]> gcc.gnu.org Git - gcc.git/blob - gcc/local-alloc.c
alias.c (init_alias_analysis): Allocate reg_known_value and reg_known_equiv_p on...
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "basic-block.h"
68 #include "regs.h"
69 #include "function.h"
70 #include "hard-reg-set.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 \f
77 /* Next quantity number available for allocation. */
78
79 static int next_qty;
80
81 /* In all the following vectors indexed by quantity number. */
82
83 /* Element Q is the hard reg number chosen for quantity Q,
84 or -1 if none was found. */
85
86 static short *qty_phys_reg;
87
88 /* We maintain two hard register sets that indicate suggested hard registers
89 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
90 that are tied to the quantity by a simple copy. The second contains all
91 hard registers that are tied to the quantity via an arithmetic operation.
92
93 The former register set is given priority for allocation. This tends to
94 eliminate copy insns. */
95
96 /* Element Q is a set of hard registers that are suggested for quantity Q by
97 copy insns. */
98
99 static HARD_REG_SET *qty_phys_copy_sugg;
100
101 /* Element Q is a set of hard registers that are suggested for quantity Q by
102 arithmetic insns. */
103
104 static HARD_REG_SET *qty_phys_sugg;
105
106 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
107
108 static short *qty_phys_num_copy_sugg;
109
110 /* Element Q is the number of suggested registers in qty_phys_sugg. */
111
112 static short *qty_phys_num_sugg;
113
114 /* Element Q is the number of refs to quantity Q. */
115
116 static int *qty_n_refs;
117
118 /* Element Q is a reg class contained in (smaller than) the
119 preferred classes of all the pseudo regs that are tied in quantity Q.
120 This is the preferred class for allocating that quantity. */
121
122 static enum reg_class *qty_min_class;
123
124 /* Insn number (counting from head of basic block)
125 where quantity Q was born. -1 if birth has not been recorded. */
126
127 static int *qty_birth;
128
129 /* Insn number (counting from head of basic block)
130 where quantity Q died. Due to the way tying is done,
131 and the fact that we consider in this pass only regs that die but once,
132 a quantity can die only once. Each quantity's life span
133 is a set of consecutive insns. -1 if death has not been recorded. */
134
135 static int *qty_death;
136
137 /* Number of words needed to hold the data in quantity Q.
138 This depends on its machine mode. It is used for these purposes:
139 1. It is used in computing the relative importances of qtys,
140 which determines the order in which we look for regs for them.
141 2. It is used in rules that prevent tying several registers of
142 different sizes in a way that is geometrically impossible
143 (see combine_regs). */
144
145 static int *qty_size;
146
147 /* This holds the mode of the registers that are tied to qty Q,
148 or VOIDmode if registers with differing modes are tied together. */
149
150 static enum machine_mode *qty_mode;
151
152 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
153
154 static int *qty_n_calls_crossed;
155
156 /* Register class within which we allocate qty Q if we can't get
157 its preferred class. */
158
159 static enum reg_class *qty_alternate_class;
160
161 /* Element Q is nonzero if this quantity has been used in a SUBREG
162 that changes its size. */
163
164 static char *qty_changes_size;
165
166 /* Element Q is the register number of one pseudo register whose
167 reg_qty value is Q. This register should be the head of the chain
168 maintained in reg_next_in_qty. */
169
170 static int *qty_first_reg;
171
172 /* If (REG N) has been assigned a quantity number, is a register number
173 of another register assigned the same quantity number, or -1 for the
174 end of the chain. qty_first_reg point to the head of this chain. */
175
176 static int *reg_next_in_qty;
177
178 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
179 if it is >= 0,
180 of -1 if this register cannot be allocated by local-alloc,
181 or -2 if not known yet.
182
183 Note that if we see a use or death of pseudo register N with
184 reg_qty[N] == -2, register N must be local to the current block. If
185 it were used in more than one block, we would have reg_qty[N] == -1.
186 This relies on the fact that if reg_basic_block[N] is >= 0, register N
187 will not appear in any other block. We save a considerable number of
188 tests by exploiting this.
189
190 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
191 be referenced. */
192
193 static int *reg_qty;
194
195 /* The offset (in words) of register N within its quantity.
196 This can be nonzero if register N is SImode, and has been tied
197 to a subreg of a DImode register. */
198
199 static char *reg_offset;
200
201 /* Vector of substitutions of register numbers,
202 used to map pseudo regs into hardware regs.
203 This is set up as a result of register allocation.
204 Element N is the hard reg assigned to pseudo reg N,
205 or is -1 if no hard reg was assigned.
206 If N is a hard reg number, element N is N. */
207
208 short *reg_renumber;
209
210 /* Set of hard registers live at the current point in the scan
211 of the instructions in a basic block. */
212
213 static HARD_REG_SET regs_live;
214
215 /* Each set of hard registers indicates registers live at a particular
216 point in the basic block. For N even, regs_live_at[N] says which
217 hard registers are needed *after* insn N/2 (i.e., they may not
218 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
219
220 If an object is to conflict with the inputs of insn J but not the
221 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
222 if it is to conflict with the outputs of insn J but not the inputs of
223 insn J + 1, it is said to die at index J*2 + 1. */
224
225 static HARD_REG_SET *regs_live_at;
226
227 /* Communicate local vars `insn_number' and `insn'
228 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
229 static int this_insn_number;
230 static rtx this_insn;
231
232 /* Used to communicate changes made by update_equiv_regs to
233 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
234 found or created, so that we can keep track of what memory accesses might
235 be created later, e.g. by reload. */
236
237 static rtx *reg_equiv_replacement;
238
239 /* Used for communication between update_equiv_regs and no_equiv. */
240 static rtx *reg_equiv_init_insns;
241
242 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
243 static int recorded_label_ref;
244
245 static void alloc_qty PROTO((int, enum machine_mode, int, int));
246 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
247 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
248 static int contains_replace_regs PROTO((rtx, char *));
249 static int memref_referenced_p PROTO((rtx, rtx));
250 static int memref_used_between_p PROTO((rtx, rtx, rtx));
251 static void update_equiv_regs PROTO((void));
252 static void no_equiv PROTO((rtx, rtx));
253 static void block_alloc PROTO((int));
254 static int qty_sugg_compare PROTO((int, int));
255 static int qty_sugg_compare_1 PROTO((const PTR, const PTR));
256 static int qty_compare PROTO((int, int));
257 static int qty_compare_1 PROTO((const PTR, const PTR));
258 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
259 static int reg_meets_class_p PROTO((int, enum reg_class));
260 static void update_qty_class PROTO((int, int));
261 static void reg_is_set PROTO((rtx, rtx));
262 static void reg_is_born PROTO((rtx, int));
263 static void wipe_dead_reg PROTO((rtx, int));
264 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
265 int, int, int, int, int));
266 static void mark_life PROTO((int, enum machine_mode, int));
267 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
268 static int no_conflict_p PROTO((rtx, rtx, rtx));
269 static int requires_inout PROTO((const char *));
270 \f
271 /* Allocate a new quantity (new within current basic block)
272 for register number REGNO which is born at index BIRTH
273 within the block. MODE and SIZE are info on reg REGNO. */
274
275 static void
276 alloc_qty (regno, mode, size, birth)
277 int regno;
278 enum machine_mode mode;
279 int size, birth;
280 {
281 register int qty = next_qty++;
282
283 reg_qty[regno] = qty;
284 reg_offset[regno] = 0;
285 reg_next_in_qty[regno] = -1;
286
287 qty_first_reg[qty] = regno;
288 qty_size[qty] = size;
289 qty_mode[qty] = mode;
290 qty_birth[qty] = birth;
291 qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
292 qty_min_class[qty] = reg_preferred_class (regno);
293 qty_alternate_class[qty] = reg_alternate_class (regno);
294 qty_n_refs[qty] = REG_N_REFS (regno);
295 qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
296 }
297 \f
298 /* Main entry point of this file. */
299
300 int
301 local_alloc ()
302 {
303 register int b, i;
304 int max_qty;
305
306 /* We need to keep track of whether or not we recorded a LABEL_REF so
307 that we know if the jump optimizer needs to be rerun. */
308 recorded_label_ref = 0;
309
310 /* Leaf functions and non-leaf functions have different needs.
311 If defined, let the machine say what kind of ordering we
312 should use. */
313 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
314 ORDER_REGS_FOR_LOCAL_ALLOC;
315 #endif
316
317 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
318 registers. */
319 update_equiv_regs ();
320
321 /* This sets the maximum number of quantities we can have. Quantity
322 numbers start at zero and we can have one for each pseudo. */
323 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
324
325 /* Allocate vectors of temporary data.
326 See the declarations of these variables, above,
327 for what they mean. */
328
329 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
330 qty_phys_copy_sugg
331 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
332 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
333 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
334 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
335 qty_birth = (int *) alloca (max_qty * sizeof (int));
336 qty_death = (int *) alloca (max_qty * sizeof (int));
337 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
338 qty_size = (int *) alloca (max_qty * sizeof (int));
339 qty_mode
340 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
341 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
342 qty_min_class
343 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
344 qty_alternate_class
345 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
346 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
347 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
348
349 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
350 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
351 reg_next_in_qty = (int *) xmalloc(max_regno * sizeof (int));
352
353 /* Allocate the reg_renumber array */
354 allocate_reg_info (max_regno, FALSE, TRUE);
355
356 /* Determine which pseudo-registers can be allocated by local-alloc.
357 In general, these are the registers used only in a single block and
358 which only die once. However, if a register's preferred class has only
359 a few entries, don't allocate this register here unless it is preferred
360 or nothing since retry_global_alloc won't be able to move it to
361 GENERAL_REGS if a reload register of this class is needed.
362
363 We need not be concerned with which block actually uses the register
364 since we will never see it outside that block. */
365
366 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
367 {
368 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
369 && (reg_alternate_class (i) == NO_REGS
370 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
371 reg_qty[i] = -2;
372 else
373 reg_qty[i] = -1;
374 }
375
376 /* Force loop below to initialize entire quantity array. */
377 next_qty = max_qty;
378
379 /* Allocate each block's local registers, block by block. */
380
381 for (b = 0; b < n_basic_blocks; b++)
382 {
383 /* NEXT_QTY indicates which elements of the `qty_...'
384 vectors might need to be initialized because they were used
385 for the previous block; it is set to the entire array before
386 block 0. Initialize those, with explicit loop if there are few,
387 else with bzero and bcopy. Do not initialize vectors that are
388 explicit set by `alloc_qty'. */
389
390 if (next_qty < 6)
391 {
392 for (i = 0; i < next_qty; i++)
393 {
394 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
395 qty_phys_num_copy_sugg[i] = 0;
396 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
397 qty_phys_num_sugg[i] = 0;
398 }
399 }
400 else
401 {
402 #define CLEAR(vector) \
403 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
404
405 CLEAR (qty_phys_copy_sugg);
406 CLEAR (qty_phys_num_copy_sugg);
407 CLEAR (qty_phys_sugg);
408 CLEAR (qty_phys_num_sugg);
409 }
410
411 next_qty = 0;
412
413 block_alloc (b);
414 #ifdef USE_C_ALLOCA
415 alloca (0);
416 #endif
417 }
418
419 free (reg_qty);
420 free (reg_offset);
421 free (reg_next_in_qty);
422 return recorded_label_ref;
423 }
424 \f
425 /* Depth of loops we are in while in update_equiv_regs. */
426 static int loop_depth;
427
428 /* Used for communication between the following two functions: contains
429 a MEM that we wish to ensure remains unchanged. */
430 static rtx equiv_mem;
431
432 /* Set nonzero if EQUIV_MEM is modified. */
433 static int equiv_mem_modified;
434
435 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
436 Called via note_stores. */
437
438 static void
439 validate_equiv_mem_from_store (dest, set)
440 rtx dest;
441 rtx set ATTRIBUTE_UNUSED;
442 {
443 if ((GET_CODE (dest) == REG
444 && reg_overlap_mentioned_p (dest, equiv_mem))
445 || (GET_CODE (dest) == MEM
446 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
447 equiv_mem_modified = 1;
448 }
449
450 /* Verify that no store between START and the death of REG invalidates
451 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
452 by storing into an overlapping memory location, or with a non-const
453 CALL_INSN.
454
455 Return 1 if MEMREF remains valid. */
456
457 static int
458 validate_equiv_mem (start, reg, memref)
459 rtx start;
460 rtx reg;
461 rtx memref;
462 {
463 rtx insn;
464 rtx note;
465
466 equiv_mem = memref;
467 equiv_mem_modified = 0;
468
469 /* If the memory reference has side effects or is volatile, it isn't a
470 valid equivalence. */
471 if (side_effects_p (memref))
472 return 0;
473
474 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
475 {
476 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
477 continue;
478
479 if (find_reg_note (insn, REG_DEAD, reg))
480 return 1;
481
482 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
483 && ! CONST_CALL_P (insn))
484 return 0;
485
486 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
487
488 /* If a register mentioned in MEMREF is modified via an
489 auto-increment, we lose the equivalence. Do the same if one
490 dies; although we could extend the life, it doesn't seem worth
491 the trouble. */
492
493 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
494 if ((REG_NOTE_KIND (note) == REG_INC
495 || REG_NOTE_KIND (note) == REG_DEAD)
496 && GET_CODE (XEXP (note, 0)) == REG
497 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
498 return 0;
499 }
500
501 return 0;
502 }
503
504 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
505
506 static int
507 contains_replace_regs (x, reg_equiv_replace)
508 rtx x;
509 char *reg_equiv_replace;
510 {
511 int i, j;
512 const char *fmt;
513 enum rtx_code code = GET_CODE (x);
514
515 switch (code)
516 {
517 case CONST_INT:
518 case CONST:
519 case LABEL_REF:
520 case SYMBOL_REF:
521 case CONST_DOUBLE:
522 case PC:
523 case CC0:
524 case HIGH:
525 case LO_SUM:
526 return 0;
527
528 case REG:
529 return reg_equiv_replace[REGNO (x)];
530
531 default:
532 break;
533 }
534
535 fmt = GET_RTX_FORMAT (code);
536 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
537 switch (fmt[i])
538 {
539 case 'e':
540 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
541 return 1;
542 break;
543 case 'E':
544 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
545 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
546 return 1;
547 break;
548 }
549
550 return 0;
551 }
552 \f
553 /* TRUE if X references a memory location that would be affected by a store
554 to MEMREF. */
555
556 static int
557 memref_referenced_p (memref, x)
558 rtx x;
559 rtx memref;
560 {
561 int i, j;
562 const char *fmt;
563 enum rtx_code code = GET_CODE (x);
564
565 switch (code)
566 {
567 case CONST_INT:
568 case CONST:
569 case LABEL_REF:
570 case SYMBOL_REF:
571 case CONST_DOUBLE:
572 case PC:
573 case CC0:
574 case HIGH:
575 case LO_SUM:
576 return 0;
577
578 case REG:
579 return (reg_equiv_replacement[REGNO (x)]
580 && memref_referenced_p (memref,
581 reg_equiv_replacement[REGNO (x)]));
582
583 case MEM:
584 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
585 return 1;
586 break;
587
588 case SET:
589 /* If we are setting a MEM, it doesn't count (its address does), but any
590 other SET_DEST that has a MEM in it is referencing the MEM. */
591 if (GET_CODE (SET_DEST (x)) == MEM)
592 {
593 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
594 return 1;
595 }
596 else if (memref_referenced_p (memref, SET_DEST (x)))
597 return 1;
598
599 return memref_referenced_p (memref, SET_SRC (x));
600
601 default:
602 break;
603 }
604
605 fmt = GET_RTX_FORMAT (code);
606 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
607 switch (fmt[i])
608 {
609 case 'e':
610 if (memref_referenced_p (memref, XEXP (x, i)))
611 return 1;
612 break;
613 case 'E':
614 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
615 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
616 return 1;
617 break;
618 }
619
620 return 0;
621 }
622
623 /* TRUE if some insn in the range (START, END] references a memory location
624 that would be affected by a store to MEMREF. */
625
626 static int
627 memref_used_between_p (memref, start, end)
628 rtx memref;
629 rtx start;
630 rtx end;
631 {
632 rtx insn;
633
634 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
635 insn = NEXT_INSN (insn))
636 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
637 && memref_referenced_p (memref, PATTERN (insn)))
638 return 1;
639
640 return 0;
641 }
642 \f
643 /* Return nonzero if the rtx X is invariant over the current function. */
644 int
645 function_invariant_p (x)
646 rtx x;
647 {
648 if (CONSTANT_P (x))
649 return 1;
650 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
651 return 1;
652 if (GET_CODE (x) == PLUS
653 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
654 && CONSTANT_P (XEXP (x, 1)))
655 return 1;
656 return 0;
657 }
658
659 /* Find registers that are equivalent to a single value throughout the
660 compilation (either because they can be referenced in memory or are set once
661 from a single constant). Lower their priority for a register.
662
663 If such a register is only referenced once, try substituting its value
664 into the using insn. If it succeeds, we can eliminate the register
665 completely. */
666
667 static void
668 update_equiv_regs ()
669 {
670 /* Set when an attempt should be made to replace a register with the
671 associated reg_equiv_replacement entry at the end of this function. */
672 char *reg_equiv_replace
673 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
674 rtx insn;
675 int block, depth;
676
677 reg_equiv_init_insns = (rtx *) alloca (max_regno * sizeof (rtx));
678 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx));
679
680 bzero ((char *) reg_equiv_init_insns, max_regno * sizeof (rtx));
681 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx));
682 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
683
684 init_alias_analysis ();
685
686 loop_depth = 1;
687
688 /* Scan the insns and find which registers have equivalences. Do this
689 in a separate scan of the insns because (due to -fcse-follow-jumps)
690 a register can be set below its use. */
691 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
692 {
693 rtx note;
694 rtx set;
695 rtx dest, src;
696 int regno;
697
698 if (GET_CODE (insn) == NOTE)
699 {
700 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
701 loop_depth++;
702 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
703 loop_depth--;
704 }
705
706 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
707 continue;
708
709 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
710 if (REG_NOTE_KIND (note) == REG_INC)
711 no_equiv (XEXP (note, 0), note);
712
713 set = single_set (insn);
714
715 /* If this insn contains more (or less) than a single SET,
716 only mark all destinations as having no known equivalence. */
717 if (set == 0)
718 {
719 note_stores (PATTERN (insn), no_equiv);
720 continue;
721 }
722 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
723 {
724 int i;
725
726 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
727 {
728 rtx part = XVECEXP (PATTERN (insn), 0, i);
729 if (part != set)
730 note_stores (part, no_equiv);
731 }
732 }
733
734 dest = SET_DEST (set);
735 src = SET_SRC (set);
736
737 /* If this sets a MEM to the contents of a REG that is only used
738 in a single basic block, see if the register is always equivalent
739 to that memory location and if moving the store from INSN to the
740 insn that set REG is safe. If so, put a REG_EQUIV note on the
741 initializing insn.
742
743 Don't add a REG_EQUIV note if the insn already has one. The existing
744 REG_EQUIV is likely more useful than the one we are adding.
745
746 If one of the regs in the address is marked as reg_equiv_replace,
747 then we can't add this REG_EQUIV note. The reg_equiv_replace
748 optimization may move the set of this register immediately before
749 insn, which puts it after reg_equiv_init_insns[regno], and hence
750 the mention in the REG_EQUIV note would be to an uninitialized
751 pseudo. */
752 /* ????? This test isn't good enough; we might see a MEM with a use of
753 a pseudo register before we see its setting insn that will cause
754 reg_equiv_replace for that pseudo to be set.
755 Equivalences to MEMs should be made in another pass, after the
756 reg_equiv_replace information has been gathered. */
757
758 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
759 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
760 && REG_BASIC_BLOCK (regno) >= 0
761 && REG_N_SETS (regno) == 1
762 && reg_equiv_init_insns[regno] != 0
763 && reg_equiv_init_insns[regno] != const0_rtx
764 && ! find_reg_note (XEXP (reg_equiv_init_insns[regno], 0),
765 REG_EQUIV, NULL_RTX)
766 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
767 {
768 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
769 if (validate_equiv_mem (init_insn, src, dest)
770 && ! memref_used_between_p (dest, init_insn, insn))
771 REG_NOTES (init_insn)
772 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
773 }
774
775 /* We only handle the case of a pseudo register being set
776 once, or always to the same value. */
777 /* ??? The mn10200 port breaks if we add equivalences for
778 values that need an ADDRESS_REGS register and set them equivalent
779 to a MEM of a pseudo. The actual problem is in the over-conservative
780 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
781 calculate_needs, but we traditionally work around this problem
782 here by rejecting equivalences when the destination is in a register
783 that's likely spilled. This is fragile, of course, since the
784 preferred class of a pseudo depends on all instructions that set
785 or use it. */
786
787 if (GET_CODE (dest) != REG
788 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
789 || reg_equiv_init_insns[regno] == const0_rtx
790 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
791 && GET_CODE (src) == MEM))
792 {
793 /* This might be seting a SUBREG of a pseudo, a pseudo that is
794 also set somewhere else to a constant. */
795 note_stores (set, no_equiv);
796 continue;
797 }
798 /* Don't handle the equivalence if the source is in a register
799 class that's likely to be spilled. */
800 if (GET_CODE (src) == REG
801 && REGNO (src) >= FIRST_PSEUDO_REGISTER
802 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
803 {
804 no_equiv (dest, set);
805 continue;
806 }
807
808 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
809
810 if (REG_N_SETS (regno) != 1
811 && (! note
812 || ! function_invariant_p (XEXP (note, 0))
813 || (reg_equiv_replacement[regno]
814 && ! rtx_equal_p (XEXP (note, 0),
815 reg_equiv_replacement[regno]))))
816 {
817 no_equiv (dest, set);
818 continue;
819 }
820 /* Record this insn as initializing this register. */
821 reg_equiv_init_insns[regno]
822 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
823
824 /* If this register is known to be equal to a constant, record that
825 it is always equivalent to the constant. */
826 if (note && function_invariant_p (XEXP (note, 0)))
827 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
828
829 /* If this insn introduces a "constant" register, decrease the priority
830 of that register. Record this insn if the register is only used once
831 more and the equivalence value is the same as our source.
832
833 The latter condition is checked for two reasons: First, it is an
834 indication that it may be more efficient to actually emit the insn
835 as written (if no registers are available, reload will substitute
836 the equivalence). Secondly, it avoids problems with any registers
837 dying in this insn whose death notes would be missed.
838
839 If we don't have a REG_EQUIV note, see if this insn is loading
840 a register used only in one basic block from a MEM. If so, and the
841 MEM remains unchanged for the life of the register, add a REG_EQUIV
842 note. */
843
844 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
845
846 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
847 && GET_CODE (SET_SRC (set)) == MEM
848 && validate_equiv_mem (insn, dest, SET_SRC (set)))
849 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
850 REG_NOTES (insn));
851
852 if (note)
853 {
854 int regno = REGNO (dest);
855
856 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
857 We might end up substituting the LABEL_REF for uses of the
858 pseudo here or later. That kind of transformation may turn an
859 indirect jump into a direct jump, in which case we must rerun the
860 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
861 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
862 || (GET_CODE (XEXP (note, 0)) == CONST
863 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
864 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
865 == LABEL_REF)))
866 recorded_label_ref = 1;
867
868
869 reg_equiv_replacement[regno] = XEXP (note, 0);
870
871 /* Don't mess with things live during setjmp. */
872 if (REG_LIVE_LENGTH (regno) >= 0)
873 {
874 /* Note that the statement below does not affect the priority
875 in local-alloc! */
876 REG_LIVE_LENGTH (regno) *= 2;
877
878
879 /* If the register is referenced exactly twice, meaning it is
880 set once and used once, indicate that the reference may be
881 replaced by the equivalence we computed above. If the
882 register is only used in one basic block, this can't succeed
883 or combine would have done it.
884
885 It would be nice to use "loop_depth * 2" in the compare
886 below. Unfortunately, LOOP_DEPTH need not be constant within
887 a basic block so this would be too complicated.
888
889 This case normally occurs when a parameter is read from
890 memory and then used exactly once, not in a loop. */
891
892 if (REG_N_REFS (regno) == 2
893 && REG_BASIC_BLOCK (regno) < 0
894 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
895 reg_equiv_replace[regno] = 1;
896 }
897 }
898 }
899
900 /* Now scan all regs killed in an insn to see if any of them are
901 registers only used that once. If so, see if we can replace the
902 reference with the equivalent from. If we can, delete the
903 initializing reference and this register will go away. If we
904 can't replace the reference, and the instruction is not in a
905 loop, then move the register initialization just before the use,
906 so that they are in the same basic block. */
907 block = -1;
908 depth = 0;
909 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
910 {
911 rtx link;
912
913 /* Keep track of which basic block we are in. */
914 if (block + 1 < n_basic_blocks
915 && BLOCK_HEAD (block + 1) == insn)
916 ++block;
917
918 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
919 {
920 if (GET_CODE (insn) == NOTE)
921 {
922 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
923 ++depth;
924 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
925 {
926 --depth;
927 if (depth < 0)
928 abort ();
929 }
930 }
931
932 continue;
933 }
934
935 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
936 {
937 if (REG_NOTE_KIND (link) == REG_DEAD
938 /* Make sure this insn still refers to the register. */
939 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
940 {
941 int regno = REGNO (XEXP (link, 0));
942 rtx equiv_insn;
943
944 if (! reg_equiv_replace[regno])
945 continue;
946
947 /* reg_equiv_replace[REGNO] gets set only when
948 REG_N_REFS[REGNO] is 2, i.e. the register is set
949 once and used once. (If it were only set, but not used,
950 flow would have deleted the setting insns.) Hence
951 there can only be one insn in reg_equiv_init_insns. */
952 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
953
954 if (validate_replace_rtx (regno_reg_rtx[regno],
955 reg_equiv_replacement[regno], insn))
956 {
957 remove_death (regno, insn);
958 REG_N_REFS (regno) = 0;
959 PUT_CODE (equiv_insn, NOTE);
960 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
961 NOTE_SOURCE_FILE (equiv_insn) = 0;
962 }
963 /* If we aren't in a loop, and there are no calls in
964 INSN or in the initialization of the register, then
965 move the initialization of the register to just
966 before INSN. Update the flow information. */
967 else if (depth == 0
968 && GET_CODE (equiv_insn) == INSN
969 && GET_CODE (insn) == INSN
970 && REG_BASIC_BLOCK (regno) < 0)
971 {
972 int l;
973
974 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
975 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
976 REG_NOTES (equiv_insn) = 0;
977
978 PUT_CODE (equiv_insn, NOTE);
979 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
980 NOTE_SOURCE_FILE (equiv_insn) = 0;
981
982 if (block < 0)
983 REG_BASIC_BLOCK (regno) = 0;
984 else
985 REG_BASIC_BLOCK (regno) = block;
986 REG_N_CALLS_CROSSED (regno) = 0;
987 REG_LIVE_LENGTH (regno) = 2;
988
989 if (block >= 0 && insn == BLOCK_HEAD (block))
990 BLOCK_HEAD (block) = PREV_INSN (insn);
991
992 for (l = 0; l < n_basic_blocks; l++)
993 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
994 regno);
995 }
996 }
997 }
998 }
999
1000 /* Clean up. */
1001 end_alias_analysis ();
1002 }
1003
1004 /* Mark REG as having no known equivalence.
1005 Some instructions might have been proceessed before and furnished
1006 with REG_EQUIV notes for this register; these notes will have to be
1007 removed.
1008 STORE is the piece of RTL that does the non-constant / conflicting
1009 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1010 but needs to be there because this function is called from note_stores. */
1011 static void
1012 no_equiv (reg, store)
1013 rtx reg, store ATTRIBUTE_UNUSED;
1014 {
1015 int regno;
1016 rtx list;
1017
1018 if (GET_CODE (reg) != REG)
1019 return;
1020 regno = REGNO (reg);
1021 list = reg_equiv_init_insns[regno];
1022 if (list == const0_rtx)
1023 return;
1024 for (; list; list = XEXP (list, 1))
1025 {
1026 rtx insn = XEXP (list, 0);
1027 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1028 }
1029 reg_equiv_init_insns[regno] = const0_rtx;
1030 reg_equiv_replacement[regno] = NULL_RTX;
1031 }
1032 \f
1033 /* Allocate hard regs to the pseudo regs used only within block number B.
1034 Only the pseudos that die but once can be handled. */
1035
1036 static void
1037 block_alloc (b)
1038 int b;
1039 {
1040 register int i, q;
1041 register rtx insn;
1042 rtx note;
1043 int insn_number = 0;
1044 int insn_count = 0;
1045 int max_uid = get_max_uid ();
1046 int *qty_order;
1047 int no_conflict_combined_regno = -1;
1048
1049 /* Count the instructions in the basic block. */
1050
1051 insn = BLOCK_END (b);
1052 while (1)
1053 {
1054 if (GET_CODE (insn) != NOTE)
1055 if (++insn_count > max_uid)
1056 abort ();
1057 if (insn == BLOCK_HEAD (b))
1058 break;
1059 insn = PREV_INSN (insn);
1060 }
1061
1062 /* +2 to leave room for a post_mark_life at the last insn and for
1063 the birth of a CLOBBER in the first insn. */
1064 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1065 * sizeof (HARD_REG_SET));
1066 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1067
1068 /* Initialize table of hardware registers currently live. */
1069
1070 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1071
1072 /* This loop scans the instructions of the basic block
1073 and assigns quantities to registers.
1074 It computes which registers to tie. */
1075
1076 insn = BLOCK_HEAD (b);
1077 while (1)
1078 {
1079 if (GET_CODE (insn) != NOTE)
1080 insn_number++;
1081
1082 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1083 {
1084 register rtx link, set;
1085 register int win = 0;
1086 register rtx r0, r1;
1087 int combined_regno = -1;
1088 int i;
1089
1090 this_insn_number = insn_number;
1091 this_insn = insn;
1092
1093 extract_insn (insn);
1094 which_alternative = -1;
1095
1096 /* Is this insn suitable for tying two registers?
1097 If so, try doing that.
1098 Suitable insns are those with at least two operands and where
1099 operand 0 is an output that is a register that is not
1100 earlyclobber.
1101
1102 We can tie operand 0 with some operand that dies in this insn.
1103 First look for operands that are required to be in the same
1104 register as operand 0. If we find such, only try tying that
1105 operand or one that can be put into that operand if the
1106 operation is commutative. If we don't find an operand
1107 that is required to be in the same register as operand 0,
1108 we can tie with any operand.
1109
1110 Subregs in place of regs are also ok.
1111
1112 If tying is done, WIN is set nonzero. */
1113
1114 if (recog_data.n_operands > 1
1115 && recog_data.constraints[0][0] == '='
1116 && recog_data.constraints[0][1] != '&')
1117 {
1118 /* If non-negative, is an operand that must match operand 0. */
1119 int must_match_0 = -1;
1120 /* Counts number of alternatives that require a match with
1121 operand 0. */
1122 int n_matching_alts = 0;
1123
1124 for (i = 1; i < recog_data.n_operands; i++)
1125 {
1126 const char *p = recog_data.constraints[i];
1127 int this_match = (requires_inout (p));
1128
1129 n_matching_alts += this_match;
1130 if (this_match == recog_data.n_alternatives)
1131 must_match_0 = i;
1132 }
1133
1134 r0 = recog_data.operand[0];
1135 for (i = 1; i < recog_data.n_operands; i++)
1136 {
1137 /* Skip this operand if we found an operand that
1138 must match operand 0 and this operand isn't it
1139 and can't be made to be it by commutativity. */
1140
1141 if (must_match_0 >= 0 && i != must_match_0
1142 && ! (i == must_match_0 + 1
1143 && recog_data.constraints[i-1][0] == '%')
1144 && ! (i == must_match_0 - 1
1145 && recog_data.constraints[i][0] == '%'))
1146 continue;
1147
1148 /* Likewise if each alternative has some operand that
1149 must match operand zero. In that case, skip any
1150 operand that doesn't list operand 0 since we know that
1151 the operand always conflicts with operand 0. We
1152 ignore commutatity in this case to keep things simple. */
1153 if (n_matching_alts == recog_data.n_alternatives
1154 && 0 == requires_inout (recog_data.constraints[i]))
1155 continue;
1156
1157 r1 = recog_data.operand[i];
1158
1159 /* If the operand is an address, find a register in it.
1160 There may be more than one register, but we only try one
1161 of them. */
1162 if (recog_data.constraints[i][0] == 'p')
1163 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1164 r1 = XEXP (r1, 0);
1165
1166 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1167 {
1168 /* We have two priorities for hard register preferences.
1169 If we have a move insn or an insn whose first input
1170 can only be in the same register as the output, give
1171 priority to an equivalence found from that insn. */
1172 int may_save_copy
1173 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1174
1175 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1176 win = combine_regs (r1, r0, may_save_copy,
1177 insn_number, insn, 0);
1178 }
1179 if (win)
1180 break;
1181 }
1182 }
1183
1184 /* Recognize an insn sequence with an ultimate result
1185 which can safely overlap one of the inputs.
1186 The sequence begins with a CLOBBER of its result,
1187 and ends with an insn that copies the result to itself
1188 and has a REG_EQUAL note for an equivalent formula.
1189 That note indicates what the inputs are.
1190 The result and the input can overlap if each insn in
1191 the sequence either doesn't mention the input
1192 or has a REG_NO_CONFLICT note to inhibit the conflict.
1193
1194 We do the combining test at the CLOBBER so that the
1195 destination register won't have had a quantity number
1196 assigned, since that would prevent combining. */
1197
1198 if (GET_CODE (PATTERN (insn)) == CLOBBER
1199 && (r0 = XEXP (PATTERN (insn), 0),
1200 GET_CODE (r0) == REG)
1201 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1202 && XEXP (link, 0) != 0
1203 && GET_CODE (XEXP (link, 0)) == INSN
1204 && (set = single_set (XEXP (link, 0))) != 0
1205 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1206 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1207 NULL_RTX)) != 0)
1208 {
1209 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1210 /* Check that we have such a sequence. */
1211 && no_conflict_p (insn, r0, r1))
1212 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1213 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1214 && (r1 = XEXP (XEXP (note, 0), 0),
1215 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1216 && no_conflict_p (insn, r0, r1))
1217 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1218
1219 /* Here we care if the operation to be computed is
1220 commutative. */
1221 else if ((GET_CODE (XEXP (note, 0)) == EQ
1222 || GET_CODE (XEXP (note, 0)) == NE
1223 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1224 && (r1 = XEXP (XEXP (note, 0), 1),
1225 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1226 && no_conflict_p (insn, r0, r1))
1227 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1228
1229 /* If we did combine something, show the register number
1230 in question so that we know to ignore its death. */
1231 if (win)
1232 no_conflict_combined_regno = REGNO (r1);
1233 }
1234
1235 /* If registers were just tied, set COMBINED_REGNO
1236 to the number of the register used in this insn
1237 that was tied to the register set in this insn.
1238 This register's qty should not be "killed". */
1239
1240 if (win)
1241 {
1242 while (GET_CODE (r1) == SUBREG)
1243 r1 = SUBREG_REG (r1);
1244 combined_regno = REGNO (r1);
1245 }
1246
1247 /* Mark the death of everything that dies in this instruction,
1248 except for anything that was just combined. */
1249
1250 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1251 if (REG_NOTE_KIND (link) == REG_DEAD
1252 && GET_CODE (XEXP (link, 0)) == REG
1253 && combined_regno != REGNO (XEXP (link, 0))
1254 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1255 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1256 wipe_dead_reg (XEXP (link, 0), 0);
1257
1258 /* Allocate qty numbers for all registers local to this block
1259 that are born (set) in this instruction.
1260 A pseudo that already has a qty is not changed. */
1261
1262 note_stores (PATTERN (insn), reg_is_set);
1263
1264 /* If anything is set in this insn and then unused, mark it as dying
1265 after this insn, so it will conflict with our outputs. This
1266 can't match with something that combined, and it doesn't matter
1267 if it did. Do this after the calls to reg_is_set since these
1268 die after, not during, the current insn. */
1269
1270 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1271 if (REG_NOTE_KIND (link) == REG_UNUSED
1272 && GET_CODE (XEXP (link, 0)) == REG)
1273 wipe_dead_reg (XEXP (link, 0), 1);
1274
1275 /* If this is an insn that has a REG_RETVAL note pointing at a
1276 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1277 block, so clear any register number that combined within it. */
1278 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1279 && GET_CODE (XEXP (note, 0)) == INSN
1280 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1281 no_conflict_combined_regno = -1;
1282 }
1283
1284 /* Set the registers live after INSN_NUMBER. Note that we never
1285 record the registers live before the block's first insn, since no
1286 pseudos we care about are live before that insn. */
1287
1288 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1289 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1290
1291 if (insn == BLOCK_END (b))
1292 break;
1293
1294 insn = NEXT_INSN (insn);
1295 }
1296
1297 /* Now every register that is local to this basic block
1298 should have been given a quantity, or else -1 meaning ignore it.
1299 Every quantity should have a known birth and death.
1300
1301 Order the qtys so we assign them registers in order of the
1302 number of suggested registers they need so we allocate those with
1303 the most restrictive needs first. */
1304
1305 qty_order = (int *) alloca (next_qty * sizeof (int));
1306 for (i = 0; i < next_qty; i++)
1307 qty_order[i] = i;
1308
1309 #define EXCHANGE(I1, I2) \
1310 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1311
1312 switch (next_qty)
1313 {
1314 case 3:
1315 /* Make qty_order[2] be the one to allocate last. */
1316 if (qty_sugg_compare (0, 1) > 0)
1317 EXCHANGE (0, 1);
1318 if (qty_sugg_compare (1, 2) > 0)
1319 EXCHANGE (2, 1);
1320
1321 /* ... Fall through ... */
1322 case 2:
1323 /* Put the best one to allocate in qty_order[0]. */
1324 if (qty_sugg_compare (0, 1) > 0)
1325 EXCHANGE (0, 1);
1326
1327 /* ... Fall through ... */
1328
1329 case 1:
1330 case 0:
1331 /* Nothing to do here. */
1332 break;
1333
1334 default:
1335 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1336 }
1337
1338 /* Try to put each quantity in a suggested physical register, if it has one.
1339 This may cause registers to be allocated that otherwise wouldn't be, but
1340 this seems acceptable in local allocation (unlike global allocation). */
1341 for (i = 0; i < next_qty; i++)
1342 {
1343 q = qty_order[i];
1344 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1345 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1346 0, 1, qty_birth[q], qty_death[q]);
1347 else
1348 qty_phys_reg[q] = -1;
1349 }
1350
1351 /* Order the qtys so we assign them registers in order of
1352 decreasing length of life. Normally call qsort, but if we
1353 have only a very small number of quantities, sort them ourselves. */
1354
1355 for (i = 0; i < next_qty; i++)
1356 qty_order[i] = i;
1357
1358 #define EXCHANGE(I1, I2) \
1359 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1360
1361 switch (next_qty)
1362 {
1363 case 3:
1364 /* Make qty_order[2] be the one to allocate last. */
1365 if (qty_compare (0, 1) > 0)
1366 EXCHANGE (0, 1);
1367 if (qty_compare (1, 2) > 0)
1368 EXCHANGE (2, 1);
1369
1370 /* ... Fall through ... */
1371 case 2:
1372 /* Put the best one to allocate in qty_order[0]. */
1373 if (qty_compare (0, 1) > 0)
1374 EXCHANGE (0, 1);
1375
1376 /* ... Fall through ... */
1377
1378 case 1:
1379 case 0:
1380 /* Nothing to do here. */
1381 break;
1382
1383 default:
1384 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1385 }
1386
1387 /* Now for each qty that is not a hardware register,
1388 look for a hardware register to put it in.
1389 First try the register class that is cheapest for this qty,
1390 if there is more than one class. */
1391
1392 for (i = 0; i < next_qty; i++)
1393 {
1394 q = qty_order[i];
1395 if (qty_phys_reg[q] < 0)
1396 {
1397 #ifdef INSN_SCHEDULING
1398 /* These values represent the adjusted lifetime of a qty so
1399 that it conflicts with qtys which appear near the start/end
1400 of this qty's lifetime.
1401
1402 The purpose behind extending the lifetime of this qty is to
1403 discourage the register allocator from creating false
1404 dependencies.
1405
1406 The adjustment value is choosen to indicate that this qty
1407 conflicts with all the qtys in the instructions immediately
1408 before and after the lifetime of this qty.
1409
1410 Experiments have shown that higher values tend to hurt
1411 overall code performance.
1412
1413 If allocation using the extended lifetime fails we will try
1414 again with the qty's unadjusted lifetime. */
1415 int fake_birth = MAX (0, qty_birth[q] - 2 + qty_birth[q] % 2);
1416 int fake_death = MIN (insn_number * 2 + 1,
1417 qty_death[q] + 2 - qty_death[q] % 2);
1418 #endif
1419
1420 if (N_REG_CLASSES > 1)
1421 {
1422 #ifdef INSN_SCHEDULING
1423 /* We try to avoid using hard registers allocated to qtys which
1424 are born immediately after this qty or die immediately before
1425 this qty.
1426
1427 This optimization is only appropriate when we will run
1428 a scheduling pass after reload and we are not optimizing
1429 for code size. */
1430 if (flag_schedule_insns_after_reload
1431 && !optimize_size
1432 && !SMALL_REGISTER_CLASSES)
1433 {
1434
1435 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1436 qty_mode[q], q, 0, 0,
1437 fake_birth, fake_death);
1438 if (qty_phys_reg[q] >= 0)
1439 continue;
1440 }
1441 #endif
1442 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1443 qty_mode[q], q, 0, 0,
1444 qty_birth[q], qty_death[q]);
1445 if (qty_phys_reg[q] >= 0)
1446 continue;
1447 }
1448
1449 #ifdef INSN_SCHEDULING
1450 /* Similarly, avoid false dependencies. */
1451 if (flag_schedule_insns_after_reload
1452 && !optimize_size
1453 && !SMALL_REGISTER_CLASSES
1454 && qty_alternate_class[q] != NO_REGS)
1455 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1456 qty_mode[q], q, 0, 0,
1457 fake_birth, fake_death);
1458 #endif
1459 if (qty_alternate_class[q] != NO_REGS)
1460 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1461 qty_mode[q], q, 0, 0,
1462 qty_birth[q], qty_death[q]);
1463 }
1464 }
1465
1466 /* Now propagate the register assignments
1467 to the pseudo regs belonging to the qtys. */
1468
1469 for (q = 0; q < next_qty; q++)
1470 if (qty_phys_reg[q] >= 0)
1471 {
1472 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1473 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1474 }
1475 }
1476 \f
1477 /* Compare two quantities' priority for getting real registers.
1478 We give shorter-lived quantities higher priority.
1479 Quantities with more references are also preferred, as are quantities that
1480 require multiple registers. This is the identical prioritization as
1481 done by global-alloc.
1482
1483 We used to give preference to registers with *longer* lives, but using
1484 the same algorithm in both local- and global-alloc can speed up execution
1485 of some programs by as much as a factor of three! */
1486
1487 /* Note that the quotient will never be bigger than
1488 the value of floor_log2 times the maximum number of
1489 times a register can occur in one insn (surely less than 100).
1490 Multiplying this by 10000 can't overflow.
1491 QTY_CMP_PRI is also used by qty_sugg_compare. */
1492
1493 #define QTY_CMP_PRI(q) \
1494 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1495 / (qty_death[q] - qty_birth[q])) * 10000))
1496
1497 static int
1498 qty_compare (q1, q2)
1499 int q1, q2;
1500 {
1501 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1502 }
1503
1504 static int
1505 qty_compare_1 (q1p, q2p)
1506 const PTR q1p;
1507 const PTR q2p;
1508 {
1509 register int q1 = *(const int *)q1p, q2 = *(const int *)q2p;
1510 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1511
1512 if (tem != 0)
1513 return tem;
1514
1515 /* If qtys are equally good, sort by qty number,
1516 so that the results of qsort leave nothing to chance. */
1517 return q1 - q2;
1518 }
1519 \f
1520 /* Compare two quantities' priority for getting real registers. This version
1521 is called for quantities that have suggested hard registers. First priority
1522 goes to quantities that have copy preferences, then to those that have
1523 normal preferences. Within those groups, quantities with the lower
1524 number of preferences have the highest priority. Of those, we use the same
1525 algorithm as above. */
1526
1527 #define QTY_CMP_SUGG(q) \
1528 (qty_phys_num_copy_sugg[q] \
1529 ? qty_phys_num_copy_sugg[q] \
1530 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1531
1532 static int
1533 qty_sugg_compare (q1, q2)
1534 int q1, q2;
1535 {
1536 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1537
1538 if (tem != 0)
1539 return tem;
1540
1541 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1542 }
1543
1544 static int
1545 qty_sugg_compare_1 (q1p, q2p)
1546 const PTR q1p;
1547 const PTR q2p;
1548 {
1549 register int q1 = *(const int *)q1p, q2 = *(const int *)q2p;
1550 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1551
1552 if (tem != 0)
1553 return tem;
1554
1555 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1556 if (tem != 0)
1557 return tem;
1558
1559 /* If qtys are equally good, sort by qty number,
1560 so that the results of qsort leave nothing to chance. */
1561 return q1 - q2;
1562 }
1563
1564 #undef QTY_CMP_SUGG
1565 #undef QTY_CMP_PRI
1566 \f
1567 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1568 Returns 1 if have done so, or 0 if cannot.
1569
1570 Combining registers means marking them as having the same quantity
1571 and adjusting the offsets within the quantity if either of
1572 them is a SUBREG).
1573
1574 We don't actually combine a hard reg with a pseudo; instead
1575 we just record the hard reg as the suggestion for the pseudo's quantity.
1576 If we really combined them, we could lose if the pseudo lives
1577 across an insn that clobbers the hard reg (eg, movstr).
1578
1579 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1580 there is no REG_DEAD note on INSN. This occurs during the processing
1581 of REG_NO_CONFLICT blocks.
1582
1583 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1584 SETREG or if the input and output must share a register.
1585 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1586
1587 There are elaborate checks for the validity of combining. */
1588
1589
1590 static int
1591 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1592 rtx usedreg, setreg;
1593 int may_save_copy;
1594 int insn_number;
1595 rtx insn;
1596 int already_dead;
1597 {
1598 register int ureg, sreg;
1599 register int offset = 0;
1600 int usize, ssize;
1601 register int sqty;
1602
1603 /* Determine the numbers and sizes of registers being used. If a subreg
1604 is present that does not change the entire register, don't consider
1605 this a copy insn. */
1606
1607 while (GET_CODE (usedreg) == SUBREG)
1608 {
1609 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1610 may_save_copy = 0;
1611 offset += SUBREG_WORD (usedreg);
1612 usedreg = SUBREG_REG (usedreg);
1613 }
1614 if (GET_CODE (usedreg) != REG)
1615 return 0;
1616 ureg = REGNO (usedreg);
1617 usize = REG_SIZE (usedreg);
1618
1619 while (GET_CODE (setreg) == SUBREG)
1620 {
1621 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1622 may_save_copy = 0;
1623 offset -= SUBREG_WORD (setreg);
1624 setreg = SUBREG_REG (setreg);
1625 }
1626 if (GET_CODE (setreg) != REG)
1627 return 0;
1628 sreg = REGNO (setreg);
1629 ssize = REG_SIZE (setreg);
1630
1631 /* If UREG is a pseudo-register that hasn't already been assigned a
1632 quantity number, it means that it is not local to this block or dies
1633 more than once. In either event, we can't do anything with it. */
1634 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1635 /* Do not combine registers unless one fits within the other. */
1636 || (offset > 0 && usize + offset > ssize)
1637 || (offset < 0 && usize + offset < ssize)
1638 /* Do not combine with a smaller already-assigned object
1639 if that smaller object is already combined with something bigger. */
1640 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1641 && usize < qty_size[reg_qty[ureg]])
1642 /* Can't combine if SREG is not a register we can allocate. */
1643 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1644 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1645 These have already been taken care of. This probably wouldn't
1646 combine anyway, but don't take any chances. */
1647 || (ureg >= FIRST_PSEUDO_REGISTER
1648 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1649 /* Don't tie something to itself. In most cases it would make no
1650 difference, but it would screw up if the reg being tied to itself
1651 also dies in this insn. */
1652 || ureg == sreg
1653 /* Don't try to connect two different hardware registers. */
1654 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1655 /* Don't use a hard reg that might be spilled. */
1656 || (ureg < FIRST_PSEUDO_REGISTER
1657 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (ureg)))
1658 || (sreg < FIRST_PSEUDO_REGISTER
1659 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (sreg)))
1660 /* Don't connect two different machine modes if they have different
1661 implications as to which registers may be used. */
1662 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1663 return 0;
1664
1665 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1666 qty_phys_sugg for the pseudo instead of tying them.
1667
1668 Return "failure" so that the lifespan of UREG is terminated here;
1669 that way the two lifespans will be disjoint and nothing will prevent
1670 the pseudo reg from being given this hard reg. */
1671
1672 if (ureg < FIRST_PSEUDO_REGISTER)
1673 {
1674 /* Allocate a quantity number so we have a place to put our
1675 suggestions. */
1676 if (reg_qty[sreg] == -2)
1677 reg_is_born (setreg, 2 * insn_number);
1678
1679 if (reg_qty[sreg] >= 0)
1680 {
1681 if (may_save_copy
1682 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1683 {
1684 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1685 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1686 }
1687 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1688 {
1689 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1690 qty_phys_num_sugg[reg_qty[sreg]]++;
1691 }
1692 }
1693 return 0;
1694 }
1695
1696 /* Similarly for SREG a hard register and UREG a pseudo register. */
1697
1698 if (sreg < FIRST_PSEUDO_REGISTER)
1699 {
1700 if (may_save_copy
1701 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1702 {
1703 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1704 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1705 }
1706 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1707 {
1708 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1709 qty_phys_num_sugg[reg_qty[ureg]]++;
1710 }
1711 return 0;
1712 }
1713
1714 /* At this point we know that SREG and UREG are both pseudos.
1715 Do nothing if SREG already has a quantity or is a register that we
1716 don't allocate. */
1717 if (reg_qty[sreg] >= -1
1718 /* If we are not going to let any regs live across calls,
1719 don't tie a call-crossing reg to a non-call-crossing reg. */
1720 || (current_function_has_nonlocal_label
1721 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1722 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1723 return 0;
1724
1725 /* We don't already know about SREG, so tie it to UREG
1726 if this is the last use of UREG, provided the classes they want
1727 are compatible. */
1728
1729 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1730 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1731 {
1732 /* Add SREG to UREG's quantity. */
1733 sqty = reg_qty[ureg];
1734 reg_qty[sreg] = sqty;
1735 reg_offset[sreg] = reg_offset[ureg] + offset;
1736 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1737 qty_first_reg[sqty] = sreg;
1738
1739 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1740 update_qty_class (sqty, sreg);
1741
1742 /* Update info about quantity SQTY. */
1743 qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1744 qty_n_refs[sqty] += REG_N_REFS (sreg);
1745 if (usize < ssize)
1746 {
1747 register int i;
1748
1749 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1750 reg_offset[i] -= offset;
1751
1752 qty_size[sqty] = ssize;
1753 qty_mode[sqty] = GET_MODE (setreg);
1754 }
1755 }
1756 else
1757 return 0;
1758
1759 return 1;
1760 }
1761 \f
1762 /* Return 1 if the preferred class of REG allows it to be tied
1763 to a quantity or register whose class is CLASS.
1764 True if REG's reg class either contains or is contained in CLASS. */
1765
1766 static int
1767 reg_meets_class_p (reg, class)
1768 int reg;
1769 enum reg_class class;
1770 {
1771 register enum reg_class rclass = reg_preferred_class (reg);
1772 return (reg_class_subset_p (rclass, class)
1773 || reg_class_subset_p (class, rclass));
1774 }
1775
1776 /* Update the class of QTY assuming that REG is being tied to it. */
1777
1778 static void
1779 update_qty_class (qty, reg)
1780 int qty;
1781 int reg;
1782 {
1783 enum reg_class rclass = reg_preferred_class (reg);
1784 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1785 qty_min_class[qty] = rclass;
1786
1787 rclass = reg_alternate_class (reg);
1788 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1789 qty_alternate_class[qty] = rclass;
1790
1791 if (REG_CHANGES_SIZE (reg))
1792 qty_changes_size[qty] = 1;
1793 }
1794 \f
1795 /* Handle something which alters the value of an rtx REG.
1796
1797 REG is whatever is set or clobbered. SETTER is the rtx that
1798 is modifying the register.
1799
1800 If it is not really a register, we do nothing.
1801 The file-global variables `this_insn' and `this_insn_number'
1802 carry info from `block_alloc'. */
1803
1804 static void
1805 reg_is_set (reg, setter)
1806 rtx reg;
1807 rtx setter;
1808 {
1809 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1810 a hard register. These may actually not exist any more. */
1811
1812 if (GET_CODE (reg) != SUBREG
1813 && GET_CODE (reg) != REG)
1814 return;
1815
1816 /* Mark this register as being born. If it is used in a CLOBBER, mark
1817 it as being born halfway between the previous insn and this insn so that
1818 it conflicts with our inputs but not the outputs of the previous insn. */
1819
1820 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1821 }
1822 \f
1823 /* Handle beginning of the life of register REG.
1824 BIRTH is the index at which this is happening. */
1825
1826 static void
1827 reg_is_born (reg, birth)
1828 rtx reg;
1829 int birth;
1830 {
1831 register int regno;
1832
1833 if (GET_CODE (reg) == SUBREG)
1834 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1835 else
1836 regno = REGNO (reg);
1837
1838 if (regno < FIRST_PSEUDO_REGISTER)
1839 {
1840 mark_life (regno, GET_MODE (reg), 1);
1841
1842 /* If the register was to have been born earlier that the present
1843 insn, mark it as live where it is actually born. */
1844 if (birth < 2 * this_insn_number)
1845 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1846 }
1847 else
1848 {
1849 if (reg_qty[regno] == -2)
1850 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1851
1852 /* If this register has a quantity number, show that it isn't dead. */
1853 if (reg_qty[regno] >= 0)
1854 qty_death[reg_qty[regno]] = -1;
1855 }
1856 }
1857
1858 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1859 REG is an output that is dying (i.e., it is never used), otherwise it
1860 is an input (the normal case).
1861 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1862
1863 static void
1864 wipe_dead_reg (reg, output_p)
1865 register rtx reg;
1866 int output_p;
1867 {
1868 register int regno = REGNO (reg);
1869
1870 /* If this insn has multiple results,
1871 and the dead reg is used in one of the results,
1872 extend its life to after this insn,
1873 so it won't get allocated together with any other result of this insn.
1874
1875 It is unsafe to use !single_set here since it will ignore an unused
1876 output. Just because an output is unused does not mean the compiler
1877 can assume the side effect will not occur. Consider if REG appears
1878 in the address of an output and we reload the output. If we allocate
1879 REG to the same hard register as an unused output we could set the hard
1880 register before the output reload insn. */
1881 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1882 && multiple_sets (this_insn))
1883 {
1884 int i;
1885 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1886 {
1887 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1888 if (GET_CODE (set) == SET
1889 && GET_CODE (SET_DEST (set)) != REG
1890 && !rtx_equal_p (reg, SET_DEST (set))
1891 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1892 output_p = 1;
1893 }
1894 }
1895
1896 /* If this register is used in an auto-increment address, then extend its
1897 life to after this insn, so that it won't get allocated together with
1898 the result of this insn. */
1899 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1900 output_p = 1;
1901
1902 if (regno < FIRST_PSEUDO_REGISTER)
1903 {
1904 mark_life (regno, GET_MODE (reg), 0);
1905
1906 /* If a hard register is dying as an output, mark it as in use at
1907 the beginning of this insn (the above statement would cause this
1908 not to happen). */
1909 if (output_p)
1910 post_mark_life (regno, GET_MODE (reg), 1,
1911 2 * this_insn_number, 2 * this_insn_number+ 1);
1912 }
1913
1914 else if (reg_qty[regno] >= 0)
1915 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1916 }
1917 \f
1918 /* Find a block of SIZE words of hard regs in reg_class CLASS
1919 that can hold something of machine-mode MODE
1920 (but actually we test only the first of the block for holding MODE)
1921 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1922 and return the number of the first of them.
1923 Return -1 if such a block cannot be found.
1924 If QTY crosses calls, insist on a register preserved by calls,
1925 unless ACCEPT_CALL_CLOBBERED is nonzero.
1926
1927 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1928 register is available. If not, return -1. */
1929
1930 static int
1931 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1932 born_index, dead_index)
1933 enum reg_class class;
1934 enum machine_mode mode;
1935 int qty;
1936 int accept_call_clobbered;
1937 int just_try_suggested;
1938 int born_index, dead_index;
1939 {
1940 register int i, ins;
1941 #ifdef HARD_REG_SET
1942 register /* Declare it register if it's a scalar. */
1943 #endif
1944 HARD_REG_SET used, first_used;
1945 #ifdef ELIMINABLE_REGS
1946 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1947 #endif
1948
1949 /* Validate our parameters. */
1950 if (born_index < 0 || born_index > dead_index)
1951 abort ();
1952
1953 /* Don't let a pseudo live in a reg across a function call
1954 if we might get a nonlocal goto. */
1955 if (current_function_has_nonlocal_label
1956 && qty_n_calls_crossed[qty] > 0)
1957 return -1;
1958
1959 if (accept_call_clobbered)
1960 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1961 else if (qty_n_calls_crossed[qty] == 0)
1962 COPY_HARD_REG_SET (used, fixed_reg_set);
1963 else
1964 COPY_HARD_REG_SET (used, call_used_reg_set);
1965
1966 if (accept_call_clobbered)
1967 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1968
1969 for (ins = born_index; ins < dead_index; ins++)
1970 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1971
1972 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1973
1974 /* Don't use the frame pointer reg in local-alloc even if
1975 we may omit the frame pointer, because if we do that and then we
1976 need a frame pointer, reload won't know how to move the pseudo
1977 to another hard reg. It can move only regs made by global-alloc.
1978
1979 This is true of any register that can be eliminated. */
1980 #ifdef ELIMINABLE_REGS
1981 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
1982 SET_HARD_REG_BIT (used, eliminables[i].from);
1983 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1984 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
1985 that it might be eliminated into. */
1986 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
1987 #endif
1988 #else
1989 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1990 #endif
1991
1992 #ifdef CLASS_CANNOT_CHANGE_SIZE
1993 if (qty_changes_size[qty])
1994 IOR_HARD_REG_SET (used,
1995 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
1996 #endif
1997
1998 /* Normally, the registers that can be used for the first register in
1999 a multi-register quantity are the same as those that can be used for
2000 subsequent registers. However, if just trying suggested registers,
2001 restrict our consideration to them. If there are copy-suggested
2002 register, try them. Otherwise, try the arithmetic-suggested
2003 registers. */
2004 COPY_HARD_REG_SET (first_used, used);
2005
2006 if (just_try_suggested)
2007 {
2008 if (qty_phys_num_copy_sugg[qty] != 0)
2009 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2010 else
2011 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2012 }
2013
2014 /* If all registers are excluded, we can't do anything. */
2015 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2016
2017 /* If at least one would be suitable, test each hard reg. */
2018
2019 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2020 {
2021 #ifdef REG_ALLOC_ORDER
2022 int regno = reg_alloc_order[i];
2023 #else
2024 int regno = i;
2025 #endif
2026 if (! TEST_HARD_REG_BIT (first_used, regno)
2027 && HARD_REGNO_MODE_OK (regno, mode)
2028 && (qty_n_calls_crossed[qty] == 0
2029 || accept_call_clobbered
2030 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2031 {
2032 register int j;
2033 register int size1 = HARD_REGNO_NREGS (regno, mode);
2034 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2035 if (j == size1)
2036 {
2037 /* Mark that this register is in use between its birth and death
2038 insns. */
2039 post_mark_life (regno, mode, 1, born_index, dead_index);
2040 return regno;
2041 }
2042 #ifndef REG_ALLOC_ORDER
2043 i += j; /* Skip starting points we know will lose */
2044 #endif
2045 }
2046 }
2047
2048 fail:
2049
2050 /* If we are just trying suggested register, we have just tried copy-
2051 suggested registers, and there are arithmetic-suggested registers,
2052 try them. */
2053
2054 /* If it would be profitable to allocate a call-clobbered register
2055 and save and restore it around calls, do that. */
2056 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2057 && qty_phys_num_sugg[qty] != 0)
2058 {
2059 /* Don't try the copy-suggested regs again. */
2060 qty_phys_num_copy_sugg[qty] = 0;
2061 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2062 born_index, dead_index);
2063 }
2064
2065 /* We need not check to see if the current function has nonlocal
2066 labels because we don't put any pseudos that are live over calls in
2067 registers in that case. */
2068
2069 if (! accept_call_clobbered
2070 && flag_caller_saves
2071 && ! just_try_suggested
2072 && qty_n_calls_crossed[qty] != 0
2073 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2074 {
2075 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2076 if (i >= 0)
2077 caller_save_needed = 1;
2078 return i;
2079 }
2080 return -1;
2081 }
2082 \f
2083 /* Mark that REGNO with machine-mode MODE is live starting from the current
2084 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2085 is zero). */
2086
2087 static void
2088 mark_life (regno, mode, life)
2089 register int regno;
2090 enum machine_mode mode;
2091 int life;
2092 {
2093 register int j = HARD_REGNO_NREGS (regno, mode);
2094 if (life)
2095 while (--j >= 0)
2096 SET_HARD_REG_BIT (regs_live, regno + j);
2097 else
2098 while (--j >= 0)
2099 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2100 }
2101
2102 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2103 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2104 to insn number DEATH (exclusive). */
2105
2106 static void
2107 post_mark_life (regno, mode, life, birth, death)
2108 int regno;
2109 enum machine_mode mode;
2110 int life, birth, death;
2111 {
2112 register int j = HARD_REGNO_NREGS (regno, mode);
2113 #ifdef HARD_REG_SET
2114 register /* Declare it register if it's a scalar. */
2115 #endif
2116 HARD_REG_SET this_reg;
2117
2118 CLEAR_HARD_REG_SET (this_reg);
2119 while (--j >= 0)
2120 SET_HARD_REG_BIT (this_reg, regno + j);
2121
2122 if (life)
2123 while (birth < death)
2124 {
2125 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2126 birth++;
2127 }
2128 else
2129 while (birth < death)
2130 {
2131 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2132 birth++;
2133 }
2134 }
2135 \f
2136 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2137 is the register being clobbered, and R1 is a register being used in
2138 the equivalent expression.
2139
2140 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2141 in which it is used, return 1.
2142
2143 Otherwise, return 0. */
2144
2145 static int
2146 no_conflict_p (insn, r0, r1)
2147 rtx insn, r0, r1;
2148 {
2149 int ok = 0;
2150 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2151 rtx p, last;
2152
2153 /* If R1 is a hard register, return 0 since we handle this case
2154 when we scan the insns that actually use it. */
2155
2156 if (note == 0
2157 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2158 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2159 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2160 return 0;
2161
2162 last = XEXP (note, 0);
2163
2164 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2165 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2166 {
2167 if (find_reg_note (p, REG_DEAD, r1))
2168 ok = 1;
2169
2170 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2171 some earlier optimization pass has inserted instructions into
2172 the sequence, and it is not safe to perform this optimization.
2173 Note that emit_no_conflict_block always ensures that this is
2174 true when these sequences are created. */
2175 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2176 return 0;
2177 }
2178
2179 return ok;
2180 }
2181 \f
2182 /* Return the number of alternatives for which the constraint string P
2183 indicates that the operand must be equal to operand 0 and that no register
2184 is acceptable. */
2185
2186 static int
2187 requires_inout (p)
2188 const char *p;
2189 {
2190 char c;
2191 int found_zero = 0;
2192 int reg_allowed = 0;
2193 int num_matching_alts = 0;
2194
2195 while ((c = *p++))
2196 switch (c)
2197 {
2198 case '=': case '+': case '?':
2199 case '#': case '&': case '!':
2200 case '*': case '%':
2201 case '1': case '2': case '3': case '4': case '5':
2202 case '6': case '7': case '8': case '9':
2203 case 'm': case '<': case '>': case 'V': case 'o':
2204 case 'E': case 'F': case 'G': case 'H':
2205 case 's': case 'i': case 'n':
2206 case 'I': case 'J': case 'K': case 'L':
2207 case 'M': case 'N': case 'O': case 'P':
2208 #ifdef EXTRA_CONSTRAINT
2209 case 'Q': case 'R': case 'S': case 'T': case 'U':
2210 #endif
2211 case 'X':
2212 /* These don't say anything we care about. */
2213 break;
2214
2215 case ',':
2216 if (found_zero && ! reg_allowed)
2217 num_matching_alts++;
2218
2219 found_zero = reg_allowed = 0;
2220 break;
2221
2222 case '0':
2223 found_zero = 1;
2224 break;
2225
2226 case 'p':
2227 case 'g': case 'r':
2228 default:
2229 reg_allowed = 1;
2230 break;
2231 }
2232
2233 if (found_zero && ! reg_allowed)
2234 num_matching_alts++;
2235
2236 return num_matching_alts;
2237 }
2238 \f
2239 void
2240 dump_local_alloc (file)
2241 FILE *file;
2242 {
2243 register int i;
2244 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2245 if (reg_renumber[i] != -1)
2246 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2247 }
This page took 0.145099 seconds and 6 git commands to generate.