]> gcc.gnu.org Git - gcc.git/blob - gcc/loop.c
Cast pointer operands to bzero, bcopy, and bcmp to (char *).
[gcc.git] / gcc / loop.c
1 /* Move constant computations out of loops.
2 Copyright (C) 1987, 88, 89, 91, 92, 93, 1994 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* This is the loop optimization pass of the compiler.
22 It finds invariant computations within loops and moves them
23 to the beginning of the loop. Then it identifies basic and
24 general induction variables. Strength reduction is applied to the general
25 induction variables, and induction variable elimination is applied to
26 the basic induction variables.
27
28 It also finds cases where
29 a register is set within the loop by zero-extending a narrower value
30 and changes these to zero the entire register once before the loop
31 and merely copy the low part within the loop.
32
33 Most of the complexity is in heuristics to decide when it is worth
34 while to do these things. */
35
36 #include <stdio.h>
37 #include "config.h"
38 #include "rtl.h"
39 #include "obstack.h"
40 #include "expr.h"
41 #include "insn-config.h"
42 #include "insn-flags.h"
43 #include "regs.h"
44 #include "hard-reg-set.h"
45 #include "recog.h"
46 #include "flags.h"
47 #include "real.h"
48 #include "loop.h"
49
50 /* Vector mapping INSN_UIDs to luids.
51 The luids are like uids but increase monotonically always.
52 We use them to see whether a jump comes from outside a given loop. */
53
54 int *uid_luid;
55
56 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
57 number the insn is contained in. */
58
59 int *uid_loop_num;
60
61 /* 1 + largest uid of any insn. */
62
63 int max_uid_for_loop;
64
65 /* 1 + luid of last insn. */
66
67 static int max_luid;
68
69 /* Number of loops detected in current function. Used as index to the
70 next few tables. */
71
72 static int max_loop_num;
73
74 /* Indexed by loop number, contains the first and last insn of each loop. */
75
76 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
77
78 /* For each loop, gives the containing loop number, -1 if none. */
79
80 int *loop_outer_loop;
81
82 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
83 really a loop (an insn outside the loop branches into it). */
84
85 static char *loop_invalid;
86
87 /* Indexed by loop number, links together all LABEL_REFs which refer to
88 code labels outside the loop. Used by routines that need to know all
89 loop exits, such as final_biv_value and final_giv_value.
90
91 This does not include loop exits due to return instructions. This is
92 because all bivs and givs are pseudos, and hence must be dead after a
93 return, so the presense of a return does not affect any of the
94 optimizations that use this info. It is simpler to just not include return
95 instructions on this list. */
96
97 rtx *loop_number_exit_labels;
98
99 /* Holds the number of loop iterations. It is zero if the number could not be
100 calculated. Must be unsigned since the number of iterations can
101 be as high as 2^wordsize-1. For loops with a wider iterator, this number
102 will will be zero if the number of loop iterations is too large for an
103 unsigned integer to hold. */
104
105 unsigned HOST_WIDE_INT loop_n_iterations;
106
107 /* Nonzero if there is a subroutine call in the current loop.
108 (unknown_address_altered is also nonzero in this case.) */
109
110 static int loop_has_call;
111
112 /* Nonzero if there is a volatile memory reference in the current
113 loop. */
114
115 static int loop_has_volatile;
116
117 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
118 current loop. A continue statement will generate a branch to
119 NEXT_INSN (loop_continue). */
120
121 static rtx loop_continue;
122
123 /* Indexed by register number, contains the number of times the reg
124 is set during the loop being scanned.
125 During code motion, a negative value indicates a reg that has been
126 made a candidate; in particular -2 means that it is an candidate that
127 we know is equal to a constant and -1 means that it is an candidate
128 not known equal to a constant.
129 After code motion, regs moved have 0 (which is accurate now)
130 while the failed candidates have the original number of times set.
131
132 Therefore, at all times, == 0 indicates an invariant register;
133 < 0 a conditionally invariant one. */
134
135 static short *n_times_set;
136
137 /* Original value of n_times_set; same except that this value
138 is not set negative for a reg whose sets have been made candidates
139 and not set to 0 for a reg that is moved. */
140
141 static short *n_times_used;
142
143 /* Index by register number, 1 indicates that the register
144 cannot be moved or strength reduced. */
145
146 static char *may_not_optimize;
147
148 /* Nonzero means reg N has already been moved out of one loop.
149 This reduces the desire to move it out of another. */
150
151 static char *moved_once;
152
153 /* Array of MEMs that are stored in this loop. If there are too many to fit
154 here, we just turn on unknown_address_altered. */
155
156 #define NUM_STORES 20
157 static rtx loop_store_mems[NUM_STORES];
158
159 /* Index of first available slot in above array. */
160 static int loop_store_mems_idx;
161
162 /* Nonzero if we don't know what MEMs were changed in the current loop.
163 This happens if the loop contains a call (in which case `loop_has_call'
164 will also be set) or if we store into more than NUM_STORES MEMs. */
165
166 static int unknown_address_altered;
167
168 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
169 static int num_movables;
170
171 /* Count of memory write instructions discovered in the loop. */
172 static int num_mem_sets;
173
174 /* Number of loops contained within the current one, including itself. */
175 static int loops_enclosed;
176
177 /* Bound on pseudo register number before loop optimization.
178 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
179 int max_reg_before_loop;
180
181 /* This obstack is used in product_cheap_p to allocate its rtl. It
182 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
183 If we used the same obstack that it did, we would be deallocating
184 that array. */
185
186 static struct obstack temp_obstack;
187
188 /* This is where the pointer to the obstack being used for RTL is stored. */
189
190 extern struct obstack *rtl_obstack;
191
192 #define obstack_chunk_alloc xmalloc
193 #define obstack_chunk_free free
194
195 extern char *oballoc ();
196 \f
197 /* During the analysis of a loop, a chain of `struct movable's
198 is made to record all the movable insns found.
199 Then the entire chain can be scanned to decide which to move. */
200
201 struct movable
202 {
203 rtx insn; /* A movable insn */
204 rtx set_src; /* The expression this reg is set from. */
205 rtx set_dest; /* The destination of this SET. */
206 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
207 of any registers used within the LIBCALL. */
208 int consec; /* Number of consecutive following insns
209 that must be moved with this one. */
210 int regno; /* The register it sets */
211 short lifetime; /* lifetime of that register;
212 may be adjusted when matching movables
213 that load the same value are found. */
214 short savings; /* Number of insns we can move for this reg,
215 including other movables that force this
216 or match this one. */
217 unsigned int cond : 1; /* 1 if only conditionally movable */
218 unsigned int force : 1; /* 1 means MUST move this insn */
219 unsigned int global : 1; /* 1 means reg is live outside this loop */
220 /* If PARTIAL is 1, GLOBAL means something different:
221 that the reg is live outside the range from where it is set
222 to the following label. */
223 unsigned int done : 1; /* 1 inhibits further processing of this */
224
225 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
226 In particular, moving it does not make it
227 invariant. */
228 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
229 load SRC, rather than copying INSN. */
230 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
231 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
232 that we should avoid changing when clearing
233 the rest of the reg. */
234 struct movable *match; /* First entry for same value */
235 struct movable *forces; /* An insn that must be moved if this is */
236 struct movable *next;
237 };
238
239 FILE *loop_dump_stream;
240
241 /* Forward declarations. */
242
243 static void find_and_verify_loops ();
244 static void mark_loop_jump ();
245 static void prescan_loop ();
246 static int reg_in_basic_block_p ();
247 static int consec_sets_invariant_p ();
248 static rtx libcall_other_reg ();
249 static int labels_in_range_p ();
250 static void count_loop_regs_set ();
251 static void note_addr_stored ();
252 static int loop_reg_used_before_p ();
253 static void scan_loop ();
254 static void replace_call_address ();
255 static rtx skip_consec_insns ();
256 static int libcall_benefit ();
257 static void ignore_some_movables ();
258 static void force_movables ();
259 static void combine_movables ();
260 static int rtx_equal_for_loop_p ();
261 static void move_movables ();
262 static void strength_reduce ();
263 static int valid_initial_value_p ();
264 static void find_mem_givs ();
265 static void record_biv ();
266 static void check_final_value ();
267 static void record_giv ();
268 static void update_giv_derive ();
269 static int basic_induction_var ();
270 static rtx simplify_giv_expr ();
271 static int general_induction_var ();
272 static int consec_sets_giv ();
273 static int check_dbra_loop ();
274 static rtx express_from ();
275 static int combine_givs_p ();
276 static void combine_givs ();
277 static int product_cheap_p ();
278 static int maybe_eliminate_biv ();
279 static int maybe_eliminate_biv_1 ();
280 static int last_use_this_basic_block ();
281 static void record_initial ();
282 static void update_reg_last_use ();
283 \f
284 /* Relative gain of eliminating various kinds of operations. */
285 int add_cost;
286 #if 0
287 int shift_cost;
288 int mult_cost;
289 #endif
290
291 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
292 copy the value of the strength reduced giv to its original register. */
293 int copy_cost;
294
295 void
296 init_loop ()
297 {
298 char *free_point = (char *) oballoc (1);
299 rtx reg = gen_rtx (REG, word_mode, 0);
300
301 add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
302
303 /* We multiply by 2 to reconcile the difference in scale between
304 these two ways of computing costs. Otherwise the cost of a copy
305 will be far less than the cost of an add. */
306
307 copy_cost = 2 * 2;
308
309 /* Free the objects we just allocated. */
310 obfree (free_point);
311
312 /* Initialize the obstack used for rtl in product_cheap_p. */
313 gcc_obstack_init (&temp_obstack);
314 }
315 \f
316 /* Entry point of this file. Perform loop optimization
317 on the current function. F is the first insn of the function
318 and DUMPFILE is a stream for output of a trace of actions taken
319 (or 0 if none should be output). */
320
321 void
322 loop_optimize (f, dumpfile)
323 /* f is the first instruction of a chain of insns for one function */
324 rtx f;
325 FILE *dumpfile;
326 {
327 register rtx insn;
328 register int i;
329 rtx last_insn;
330
331 loop_dump_stream = dumpfile;
332
333 init_recog_no_volatile ();
334 init_alias_analysis ();
335
336 max_reg_before_loop = max_reg_num ();
337
338 moved_once = (char *) alloca (max_reg_before_loop);
339 bzero (moved_once, max_reg_before_loop);
340
341 regs_may_share = 0;
342
343 /* Count the number of loops. */
344
345 max_loop_num = 0;
346 for (insn = f; insn; insn = NEXT_INSN (insn))
347 {
348 if (GET_CODE (insn) == NOTE
349 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
350 max_loop_num++;
351 }
352
353 /* Don't waste time if no loops. */
354 if (max_loop_num == 0)
355 return;
356
357 /* Get size to use for tables indexed by uids.
358 Leave some space for labels allocated by find_and_verify_loops. */
359 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
360
361 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
362 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
363
364 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
365 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
366
367 /* Allocate tables for recording each loop. We set each entry, so they need
368 not be zeroed. */
369 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
370 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
371 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
372 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
373 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
374
375 /* Find and process each loop.
376 First, find them, and record them in order of their beginnings. */
377 find_and_verify_loops (f);
378
379 /* Now find all register lifetimes. This must be done after
380 find_and_verify_loops, because it might reorder the insns in the
381 function. */
382 reg_scan (f, max_reg_num (), 1);
383
384 /* See if we went too far. */
385 if (get_max_uid () > max_uid_for_loop)
386 abort ();
387
388 /* Compute the mapping from uids to luids.
389 LUIDs are numbers assigned to insns, like uids,
390 except that luids increase monotonically through the code.
391 Don't assign luids to line-number NOTEs, so that the distance in luids
392 between two insns is not affected by -g. */
393
394 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
395 {
396 last_insn = insn;
397 if (GET_CODE (insn) != NOTE
398 || NOTE_LINE_NUMBER (insn) <= 0)
399 uid_luid[INSN_UID (insn)] = ++i;
400 else
401 /* Give a line number note the same luid as preceding insn. */
402 uid_luid[INSN_UID (insn)] = i;
403 }
404
405 max_luid = i + 1;
406
407 /* Don't leave gaps in uid_luid for insns that have been
408 deleted. It is possible that the first or last insn
409 using some register has been deleted by cross-jumping.
410 Make sure that uid_luid for that former insn's uid
411 points to the general area where that insn used to be. */
412 for (i = 0; i < max_uid_for_loop; i++)
413 {
414 uid_luid[0] = uid_luid[i];
415 if (uid_luid[0] != 0)
416 break;
417 }
418 for (i = 0; i < max_uid_for_loop; i++)
419 if (uid_luid[i] == 0)
420 uid_luid[i] = uid_luid[i - 1];
421
422 /* Create a mapping from loops to BLOCK tree nodes. */
423 if (flag_unroll_loops && write_symbols != NO_DEBUG)
424 find_loop_tree_blocks ();
425
426 /* Now scan the loops, last ones first, since this means inner ones are done
427 before outer ones. */
428 for (i = max_loop_num-1; i >= 0; i--)
429 if (! loop_invalid[i] && loop_number_loop_ends[i])
430 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
431 max_reg_num ());
432
433 /* If debugging and unrolling loops, we must replicate the tree nodes
434 corresponding to the blocks inside the loop, so that the original one
435 to one mapping will remain. */
436 if (flag_unroll_loops && write_symbols != NO_DEBUG)
437 unroll_block_trees ();
438 }
439 \f
440 /* Optimize one loop whose start is LOOP_START and end is END.
441 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
442 NOTE_INSN_LOOP_END. */
443
444 /* ??? Could also move memory writes out of loops if the destination address
445 is invariant, the source is invariant, the memory write is not volatile,
446 and if we can prove that no read inside the loop can read this address
447 before the write occurs. If there is a read of this address after the
448 write, then we can also mark the memory read as invariant. */
449
450 static void
451 scan_loop (loop_start, end, nregs)
452 rtx loop_start, end;
453 int nregs;
454 {
455 register int i;
456 register rtx p;
457 /* 1 if we are scanning insns that could be executed zero times. */
458 int maybe_never = 0;
459 /* 1 if we are scanning insns that might never be executed
460 due to a subroutine call which might exit before they are reached. */
461 int call_passed = 0;
462 /* For a rotated loop that is entered near the bottom,
463 this is the label at the top. Otherwise it is zero. */
464 rtx loop_top = 0;
465 /* Jump insn that enters the loop, or 0 if control drops in. */
466 rtx loop_entry_jump = 0;
467 /* Place in the loop where control enters. */
468 rtx scan_start;
469 /* Number of insns in the loop. */
470 int insn_count;
471 int in_libcall = 0;
472 int tem;
473 rtx temp;
474 /* The SET from an insn, if it is the only SET in the insn. */
475 rtx set, set1;
476 /* Chain describing insns movable in current loop. */
477 struct movable *movables = 0;
478 /* Last element in `movables' -- so we can add elements at the end. */
479 struct movable *last_movable = 0;
480 /* Ratio of extra register life span we can justify
481 for saving an instruction. More if loop doesn't call subroutines
482 since in that case saving an insn makes more difference
483 and more registers are available. */
484 int threshold;
485 /* If we have calls, contains the insn in which a register was used
486 if it was used exactly once; contains const0_rtx if it was used more
487 than once. */
488 rtx *reg_single_usage = 0;
489 /* Nonzero if we are scanning instructions in a sub-loop. */
490 int loop_depth = 0;
491
492 n_times_set = (short *) alloca (nregs * sizeof (short));
493 n_times_used = (short *) alloca (nregs * sizeof (short));
494 may_not_optimize = (char *) alloca (nregs);
495
496 /* Determine whether this loop starts with a jump down to a test at
497 the end. This will occur for a small number of loops with a test
498 that is too complex to duplicate in front of the loop.
499
500 We search for the first insn or label in the loop, skipping NOTEs.
501 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
502 (because we might have a loop executed only once that contains a
503 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
504 (in case we have a degenerate loop).
505
506 Note that if we mistakenly think that a loop is entered at the top
507 when, in fact, it is entered at the exit test, the only effect will be
508 slightly poorer optimization. Making the opposite error can generate
509 incorrect code. Since very few loops now start with a jump to the
510 exit test, the code here to detect that case is very conservative. */
511
512 for (p = NEXT_INSN (loop_start);
513 p != end
514 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
515 && (GET_CODE (p) != NOTE
516 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
517 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
518 p = NEXT_INSN (p))
519 ;
520
521 scan_start = p;
522
523 /* Set up variables describing this loop. */
524 prescan_loop (loop_start, end);
525 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
526
527 /* If loop has a jump before the first label,
528 the true entry is the target of that jump.
529 Start scan from there.
530 But record in LOOP_TOP the place where the end-test jumps
531 back to so we can scan that after the end of the loop. */
532 if (GET_CODE (p) == JUMP_INSN)
533 {
534 loop_entry_jump = p;
535
536 /* Loop entry must be unconditional jump (and not a RETURN) */
537 if (simplejump_p (p)
538 && JUMP_LABEL (p) != 0
539 /* Check to see whether the jump actually
540 jumps out of the loop (meaning it's no loop).
541 This case can happen for things like
542 do {..} while (0). If this label was generated previously
543 by loop, we can't tell anything about it and have to reject
544 the loop. */
545 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
546 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
547 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
548 {
549 loop_top = next_label (scan_start);
550 scan_start = JUMP_LABEL (p);
551 }
552 }
553
554 /* If SCAN_START was an insn created by loop, we don't know its luid
555 as required by loop_reg_used_before_p. So skip such loops. (This
556 test may never be true, but it's best to play it safe.)
557
558 Also, skip loops where we do not start scanning at a label. This
559 test also rejects loops starting with a JUMP_INSN that failed the
560 test above. */
561
562 if (INSN_UID (scan_start) >= max_uid_for_loop
563 || GET_CODE (scan_start) != CODE_LABEL)
564 {
565 if (loop_dump_stream)
566 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
567 INSN_UID (loop_start), INSN_UID (end));
568 return;
569 }
570
571 /* Count number of times each reg is set during this loop.
572 Set may_not_optimize[I] if it is not safe to move out
573 the setting of register I. If this loop has calls, set
574 reg_single_usage[I]. */
575
576 bzero ((char *) n_times_set, nregs * sizeof (short));
577 bzero (may_not_optimize, nregs);
578
579 if (loop_has_call)
580 {
581 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
582 bzero ((char *) reg_single_usage, nregs * sizeof (rtx));
583 }
584
585 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
586 may_not_optimize, reg_single_usage, &insn_count, nregs);
587
588 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
589 may_not_optimize[i] = 1, n_times_set[i] = 1;
590 bcopy ((char *) n_times_set, (char *) n_times_used, nregs * sizeof (short));
591
592 if (loop_dump_stream)
593 {
594 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
595 INSN_UID (loop_start), INSN_UID (end), insn_count);
596 if (loop_continue)
597 fprintf (loop_dump_stream, "Continue at insn %d.\n",
598 INSN_UID (loop_continue));
599 }
600
601 /* Scan through the loop finding insns that are safe to move.
602 Set n_times_set negative for the reg being set, so that
603 this reg will be considered invariant for subsequent insns.
604 We consider whether subsequent insns use the reg
605 in deciding whether it is worth actually moving.
606
607 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
608 and therefore it is possible that the insns we are scanning
609 would never be executed. At such times, we must make sure
610 that it is safe to execute the insn once instead of zero times.
611 When MAYBE_NEVER is 0, all insns will be executed at least once
612 so that is not a problem. */
613
614 p = scan_start;
615 while (1)
616 {
617 p = NEXT_INSN (p);
618 /* At end of a straight-in loop, we are done.
619 At end of a loop entered at the bottom, scan the top. */
620 if (p == scan_start)
621 break;
622 if (p == end)
623 {
624 if (loop_top != 0)
625 p = loop_top;
626 else
627 break;
628 if (p == scan_start)
629 break;
630 }
631
632 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
633 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
634 in_libcall = 1;
635 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
636 && find_reg_note (p, REG_RETVAL, NULL_RTX))
637 in_libcall = 0;
638
639 if (GET_CODE (p) == INSN
640 && (set = single_set (p))
641 && GET_CODE (SET_DEST (set)) == REG
642 && ! may_not_optimize[REGNO (SET_DEST (set))])
643 {
644 int tem1 = 0;
645 int tem2 = 0;
646 int move_insn = 0;
647 rtx src = SET_SRC (set);
648 rtx dependencies = 0;
649
650 /* Figure out what to use as a source of this insn. If a REG_EQUIV
651 note is given or if a REG_EQUAL note with a constant operand is
652 specified, use it as the source and mark that we should move
653 this insn by calling emit_move_insn rather that duplicating the
654 insn.
655
656 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
657 is present. */
658 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
659 if (temp)
660 src = XEXP (temp, 0), move_insn = 1;
661 else
662 {
663 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
664 if (temp && CONSTANT_P (XEXP (temp, 0)))
665 src = XEXP (temp, 0), move_insn = 1;
666 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
667 {
668 src = XEXP (temp, 0);
669 /* A libcall block can use regs that don't appear in
670 the equivalent expression. To move the libcall,
671 we must move those regs too. */
672 dependencies = libcall_other_reg (p, src);
673 }
674 }
675
676 /* Don't try to optimize a register that was made
677 by loop-optimization for an inner loop.
678 We don't know its life-span, so we can't compute the benefit. */
679 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
680 ;
681 /* In order to move a register, we need to have one of three cases:
682 (1) it is used only in the same basic block as the set
683 (2) it is not a user variable and it is not used in the
684 exit test (this can cause the variable to be used
685 before it is set just like a user-variable).
686 (3) the set is guaranteed to be executed once the loop starts,
687 and the reg is not used until after that. */
688 else if (! ((! maybe_never
689 && ! loop_reg_used_before_p (set, p, loop_start,
690 scan_start, end))
691 || (! REG_USERVAR_P (SET_DEST (set))
692 && ! REG_LOOP_TEST_P (SET_DEST (set)))
693 || reg_in_basic_block_p (p, SET_DEST (set))))
694 ;
695 else if ((tem = invariant_p (src))
696 && (dependencies == 0
697 || (tem2 = invariant_p (dependencies)) != 0)
698 && (n_times_set[REGNO (SET_DEST (set))] == 1
699 || (tem1
700 = consec_sets_invariant_p (SET_DEST (set),
701 n_times_set[REGNO (SET_DEST (set))],
702 p)))
703 /* If the insn can cause a trap (such as divide by zero),
704 can't move it unless it's guaranteed to be executed
705 once loop is entered. Even a function call might
706 prevent the trap insn from being reached
707 (since it might exit!) */
708 && ! ((maybe_never || call_passed)
709 && may_trap_p (src)))
710 {
711 register struct movable *m;
712 register int regno = REGNO (SET_DEST (set));
713
714 /* A potential lossage is where we have a case where two insns
715 can be combined as long as they are both in the loop, but
716 we move one of them outside the loop. For large loops,
717 this can lose. The most common case of this is the address
718 of a function being called.
719
720 Therefore, if this register is marked as being used exactly
721 once if we are in a loop with calls (a "large loop"), see if
722 we can replace the usage of this register with the source
723 of this SET. If we can, delete this insn.
724
725 Don't do this if P has a REG_RETVAL note or if we have
726 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
727
728 if (reg_single_usage && reg_single_usage[regno] != 0
729 && reg_single_usage[regno] != const0_rtx
730 && regno_first_uid[regno] == INSN_UID (p)
731 && (regno_last_uid[regno]
732 == INSN_UID (reg_single_usage[regno]))
733 && n_times_set[REGNO (SET_DEST (set))] == 1
734 && ! side_effects_p (SET_SRC (set))
735 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
736 #ifdef SMALL_REGISTER_CLASSES
737 && ! (GET_CODE (SET_SRC (set)) == REG
738 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
739 #endif
740 /* This test is not redundant; SET_SRC (set) might be
741 a call-clobbered register and the life of REGNO
742 might span a call. */
743 && ! modified_between_p (SET_SRC (set), p,
744 reg_single_usage[regno])
745 && no_labels_between_p (p, reg_single_usage[regno])
746 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
747 reg_single_usage[regno]))
748 {
749 /* Replace any usage in a REG_EQUAL note. */
750 REG_NOTES (reg_single_usage[regno])
751 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
752 SET_DEST (set), SET_SRC (set));
753
754 PUT_CODE (p, NOTE);
755 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
756 NOTE_SOURCE_FILE (p) = 0;
757 n_times_set[regno] = 0;
758 continue;
759 }
760
761 m = (struct movable *) alloca (sizeof (struct movable));
762 m->next = 0;
763 m->insn = p;
764 m->set_src = src;
765 m->dependencies = dependencies;
766 m->set_dest = SET_DEST (set);
767 m->force = 0;
768 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
769 m->done = 0;
770 m->forces = 0;
771 m->partial = 0;
772 m->move_insn = move_insn;
773 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
774 m->savemode = VOIDmode;
775 m->regno = regno;
776 /* Set M->cond if either invariant_p or consec_sets_invariant_p
777 returned 2 (only conditionally invariant). */
778 m->cond = ((tem | tem1 | tem2) > 1);
779 m->global = (uid_luid[regno_last_uid[regno]] > INSN_LUID (end)
780 || uid_luid[regno_first_uid[regno]] < INSN_LUID (loop_start));
781 m->match = 0;
782 m->lifetime = (uid_luid[regno_last_uid[regno]]
783 - uid_luid[regno_first_uid[regno]]);
784 m->savings = n_times_used[regno];
785 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
786 m->savings += libcall_benefit (p);
787 n_times_set[regno] = move_insn ? -2 : -1;
788 /* Add M to the end of the chain MOVABLES. */
789 if (movables == 0)
790 movables = m;
791 else
792 last_movable->next = m;
793 last_movable = m;
794
795 if (m->consec > 0)
796 {
797 /* Skip this insn, not checking REG_LIBCALL notes. */
798 p = next_nonnote_insn (p);
799 /* Skip the consecutive insns, if there are any. */
800 p = skip_consec_insns (p, m->consec);
801 /* Back up to the last insn of the consecutive group. */
802 p = prev_nonnote_insn (p);
803
804 /* We must now reset m->move_insn, m->is_equiv, and possibly
805 m->set_src to correspond to the effects of all the
806 insns. */
807 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
808 if (temp)
809 m->set_src = XEXP (temp, 0), m->move_insn = 1;
810 else
811 {
812 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
813 if (temp && CONSTANT_P (XEXP (temp, 0)))
814 m->set_src = XEXP (temp, 0), m->move_insn = 1;
815 else
816 m->move_insn = 0;
817
818 }
819 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
820 }
821 }
822 /* If this register is always set within a STRICT_LOW_PART
823 or set to zero, then its high bytes are constant.
824 So clear them outside the loop and within the loop
825 just load the low bytes.
826 We must check that the machine has an instruction to do so.
827 Also, if the value loaded into the register
828 depends on the same register, this cannot be done. */
829 else if (SET_SRC (set) == const0_rtx
830 && GET_CODE (NEXT_INSN (p)) == INSN
831 && (set1 = single_set (NEXT_INSN (p)))
832 && GET_CODE (set1) == SET
833 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
834 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
835 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
836 == SET_DEST (set))
837 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
838 {
839 register int regno = REGNO (SET_DEST (set));
840 if (n_times_set[regno] == 2)
841 {
842 register struct movable *m;
843 m = (struct movable *) alloca (sizeof (struct movable));
844 m->next = 0;
845 m->insn = p;
846 m->set_dest = SET_DEST (set);
847 m->dependencies = 0;
848 m->force = 0;
849 m->consec = 0;
850 m->done = 0;
851 m->forces = 0;
852 m->move_insn = 0;
853 m->partial = 1;
854 /* If the insn may not be executed on some cycles,
855 we can't clear the whole reg; clear just high part.
856 Not even if the reg is used only within this loop.
857 Consider this:
858 while (1)
859 while (s != t) {
860 if (foo ()) x = *s;
861 use (x);
862 }
863 Clearing x before the inner loop could clobber a value
864 being saved from the last time around the outer loop.
865 However, if the reg is not used outside this loop
866 and all uses of the register are in the same
867 basic block as the store, there is no problem.
868
869 If this insn was made by loop, we don't know its
870 INSN_LUID and hence must make a conservative
871 assumption. */
872 m->global = (INSN_UID (p) >= max_uid_for_loop
873 || (uid_luid[regno_last_uid[regno]]
874 > INSN_LUID (end))
875 || (uid_luid[regno_first_uid[regno]]
876 < INSN_LUID (p))
877 || (labels_in_range_p
878 (p, uid_luid[regno_first_uid[regno]])));
879 if (maybe_never && m->global)
880 m->savemode = GET_MODE (SET_SRC (set1));
881 else
882 m->savemode = VOIDmode;
883 m->regno = regno;
884 m->cond = 0;
885 m->match = 0;
886 m->lifetime = (uid_luid[regno_last_uid[regno]]
887 - uid_luid[regno_first_uid[regno]]);
888 m->savings = 1;
889 n_times_set[regno] = -1;
890 /* Add M to the end of the chain MOVABLES. */
891 if (movables == 0)
892 movables = m;
893 else
894 last_movable->next = m;
895 last_movable = m;
896 }
897 }
898 }
899 /* Past a call insn, we get to insns which might not be executed
900 because the call might exit. This matters for insns that trap.
901 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
902 so they don't count. */
903 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
904 call_passed = 1;
905 /* Past a label or a jump, we get to insns for which we
906 can't count on whether or how many times they will be
907 executed during each iteration. Therefore, we can
908 only move out sets of trivial variables
909 (those not used after the loop). */
910 /* This code appears in three places, once in scan_loop, and twice
911 in strength_reduce. */
912 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
913 /* If we enter the loop in the middle, and scan around to the
914 beginning, don't set maybe_never for that. This must be an
915 unconditional jump, otherwise the code at the top of the
916 loop might never be executed. Unconditional jumps are
917 followed a by barrier then loop end. */
918 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
919 && NEXT_INSN (NEXT_INSN (p)) == end
920 && simplejump_p (p)))
921 maybe_never = 1;
922 else if (GET_CODE (p) == NOTE)
923 {
924 /* At the virtual top of a converted loop, insns are again known to
925 be executed: logically, the loop begins here even though the exit
926 code has been duplicated. */
927 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
928 maybe_never = call_passed = 0;
929 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
930 loop_depth++;
931 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
932 loop_depth--;
933 }
934 }
935
936 /* If one movable subsumes another, ignore that other. */
937
938 ignore_some_movables (movables);
939
940 /* For each movable insn, see if the reg that it loads
941 leads when it dies right into another conditionally movable insn.
942 If so, record that the second insn "forces" the first one,
943 since the second can be moved only if the first is. */
944
945 force_movables (movables);
946
947 /* See if there are multiple movable insns that load the same value.
948 If there are, make all but the first point at the first one
949 through the `match' field, and add the priorities of them
950 all together as the priority of the first. */
951
952 combine_movables (movables, nregs);
953
954 /* Now consider each movable insn to decide whether it is worth moving.
955 Store 0 in n_times_set for each reg that is moved. */
956
957 move_movables (movables, threshold,
958 insn_count, loop_start, end, nregs);
959
960 /* Now candidates that still are negative are those not moved.
961 Change n_times_set to indicate that those are not actually invariant. */
962 for (i = 0; i < nregs; i++)
963 if (n_times_set[i] < 0)
964 n_times_set[i] = n_times_used[i];
965
966 if (flag_strength_reduce)
967 strength_reduce (scan_start, end, loop_top,
968 insn_count, loop_start, end);
969 }
970 \f
971 /* Add elements to *OUTPUT to record all the pseudo-regs
972 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
973
974 void
975 record_excess_regs (in_this, not_in_this, output)
976 rtx in_this, not_in_this;
977 rtx *output;
978 {
979 enum rtx_code code;
980 char *fmt;
981 int i;
982
983 code = GET_CODE (in_this);
984
985 switch (code)
986 {
987 case PC:
988 case CC0:
989 case CONST_INT:
990 case CONST_DOUBLE:
991 case CONST:
992 case SYMBOL_REF:
993 case LABEL_REF:
994 return;
995
996 case REG:
997 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
998 && ! reg_mentioned_p (in_this, not_in_this))
999 *output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
1000 return;
1001 }
1002
1003 fmt = GET_RTX_FORMAT (code);
1004 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1005 {
1006 int j;
1007
1008 switch (fmt[i])
1009 {
1010 case 'E':
1011 for (j = 0; j < XVECLEN (in_this, i); j++)
1012 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1013 break;
1014
1015 case 'e':
1016 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1017 break;
1018 }
1019 }
1020 }
1021 \f
1022 /* Check what regs are referred to in the libcall block ending with INSN,
1023 aside from those mentioned in the equivalent value.
1024 If there are none, return 0.
1025 If there are one or more, return an EXPR_LIST containing all of them. */
1026
1027 static rtx
1028 libcall_other_reg (insn, equiv)
1029 rtx insn, equiv;
1030 {
1031 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1032 rtx p = XEXP (note, 0);
1033 rtx output = 0;
1034
1035 /* First, find all the regs used in the libcall block
1036 that are not mentioned as inputs to the result. */
1037
1038 while (p != insn)
1039 {
1040 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1041 || GET_CODE (p) == CALL_INSN)
1042 record_excess_regs (PATTERN (p), equiv, &output);
1043 p = NEXT_INSN (p);
1044 }
1045
1046 return output;
1047 }
1048 \f
1049 /* Return 1 if all uses of REG
1050 are between INSN and the end of the basic block. */
1051
1052 static int
1053 reg_in_basic_block_p (insn, reg)
1054 rtx insn, reg;
1055 {
1056 int regno = REGNO (reg);
1057 rtx p;
1058
1059 if (regno_first_uid[regno] != INSN_UID (insn))
1060 return 0;
1061
1062 /* Search this basic block for the already recorded last use of the reg. */
1063 for (p = insn; p; p = NEXT_INSN (p))
1064 {
1065 switch (GET_CODE (p))
1066 {
1067 case NOTE:
1068 break;
1069
1070 case INSN:
1071 case CALL_INSN:
1072 /* Ordinary insn: if this is the last use, we win. */
1073 if (regno_last_uid[regno] == INSN_UID (p))
1074 return 1;
1075 break;
1076
1077 case JUMP_INSN:
1078 /* Jump insn: if this is the last use, we win. */
1079 if (regno_last_uid[regno] == INSN_UID (p))
1080 return 1;
1081 /* Otherwise, it's the end of the basic block, so we lose. */
1082 return 0;
1083
1084 case CODE_LABEL:
1085 case BARRIER:
1086 /* It's the end of the basic block, so we lose. */
1087 return 0;
1088 }
1089 }
1090
1091 /* The "last use" doesn't follow the "first use"?? */
1092 abort ();
1093 }
1094 \f
1095 /* Compute the benefit of eliminating the insns in the block whose
1096 last insn is LAST. This may be a group of insns used to compute a
1097 value directly or can contain a library call. */
1098
1099 static int
1100 libcall_benefit (last)
1101 rtx last;
1102 {
1103 rtx insn;
1104 int benefit = 0;
1105
1106 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1107 insn != last; insn = NEXT_INSN (insn))
1108 {
1109 if (GET_CODE (insn) == CALL_INSN)
1110 benefit += 10; /* Assume at least this many insns in a library
1111 routine. */
1112 else if (GET_CODE (insn) == INSN
1113 && GET_CODE (PATTERN (insn)) != USE
1114 && GET_CODE (PATTERN (insn)) != CLOBBER)
1115 benefit++;
1116 }
1117
1118 return benefit;
1119 }
1120 \f
1121 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1122
1123 static rtx
1124 skip_consec_insns (insn, count)
1125 rtx insn;
1126 int count;
1127 {
1128 for (; count > 0; count--)
1129 {
1130 rtx temp;
1131
1132 /* If first insn of libcall sequence, skip to end. */
1133 /* Do this at start of loop, since INSN is guaranteed to
1134 be an insn here. */
1135 if (GET_CODE (insn) != NOTE
1136 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1137 insn = XEXP (temp, 0);
1138
1139 do insn = NEXT_INSN (insn);
1140 while (GET_CODE (insn) == NOTE);
1141 }
1142
1143 return insn;
1144 }
1145
1146 /* Ignore any movable whose insn falls within a libcall
1147 which is part of another movable.
1148 We make use of the fact that the movable for the libcall value
1149 was made later and so appears later on the chain. */
1150
1151 static void
1152 ignore_some_movables (movables)
1153 struct movable *movables;
1154 {
1155 register struct movable *m, *m1;
1156
1157 for (m = movables; m; m = m->next)
1158 {
1159 /* Is this a movable for the value of a libcall? */
1160 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1161 if (note)
1162 {
1163 rtx insn;
1164 /* Check for earlier movables inside that range,
1165 and mark them invalid. We cannot use LUIDs here because
1166 insns created by loop.c for prior loops don't have LUIDs.
1167 Rather than reject all such insns from movables, we just
1168 explicitly check each insn in the libcall (since invariant
1169 libcalls aren't that common). */
1170 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1171 for (m1 = movables; m1 != m; m1 = m1->next)
1172 if (m1->insn == insn)
1173 m1->done = 1;
1174 }
1175 }
1176 }
1177
1178 /* For each movable insn, see if the reg that it loads
1179 leads when it dies right into another conditionally movable insn.
1180 If so, record that the second insn "forces" the first one,
1181 since the second can be moved only if the first is. */
1182
1183 static void
1184 force_movables (movables)
1185 struct movable *movables;
1186 {
1187 register struct movable *m, *m1;
1188 for (m1 = movables; m1; m1 = m1->next)
1189 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1190 if (!m1->partial && !m1->done)
1191 {
1192 int regno = m1->regno;
1193 for (m = m1->next; m; m = m->next)
1194 /* ??? Could this be a bug? What if CSE caused the
1195 register of M1 to be used after this insn?
1196 Since CSE does not update regno_last_uid,
1197 this insn M->insn might not be where it dies.
1198 But very likely this doesn't matter; what matters is
1199 that M's reg is computed from M1's reg. */
1200 if (INSN_UID (m->insn) == regno_last_uid[regno]
1201 && !m->done)
1202 break;
1203 if (m != 0 && m->set_src == m1->set_dest
1204 /* If m->consec, m->set_src isn't valid. */
1205 && m->consec == 0)
1206 m = 0;
1207
1208 /* Increase the priority of the moving the first insn
1209 since it permits the second to be moved as well. */
1210 if (m != 0)
1211 {
1212 m->forces = m1;
1213 m1->lifetime += m->lifetime;
1214 m1->savings += m1->savings;
1215 }
1216 }
1217 }
1218 \f
1219 /* Find invariant expressions that are equal and can be combined into
1220 one register. */
1221
1222 static void
1223 combine_movables (movables, nregs)
1224 struct movable *movables;
1225 int nregs;
1226 {
1227 register struct movable *m;
1228 char *matched_regs = (char *) alloca (nregs);
1229 enum machine_mode mode;
1230
1231 /* Regs that are set more than once are not allowed to match
1232 or be matched. I'm no longer sure why not. */
1233 /* Perhaps testing m->consec_sets would be more appropriate here? */
1234
1235 for (m = movables; m; m = m->next)
1236 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1237 {
1238 register struct movable *m1;
1239 int regno = m->regno;
1240
1241 bzero (matched_regs, nregs);
1242 matched_regs[regno] = 1;
1243
1244 for (m1 = movables; m1; m1 = m1->next)
1245 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1246 /* A reg used outside the loop mustn't be eliminated. */
1247 && !m1->global
1248 /* A reg used for zero-extending mustn't be eliminated. */
1249 && !m1->partial
1250 && (matched_regs[m1->regno]
1251 ||
1252 (
1253 /* Can combine regs with different modes loaded from the
1254 same constant only if the modes are the same or
1255 if both are integer modes with M wider or the same
1256 width as M1. The check for integer is redundant, but
1257 safe, since the only case of differing destination
1258 modes with equal sources is when both sources are
1259 VOIDmode, i.e., CONST_INT. */
1260 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1261 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1262 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1263 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1264 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1265 /* See if the source of M1 says it matches M. */
1266 && ((GET_CODE (m1->set_src) == REG
1267 && matched_regs[REGNO (m1->set_src)])
1268 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1269 movables))))
1270 && ((m->dependencies == m1->dependencies)
1271 || rtx_equal_p (m->dependencies, m1->dependencies)))
1272 {
1273 m->lifetime += m1->lifetime;
1274 m->savings += m1->savings;
1275 m1->done = 1;
1276 m1->match = m;
1277 matched_regs[m1->regno] = 1;
1278 }
1279 }
1280
1281 /* Now combine the regs used for zero-extension.
1282 This can be done for those not marked `global'
1283 provided their lives don't overlap. */
1284
1285 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1286 mode = GET_MODE_WIDER_MODE (mode))
1287 {
1288 register struct movable *m0 = 0;
1289
1290 /* Combine all the registers for extension from mode MODE.
1291 Don't combine any that are used outside this loop. */
1292 for (m = movables; m; m = m->next)
1293 if (m->partial && ! m->global
1294 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1295 {
1296 register struct movable *m1;
1297 int first = uid_luid[regno_first_uid[m->regno]];
1298 int last = uid_luid[regno_last_uid[m->regno]];
1299
1300 if (m0 == 0)
1301 {
1302 /* First one: don't check for overlap, just record it. */
1303 m0 = m;
1304 continue;
1305 }
1306
1307 /* Make sure they extend to the same mode.
1308 (Almost always true.) */
1309 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1310 continue;
1311
1312 /* We already have one: check for overlap with those
1313 already combined together. */
1314 for (m1 = movables; m1 != m; m1 = m1->next)
1315 if (m1 == m0 || (m1->partial && m1->match == m0))
1316 if (! (uid_luid[regno_first_uid[m1->regno]] > last
1317 || uid_luid[regno_last_uid[m1->regno]] < first))
1318 goto overlap;
1319
1320 /* No overlap: we can combine this with the others. */
1321 m0->lifetime += m->lifetime;
1322 m0->savings += m->savings;
1323 m->done = 1;
1324 m->match = m0;
1325
1326 overlap: ;
1327 }
1328 }
1329 }
1330 \f
1331 /* Return 1 if regs X and Y will become the same if moved. */
1332
1333 static int
1334 regs_match_p (x, y, movables)
1335 rtx x, y;
1336 struct movable *movables;
1337 {
1338 int xn = REGNO (x);
1339 int yn = REGNO (y);
1340 struct movable *mx, *my;
1341
1342 for (mx = movables; mx; mx = mx->next)
1343 if (mx->regno == xn)
1344 break;
1345
1346 for (my = movables; my; my = my->next)
1347 if (my->regno == yn)
1348 break;
1349
1350 return (mx && my
1351 && ((mx->match == my->match && mx->match != 0)
1352 || mx->match == my
1353 || mx == my->match));
1354 }
1355
1356 /* Return 1 if X and Y are identical-looking rtx's.
1357 This is the Lisp function EQUAL for rtx arguments.
1358
1359 If two registers are matching movables or a movable register and an
1360 equivalent constant, consider them equal. */
1361
1362 static int
1363 rtx_equal_for_loop_p (x, y, movables)
1364 rtx x, y;
1365 struct movable *movables;
1366 {
1367 register int i;
1368 register int j;
1369 register struct movable *m;
1370 register enum rtx_code code;
1371 register char *fmt;
1372
1373 if (x == y)
1374 return 1;
1375 if (x == 0 || y == 0)
1376 return 0;
1377
1378 code = GET_CODE (x);
1379
1380 /* If we have a register and a constant, they may sometimes be
1381 equal. */
1382 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1383 && CONSTANT_P (y))
1384 for (m = movables; m; m = m->next)
1385 if (m->move_insn && m->regno == REGNO (x)
1386 && rtx_equal_p (m->set_src, y))
1387 return 1;
1388
1389 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1390 && CONSTANT_P (x))
1391 for (m = movables; m; m = m->next)
1392 if (m->move_insn && m->regno == REGNO (y)
1393 && rtx_equal_p (m->set_src, x))
1394 return 1;
1395
1396 /* Otherwise, rtx's of different codes cannot be equal. */
1397 if (code != GET_CODE (y))
1398 return 0;
1399
1400 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1401 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1402
1403 if (GET_MODE (x) != GET_MODE (y))
1404 return 0;
1405
1406 /* These three types of rtx's can be compared nonrecursively. */
1407 if (code == REG)
1408 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1409
1410 if (code == LABEL_REF)
1411 return XEXP (x, 0) == XEXP (y, 0);
1412 if (code == SYMBOL_REF)
1413 return XSTR (x, 0) == XSTR (y, 0);
1414
1415 /* Compare the elements. If any pair of corresponding elements
1416 fail to match, return 0 for the whole things. */
1417
1418 fmt = GET_RTX_FORMAT (code);
1419 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1420 {
1421 switch (fmt[i])
1422 {
1423 case 'w':
1424 if (XWINT (x, i) != XWINT (y, i))
1425 return 0;
1426 break;
1427
1428 case 'i':
1429 if (XINT (x, i) != XINT (y, i))
1430 return 0;
1431 break;
1432
1433 case 'E':
1434 /* Two vectors must have the same length. */
1435 if (XVECLEN (x, i) != XVECLEN (y, i))
1436 return 0;
1437
1438 /* And the corresponding elements must match. */
1439 for (j = 0; j < XVECLEN (x, i); j++)
1440 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1441 return 0;
1442 break;
1443
1444 case 'e':
1445 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1446 return 0;
1447 break;
1448
1449 case 's':
1450 if (strcmp (XSTR (x, i), XSTR (y, i)))
1451 return 0;
1452 break;
1453
1454 case 'u':
1455 /* These are just backpointers, so they don't matter. */
1456 break;
1457
1458 case '0':
1459 break;
1460
1461 /* It is believed that rtx's at this level will never
1462 contain anything but integers and other rtx's,
1463 except for within LABEL_REFs and SYMBOL_REFs. */
1464 default:
1465 abort ();
1466 }
1467 }
1468 return 1;
1469 }
1470 \f
1471 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1472 insns in INSNS which use thet reference. */
1473
1474 static void
1475 add_label_notes (x, insns)
1476 rtx x;
1477 rtx insns;
1478 {
1479 enum rtx_code code = GET_CODE (x);
1480 int i, j;
1481 char *fmt;
1482 rtx insn;
1483
1484 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1485 {
1486 rtx next = next_real_insn (XEXP (x, 0));
1487
1488 /* Don't record labels that refer to dispatch tables.
1489 This is not necessary, since the tablejump references the same label.
1490 And if we did record them, flow.c would make worse code. */
1491 if (next == 0
1492 || ! (GET_CODE (next) == JUMP_INSN
1493 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1494 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1495 {
1496 for (insn = insns; insn; insn = NEXT_INSN (insn))
1497 if (reg_mentioned_p (XEXP (x, 0), insn))
1498 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
1499 REG_NOTES (insn));
1500 }
1501 return;
1502 }
1503
1504 fmt = GET_RTX_FORMAT (code);
1505 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1506 {
1507 if (fmt[i] == 'e')
1508 add_label_notes (XEXP (x, i), insns);
1509 else if (fmt[i] == 'E')
1510 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1511 add_label_notes (XVECEXP (x, i, j), insns);
1512 }
1513 }
1514 \f
1515 /* Scan MOVABLES, and move the insns that deserve to be moved.
1516 If two matching movables are combined, replace one reg with the
1517 other throughout. */
1518
1519 static void
1520 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1521 struct movable *movables;
1522 int threshold;
1523 int insn_count;
1524 rtx loop_start;
1525 rtx end;
1526 int nregs;
1527 {
1528 rtx new_start = 0;
1529 register struct movable *m;
1530 register rtx p;
1531 /* Map of pseudo-register replacements to handle combining
1532 when we move several insns that load the same value
1533 into different pseudo-registers. */
1534 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1535 char *already_moved = (char *) alloca (nregs);
1536
1537 bzero (already_moved, nregs);
1538 bzero ((char *) reg_map, nregs * sizeof (rtx));
1539
1540 num_movables = 0;
1541
1542 for (m = movables; m; m = m->next)
1543 {
1544 /* Describe this movable insn. */
1545
1546 if (loop_dump_stream)
1547 {
1548 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1549 INSN_UID (m->insn), m->regno, m->lifetime);
1550 if (m->consec > 0)
1551 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1552 if (m->cond)
1553 fprintf (loop_dump_stream, "cond ");
1554 if (m->force)
1555 fprintf (loop_dump_stream, "force ");
1556 if (m->global)
1557 fprintf (loop_dump_stream, "global ");
1558 if (m->done)
1559 fprintf (loop_dump_stream, "done ");
1560 if (m->move_insn)
1561 fprintf (loop_dump_stream, "move-insn ");
1562 if (m->match)
1563 fprintf (loop_dump_stream, "matches %d ",
1564 INSN_UID (m->match->insn));
1565 if (m->forces)
1566 fprintf (loop_dump_stream, "forces %d ",
1567 INSN_UID (m->forces->insn));
1568 }
1569
1570 /* Count movables. Value used in heuristics in strength_reduce. */
1571 num_movables++;
1572
1573 /* Ignore the insn if it's already done (it matched something else).
1574 Otherwise, see if it is now safe to move. */
1575
1576 if (!m->done
1577 && (! m->cond
1578 || (1 == invariant_p (m->set_src)
1579 && (m->dependencies == 0
1580 || 1 == invariant_p (m->dependencies))
1581 && (m->consec == 0
1582 || 1 == consec_sets_invariant_p (m->set_dest,
1583 m->consec + 1,
1584 m->insn))))
1585 && (! m->forces || m->forces->done))
1586 {
1587 register int regno;
1588 register rtx p;
1589 int savings = m->savings;
1590
1591 /* We have an insn that is safe to move.
1592 Compute its desirability. */
1593
1594 p = m->insn;
1595 regno = m->regno;
1596
1597 if (loop_dump_stream)
1598 fprintf (loop_dump_stream, "savings %d ", savings);
1599
1600 if (moved_once[regno])
1601 {
1602 insn_count *= 2;
1603
1604 if (loop_dump_stream)
1605 fprintf (loop_dump_stream, "halved since already moved ");
1606 }
1607
1608 /* An insn MUST be moved if we already moved something else
1609 which is safe only if this one is moved too: that is,
1610 if already_moved[REGNO] is nonzero. */
1611
1612 /* An insn is desirable to move if the new lifetime of the
1613 register is no more than THRESHOLD times the old lifetime.
1614 If it's not desirable, it means the loop is so big
1615 that moving won't speed things up much,
1616 and it is liable to make register usage worse. */
1617
1618 /* It is also desirable to move if it can be moved at no
1619 extra cost because something else was already moved. */
1620
1621 if (already_moved[regno]
1622 || (threshold * savings * m->lifetime) >= insn_count
1623 || (m->forces && m->forces->done
1624 && n_times_used[m->forces->regno] == 1))
1625 {
1626 int count;
1627 register struct movable *m1;
1628 rtx first;
1629
1630 /* Now move the insns that set the reg. */
1631
1632 if (m->partial && m->match)
1633 {
1634 rtx newpat, i1;
1635 rtx r1, r2;
1636 /* Find the end of this chain of matching regs.
1637 Thus, we load each reg in the chain from that one reg.
1638 And that reg is loaded with 0 directly,
1639 since it has ->match == 0. */
1640 for (m1 = m; m1->match; m1 = m1->match);
1641 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1642 SET_DEST (PATTERN (m1->insn)));
1643 i1 = emit_insn_before (newpat, loop_start);
1644
1645 /* Mark the moved, invariant reg as being allowed to
1646 share a hard reg with the other matching invariant. */
1647 REG_NOTES (i1) = REG_NOTES (m->insn);
1648 r1 = SET_DEST (PATTERN (m->insn));
1649 r2 = SET_DEST (PATTERN (m1->insn));
1650 regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
1651 gen_rtx (EXPR_LIST, VOIDmode, r2,
1652 regs_may_share));
1653 delete_insn (m->insn);
1654
1655 if (new_start == 0)
1656 new_start = i1;
1657
1658 if (loop_dump_stream)
1659 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1660 }
1661 /* If we are to re-generate the item being moved with a
1662 new move insn, first delete what we have and then emit
1663 the move insn before the loop. */
1664 else if (m->move_insn)
1665 {
1666 rtx i1, temp;
1667
1668 for (count = m->consec; count >= 0; count--)
1669 {
1670 /* If this is the first insn of a library call sequence,
1671 skip to the end. */
1672 if (GET_CODE (p) != NOTE
1673 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1674 p = XEXP (temp, 0);
1675
1676 /* If this is the last insn of a libcall sequence, then
1677 delete every insn in the sequence except the last.
1678 The last insn is handled in the normal manner. */
1679 if (GET_CODE (p) != NOTE
1680 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1681 {
1682 temp = XEXP (temp, 0);
1683 while (temp != p)
1684 temp = delete_insn (temp);
1685 }
1686
1687 p = delete_insn (p);
1688 }
1689
1690 start_sequence ();
1691 emit_move_insn (m->set_dest, m->set_src);
1692 temp = get_insns ();
1693 end_sequence ();
1694
1695 add_label_notes (m->set_src, temp);
1696
1697 i1 = emit_insns_before (temp, loop_start);
1698 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1699 REG_NOTES (i1)
1700 = gen_rtx (EXPR_LIST,
1701 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1702 m->set_src, REG_NOTES (i1));
1703
1704 if (loop_dump_stream)
1705 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1706
1707 /* The more regs we move, the less we like moving them. */
1708 threshold -= 3;
1709 }
1710 else
1711 {
1712 for (count = m->consec; count >= 0; count--)
1713 {
1714 rtx i1, temp;
1715
1716 /* If first insn of libcall sequence, skip to end. */
1717 /* Do this at start of loop, since p is guaranteed to
1718 be an insn here. */
1719 if (GET_CODE (p) != NOTE
1720 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1721 p = XEXP (temp, 0);
1722
1723 /* If last insn of libcall sequence, move all
1724 insns except the last before the loop. The last
1725 insn is handled in the normal manner. */
1726 if (GET_CODE (p) != NOTE
1727 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1728 {
1729 rtx fn_address = 0;
1730 rtx fn_reg = 0;
1731 rtx fn_address_insn = 0;
1732
1733 first = 0;
1734 for (temp = XEXP (temp, 0); temp != p;
1735 temp = NEXT_INSN (temp))
1736 {
1737 rtx body;
1738 rtx n;
1739 rtx next;
1740
1741 if (GET_CODE (temp) == NOTE)
1742 continue;
1743
1744 body = PATTERN (temp);
1745
1746 /* Find the next insn after TEMP,
1747 not counting USE or NOTE insns. */
1748 for (next = NEXT_INSN (temp); next != p;
1749 next = NEXT_INSN (next))
1750 if (! (GET_CODE (next) == INSN
1751 && GET_CODE (PATTERN (next)) == USE)
1752 && GET_CODE (next) != NOTE)
1753 break;
1754
1755 /* If that is the call, this may be the insn
1756 that loads the function address.
1757
1758 Extract the function address from the insn
1759 that loads it into a register.
1760 If this insn was cse'd, we get incorrect code.
1761
1762 So emit a new move insn that copies the
1763 function address into the register that the
1764 call insn will use. flow.c will delete any
1765 redundant stores that we have created. */
1766 if (GET_CODE (next) == CALL_INSN
1767 && GET_CODE (body) == SET
1768 && GET_CODE (SET_DEST (body)) == REG
1769 && (n = find_reg_note (temp, REG_EQUAL,
1770 NULL_RTX)))
1771 {
1772 fn_reg = SET_SRC (body);
1773 if (GET_CODE (fn_reg) != REG)
1774 fn_reg = SET_DEST (body);
1775 fn_address = XEXP (n, 0);
1776 fn_address_insn = temp;
1777 }
1778 /* We have the call insn.
1779 If it uses the register we suspect it might,
1780 load it with the correct address directly. */
1781 if (GET_CODE (temp) == CALL_INSN
1782 && fn_address != 0
1783 && reg_referenced_p (fn_reg, body))
1784 emit_insn_after (gen_move_insn (fn_reg,
1785 fn_address),
1786 fn_address_insn);
1787
1788 if (GET_CODE (temp) == CALL_INSN)
1789 i1 = emit_call_insn_before (body, loop_start);
1790 else
1791 i1 = emit_insn_before (body, loop_start);
1792 if (first == 0)
1793 first = i1;
1794 if (temp == fn_address_insn)
1795 fn_address_insn = i1;
1796 REG_NOTES (i1) = REG_NOTES (temp);
1797 delete_insn (temp);
1798 }
1799 }
1800 if (m->savemode != VOIDmode)
1801 {
1802 /* P sets REG to zero; but we should clear only
1803 the bits that are not covered by the mode
1804 m->savemode. */
1805 rtx reg = m->set_dest;
1806 rtx sequence;
1807 rtx tem;
1808
1809 start_sequence ();
1810 tem = expand_binop
1811 (GET_MODE (reg), and_optab, reg,
1812 GEN_INT ((((HOST_WIDE_INT) 1
1813 << GET_MODE_BITSIZE (m->savemode)))
1814 - 1),
1815 reg, 1, OPTAB_LIB_WIDEN);
1816 if (tem == 0)
1817 abort ();
1818 if (tem != reg)
1819 emit_move_insn (reg, tem);
1820 sequence = gen_sequence ();
1821 end_sequence ();
1822 i1 = emit_insn_before (sequence, loop_start);
1823 }
1824 else if (GET_CODE (p) == CALL_INSN)
1825 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1826 else
1827 i1 = emit_insn_before (PATTERN (p), loop_start);
1828
1829 REG_NOTES (i1) = REG_NOTES (p);
1830
1831 /* If there is a REG_EQUAL note present whose value is
1832 not loop invariant, then delete it, since it may
1833 cause problems with later optimization passes.
1834 It is possible for cse to create such notes
1835 like this as a result of record_jump_cond. */
1836
1837 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1838 && ! invariant_p (XEXP (temp, 0)))
1839 remove_note (i1, temp);
1840
1841 if (new_start == 0)
1842 new_start = i1;
1843
1844 if (loop_dump_stream)
1845 fprintf (loop_dump_stream, " moved to %d",
1846 INSN_UID (i1));
1847
1848 #if 0
1849 /* This isn't needed because REG_NOTES is copied
1850 below and is wrong since P might be a PARALLEL. */
1851 if (REG_NOTES (i1) == 0
1852 && ! m->partial /* But not if it's a zero-extend clr. */
1853 && ! m->global /* and not if used outside the loop
1854 (since it might get set outside). */
1855 && CONSTANT_P (SET_SRC (PATTERN (p))))
1856 REG_NOTES (i1)
1857 = gen_rtx (EXPR_LIST, REG_EQUAL,
1858 SET_SRC (PATTERN (p)), REG_NOTES (i1));
1859 #endif
1860
1861 /* If library call, now fix the REG_NOTES that contain
1862 insn pointers, namely REG_LIBCALL on FIRST
1863 and REG_RETVAL on I1. */
1864 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
1865 {
1866 XEXP (temp, 0) = first;
1867 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
1868 XEXP (temp, 0) = i1;
1869 }
1870
1871 delete_insn (p);
1872 do p = NEXT_INSN (p);
1873 while (p && GET_CODE (p) == NOTE);
1874 }
1875
1876 /* The more regs we move, the less we like moving them. */
1877 threshold -= 3;
1878 }
1879
1880 /* Any other movable that loads the same register
1881 MUST be moved. */
1882 already_moved[regno] = 1;
1883
1884 /* This reg has been moved out of one loop. */
1885 moved_once[regno] = 1;
1886
1887 /* The reg set here is now invariant. */
1888 if (! m->partial)
1889 n_times_set[regno] = 0;
1890
1891 m->done = 1;
1892
1893 /* Change the length-of-life info for the register
1894 to say it lives at least the full length of this loop.
1895 This will help guide optimizations in outer loops. */
1896
1897 if (uid_luid[regno_first_uid[regno]] > INSN_LUID (loop_start))
1898 /* This is the old insn before all the moved insns.
1899 We can't use the moved insn because it is out of range
1900 in uid_luid. Only the old insns have luids. */
1901 regno_first_uid[regno] = INSN_UID (loop_start);
1902 if (uid_luid[regno_last_uid[regno]] < INSN_LUID (end))
1903 regno_last_uid[regno] = INSN_UID (end);
1904
1905 /* Combine with this moved insn any other matching movables. */
1906
1907 if (! m->partial)
1908 for (m1 = movables; m1; m1 = m1->next)
1909 if (m1->match == m)
1910 {
1911 rtx temp;
1912
1913 /* Schedule the reg loaded by M1
1914 for replacement so that shares the reg of M.
1915 If the modes differ (only possible in restricted
1916 circumstances, make a SUBREG. */
1917 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
1918 reg_map[m1->regno] = m->set_dest;
1919 else
1920 reg_map[m1->regno]
1921 = gen_lowpart_common (GET_MODE (m1->set_dest),
1922 m->set_dest);
1923
1924 /* Get rid of the matching insn
1925 and prevent further processing of it. */
1926 m1->done = 1;
1927
1928 /* if library call, delete all insn except last, which
1929 is deleted below */
1930 if (temp = find_reg_note (m1->insn, REG_RETVAL,
1931 NULL_RTX))
1932 {
1933 for (temp = XEXP (temp, 0); temp != m1->insn;
1934 temp = NEXT_INSN (temp))
1935 delete_insn (temp);
1936 }
1937 delete_insn (m1->insn);
1938
1939 /* Any other movable that loads the same register
1940 MUST be moved. */
1941 already_moved[m1->regno] = 1;
1942
1943 /* The reg merged here is now invariant,
1944 if the reg it matches is invariant. */
1945 if (! m->partial)
1946 n_times_set[m1->regno] = 0;
1947 }
1948 }
1949 else if (loop_dump_stream)
1950 fprintf (loop_dump_stream, "not desirable");
1951 }
1952 else if (loop_dump_stream && !m->match)
1953 fprintf (loop_dump_stream, "not safe");
1954
1955 if (loop_dump_stream)
1956 fprintf (loop_dump_stream, "\n");
1957 }
1958
1959 if (new_start == 0)
1960 new_start = loop_start;
1961
1962 /* Go through all the instructions in the loop, making
1963 all the register substitutions scheduled in REG_MAP. */
1964 for (p = new_start; p != end; p = NEXT_INSN (p))
1965 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1966 || GET_CODE (p) == CALL_INSN)
1967 {
1968 replace_regs (PATTERN (p), reg_map, nregs, 0);
1969 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
1970 INSN_CODE (p) = -1;
1971 }
1972 }
1973 \f
1974 #if 0
1975 /* Scan X and replace the address of any MEM in it with ADDR.
1976 REG is the address that MEM should have before the replacement. */
1977
1978 static void
1979 replace_call_address (x, reg, addr)
1980 rtx x, reg, addr;
1981 {
1982 register enum rtx_code code;
1983 register int i;
1984 register char *fmt;
1985
1986 if (x == 0)
1987 return;
1988 code = GET_CODE (x);
1989 switch (code)
1990 {
1991 case PC:
1992 case CC0:
1993 case CONST_INT:
1994 case CONST_DOUBLE:
1995 case CONST:
1996 case SYMBOL_REF:
1997 case LABEL_REF:
1998 case REG:
1999 return;
2000
2001 case SET:
2002 /* Short cut for very common case. */
2003 replace_call_address (XEXP (x, 1), reg, addr);
2004 return;
2005
2006 case CALL:
2007 /* Short cut for very common case. */
2008 replace_call_address (XEXP (x, 0), reg, addr);
2009 return;
2010
2011 case MEM:
2012 /* If this MEM uses a reg other than the one we expected,
2013 something is wrong. */
2014 if (XEXP (x, 0) != reg)
2015 abort ();
2016 XEXP (x, 0) = addr;
2017 return;
2018 }
2019
2020 fmt = GET_RTX_FORMAT (code);
2021 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2022 {
2023 if (fmt[i] == 'e')
2024 replace_call_address (XEXP (x, i), reg, addr);
2025 if (fmt[i] == 'E')
2026 {
2027 register int j;
2028 for (j = 0; j < XVECLEN (x, i); j++)
2029 replace_call_address (XVECEXP (x, i, j), reg, addr);
2030 }
2031 }
2032 }
2033 #endif
2034 \f
2035 /* Return the number of memory refs to addresses that vary
2036 in the rtx X. */
2037
2038 static int
2039 count_nonfixed_reads (x)
2040 rtx x;
2041 {
2042 register enum rtx_code code;
2043 register int i;
2044 register char *fmt;
2045 int value;
2046
2047 if (x == 0)
2048 return 0;
2049
2050 code = GET_CODE (x);
2051 switch (code)
2052 {
2053 case PC:
2054 case CC0:
2055 case CONST_INT:
2056 case CONST_DOUBLE:
2057 case CONST:
2058 case SYMBOL_REF:
2059 case LABEL_REF:
2060 case REG:
2061 return 0;
2062
2063 case MEM:
2064 return ((invariant_p (XEXP (x, 0)) != 1)
2065 + count_nonfixed_reads (XEXP (x, 0)));
2066 }
2067
2068 value = 0;
2069 fmt = GET_RTX_FORMAT (code);
2070 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2071 {
2072 if (fmt[i] == 'e')
2073 value += count_nonfixed_reads (XEXP (x, i));
2074 if (fmt[i] == 'E')
2075 {
2076 register int j;
2077 for (j = 0; j < XVECLEN (x, i); j++)
2078 value += count_nonfixed_reads (XVECEXP (x, i, j));
2079 }
2080 }
2081 return value;
2082 }
2083
2084 \f
2085 #if 0
2086 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2087 Replace it with an instruction to load just the low bytes
2088 if the machine supports such an instruction,
2089 and insert above LOOP_START an instruction to clear the register. */
2090
2091 static void
2092 constant_high_bytes (p, loop_start)
2093 rtx p, loop_start;
2094 {
2095 register rtx new;
2096 register int insn_code_number;
2097
2098 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2099 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2100
2101 new = gen_rtx (SET, VOIDmode,
2102 gen_rtx (STRICT_LOW_PART, VOIDmode,
2103 gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2104 SET_DEST (PATTERN (p)),
2105 0)),
2106 XEXP (SET_SRC (PATTERN (p)), 0));
2107 insn_code_number = recog (new, p);
2108
2109 if (insn_code_number)
2110 {
2111 register int i;
2112
2113 /* Clear destination register before the loop. */
2114 emit_insn_before (gen_rtx (SET, VOIDmode,
2115 SET_DEST (PATTERN (p)),
2116 const0_rtx),
2117 loop_start);
2118
2119 /* Inside the loop, just load the low part. */
2120 PATTERN (p) = new;
2121 }
2122 }
2123 #endif
2124 \f
2125 /* Scan a loop setting the variables `unknown_address_altered',
2126 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2127 and `loop_has_volatile'.
2128 Also, fill in the array `loop_store_mems'. */
2129
2130 static void
2131 prescan_loop (start, end)
2132 rtx start, end;
2133 {
2134 register int level = 1;
2135 register rtx insn;
2136
2137 unknown_address_altered = 0;
2138 loop_has_call = 0;
2139 loop_has_volatile = 0;
2140 loop_store_mems_idx = 0;
2141
2142 num_mem_sets = 0;
2143 loops_enclosed = 1;
2144 loop_continue = 0;
2145
2146 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2147 insn = NEXT_INSN (insn))
2148 {
2149 if (GET_CODE (insn) == NOTE)
2150 {
2151 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2152 {
2153 ++level;
2154 /* Count number of loops contained in this one. */
2155 loops_enclosed++;
2156 }
2157 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2158 {
2159 --level;
2160 if (level == 0)
2161 {
2162 end = insn;
2163 break;
2164 }
2165 }
2166 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2167 {
2168 if (level == 1)
2169 loop_continue = insn;
2170 }
2171 }
2172 else if (GET_CODE (insn) == CALL_INSN)
2173 {
2174 unknown_address_altered = 1;
2175 loop_has_call = 1;
2176 }
2177 else
2178 {
2179 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2180 {
2181 if (volatile_refs_p (PATTERN (insn)))
2182 loop_has_volatile = 1;
2183
2184 note_stores (PATTERN (insn), note_addr_stored);
2185 }
2186 }
2187 }
2188 }
2189 \f
2190 /* Scan the function looking for loops. Record the start and end of each loop.
2191 Also mark as invalid loops any loops that contain a setjmp or are branched
2192 to from outside the loop. */
2193
2194 static void
2195 find_and_verify_loops (f)
2196 rtx f;
2197 {
2198 rtx insn, label;
2199 int current_loop = -1;
2200 int next_loop = -1;
2201 int loop;
2202
2203 /* If there are jumps to undefined labels,
2204 treat them as jumps out of any/all loops.
2205 This also avoids writing past end of tables when there are no loops. */
2206 uid_loop_num[0] = -1;
2207
2208 /* Find boundaries of loops, mark which loops are contained within
2209 loops, and invalidate loops that have setjmp. */
2210
2211 for (insn = f; insn; insn = NEXT_INSN (insn))
2212 {
2213 if (GET_CODE (insn) == NOTE)
2214 switch (NOTE_LINE_NUMBER (insn))
2215 {
2216 case NOTE_INSN_LOOP_BEG:
2217 loop_number_loop_starts[++next_loop] = insn;
2218 loop_number_loop_ends[next_loop] = 0;
2219 loop_outer_loop[next_loop] = current_loop;
2220 loop_invalid[next_loop] = 0;
2221 loop_number_exit_labels[next_loop] = 0;
2222 current_loop = next_loop;
2223 break;
2224
2225 case NOTE_INSN_SETJMP:
2226 /* In this case, we must invalidate our current loop and any
2227 enclosing loop. */
2228 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2229 {
2230 loop_invalid[loop] = 1;
2231 if (loop_dump_stream)
2232 fprintf (loop_dump_stream,
2233 "\nLoop at %d ignored due to setjmp.\n",
2234 INSN_UID (loop_number_loop_starts[loop]));
2235 }
2236 break;
2237
2238 case NOTE_INSN_LOOP_END:
2239 if (current_loop == -1)
2240 abort ();
2241
2242 loop_number_loop_ends[current_loop] = insn;
2243 current_loop = loop_outer_loop[current_loop];
2244 break;
2245
2246 }
2247
2248 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2249 enclosing loop, but this doesn't matter. */
2250 uid_loop_num[INSN_UID (insn)] = current_loop;
2251 }
2252
2253 /* Any loop containing a label used in an initializer must be invalidated,
2254 because it can be jumped into from anywhere. */
2255
2256 for (label = forced_labels; label; label = XEXP (label, 1))
2257 {
2258 int loop_num;
2259
2260 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2261 loop_num != -1;
2262 loop_num = loop_outer_loop[loop_num])
2263 loop_invalid[loop_num] = 1;
2264 }
2265
2266 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2267 loop that it is not contained within, that loop is marked invalid.
2268 If any INSN or CALL_INSN uses a label's address, then the loop containing
2269 that label is marked invalid, because it could be jumped into from
2270 anywhere.
2271
2272 Also look for blocks of code ending in an unconditional branch that
2273 exits the loop. If such a block is surrounded by a conditional
2274 branch around the block, move the block elsewhere (see below) and
2275 invert the jump to point to the code block. This may eliminate a
2276 label in our loop and will simplify processing by both us and a
2277 possible second cse pass. */
2278
2279 for (insn = f; insn; insn = NEXT_INSN (insn))
2280 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2281 {
2282 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2283
2284 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2285 {
2286 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2287 if (note)
2288 {
2289 int loop_num;
2290
2291 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2292 loop_num != -1;
2293 loop_num = loop_outer_loop[loop_num])
2294 loop_invalid[loop_num] = 1;
2295 }
2296 }
2297
2298 if (GET_CODE (insn) != JUMP_INSN)
2299 continue;
2300
2301 mark_loop_jump (PATTERN (insn), this_loop_num);
2302
2303 /* See if this is an unconditional branch outside the loop. */
2304 if (this_loop_num != -1
2305 && (GET_CODE (PATTERN (insn)) == RETURN
2306 || (simplejump_p (insn)
2307 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2308 != this_loop_num)))
2309 && get_max_uid () < max_uid_for_loop)
2310 {
2311 rtx p;
2312 rtx our_next = next_real_insn (insn);
2313
2314 /* Go backwards until we reach the start of the loop, a label,
2315 or a JUMP_INSN. */
2316 for (p = PREV_INSN (insn);
2317 GET_CODE (p) != CODE_LABEL
2318 && ! (GET_CODE (p) == NOTE
2319 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2320 && GET_CODE (p) != JUMP_INSN;
2321 p = PREV_INSN (p))
2322 ;
2323
2324 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2325 we have a block of code to try to move.
2326
2327 We look backward and then forward from the target of INSN
2328 to find a BARRIER at the same loop depth as the target.
2329 If we find such a BARRIER, we make a new label for the start
2330 of the block, invert the jump in P and point it to that label,
2331 and move the block of code to the spot we found. */
2332
2333 if (GET_CODE (p) == JUMP_INSN
2334 && JUMP_LABEL (p) != 0
2335 /* Just ignore jumps to labels that were never emitted.
2336 These always indicate compilation errors. */
2337 && INSN_UID (JUMP_LABEL (p)) != 0
2338 && condjump_p (p)
2339 && ! simplejump_p (p)
2340 && next_real_insn (JUMP_LABEL (p)) == our_next)
2341 {
2342 rtx target
2343 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2344 int target_loop_num = uid_loop_num[INSN_UID (target)];
2345 rtx loc;
2346
2347 for (loc = target; loc; loc = PREV_INSN (loc))
2348 if (GET_CODE (loc) == BARRIER
2349 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2350 break;
2351
2352 if (loc == 0)
2353 for (loc = target; loc; loc = NEXT_INSN (loc))
2354 if (GET_CODE (loc) == BARRIER
2355 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2356 break;
2357
2358 if (loc)
2359 {
2360 rtx cond_label = JUMP_LABEL (p);
2361 rtx new_label = get_label_after (p);
2362
2363 /* Ensure our label doesn't go away. */
2364 LABEL_NUSES (cond_label)++;
2365
2366 /* Verify that uid_loop_num is large enough and that
2367 we can invert P. */
2368 if (invert_jump (p, new_label))
2369 {
2370 rtx q, r;
2371
2372 /* Include the BARRIER after INSN and copy the
2373 block after LOC. */
2374 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2375 reorder_insns (new_label, NEXT_INSN (insn), loc);
2376
2377 /* All those insns are now in TARGET_LOOP_NUM. */
2378 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2379 q = NEXT_INSN (q))
2380 uid_loop_num[INSN_UID (q)] = target_loop_num;
2381
2382 /* The label jumped to by INSN is no longer a loop exit.
2383 Unless INSN does not have a label (e.g., it is a
2384 RETURN insn), search loop_number_exit_labels to find
2385 its label_ref, and remove it. Also turn off
2386 LABEL_OUTSIDE_LOOP_P bit. */
2387 if (JUMP_LABEL (insn))
2388 {
2389 for (q = 0,
2390 r = loop_number_exit_labels[this_loop_num];
2391 r; q = r, r = LABEL_NEXTREF (r))
2392 if (XEXP (r, 0) == JUMP_LABEL (insn))
2393 {
2394 LABEL_OUTSIDE_LOOP_P (r) = 0;
2395 if (q)
2396 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2397 else
2398 loop_number_exit_labels[this_loop_num]
2399 = LABEL_NEXTREF (r);
2400 break;
2401 }
2402
2403 /* If we didn't find it, then something is wrong. */
2404 if (! r)
2405 abort ();
2406 }
2407
2408 /* P is now a jump outside the loop, so it must be put
2409 in loop_number_exit_labels, and marked as such.
2410 The easiest way to do this is to just call
2411 mark_loop_jump again for P. */
2412 mark_loop_jump (PATTERN (p), this_loop_num);
2413
2414 /* If INSN now jumps to the insn after it,
2415 delete INSN. */
2416 if (JUMP_LABEL (insn) != 0
2417 && (next_real_insn (JUMP_LABEL (insn))
2418 == next_real_insn (insn)))
2419 delete_insn (insn);
2420 }
2421
2422 /* Continue the loop after where the conditional
2423 branch used to jump, since the only branch insn
2424 in the block (if it still remains) is an inter-loop
2425 branch and hence needs no processing. */
2426 insn = NEXT_INSN (cond_label);
2427
2428 if (--LABEL_NUSES (cond_label) == 0)
2429 delete_insn (cond_label);
2430
2431 /* This loop will be continued with NEXT_INSN (insn). */
2432 insn = PREV_INSN (insn);
2433 }
2434 }
2435 }
2436 }
2437 }
2438
2439 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2440 loops it is contained in, mark the target loop invalid.
2441
2442 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2443
2444 static void
2445 mark_loop_jump (x, loop_num)
2446 rtx x;
2447 int loop_num;
2448 {
2449 int dest_loop;
2450 int outer_loop;
2451 int i;
2452
2453 switch (GET_CODE (x))
2454 {
2455 case PC:
2456 case USE:
2457 case CLOBBER:
2458 case REG:
2459 case MEM:
2460 case CONST_INT:
2461 case CONST_DOUBLE:
2462 case RETURN:
2463 return;
2464
2465 case CONST:
2466 /* There could be a label reference in here. */
2467 mark_loop_jump (XEXP (x, 0), loop_num);
2468 return;
2469
2470 case PLUS:
2471 case MINUS:
2472 case MULT:
2473 mark_loop_jump (XEXP (x, 0), loop_num);
2474 mark_loop_jump (XEXP (x, 1), loop_num);
2475 return;
2476
2477 case SIGN_EXTEND:
2478 case ZERO_EXTEND:
2479 mark_loop_jump (XEXP (x, 0), loop_num);
2480 return;
2481
2482 case LABEL_REF:
2483 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2484
2485 /* Link together all labels that branch outside the loop. This
2486 is used by final_[bg]iv_value and the loop unrolling code. Also
2487 mark this LABEL_REF so we know that this branch should predict
2488 false. */
2489
2490 if (dest_loop != loop_num && loop_num != -1)
2491 {
2492 LABEL_OUTSIDE_LOOP_P (x) = 1;
2493 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2494 loop_number_exit_labels[loop_num] = x;
2495 }
2496
2497 /* If this is inside a loop, but not in the current loop or one enclosed
2498 by it, it invalidates at least one loop. */
2499
2500 if (dest_loop == -1)
2501 return;
2502
2503 /* We must invalidate every nested loop containing the target of this
2504 label, except those that also contain the jump insn. */
2505
2506 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2507 {
2508 /* Stop when we reach a loop that also contains the jump insn. */
2509 for (outer_loop = loop_num; outer_loop != -1;
2510 outer_loop = loop_outer_loop[outer_loop])
2511 if (dest_loop == outer_loop)
2512 return;
2513
2514 /* If we get here, we know we need to invalidate a loop. */
2515 if (loop_dump_stream && ! loop_invalid[dest_loop])
2516 fprintf (loop_dump_stream,
2517 "\nLoop at %d ignored due to multiple entry points.\n",
2518 INSN_UID (loop_number_loop_starts[dest_loop]));
2519
2520 loop_invalid[dest_loop] = 1;
2521 }
2522 return;
2523
2524 case SET:
2525 /* If this is not setting pc, ignore. */
2526 if (SET_DEST (x) == pc_rtx)
2527 mark_loop_jump (SET_SRC (x), loop_num);
2528 return;
2529
2530 case IF_THEN_ELSE:
2531 mark_loop_jump (XEXP (x, 1), loop_num);
2532 mark_loop_jump (XEXP (x, 2), loop_num);
2533 return;
2534
2535 case PARALLEL:
2536 case ADDR_VEC:
2537 for (i = 0; i < XVECLEN (x, 0); i++)
2538 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2539 return;
2540
2541 case ADDR_DIFF_VEC:
2542 for (i = 0; i < XVECLEN (x, 1); i++)
2543 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2544 return;
2545
2546 default:
2547 /* Treat anything else (such as a symbol_ref)
2548 as a branch out of this loop, but not into any loop. */
2549
2550 if (loop_num != -1)
2551 {
2552 LABEL_OUTSIDE_LOOP_P (x) = 1;
2553 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2554 loop_number_exit_labels[loop_num] = x;
2555 }
2556
2557 return;
2558 }
2559 }
2560 \f
2561 /* Return nonzero if there is a label in the range from
2562 insn INSN to and including the insn whose luid is END
2563 INSN must have an assigned luid (i.e., it must not have
2564 been previously created by loop.c). */
2565
2566 static int
2567 labels_in_range_p (insn, end)
2568 rtx insn;
2569 int end;
2570 {
2571 while (insn && INSN_LUID (insn) <= end)
2572 {
2573 if (GET_CODE (insn) == CODE_LABEL)
2574 return 1;
2575 insn = NEXT_INSN (insn);
2576 }
2577
2578 return 0;
2579 }
2580
2581 /* Record that a memory reference X is being set. */
2582
2583 static void
2584 note_addr_stored (x)
2585 rtx x;
2586 {
2587 register int i;
2588
2589 if (x == 0 || GET_CODE (x) != MEM)
2590 return;
2591
2592 /* Count number of memory writes.
2593 This affects heuristics in strength_reduce. */
2594 num_mem_sets++;
2595
2596 /* BLKmode MEM means all memory is clobbered. */
2597 if (GET_MODE (x) == BLKmode)
2598 unknown_address_altered = 1;
2599
2600 if (unknown_address_altered)
2601 return;
2602
2603 for (i = 0; i < loop_store_mems_idx; i++)
2604 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2605 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2606 {
2607 /* We are storing at the same address as previously noted. Save the
2608 wider reference. */
2609 if (GET_MODE_SIZE (GET_MODE (x))
2610 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i])))
2611 loop_store_mems[i] = x;
2612 break;
2613 }
2614
2615 if (i == NUM_STORES)
2616 unknown_address_altered = 1;
2617
2618 else if (i == loop_store_mems_idx)
2619 loop_store_mems[loop_store_mems_idx++] = x;
2620 }
2621 \f
2622 /* Return nonzero if the rtx X is invariant over the current loop.
2623
2624 The value is 2 if we refer to something only conditionally invariant.
2625
2626 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2627 Otherwise, a memory ref is invariant if it does not conflict with
2628 anything stored in `loop_store_mems'. */
2629
2630 int
2631 invariant_p (x)
2632 register rtx x;
2633 {
2634 register int i;
2635 register enum rtx_code code;
2636 register char *fmt;
2637 int conditional = 0;
2638
2639 if (x == 0)
2640 return 1;
2641 code = GET_CODE (x);
2642 switch (code)
2643 {
2644 case CONST_INT:
2645 case CONST_DOUBLE:
2646 case SYMBOL_REF:
2647 case CONST:
2648 return 1;
2649
2650 case LABEL_REF:
2651 /* A LABEL_REF is normally invariant, however, if we are unrolling
2652 loops, and this label is inside the loop, then it isn't invariant.
2653 This is because each unrolled copy of the loop body will have
2654 a copy of this label. If this was invariant, then an insn loading
2655 the address of this label into a register might get moved outside
2656 the loop, and then each loop body would end up using the same label.
2657
2658 We don't know the loop bounds here though, so just fail for all
2659 labels. */
2660 if (flag_unroll_loops)
2661 return 0;
2662 else
2663 return 1;
2664
2665 case PC:
2666 case CC0:
2667 case UNSPEC_VOLATILE:
2668 return 0;
2669
2670 case REG:
2671 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2672 since the reg might be set by initialization within the loop. */
2673 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
2674 || x == arg_pointer_rtx)
2675 return 1;
2676 if (loop_has_call
2677 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2678 return 0;
2679 if (n_times_set[REGNO (x)] < 0)
2680 return 2;
2681 return n_times_set[REGNO (x)] == 0;
2682
2683 case MEM:
2684 /* Read-only items (such as constants in a constant pool) are
2685 invariant if their address is. */
2686 if (RTX_UNCHANGING_P (x))
2687 break;
2688
2689 /* If we filled the table (or had a subroutine call), any location
2690 in memory could have been clobbered. */
2691 if (unknown_address_altered
2692 /* Don't mess with volatile memory references. */
2693 || MEM_VOLATILE_P (x))
2694 return 0;
2695
2696 /* See if there is any dependence between a store and this load. */
2697 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2698 if (true_dependence (loop_store_mems[i], x))
2699 return 0;
2700
2701 /* It's not invalidated by a store in memory
2702 but we must still verify the address is invariant. */
2703 break;
2704
2705 case ASM_OPERANDS:
2706 /* Don't mess with insns declared volatile. */
2707 if (MEM_VOLATILE_P (x))
2708 return 0;
2709 }
2710
2711 fmt = GET_RTX_FORMAT (code);
2712 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2713 {
2714 if (fmt[i] == 'e')
2715 {
2716 int tem = invariant_p (XEXP (x, i));
2717 if (tem == 0)
2718 return 0;
2719 if (tem == 2)
2720 conditional = 1;
2721 }
2722 else if (fmt[i] == 'E')
2723 {
2724 register int j;
2725 for (j = 0; j < XVECLEN (x, i); j++)
2726 {
2727 int tem = invariant_p (XVECEXP (x, i, j));
2728 if (tem == 0)
2729 return 0;
2730 if (tem == 2)
2731 conditional = 1;
2732 }
2733
2734 }
2735 }
2736
2737 return 1 + conditional;
2738 }
2739
2740 \f
2741 /* Return nonzero if all the insns in the loop that set REG
2742 are INSN and the immediately following insns,
2743 and if each of those insns sets REG in an invariant way
2744 (not counting uses of REG in them).
2745
2746 The value is 2 if some of these insns are only conditionally invariant.
2747
2748 We assume that INSN itself is the first set of REG
2749 and that its source is invariant. */
2750
2751 static int
2752 consec_sets_invariant_p (reg, n_sets, insn)
2753 int n_sets;
2754 rtx reg, insn;
2755 {
2756 register rtx p = insn;
2757 register int regno = REGNO (reg);
2758 rtx temp;
2759 /* Number of sets we have to insist on finding after INSN. */
2760 int count = n_sets - 1;
2761 int old = n_times_set[regno];
2762 int value = 0;
2763 int this;
2764
2765 /* If N_SETS hit the limit, we can't rely on its value. */
2766 if (n_sets == 127)
2767 return 0;
2768
2769 n_times_set[regno] = 0;
2770
2771 while (count > 0)
2772 {
2773 register enum rtx_code code;
2774 rtx set;
2775
2776 p = NEXT_INSN (p);
2777 code = GET_CODE (p);
2778
2779 /* If library call, skip to end of of it. */
2780 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2781 p = XEXP (temp, 0);
2782
2783 this = 0;
2784 if (code == INSN
2785 && (set = single_set (p))
2786 && GET_CODE (SET_DEST (set)) == REG
2787 && REGNO (SET_DEST (set)) == regno)
2788 {
2789 this = invariant_p (SET_SRC (set));
2790 if (this != 0)
2791 value |= this;
2792 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
2793 {
2794 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
2795 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
2796 notes are OK. */
2797 this = (CONSTANT_P (XEXP (temp, 0))
2798 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
2799 && invariant_p (XEXP (temp, 0))));
2800 if (this != 0)
2801 value |= this;
2802 }
2803 }
2804 if (this != 0)
2805 count--;
2806 else if (code != NOTE)
2807 {
2808 n_times_set[regno] = old;
2809 return 0;
2810 }
2811 }
2812
2813 n_times_set[regno] = old;
2814 /* If invariant_p ever returned 2, we return 2. */
2815 return 1 + (value & 2);
2816 }
2817
2818 #if 0
2819 /* I don't think this condition is sufficient to allow INSN
2820 to be moved, so we no longer test it. */
2821
2822 /* Return 1 if all insns in the basic block of INSN and following INSN
2823 that set REG are invariant according to TABLE. */
2824
2825 static int
2826 all_sets_invariant_p (reg, insn, table)
2827 rtx reg, insn;
2828 short *table;
2829 {
2830 register rtx p = insn;
2831 register int regno = REGNO (reg);
2832
2833 while (1)
2834 {
2835 register enum rtx_code code;
2836 p = NEXT_INSN (p);
2837 code = GET_CODE (p);
2838 if (code == CODE_LABEL || code == JUMP_INSN)
2839 return 1;
2840 if (code == INSN && GET_CODE (PATTERN (p)) == SET
2841 && GET_CODE (SET_DEST (PATTERN (p))) == REG
2842 && REGNO (SET_DEST (PATTERN (p))) == regno)
2843 {
2844 if (!invariant_p (SET_SRC (PATTERN (p)), table))
2845 return 0;
2846 }
2847 }
2848 }
2849 #endif /* 0 */
2850 \f
2851 /* Look at all uses (not sets) of registers in X. For each, if it is
2852 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
2853 a different insn, set USAGE[REGNO] to const0_rtx. */
2854
2855 static void
2856 find_single_use_in_loop (insn, x, usage)
2857 rtx insn;
2858 rtx x;
2859 rtx *usage;
2860 {
2861 enum rtx_code code = GET_CODE (x);
2862 char *fmt = GET_RTX_FORMAT (code);
2863 int i, j;
2864
2865 if (code == REG)
2866 usage[REGNO (x)]
2867 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
2868 ? const0_rtx : insn;
2869
2870 else if (code == SET)
2871 {
2872 /* Don't count SET_DEST if it is a REG; otherwise count things
2873 in SET_DEST because if a register is partially modified, it won't
2874 show up as a potential movable so we don't care how USAGE is set
2875 for it. */
2876 if (GET_CODE (SET_DEST (x)) != REG)
2877 find_single_use_in_loop (insn, SET_DEST (x), usage);
2878 find_single_use_in_loop (insn, SET_SRC (x), usage);
2879 }
2880 else
2881 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2882 {
2883 if (fmt[i] == 'e' && XEXP (x, i) != 0)
2884 find_single_use_in_loop (insn, XEXP (x, i), usage);
2885 else if (fmt[i] == 'E')
2886 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2887 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
2888 }
2889 }
2890 \f
2891 /* Increment N_TIMES_SET at the index of each register
2892 that is modified by an insn between FROM and TO.
2893 If the value of an element of N_TIMES_SET becomes 127 or more,
2894 stop incrementing it, to avoid overflow.
2895
2896 Store in SINGLE_USAGE[I] the single insn in which register I is
2897 used, if it is only used once. Otherwise, it is set to 0 (for no
2898 uses) or const0_rtx for more than one use. This parameter may be zero,
2899 in which case this processing is not done.
2900
2901 Store in *COUNT_PTR the number of actual instruction
2902 in the loop. We use this to decide what is worth moving out. */
2903
2904 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
2905 In that case, it is the insn that last set reg n. */
2906
2907 static void
2908 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
2909 register rtx from, to;
2910 char *may_not_move;
2911 rtx *single_usage;
2912 int *count_ptr;
2913 int nregs;
2914 {
2915 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
2916 register rtx insn;
2917 register int count = 0;
2918 register rtx dest;
2919
2920 bzero ((char *) last_set, nregs * sizeof (rtx));
2921 for (insn = from; insn != to; insn = NEXT_INSN (insn))
2922 {
2923 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2924 {
2925 ++count;
2926
2927 /* If requested, record registers that have exactly one use. */
2928 if (single_usage)
2929 {
2930 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
2931
2932 /* Include uses in REG_EQUAL notes. */
2933 if (REG_NOTES (insn))
2934 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
2935 }
2936
2937 if (GET_CODE (PATTERN (insn)) == CLOBBER
2938 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
2939 /* Don't move a reg that has an explicit clobber.
2940 We might do so sometimes, but it's not worth the pain. */
2941 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
2942
2943 if (GET_CODE (PATTERN (insn)) == SET
2944 || GET_CODE (PATTERN (insn)) == CLOBBER)
2945 {
2946 dest = SET_DEST (PATTERN (insn));
2947 while (GET_CODE (dest) == SUBREG
2948 || GET_CODE (dest) == ZERO_EXTRACT
2949 || GET_CODE (dest) == SIGN_EXTRACT
2950 || GET_CODE (dest) == STRICT_LOW_PART)
2951 dest = XEXP (dest, 0);
2952 if (GET_CODE (dest) == REG)
2953 {
2954 register int regno = REGNO (dest);
2955 /* If this is the first setting of this reg
2956 in current basic block, and it was set before,
2957 it must be set in two basic blocks, so it cannot
2958 be moved out of the loop. */
2959 if (n_times_set[regno] > 0 && last_set[regno] == 0)
2960 may_not_move[regno] = 1;
2961 /* If this is not first setting in current basic block,
2962 see if reg was used in between previous one and this.
2963 If so, neither one can be moved. */
2964 if (last_set[regno] != 0
2965 && reg_used_between_p (dest, last_set[regno], insn))
2966 may_not_move[regno] = 1;
2967 if (n_times_set[regno] < 127)
2968 ++n_times_set[regno];
2969 last_set[regno] = insn;
2970 }
2971 }
2972 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2973 {
2974 register int i;
2975 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2976 {
2977 register rtx x = XVECEXP (PATTERN (insn), 0, i);
2978 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
2979 /* Don't move a reg that has an explicit clobber.
2980 It's not worth the pain to try to do it correctly. */
2981 may_not_move[REGNO (XEXP (x, 0))] = 1;
2982
2983 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2984 {
2985 dest = SET_DEST (x);
2986 while (GET_CODE (dest) == SUBREG
2987 || GET_CODE (dest) == ZERO_EXTRACT
2988 || GET_CODE (dest) == SIGN_EXTRACT
2989 || GET_CODE (dest) == STRICT_LOW_PART)
2990 dest = XEXP (dest, 0);
2991 if (GET_CODE (dest) == REG)
2992 {
2993 register int regno = REGNO (dest);
2994 if (n_times_set[regno] > 0 && last_set[regno] == 0)
2995 may_not_move[regno] = 1;
2996 if (last_set[regno] != 0
2997 && reg_used_between_p (dest, last_set[regno], insn))
2998 may_not_move[regno] = 1;
2999 if (n_times_set[regno] < 127)
3000 ++n_times_set[regno];
3001 last_set[regno] = insn;
3002 }
3003 }
3004 }
3005 }
3006 }
3007
3008 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3009 bzero ((char *) last_set, nregs * sizeof (rtx));
3010 }
3011 *count_ptr = count;
3012 }
3013 \f
3014 /* Given a loop that is bounded by LOOP_START and LOOP_END
3015 and that is entered at SCAN_START,
3016 return 1 if the register set in SET contained in insn INSN is used by
3017 any insn that precedes INSN in cyclic order starting
3018 from the loop entry point.
3019
3020 We don't want to use INSN_LUID here because if we restrict INSN to those
3021 that have a valid INSN_LUID, it means we cannot move an invariant out
3022 from an inner loop past two loops. */
3023
3024 static int
3025 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3026 rtx set, insn, loop_start, scan_start, loop_end;
3027 {
3028 rtx reg = SET_DEST (set);
3029 rtx p;
3030
3031 /* Scan forward checking for register usage. If we hit INSN, we
3032 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3033 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3034 {
3035 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3036 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3037 return 1;
3038
3039 if (p == loop_end)
3040 p = loop_start;
3041 }
3042
3043 return 0;
3044 }
3045 \f
3046 /* A "basic induction variable" or biv is a pseudo reg that is set
3047 (within this loop) only by incrementing or decrementing it. */
3048 /* A "general induction variable" or giv is a pseudo reg whose
3049 value is a linear function of a biv. */
3050
3051 /* Bivs are recognized by `basic_induction_var';
3052 Givs by `general_induct_var'. */
3053
3054 /* Indexed by register number, indicates whether or not register is an
3055 induction variable, and if so what type. */
3056
3057 enum iv_mode *reg_iv_type;
3058
3059 /* Indexed by register number, contains pointer to `struct induction'
3060 if register is an induction variable. This holds general info for
3061 all induction variables. */
3062
3063 struct induction **reg_iv_info;
3064
3065 /* Indexed by register number, contains pointer to `struct iv_class'
3066 if register is a basic induction variable. This holds info describing
3067 the class (a related group) of induction variables that the biv belongs
3068 to. */
3069
3070 struct iv_class **reg_biv_class;
3071
3072 /* The head of a list which links together (via the next field)
3073 every iv class for the current loop. */
3074
3075 struct iv_class *loop_iv_list;
3076
3077 /* Communication with routines called via `note_stores'. */
3078
3079 static rtx note_insn;
3080
3081 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3082
3083 static rtx addr_placeholder;
3084
3085 /* ??? Unfinished optimizations, and possible future optimizations,
3086 for the strength reduction code. */
3087
3088 /* ??? There is one more optimization you might be interested in doing: to
3089 allocate pseudo registers for frequently-accessed memory locations.
3090 If the same memory location is referenced each time around, it might
3091 be possible to copy it into a register before and out after.
3092 This is especially useful when the memory location is a variable which
3093 is in a stack slot because somewhere its address is taken. If the
3094 loop doesn't contain a function call and the variable isn't volatile,
3095 it is safe to keep the value in a register for the duration of the
3096 loop. One tricky thing is that the copying of the value back from the
3097 register has to be done on all exits from the loop. You need to check that
3098 all the exits from the loop go to the same place. */
3099
3100 /* ??? The interaction of biv elimination, and recognition of 'constant'
3101 bivs, may cause problems. */
3102
3103 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3104 performance problems.
3105
3106 Perhaps don't eliminate things that can be combined with an addressing
3107 mode. Find all givs that have the same biv, mult_val, and add_val;
3108 then for each giv, check to see if its only use dies in a following
3109 memory address. If so, generate a new memory address and check to see
3110 if it is valid. If it is valid, then store the modified memory address,
3111 otherwise, mark the giv as not done so that it will get its own iv. */
3112
3113 /* ??? Could try to optimize branches when it is known that a biv is always
3114 positive. */
3115
3116 /* ??? When replace a biv in a compare insn, we should replace with closest
3117 giv so that an optimized branch can still be recognized by the combiner,
3118 e.g. the VAX acb insn. */
3119
3120 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3121 was rerun in loop_optimize whenever a register was added or moved.
3122 Also, some of the optimizations could be a little less conservative. */
3123 \f
3124 /* Perform strength reduction and induction variable elimination. */
3125
3126 /* Pseudo registers created during this function will be beyond the last
3127 valid index in several tables including n_times_set and regno_last_uid.
3128 This does not cause a problem here, because the added registers cannot be
3129 givs outside of their loop, and hence will never be reconsidered.
3130 But scan_loop must check regnos to make sure they are in bounds. */
3131
3132 static void
3133 strength_reduce (scan_start, end, loop_top, insn_count,
3134 loop_start, loop_end)
3135 rtx scan_start;
3136 rtx end;
3137 rtx loop_top;
3138 int insn_count;
3139 rtx loop_start;
3140 rtx loop_end;
3141 {
3142 rtx p;
3143 rtx set;
3144 rtx inc_val;
3145 rtx mult_val;
3146 rtx dest_reg;
3147 /* This is 1 if current insn is not executed at least once for every loop
3148 iteration. */
3149 int not_every_iteration = 0;
3150 /* This is 1 if current insn may be executed more than once for every
3151 loop iteration. */
3152 int maybe_multiple = 0;
3153 /* Temporary list pointers for traversing loop_iv_list. */
3154 struct iv_class *bl, **backbl;
3155 /* Ratio of extra register life span we can justify
3156 for saving an instruction. More if loop doesn't call subroutines
3157 since in that case saving an insn makes more difference
3158 and more registers are available. */
3159 /* ??? could set this to last value of threshold in move_movables */
3160 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3161 /* Map of pseudo-register replacements. */
3162 rtx *reg_map;
3163 int call_seen;
3164 rtx test;
3165 rtx end_insert_before;
3166 int loop_depth = 0;
3167
3168 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3169 * sizeof (enum iv_mode *));
3170 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3171 reg_iv_info = (struct induction **)
3172 alloca (max_reg_before_loop * sizeof (struct induction *));
3173 bzero ((char *) reg_iv_info, (max_reg_before_loop
3174 * sizeof (struct induction *)));
3175 reg_biv_class = (struct iv_class **)
3176 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3177 bzero ((char *) reg_biv_class, (max_reg_before_loop
3178 * sizeof (struct iv_class *)));
3179
3180 loop_iv_list = 0;
3181 addr_placeholder = gen_reg_rtx (Pmode);
3182
3183 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3184 must be put before this insn, so that they will appear in the right
3185 order (i.e. loop order).
3186
3187 If loop_end is the end of the current function, then emit a
3188 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3189 dummy note insn. */
3190 if (NEXT_INSN (loop_end) != 0)
3191 end_insert_before = NEXT_INSN (loop_end);
3192 else
3193 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3194
3195 /* Scan through loop to find all possible bivs. */
3196
3197 p = scan_start;
3198 while (1)
3199 {
3200 p = NEXT_INSN (p);
3201 /* At end of a straight-in loop, we are done.
3202 At end of a loop entered at the bottom, scan the top. */
3203 if (p == scan_start)
3204 break;
3205 if (p == end)
3206 {
3207 if (loop_top != 0)
3208 p = loop_top;
3209 else
3210 break;
3211 if (p == scan_start)
3212 break;
3213 }
3214
3215 if (GET_CODE (p) == INSN
3216 && (set = single_set (p))
3217 && GET_CODE (SET_DEST (set)) == REG)
3218 {
3219 dest_reg = SET_DEST (set);
3220 if (REGNO (dest_reg) < max_reg_before_loop
3221 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3222 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3223 {
3224 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3225 dest_reg, p, &inc_val, &mult_val))
3226 {
3227 /* It is a possible basic induction variable.
3228 Create and initialize an induction structure for it. */
3229
3230 struct induction *v
3231 = (struct induction *) alloca (sizeof (struct induction));
3232
3233 record_biv (v, p, dest_reg, inc_val, mult_val,
3234 not_every_iteration, maybe_multiple);
3235 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3236 }
3237 else if (REGNO (dest_reg) < max_reg_before_loop)
3238 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3239 }
3240 }
3241
3242 /* Past CODE_LABEL, we get to insns that may be executed multiple
3243 times. The only way we can be sure that they can't is if every
3244 every jump insn between here and the end of the loop either
3245 returns, exits the loop, or is a forward jump. */
3246
3247 if (GET_CODE (p) == CODE_LABEL)
3248 {
3249 rtx insn = p;
3250
3251 maybe_multiple = 0;
3252
3253 while (1)
3254 {
3255 insn = NEXT_INSN (insn);
3256 if (insn == scan_start)
3257 break;
3258 if (insn == end)
3259 {
3260 if (loop_top != 0)
3261 insn = loop_top;
3262 else
3263 break;
3264 if (insn == scan_start)
3265 break;
3266 }
3267
3268 if (GET_CODE (insn) == JUMP_INSN
3269 && GET_CODE (PATTERN (insn)) != RETURN
3270 && (! condjump_p (insn)
3271 || (JUMP_LABEL (insn) != 0
3272 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3273 || INSN_UID (insn) >= max_uid_for_loop
3274 || (INSN_LUID (JUMP_LABEL (insn))
3275 < INSN_LUID (insn))))))
3276 {
3277 maybe_multiple = 1;
3278 break;
3279 }
3280 }
3281 }
3282
3283 /* Past a label or a jump, we get to insns for which we can't count
3284 on whether or how many times they will be executed during each
3285 iteration. */
3286 /* This code appears in three places, once in scan_loop, and twice
3287 in strength_reduce. */
3288 if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3289 /* If we enter the loop in the middle, and scan around to the
3290 beginning, don't set not_every_iteration for that.
3291 This can be any kind of jump, since we want to know if insns
3292 will be executed if the loop is executed. */
3293 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3294 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3295 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3296 not_every_iteration = 1;
3297
3298 else if (GET_CODE (p) == NOTE)
3299 {
3300 /* At the virtual top of a converted loop, insns are again known to
3301 be executed each iteration: logically, the loop begins here
3302 even though the exit code has been duplicated. */
3303 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3304 not_every_iteration = 0;
3305 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3306 loop_depth++;
3307 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3308 loop_depth--;
3309 }
3310
3311 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3312 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3313 or not an insn is known to be executed each iteration of the
3314 loop, whether or not any iterations are known to occur.
3315
3316 Therefore, if we have just passed a label and have no more labels
3317 between here and the test insn of the loop, we know these insns
3318 will be executed each iteration. This can also happen if we
3319 have just passed a jump, for example, when there are nested loops. */
3320
3321 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3322 && no_labels_between_p (p, loop_end))
3323 not_every_iteration = 0;
3324 }
3325
3326 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3327 Make a sanity check against n_times_set. */
3328 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3329 {
3330 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3331 /* Above happens if register modified by subreg, etc. */
3332 /* Make sure it is not recognized as a basic induction var: */
3333 || n_times_set[bl->regno] != bl->biv_count
3334 /* If never incremented, it is invariant that we decided not to
3335 move. So leave it alone. */
3336 || ! bl->incremented)
3337 {
3338 if (loop_dump_stream)
3339 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3340 bl->regno,
3341 (reg_iv_type[bl->regno] != BASIC_INDUCT
3342 ? "not induction variable"
3343 : (! bl->incremented ? "never incremented"
3344 : "count error")));
3345
3346 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3347 *backbl = bl->next;
3348 }
3349 else
3350 {
3351 backbl = &bl->next;
3352
3353 if (loop_dump_stream)
3354 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3355 }
3356 }
3357
3358 /* Exit if there are no bivs. */
3359 if (! loop_iv_list)
3360 {
3361 /* Can still unroll the loop anyways, but indicate that there is no
3362 strength reduction info available. */
3363 if (flag_unroll_loops)
3364 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3365
3366 return;
3367 }
3368
3369 /* Find initial value for each biv by searching backwards from loop_start,
3370 halting at first label. Also record any test condition. */
3371
3372 call_seen = 0;
3373 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3374 {
3375 note_insn = p;
3376
3377 if (GET_CODE (p) == CALL_INSN)
3378 call_seen = 1;
3379
3380 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3381 || GET_CODE (p) == CALL_INSN)
3382 note_stores (PATTERN (p), record_initial);
3383
3384 /* Record any test of a biv that branches around the loop if no store
3385 between it and the start of loop. We only care about tests with
3386 constants and registers and only certain of those. */
3387 if (GET_CODE (p) == JUMP_INSN
3388 && JUMP_LABEL (p) != 0
3389 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3390 && (test = get_condition_for_loop (p)) != 0
3391 && GET_CODE (XEXP (test, 0)) == REG
3392 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3393 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3394 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3395 && bl->init_insn == 0)
3396 {
3397 /* If an NE test, we have an initial value! */
3398 if (GET_CODE (test) == NE)
3399 {
3400 bl->init_insn = p;
3401 bl->init_set = gen_rtx (SET, VOIDmode,
3402 XEXP (test, 0), XEXP (test, 1));
3403 }
3404 else
3405 bl->initial_test = test;
3406 }
3407 }
3408
3409 /* Look at the each biv and see if we can say anything better about its
3410 initial value from any initializing insns set up above. (This is done
3411 in two passes to avoid missing SETs in a PARALLEL.) */
3412 for (bl = loop_iv_list; bl; bl = bl->next)
3413 {
3414 rtx src;
3415
3416 if (! bl->init_insn)
3417 continue;
3418
3419 src = SET_SRC (bl->init_set);
3420
3421 if (loop_dump_stream)
3422 fprintf (loop_dump_stream,
3423 "Biv %d initialized at insn %d: initial value ",
3424 bl->regno, INSN_UID (bl->init_insn));
3425
3426 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3427 || GET_MODE (src) == VOIDmode)
3428 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3429 {
3430 bl->initial_value = src;
3431
3432 if (loop_dump_stream)
3433 {
3434 if (GET_CODE (src) == CONST_INT)
3435 fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3436 else
3437 {
3438 print_rtl (loop_dump_stream, src);
3439 fprintf (loop_dump_stream, "\n");
3440 }
3441 }
3442 }
3443 else
3444 {
3445 /* Biv initial value is not simple move,
3446 so let it keep initial value of "itself". */
3447
3448 if (loop_dump_stream)
3449 fprintf (loop_dump_stream, "is complex\n");
3450 }
3451 }
3452
3453 /* Search the loop for general induction variables. */
3454
3455 /* A register is a giv if: it is only set once, it is a function of a
3456 biv and a constant (or invariant), and it is not a biv. */
3457
3458 not_every_iteration = 0;
3459 loop_depth = 0;
3460 p = scan_start;
3461 while (1)
3462 {
3463 p = NEXT_INSN (p);
3464 /* At end of a straight-in loop, we are done.
3465 At end of a loop entered at the bottom, scan the top. */
3466 if (p == scan_start)
3467 break;
3468 if (p == end)
3469 {
3470 if (loop_top != 0)
3471 p = loop_top;
3472 else
3473 break;
3474 if (p == scan_start)
3475 break;
3476 }
3477
3478 /* Look for a general induction variable in a register. */
3479 if (GET_CODE (p) == INSN
3480 && (set = single_set (p))
3481 && GET_CODE (SET_DEST (set)) == REG
3482 && ! may_not_optimize[REGNO (SET_DEST (set))])
3483 {
3484 rtx src_reg;
3485 rtx add_val;
3486 rtx mult_val;
3487 int benefit;
3488 rtx regnote = 0;
3489
3490 dest_reg = SET_DEST (set);
3491 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3492 continue;
3493
3494 if (/* SET_SRC is a giv. */
3495 ((benefit = general_induction_var (SET_SRC (set),
3496 &src_reg, &add_val,
3497 &mult_val))
3498 /* Equivalent expression is a giv. */
3499 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3500 && (benefit = general_induction_var (XEXP (regnote, 0),
3501 &src_reg,
3502 &add_val, &mult_val))))
3503 /* Don't try to handle any regs made by loop optimization.
3504 We have nothing on them in regno_first_uid, etc. */
3505 && REGNO (dest_reg) < max_reg_before_loop
3506 /* Don't recognize a BASIC_INDUCT_VAR here. */
3507 && dest_reg != src_reg
3508 /* This must be the only place where the register is set. */
3509 && (n_times_set[REGNO (dest_reg)] == 1
3510 /* or all sets must be consecutive and make a giv. */
3511 || (benefit = consec_sets_giv (benefit, p,
3512 src_reg, dest_reg,
3513 &add_val, &mult_val))))
3514 {
3515 int count;
3516 struct induction *v
3517 = (struct induction *) alloca (sizeof (struct induction));
3518 rtx temp;
3519
3520 /* If this is a library call, increase benefit. */
3521 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3522 benefit += libcall_benefit (p);
3523
3524 /* Skip the consecutive insns, if there are any. */
3525 for (count = n_times_set[REGNO (dest_reg)] - 1;
3526 count > 0; count--)
3527 {
3528 /* If first insn of libcall sequence, skip to end.
3529 Do this at start of loop, since INSN is guaranteed to
3530 be an insn here. */
3531 if (GET_CODE (p) != NOTE
3532 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3533 p = XEXP (temp, 0);
3534
3535 do p = NEXT_INSN (p);
3536 while (GET_CODE (p) == NOTE);
3537 }
3538
3539 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3540 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3541 loop_end);
3542
3543 }
3544 }
3545
3546 #ifndef DONT_REDUCE_ADDR
3547 /* Look for givs which are memory addresses. */
3548 /* This resulted in worse code on a VAX 8600. I wonder if it
3549 still does. */
3550 if (GET_CODE (p) == INSN)
3551 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3552 loop_end);
3553 #endif
3554
3555 /* Update the status of whether giv can derive other givs. This can
3556 change when we pass a label or an insn that updates a biv. */
3557 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3558 || GET_CODE (p) == CODE_LABEL)
3559 update_giv_derive (p);
3560
3561 /* Past a label or a jump, we get to insns for which we can't count
3562 on whether or how many times they will be executed during each
3563 iteration. */
3564 /* This code appears in three places, once in scan_loop, and twice
3565 in strength_reduce. */
3566 if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3567 /* If we enter the loop in the middle, and scan around
3568 to the beginning, don't set not_every_iteration for that.
3569 This can be any kind of jump, since we want to know if insns
3570 will be executed if the loop is executed. */
3571 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3572 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3573 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3574 not_every_iteration = 1;
3575
3576 else if (GET_CODE (p) == NOTE)
3577 {
3578 /* At the virtual top of a converted loop, insns are again known to
3579 be executed each iteration: logically, the loop begins here
3580 even though the exit code has been duplicated. */
3581 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3582 not_every_iteration = 0;
3583 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3584 loop_depth++;
3585 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3586 loop_depth--;
3587 }
3588
3589 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3590 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3591 or not an insn is known to be executed each iteration of the
3592 loop, whether or not any iterations are known to occur.
3593
3594 Therefore, if we have just passed a label and have no more labels
3595 between here and the test insn of the loop, we know these insns
3596 will be executed each iteration. */
3597
3598 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3599 && no_labels_between_p (p, loop_end))
3600 not_every_iteration = 0;
3601 }
3602
3603 /* Try to calculate and save the number of loop iterations. This is
3604 set to zero if the actual number can not be calculated. This must
3605 be called after all giv's have been identified, since otherwise it may
3606 fail if the iteration variable is a giv. */
3607
3608 loop_n_iterations = loop_iterations (loop_start, loop_end);
3609
3610 /* Now for each giv for which we still don't know whether or not it is
3611 replaceable, check to see if it is replaceable because its final value
3612 can be calculated. This must be done after loop_iterations is called,
3613 so that final_giv_value will work correctly. */
3614
3615 for (bl = loop_iv_list; bl; bl = bl->next)
3616 {
3617 struct induction *v;
3618
3619 for (v = bl->giv; v; v = v->next_iv)
3620 if (! v->replaceable && ! v->not_replaceable)
3621 check_final_value (v, loop_start, loop_end);
3622 }
3623
3624 /* Try to prove that the loop counter variable (if any) is always
3625 nonnegative; if so, record that fact with a REG_NONNEG note
3626 so that "decrement and branch until zero" insn can be used. */
3627 check_dbra_loop (loop_end, insn_count, loop_start);
3628
3629 /* Create reg_map to hold substitutions for replaceable giv regs. */
3630 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3631 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3632
3633 /* Examine each iv class for feasibility of strength reduction/induction
3634 variable elimination. */
3635
3636 for (bl = loop_iv_list; bl; bl = bl->next)
3637 {
3638 struct induction *v;
3639 int benefit;
3640 int all_reduced;
3641 rtx final_value = 0;
3642
3643 /* Test whether it will be possible to eliminate this biv
3644 provided all givs are reduced. This is possible if either
3645 the reg is not used outside the loop, or we can compute
3646 what its final value will be.
3647
3648 For architectures with a decrement_and_branch_until_zero insn,
3649 don't do this if we put a REG_NONNEG note on the endtest for
3650 this biv. */
3651
3652 /* Compare against bl->init_insn rather than loop_start.
3653 We aren't concerned with any uses of the biv between
3654 init_insn and loop_start since these won't be affected
3655 by the value of the biv elsewhere in the function, so
3656 long as init_insn doesn't use the biv itself.
3657 March 14, 1989 -- self@bayes.arc.nasa.gov */
3658
3659 if ((uid_luid[regno_last_uid[bl->regno]] < INSN_LUID (loop_end)
3660 && bl->init_insn
3661 && INSN_UID (bl->init_insn) < max_uid_for_loop
3662 && uid_luid[regno_first_uid[bl->regno]] >= INSN_LUID (bl->init_insn)
3663 #ifdef HAVE_decrement_and_branch_until_zero
3664 && ! bl->nonneg
3665 #endif
3666 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3667 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3668 #ifdef HAVE_decrement_and_branch_until_zero
3669 && ! bl->nonneg
3670 #endif
3671 ))
3672 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3673 threshold, insn_count);
3674 else
3675 {
3676 if (loop_dump_stream)
3677 {
3678 fprintf (loop_dump_stream,
3679 "Cannot eliminate biv %d.\n",
3680 bl->regno);
3681 fprintf (loop_dump_stream,
3682 "First use: insn %d, last use: insn %d.\n",
3683 regno_first_uid[bl->regno],
3684 regno_last_uid[bl->regno]);
3685 }
3686 }
3687
3688 /* Combine all giv's for this iv_class. */
3689 combine_givs (bl);
3690
3691 /* This will be true at the end, if all givs which depend on this
3692 biv have been strength reduced.
3693 We can't (currently) eliminate the biv unless this is so. */
3694 all_reduced = 1;
3695
3696 /* Check each giv in this class to see if we will benefit by reducing
3697 it. Skip giv's combined with others. */
3698 for (v = bl->giv; v; v = v->next_iv)
3699 {
3700 struct induction *tv;
3701
3702 if (v->ignore || v->same)
3703 continue;
3704
3705 benefit = v->benefit;
3706
3707 /* Reduce benefit if not replaceable, since we will insert
3708 a move-insn to replace the insn that calculates this giv.
3709 Don't do this unless the giv is a user variable, since it
3710 will often be marked non-replaceable because of the duplication
3711 of the exit code outside the loop. In such a case, the copies
3712 we insert are dead and will be deleted. So they don't have
3713 a cost. Similar situations exist. */
3714 /* ??? The new final_[bg]iv_value code does a much better job
3715 of finding replaceable giv's, and hence this code may no longer
3716 be necessary. */
3717 if (! v->replaceable && ! bl->eliminable
3718 && REG_USERVAR_P (v->dest_reg))
3719 benefit -= copy_cost;
3720
3721 /* Decrease the benefit to count the add-insns that we will
3722 insert to increment the reduced reg for the giv. */
3723 benefit -= add_cost * bl->biv_count;
3724
3725 /* Decide whether to strength-reduce this giv or to leave the code
3726 unchanged (recompute it from the biv each time it is used).
3727 This decision can be made independently for each giv. */
3728
3729 /* ??? Perhaps attempt to guess whether autoincrement will handle
3730 some of the new add insns; if so, can increase BENEFIT
3731 (undo the subtraction of add_cost that was done above). */
3732
3733 /* If an insn is not to be strength reduced, then set its ignore
3734 flag, and clear all_reduced. */
3735
3736 /* A giv that depends on a reversed biv must be reduced if it is
3737 used after the loop exit, otherwise, it would have the wrong
3738 value after the loop exit. To make it simple, just reduce all
3739 of such giv's whether or not we know they are used after the loop
3740 exit. */
3741
3742 if (v->lifetime * threshold * benefit < insn_count
3743 && ! bl->reversed)
3744 {
3745 if (loop_dump_stream)
3746 fprintf (loop_dump_stream,
3747 "giv of insn %d not worth while, %d vs %d.\n",
3748 INSN_UID (v->insn),
3749 v->lifetime * threshold * benefit, insn_count);
3750 v->ignore = 1;
3751 all_reduced = 0;
3752 }
3753 else
3754 {
3755 /* Check that we can increment the reduced giv without a
3756 multiply insn. If not, reject it. */
3757
3758 for (tv = bl->biv; tv; tv = tv->next_iv)
3759 if (tv->mult_val == const1_rtx
3760 && ! product_cheap_p (tv->add_val, v->mult_val))
3761 {
3762 if (loop_dump_stream)
3763 fprintf (loop_dump_stream,
3764 "giv of insn %d: would need a multiply.\n",
3765 INSN_UID (v->insn));
3766 v->ignore = 1;
3767 all_reduced = 0;
3768 break;
3769 }
3770 }
3771 }
3772
3773 /* Reduce each giv that we decided to reduce. */
3774
3775 for (v = bl->giv; v; v = v->next_iv)
3776 {
3777 struct induction *tv;
3778 if (! v->ignore && v->same == 0)
3779 {
3780 v->new_reg = gen_reg_rtx (v->mode);
3781
3782 /* For each place where the biv is incremented,
3783 add an insn to increment the new, reduced reg for the giv. */
3784 for (tv = bl->biv; tv; tv = tv->next_iv)
3785 {
3786 if (tv->mult_val == const1_rtx)
3787 emit_iv_add_mult (tv->add_val, v->mult_val,
3788 v->new_reg, v->new_reg, tv->insn);
3789 else /* tv->mult_val == const0_rtx */
3790 /* A multiply is acceptable here
3791 since this is presumed to be seldom executed. */
3792 emit_iv_add_mult (tv->add_val, v->mult_val,
3793 v->add_val, v->new_reg, tv->insn);
3794 }
3795
3796 /* Add code at loop start to initialize giv's reduced reg. */
3797
3798 emit_iv_add_mult (bl->initial_value, v->mult_val,
3799 v->add_val, v->new_reg, loop_start);
3800 }
3801 }
3802
3803 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
3804 as not reduced.
3805
3806 For each giv register that can be reduced now: if replaceable,
3807 substitute reduced reg wherever the old giv occurs;
3808 else add new move insn "giv_reg = reduced_reg".
3809
3810 Also check for givs whose first use is their definition and whose
3811 last use is the definition of another giv. If so, it is likely
3812 dead and should not be used to eliminate a biv. */
3813 for (v = bl->giv; v; v = v->next_iv)
3814 {
3815 if (v->same && v->same->ignore)
3816 v->ignore = 1;
3817
3818 if (v->ignore)
3819 continue;
3820
3821 if (v->giv_type == DEST_REG
3822 && regno_first_uid[REGNO (v->dest_reg)] == INSN_UID (v->insn))
3823 {
3824 struct induction *v1;
3825
3826 for (v1 = bl->giv; v1; v1 = v1->next_iv)
3827 if (regno_last_uid[REGNO (v->dest_reg)] == INSN_UID (v1->insn))
3828 v->maybe_dead = 1;
3829 }
3830
3831 /* Update expression if this was combined, in case other giv was
3832 replaced. */
3833 if (v->same)
3834 v->new_reg = replace_rtx (v->new_reg,
3835 v->same->dest_reg, v->same->new_reg);
3836
3837 if (v->giv_type == DEST_ADDR)
3838 /* Store reduced reg as the address in the memref where we found
3839 this giv. */
3840 *v->location = v->new_reg;
3841 else if (v->replaceable)
3842 {
3843 reg_map[REGNO (v->dest_reg)] = v->new_reg;
3844
3845 #if 0
3846 /* I can no longer duplicate the original problem. Perhaps
3847 this is unnecessary now? */
3848
3849 /* Replaceable; it isn't strictly necessary to delete the old
3850 insn and emit a new one, because v->dest_reg is now dead.
3851
3852 However, especially when unrolling loops, the special
3853 handling for (set REG0 REG1) in the second cse pass may
3854 make v->dest_reg live again. To avoid this problem, emit
3855 an insn to set the original giv reg from the reduced giv.
3856 We can not delete the original insn, since it may be part
3857 of a LIBCALL, and the code in flow that eliminates dead
3858 libcalls will fail if it is deleted. */
3859 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3860 v->insn);
3861 #endif
3862 }
3863 else
3864 {
3865 /* Not replaceable; emit an insn to set the original giv reg from
3866 the reduced giv, same as above. */
3867 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3868 v->insn);
3869 }
3870
3871 /* When a loop is reversed, givs which depend on the reversed
3872 biv, and which are live outside the loop, must be set to their
3873 correct final value. This insn is only needed if the giv is
3874 not replaceable. The correct final value is the same as the
3875 value that the giv starts the reversed loop with. */
3876 if (bl->reversed && ! v->replaceable)
3877 emit_iv_add_mult (bl->initial_value, v->mult_val,
3878 v->add_val, v->dest_reg, end_insert_before);
3879 else if (v->final_value)
3880 {
3881 rtx insert_before;
3882
3883 /* If the loop has multiple exits, emit the insn before the
3884 loop to ensure that it will always be executed no matter
3885 how the loop exits. Otherwise, emit the insn after the loop,
3886 since this is slightly more efficient. */
3887 if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3888 insert_before = loop_start;
3889 else
3890 insert_before = end_insert_before;
3891 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
3892 insert_before);
3893
3894 #if 0
3895 /* If the insn to set the final value of the giv was emitted
3896 before the loop, then we must delete the insn inside the loop
3897 that sets it. If this is a LIBCALL, then we must delete
3898 every insn in the libcall. Note, however, that
3899 final_giv_value will only succeed when there are multiple
3900 exits if the giv is dead at each exit, hence it does not
3901 matter that the original insn remains because it is dead
3902 anyways. */
3903 /* Delete the insn inside the loop that sets the giv since
3904 the giv is now set before (or after) the loop. */
3905 delete_insn (v->insn);
3906 #endif
3907 }
3908
3909 if (loop_dump_stream)
3910 {
3911 fprintf (loop_dump_stream, "giv at %d reduced to ",
3912 INSN_UID (v->insn));
3913 print_rtl (loop_dump_stream, v->new_reg);
3914 fprintf (loop_dump_stream, "\n");
3915 }
3916 }
3917
3918 /* All the givs based on the biv bl have been reduced if they
3919 merit it. */
3920
3921 /* For each giv not marked as maybe dead that has been combined with a
3922 second giv, clear any "maybe dead" mark on that second giv.
3923 v->new_reg will either be or refer to the register of the giv it
3924 combined with.
3925
3926 Doing this clearing avoids problems in biv elimination where a
3927 giv's new_reg is a complex value that can't be put in the insn but
3928 the giv combined with (with a reg as new_reg) is marked maybe_dead.
3929 Since the register will be used in either case, we'd prefer it be
3930 used from the simpler giv. */
3931
3932 for (v = bl->giv; v; v = v->next_iv)
3933 if (! v->maybe_dead && v->same)
3934 v->same->maybe_dead = 0;
3935
3936 /* Try to eliminate the biv, if it is a candidate.
3937 This won't work if ! all_reduced,
3938 since the givs we planned to use might not have been reduced.
3939
3940 We have to be careful that we didn't initially think we could eliminate
3941 this biv because of a giv that we now think may be dead and shouldn't
3942 be used as a biv replacement.
3943
3944 Also, there is the possibility that we may have a giv that looks
3945 like it can be used to eliminate a biv, but the resulting insn
3946 isn't valid. This can happen, for example, on the 88k, where a
3947 JUMP_INSN can compare a register only with zero. Attempts to
3948 replace it with a compare with a constant will fail.
3949
3950 Note that in cases where this call fails, we may have replaced some
3951 of the occurrences of the biv with a giv, but no harm was done in
3952 doing so in the rare cases where it can occur. */
3953
3954 if (all_reduced == 1 && bl->eliminable
3955 && maybe_eliminate_biv (bl, loop_start, end, 1,
3956 threshold, insn_count))
3957
3958 {
3959 /* ?? If we created a new test to bypass the loop entirely,
3960 or otherwise drop straight in, based on this test, then
3961 we might want to rewrite it also. This way some later
3962 pass has more hope of removing the initialization of this
3963 biv entirely. */
3964
3965 /* If final_value != 0, then the biv may be used after loop end
3966 and we must emit an insn to set it just in case.
3967
3968 Reversed bivs already have an insn after the loop setting their
3969 value, so we don't need another one. We can't calculate the
3970 proper final value for such a biv here anyways. */
3971 if (final_value != 0 && ! bl->reversed)
3972 {
3973 rtx insert_before;
3974
3975 /* If the loop has multiple exits, emit the insn before the
3976 loop to ensure that it will always be executed no matter
3977 how the loop exits. Otherwise, emit the insn after the
3978 loop, since this is slightly more efficient. */
3979 if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3980 insert_before = loop_start;
3981 else
3982 insert_before = end_insert_before;
3983
3984 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
3985 end_insert_before);
3986 }
3987
3988 #if 0
3989 /* Delete all of the instructions inside the loop which set
3990 the biv, as they are all dead. If is safe to delete them,
3991 because an insn setting a biv will never be part of a libcall. */
3992 /* However, deleting them will invalidate the regno_last_uid info,
3993 so keeping them around is more convenient. Final_biv_value
3994 will only succeed when there are multiple exits if the biv
3995 is dead at each exit, hence it does not matter that the original
3996 insn remains, because it is dead anyways. */
3997 for (v = bl->biv; v; v = v->next_iv)
3998 delete_insn (v->insn);
3999 #endif
4000
4001 if (loop_dump_stream)
4002 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4003 bl->regno);
4004 }
4005 }
4006
4007 /* Go through all the instructions in the loop, making all the
4008 register substitutions scheduled in REG_MAP. */
4009
4010 for (p = loop_start; p != end; p = NEXT_INSN (p))
4011 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4012 || GET_CODE (p) == CALL_INSN)
4013 {
4014 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
4015 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
4016 INSN_CODE (p) = -1;
4017 }
4018
4019 /* Unroll loops from within strength reduction so that we can use the
4020 induction variable information that strength_reduce has already
4021 collected. */
4022
4023 if (flag_unroll_loops)
4024 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
4025
4026 if (loop_dump_stream)
4027 fprintf (loop_dump_stream, "\n");
4028 }
4029 \f
4030 /* Return 1 if X is a valid source for an initial value (or as value being
4031 compared against in an initial test).
4032
4033 X must be either a register or constant and must not be clobbered between
4034 the current insn and the start of the loop.
4035
4036 INSN is the insn containing X. */
4037
4038 static int
4039 valid_initial_value_p (x, insn, call_seen, loop_start)
4040 rtx x;
4041 rtx insn;
4042 int call_seen;
4043 rtx loop_start;
4044 {
4045 if (CONSTANT_P (x))
4046 return 1;
4047
4048 /* Only consider pseudos we know about initialized in insns whose luids
4049 we know. */
4050 if (GET_CODE (x) != REG
4051 || REGNO (x) >= max_reg_before_loop)
4052 return 0;
4053
4054 /* Don't use call-clobbered registers across a call which clobbers it. On
4055 some machines, don't use any hard registers at all. */
4056 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4057 #ifndef SMALL_REGISTER_CLASSES
4058 && call_used_regs[REGNO (x)] && call_seen
4059 #endif
4060 )
4061 return 0;
4062
4063 /* Don't use registers that have been clobbered before the start of the
4064 loop. */
4065 if (reg_set_between_p (x, insn, loop_start))
4066 return 0;
4067
4068 return 1;
4069 }
4070 \f
4071 /* Scan X for memory refs and check each memory address
4072 as a possible giv. INSN is the insn whose pattern X comes from.
4073 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4074 every loop iteration. */
4075
4076 static void
4077 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4078 rtx x;
4079 rtx insn;
4080 int not_every_iteration;
4081 rtx loop_start, loop_end;
4082 {
4083 register int i, j;
4084 register enum rtx_code code;
4085 register char *fmt;
4086
4087 if (x == 0)
4088 return;
4089
4090 code = GET_CODE (x);
4091 switch (code)
4092 {
4093 case REG:
4094 case CONST_INT:
4095 case CONST:
4096 case CONST_DOUBLE:
4097 case SYMBOL_REF:
4098 case LABEL_REF:
4099 case PC:
4100 case CC0:
4101 case ADDR_VEC:
4102 case ADDR_DIFF_VEC:
4103 case USE:
4104 case CLOBBER:
4105 return;
4106
4107 case MEM:
4108 {
4109 rtx src_reg;
4110 rtx add_val;
4111 rtx mult_val;
4112 int benefit;
4113
4114 benefit = general_induction_var (XEXP (x, 0),
4115 &src_reg, &add_val, &mult_val);
4116
4117 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4118 Such a giv isn't useful. */
4119 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4120 {
4121 /* Found one; record it. */
4122 struct induction *v
4123 = (struct induction *) oballoc (sizeof (struct induction));
4124
4125 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4126 add_val, benefit, DEST_ADDR, not_every_iteration,
4127 &XEXP (x, 0), loop_start, loop_end);
4128
4129 v->mem_mode = GET_MODE (x);
4130 }
4131 return;
4132 }
4133 }
4134
4135 /* Recursively scan the subexpressions for other mem refs. */
4136
4137 fmt = GET_RTX_FORMAT (code);
4138 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4139 if (fmt[i] == 'e')
4140 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4141 loop_end);
4142 else if (fmt[i] == 'E')
4143 for (j = 0; j < XVECLEN (x, i); j++)
4144 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4145 loop_start, loop_end);
4146 }
4147 \f
4148 /* Fill in the data about one biv update.
4149 V is the `struct induction' in which we record the biv. (It is
4150 allocated by the caller, with alloca.)
4151 INSN is the insn that sets it.
4152 DEST_REG is the biv's reg.
4153
4154 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4155 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4156 being set to INC_VAL.
4157
4158 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4159 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4160 can be executed more than once per iteration. If MAYBE_MULTIPLE
4161 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4162 executed exactly once per iteration. */
4163
4164 static void
4165 record_biv (v, insn, dest_reg, inc_val, mult_val,
4166 not_every_iteration, maybe_multiple)
4167 struct induction *v;
4168 rtx insn;
4169 rtx dest_reg;
4170 rtx inc_val;
4171 rtx mult_val;
4172 int not_every_iteration;
4173 int maybe_multiple;
4174 {
4175 struct iv_class *bl;
4176
4177 v->insn = insn;
4178 v->src_reg = dest_reg;
4179 v->dest_reg = dest_reg;
4180 v->mult_val = mult_val;
4181 v->add_val = inc_val;
4182 v->mode = GET_MODE (dest_reg);
4183 v->always_computable = ! not_every_iteration;
4184 v->maybe_multiple = maybe_multiple;
4185
4186 /* Add this to the reg's iv_class, creating a class
4187 if this is the first incrementation of the reg. */
4188
4189 bl = reg_biv_class[REGNO (dest_reg)];
4190 if (bl == 0)
4191 {
4192 /* Create and initialize new iv_class. */
4193
4194 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4195
4196 bl->regno = REGNO (dest_reg);
4197 bl->biv = 0;
4198 bl->giv = 0;
4199 bl->biv_count = 0;
4200 bl->giv_count = 0;
4201
4202 /* Set initial value to the reg itself. */
4203 bl->initial_value = dest_reg;
4204 /* We haven't seen the initializing insn yet */
4205 bl->init_insn = 0;
4206 bl->init_set = 0;
4207 bl->initial_test = 0;
4208 bl->incremented = 0;
4209 bl->eliminable = 0;
4210 bl->nonneg = 0;
4211 bl->reversed = 0;
4212 bl->total_benefit = 0;
4213
4214 /* Add this class to loop_iv_list. */
4215 bl->next = loop_iv_list;
4216 loop_iv_list = bl;
4217
4218 /* Put it in the array of biv register classes. */
4219 reg_biv_class[REGNO (dest_reg)] = bl;
4220 }
4221
4222 /* Update IV_CLASS entry for this biv. */
4223 v->next_iv = bl->biv;
4224 bl->biv = v;
4225 bl->biv_count++;
4226 if (mult_val == const1_rtx)
4227 bl->incremented = 1;
4228
4229 if (loop_dump_stream)
4230 {
4231 fprintf (loop_dump_stream,
4232 "Insn %d: possible biv, reg %d,",
4233 INSN_UID (insn), REGNO (dest_reg));
4234 if (GET_CODE (inc_val) == CONST_INT)
4235 fprintf (loop_dump_stream, " const = %d\n",
4236 INTVAL (inc_val));
4237 else
4238 {
4239 fprintf (loop_dump_stream, " const = ");
4240 print_rtl (loop_dump_stream, inc_val);
4241 fprintf (loop_dump_stream, "\n");
4242 }
4243 }
4244 }
4245 \f
4246 /* Fill in the data about one giv.
4247 V is the `struct induction' in which we record the giv. (It is
4248 allocated by the caller, with alloca.)
4249 INSN is the insn that sets it.
4250 BENEFIT estimates the savings from deleting this insn.
4251 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4252 into a register or is used as a memory address.
4253
4254 SRC_REG is the biv reg which the giv is computed from.
4255 DEST_REG is the giv's reg (if the giv is stored in a reg).
4256 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4257 LOCATION points to the place where this giv's value appears in INSN. */
4258
4259 static void
4260 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4261 type, not_every_iteration, location, loop_start, loop_end)
4262 struct induction *v;
4263 rtx insn;
4264 rtx src_reg;
4265 rtx dest_reg;
4266 rtx mult_val, add_val;
4267 int benefit;
4268 enum g_types type;
4269 int not_every_iteration;
4270 rtx *location;
4271 rtx loop_start, loop_end;
4272 {
4273 struct induction *b;
4274 struct iv_class *bl;
4275 rtx set = single_set (insn);
4276 rtx p;
4277
4278 v->insn = insn;
4279 v->src_reg = src_reg;
4280 v->giv_type = type;
4281 v->dest_reg = dest_reg;
4282 v->mult_val = mult_val;
4283 v->add_val = add_val;
4284 v->benefit = benefit;
4285 v->location = location;
4286 v->cant_derive = 0;
4287 v->combined_with = 0;
4288 v->maybe_multiple = 0;
4289 v->maybe_dead = 0;
4290 v->derive_adjustment = 0;
4291 v->same = 0;
4292 v->ignore = 0;
4293 v->new_reg = 0;
4294 v->final_value = 0;
4295
4296 /* The v->always_computable field is used in update_giv_derive, to
4297 determine whether a giv can be used to derive another giv. For a
4298 DEST_REG giv, INSN computes a new value for the giv, so its value
4299 isn't computable if INSN insn't executed every iteration.
4300 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4301 it does not compute a new value. Hence the value is always computable
4302 regardless of whether INSN is executed each iteration. */
4303
4304 if (type == DEST_ADDR)
4305 v->always_computable = 1;
4306 else
4307 v->always_computable = ! not_every_iteration;
4308
4309 if (type == DEST_ADDR)
4310 {
4311 v->mode = GET_MODE (*location);
4312 v->lifetime = 1;
4313 v->times_used = 1;
4314 }
4315 else /* type == DEST_REG */
4316 {
4317 v->mode = GET_MODE (SET_DEST (set));
4318
4319 v->lifetime = (uid_luid[regno_last_uid[REGNO (dest_reg)]]
4320 - uid_luid[regno_first_uid[REGNO (dest_reg)]]);
4321
4322 v->times_used = n_times_used[REGNO (dest_reg)];
4323
4324 /* If the lifetime is zero, it means that this register is
4325 really a dead store. So mark this as a giv that can be
4326 ignored. This will not prevent the biv from being eliminated. */
4327 if (v->lifetime == 0)
4328 v->ignore = 1;
4329
4330 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4331 reg_iv_info[REGNO (dest_reg)] = v;
4332 }
4333
4334 /* Add the giv to the class of givs computed from one biv. */
4335
4336 bl = reg_biv_class[REGNO (src_reg)];
4337 if (bl)
4338 {
4339 v->next_iv = bl->giv;
4340 bl->giv = v;
4341 /* Don't count DEST_ADDR. This is supposed to count the number of
4342 insns that calculate givs. */
4343 if (type == DEST_REG)
4344 bl->giv_count++;
4345 bl->total_benefit += benefit;
4346 }
4347 else
4348 /* Fatal error, biv missing for this giv? */
4349 abort ();
4350
4351 if (type == DEST_ADDR)
4352 v->replaceable = 1;
4353 else
4354 {
4355 /* The giv can be replaced outright by the reduced register only if all
4356 of the following conditions are true:
4357 - the insn that sets the giv is always executed on any iteration
4358 on which the giv is used at all
4359 (there are two ways to deduce this:
4360 either the insn is executed on every iteration,
4361 or all uses follow that insn in the same basic block),
4362 - the giv is not used outside the loop
4363 - no assignments to the biv occur during the giv's lifetime. */
4364
4365 if (regno_first_uid[REGNO (dest_reg)] == INSN_UID (insn)
4366 /* Previous line always fails if INSN was moved by loop opt. */
4367 && uid_luid[regno_last_uid[REGNO (dest_reg)]] < INSN_LUID (loop_end)
4368 && (! not_every_iteration
4369 || last_use_this_basic_block (dest_reg, insn)))
4370 {
4371 /* Now check that there are no assignments to the biv within the
4372 giv's lifetime. This requires two separate checks. */
4373
4374 /* Check each biv update, and fail if any are between the first
4375 and last use of the giv.
4376
4377 If this loop contains an inner loop that was unrolled, then
4378 the insn modifying the biv may have been emitted by the loop
4379 unrolling code, and hence does not have a valid luid. Just
4380 mark the biv as not replaceable in this case. It is not very
4381 useful as a biv, because it is used in two different loops.
4382 It is very unlikely that we would be able to optimize the giv
4383 using this biv anyways. */
4384
4385 v->replaceable = 1;
4386 for (b = bl->biv; b; b = b->next_iv)
4387 {
4388 if (INSN_UID (b->insn) >= max_uid_for_loop
4389 || ((uid_luid[INSN_UID (b->insn)]
4390 >= uid_luid[regno_first_uid[REGNO (dest_reg)]])
4391 && (uid_luid[INSN_UID (b->insn)]
4392 <= uid_luid[regno_last_uid[REGNO (dest_reg)]])))
4393 {
4394 v->replaceable = 0;
4395 v->not_replaceable = 1;
4396 break;
4397 }
4398 }
4399
4400 /* Check each insn between the first and last use of the giv,
4401 and fail if any of them are branches that jump to a named label
4402 outside this range, but still inside the loop. This catches
4403 cases of spaghetti code where the execution order of insns
4404 is not linear, and hence the above test fails. For example,
4405 in the following code, j is not replaceable:
4406 for (i = 0; i < 100; ) {
4407 L0: j = 4*i; goto L1;
4408 L2: k = j; goto L3;
4409 L1: i++; goto L2;
4410 L3: ; }
4411 printf ("k = %d\n", k); }
4412 This test is conservative, but this test succeeds rarely enough
4413 that it isn't a problem. See also check_final_value below. */
4414
4415 if (v->replaceable)
4416 for (p = insn;
4417 INSN_UID (p) >= max_uid_for_loop
4418 || INSN_LUID (p) < uid_luid[regno_last_uid[REGNO (dest_reg)]];
4419 p = NEXT_INSN (p))
4420 {
4421 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4422 && LABEL_NAME (JUMP_LABEL (p))
4423 && ((INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start)
4424 && (INSN_LUID (JUMP_LABEL (p))
4425 < uid_luid[regno_first_uid[REGNO (dest_reg)]]))
4426 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end)
4427 && (INSN_LUID (JUMP_LABEL (p))
4428 > uid_luid[regno_last_uid[REGNO (dest_reg)]]))))
4429 {
4430 v->replaceable = 0;
4431 v->not_replaceable = 1;
4432
4433 if (loop_dump_stream)
4434 fprintf (loop_dump_stream,
4435 "Found branch outside giv lifetime.\n");
4436
4437 break;
4438 }
4439 }
4440 }
4441 else
4442 {
4443 /* May still be replaceable, we don't have enough info here to
4444 decide. */
4445 v->replaceable = 0;
4446 v->not_replaceable = 0;
4447 }
4448 }
4449
4450 if (loop_dump_stream)
4451 {
4452 if (type == DEST_REG)
4453 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4454 INSN_UID (insn), REGNO (dest_reg));
4455 else
4456 fprintf (loop_dump_stream, "Insn %d: dest address",
4457 INSN_UID (insn));
4458
4459 fprintf (loop_dump_stream, " src reg %d benefit %d",
4460 REGNO (src_reg), v->benefit);
4461 fprintf (loop_dump_stream, " used %d lifetime %d",
4462 v->times_used, v->lifetime);
4463
4464 if (v->replaceable)
4465 fprintf (loop_dump_stream, " replaceable");
4466
4467 if (GET_CODE (mult_val) == CONST_INT)
4468 fprintf (loop_dump_stream, " mult %d",
4469 INTVAL (mult_val));
4470 else
4471 {
4472 fprintf (loop_dump_stream, " mult ");
4473 print_rtl (loop_dump_stream, mult_val);
4474 }
4475
4476 if (GET_CODE (add_val) == CONST_INT)
4477 fprintf (loop_dump_stream, " add %d",
4478 INTVAL (add_val));
4479 else
4480 {
4481 fprintf (loop_dump_stream, " add ");
4482 print_rtl (loop_dump_stream, add_val);
4483 }
4484 }
4485
4486 if (loop_dump_stream)
4487 fprintf (loop_dump_stream, "\n");
4488
4489 }
4490
4491
4492 /* All this does is determine whether a giv can be made replaceable because
4493 its final value can be calculated. This code can not be part of record_giv
4494 above, because final_giv_value requires that the number of loop iterations
4495 be known, and that can not be accurately calculated until after all givs
4496 have been identified. */
4497
4498 static void
4499 check_final_value (v, loop_start, loop_end)
4500 struct induction *v;
4501 rtx loop_start, loop_end;
4502 {
4503 struct iv_class *bl;
4504 rtx final_value = 0;
4505
4506 bl = reg_biv_class[REGNO (v->src_reg)];
4507
4508 /* DEST_ADDR givs will never reach here, because they are always marked
4509 replaceable above in record_giv. */
4510
4511 /* The giv can be replaced outright by the reduced register only if all
4512 of the following conditions are true:
4513 - the insn that sets the giv is always executed on any iteration
4514 on which the giv is used at all
4515 (there are two ways to deduce this:
4516 either the insn is executed on every iteration,
4517 or all uses follow that insn in the same basic block),
4518 - its final value can be calculated (this condition is different
4519 than the one above in record_giv)
4520 - no assignments to the biv occur during the giv's lifetime. */
4521
4522 #if 0
4523 /* This is only called now when replaceable is known to be false. */
4524 /* Clear replaceable, so that it won't confuse final_giv_value. */
4525 v->replaceable = 0;
4526 #endif
4527
4528 if ((final_value = final_giv_value (v, loop_start, loop_end))
4529 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4530 {
4531 int biv_increment_seen = 0;
4532 rtx p = v->insn;
4533 rtx last_giv_use;
4534
4535 v->replaceable = 1;
4536
4537 /* When trying to determine whether or not a biv increment occurs
4538 during the lifetime of the giv, we can ignore uses of the variable
4539 outside the loop because final_value is true. Hence we can not
4540 use regno_last_uid and regno_first_uid as above in record_giv. */
4541
4542 /* Search the loop to determine whether any assignments to the
4543 biv occur during the giv's lifetime. Start with the insn
4544 that sets the giv, and search around the loop until we come
4545 back to that insn again.
4546
4547 Also fail if there is a jump within the giv's lifetime that jumps
4548 to somewhere outside the lifetime but still within the loop. This
4549 catches spaghetti code where the execution order is not linear, and
4550 hence the above test fails. Here we assume that the giv lifetime
4551 does not extend from one iteration of the loop to the next, so as
4552 to make the test easier. Since the lifetime isn't known yet,
4553 this requires two loops. See also record_giv above. */
4554
4555 last_giv_use = v->insn;
4556
4557 while (1)
4558 {
4559 p = NEXT_INSN (p);
4560 if (p == loop_end)
4561 p = NEXT_INSN (loop_start);
4562 if (p == v->insn)
4563 break;
4564
4565 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4566 || GET_CODE (p) == CALL_INSN)
4567 {
4568 if (biv_increment_seen)
4569 {
4570 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4571 {
4572 v->replaceable = 0;
4573 v->not_replaceable = 1;
4574 break;
4575 }
4576 }
4577 else if (GET_CODE (PATTERN (p)) == SET
4578 && SET_DEST (PATTERN (p)) == v->src_reg)
4579 biv_increment_seen = 1;
4580 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4581 last_giv_use = p;
4582 }
4583 }
4584
4585 /* Now that the lifetime of the giv is known, check for branches
4586 from within the lifetime to outside the lifetime if it is still
4587 replaceable. */
4588
4589 if (v->replaceable)
4590 {
4591 p = v->insn;
4592 while (1)
4593 {
4594 p = NEXT_INSN (p);
4595 if (p == loop_end)
4596 p = NEXT_INSN (loop_start);
4597 if (p == last_giv_use)
4598 break;
4599
4600 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4601 && LABEL_NAME (JUMP_LABEL (p))
4602 && ((INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4603 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4604 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4605 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4606 {
4607 v->replaceable = 0;
4608 v->not_replaceable = 1;
4609
4610 if (loop_dump_stream)
4611 fprintf (loop_dump_stream,
4612 "Found branch outside giv lifetime.\n");
4613
4614 break;
4615 }
4616 }
4617 }
4618
4619 /* If it is replaceable, then save the final value. */
4620 if (v->replaceable)
4621 v->final_value = final_value;
4622 }
4623
4624 if (loop_dump_stream && v->replaceable)
4625 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4626 INSN_UID (v->insn), REGNO (v->dest_reg));
4627 }
4628 \f
4629 /* Update the status of whether a giv can derive other givs.
4630
4631 We need to do something special if there is or may be an update to the biv
4632 between the time the giv is defined and the time it is used to derive
4633 another giv.
4634
4635 In addition, a giv that is only conditionally set is not allowed to
4636 derive another giv once a label has been passed.
4637
4638 The cases we look at are when a label or an update to a biv is passed. */
4639
4640 static void
4641 update_giv_derive (p)
4642 rtx p;
4643 {
4644 struct iv_class *bl;
4645 struct induction *biv, *giv;
4646 rtx tem;
4647 int dummy;
4648
4649 /* Search all IV classes, then all bivs, and finally all givs.
4650
4651 There are three cases we are concerned with. First we have the situation
4652 of a giv that is only updated conditionally. In that case, it may not
4653 derive any givs after a label is passed.
4654
4655 The second case is when a biv update occurs, or may occur, after the
4656 definition of a giv. For certain biv updates (see below) that are
4657 known to occur between the giv definition and use, we can adjust the
4658 giv definition. For others, or when the biv update is conditional,
4659 we must prevent the giv from deriving any other givs. There are two
4660 sub-cases within this case.
4661
4662 If this is a label, we are concerned with any biv update that is done
4663 conditionally, since it may be done after the giv is defined followed by
4664 a branch here (actually, we need to pass both a jump and a label, but
4665 this extra tracking doesn't seem worth it).
4666
4667 If this is a jump, we are concerned about any biv update that may be
4668 executed multiple times. We are actually only concerned about
4669 backward jumps, but it is probably not worth performing the test
4670 on the jump again here.
4671
4672 If this is a biv update, we must adjust the giv status to show that a
4673 subsequent biv update was performed. If this adjustment cannot be done,
4674 the giv cannot derive further givs. */
4675
4676 for (bl = loop_iv_list; bl; bl = bl->next)
4677 for (biv = bl->biv; biv; biv = biv->next_iv)
4678 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
4679 || biv->insn == p)
4680 {
4681 for (giv = bl->giv; giv; giv = giv->next_iv)
4682 {
4683 /* If cant_derive is already true, there is no point in
4684 checking all of these conditions again. */
4685 if (giv->cant_derive)
4686 continue;
4687
4688 /* If this giv is conditionally set and we have passed a label,
4689 it cannot derive anything. */
4690 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
4691 giv->cant_derive = 1;
4692
4693 /* Skip givs that have mult_val == 0, since
4694 they are really invariants. Also skip those that are
4695 replaceable, since we know their lifetime doesn't contain
4696 any biv update. */
4697 else if (giv->mult_val == const0_rtx || giv->replaceable)
4698 continue;
4699
4700 /* The only way we can allow this giv to derive another
4701 is if this is a biv increment and we can form the product
4702 of biv->add_val and giv->mult_val. In this case, we will
4703 be able to compute a compensation. */
4704 else if (biv->insn == p)
4705 {
4706 tem = 0;
4707
4708 if (biv->mult_val == const1_rtx)
4709 tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
4710 biv->add_val,
4711 giv->mult_val),
4712 &dummy);
4713
4714 if (tem && giv->derive_adjustment)
4715 tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
4716 giv->derive_adjustment),
4717 &dummy);
4718 if (tem)
4719 giv->derive_adjustment = tem;
4720 else
4721 giv->cant_derive = 1;
4722 }
4723 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
4724 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
4725 giv->cant_derive = 1;
4726 }
4727 }
4728 }
4729 \f
4730 /* Check whether an insn is an increment legitimate for a basic induction var.
4731 X is the source of insn P, or a part of it.
4732 MODE is the mode in which X should be interpreted.
4733
4734 DEST_REG is the putative biv, also the destination of the insn.
4735 We accept patterns of these forms:
4736 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
4737 REG = INVARIANT + REG
4738
4739 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
4740 and store the additive term into *INC_VAL.
4741
4742 If X is an assignment of an invariant into DEST_REG, we set
4743 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
4744
4745 We also want to detect a BIV when it corresponds to a variable
4746 whose mode was promoted via PROMOTED_MODE. In that case, an increment
4747 of the variable may be a PLUS that adds a SUBREG of that variable to
4748 an invariant and then sign- or zero-extends the result of the PLUS
4749 into the variable.
4750
4751 Most GIVs in such cases will be in the promoted mode, since that is the
4752 probably the natural computation mode (and almost certainly the mode
4753 used for addresses) on the machine. So we view the pseudo-reg containing
4754 the variable as the BIV, as if it were simply incremented.
4755
4756 Note that treating the entire pseudo as a BIV will result in making
4757 simple increments to any GIVs based on it. However, if the variable
4758 overflows in its declared mode but not its promoted mode, the result will
4759 be incorrect. This is acceptable if the variable is signed, since
4760 overflows in such cases are undefined, but not if it is unsigned, since
4761 those overflows are defined. So we only check for SIGN_EXTEND and
4762 not ZERO_EXTEND.
4763
4764 If we cannot find a biv, we return 0. */
4765
4766 static int
4767 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
4768 register rtx x;
4769 enum machine_mode mode;
4770 rtx p;
4771 rtx dest_reg;
4772 rtx *inc_val;
4773 rtx *mult_val;
4774 {
4775 register enum rtx_code code;
4776 rtx arg;
4777 rtx insn, set = 0;
4778
4779 code = GET_CODE (x);
4780 switch (code)
4781 {
4782 case PLUS:
4783 if (XEXP (x, 0) == dest_reg
4784 || (GET_CODE (XEXP (x, 0)) == SUBREG
4785 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
4786 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
4787 arg = XEXP (x, 1);
4788 else if (XEXP (x, 1) == dest_reg
4789 || (GET_CODE (XEXP (x, 1)) == SUBREG
4790 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
4791 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
4792 arg = XEXP (x, 0);
4793 else
4794 return 0;
4795
4796 if (invariant_p (arg) != 1)
4797 return 0;
4798
4799 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
4800 *mult_val = const1_rtx;
4801 return 1;
4802
4803 case SUBREG:
4804 /* If this is a SUBREG for a promoted variable, check the inner
4805 value. */
4806 if (SUBREG_PROMOTED_VAR_P (x))
4807 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
4808 dest_reg, p, inc_val, mult_val);
4809
4810 case REG:
4811 /* If this register is assigned in the previous insn, look at its
4812 source, but don't go outside the loop or past a label. */
4813
4814 for (insn = PREV_INSN (p);
4815 (insn && GET_CODE (insn) == NOTE
4816 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
4817 insn = PREV_INSN (insn))
4818 ;
4819
4820 if (insn)
4821 set = single_set (insn);
4822
4823 if (set != 0 && SET_DEST (set) == x)
4824 return basic_induction_var (SET_SRC (set),
4825 (GET_MODE (SET_SRC (set)) == VOIDmode
4826 ? GET_MODE (x)
4827 : GET_MODE (SET_SRC (set))),
4828 dest_reg, insn,
4829 inc_val, mult_val);
4830 /* ... fall through ... */
4831
4832 /* Can accept constant setting of biv only when inside inner most loop.
4833 Otherwise, a biv of an inner loop may be incorrectly recognized
4834 as a biv of the outer loop,
4835 causing code to be moved INTO the inner loop. */
4836 case MEM:
4837 if (invariant_p (x) != 1)
4838 return 0;
4839 case CONST_INT:
4840 case SYMBOL_REF:
4841 case CONST:
4842 if (loops_enclosed == 1)
4843 {
4844 /* Possible bug here? Perhaps we don't know the mode of X. */
4845 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
4846 *mult_val = const0_rtx;
4847 return 1;
4848 }
4849 else
4850 return 0;
4851
4852 case SIGN_EXTEND:
4853 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4854 dest_reg, p, inc_val, mult_val);
4855 case ASHIFTRT:
4856 /* Similar, since this can be a sign extension. */
4857 for (insn = PREV_INSN (p);
4858 (insn && GET_CODE (insn) == NOTE
4859 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
4860 insn = PREV_INSN (insn))
4861 ;
4862
4863 if (insn)
4864 set = single_set (insn);
4865
4866 if (set && SET_DEST (set) == XEXP (x, 0)
4867 && GET_CODE (XEXP (x, 1)) == CONST_INT
4868 && INTVAL (XEXP (x, 1)) >= 0
4869 && GET_CODE (SET_SRC (set)) == ASHIFT
4870 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
4871 return basic_induction_var (XEXP (SET_SRC (set), 0),
4872 GET_MODE (XEXP (x, 0)),
4873 dest_reg, insn, inc_val, mult_val);
4874 return 0;
4875
4876 default:
4877 return 0;
4878 }
4879 }
4880 \f
4881 /* A general induction variable (giv) is any quantity that is a linear
4882 function of a basic induction variable,
4883 i.e. giv = biv * mult_val + add_val.
4884 The coefficients can be any loop invariant quantity.
4885 A giv need not be computed directly from the biv;
4886 it can be computed by way of other givs. */
4887
4888 /* Determine whether X computes a giv.
4889 If it does, return a nonzero value
4890 which is the benefit from eliminating the computation of X;
4891 set *SRC_REG to the register of the biv that it is computed from;
4892 set *ADD_VAL and *MULT_VAL to the coefficients,
4893 such that the value of X is biv * mult + add; */
4894
4895 static int
4896 general_induction_var (x, src_reg, add_val, mult_val)
4897 rtx x;
4898 rtx *src_reg;
4899 rtx *add_val;
4900 rtx *mult_val;
4901 {
4902 rtx orig_x = x;
4903 int benefit = 0;
4904 char *storage;
4905
4906 /* If this is an invariant, forget it, it isn't a giv. */
4907 if (invariant_p (x) == 1)
4908 return 0;
4909
4910 /* See if the expression could be a giv and get its form.
4911 Mark our place on the obstack in case we don't find a giv. */
4912 storage = (char *) oballoc (0);
4913 x = simplify_giv_expr (x, &benefit);
4914 if (x == 0)
4915 {
4916 obfree (storage);
4917 return 0;
4918 }
4919
4920 switch (GET_CODE (x))
4921 {
4922 case USE:
4923 case CONST_INT:
4924 /* Since this is now an invariant and wasn't before, it must be a giv
4925 with MULT_VAL == 0. It doesn't matter which BIV we associate this
4926 with. */
4927 *src_reg = loop_iv_list->biv->dest_reg;
4928 *mult_val = const0_rtx;
4929 *add_val = x;
4930 break;
4931
4932 case REG:
4933 /* This is equivalent to a BIV. */
4934 *src_reg = x;
4935 *mult_val = const1_rtx;
4936 *add_val = const0_rtx;
4937 break;
4938
4939 case PLUS:
4940 /* Either (plus (biv) (invar)) or
4941 (plus (mult (biv) (invar_1)) (invar_2)). */
4942 if (GET_CODE (XEXP (x, 0)) == MULT)
4943 {
4944 *src_reg = XEXP (XEXP (x, 0), 0);
4945 *mult_val = XEXP (XEXP (x, 0), 1);
4946 }
4947 else
4948 {
4949 *src_reg = XEXP (x, 0);
4950 *mult_val = const1_rtx;
4951 }
4952 *add_val = XEXP (x, 1);
4953 break;
4954
4955 case MULT:
4956 /* ADD_VAL is zero. */
4957 *src_reg = XEXP (x, 0);
4958 *mult_val = XEXP (x, 1);
4959 *add_val = const0_rtx;
4960 break;
4961
4962 default:
4963 abort ();
4964 }
4965
4966 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
4967 unless they are CONST_INT). */
4968 if (GET_CODE (*add_val) == USE)
4969 *add_val = XEXP (*add_val, 0);
4970 if (GET_CODE (*mult_val) == USE)
4971 *mult_val = XEXP (*mult_val, 0);
4972
4973 benefit += rtx_cost (orig_x, SET);
4974
4975 /* Always return some benefit if this is a giv so it will be detected
4976 as such. This allows elimination of bivs that might otherwise
4977 not be eliminated. */
4978 return benefit == 0 ? 1 : benefit;
4979 }
4980 \f
4981 /* Given an expression, X, try to form it as a linear function of a biv.
4982 We will canonicalize it to be of the form
4983 (plus (mult (BIV) (invar_1))
4984 (invar_2))
4985 with possible degeneracies.
4986
4987 The invariant expressions must each be of a form that can be used as a
4988 machine operand. We surround then with a USE rtx (a hack, but localized
4989 and certainly unambiguous!) if not a CONST_INT for simplicity in this
4990 routine; it is the caller's responsibility to strip them.
4991
4992 If no such canonicalization is possible (i.e., two biv's are used or an
4993 expression that is neither invariant nor a biv or giv), this routine
4994 returns 0.
4995
4996 For a non-zero return, the result will have a code of CONST_INT, USE,
4997 REG (for a BIV), PLUS, or MULT. No other codes will occur.
4998
4999 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5000
5001 static rtx
5002 simplify_giv_expr (x, benefit)
5003 rtx x;
5004 int *benefit;
5005 {
5006 enum machine_mode mode = GET_MODE (x);
5007 rtx arg0, arg1;
5008 rtx tem;
5009
5010 /* If this is not an integer mode, or if we cannot do arithmetic in this
5011 mode, this can't be a giv. */
5012 if (mode != VOIDmode
5013 && (GET_MODE_CLASS (mode) != MODE_INT
5014 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
5015 return 0;
5016
5017 switch (GET_CODE (x))
5018 {
5019 case PLUS:
5020 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5021 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5022 if (arg0 == 0 || arg1 == 0)
5023 return 0;
5024
5025 /* Put constant last, CONST_INT last if both constant. */
5026 if ((GET_CODE (arg0) == USE
5027 || GET_CODE (arg0) == CONST_INT)
5028 && GET_CODE (arg1) != CONST_INT)
5029 tem = arg0, arg0 = arg1, arg1 = tem;
5030
5031 /* Handle addition of zero, then addition of an invariant. */
5032 if (arg1 == const0_rtx)
5033 return arg0;
5034 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5035 switch (GET_CODE (arg0))
5036 {
5037 case CONST_INT:
5038 case USE:
5039 /* Both invariant. Only valid if sum is machine operand.
5040 First strip off possible USE on first operand. */
5041 if (GET_CODE (arg0) == USE)
5042 arg0 = XEXP (arg0, 0);
5043
5044 tem = 0;
5045 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
5046 {
5047 tem = plus_constant (arg0, INTVAL (arg1));
5048 if (GET_CODE (tem) != CONST_INT)
5049 tem = gen_rtx (USE, mode, tem);
5050 }
5051
5052 return tem;
5053
5054 case REG:
5055 case MULT:
5056 /* biv + invar or mult + invar. Return sum. */
5057 return gen_rtx (PLUS, mode, arg0, arg1);
5058
5059 case PLUS:
5060 /* (a + invar_1) + invar_2. Associate. */
5061 return simplify_giv_expr (gen_rtx (PLUS, mode,
5062 XEXP (arg0, 0),
5063 gen_rtx (PLUS, mode,
5064 XEXP (arg0, 1), arg1)),
5065 benefit);
5066
5067 default:
5068 abort ();
5069 }
5070
5071 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5072 MULT to reduce cases. */
5073 if (GET_CODE (arg0) == REG)
5074 arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
5075 if (GET_CODE (arg1) == REG)
5076 arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
5077
5078 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5079 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5080 Recurse to associate the second PLUS. */
5081 if (GET_CODE (arg1) == MULT)
5082 tem = arg0, arg0 = arg1, arg1 = tem;
5083
5084 if (GET_CODE (arg1) == PLUS)
5085 return simplify_giv_expr (gen_rtx (PLUS, mode,
5086 gen_rtx (PLUS, mode,
5087 arg0, XEXP (arg1, 0)),
5088 XEXP (arg1, 1)),
5089 benefit);
5090
5091 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5092 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5093 abort ();
5094
5095 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5096 return 0;
5097
5098 return simplify_giv_expr (gen_rtx (MULT, mode,
5099 XEXP (arg0, 0),
5100 gen_rtx (PLUS, mode,
5101 XEXP (arg0, 1),
5102 XEXP (arg1, 1))),
5103 benefit);
5104
5105 case MINUS:
5106 /* Handle "a - b" as "a + b * (-1)". */
5107 return simplify_giv_expr (gen_rtx (PLUS, mode,
5108 XEXP (x, 0),
5109 gen_rtx (MULT, mode,
5110 XEXP (x, 1), constm1_rtx)),
5111 benefit);
5112
5113 case MULT:
5114 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5115 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5116 if (arg0 == 0 || arg1 == 0)
5117 return 0;
5118
5119 /* Put constant last, CONST_INT last if both constant. */
5120 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5121 && GET_CODE (arg1) != CONST_INT)
5122 tem = arg0, arg0 = arg1, arg1 = tem;
5123
5124 /* If second argument is not now constant, not giv. */
5125 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5126 return 0;
5127
5128 /* Handle multiply by 0 or 1. */
5129 if (arg1 == const0_rtx)
5130 return const0_rtx;
5131
5132 else if (arg1 == const1_rtx)
5133 return arg0;
5134
5135 switch (GET_CODE (arg0))
5136 {
5137 case REG:
5138 /* biv * invar. Done. */
5139 return gen_rtx (MULT, mode, arg0, arg1);
5140
5141 case CONST_INT:
5142 /* Product of two constants. */
5143 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5144
5145 case USE:
5146 /* invar * invar. Not giv. */
5147 return 0;
5148
5149 case MULT:
5150 /* (a * invar_1) * invar_2. Associate. */
5151 return simplify_giv_expr (gen_rtx (MULT, mode,
5152 XEXP (arg0, 0),
5153 gen_rtx (MULT, mode,
5154 XEXP (arg0, 1), arg1)),
5155 benefit);
5156
5157 case PLUS:
5158 /* (a + invar_1) * invar_2. Distribute. */
5159 return simplify_giv_expr (gen_rtx (PLUS, mode,
5160 gen_rtx (MULT, mode,
5161 XEXP (arg0, 0), arg1),
5162 gen_rtx (MULT, mode,
5163 XEXP (arg0, 1), arg1)),
5164 benefit);
5165
5166 default:
5167 abort ();
5168 }
5169
5170 case ASHIFT:
5171 /* Shift by constant is multiply by power of two. */
5172 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5173 return 0;
5174
5175 return simplify_giv_expr (gen_rtx (MULT, mode,
5176 XEXP (x, 0),
5177 GEN_INT ((HOST_WIDE_INT) 1
5178 << INTVAL (XEXP (x, 1)))),
5179 benefit);
5180
5181 case NEG:
5182 /* "-a" is "a * (-1)" */
5183 return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
5184 benefit);
5185
5186 case NOT:
5187 /* "~a" is "-a - 1". Silly, but easy. */
5188 return simplify_giv_expr (gen_rtx (MINUS, mode,
5189 gen_rtx (NEG, mode, XEXP (x, 0)),
5190 const1_rtx),
5191 benefit);
5192
5193 case USE:
5194 /* Already in proper form for invariant. */
5195 return x;
5196
5197 case REG:
5198 /* If this is a new register, we can't deal with it. */
5199 if (REGNO (x) >= max_reg_before_loop)
5200 return 0;
5201
5202 /* Check for biv or giv. */
5203 switch (reg_iv_type[REGNO (x)])
5204 {
5205 case BASIC_INDUCT:
5206 return x;
5207 case GENERAL_INDUCT:
5208 {
5209 struct induction *v = reg_iv_info[REGNO (x)];
5210
5211 /* Form expression from giv and add benefit. Ensure this giv
5212 can derive another and subtract any needed adjustment if so. */
5213 *benefit += v->benefit;
5214 if (v->cant_derive)
5215 return 0;
5216
5217 tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
5218 v->src_reg, v->mult_val),
5219 v->add_val);
5220 if (v->derive_adjustment)
5221 tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
5222 return simplify_giv_expr (tem, benefit);
5223 }
5224 }
5225
5226 /* Fall through to general case. */
5227 default:
5228 /* If invariant, return as USE (unless CONST_INT).
5229 Otherwise, not giv. */
5230 if (GET_CODE (x) == USE)
5231 x = XEXP (x, 0);
5232
5233 if (invariant_p (x) == 1)
5234 {
5235 if (GET_CODE (x) == CONST_INT)
5236 return x;
5237 else
5238 return gen_rtx (USE, mode, x);
5239 }
5240 else
5241 return 0;
5242 }
5243 }
5244 \f
5245 /* Help detect a giv that is calculated by several consecutive insns;
5246 for example,
5247 giv = biv * M
5248 giv = giv + A
5249 The caller has already identified the first insn P as having a giv as dest;
5250 we check that all other insns that set the same register follow
5251 immediately after P, that they alter nothing else,
5252 and that the result of the last is still a giv.
5253
5254 The value is 0 if the reg set in P is not really a giv.
5255 Otherwise, the value is the amount gained by eliminating
5256 all the consecutive insns that compute the value.
5257
5258 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5259 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5260
5261 The coefficients of the ultimate giv value are stored in
5262 *MULT_VAL and *ADD_VAL. */
5263
5264 static int
5265 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5266 add_val, mult_val)
5267 int first_benefit;
5268 rtx p;
5269 rtx src_reg;
5270 rtx dest_reg;
5271 rtx *add_val;
5272 rtx *mult_val;
5273 {
5274 int count;
5275 enum rtx_code code;
5276 int benefit;
5277 rtx temp;
5278 rtx set;
5279
5280 /* Indicate that this is a giv so that we can update the value produced in
5281 each insn of the multi-insn sequence.
5282
5283 This induction structure will be used only by the call to
5284 general_induction_var below, so we can allocate it on our stack.
5285 If this is a giv, our caller will replace the induct var entry with
5286 a new induction structure. */
5287 struct induction *v
5288 = (struct induction *) alloca (sizeof (struct induction));
5289 v->src_reg = src_reg;
5290 v->mult_val = *mult_val;
5291 v->add_val = *add_val;
5292 v->benefit = first_benefit;
5293 v->cant_derive = 0;
5294 v->derive_adjustment = 0;
5295
5296 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5297 reg_iv_info[REGNO (dest_reg)] = v;
5298
5299 count = n_times_set[REGNO (dest_reg)] - 1;
5300
5301 while (count > 0)
5302 {
5303 p = NEXT_INSN (p);
5304 code = GET_CODE (p);
5305
5306 /* If libcall, skip to end of call sequence. */
5307 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5308 p = XEXP (temp, 0);
5309
5310 if (code == INSN
5311 && (set = single_set (p))
5312 && GET_CODE (SET_DEST (set)) == REG
5313 && SET_DEST (set) == dest_reg
5314 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5315 add_val, mult_val))
5316 /* Giv created by equivalent expression. */
5317 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5318 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5319 add_val, mult_val))))
5320 && src_reg == v->src_reg)
5321 {
5322 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5323 benefit += libcall_benefit (p);
5324
5325 count--;
5326 v->mult_val = *mult_val;
5327 v->add_val = *add_val;
5328 v->benefit = benefit;
5329 }
5330 else if (code != NOTE)
5331 {
5332 /* Allow insns that set something other than this giv to a
5333 constant. Such insns are needed on machines which cannot
5334 include long constants and should not disqualify a giv. */
5335 if (code == INSN
5336 && (set = single_set (p))
5337 && SET_DEST (set) != dest_reg
5338 && CONSTANT_P (SET_SRC (set)))
5339 continue;
5340
5341 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5342 return 0;
5343 }
5344 }
5345
5346 return v->benefit;
5347 }
5348 \f
5349 /* Return an rtx, if any, that expresses giv G2 as a function of the register
5350 represented by G1. If no such expression can be found, or it is clear that
5351 it cannot possibly be a valid address, 0 is returned.
5352
5353 To perform the computation, we note that
5354 G1 = a * v + b and
5355 G2 = c * v + d
5356 where `v' is the biv.
5357
5358 So G2 = (c/a) * G1 + (d - b*c/a) */
5359
5360 #ifdef ADDRESS_COST
5361 static rtx
5362 express_from (g1, g2)
5363 struct induction *g1, *g2;
5364 {
5365 rtx mult, add;
5366
5367 /* The value that G1 will be multiplied by must be a constant integer. Also,
5368 the only chance we have of getting a valid address is if b*c/a (see above
5369 for notation) is also an integer. */
5370 if (GET_CODE (g1->mult_val) != CONST_INT
5371 || GET_CODE (g2->mult_val) != CONST_INT
5372 || GET_CODE (g1->add_val) != CONST_INT
5373 || g1->mult_val == const0_rtx
5374 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5375 return 0;
5376
5377 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5378 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5379
5380 /* Form simplified final result. */
5381 if (mult == const0_rtx)
5382 return add;
5383 else if (mult == const1_rtx)
5384 mult = g1->dest_reg;
5385 else
5386 mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
5387
5388 if (add == const0_rtx)
5389 return mult;
5390 else
5391 return gen_rtx (PLUS, g2->mode, mult, add);
5392 }
5393 #endif
5394 \f
5395 /* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5396 (either directly or via an address expression) a register used to represent
5397 G1. Set g2->new_reg to a represtation of G1 (normally just
5398 g1->dest_reg). */
5399
5400 static int
5401 combine_givs_p (g1, g2)
5402 struct induction *g1, *g2;
5403 {
5404 rtx tem;
5405
5406 /* If these givs are identical, they can be combined. */
5407 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5408 && rtx_equal_p (g1->add_val, g2->add_val))
5409 {
5410 g2->new_reg = g1->dest_reg;
5411 return 1;
5412 }
5413
5414 #ifdef ADDRESS_COST
5415 /* If G2 can be expressed as a function of G1 and that function is valid
5416 as an address and no more expensive than using a register for G2,
5417 the expression of G2 in terms of G1 can be used. */
5418 if (g2->giv_type == DEST_ADDR
5419 && (tem = express_from (g1, g2)) != 0
5420 && memory_address_p (g2->mem_mode, tem)
5421 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5422 {
5423 g2->new_reg = tem;
5424 return 1;
5425 }
5426 #endif
5427
5428 return 0;
5429 }
5430 \f
5431 /* Check all pairs of givs for iv_class BL and see if any can be combined with
5432 any other. If so, point SAME to the giv combined with and set NEW_REG to
5433 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5434 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5435
5436 static void
5437 combine_givs (bl)
5438 struct iv_class *bl;
5439 {
5440 struct induction *g1, *g2;
5441 int pass;
5442
5443 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5444 for (pass = 0; pass <= 1; pass++)
5445 for (g2 = bl->giv; g2; g2 = g2->next_iv)
5446 if (g1 != g2
5447 /* First try to combine with replaceable givs, then all givs. */
5448 && (g1->replaceable || pass == 1)
5449 /* If either has already been combined or is to be ignored, can't
5450 combine. */
5451 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5452 /* If something has been based on G2, G2 cannot itself be based
5453 on something else. */
5454 && ! g2->combined_with
5455 && combine_givs_p (g1, g2))
5456 {
5457 /* g2->new_reg set by `combine_givs_p' */
5458 g2->same = g1;
5459 g1->combined_with = 1;
5460 g1->benefit += g2->benefit;
5461 /* ??? The new final_[bg]iv_value code does a much better job
5462 of finding replaceable giv's, and hence this code may no
5463 longer be necessary. */
5464 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5465 g1->benefit -= copy_cost;
5466 g1->lifetime += g2->lifetime;
5467 g1->times_used += g2->times_used;
5468
5469 if (loop_dump_stream)
5470 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5471 INSN_UID (g2->insn), INSN_UID (g1->insn));
5472 }
5473 }
5474 \f
5475 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5476
5477 void
5478 emit_iv_add_mult (b, m, a, reg, insert_before)
5479 rtx b; /* initial value of basic induction variable */
5480 rtx m; /* multiplicative constant */
5481 rtx a; /* additive constant */
5482 rtx reg; /* destination register */
5483 rtx insert_before;
5484 {
5485 rtx seq;
5486 rtx result;
5487
5488 /* Prevent unexpected sharing of these rtx. */
5489 a = copy_rtx (a);
5490 b = copy_rtx (b);
5491
5492 /* Increase the lifetime of any invariants moved further in code. */
5493 update_reg_last_use (a, insert_before);
5494 update_reg_last_use (b, insert_before);
5495 update_reg_last_use (m, insert_before);
5496
5497 start_sequence ();
5498 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5499 if (reg != result)
5500 emit_move_insn (reg, result);
5501 seq = gen_sequence ();
5502 end_sequence ();
5503
5504 emit_insn_before (seq, insert_before);
5505 }
5506 \f
5507 /* Test whether A * B can be computed without
5508 an actual multiply insn. Value is 1 if so. */
5509
5510 static int
5511 product_cheap_p (a, b)
5512 rtx a;
5513 rtx b;
5514 {
5515 int i;
5516 rtx tmp;
5517 struct obstack *old_rtl_obstack = rtl_obstack;
5518 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5519 int win = 1;
5520
5521 /* If only one is constant, make it B. */
5522 if (GET_CODE (a) == CONST_INT)
5523 tmp = a, a = b, b = tmp;
5524
5525 /* If first constant, both constant, so don't need multiply. */
5526 if (GET_CODE (a) == CONST_INT)
5527 return 1;
5528
5529 /* If second not constant, neither is constant, so would need multiply. */
5530 if (GET_CODE (b) != CONST_INT)
5531 return 0;
5532
5533 /* One operand is constant, so might not need multiply insn. Generate the
5534 code for the multiply and see if a call or multiply, or long sequence
5535 of insns is generated. */
5536
5537 rtl_obstack = &temp_obstack;
5538 start_sequence ();
5539 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
5540 tmp = gen_sequence ();
5541 end_sequence ();
5542
5543 if (GET_CODE (tmp) == SEQUENCE)
5544 {
5545 if (XVEC (tmp, 0) == 0)
5546 win = 1;
5547 else if (XVECLEN (tmp, 0) > 3)
5548 win = 0;
5549 else
5550 for (i = 0; i < XVECLEN (tmp, 0); i++)
5551 {
5552 rtx insn = XVECEXP (tmp, 0, i);
5553
5554 if (GET_CODE (insn) != INSN
5555 || (GET_CODE (PATTERN (insn)) == SET
5556 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5557 || (GET_CODE (PATTERN (insn)) == PARALLEL
5558 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5559 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5560 {
5561 win = 0;
5562 break;
5563 }
5564 }
5565 }
5566 else if (GET_CODE (tmp) == SET
5567 && GET_CODE (SET_SRC (tmp)) == MULT)
5568 win = 0;
5569 else if (GET_CODE (tmp) == PARALLEL
5570 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5571 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5572 win = 0;
5573
5574 /* Free any storage we obtained in generating this multiply and restore rtl
5575 allocation to its normal obstack. */
5576 obstack_free (&temp_obstack, storage);
5577 rtl_obstack = old_rtl_obstack;
5578
5579 return win;
5580 }
5581 \f
5582 /* Check to see if loop can be terminated by a "decrement and branch until
5583 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
5584 Also try reversing an increment loop to a decrement loop
5585 to see if the optimization can be performed.
5586 Value is nonzero if optimization was performed. */
5587
5588 /* This is useful even if the architecture doesn't have such an insn,
5589 because it might change a loops which increments from 0 to n to a loop
5590 which decrements from n to 0. A loop that decrements to zero is usually
5591 faster than one that increments from zero. */
5592
5593 /* ??? This could be rewritten to use some of the loop unrolling procedures,
5594 such as approx_final_value, biv_total_increment, loop_iterations, and
5595 final_[bg]iv_value. */
5596
5597 static int
5598 check_dbra_loop (loop_end, insn_count, loop_start)
5599 rtx loop_end;
5600 int insn_count;
5601 rtx loop_start;
5602 {
5603 struct iv_class *bl;
5604 rtx reg;
5605 rtx jump_label;
5606 rtx final_value;
5607 rtx start_value;
5608 rtx new_add_val;
5609 rtx comparison;
5610 rtx before_comparison;
5611 rtx p;
5612
5613 /* If last insn is a conditional branch, and the insn before tests a
5614 register value, try to optimize it. Otherwise, we can't do anything. */
5615
5616 comparison = get_condition_for_loop (PREV_INSN (loop_end));
5617 if (comparison == 0)
5618 return 0;
5619
5620 /* Check all of the bivs to see if the compare uses one of them.
5621 Skip biv's set more than once because we can't guarantee that
5622 it will be zero on the last iteration. Also skip if the biv is
5623 used between its update and the test insn. */
5624
5625 for (bl = loop_iv_list; bl; bl = bl->next)
5626 {
5627 if (bl->biv_count == 1
5628 && bl->biv->dest_reg == XEXP (comparison, 0)
5629 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
5630 PREV_INSN (PREV_INSN (loop_end))))
5631 break;
5632 }
5633
5634 if (! bl)
5635 return 0;
5636
5637 /* Look for the case where the basic induction variable is always
5638 nonnegative, and equals zero on the last iteration.
5639 In this case, add a reg_note REG_NONNEG, which allows the
5640 m68k DBRA instruction to be used. */
5641
5642 if (((GET_CODE (comparison) == GT
5643 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5644 && INTVAL (XEXP (comparison, 1)) == -1)
5645 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
5646 && GET_CODE (bl->biv->add_val) == CONST_INT
5647 && INTVAL (bl->biv->add_val) < 0)
5648 {
5649 /* Initial value must be greater than 0,
5650 init_val % -dec_value == 0 to ensure that it equals zero on
5651 the last iteration */
5652
5653 if (GET_CODE (bl->initial_value) == CONST_INT
5654 && INTVAL (bl->initial_value) > 0
5655 && (INTVAL (bl->initial_value) %
5656 (-INTVAL (bl->biv->add_val))) == 0)
5657 {
5658 /* register always nonnegative, add REG_NOTE to branch */
5659 REG_NOTES (PREV_INSN (loop_end))
5660 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5661 REG_NOTES (PREV_INSN (loop_end)));
5662 bl->nonneg = 1;
5663
5664 return 1;
5665 }
5666
5667 /* If the decrement is 1 and the value was tested as >= 0 before
5668 the loop, then we can safely optimize. */
5669 for (p = loop_start; p; p = PREV_INSN (p))
5670 {
5671 if (GET_CODE (p) == CODE_LABEL)
5672 break;
5673 if (GET_CODE (p) != JUMP_INSN)
5674 continue;
5675
5676 before_comparison = get_condition_for_loop (p);
5677 if (before_comparison
5678 && XEXP (before_comparison, 0) == bl->biv->dest_reg
5679 && GET_CODE (before_comparison) == LT
5680 && XEXP (before_comparison, 1) == const0_rtx
5681 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
5682 && INTVAL (bl->biv->add_val) == -1)
5683 {
5684 REG_NOTES (PREV_INSN (loop_end))
5685 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5686 REG_NOTES (PREV_INSN (loop_end)));
5687 bl->nonneg = 1;
5688
5689 return 1;
5690 }
5691 }
5692 }
5693 else if (num_mem_sets <= 1)
5694 {
5695 /* Try to change inc to dec, so can apply above optimization. */
5696 /* Can do this if:
5697 all registers modified are induction variables or invariant,
5698 all memory references have non-overlapping addresses
5699 (obviously true if only one write)
5700 allow 2 insns for the compare/jump at the end of the loop. */
5701 int num_nonfixed_reads = 0;
5702 /* 1 if the iteration var is used only to count iterations. */
5703 int no_use_except_counting = 0;
5704 /* 1 if the loop has no memory store, or it has a single memory store
5705 which is reversible. */
5706 int reversible_mem_store = 1;
5707
5708 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5709 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5710 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
5711
5712 if (bl->giv_count == 0
5713 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
5714 {
5715 rtx bivreg = regno_reg_rtx[bl->regno];
5716
5717 /* If there are no givs for this biv, and the only exit is the
5718 fall through at the end of the the loop, then
5719 see if perhaps there are no uses except to count. */
5720 no_use_except_counting = 1;
5721 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5722 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5723 {
5724 rtx set = single_set (p);
5725
5726 if (set && GET_CODE (SET_DEST (set)) == REG
5727 && REGNO (SET_DEST (set)) == bl->regno)
5728 /* An insn that sets the biv is okay. */
5729 ;
5730 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
5731 || p == prev_nonnote_insn (loop_end))
5732 /* Don't bother about the end test. */
5733 ;
5734 else if (reg_mentioned_p (bivreg, PATTERN (p)))
5735 /* Any other use of the biv is no good. */
5736 {
5737 no_use_except_counting = 0;
5738 break;
5739 }
5740 }
5741 }
5742
5743 /* If the loop has a single store, and the destination address is
5744 invariant, then we can't reverse the loop, because this address
5745 might then have the wrong value at loop exit.
5746 This would work if the source was invariant also, however, in that
5747 case, the insn should have been moved out of the loop. */
5748
5749 if (num_mem_sets == 1)
5750 reversible_mem_store
5751 = (! unknown_address_altered
5752 && ! invariant_p (XEXP (loop_store_mems[0], 0)));
5753
5754 /* This code only acts for innermost loops. Also it simplifies
5755 the memory address check by only reversing loops with
5756 zero or one memory access.
5757 Two memory accesses could involve parts of the same array,
5758 and that can't be reversed. */
5759
5760 if (num_nonfixed_reads <= 1
5761 && !loop_has_call
5762 && !loop_has_volatile
5763 && reversible_mem_store
5764 && (no_use_except_counting
5765 || (bl->giv_count + bl->biv_count + num_mem_sets
5766 + num_movables + 2 == insn_count)))
5767 {
5768 rtx tem;
5769
5770 /* Loop can be reversed. */
5771 if (loop_dump_stream)
5772 fprintf (loop_dump_stream, "Can reverse loop\n");
5773
5774 /* Now check other conditions:
5775 initial_value must be zero,
5776 final_value % add_val == 0, so that when reversed, the
5777 biv will be zero on the last iteration.
5778
5779 This test can probably be improved since +/- 1 in the constant
5780 can be obtained by changing LT to LE and vice versa; this is
5781 confusing. */
5782
5783 if (comparison && bl->initial_value == const0_rtx
5784 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5785 /* LE gets turned into LT */
5786 && GET_CODE (comparison) == LT
5787 && (INTVAL (XEXP (comparison, 1))
5788 % INTVAL (bl->biv->add_val)) == 0)
5789 {
5790 /* Register will always be nonnegative, with value
5791 0 on last iteration if loop reversed */
5792
5793 /* Save some info needed to produce the new insns. */
5794 reg = bl->biv->dest_reg;
5795 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
5796 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
5797
5798 final_value = XEXP (comparison, 1);
5799 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
5800 - INTVAL (bl->biv->add_val));
5801
5802 /* Initialize biv to start_value before loop start.
5803 The old initializing insn will be deleted as a
5804 dead store by flow.c. */
5805 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
5806
5807 /* Add insn to decrement register, and delete insn
5808 that incremented the register. */
5809 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
5810 bl->biv->insn);
5811 delete_insn (bl->biv->insn);
5812
5813 /* Update biv info to reflect its new status. */
5814 bl->biv->insn = p;
5815 bl->initial_value = start_value;
5816 bl->biv->add_val = new_add_val;
5817
5818 /* Inc LABEL_NUSES so that delete_insn will
5819 not delete the label. */
5820 LABEL_NUSES (XEXP (jump_label, 0)) ++;
5821
5822 /* Emit an insn after the end of the loop to set the biv's
5823 proper exit value if it is used anywhere outside the loop. */
5824 if ((regno_last_uid[bl->regno]
5825 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
5826 || ! bl->init_insn
5827 || regno_first_uid[bl->regno] != INSN_UID (bl->init_insn))
5828 emit_insn_after (gen_move_insn (reg, final_value),
5829 loop_end);
5830
5831 /* Delete compare/branch at end of loop. */
5832 delete_insn (PREV_INSN (loop_end));
5833 delete_insn (PREV_INSN (loop_end));
5834
5835 /* Add new compare/branch insn at end of loop. */
5836 start_sequence ();
5837 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
5838 GET_MODE (reg), 0, 0);
5839 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
5840 tem = gen_sequence ();
5841 end_sequence ();
5842 emit_jump_insn_before (tem, loop_end);
5843
5844 for (tem = PREV_INSN (loop_end);
5845 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
5846 ;
5847 if (tem)
5848 {
5849 JUMP_LABEL (tem) = XEXP (jump_label, 0);
5850
5851 /* Increment of LABEL_NUSES done above. */
5852 /* Register is now always nonnegative,
5853 so add REG_NONNEG note to the branch. */
5854 REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5855 REG_NOTES (tem));
5856 }
5857
5858 bl->nonneg = 1;
5859
5860 /* Mark that this biv has been reversed. Each giv which depends
5861 on this biv, and which is also live past the end of the loop
5862 will have to be fixed up. */
5863
5864 bl->reversed = 1;
5865
5866 if (loop_dump_stream)
5867 fprintf (loop_dump_stream,
5868 "Reversed loop and added reg_nonneg\n");
5869
5870 return 1;
5871 }
5872 }
5873 }
5874
5875 return 0;
5876 }
5877 \f
5878 /* Verify whether the biv BL appears to be eliminable,
5879 based on the insns in the loop that refer to it.
5880 LOOP_START is the first insn of the loop, and END is the end insn.
5881
5882 If ELIMINATE_P is non-zero, actually do the elimination.
5883
5884 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
5885 determine whether invariant insns should be placed inside or at the
5886 start of the loop. */
5887
5888 static int
5889 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
5890 struct iv_class *bl;
5891 rtx loop_start;
5892 rtx end;
5893 int eliminate_p;
5894 int threshold, insn_count;
5895 {
5896 rtx reg = bl->biv->dest_reg;
5897 rtx p;
5898
5899 /* Scan all insns in the loop, stopping if we find one that uses the
5900 biv in a way that we cannot eliminate. */
5901
5902 for (p = loop_start; p != end; p = NEXT_INSN (p))
5903 {
5904 enum rtx_code code = GET_CODE (p);
5905 rtx where = threshold >= insn_count ? loop_start : p;
5906
5907 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
5908 && reg_mentioned_p (reg, PATTERN (p))
5909 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
5910 {
5911 if (loop_dump_stream)
5912 fprintf (loop_dump_stream,
5913 "Cannot eliminate biv %d: biv used in insn %d.\n",
5914 bl->regno, INSN_UID (p));
5915 break;
5916 }
5917 }
5918
5919 if (p == end)
5920 {
5921 if (loop_dump_stream)
5922 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
5923 bl->regno, eliminate_p ? "was" : "can be");
5924 return 1;
5925 }
5926
5927 return 0;
5928 }
5929 \f
5930 /* If BL appears in X (part of the pattern of INSN), see if we can
5931 eliminate its use. If so, return 1. If not, return 0.
5932
5933 If BIV does not appear in X, return 1.
5934
5935 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
5936 where extra insns should be added. Depending on how many items have been
5937 moved out of the loop, it will either be before INSN or at the start of
5938 the loop. */
5939
5940 static int
5941 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
5942 rtx x, insn;
5943 struct iv_class *bl;
5944 int eliminate_p;
5945 rtx where;
5946 {
5947 enum rtx_code code = GET_CODE (x);
5948 rtx reg = bl->biv->dest_reg;
5949 enum machine_mode mode = GET_MODE (reg);
5950 struct induction *v;
5951 rtx arg, new, tem;
5952 int arg_operand;
5953 char *fmt;
5954 int i, j;
5955
5956 switch (code)
5957 {
5958 case REG:
5959 /* If we haven't already been able to do something with this BIV,
5960 we can't eliminate it. */
5961 if (x == reg)
5962 return 0;
5963 return 1;
5964
5965 case SET:
5966 /* If this sets the BIV, it is not a problem. */
5967 if (SET_DEST (x) == reg)
5968 return 1;
5969
5970 /* If this is an insn that defines a giv, it is also ok because
5971 it will go away when the giv is reduced. */
5972 for (v = bl->giv; v; v = v->next_iv)
5973 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
5974 return 1;
5975
5976 #ifdef HAVE_cc0
5977 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
5978 {
5979 /* Can replace with any giv that was reduced and
5980 that has (MULT_VAL != 0) and (ADD_VAL == 0).
5981 Require a constant for MULT_VAL, so we know it's nonzero. */
5982
5983 for (v = bl->giv; v; v = v->next_iv)
5984 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5985 && v->add_val == const0_rtx
5986 && ! v->ignore && ! v->maybe_dead && v->always_computable
5987 && v->mode == mode)
5988 {
5989 if (! eliminate_p)
5990 return 1;
5991
5992 /* If the giv has the opposite direction of change,
5993 then reverse the comparison. */
5994 if (INTVAL (v->mult_val) < 0)
5995 new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
5996 const0_rtx, v->new_reg);
5997 else
5998 new = v->new_reg;
5999
6000 /* We can probably test that giv's reduced reg. */
6001 if (validate_change (insn, &SET_SRC (x), new, 0))
6002 return 1;
6003 }
6004
6005 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
6006 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
6007 Require a constant for MULT_VAL, so we know it's nonzero. */
6008
6009 for (v = bl->giv; v; v = v->next_iv)
6010 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6011 && ! v->ignore && ! v->maybe_dead && v->always_computable
6012 && v->mode == mode)
6013 {
6014 if (! eliminate_p)
6015 return 1;
6016
6017 /* If the giv has the opposite direction of change,
6018 then reverse the comparison. */
6019 if (INTVAL (v->mult_val) < 0)
6020 new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
6021 v->new_reg);
6022 else
6023 new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
6024 copy_rtx (v->add_val));
6025
6026 /* Replace biv with the giv's reduced register. */
6027 update_reg_last_use (v->add_val, insn);
6028 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6029 return 1;
6030
6031 /* Insn doesn't support that constant or invariant. Copy it
6032 into a register (it will be a loop invariant.) */
6033 tem = gen_reg_rtx (GET_MODE (v->new_reg));
6034
6035 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
6036 where);
6037
6038 if (validate_change (insn, &SET_SRC (PATTERN (insn)),
6039 gen_rtx (COMPARE, VOIDmode,
6040 v->new_reg, tem), 0))
6041 return 1;
6042 }
6043 }
6044 #endif
6045 break;
6046
6047 case COMPARE:
6048 case EQ: case NE:
6049 case GT: case GE: case GTU: case GEU:
6050 case LT: case LE: case LTU: case LEU:
6051 /* See if either argument is the biv. */
6052 if (XEXP (x, 0) == reg)
6053 arg = XEXP (x, 1), arg_operand = 1;
6054 else if (XEXP (x, 1) == reg)
6055 arg = XEXP (x, 0), arg_operand = 0;
6056 else
6057 break;
6058
6059 if (CONSTANT_P (arg))
6060 {
6061 /* First try to replace with any giv that has constant positive
6062 mult_val and constant add_val. We might be able to support
6063 negative mult_val, but it seems complex to do it in general. */
6064
6065 for (v = bl->giv; v; v = v->next_iv)
6066 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6067 && CONSTANT_P (v->add_val)
6068 && ! v->ignore && ! v->maybe_dead && v->always_computable
6069 && v->mode == mode)
6070 {
6071 if (! eliminate_p)
6072 return 1;
6073
6074 /* Replace biv with the giv's reduced reg. */
6075 XEXP (x, 1-arg_operand) = v->new_reg;
6076
6077 /* If all constants are actually constant integers and
6078 the derived constant can be directly placed in the COMPARE,
6079 do so. */
6080 if (GET_CODE (arg) == CONST_INT
6081 && GET_CODE (v->mult_val) == CONST_INT
6082 && GET_CODE (v->add_val) == CONST_INT
6083 && validate_change (insn, &XEXP (x, arg_operand),
6084 GEN_INT (INTVAL (arg)
6085 * INTVAL (v->mult_val)
6086 + INTVAL (v->add_val)), 0))
6087 return 1;
6088
6089 /* Otherwise, load it into a register. */
6090 tem = gen_reg_rtx (mode);
6091 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6092 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6093 return 1;
6094
6095 /* If that failed, put back the change we made above. */
6096 XEXP (x, 1-arg_operand) = reg;
6097 }
6098
6099 /* Look for giv with positive constant mult_val and nonconst add_val.
6100 Insert insns to calculate new compare value. */
6101
6102 for (v = bl->giv; v; v = v->next_iv)
6103 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6104 && ! v->ignore && ! v->maybe_dead && v->always_computable
6105 && v->mode == mode)
6106 {
6107 rtx tem;
6108
6109 if (! eliminate_p)
6110 return 1;
6111
6112 tem = gen_reg_rtx (mode);
6113
6114 /* Replace biv with giv's reduced register. */
6115 validate_change (insn, &XEXP (x, 1 - arg_operand),
6116 v->new_reg, 1);
6117
6118 /* Compute value to compare against. */
6119 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6120 /* Use it in this insn. */
6121 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6122 if (apply_change_group ())
6123 return 1;
6124 }
6125 }
6126 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6127 {
6128 if (invariant_p (arg) == 1)
6129 {
6130 /* Look for giv with constant positive mult_val and nonconst
6131 add_val. Insert insns to compute new compare value. */
6132
6133 for (v = bl->giv; v; v = v->next_iv)
6134 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6135 && ! v->ignore && ! v->maybe_dead && v->always_computable
6136 && v->mode == mode)
6137 {
6138 rtx tem;
6139
6140 if (! eliminate_p)
6141 return 1;
6142
6143 tem = gen_reg_rtx (mode);
6144
6145 /* Replace biv with giv's reduced register. */
6146 validate_change (insn, &XEXP (x, 1 - arg_operand),
6147 v->new_reg, 1);
6148
6149 /* Compute value to compare against. */
6150 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6151 tem, where);
6152 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6153 if (apply_change_group ())
6154 return 1;
6155 }
6156 }
6157
6158 /* This code has problems. Basically, you can't know when
6159 seeing if we will eliminate BL, whether a particular giv
6160 of ARG will be reduced. If it isn't going to be reduced,
6161 we can't eliminate BL. We can try forcing it to be reduced,
6162 but that can generate poor code.
6163
6164 The problem is that the benefit of reducing TV, below should
6165 be increased if BL can actually be eliminated, but this means
6166 we might have to do a topological sort of the order in which
6167 we try to process biv. It doesn't seem worthwhile to do
6168 this sort of thing now. */
6169
6170 #if 0
6171 /* Otherwise the reg compared with had better be a biv. */
6172 if (GET_CODE (arg) != REG
6173 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6174 return 0;
6175
6176 /* Look for a pair of givs, one for each biv,
6177 with identical coefficients. */
6178 for (v = bl->giv; v; v = v->next_iv)
6179 {
6180 struct induction *tv;
6181
6182 if (v->ignore || v->maybe_dead || v->mode != mode)
6183 continue;
6184
6185 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6186 if (! tv->ignore && ! tv->maybe_dead
6187 && rtx_equal_p (tv->mult_val, v->mult_val)
6188 && rtx_equal_p (tv->add_val, v->add_val)
6189 && tv->mode == mode)
6190 {
6191 if (! eliminate_p)
6192 return 1;
6193
6194 /* Replace biv with its giv's reduced reg. */
6195 XEXP (x, 1-arg_operand) = v->new_reg;
6196 /* Replace other operand with the other giv's
6197 reduced reg. */
6198 XEXP (x, arg_operand) = tv->new_reg;
6199 return 1;
6200 }
6201 }
6202 #endif
6203 }
6204
6205 /* If we get here, the biv can't be eliminated. */
6206 return 0;
6207
6208 case MEM:
6209 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6210 biv is used in it, since it will be replaced. */
6211 for (v = bl->giv; v; v = v->next_iv)
6212 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6213 return 1;
6214 break;
6215 }
6216
6217 /* See if any subexpression fails elimination. */
6218 fmt = GET_RTX_FORMAT (code);
6219 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6220 {
6221 switch (fmt[i])
6222 {
6223 case 'e':
6224 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6225 eliminate_p, where))
6226 return 0;
6227 break;
6228
6229 case 'E':
6230 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6231 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6232 eliminate_p, where))
6233 return 0;
6234 break;
6235 }
6236 }
6237
6238 return 1;
6239 }
6240 \f
6241 /* Return nonzero if the last use of REG
6242 is in an insn following INSN in the same basic block. */
6243
6244 static int
6245 last_use_this_basic_block (reg, insn)
6246 rtx reg;
6247 rtx insn;
6248 {
6249 rtx n;
6250 for (n = insn;
6251 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6252 n = NEXT_INSN (n))
6253 {
6254 if (regno_last_uid[REGNO (reg)] == INSN_UID (n))
6255 return 1;
6256 }
6257 return 0;
6258 }
6259 \f
6260 /* Called via `note_stores' to record the initial value of a biv. Here we
6261 just record the location of the set and process it later. */
6262
6263 static void
6264 record_initial (dest, set)
6265 rtx dest;
6266 rtx set;
6267 {
6268 struct iv_class *bl;
6269
6270 if (GET_CODE (dest) != REG
6271 || REGNO (dest) >= max_reg_before_loop
6272 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
6273 return;
6274
6275 bl = reg_biv_class[REGNO (dest)];
6276
6277 /* If this is the first set found, record it. */
6278 if (bl->init_insn == 0)
6279 {
6280 bl->init_insn = note_insn;
6281 bl->init_set = set;
6282 }
6283 }
6284 \f
6285 /* If any of the registers in X are "old" and currently have a last use earlier
6286 than INSN, update them to have a last use of INSN. Their actual last use
6287 will be the previous insn but it will not have a valid uid_luid so we can't
6288 use it. */
6289
6290 static void
6291 update_reg_last_use (x, insn)
6292 rtx x;
6293 rtx insn;
6294 {
6295 /* Check for the case where INSN does not have a valid luid. In this case,
6296 there is no need to modify the regno_last_uid, as this can only happen
6297 when code is inserted after the loop_end to set a pseudo's final value,
6298 and hence this insn will never be the last use of x. */
6299 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6300 && INSN_UID (insn) < max_uid_for_loop
6301 && uid_luid[regno_last_uid[REGNO (x)]] < uid_luid[INSN_UID (insn)])
6302 regno_last_uid[REGNO (x)] = INSN_UID (insn);
6303 else
6304 {
6305 register int i, j;
6306 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6307 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6308 {
6309 if (fmt[i] == 'e')
6310 update_reg_last_use (XEXP (x, i), insn);
6311 else if (fmt[i] == 'E')
6312 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6313 update_reg_last_use (XVECEXP (x, i, j), insn);
6314 }
6315 }
6316 }
6317 \f
6318 /* Given a jump insn JUMP, return the condition that will cause it to branch
6319 to its JUMP_LABEL. If the condition cannot be understood, or is an
6320 inequality floating-point comparison which needs to be reversed, 0 will
6321 be returned.
6322
6323 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6324 insn used in locating the condition was found. If a replacement test
6325 of the condition is desired, it should be placed in front of that
6326 insn and we will be sure that the inputs are still valid.
6327
6328 The condition will be returned in a canonical form to simplify testing by
6329 callers. Specifically:
6330
6331 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6332 (2) Both operands will be machine operands; (cc0) will have been replaced.
6333 (3) If an operand is a constant, it will be the second operand.
6334 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6335 for GE, GEU, and LEU. */
6336
6337 rtx
6338 get_condition (jump, earliest)
6339 rtx jump;
6340 rtx *earliest;
6341 {
6342 enum rtx_code code;
6343 rtx prev = jump;
6344 rtx set;
6345 rtx tem;
6346 rtx op0, op1;
6347 int reverse_code = 0;
6348 int did_reverse_condition = 0;
6349
6350 /* If this is not a standard conditional jump, we can't parse it. */
6351 if (GET_CODE (jump) != JUMP_INSN
6352 || ! condjump_p (jump) || simplejump_p (jump))
6353 return 0;
6354
6355 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6356 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6357 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6358
6359 if (earliest)
6360 *earliest = jump;
6361
6362 /* If this branches to JUMP_LABEL when the condition is false, reverse
6363 the condition. */
6364 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6365 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6366 code = reverse_condition (code), did_reverse_condition ^= 1;
6367
6368 /* If we are comparing a register with zero, see if the register is set
6369 in the previous insn to a COMPARE or a comparison operation. Perform
6370 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6371 in cse.c */
6372
6373 while (GET_RTX_CLASS (code) == '<' && op1 == const0_rtx)
6374 {
6375 /* Set non-zero when we find something of interest. */
6376 rtx x = 0;
6377
6378 #ifdef HAVE_cc0
6379 /* If comparison with cc0, import actual comparison from compare
6380 insn. */
6381 if (op0 == cc0_rtx)
6382 {
6383 if ((prev = prev_nonnote_insn (prev)) == 0
6384 || GET_CODE (prev) != INSN
6385 || (set = single_set (prev)) == 0
6386 || SET_DEST (set) != cc0_rtx)
6387 return 0;
6388
6389 op0 = SET_SRC (set);
6390 op1 = CONST0_RTX (GET_MODE (op0));
6391 if (earliest)
6392 *earliest = prev;
6393 }
6394 #endif
6395
6396 /* If this is a COMPARE, pick up the two things being compared. */
6397 if (GET_CODE (op0) == COMPARE)
6398 {
6399 op1 = XEXP (op0, 1);
6400 op0 = XEXP (op0, 0);
6401 continue;
6402 }
6403 else if (GET_CODE (op0) != REG)
6404 break;
6405
6406 /* Go back to the previous insn. Stop if it is not an INSN. We also
6407 stop if it isn't a single set or if it has a REG_INC note because
6408 we don't want to bother dealing with it. */
6409
6410 if ((prev = prev_nonnote_insn (prev)) == 0
6411 || GET_CODE (prev) != INSN
6412 || FIND_REG_INC_NOTE (prev, 0)
6413 || (set = single_set (prev)) == 0)
6414 break;
6415
6416 /* If this is setting OP0, get what it sets it to if it looks
6417 relevant. */
6418 if (SET_DEST (set) == op0)
6419 {
6420 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6421
6422 if ((GET_CODE (SET_SRC (set)) == COMPARE
6423 || (((code == NE
6424 || (code == LT
6425 && GET_MODE_CLASS (inner_mode) == MODE_INT
6426 && (GET_MODE_BITSIZE (inner_mode)
6427 <= HOST_BITS_PER_WIDE_INT)
6428 && (STORE_FLAG_VALUE
6429 & ((HOST_WIDE_INT) 1
6430 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6431 #ifdef FLOAT_STORE_FLAG_VALUE
6432 || (code == LT
6433 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6434 && FLOAT_STORE_FLAG_VALUE < 0)
6435 #endif
6436 ))
6437 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6438 x = SET_SRC (set);
6439 else if (((code == EQ
6440 || (code == GE
6441 && (GET_MODE_BITSIZE (inner_mode)
6442 <= HOST_BITS_PER_WIDE_INT)
6443 && GET_MODE_CLASS (inner_mode) == MODE_INT
6444 && (STORE_FLAG_VALUE
6445 & ((HOST_WIDE_INT) 1
6446 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6447 #ifdef FLOAT_STORE_FLAG_VALUE
6448 || (code == GE
6449 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6450 && FLOAT_STORE_FLAG_VALUE < 0)
6451 #endif
6452 ))
6453 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6454 {
6455 /* We might have reversed a LT to get a GE here. But this wasn't
6456 actually the comparison of data, so we don't flag that we
6457 have had to reverse the condition. */
6458 did_reverse_condition ^= 1;
6459 reverse_code = 1;
6460 x = SET_SRC (set);
6461 }
6462 else
6463 break;
6464 }
6465
6466 else if (reg_set_p (op0, prev))
6467 /* If this sets OP0, but not directly, we have to give up. */
6468 break;
6469
6470 if (x)
6471 {
6472 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
6473 code = GET_CODE (x);
6474 if (reverse_code)
6475 {
6476 code = reverse_condition (code);
6477 did_reverse_condition ^= 1;
6478 reverse_code = 0;
6479 }
6480
6481 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6482 if (earliest)
6483 *earliest = prev;
6484 }
6485 }
6486
6487 /* If constant is first, put it last. */
6488 if (CONSTANT_P (op0))
6489 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6490
6491 /* If OP0 is the result of a comparison, we weren't able to find what
6492 was really being compared, so fail. */
6493 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6494 return 0;
6495
6496 /* Canonicalize any ordered comparison with integers involving equality
6497 if we can do computations in the relevant mode and we do not
6498 overflow. */
6499
6500 if (GET_CODE (op1) == CONST_INT
6501 && GET_MODE (op0) != VOIDmode
6502 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
6503 {
6504 HOST_WIDE_INT const_val = INTVAL (op1);
6505 unsigned HOST_WIDE_INT uconst_val = const_val;
6506 unsigned HOST_WIDE_INT max_val
6507 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
6508
6509 switch (code)
6510 {
6511 case LE:
6512 if (const_val != max_val >> 1)
6513 code = LT, op1 = GEN_INT (const_val + 1);
6514 break;
6515
6516 case GE:
6517 if (const_val
6518 != (((HOST_WIDE_INT) 1
6519 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
6520 code = GT, op1 = GEN_INT (const_val - 1);
6521 break;
6522
6523 case LEU:
6524 if (uconst_val != max_val)
6525 code = LTU, op1 = GEN_INT (uconst_val + 1);
6526 break;
6527
6528 case GEU:
6529 if (uconst_val != 0)
6530 code = GTU, op1 = GEN_INT (uconst_val - 1);
6531 break;
6532 }
6533 }
6534
6535 /* If this was floating-point and we reversed anything other than an
6536 EQ or NE, return zero. */
6537 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
6538 && did_reverse_condition && code != NE && code != EQ
6539 && ! flag_fast_math
6540 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
6541 return 0;
6542
6543 #ifdef HAVE_cc0
6544 /* Never return CC0; return zero instead. */
6545 if (op0 == cc0_rtx)
6546 return 0;
6547 #endif
6548
6549 return gen_rtx (code, VOIDmode, op0, op1);
6550 }
6551
6552 /* Similar to above routine, except that we also put an invariant last
6553 unless both operands are invariants. */
6554
6555 rtx
6556 get_condition_for_loop (x)
6557 rtx x;
6558 {
6559 rtx comparison = get_condition (x, NULL_PTR);
6560
6561 if (comparison == 0
6562 || ! invariant_p (XEXP (comparison, 0))
6563 || invariant_p (XEXP (comparison, 1)))
6564 return comparison;
6565
6566 return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
6567 XEXP (comparison, 1), XEXP (comparison, 0));
6568 }
This page took 0.425379 seconds and 5 git commands to generate.