binop? */
9499 if (compare_direction > 0)
9500 {
9501 /* <, <= :the loop variable is increasing */
9502 temp_reg = expand_binop (loop_var_mode, sub_optab,
9503 comparison_value, initial_value,
9504 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9505 }
9506 else
9507 {
9508 temp_reg = expand_binop (loop_var_mode, sub_optab,
9509 initial_value, comparison_value,
9510 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9511 }
9512
9513 if (increment_value_abs - 1 + add_iteration != 0)
9514 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
9515 GEN_INT (increment_value_abs - 1
9516 + add_iteration),
9517 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9518
9519 if (increment_value_abs != 1)
9520 iterations_num_reg = expand_binop (loop_var_mode, asr_optab,
9521 temp_reg,
9522 GEN_INT (exact_log2 (increment_value_abs)),
9523 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9524 else
9525 iterations_num_reg = temp_reg;
9526 }
9527 sequence = gen_sequence ();
9528 end_sequence ();
9529 emit_insn_before (sequence, loop_start);
9530 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
9531 }
9532
9533 return;
9534 #endif /* Complex case */
9535 }
9536
9537 /* Instrument loop by inserting a bct in it as follows:
9538 1. A new counter register is created.
9539 2. In the head of the loop the new variable is initialized to the value
9540 passed in the loop_num_iterations parameter.
9541 3. At the end of the loop, comparison of the register with 0 is generated.
9542 The created comparison follows the pattern defined for the
9543 decrement_and_branch_on_count insn, so this insn will be generated.
9544 4. The branch on the old variable are deleted. The compare must remain
9545 because it might be used elsewhere. If the loop-variable or condition
9546 register are used elsewhere, they will be eliminated by flow. */
9547
9548 static void
9549 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
9550 rtx loop_start, loop_end;
9551 rtx loop_num_iterations;
9552 {
9553 rtx counter_reg;
9554 rtx start_label;
9555 rtx sequence;
9556
9557 if (HAVE_decrement_and_branch_on_count)
9558 {
9559 if (loop_dump_stream)
9560 {
9561 fputs ("instrument_bct: Inserting BCT (", loop_dump_stream);
9562 if (GET_CODE (loop_num_iterations) == CONST_INT)
9563 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
9564 INTVAL (loop_num_iterations));
9565 else
9566 fputs ("runtime", loop_dump_stream);
9567 fputs (" iterations)", loop_dump_stream);
9568 }
9569
9570 /* Discard original jump to continue loop. Original compare result
9571 may still be live, so it cannot be discarded explicitly. */
9572 delete_insn (PREV_INSN (loop_end));
9573
9574 /* Insert the label which will delimit the start of the loop. */
9575 start_label = gen_label_rtx ();
9576 emit_label_after (start_label, loop_start);
9577
9578 /* Insert initialization of the count register into the loop header. */
9579 start_sequence ();
9580 counter_reg = gen_reg_rtx (word_mode);
9581 emit_insn (gen_move_insn (counter_reg, loop_num_iterations));
9582 sequence = gen_sequence ();
9583 end_sequence ();
9584 emit_insn_before (sequence, loop_start);
9585
9586 /* Insert new comparison on the count register instead of the
9587 old one, generating the needed BCT pattern (that will be
9588 later recognized by assembly generation phase). */
9589 emit_jump_insn_before (gen_decrement_and_branch_on_count (counter_reg,
9590 start_label),
9591 loop_end);
9592 LABEL_NUSES (start_label)++;
9593 }
9594
9595 }
9596 #endif /* HAVE_decrement_and_branch_on_count */
9597
9598 /* Scan the function and determine whether it has indirect (computed) jumps.
9599
9600 This is taken mostly from flow.c; similar code exists elsewhere
9601 in the compiler. It may be useful to put this into rtlanal.c. */
9602 static int
9603 indirect_jump_in_function_p (start)
9604 rtx start;
9605 {
9606 rtx insn;
9607
9608 for (insn = start; insn; insn = NEXT_INSN (insn))
9609 if (computed_jump_p (insn))
9610 return 1;
9611
9612 return 0;
9613 }
9614
9615 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
9616 documentation for LOOP_MEMS for the definition of `appropriate'.
9617 This function is called from prescan_loop via for_each_rtx. */
9618
9619 static int
9620 insert_loop_mem (mem, data)
9621 rtx *mem;
9622 void *data ATTRIBUTE_UNUSED;
9623 {
9624 int i;
9625 rtx m = *mem;
9626
9627 if (m == NULL_RTX)
9628 return 0;
9629
9630 switch (GET_CODE (m))
9631 {
9632 case MEM:
9633 break;
9634
9635 case CLOBBER:
9636 /* We're not interested in MEMs that are only clobbered. */
9637 return -1;
9638
9639 case CONST_DOUBLE:
9640 /* We're not interested in the MEM associated with a
9641 CONST_DOUBLE, so there's no need to traverse into this. */
9642 return -1;
9643
9644 case EXPR_LIST:
9645 /* We're not interested in any MEMs that only appear in notes. */
9646 return -1;
9647
9648 default:
9649 /* This is not a MEM. */
9650 return 0;
9651 }
9652
9653 /* See if we've already seen this MEM. */
9654 for (i = 0; i < loop_mems_idx; ++i)
9655 if (rtx_equal_p (m, loop_mems[i].mem))
9656 {
9657 if (GET_MODE (m) != GET_MODE (loop_mems[i].mem))
9658 /* The modes of the two memory accesses are different. If
9659 this happens, something tricky is going on, and we just
9660 don't optimize accesses to this MEM. */
9661 loop_mems[i].optimize = 0;
9662
9663 return 0;
9664 }
9665
9666 /* Resize the array, if necessary. */
9667 if (loop_mems_idx == loop_mems_allocated)
9668 {
9669 if (loop_mems_allocated != 0)
9670 loop_mems_allocated *= 2;
9671 else
9672 loop_mems_allocated = 32;
9673
9674 loop_mems = (loop_mem_info*)
9675 xrealloc (loop_mems,
9676 loop_mems_allocated * sizeof (loop_mem_info));
9677 }
9678
9679 /* Actually insert the MEM. */
9680 loop_mems[loop_mems_idx].mem = m;
9681 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
9682 because we can't put it in a register. We still store it in the
9683 table, though, so that if we see the same address later, but in a
9684 non-BLK mode, we'll not think we can optimize it at that point. */
9685 loop_mems[loop_mems_idx].optimize = (GET_MODE (m) != BLKmode);
9686 loop_mems[loop_mems_idx].reg = NULL_RTX;
9687 ++loop_mems_idx;
9688
9689 return 0;
9690 }
9691
9692 /* Like load_mems, but also ensures that SET_IN_LOOP,
9693 MAY_NOT_OPTIMIZE, REG_SINGLE_USAGE, and INSN_COUNT have the correct
9694 values after load_mems. */
9695
9696 static void
9697 load_mems_and_recount_loop_regs_set (loop, insn_count)
9698 const struct loop *loop;
9699 int *insn_count;
9700 {
9701 int nregs = max_reg_num ();
9702
9703 load_mems (loop);
9704
9705 /* Recalculate set_in_loop and friends since load_mems may have
9706 created new registers. */
9707 if (max_reg_num () > nregs)
9708 {
9709 int i;
9710 int old_nregs;
9711
9712 old_nregs = nregs;
9713 nregs = max_reg_num ();
9714
9715 if ((unsigned) nregs > set_in_loop->num_elements)
9716 {
9717 /* Grow all the arrays. */
9718 VARRAY_GROW (set_in_loop, nregs);
9719 VARRAY_GROW (n_times_set, nregs);
9720 VARRAY_GROW (may_not_optimize, nregs);
9721 VARRAY_GROW (reg_single_usage, nregs);
9722 }
9723 /* Clear the arrays */
9724 bzero ((char *) &set_in_loop->data, nregs * sizeof (int));
9725 bzero ((char *) &may_not_optimize->data, nregs * sizeof (char));
9726 bzero ((char *) &reg_single_usage->data, nregs * sizeof (rtx));
9727
9728 count_loop_regs_set (loop->top ? loop->top : loop->start, loop->end,
9729 may_not_optimize, reg_single_usage,
9730 insn_count, nregs);
9731
9732 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
9733 {
9734 VARRAY_CHAR (may_not_optimize, i) = 1;
9735 VARRAY_INT (set_in_loop, i) = 1;
9736 }
9737
9738 #ifdef AVOID_CCMODE_COPIES
9739 /* Don't try to move insns which set CC registers if we should not
9740 create CCmode register copies. */
9741 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
9742 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
9743 VARRAY_CHAR (may_not_optimize, i) = 1;
9744 #endif
9745
9746 /* Set n_times_set for the new registers. */
9747 bcopy ((char *) (&set_in_loop->data.i[0] + old_nregs),
9748 (char *) (&n_times_set->data.i[0] + old_nregs),
9749 (nregs - old_nregs) * sizeof (int));
9750 }
9751 }
9752
9753 /* Move MEMs into registers for the duration of the loop. */
9754
9755 static void
9756 load_mems (loop)
9757 const struct loop *loop;
9758 {
9759 int maybe_never = 0;
9760 int i;
9761 rtx p;
9762 rtx label = NULL_RTX;
9763 rtx end_label = NULL_RTX;
9764 /* Nonzero if the next instruction may never be executed. */
9765 int next_maybe_never = 0;
9766 int last_max_reg = max_reg_num ();
9767
9768 if (loop_mems_idx == 0)
9769 return;
9770
9771 /* Check to see if it's possible that some instructions in the
9772 loop are never executed. */
9773 for (p = next_insn_in_loop (loop, loop->scan_start);
9774 p != NULL_RTX && ! maybe_never;
9775 p = next_insn_in_loop (loop, p))
9776 {
9777 if (GET_CODE (p) == CODE_LABEL)
9778 maybe_never = 1;
9779 else if (GET_CODE (p) == JUMP_INSN
9780 /* If we enter the loop in the middle, and scan
9781 around to the beginning, don't set maybe_never
9782 for that. This must be an unconditional jump,
9783 otherwise the code at the top of the loop might
9784 never be executed. Unconditional jumps are
9785 followed a by barrier then loop end. */
9786 && ! (GET_CODE (p) == JUMP_INSN
9787 && JUMP_LABEL (p) == loop->top
9788 && NEXT_INSN (NEXT_INSN (p)) == loop->end
9789 && simplejump_p (p)))
9790 {
9791 if (!condjump_p (p))
9792 /* Something complicated. */
9793 maybe_never = 1;
9794 else
9795 /* If there are any more instructions in the loop, they
9796 might not be reached. */
9797 next_maybe_never = 1;
9798 }
9799 else if (next_maybe_never)
9800 maybe_never = 1;
9801 }
9802
9803 /* Actually move the MEMs. */
9804 for (i = 0; i < loop_mems_idx; ++i)
9805 {
9806 regset_head copies;
9807 int written = 0;
9808 rtx reg;
9809 rtx mem = loop_mems[i].mem;
9810 rtx mem_list_entry;
9811
9812 if (MEM_VOLATILE_P (mem)
9813 || loop_invariant_p (loop, XEXP (mem, 0)) != 1)
9814 /* There's no telling whether or not MEM is modified. */
9815 loop_mems[i].optimize = 0;
9816
9817 /* Go through the MEMs written to in the loop to see if this
9818 one is aliased by one of them. */
9819 mem_list_entry = loop_store_mems;
9820 while (mem_list_entry)
9821 {
9822 if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
9823 written = 1;
9824 else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
9825 mem, rtx_varies_p))
9826 {
9827 /* MEM is indeed aliased by this store. */
9828 loop_mems[i].optimize = 0;
9829 break;
9830 }
9831 mem_list_entry = XEXP (mem_list_entry, 1);
9832 }
9833
9834 if (flag_float_store && written
9835 && GET_MODE_CLASS (GET_MODE (mem)) == MODE_FLOAT)
9836 loop_mems[i].optimize = 0;
9837
9838 /* If this MEM is written to, we must be sure that there
9839 are no reads from another MEM that aliases this one. */
9840 if (loop_mems[i].optimize && written)
9841 {
9842 int j;
9843
9844 for (j = 0; j < loop_mems_idx; ++j)
9845 {
9846 if (j == i)
9847 continue;
9848 else if (true_dependence (mem,
9849 VOIDmode,
9850 loop_mems[j].mem,
9851 rtx_varies_p))
9852 {
9853 /* It's not safe to hoist loop_mems[i] out of
9854 the loop because writes to it might not be
9855 seen by reads from loop_mems[j]. */
9856 loop_mems[i].optimize = 0;
9857 break;
9858 }
9859 }
9860 }
9861
9862 if (maybe_never && may_trap_p (mem))
9863 /* We can't access the MEM outside the loop; it might
9864 cause a trap that wouldn't have happened otherwise. */
9865 loop_mems[i].optimize = 0;
9866
9867 if (!loop_mems[i].optimize)
9868 /* We thought we were going to lift this MEM out of the
9869 loop, but later discovered that we could not. */
9870 continue;
9871
9872 INIT_REG_SET (&copies);
9873
9874 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9875 order to keep scan_loop from moving stores to this MEM
9876 out of the loop just because this REG is neither a
9877 user-variable nor used in the loop test. */
9878 reg = gen_reg_rtx (GET_MODE (mem));
9879 REG_USERVAR_P (reg) = 1;
9880 loop_mems[i].reg = reg;
9881
9882 /* Now, replace all references to the MEM with the
9883 corresponding pesudos. */
9884 maybe_never = 0;
9885 for (p = next_insn_in_loop (loop, loop->scan_start);
9886 p != NULL_RTX;
9887 p = next_insn_in_loop (loop, p))
9888 {
9889 rtx_and_int ri;
9890 rtx set;
9891
9892 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
9893 {
9894 /* See if this copies the mem into a register that isn't
9895 modified afterwards. We'll try to do copy propagation
9896 a little further on. */
9897 set = single_set (p);
9898 if (set
9899 /* @@@ This test is _way_ too conservative. */
9900 && ! maybe_never
9901 && GET_CODE (SET_DEST (set)) == REG
9902 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
9903 && REGNO (SET_DEST (set)) < last_max_reg
9904 && VARRAY_INT (n_times_set, REGNO (SET_DEST (set))) == 1
9905 && rtx_equal_p (SET_SRC (set), loop_mems[i].mem))
9906 SET_REGNO_REG_SET (&copies, REGNO (SET_DEST (set)));
9907 ri.r = p;
9908 ri.i = i;
9909 for_each_rtx (&p, replace_loop_mem, &ri);
9910 }
9911
9912 if (GET_CODE (p) == CODE_LABEL
9913 || GET_CODE (p) == JUMP_INSN)
9914 maybe_never = 1;
9915 }
9916
9917 if (! apply_change_group ())
9918 /* We couldn't replace all occurrences of the MEM. */
9919 loop_mems[i].optimize = 0;
9920 else
9921 {
9922 int j;
9923 rtx set;
9924
9925 /* Load the memory immediately before LOOP->START, which is
9926 the NOTE_LOOP_BEG. */
9927 set = gen_move_insn (reg, mem);
9928 emit_insn_before (set, loop->start);
9929
9930 if (written)
9931 {
9932 if (label == NULL_RTX)
9933 {
9934 /* We must compute the former
9935 right-after-the-end label before we insert
9936 the new one. */
9937 end_label = next_label (loop->end);
9938 label = gen_label_rtx ();
9939 emit_label_after (label, loop->end);
9940 }
9941
9942 /* Store the memory immediately after END, which is
9943 the NOTE_LOOP_END. */
9944 set = gen_move_insn (copy_rtx (mem), reg);
9945 emit_insn_after (set, label);
9946 }
9947
9948 if (loop_dump_stream)
9949 {
9950 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
9951 REGNO (reg), (written ? "r/w" : "r/o"));
9952 print_rtl (loop_dump_stream, mem);
9953 fputc ('\n', loop_dump_stream);
9954 }
9955
9956 /* Attempt a bit of copy propagation. This helps untangle the
9957 data flow, and enables {basic,general}_induction_var to find
9958 more bivs/givs. */
9959 EXECUTE_IF_SET_IN_REG_SET
9960 (&copies, FIRST_PSEUDO_REGISTER, j,
9961 {
9962 try_copy_prop (loop, loop_mems[i].reg, j);
9963 });
9964 CLEAR_REG_SET (&copies);
9965 }
9966 }
9967
9968 if (label != NULL_RTX)
9969 {
9970 /* Now, we need to replace all references to the previous exit
9971 label with the new one. */
9972 rtx_pair rr;
9973 rr.r1 = end_label;
9974 rr.r2 = label;
9975
9976 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
9977 {
9978 for_each_rtx (&p, replace_label, &rr);
9979
9980 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
9981 field. This is not handled by for_each_rtx because it doesn't
9982 handle unprinted ('0') fields. We need to update JUMP_LABEL
9983 because the immediately following unroll pass will use it.
9984 replace_label would not work anyways, because that only handles
9985 LABEL_REFs. */
9986 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
9987 JUMP_LABEL (p) = label;
9988 }
9989 }
9990 }
9991
9992 /* For communication between note_reg_stored and its caller. */
9993 struct note_reg_stored_arg
9994 {
9995 int set_seen;
9996 rtx reg;
9997 };
9998
9999 /* Called via note_stores, record in SET_SEEN whether X, which is written,
10000 is equal to ARG. */
10001 static void
10002 note_reg_stored (x, setter, arg)
10003 rtx x, setter ATTRIBUTE_UNUSED;
10004 void *arg;
10005 {
10006 struct note_reg_stored_arg *t = (struct note_reg_stored_arg *)arg;
10007 if (t->reg == x)
10008 t->set_seen = 1;
10009 }
10010
10011 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
10012 There must be exactly one insn that sets this pseudo; it will be
10013 deleted if all replacements succeed and we can prove that the register
10014 is not used after the loop. */
10015 static void
10016 try_copy_prop (loop, replacement, regno)
10017 const struct loop *loop;
10018 rtx replacement;
10019 int regno;
10020 {
10021 /* This is the reg that we are copying from. */
10022 rtx reg_rtx = regno_reg_rtx[regno];
10023 rtx init_insn = 0;
10024 rtx insn;
10025 /* These help keep track of whether we replaced all uses of the reg. */
10026 int replaced_last = 0;
10027 int store_is_first = 0;
10028
10029 for (insn = next_insn_in_loop (loop, loop->scan_start);
10030 insn != NULL_RTX;
10031 insn = next_insn_in_loop (loop, insn))
10032 {
10033 rtx set;
10034
10035 /* Only substitute within one extended basic block from the initializing
10036 insn. */
10037 if (GET_CODE (insn) == CODE_LABEL && init_insn)
10038 break;
10039
10040 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
10041 continue;
10042
10043 /* Is this the initializing insn? */
10044 set = single_set (insn);
10045 if (set
10046 && GET_CODE (SET_DEST (set)) == REG
10047 && REGNO (SET_DEST (set)) == regno)
10048 {
10049 if (init_insn)
10050 abort ();
10051
10052 init_insn = insn;
10053 if (REGNO_FIRST_UID (regno) == INSN_UID (insn))
10054 store_is_first = 1;
10055 }
10056
10057 /* Only substitute after seeing the initializing insn. */
10058 if (init_insn && insn != init_insn)
10059 {
10060 struct note_reg_stored_arg arg;
10061 rtx array[3];
10062 array[0] = reg_rtx;
10063 array[1] = replacement;
10064 array[2] = insn;
10065
10066 for_each_rtx (&insn, replace_loop_reg, array);
10067 if (REGNO_LAST_UID (regno) == INSN_UID (insn))
10068 replaced_last = 1;
10069
10070 /* Stop replacing when REPLACEMENT is modified. */
10071 arg.reg = replacement;
10072 arg.set_seen = 0;
10073 note_stores (PATTERN (insn), note_reg_stored, &arg);
10074 if (arg.set_seen)
10075 break;
10076 }
10077 }
10078 if (! init_insn)
10079 abort ();
10080 if (apply_change_group ())
10081 {
10082 if (loop_dump_stream)
10083 fprintf (loop_dump_stream, " Replaced reg %d", regno);
10084 if (store_is_first && replaced_last)
10085 {
10086 PUT_CODE (init_insn, NOTE);
10087 NOTE_LINE_NUMBER (init_insn) = NOTE_INSN_DELETED;
10088 if (loop_dump_stream)
10089 fprintf (loop_dump_stream, ", deleting init_insn (%d)",
10090 INSN_UID (init_insn));
10091 }
10092 if (loop_dump_stream)
10093 fprintf (loop_dump_stream, ".\n");
10094 }
10095 }
10096
10097 /* Replace MEM with its associated pseudo register. This function is
10098 called from load_mems via for_each_rtx. DATA is actually an
10099 rtx_and_int * describing the instruction currently being scanned
10100 and the MEM we are currently replacing. */
10101
10102 static int
10103 replace_loop_mem (mem, data)
10104 rtx *mem;
10105 void *data;
10106 {
10107 rtx_and_int *ri;
10108 rtx insn;
10109 int i;
10110 rtx m = *mem;
10111
10112 if (m == NULL_RTX)
10113 return 0;
10114
10115 switch (GET_CODE (m))
10116 {
10117 case MEM:
10118 break;
10119
10120 case CONST_DOUBLE:
10121 /* We're not interested in the MEM associated with a
10122 CONST_DOUBLE, so there's no need to traverse into one. */
10123 return -1;
10124
10125 default:
10126 /* This is not a MEM. */
10127 return 0;
10128 }
10129
10130 ri = (rtx_and_int*) data;
10131 i = ri->i;
10132
10133 if (!rtx_equal_p (loop_mems[i].mem, m))
10134 /* This is not the MEM we are currently replacing. */
10135 return 0;
10136
10137 insn = ri->r;
10138
10139 /* Actually replace the MEM. */
10140 validate_change (insn, mem, loop_mems[i].reg, 1);
10141
10142 return 0;
10143 }
10144
10145 /* Replace one register with another. Called through for_each_rtx; PX points
10146 to the rtx being scanned. DATA is actually an array of three rtx's; the
10147 first one is the one to be replaced, and the second one the replacement.
10148 The third one is the current insn. */
10149
10150 static int
10151 replace_loop_reg (px, data)
10152 rtx *px;
10153 void *data;
10154 {
10155 rtx x = *px;
10156 rtx *array = (rtx *)data;
10157
10158 if (x == NULL_RTX)
10159 return 0;
10160
10161 if (x == array[0])
10162 validate_change (array[2], px, array[1], 1);
10163
10164 return 0;
10165 }
10166
10167 /* Replace occurrences of the old exit label for the loop with the new
10168 one. DATA is an rtx_pair containing the old and new labels,
10169 respectively. */
10170
10171 static int
10172 replace_label (x, data)
10173 rtx *x;
10174 void *data;
10175 {
10176 rtx l = *x;
10177 rtx old_label = ((rtx_pair*) data)->r1;
10178 rtx new_label = ((rtx_pair*) data)->r2;
10179
10180 if (l == NULL_RTX)
10181 return 0;
10182
10183 if (GET_CODE (l) != LABEL_REF)
10184 return 0;
10185
10186 if (XEXP (l, 0) != old_label)
10187 return 0;
10188
10189 XEXP (l, 0) = new_label;
10190 ++LABEL_NUSES (new_label);
10191 --LABEL_NUSES (old_label);
10192
10193 return 0;
10194 }
This page took 1.492123 seconds and 5 git commands to generate.