]> gcc.gnu.org Git - gcc.git/blob - gcc/local-alloc.c
(block_alloc): Avoid #ifdef HARD_REG_SET.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* Allocation of hard register numbers to pseudo registers is done in
22 two passes. In this pass we consider only regs that are born and
23 die once within one basic block. We do this one basic block at a
24 time. Then the next pass allocates the registers that remain.
25 Two passes are used because this pass uses methods that work only
26 on linear code, but that do a better job than the general methods
27 used in global_alloc, and more quickly too.
28
29 The assignments made are recorded in the vector reg_renumber
30 whose space is allocated here. The rtl code itself is not altered.
31
32 We assign each instruction in the basic block a number
33 which is its order from the beginning of the block.
34 Then we can represent the lifetime of a pseudo register with
35 a pair of numbers, and check for conflicts easily.
36 We can record the availability of hard registers with a
37 HARD_REG_SET for each instruction. The HARD_REG_SET
38 contains 0 or 1 for each hard reg.
39
40 To avoid register shuffling, we tie registers together when one
41 dies by being copied into another, or dies in an instruction that
42 does arithmetic to produce another. The tied registers are
43 allocated as one. Registers with different reg class preferences
44 can never be tied unless the class preferred by one is a subclass
45 of the one preferred by the other.
46
47 Tying is represented with "quantity numbers".
48 A non-tied register is given a new quantity number.
49 Tied registers have the same quantity number.
50
51 We have provision to exempt registers, even when they are contained
52 within the block, that can be tied to others that are not contained in it.
53 This is so that global_alloc could process them both and tie them then.
54 But this is currently disabled since tying in global_alloc is not
55 yet implemented. */
56
57 #include <stdio.h>
58 #include "config.h"
59 #include "rtl.h"
60 #include "flags.h"
61 #include "basic-block.h"
62 #include "regs.h"
63 #include "hard-reg-set.h"
64 #include "insn-config.h"
65 #include "recog.h"
66 #include "output.h"
67 \f
68 /* Pseudos allocated here cannot be reallocated by global.c if the hard
69 register is used as a spill register. So we don't allocate such pseudos
70 here if their preferred class is likely to be used by spills.
71
72 On most machines, the appropriate test is if the class has one
73 register, so we default to that. */
74
75 #ifndef CLASS_LIKELY_SPILLED_P
76 #define CLASS_LIKELY_SPILLED_P(CLASS) (reg_class_size[(int) (CLASS)] == 1)
77 #endif
78
79 /* Next quantity number available for allocation. */
80
81 static int next_qty;
82
83 /* In all the following vectors indexed by quantity number. */
84
85 /* Element Q is the hard reg number chosen for quantity Q,
86 or -1 if none was found. */
87
88 static short *qty_phys_reg;
89
90 /* We maintain two hard register sets that indicate suggested hard registers
91 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
92 that are tied to the quantity by a simple copy. The second contains all
93 hard registers that are tied to the quantity via an arithmetic operation.
94
95 The former register set is given priority for allocation. This tends to
96 eliminate copy insns. */
97
98 /* Element Q is a set of hard registers that are suggested for quantity Q by
99 copy insns. */
100
101 static HARD_REG_SET *qty_phys_copy_sugg;
102
103 /* Element Q is a set of hard registers that are suggested for quantity Q by
104 arithmetic insns. */
105
106 static HARD_REG_SET *qty_phys_sugg;
107
108 /* Element Q is non-zero if there is a suggested register in
109 qty_phys_copy_sugg. */
110
111 static char *qty_phys_has_copy_sugg;
112
113 /* Element Q is non-zero if there is a suggested register in qty_phys_sugg. */
114
115 static char *qty_phys_has_sugg;
116
117 /* Element Q is the number of refs to quantity Q. */
118
119 static int *qty_n_refs;
120
121 /* Element Q is a reg class contained in (smaller than) the
122 preferred classes of all the pseudo regs that are tied in quantity Q.
123 This is the preferred class for allocating that quantity. */
124
125 static enum reg_class *qty_min_class;
126
127 /* Insn number (counting from head of basic block)
128 where quantity Q was born. -1 if birth has not been recorded. */
129
130 static int *qty_birth;
131
132 /* Insn number (counting from head of basic block)
133 where quantity Q died. Due to the way tying is done,
134 and the fact that we consider in this pass only regs that die but once,
135 a quantity can die only once. Each quantity's life span
136 is a set of consecutive insns. -1 if death has not been recorded. */
137
138 static int *qty_death;
139
140 /* Number of words needed to hold the data in quantity Q.
141 This depends on its machine mode. It is used for these purposes:
142 1. It is used in computing the relative importances of qtys,
143 which determines the order in which we look for regs for them.
144 2. It is used in rules that prevent tying several registers of
145 different sizes in a way that is geometrically impossible
146 (see combine_regs). */
147
148 static int *qty_size;
149
150 /* This holds the mode of the registers that are tied to qty Q,
151 or VOIDmode if registers with differing modes are tied together. */
152
153 static enum machine_mode *qty_mode;
154
155 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
156
157 static int *qty_n_calls_crossed;
158
159 /* Register class within which we allocate qty Q if we can't get
160 its preferred class. */
161
162 static enum reg_class *qty_alternate_class;
163
164 /* Element Q is the SCRATCH expression for which this quantity is being
165 allocated or 0 if this quantity is allocating registers. */
166
167 static rtx *qty_scratch_rtx;
168
169 /* Element Q is the register number of one pseudo register whose
170 reg_qty value is Q, or -1 is this quantity is for a SCRATCH. This
171 register should be the head of the chain maintained in reg_next_in_qty. */
172
173 static int *qty_first_reg;
174
175 /* If (REG N) has been assigned a quantity number, is a register number
176 of another register assigned the same quantity number, or -1 for the
177 end of the chain. qty_first_reg point to the head of this chain. */
178
179 static int *reg_next_in_qty;
180
181 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
182 if it is >= 0,
183 of -1 if this register cannot be allocated by local-alloc,
184 or -2 if not known yet.
185
186 Note that if we see a use or death of pseudo register N with
187 reg_qty[N] == -2, register N must be local to the current block. If
188 it were used in more than one block, we would have reg_qty[N] == -1.
189 This relies on the fact that if reg_basic_block[N] is >= 0, register N
190 will not appear in any other block. We save a considerable number of
191 tests by exploiting this.
192
193 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
194 be referenced. */
195
196 static int *reg_qty;
197
198 /* The offset (in words) of register N within its quantity.
199 This can be nonzero if register N is SImode, and has been tied
200 to a subreg of a DImode register. */
201
202 static char *reg_offset;
203
204 /* Vector of substitutions of register numbers,
205 used to map pseudo regs into hardware regs.
206 This is set up as a result of register allocation.
207 Element N is the hard reg assigned to pseudo reg N,
208 or is -1 if no hard reg was assigned.
209 If N is a hard reg number, element N is N. */
210
211 short *reg_renumber;
212
213 /* Set of hard registers live at the current point in the scan
214 of the instructions in a basic block. */
215
216 static HARD_REG_SET regs_live;
217
218 /* Each set of hard registers indicates registers live at a particular
219 point in the basic block. For N even, regs_live_at[N] says which
220 hard registers are needed *after* insn N/2 (i.e., they may not
221 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
222
223 If an object is to conflict with the inputs of insn J but not the
224 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
225 if it is to conflict with the outputs of insn J but not the inputs of
226 insn J + 1, it is said to die at index J*2 + 1. */
227
228 static HARD_REG_SET *regs_live_at;
229
230 int *scratch_block;
231 rtx *scratch_list;
232 int scratch_list_length;
233 static int scratch_index;
234
235 /* Communicate local vars `insn_number' and `insn'
236 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
237 static int this_insn_number;
238 static rtx this_insn;
239
240 static void block_alloc ();
241 static void update_equiv_regs ();
242 static int no_conflict_p ();
243 static int combine_regs ();
244 static void wipe_dead_reg ();
245 static int find_free_reg ();
246 static void reg_is_born ();
247 static void reg_is_set ();
248 static void mark_life ();
249 static void post_mark_life ();
250 static int qty_compare ();
251 static int qty_compare_1 ();
252 static int reg_meets_class_p ();
253 static void update_qty_class ();
254 static int requires_inout_p ();
255 \f
256 /* Allocate a new quantity (new within current basic block)
257 for register number REGNO which is born at index BIRTH
258 within the block. MODE and SIZE are info on reg REGNO. */
259
260 static void
261 alloc_qty (regno, mode, size, birth)
262 int regno;
263 enum machine_mode mode;
264 int size, birth;
265 {
266 register int qty = next_qty++;
267
268 reg_qty[regno] = qty;
269 reg_offset[regno] = 0;
270 reg_next_in_qty[regno] = -1;
271
272 qty_first_reg[qty] = regno;
273 qty_size[qty] = size;
274 qty_mode[qty] = mode;
275 qty_birth[qty] = birth;
276 qty_n_calls_crossed[qty] = reg_n_calls_crossed[regno];
277 qty_min_class[qty] = reg_preferred_class (regno);
278 qty_alternate_class[qty] = reg_alternate_class (regno);
279 qty_n_refs[qty] = reg_n_refs[regno];
280 }
281 \f
282 /* Similar to `alloc_qty', but allocates a quantity for a SCRATCH rtx
283 used as operand N in INSN. We assume here that the SCRATCH is used in
284 a CLOBBER. */
285
286 static void
287 alloc_qty_for_scratch (scratch, n, insn, insn_code_num, insn_number)
288 rtx scratch;
289 int n;
290 rtx insn;
291 int insn_code_num, insn_number;
292 {
293 register int qty;
294 enum reg_class class;
295 char *p, c;
296 int i;
297
298 #ifdef REGISTER_CONSTRAINTS
299 /* If we haven't yet computed which alternative will be used, do so now.
300 Then set P to the constraints for that alternative. */
301 if (which_alternative == -1)
302 if (! constrain_operands (insn_code_num, 0))
303 return;
304
305 for (p = insn_operand_constraint[insn_code_num][n], i = 0;
306 *p && i < which_alternative; p++)
307 if (*p == ',')
308 i++;
309
310 /* Compute the class required for this SCRATCH. If we don't need a
311 register, the class will remain NO_REGS. If we guessed the alternative
312 number incorrectly, reload will fix things up for us. */
313
314 class = NO_REGS;
315 while ((c = *p++) != '\0' && c != ',')
316 switch (c)
317 {
318 case '=': case '+': case '?':
319 case '#': case '&': case '!':
320 case '*': case '%':
321 case '0': case '1': case '2': case '3': case '4':
322 case 'm': case '<': case '>': case 'V': case 'o':
323 case 'E': case 'F': case 'G': case 'H':
324 case 's': case 'i': case 'n':
325 case 'I': case 'J': case 'K': case 'L':
326 case 'M': case 'N': case 'O': case 'P':
327 #ifdef EXTRA_CONSTRAINT
328 case 'Q': case 'R': case 'S': case 'T': case 'U':
329 #endif
330 case 'p':
331 /* These don't say anything we care about. */
332 break;
333
334 case 'X':
335 /* We don't need to allocate this SCRATCH. */
336 return;
337
338 case 'g': case 'r':
339 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
340 break;
341
342 default:
343 class
344 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER (c)];
345 break;
346 }
347
348 if (class == NO_REGS)
349 return;
350
351 #else /* REGISTER_CONSTRAINTS */
352
353 class = GENERAL_REGS;
354 #endif
355
356
357 qty = next_qty++;
358
359 qty_first_reg[qty] = -1;
360 qty_scratch_rtx[qty] = scratch;
361 qty_size[qty] = GET_MODE_SIZE (GET_MODE (scratch));
362 qty_mode[qty] = GET_MODE (scratch);
363 qty_birth[qty] = 2 * insn_number - 1;
364 qty_death[qty] = 2 * insn_number + 1;
365 qty_n_calls_crossed[qty] = 0;
366 qty_min_class[qty] = class;
367 qty_alternate_class[qty] = NO_REGS;
368 qty_n_refs[qty] = 1;
369 }
370 \f
371 /* Main entry point of this file. */
372
373 void
374 local_alloc ()
375 {
376 register int b, i;
377 int max_qty;
378
379 /* Leaf functions and non-leaf functions have different needs.
380 If defined, let the machine say what kind of ordering we
381 should use. */
382 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
383 ORDER_REGS_FOR_LOCAL_ALLOC;
384 #endif
385
386 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
387 registers. */
388 update_equiv_regs ();
389
390 /* This sets the maximum number of quantities we can have. Quantity
391 numbers start at zero and we can have one for each pseudo plus the
392 number of SCRATCHes in the largest block, in the worst case. */
393 max_qty = (max_regno - FIRST_PSEUDO_REGISTER) + max_scratch;
394
395 /* Allocate vectors of temporary data.
396 See the declarations of these variables, above,
397 for what they mean. */
398
399 /* There can be up to MAX_SCRATCH * N_BASIC_BLOCKS SCRATCHes to allocate.
400 Instead of allocating this much memory from now until the end of
401 reload, only allocate space for MAX_QTY SCRATCHes. If there are more
402 reload will allocate them. */
403
404 scratch_list_length = max_qty;
405 scratch_list = (rtx *) xmalloc (scratch_list_length * sizeof (rtx));
406 bzero (scratch_list, scratch_list_length * sizeof (rtx));
407 scratch_block = (int *) xmalloc (scratch_list_length * sizeof (int));
408 bzero (scratch_block, scratch_list_length * sizeof (int));
409 scratch_index = 0;
410
411 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
412 qty_phys_copy_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
413 qty_phys_has_copy_sugg = (char *) alloca (max_qty * sizeof (char));
414 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
415 qty_phys_has_sugg = (char *) alloca (max_qty * sizeof (char));
416 qty_birth = (int *) alloca (max_qty * sizeof (int));
417 qty_death = (int *) alloca (max_qty * sizeof (int));
418 qty_scratch_rtx = (rtx *) alloca (max_qty * sizeof (rtx));
419 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
420 qty_size = (int *) alloca (max_qty * sizeof (int));
421 qty_mode = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
422 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
423 qty_min_class = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
424 qty_alternate_class = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
425 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
426
427 reg_qty = (int *) alloca (max_regno * sizeof (int));
428 reg_offset = (char *) alloca (max_regno * sizeof (char));
429 reg_next_in_qty = (int *) alloca (max_regno * sizeof (int));
430
431 reg_renumber = (short *) oballoc (max_regno * sizeof (short));
432 for (i = 0; i < max_regno; i++)
433 reg_renumber[i] = -1;
434
435 /* Determine which pseudo-registers can be allocated by local-alloc.
436 In general, these are the registers used only in a single block and
437 which only die once. However, if a register's preferred class has only
438 a few entries, don't allocate this register here unless it is preferred
439 or nothing since retry_global_alloc won't be able to move it to
440 GENERAL_REGS if a reload register of this class is needed.
441
442 We need not be concerned with which block actually uses the register
443 since we will never see it outside that block. */
444
445 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
446 {
447 if (reg_basic_block[i] >= 0 && reg_n_deaths[i] == 1
448 && (reg_alternate_class (i) == NO_REGS
449 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
450 reg_qty[i] = -2;
451 else
452 reg_qty[i] = -1;
453 }
454
455 /* Force loop below to initialize entire quantity array. */
456 next_qty = max_qty;
457
458 /* Allocate each block's local registers, block by block. */
459
460 for (b = 0; b < n_basic_blocks; b++)
461 {
462 /* NEXT_QTY indicates which elements of the `qty_...'
463 vectors might need to be initialized because they were used
464 for the previous block; it is set to the entire array before
465 block 0. Initialize those, with explicit loop if there are few,
466 else with bzero and bcopy. Do not initialize vectors that are
467 explicit set by `alloc_qty'. */
468
469 if (next_qty < 6)
470 {
471 for (i = 0; i < next_qty; i++)
472 {
473 qty_scratch_rtx[i] = 0;
474 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
475 qty_phys_has_copy_sugg[i] = 0;
476 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
477 qty_phys_has_sugg[i] = 0;
478 }
479 }
480 else
481 {
482 #define CLEAR(vector) \
483 bzero ((vector), (sizeof (*(vector))) * next_qty);
484
485 CLEAR (qty_scratch_rtx);
486 CLEAR (qty_phys_copy_sugg);
487 CLEAR (qty_phys_has_copy_sugg);
488 CLEAR (qty_phys_sugg);
489 CLEAR (qty_phys_has_sugg);
490 }
491
492 next_qty = 0;
493
494 block_alloc (b);
495 #ifdef USE_C_ALLOCA
496 alloca (0);
497 #endif
498 }
499 }
500 \f
501 /* Depth of loops we are in while in update_equiv_regs. */
502 static int loop_depth;
503
504 /* Used for communication between the following two functions: contains
505 a MEM that we wish to ensure remains unchanged. */
506 static rtx equiv_mem;
507
508 /* Set nonzero if EQUIV_MEM is modified. */
509 static int equiv_mem_modified;
510
511 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
512 Called via note_stores. */
513
514 static void
515 validate_equiv_mem_from_store (dest, set)
516 rtx dest;
517 rtx set;
518 {
519 if ((GET_CODE (dest) == REG
520 && reg_overlap_mentioned_p (dest, equiv_mem))
521 || (GET_CODE (dest) == MEM
522 && true_dependence (dest, equiv_mem)))
523 equiv_mem_modified = 1;
524 }
525
526 /* Verify that no store between START and the death of REG invalidates
527 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
528 by storing into an overlapping memory location, or with a non-const
529 CALL_INSN.
530
531 Return 1 if MEMREF remains valid. */
532
533 static int
534 validate_equiv_mem (start, reg, memref)
535 rtx start;
536 rtx reg;
537 rtx memref;
538 {
539 rtx insn;
540 rtx note;
541
542 equiv_mem = memref;
543 equiv_mem_modified = 0;
544
545 /* If the memory reference has side effects or is volatile, it isn't a
546 valid equivalence. */
547 if (side_effects_p (memref))
548 return 0;
549
550 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
551 {
552 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
553 continue;
554
555 if (find_reg_note (insn, REG_DEAD, reg))
556 return 1;
557
558 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
559 && ! CONST_CALL_P (insn))
560 return 0;
561
562 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
563
564 /* If a register mentioned in MEMREF is modified via an
565 auto-increment, we lose the equivalence. Do the same if one
566 dies; although we could extend the life, it doesn't seem worth
567 the trouble. */
568
569 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
570 if ((REG_NOTE_KIND (note) == REG_INC
571 || REG_NOTE_KIND (note) == REG_DEAD)
572 && GET_CODE (XEXP (note, 0)) == REG
573 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
574 return 0;
575 }
576
577 return 0;
578 }
579 \f
580 /* TRUE if X references a memory location that would be affected by a store
581 to MEMREF. */
582
583 static int
584 memref_referenced_p (memref, x)
585 rtx x;
586 rtx memref;
587 {
588 int i, j;
589 char *fmt;
590 enum rtx_code code = GET_CODE (x);
591
592 switch (code)
593 {
594 case REG:
595 case CONST_INT:
596 case CONST:
597 case LABEL_REF:
598 case SYMBOL_REF:
599 case CONST_DOUBLE:
600 case PC:
601 case CC0:
602 case HIGH:
603 case LO_SUM:
604 return 0;
605
606 case MEM:
607 if (true_dependence (memref, x))
608 return 1;
609 break;
610
611 case SET:
612 /* If we are setting a MEM, it doesn't count (its address does), but any
613 other SET_DEST that has a MEM in it is referencing the MEM. */
614 if (GET_CODE (SET_DEST (x)) == MEM)
615 {
616 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
617 return 1;
618 }
619 else if (memref_referenced_p (memref, SET_DEST (x)))
620 return 1;
621
622 return memref_referenced_p (memref, SET_SRC (x));
623 }
624
625 fmt = GET_RTX_FORMAT (code);
626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
627 switch (fmt[i])
628 {
629 case 'e':
630 if (memref_referenced_p (memref, XEXP (x, i)))
631 return 1;
632 break;
633 case 'E':
634 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
635 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
636 return 1;
637 break;
638 }
639
640 return 0;
641 }
642
643 /* TRUE if some insn in the range (START, END] references a memory location
644 that would be affected by a store to MEMREF. */
645
646 static int
647 memref_used_between_p (memref, start, end)
648 rtx memref;
649 rtx start;
650 rtx end;
651 {
652 rtx insn;
653
654 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
655 insn = NEXT_INSN (insn))
656 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
657 && memref_referenced_p (memref, PATTERN (insn)))
658 return 1;
659
660 return 0;
661 }
662 \f
663 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
664 in INSN.
665
666 Search forward to see if SRC dies before either it or DEST is modified,
667 but don't scan past the end of a basic block. If so, we can replace SRC
668 with DEST and let SRC die in INSN.
669
670 This will reduce the number of registers live in that range and may enable
671 DEST to be tied to SRC, thus often saving one register in addition to a
672 register-register copy. */
673
674 static void
675 optimize_reg_copy_1 (insn, dest, src)
676 rtx insn;
677 rtx dest;
678 rtx src;
679 {
680 rtx p, q;
681 rtx note;
682 rtx dest_death = 0;
683 int sregno = REGNO (src);
684 int dregno = REGNO (dest);
685
686 if (sregno == dregno
687 #ifdef SMALL_REGISTER_CLASSES
688 /* We don't want to mess with hard regs if register classes are small. */
689 || sregno < FIRST_PSEUDO_REGISTER || dregno < FIRST_PSEUDO_REGISTER
690 #endif
691 /* We don't see all updates to SP if they are in an auto-inc memory
692 reference, so we must disallow this optimization on them. */
693 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
694 return;
695
696 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
697 {
698 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
699 || (GET_CODE (p) == NOTE
700 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
701 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
702 break;
703
704 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
705 continue;
706
707 if (reg_set_p (src, p) || reg_set_p (dest, p)
708 /* Don't change a USE of a register. */
709 || (GET_CODE (PATTERN (p)) == USE
710 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
711 break;
712
713 /* See if all of SRC dies in P. This test is slightly more
714 conservative than it needs to be. */
715 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
716 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
717 {
718 int failed = 0;
719 int length = 0;
720 int d_length = 0;
721 int n_calls = 0;
722 int d_n_calls = 0;
723
724 /* We can do the optimization. Scan forward from INSN again,
725 replacing regs as we go. Set FAILED if a replacement can't
726 be done. In that case, we can't move the death note for SRC.
727 This should be rare. */
728
729 /* Set to stop at next insn. */
730 for (q = next_real_insn (insn);
731 q != next_real_insn (p);
732 q = next_real_insn (q))
733 {
734 if (reg_overlap_mentioned_p (src, PATTERN (q)))
735 {
736 /* If SRC is a hard register, we might miss some
737 overlapping registers with validate_replace_rtx,
738 so we would have to undo it. We can't if DEST is
739 present in the insn, so fail in that combination
740 of cases. */
741 if (sregno < FIRST_PSEUDO_REGISTER
742 && reg_mentioned_p (dest, PATTERN (q)))
743 failed = 1;
744
745 /* Replace all uses and make sure that the register
746 isn't still present. */
747 else if (validate_replace_rtx (src, dest, q)
748 && (sregno >= FIRST_PSEUDO_REGISTER
749 || ! reg_overlap_mentioned_p (src,
750 PATTERN (q))))
751 {
752 /* We assume that a register is used exactly once per
753 insn in the updates below. If this is not correct,
754 no great harm is done. */
755 if (sregno >= FIRST_PSEUDO_REGISTER)
756 reg_n_refs[sregno] -= loop_depth;
757 if (dregno >= FIRST_PSEUDO_REGISTER)
758 reg_n_refs[dregno] += loop_depth;
759 }
760 else
761 {
762 validate_replace_rtx (dest, src, q);
763 failed = 1;
764 }
765 }
766
767 /* Count the insns and CALL_INSNs passed. If we passed the
768 death note of DEST, show increased live length. */
769 length++;
770 if (dest_death)
771 d_length++;
772
773 /* If the insn in which SRC dies is a CALL_INSN, don't count it
774 as a call that has been crossed. Otherwise, count it. */
775 if (q != p && GET_CODE (q) == CALL_INSN)
776 {
777 n_calls++;
778 if (dest_death)
779 d_n_calls++;
780 }
781
782 /* If DEST dies here, remove the death note and save it for
783 later. Make sure ALL of DEST dies here; again, this is
784 overly conservative. */
785 if (dest_death == 0
786 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0
787 && GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
788 remove_note (q, dest_death);
789 }
790
791 if (! failed)
792 {
793 if (sregno >= FIRST_PSEUDO_REGISTER)
794 {
795 reg_live_length[sregno] -= length;
796 /* reg_live_length is only an approximation after combine
797 if sched is not run, so make sure that we still have
798 a reasonable value. */
799 if (reg_live_length[sregno] < 2)
800 reg_live_length[sregno] = 2;
801 reg_n_calls_crossed[sregno] -= n_calls;
802 }
803
804 if (dregno >= FIRST_PSEUDO_REGISTER)
805 {
806 reg_live_length[dregno] += d_length;
807 reg_n_calls_crossed[dregno] += d_n_calls;
808 }
809
810 /* Move death note of SRC from P to INSN. */
811 remove_note (p, note);
812 XEXP (note, 1) = REG_NOTES (insn);
813 REG_NOTES (insn) = note;
814 }
815
816 /* Put death note of DEST on P if we saw it die. */
817 if (dest_death)
818 {
819 XEXP (dest_death, 1) = REG_NOTES (p);
820 REG_NOTES (p) = dest_death;
821 }
822
823 return;
824 }
825
826 /* If SRC is a hard register which is set or killed in some other
827 way, we can't do this optimization. */
828 else if (sregno < FIRST_PSEUDO_REGISTER
829 && dead_or_set_p (p, src))
830 break;
831 }
832 }
833 \f
834 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
835 a sequence of insns that modify DEST followed by an insn that sets
836 SRC to DEST in which DEST dies, with no prior modification of DEST.
837 (There is no need to check if the insns in between actually modify
838 DEST. We should not have cases where DEST is not modified, but
839 the optimization is safe if no such modification is detected.)
840 In that case, we can replace all uses of DEST, starting with INSN and
841 ending with the set of SRC to DEST, with SRC. We do not do this
842 optimization if a CALL_INSN is crossed unless SRC already crosses a
843 call.
844
845 It is assumed that DEST and SRC are pseudos; it is too complicated to do
846 this for hard registers since the substitutions we may make might fail. */
847
848 static void
849 optimize_reg_copy_2 (insn, dest, src)
850 rtx insn;
851 rtx dest;
852 rtx src;
853 {
854 rtx p, q;
855 rtx set;
856 int sregno = REGNO (src);
857 int dregno = REGNO (dest);
858
859 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
860 {
861 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
862 || (GET_CODE (p) == NOTE
863 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
864 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
865 break;
866
867 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
868 continue;
869
870 set = single_set (p);
871 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
872 && find_reg_note (p, REG_DEAD, dest))
873 {
874 /* We can do the optimization. Scan forward from INSN again,
875 replacing regs as we go. */
876
877 /* Set to stop at next insn. */
878 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
879 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
880 {
881 if (reg_mentioned_p (dest, PATTERN (q)))
882 {
883 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
884
885 /* We assume that a register is used exactly once per
886 insn in the updates below. If this is not correct,
887 no great harm is done. */
888 reg_n_refs[dregno] -= loop_depth;
889 reg_n_refs[sregno] += loop_depth;
890 }
891
892
893 if (GET_CODE (q) == CALL_INSN)
894 {
895 reg_n_calls_crossed[dregno]--;
896 reg_n_calls_crossed[sregno]++;
897 }
898 }
899
900 remove_note (p, find_reg_note (p, REG_DEAD, dest));
901 reg_n_deaths[dregno]--;
902 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
903 reg_n_deaths[sregno]--;
904 return;
905 }
906
907 if (reg_set_p (src, p)
908 || (GET_CODE (p) == CALL_INSN && reg_n_calls_crossed[sregno] == 0))
909 break;
910 }
911 }
912 \f
913 /* Find registers that are equivalent to a single value throughout the
914 compilation (either because they can be referenced in memory or are set once
915 from a single constant). Lower their priority for a register.
916
917 If such a register is only referenced once, try substituting its value
918 into the using insn. If it succeeds, we can eliminate the register
919 completely. */
920
921 static void
922 update_equiv_regs ()
923 {
924 rtx *reg_equiv_init_insn = (rtx *) alloca (max_regno * sizeof (rtx *));
925 rtx *reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx *));
926 rtx insn;
927
928 bzero (reg_equiv_init_insn, max_regno * sizeof (rtx *));
929 bzero (reg_equiv_replacement, max_regno * sizeof (rtx *));
930
931 init_alias_analysis ();
932
933 loop_depth = 1;
934
935 /* Scan the insns and find which registers have equivalences. Do this
936 in a separate scan of the insns because (due to -fcse-follow-jumps)
937 a register can be set below its use. */
938 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
939 {
940 rtx note;
941 rtx set = single_set (insn);
942 rtx dest;
943 int regno;
944
945 if (GET_CODE (insn) == NOTE)
946 {
947 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
948 loop_depth++;
949 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
950 loop_depth--;
951 }
952
953 /* If this insn contains more (or less) than a single SET, ignore it. */
954 if (set == 0)
955 continue;
956
957 dest = SET_DEST (set);
958
959 /* If this sets a MEM to the contents of a REG that is only used
960 in a single basic block, see if the register is always equivalent
961 to that memory location and if moving the store from INSN to the
962 insn that set REG is safe. If so, put a REG_EQUIV note on the
963 initializing insn. */
964
965 if (GET_CODE (dest) == MEM && GET_CODE (SET_SRC (set)) == REG
966 && (regno = REGNO (SET_SRC (set))) >= FIRST_PSEUDO_REGISTER
967 && reg_basic_block[regno] >= 0
968 && reg_equiv_init_insn[regno] != 0
969 && validate_equiv_mem (reg_equiv_init_insn[regno], SET_SRC (set),
970 dest)
971 && ! memref_used_between_p (SET_DEST (set),
972 reg_equiv_init_insn[regno], insn))
973 REG_NOTES (reg_equiv_init_insn[regno])
974 = gen_rtx (EXPR_LIST, REG_EQUIV, dest,
975 REG_NOTES (reg_equiv_init_insn[regno]));
976
977 /* If this is a register-register copy where SRC is not dead, see if we
978 can optimize it. */
979 if (flag_expensive_optimizations && GET_CODE (dest) == REG
980 && GET_CODE (SET_SRC (set)) == REG
981 && ! find_reg_note (insn, REG_DEAD, SET_SRC (set)))
982 optimize_reg_copy_1 (insn, dest, SET_SRC (set));
983
984 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
985 else if (flag_expensive_optimizations && GET_CODE (dest) == REG
986 && REGNO (dest) >= FIRST_PSEUDO_REGISTER
987 && GET_CODE (SET_SRC (set)) == REG
988 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
989 && find_reg_note (insn, REG_DEAD, SET_SRC (set)))
990 optimize_reg_copy_2 (insn, dest, SET_SRC (set));
991
992 /* Otherwise, we only handle the case of a pseudo register being set
993 once. */
994 if (GET_CODE (dest) != REG
995 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
996 || reg_n_sets[regno] != 1)
997 continue;
998
999 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1000
1001 /* Record this insn as initializing this register. */
1002 reg_equiv_init_insn[regno] = insn;
1003
1004 /* If this register is known to be equal to a constant, record that
1005 it is always equivalent to the constant. */
1006 if (note && CONSTANT_P (XEXP (note, 0)))
1007 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
1008
1009 /* If this insn introduces a "constant" register, decrease the priority
1010 of that register. Record this insn if the register is only used once
1011 more and the equivalence value is the same as our source.
1012
1013 The latter condition is checked for two reasons: First, it is an
1014 indication that it may be more efficient to actually emit the insn
1015 as written (if no registers are available, reload will substitute
1016 the equivalence). Secondly, it avoids problems with any registers
1017 dying in this insn whose death notes would be missed.
1018
1019 If we don't have a REG_EQUIV note, see if this insn is loading
1020 a register used only in one basic block from a MEM. If so, and the
1021 MEM remains unchanged for the life of the register, add a REG_EQUIV
1022 note. */
1023
1024 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1025
1026 if (note == 0 && reg_basic_block[regno] >= 0
1027 && GET_CODE (SET_SRC (set)) == MEM
1028 && validate_equiv_mem (insn, dest, SET_SRC (set)))
1029 REG_NOTES (insn) = note = gen_rtx (EXPR_LIST, REG_EQUIV, SET_SRC (set),
1030 REG_NOTES (insn));
1031
1032 /* Don't mess with things live during setjmp. */
1033 if (note && reg_live_length[regno] >= 0)
1034 {
1035 int regno = REGNO (dest);
1036
1037 /* Note that the statement below does not affect the priority
1038 in local-alloc! */
1039 reg_live_length[regno] *= 2;
1040
1041 /* If the register is referenced exactly twice, meaning it is set
1042 once and used once, indicate that the reference may be replaced
1043 by the equivalence we computed above. If the register is only
1044 used in one basic block, this can't succeed or combine would
1045 have done it.
1046
1047 It would be nice to use "loop_depth * 2" in the compare
1048 below. Unfortunately, LOOP_DEPTH need not be constant within
1049 a basic block so this would be too complicated.
1050
1051 This case normally occurs when a parameter is read from memory
1052 and then used exactly once, not in a loop. */
1053
1054 if (reg_n_refs[regno] == 2
1055 && reg_basic_block[regno] < 0
1056 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
1057 reg_equiv_replacement[regno] = SET_SRC (set);
1058 }
1059 }
1060
1061 /* Now scan all regs killed in an insn to see if any of them are registers
1062 only used that once. If so, see if we can replace the reference with
1063 the equivalent from. If we can, delete the initializing reference
1064 and this register will go away. */
1065 for (insn = next_active_insn (get_insns ());
1066 insn;
1067 insn = next_active_insn (insn))
1068 {
1069 rtx link;
1070
1071 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1072 if (REG_NOTE_KIND (link) == REG_DEAD
1073 /* Make sure this insn still refers to the register. */
1074 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1075 {
1076 int regno = REGNO (XEXP (link, 0));
1077
1078 if (reg_equiv_replacement[regno]
1079 && validate_replace_rtx (regno_reg_rtx[regno],
1080 reg_equiv_replacement[regno], insn))
1081 {
1082 rtx equiv_insn = reg_equiv_init_insn[regno];
1083
1084 remove_death (regno, insn);
1085 reg_n_refs[regno] = 0;
1086 PUT_CODE (equiv_insn, NOTE);
1087 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1088 NOTE_SOURCE_FILE (equiv_insn) = 0;
1089 }
1090 }
1091 }
1092 }
1093 \f
1094 /* Allocate hard regs to the pseudo regs used only within block number B.
1095 Only the pseudos that die but once can be handled. */
1096
1097 static void
1098 block_alloc (b)
1099 int b;
1100 {
1101 register int i, q;
1102 register rtx insn;
1103 rtx note;
1104 int insn_number = 0;
1105 int insn_count = 0;
1106 int max_uid = get_max_uid ();
1107 int *qty_order;
1108 int no_conflict_combined_regno = -1;
1109 /* Counter to prevent allocating more SCRATCHes than can be stored
1110 in SCRATCH_LIST. */
1111 int scratches_allocated = scratch_index;
1112
1113 /* Count the instructions in the basic block. */
1114
1115 insn = basic_block_end[b];
1116 while (1)
1117 {
1118 if (GET_CODE (insn) != NOTE)
1119 if (++insn_count > max_uid)
1120 abort ();
1121 if (insn == basic_block_head[b])
1122 break;
1123 insn = PREV_INSN (insn);
1124 }
1125
1126 /* +2 to leave room for a post_mark_life at the last insn and for
1127 the birth of a CLOBBER in the first insn. */
1128 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1129 * sizeof (HARD_REG_SET));
1130 bzero (regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1131
1132 /* Initialize table of hardware registers currently live. */
1133
1134 COPY_HARD_REG_SET (regs_live, *basic_block_live_at_start[b]);
1135
1136 /* This loop scans the instructions of the basic block
1137 and assigns quantities to registers.
1138 It computes which registers to tie. */
1139
1140 insn = basic_block_head[b];
1141 while (1)
1142 {
1143 register rtx body = PATTERN (insn);
1144
1145 if (GET_CODE (insn) != NOTE)
1146 insn_number++;
1147
1148 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1149 {
1150 register rtx link, set;
1151 register int win = 0;
1152 register rtx r0, r1;
1153 int combined_regno = -1;
1154 int i;
1155 int insn_code_number = recog_memoized (insn);
1156
1157 this_insn_number = insn_number;
1158 this_insn = insn;
1159
1160 if (insn_code_number >= 0)
1161 insn_extract (insn);
1162 which_alternative = -1;
1163
1164 /* Is this insn suitable for tying two registers?
1165 If so, try doing that.
1166 Suitable insns are those with at least two operands and where
1167 operand 0 is an output that is a register that is not
1168 earlyclobber.
1169
1170 We can tie operand 0 with some operand that dies in this insn.
1171 First look for operands that are required to be in the same
1172 register as operand 0. If we find such, only try tying that
1173 operand or one that can be put into that operand if the
1174 operation is commutative. If we don't find an operand
1175 that is required to be in the same register as operand 0,
1176 we can tie with any operand.
1177
1178 Subregs in place of regs are also ok.
1179
1180 If tying is done, WIN is set nonzero. */
1181
1182 if (insn_code_number >= 0
1183 #ifdef REGISTER_CONSTRAINTS
1184 && insn_n_operands[insn_code_number] > 1
1185 && insn_operand_constraint[insn_code_number][0][0] == '='
1186 && insn_operand_constraint[insn_code_number][0][1] != '&'
1187 #else
1188 && GET_CODE (PATTERN (insn)) == SET
1189 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1190 #endif
1191 )
1192 {
1193 #ifdef REGISTER_CONSTRAINTS
1194 int must_match_0 = -1;
1195
1196
1197 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1198 if (requires_inout_p
1199 (insn_operand_constraint[insn_code_number][i]))
1200 must_match_0 = i;
1201 #endif
1202
1203 r0 = recog_operand[0];
1204 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1205 {
1206 #ifdef REGISTER_CONSTRAINTS
1207 /* Skip this operand if we found an operand that
1208 must match operand 0 and this operand isn't it
1209 and can't be made to be it by commutativity. */
1210
1211 if (must_match_0 >= 0 && i != must_match_0
1212 && ! (i == must_match_0 + 1
1213 && insn_operand_constraint[insn_code_number][i-1][0] == '%')
1214 && ! (i == must_match_0 - 1
1215 && insn_operand_constraint[insn_code_number][i][0] == '%'))
1216 continue;
1217 #endif
1218
1219 r1 = recog_operand[i];
1220
1221 /* If the operand is an address, find a register in it.
1222 There may be more than one register, but we only try one
1223 of them. */
1224 if (
1225 #ifdef REGISTER_CONSTRAINTS
1226 insn_operand_constraint[insn_code_number][i][0] == 'p'
1227 #else
1228 insn_operand_address_p[insn_code_number][i]
1229 #endif
1230 )
1231 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1232 r1 = XEXP (r1, 0);
1233
1234 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1235 {
1236 /* We have two priorities for hard register preferences.
1237 If we have a move insn or an insn whose first input
1238 can only be in the same register as the output, give
1239 priority to an equivalence found from that insn. */
1240 int may_save_copy
1241 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1242 #ifdef REGISTER_CONSTRAINTS
1243 || (r1 == recog_operand[i] && must_match_0 >= 0)
1244 #endif
1245 );
1246
1247 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1248 win = combine_regs (r1, r0, may_save_copy,
1249 insn_number, insn, 0);
1250 }
1251 }
1252 }
1253
1254 /* Recognize an insn sequence with an ultimate result
1255 which can safely overlap one of the inputs.
1256 The sequence begins with a CLOBBER of its result,
1257 and ends with an insn that copies the result to itself
1258 and has a REG_EQUAL note for an equivalent formula.
1259 That note indicates what the inputs are.
1260 The result and the input can overlap if each insn in
1261 the sequence either doesn't mention the input
1262 or has a REG_NO_CONFLICT note to inhibit the conflict.
1263
1264 We do the combining test at the CLOBBER so that the
1265 destination register won't have had a quantity number
1266 assigned, since that would prevent combining. */
1267
1268 if (GET_CODE (PATTERN (insn)) == CLOBBER
1269 && (r0 = XEXP (PATTERN (insn), 0),
1270 GET_CODE (r0) == REG)
1271 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1272 && XEXP (link, 0) != 0
1273 && GET_CODE (XEXP (link, 0)) == INSN
1274 && (set = single_set (XEXP (link, 0))) != 0
1275 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1276 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1277 NULL_RTX)) != 0)
1278 {
1279 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1280 /* Check that we have such a sequence. */
1281 && no_conflict_p (insn, r0, r1))
1282 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1283 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1284 && (r1 = XEXP (XEXP (note, 0), 0),
1285 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1286 && no_conflict_p (insn, r0, r1))
1287 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1288
1289 /* Here we care if the operation to be computed is
1290 commutative. */
1291 else if ((GET_CODE (XEXP (note, 0)) == EQ
1292 || GET_CODE (XEXP (note, 0)) == NE
1293 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1294 && (r1 = XEXP (XEXP (note, 0), 1),
1295 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1296 && no_conflict_p (insn, r0, r1))
1297 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1298
1299 /* If we did combine something, show the register number
1300 in question so that we know to ignore its death. */
1301 if (win)
1302 no_conflict_combined_regno = REGNO (r1);
1303 }
1304
1305 /* If registers were just tied, set COMBINED_REGNO
1306 to the number of the register used in this insn
1307 that was tied to the register set in this insn.
1308 This register's qty should not be "killed". */
1309
1310 if (win)
1311 {
1312 while (GET_CODE (r1) == SUBREG)
1313 r1 = SUBREG_REG (r1);
1314 combined_regno = REGNO (r1);
1315 }
1316
1317 /* Mark the death of everything that dies in this instruction,
1318 except for anything that was just combined. */
1319
1320 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1321 if (REG_NOTE_KIND (link) == REG_DEAD
1322 && GET_CODE (XEXP (link, 0)) == REG
1323 && combined_regno != REGNO (XEXP (link, 0))
1324 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1325 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1326 wipe_dead_reg (XEXP (link, 0), 0);
1327
1328 /* Allocate qty numbers for all registers local to this block
1329 that are born (set) in this instruction.
1330 A pseudo that already has a qty is not changed. */
1331
1332 note_stores (PATTERN (insn), reg_is_set);
1333
1334 /* If anything is set in this insn and then unused, mark it as dying
1335 after this insn, so it will conflict with our outputs. This
1336 can't match with something that combined, and it doesn't matter
1337 if it did. Do this after the calls to reg_is_set since these
1338 die after, not during, the current insn. */
1339
1340 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1341 if (REG_NOTE_KIND (link) == REG_UNUSED
1342 && GET_CODE (XEXP (link, 0)) == REG)
1343 wipe_dead_reg (XEXP (link, 0), 1);
1344
1345 /* Allocate quantities for any SCRATCH operands of this insn. */
1346
1347 if (insn_code_number >= 0)
1348 for (i = 0; i < insn_n_operands[insn_code_number]; i++)
1349 if (GET_CODE (recog_operand[i]) == SCRATCH
1350 && scratches_allocated++ < scratch_list_length)
1351 alloc_qty_for_scratch (recog_operand[i], i, insn,
1352 insn_code_number, insn_number);
1353
1354 /* If this is an insn that has a REG_RETVAL note pointing at a
1355 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1356 block, so clear any register number that combined within it. */
1357 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1358 && GET_CODE (XEXP (note, 0)) == INSN
1359 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1360 no_conflict_combined_regno = -1;
1361 }
1362
1363 /* Set the registers live after INSN_NUMBER. Note that we never
1364 record the registers live before the block's first insn, since no
1365 pseudos we care about are live before that insn. */
1366
1367 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1368 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1369
1370 if (insn == basic_block_end[b])
1371 break;
1372
1373 insn = NEXT_INSN (insn);
1374 }
1375
1376 /* Now every register that is local to this basic block
1377 should have been given a quantity, or else -1 meaning ignore it.
1378 Every quantity should have a known birth and death.
1379
1380 Order the qtys so we assign them registers in order of
1381 decreasing length of life. Normally call qsort, but if we
1382 have only a very small number of quantities, sort them ourselves. */
1383
1384 qty_order = (int *) alloca (next_qty * sizeof (int));
1385 for (i = 0; i < next_qty; i++)
1386 qty_order[i] = i;
1387
1388 #define EXCHANGE(I1, I2) \
1389 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1390
1391 switch (next_qty)
1392 {
1393 case 3:
1394 /* Make qty_order[2] be the one to allocate last. */
1395 if (qty_compare (0, 1) > 0)
1396 EXCHANGE (0, 1);
1397 if (qty_compare (1, 2) > 0)
1398 EXCHANGE (2, 1);
1399
1400 /* ... Fall through ... */
1401 case 2:
1402 /* Put the best one to allocate in qty_order[0]. */
1403 if (qty_compare (0, 1) > 0)
1404 EXCHANGE (0, 1);
1405
1406 /* ... Fall through ... */
1407
1408 case 1:
1409 case 0:
1410 /* Nothing to do here. */
1411 break;
1412
1413 default:
1414 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1415 }
1416
1417 /* Try to put each quantity in a suggested physical register, if it has one.
1418 This may cause registers to be allocated that otherwise wouldn't be, but
1419 this seems acceptable in local allocation (unlike global allocation). */
1420 for (i = 0; i < next_qty; i++)
1421 {
1422 q = qty_order[i];
1423 if (qty_phys_has_sugg[q] || qty_phys_has_copy_sugg[q])
1424 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1425 0, 1, qty_birth[q], qty_death[q]);
1426 else
1427 qty_phys_reg[q] = -1;
1428 }
1429
1430 /* Now for each qty that is not a hardware register,
1431 look for a hardware register to put it in.
1432 First try the register class that is cheapest for this qty,
1433 if there is more than one class. */
1434
1435 for (i = 0; i < next_qty; i++)
1436 {
1437 q = qty_order[i];
1438 if (qty_phys_reg[q] < 0)
1439 {
1440 if (N_REG_CLASSES > 1)
1441 {
1442 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1443 qty_mode[q], q, 0, 0,
1444 qty_birth[q], qty_death[q]);
1445 if (qty_phys_reg[q] >= 0)
1446 continue;
1447 }
1448
1449 if (qty_alternate_class[q] != NO_REGS)
1450 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1451 qty_mode[q], q, 0, 0,
1452 qty_birth[q], qty_death[q]);
1453 }
1454 }
1455
1456 /* Now propagate the register assignments
1457 to the pseudo regs belonging to the qtys. */
1458
1459 for (q = 0; q < next_qty; q++)
1460 if (qty_phys_reg[q] >= 0)
1461 {
1462 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1463 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1464 if (qty_scratch_rtx[q])
1465 {
1466 if (GET_CODE (qty_scratch_rtx[q]) == REG)
1467 abort ();
1468 PUT_CODE (qty_scratch_rtx[q], REG);
1469 REGNO (qty_scratch_rtx[q]) = qty_phys_reg[q];
1470
1471 scratch_block[scratch_index] = b;
1472 scratch_list[scratch_index++] = qty_scratch_rtx[q];
1473
1474 /* Must clear the USED field, because it will have been set by
1475 copy_rtx_if_shared, but the leaf_register code expects that
1476 it is zero in all REG rtx. copy_rtx_if_shared does not set the
1477 used bit for REGs, but does for SCRATCHes. */
1478 qty_scratch_rtx[q]->used = 0;
1479 }
1480 }
1481 }
1482 \f
1483 /* Compare two quantities' priority for getting real registers.
1484 We give shorter-lived quantities higher priority.
1485 Quantities with more references are also preferred, as are quantities that
1486 require multiple registers. This is the identical prioritization as
1487 done by global-alloc.
1488
1489 We used to give preference to registers with *longer* lives, but using
1490 the same algorithm in both local- and global-alloc can speed up execution
1491 of some programs by as much as a factor of three! */
1492
1493 static int
1494 qty_compare (q1, q2)
1495 int q1, q2;
1496 {
1497 /* Note that the quotient will never be bigger than
1498 the value of floor_log2 times the maximum number of
1499 times a register can occur in one insn (surely less than 100).
1500 Multiplying this by 10000 can't overflow. */
1501 register int pri1
1502 = (((double) (floor_log2 (qty_n_refs[q1]) * qty_n_refs[q1] * qty_size[q1])
1503 / (qty_death[q1] - qty_birth[q1]))
1504 * 10000);
1505 register int pri2
1506 = (((double) (floor_log2 (qty_n_refs[q2]) * qty_n_refs[q2] * qty_size[q2])
1507 / (qty_death[q2] - qty_birth[q2]))
1508 * 10000);
1509 return pri2 - pri1;
1510 }
1511
1512 static int
1513 qty_compare_1 (q1, q2)
1514 int *q1, *q2;
1515 {
1516 register int tem;
1517
1518 /* Note that the quotient will never be bigger than
1519 the value of floor_log2 times the maximum number of
1520 times a register can occur in one insn (surely less than 100).
1521 Multiplying this by 10000 can't overflow. */
1522 register int pri1
1523 = (((double) (floor_log2 (qty_n_refs[*q1]) * qty_n_refs[*q1]
1524 * qty_size[*q1])
1525 / (qty_death[*q1] - qty_birth[*q1]))
1526 * 10000);
1527 register int pri2
1528 = (((double) (floor_log2 (qty_n_refs[*q2]) * qty_n_refs[*q2]
1529 * qty_size[*q2])
1530 / (qty_death[*q2] - qty_birth[*q2]))
1531 * 10000);
1532
1533 tem = pri2 - pri1;
1534 if (tem != 0) return tem;
1535 /* If qtys are equally good, sort by qty number,
1536 so that the results of qsort leave nothing to chance. */
1537 return *q1 - *q2;
1538 }
1539 \f
1540 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1541 Returns 1 if have done so, or 0 if cannot.
1542
1543 Combining registers means marking them as having the same quantity
1544 and adjusting the offsets within the quantity if either of
1545 them is a SUBREG).
1546
1547 We don't actually combine a hard reg with a pseudo; instead
1548 we just record the hard reg as the suggestion for the pseudo's quantity.
1549 If we really combined them, we could lose if the pseudo lives
1550 across an insn that clobbers the hard reg (eg, movstr).
1551
1552 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1553 there is no REG_DEAD note on INSN. This occurs during the processing
1554 of REG_NO_CONFLICT blocks.
1555
1556 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1557 SETREG or if the input and output must share a register.
1558 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1559
1560 There are elaborate checks for the validity of combining. */
1561
1562
1563 static int
1564 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1565 rtx usedreg, setreg;
1566 int may_save_copy;
1567 int insn_number;
1568 rtx insn;
1569 int already_dead;
1570 {
1571 register int ureg, sreg;
1572 register int offset = 0;
1573 int usize, ssize;
1574 register int sqty;
1575
1576 /* Determine the numbers and sizes of registers being used. If a subreg
1577 is present that does not change the entire register, don't consider
1578 this a copy insn. */
1579
1580 while (GET_CODE (usedreg) == SUBREG)
1581 {
1582 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1583 may_save_copy = 0;
1584 offset += SUBREG_WORD (usedreg);
1585 usedreg = SUBREG_REG (usedreg);
1586 }
1587 if (GET_CODE (usedreg) != REG)
1588 return 0;
1589 ureg = REGNO (usedreg);
1590 usize = REG_SIZE (usedreg);
1591
1592 while (GET_CODE (setreg) == SUBREG)
1593 {
1594 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1595 may_save_copy = 0;
1596 offset -= SUBREG_WORD (setreg);
1597 setreg = SUBREG_REG (setreg);
1598 }
1599 if (GET_CODE (setreg) != REG)
1600 return 0;
1601 sreg = REGNO (setreg);
1602 ssize = REG_SIZE (setreg);
1603
1604 /* If UREG is a pseudo-register that hasn't already been assigned a
1605 quantity number, it means that it is not local to this block or dies
1606 more than once. In either event, we can't do anything with it. */
1607 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1608 /* Do not combine registers unless one fits within the other. */
1609 || (offset > 0 && usize + offset > ssize)
1610 || (offset < 0 && usize + offset < ssize)
1611 /* Do not combine with a smaller already-assigned object
1612 if that smaller object is already combined with something bigger. */
1613 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1614 && usize < qty_size[reg_qty[ureg]])
1615 /* Can't combine if SREG is not a register we can allocate. */
1616 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1617 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1618 These have already been taken care of. This probably wouldn't
1619 combine anyway, but don't take any chances. */
1620 || (ureg >= FIRST_PSEUDO_REGISTER
1621 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1622 /* Don't tie something to itself. In most cases it would make no
1623 difference, but it would screw up if the reg being tied to itself
1624 also dies in this insn. */
1625 || ureg == sreg
1626 /* Don't try to connect two different hardware registers. */
1627 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1628 /* Don't connect two different machine modes if they have different
1629 implications as to which registers may be used. */
1630 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1631 return 0;
1632
1633 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1634 qty_phys_sugg for the pseudo instead of tying them.
1635
1636 Return "failure" so that the lifespan of UREG is terminated here;
1637 that way the two lifespans will be disjoint and nothing will prevent
1638 the pseudo reg from being given this hard reg. */
1639
1640 if (ureg < FIRST_PSEUDO_REGISTER)
1641 {
1642 /* Allocate a quantity number so we have a place to put our
1643 suggestions. */
1644 if (reg_qty[sreg] == -2)
1645 reg_is_born (setreg, 2 * insn_number);
1646
1647 if (reg_qty[sreg] >= 0)
1648 {
1649 if (may_save_copy)
1650 {
1651 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1652 qty_phys_has_copy_sugg[reg_qty[sreg]] = 1;
1653 }
1654 else
1655 {
1656 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1657 qty_phys_has_sugg[reg_qty[sreg]] = 1;
1658 }
1659 }
1660 return 0;
1661 }
1662
1663 /* Similarly for SREG a hard register and UREG a pseudo register. */
1664
1665 if (sreg < FIRST_PSEUDO_REGISTER)
1666 {
1667 if (may_save_copy)
1668 {
1669 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1670 qty_phys_has_copy_sugg[reg_qty[ureg]] = 1;
1671 }
1672 else
1673 {
1674 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1675 qty_phys_has_sugg[reg_qty[ureg]] = 1;
1676 }
1677 return 0;
1678 }
1679
1680 /* At this point we know that SREG and UREG are both pseudos.
1681 Do nothing if SREG already has a quantity or is a register that we
1682 don't allocate. */
1683 if (reg_qty[sreg] >= -1
1684 /* If we are not going to let any regs live across calls,
1685 don't tie a call-crossing reg to a non-call-crossing reg. */
1686 || (current_function_has_nonlocal_label
1687 && ((reg_n_calls_crossed[ureg] > 0)
1688 != (reg_n_calls_crossed[sreg] > 0))))
1689 return 0;
1690
1691 /* We don't already know about SREG, so tie it to UREG
1692 if this is the last use of UREG, provided the classes they want
1693 are compatible. */
1694
1695 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1696 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1697 {
1698 /* Add SREG to UREG's quantity. */
1699 sqty = reg_qty[ureg];
1700 reg_qty[sreg] = sqty;
1701 reg_offset[sreg] = reg_offset[ureg] + offset;
1702 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1703 qty_first_reg[sqty] = sreg;
1704
1705 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1706 update_qty_class (sqty, sreg);
1707
1708 /* Update info about quantity SQTY. */
1709 qty_n_calls_crossed[sqty] += reg_n_calls_crossed[sreg];
1710 qty_n_refs[sqty] += reg_n_refs[sreg];
1711 if (usize < ssize)
1712 {
1713 register int i;
1714
1715 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1716 reg_offset[i] -= offset;
1717
1718 qty_size[sqty] = ssize;
1719 qty_mode[sqty] = GET_MODE (setreg);
1720 }
1721 }
1722 else
1723 return 0;
1724
1725 return 1;
1726 }
1727 \f
1728 /* Return 1 if the preferred class of REG allows it to be tied
1729 to a quantity or register whose class is CLASS.
1730 True if REG's reg class either contains or is contained in CLASS. */
1731
1732 static int
1733 reg_meets_class_p (reg, class)
1734 int reg;
1735 enum reg_class class;
1736 {
1737 register enum reg_class rclass = reg_preferred_class (reg);
1738 return (reg_class_subset_p (rclass, class)
1739 || reg_class_subset_p (class, rclass));
1740 }
1741
1742 /* Return 1 if the two specified classes have registers in common.
1743 If CALL_SAVED, then consider only call-saved registers. */
1744
1745 static int
1746 reg_classes_overlap_p (c1, c2, call_saved)
1747 register enum reg_class c1;
1748 register enum reg_class c2;
1749 int call_saved;
1750 {
1751 HARD_REG_SET c;
1752 int i;
1753
1754 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
1755 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
1756
1757 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1758 if (TEST_HARD_REG_BIT (c, i)
1759 && (! call_saved || ! call_used_regs[i]))
1760 return 1;
1761
1762 return 0;
1763 }
1764
1765 /* Update the class of QTY assuming that REG is being tied to it. */
1766
1767 static void
1768 update_qty_class (qty, reg)
1769 int qty;
1770 int reg;
1771 {
1772 enum reg_class rclass = reg_preferred_class (reg);
1773 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1774 qty_min_class[qty] = rclass;
1775
1776 rclass = reg_alternate_class (reg);
1777 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1778 qty_alternate_class[qty] = rclass;
1779 }
1780 \f
1781 /* Handle something which alters the value of an rtx REG.
1782
1783 REG is whatever is set or clobbered. SETTER is the rtx that
1784 is modifying the register.
1785
1786 If it is not really a register, we do nothing.
1787 The file-global variables `this_insn' and `this_insn_number'
1788 carry info from `block_alloc'. */
1789
1790 static void
1791 reg_is_set (reg, setter)
1792 rtx reg;
1793 rtx setter;
1794 {
1795 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1796 a hard register. These may actually not exist any more. */
1797
1798 if (GET_CODE (reg) != SUBREG
1799 && GET_CODE (reg) != REG)
1800 return;
1801
1802 /* Mark this register as being born. If it is used in a CLOBBER, mark
1803 it as being born halfway between the previous insn and this insn so that
1804 it conflicts with our inputs but not the outputs of the previous insn. */
1805
1806 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1807 }
1808 \f
1809 /* Handle beginning of the life of register REG.
1810 BIRTH is the index at which this is happening. */
1811
1812 static void
1813 reg_is_born (reg, birth)
1814 rtx reg;
1815 int birth;
1816 {
1817 register int regno;
1818
1819 if (GET_CODE (reg) == SUBREG)
1820 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1821 else
1822 regno = REGNO (reg);
1823
1824 if (regno < FIRST_PSEUDO_REGISTER)
1825 {
1826 mark_life (regno, GET_MODE (reg), 1);
1827
1828 /* If the register was to have been born earlier that the present
1829 insn, mark it as live where it is actually born. */
1830 if (birth < 2 * this_insn_number)
1831 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1832 }
1833 else
1834 {
1835 if (reg_qty[regno] == -2)
1836 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1837
1838 /* If this register has a quantity number, show that it isn't dead. */
1839 if (reg_qty[regno] >= 0)
1840 qty_death[reg_qty[regno]] = -1;
1841 }
1842 }
1843
1844 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1845 REG is an output that is dying (i.e., it is never used), otherwise it
1846 is an input (the normal case).
1847 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1848
1849 static void
1850 wipe_dead_reg (reg, output_p)
1851 register rtx reg;
1852 int output_p;
1853 {
1854 register int regno = REGNO (reg);
1855
1856 /* If this insn has multiple results,
1857 and the dead reg is used in one of the results,
1858 extend its life to after this insn,
1859 so it won't get allocated together with any other result of this insn. */
1860 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1861 && !single_set (this_insn))
1862 {
1863 int i;
1864 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1865 {
1866 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1867 if (GET_CODE (set) == SET
1868 && GET_CODE (SET_DEST (set)) != REG
1869 && !rtx_equal_p (reg, SET_DEST (set))
1870 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1871 output_p = 1;
1872 }
1873 }
1874
1875 if (regno < FIRST_PSEUDO_REGISTER)
1876 {
1877 mark_life (regno, GET_MODE (reg), 0);
1878
1879 /* If a hard register is dying as an output, mark it as in use at
1880 the beginning of this insn (the above statement would cause this
1881 not to happen). */
1882 if (output_p)
1883 post_mark_life (regno, GET_MODE (reg), 1,
1884 2 * this_insn_number, 2 * this_insn_number+ 1);
1885 }
1886
1887 else if (reg_qty[regno] >= 0)
1888 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1889 }
1890 \f
1891 /* Find a block of SIZE words of hard regs in reg_class CLASS
1892 that can hold something of machine-mode MODE
1893 (but actually we test only the first of the block for holding MODE)
1894 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1895 and return the number of the first of them.
1896 Return -1 if such a block cannot be found.
1897 If QTY crosses calls, insist on a register preserved by calls,
1898 unless ACCEPT_CALL_CLOBBERED is nonzero.
1899
1900 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1901 register is available. If not, return -1. */
1902
1903 static int
1904 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1905 born_index, dead_index)
1906 enum reg_class class;
1907 enum machine_mode mode;
1908 int accept_call_clobbered;
1909 int just_try_suggested;
1910 int qty;
1911 int born_index, dead_index;
1912 {
1913 register int i, ins;
1914 #ifdef HARD_REG_SET
1915 register /* Declare it register if it's a scalar. */
1916 #endif
1917 HARD_REG_SET used, first_used;
1918 #ifdef ELIMINABLE_REGS
1919 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1920 #endif
1921
1922 /* Validate our parameters. */
1923 if (born_index < 0 || born_index > dead_index)
1924 abort ();
1925
1926 /* Don't let a pseudo live in a reg across a function call
1927 if we might get a nonlocal goto. */
1928 if (current_function_has_nonlocal_label
1929 && qty_n_calls_crossed[qty] > 0)
1930 return -1;
1931
1932 if (accept_call_clobbered)
1933 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1934 else if (qty_n_calls_crossed[qty] == 0)
1935 COPY_HARD_REG_SET (used, fixed_reg_set);
1936 else
1937 COPY_HARD_REG_SET (used, call_used_reg_set);
1938
1939 for (ins = born_index; ins < dead_index; ins++)
1940 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1941
1942 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1943
1944 /* Don't use the frame pointer reg in local-alloc even if
1945 we may omit the frame pointer, because if we do that and then we
1946 need a frame pointer, reload won't know how to move the pseudo
1947 to another hard reg. It can move only regs made by global-alloc.
1948
1949 This is true of any register that can be eliminated. */
1950 #ifdef ELIMINABLE_REGS
1951 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
1952 SET_HARD_REG_BIT (used, eliminables[i].from);
1953 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1954 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
1955 that it might be eliminated into. */
1956 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
1957 #endif
1958 #else
1959 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1960 #endif
1961
1962 /* Normally, the registers that can be used for the first register in
1963 a multi-register quantity are the same as those that can be used for
1964 subsequent registers. However, if just trying suggested registers,
1965 restrict our consideration to them. If there are copy-suggested
1966 register, try them. Otherwise, try the arithmetic-suggested
1967 registers. */
1968 COPY_HARD_REG_SET (first_used, used);
1969
1970 if (just_try_suggested)
1971 {
1972 if (qty_phys_has_copy_sugg[qty])
1973 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
1974 else
1975 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
1976 }
1977
1978 /* If all registers are excluded, we can't do anything. */
1979 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
1980
1981 /* If at least one would be suitable, test each hard reg. */
1982
1983 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1984 {
1985 #ifdef REG_ALLOC_ORDER
1986 int regno = reg_alloc_order[i];
1987 #else
1988 int regno = i;
1989 #endif
1990 if (! TEST_HARD_REG_BIT (first_used, regno)
1991 && HARD_REGNO_MODE_OK (regno, mode))
1992 {
1993 register int j;
1994 register int size1 = HARD_REGNO_NREGS (regno, mode);
1995 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
1996 if (j == size1)
1997 {
1998 /* Mark that this register is in use between its birth and death
1999 insns. */
2000 post_mark_life (regno, mode, 1, born_index, dead_index);
2001 return regno;
2002 }
2003 #ifndef REG_ALLOC_ORDER
2004 i += j; /* Skip starting points we know will lose */
2005 #endif
2006 }
2007 }
2008
2009 fail:
2010
2011 /* If we are just trying suggested register, we have just tried copy-
2012 suggested registers, and there are arithmetic-suggested registers,
2013 try them. */
2014
2015 /* If it would be profitable to allocate a call-clobbered register
2016 and save and restore it around calls, do that. */
2017 if (just_try_suggested && qty_phys_has_copy_sugg[qty]
2018 && qty_phys_has_sugg[qty])
2019 {
2020 /* Don't try the copy-suggested regs again. */
2021 qty_phys_has_copy_sugg[qty] = 0;
2022 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2023 born_index, dead_index);
2024 }
2025
2026 /* We need not check to see if the current function has nonlocal
2027 labels because we don't put any pseudos that are live over calls in
2028 registers in that case. */
2029
2030 if (! accept_call_clobbered
2031 && flag_caller_saves
2032 && ! just_try_suggested
2033 && qty_n_calls_crossed[qty] != 0
2034 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2035 {
2036 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2037 if (i >= 0)
2038 caller_save_needed = 1;
2039 return i;
2040 }
2041 return -1;
2042 }
2043 \f
2044 /* Mark that REGNO with machine-mode MODE is live starting from the current
2045 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2046 is zero). */
2047
2048 static void
2049 mark_life (regno, mode, life)
2050 register int regno;
2051 enum machine_mode mode;
2052 int life;
2053 {
2054 register int j = HARD_REGNO_NREGS (regno, mode);
2055 if (life)
2056 while (--j >= 0)
2057 SET_HARD_REG_BIT (regs_live, regno + j);
2058 else
2059 while (--j >= 0)
2060 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2061 }
2062
2063 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2064 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2065 to insn number DEATH (exclusive). */
2066
2067 static void
2068 post_mark_life (regno, mode, life, birth, death)
2069 register int regno, life, birth;
2070 enum machine_mode mode;
2071 int death;
2072 {
2073 register int j = HARD_REGNO_NREGS (regno, mode);
2074 #ifdef HARD_REG_SET
2075 register /* Declare it register if it's a scalar. */
2076 #endif
2077 HARD_REG_SET this_reg;
2078
2079 CLEAR_HARD_REG_SET (this_reg);
2080 while (--j >= 0)
2081 SET_HARD_REG_BIT (this_reg, regno + j);
2082
2083 if (life)
2084 while (birth < death)
2085 {
2086 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2087 birth++;
2088 }
2089 else
2090 while (birth < death)
2091 {
2092 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2093 birth++;
2094 }
2095 }
2096 \f
2097 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2098 is the register being clobbered, and R1 is a register being used in
2099 the equivalent expression.
2100
2101 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2102 in which it is used, return 1.
2103
2104 Otherwise, return 0. */
2105
2106 static int
2107 no_conflict_p (insn, r0, r1)
2108 rtx insn, r0, r1;
2109 {
2110 int ok = 0;
2111 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2112 rtx p, last;
2113
2114 /* If R1 is a hard register, return 0 since we handle this case
2115 when we scan the insns that actually use it. */
2116
2117 if (note == 0
2118 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2119 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2120 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2121 return 0;
2122
2123 last = XEXP (note, 0);
2124
2125 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2126 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2127 {
2128 if (find_reg_note (p, REG_DEAD, r1))
2129 ok = 1;
2130
2131 if (reg_mentioned_p (r1, PATTERN (p))
2132 && ! find_reg_note (p, REG_NO_CONFLICT, r1))
2133 return 0;
2134 }
2135
2136 return ok;
2137 }
2138 \f
2139 #ifdef REGISTER_CONSTRAINTS
2140
2141 /* Return 1 if the constraint string P indicates that the a the operand
2142 must be equal to operand 0 and that no register is acceptable. */
2143
2144 static int
2145 requires_inout_p (p)
2146 char *p;
2147 {
2148 char c;
2149 int found_zero = 0;
2150
2151 while (c = *p++)
2152 switch (c)
2153 {
2154 case '0':
2155 found_zero = 1;
2156 break;
2157
2158 case '=': case '+': case '?':
2159 case '#': case '&': case '!':
2160 case '*': case '%': case ',':
2161 case '1': case '2': case '3': case '4':
2162 case 'm': case '<': case '>': case 'V': case 'o':
2163 case 'E': case 'F': case 'G': case 'H':
2164 case 's': case 'i': case 'n':
2165 case 'I': case 'J': case 'K': case 'L':
2166 case 'M': case 'N': case 'O': case 'P':
2167 #ifdef EXTRA_CONSTRAINT
2168 case 'Q': case 'R': case 'S': case 'T': case 'U':
2169 #endif
2170 case 'X':
2171 /* These don't say anything we care about. */
2172 break;
2173
2174 case 'p':
2175 case 'g': case 'r':
2176 default:
2177 /* These mean a register is allowed. Fail if so. */
2178 return 0;
2179 }
2180
2181 return found_zero;
2182 }
2183 #endif /* REGISTER_CONSTRAINTS */
2184 \f
2185 void
2186 dump_local_alloc (file)
2187 FILE *file;
2188 {
2189 register int i;
2190 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2191 if (reg_renumber[i] != -1)
2192 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2193 }
This page took 0.142443 seconds and 6 git commands to generate.