]> gcc.gnu.org Git - gcc.git/blob - gcc/local-alloc.c
(qty_compare{,_1}): Give multi-word regs higher priority, as stated in
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* Allocation of hard register numbers to pseudo registers is done in
22 two passes. In this pass we consider only regs that are born and
23 die once within one basic block. We do this one basic block at a
24 time. Then the next pass allocates the registers that remain.
25 Two passes are used because this pass uses methods that work only
26 on linear code, but that do a better job than the general methods
27 used in global_alloc, and more quickly too.
28
29 The assignments made are recorded in the vector reg_renumber
30 whose space is allocated here. The rtl code itself is not altered.
31
32 We assign each instruction in the basic block a number
33 which is its order from the beginning of the block.
34 Then we can represent the lifetime of a pseudo register with
35 a pair of numbers, and check for conflicts easily.
36 We can record the availability of hard registers with a
37 HARD_REG_SET for each instruction. The HARD_REG_SET
38 contains 0 or 1 for each hard reg.
39
40 To avoid register shuffling, we tie registers together when one
41 dies by being copied into another, or dies in an instruction that
42 does arithmetic to produce another. The tied registers are
43 allocated as one. Registers with different reg class preferences
44 can never be tied unless the class preferred by one is a subclass
45 of the one preferred by the other.
46
47 Tying is represented with "quantity numbers".
48 A non-tied register is given a new quantity number.
49 Tied registers have the same quantity number.
50
51 We have provision to exempt registers, even when they are contained
52 within the block, that can be tied to others that are not contained in it.
53 This is so that global_alloc could process them both and tie them then.
54 But this is currently disabled since tying in global_alloc is not
55 yet implemented. */
56
57 #include <stdio.h>
58 #include "config.h"
59 #include "rtl.h"
60 #include "flags.h"
61 #include "basic-block.h"
62 #include "regs.h"
63 #include "hard-reg-set.h"
64 #include "insn-config.h"
65 #include "recog.h"
66 #include "output.h"
67 \f
68 /* Pseudos allocated here cannot be reallocated by global.c if the hard
69 register is used as a spill register. So we don't allocate such pseudos
70 here if their preferred class is likely to be used by spills.
71
72 On most machines, the appropriate test is if the class has one
73 register, so we default to that. */
74
75 #ifndef CLASS_LIKELY_SPILLED_P
76 #define CLASS_LIKELY_SPILLED_P(CLASS) (reg_class_size[(int) (CLASS)] == 1)
77 #endif
78
79 /* Next quantity number available for allocation. */
80
81 static int next_qty;
82
83 /* In all the following vectors indexed by quantity number. */
84
85 /* Element Q is the hard reg number chosen for quantity Q,
86 or -1 if none was found. */
87
88 static short *qty_phys_reg;
89
90 /* We maintain two hard register sets that indicate suggested hard registers
91 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
92 that are tied to the quantity by a simple copy. The second contains all
93 hard registers that are tied to the quantity via an arithmetic operation.
94
95 The former register set is given priority for allocation. This tends to
96 eliminate copy insns. */
97
98 /* Element Q is a set of hard registers that are suggested for quantity Q by
99 copy insns. */
100
101 static HARD_REG_SET *qty_phys_copy_sugg;
102
103 /* Element Q is a set of hard registers that are suggested for quantity Q by
104 arithmetic insns. */
105
106 static HARD_REG_SET *qty_phys_sugg;
107
108 /* Element Q is non-zero if there is a suggested register in
109 qty_phys_copy_sugg. */
110
111 static char *qty_phys_has_copy_sugg;
112
113 /* Element Q is non-zero if there is a suggested register in qty_phys_sugg. */
114
115 static char *qty_phys_has_sugg;
116
117 /* Element Q is the number of refs to quantity Q. */
118
119 static int *qty_n_refs;
120
121 /* Element Q is a reg class contained in (smaller than) the
122 preferred classes of all the pseudo regs that are tied in quantity Q.
123 This is the preferred class for allocating that quantity. */
124
125 static enum reg_class *qty_min_class;
126
127 /* Insn number (counting from head of basic block)
128 where quantity Q was born. -1 if birth has not been recorded. */
129
130 static int *qty_birth;
131
132 /* Insn number (counting from head of basic block)
133 where quantity Q died. Due to the way tying is done,
134 and the fact that we consider in this pass only regs that die but once,
135 a quantity can die only once. Each quantity's life span
136 is a set of consecutive insns. -1 if death has not been recorded. */
137
138 static int *qty_death;
139
140 /* Number of words needed to hold the data in quantity Q.
141 This depends on its machine mode. It is used for these purposes:
142 1. It is used in computing the relative importances of qtys,
143 which determines the order in which we look for regs for them.
144 2. It is used in rules that prevent tying several registers of
145 different sizes in a way that is geometrically impossible
146 (see combine_regs). */
147
148 static int *qty_size;
149
150 /* This holds the mode of the registers that are tied to qty Q,
151 or VOIDmode if registers with differing modes are tied together. */
152
153 static enum machine_mode *qty_mode;
154
155 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
156
157 static int *qty_n_calls_crossed;
158
159 /* Register class within which we allocate qty Q if we can't get
160 its preferred class. */
161
162 static enum reg_class *qty_alternate_class;
163
164 /* Element Q is the SCRATCH expression for which this quantity is being
165 allocated or 0 if this quantity is allocating registers. */
166
167 static rtx *qty_scratch_rtx;
168
169 /* Element Q is the register number of one pseudo register whose
170 reg_qty value is Q, or -1 is this quantity is for a SCRATCH. This
171 register should be the head of the chain maintained in reg_next_in_qty. */
172
173 static int *qty_first_reg;
174
175 /* If (REG N) has been assigned a quantity number, is a register number
176 of another register assigned the same quantity number, or -1 for the
177 end of the chain. qty_first_reg point to the head of this chain. */
178
179 static int *reg_next_in_qty;
180
181 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
182 if it is >= 0,
183 of -1 if this register cannot be allocated by local-alloc,
184 or -2 if not known yet.
185
186 Note that if we see a use or death of pseudo register N with
187 reg_qty[N] == -2, register N must be local to the current block. If
188 it were used in more than one block, we would have reg_qty[N] == -1.
189 This relies on the fact that if reg_basic_block[N] is >= 0, register N
190 will not appear in any other block. We save a considerable number of
191 tests by exploiting this.
192
193 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
194 be referenced. */
195
196 static int *reg_qty;
197
198 /* The offset (in words) of register N within its quantity.
199 This can be nonzero if register N is SImode, and has been tied
200 to a subreg of a DImode register. */
201
202 static char *reg_offset;
203
204 /* Vector of substitutions of register numbers,
205 used to map pseudo regs into hardware regs.
206 This is set up as a result of register allocation.
207 Element N is the hard reg assigned to pseudo reg N,
208 or is -1 if no hard reg was assigned.
209 If N is a hard reg number, element N is N. */
210
211 short *reg_renumber;
212
213 /* Set of hard registers live at the current point in the scan
214 of the instructions in a basic block. */
215
216 static HARD_REG_SET regs_live;
217
218 /* Each set of hard registers indicates registers live at a particular
219 point in the basic block. For N even, regs_live_at[N] says which
220 hard registers are needed *after* insn N/2 (i.e., they may not
221 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
222
223 If an object is to conflict with the inputs of insn J but not the
224 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
225 if it is to conflict with the outputs of insn J but not the inputs of
226 insn J + 1, it is said to die at index J*2 + 1. */
227
228 static HARD_REG_SET *regs_live_at;
229
230 int *scratch_block;
231 rtx *scratch_list;
232 int scratch_list_length;
233 static int scratch_index;
234
235 /* Communicate local vars `insn_number' and `insn'
236 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
237 static int this_insn_number;
238 static rtx this_insn;
239
240 static void block_alloc ();
241 static void update_equiv_regs ();
242 static int no_conflict_p ();
243 static int combine_regs ();
244 static void wipe_dead_reg ();
245 static int find_free_reg ();
246 static void reg_is_born ();
247 static void reg_is_set ();
248 static void mark_life ();
249 static void post_mark_life ();
250 static int qty_compare ();
251 static int qty_compare_1 ();
252 static int reg_meets_class_p ();
253 static void update_qty_class ();
254 static int requires_inout_p ();
255 \f
256 /* Allocate a new quantity (new within current basic block)
257 for register number REGNO which is born at index BIRTH
258 within the block. MODE and SIZE are info on reg REGNO. */
259
260 static void
261 alloc_qty (regno, mode, size, birth)
262 int regno;
263 enum machine_mode mode;
264 int size, birth;
265 {
266 register int qty = next_qty++;
267
268 reg_qty[regno] = qty;
269 reg_offset[regno] = 0;
270 reg_next_in_qty[regno] = -1;
271
272 qty_first_reg[qty] = regno;
273 qty_size[qty] = size;
274 qty_mode[qty] = mode;
275 qty_birth[qty] = birth;
276 qty_n_calls_crossed[qty] = reg_n_calls_crossed[regno];
277 qty_min_class[qty] = reg_preferred_class (regno);
278 qty_alternate_class[qty] = reg_alternate_class (regno);
279 qty_n_refs[qty] = reg_n_refs[regno];
280 }
281 \f
282 /* Similar to `alloc_qty', but allocates a quantity for a SCRATCH rtx
283 used as operand N in INSN. We assume here that the SCRATCH is used in
284 a CLOBBER. */
285
286 static void
287 alloc_qty_for_scratch (scratch, n, insn, insn_code_num, insn_number)
288 rtx scratch;
289 int n;
290 rtx insn;
291 int insn_code_num, insn_number;
292 {
293 register int qty;
294 enum reg_class class;
295 char *p, c;
296 int i;
297
298 #ifdef REGISTER_CONSTRAINTS
299 /* If we haven't yet computed which alternative will be used, do so now.
300 Then set P to the constraints for that alternative. */
301 if (which_alternative == -1)
302 if (! constrain_operands (insn_code_num, 0))
303 return;
304
305 for (p = insn_operand_constraint[insn_code_num][n], i = 0;
306 *p && i < which_alternative; p++)
307 if (*p == ',')
308 i++;
309
310 /* Compute the class required for this SCRATCH. If we don't need a
311 register, the class will remain NO_REGS. If we guessed the alternative
312 number incorrectly, reload will fix things up for us. */
313
314 class = NO_REGS;
315 while ((c = *p++) != '\0' && c != ',')
316 switch (c)
317 {
318 case '=': case '+': case '?':
319 case '#': case '&': case '!':
320 case '*': case '%':
321 case '0': case '1': case '2': case '3': case '4':
322 case 'm': case '<': case '>': case 'V': case 'o':
323 case 'E': case 'F': case 'G': case 'H':
324 case 's': case 'i': case 'n':
325 case 'I': case 'J': case 'K': case 'L':
326 case 'M': case 'N': case 'O': case 'P':
327 #ifdef EXTRA_CONSTRAINT
328 case 'Q': case 'R': case 'S': case 'T': case 'U':
329 #endif
330 case 'p':
331 /* These don't say anything we care about. */
332 break;
333
334 case 'X':
335 /* We don't need to allocate this SCRATCH. */
336 return;
337
338 case 'g': case 'r':
339 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
340 break;
341
342 default:
343 class
344 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER (c)];
345 break;
346 }
347
348 if (class == NO_REGS)
349 return;
350
351 #else /* REGISTER_CONSTRAINTS */
352
353 class = GENERAL_REGS;
354 #endif
355
356
357 qty = next_qty++;
358
359 qty_first_reg[qty] = -1;
360 qty_scratch_rtx[qty] = scratch;
361 qty_size[qty] = GET_MODE_SIZE (GET_MODE (scratch));
362 qty_mode[qty] = GET_MODE (scratch);
363 qty_birth[qty] = 2 * insn_number - 1;
364 qty_death[qty] = 2 * insn_number + 1;
365 qty_n_calls_crossed[qty] = 0;
366 qty_min_class[qty] = class;
367 qty_alternate_class[qty] = NO_REGS;
368 qty_n_refs[qty] = 1;
369 }
370 \f
371 /* Main entry point of this file. */
372
373 void
374 local_alloc ()
375 {
376 register int b, i;
377 int max_qty;
378
379 /* Leaf functions and non-leaf functions have different needs.
380 If defined, let the machine say what kind of ordering we
381 should use. */
382 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
383 ORDER_REGS_FOR_LOCAL_ALLOC;
384 #endif
385
386 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
387 registers. */
388 update_equiv_regs ();
389
390 /* This sets the maximum number of quantities we can have. Quantity
391 numbers start at zero and we can have one for each pseudo plus the
392 number of SCRATCHes in the largest block, in the worst case. */
393 max_qty = (max_regno - FIRST_PSEUDO_REGISTER) + max_scratch;
394
395 /* Allocate vectors of temporary data.
396 See the declarations of these variables, above,
397 for what they mean. */
398
399 /* There can be up to MAX_SCRATCH * N_BASIC_BLOCKS SCRATCHes to allocate.
400 Instead of allocating this much memory from now until the end of
401 reload, only allocate space for MAX_QTY SCRATCHes. If there are more
402 reload will allocate them. */
403
404 scratch_list_length = max_qty;
405 scratch_list = (rtx *) xmalloc (scratch_list_length * sizeof (rtx));
406 bzero (scratch_list, scratch_list_length * sizeof (rtx));
407 scratch_block = (int *) xmalloc (scratch_list_length * sizeof (int));
408 bzero (scratch_block, scratch_list_length * sizeof (int));
409 scratch_index = 0;
410
411 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
412 qty_phys_copy_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
413 qty_phys_has_copy_sugg = (char *) alloca (max_qty * sizeof (char));
414 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
415 qty_phys_has_sugg = (char *) alloca (max_qty * sizeof (char));
416 qty_birth = (int *) alloca (max_qty * sizeof (int));
417 qty_death = (int *) alloca (max_qty * sizeof (int));
418 qty_scratch_rtx = (rtx *) alloca (max_qty * sizeof (rtx));
419 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
420 qty_size = (int *) alloca (max_qty * sizeof (int));
421 qty_mode = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
422 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
423 qty_min_class = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
424 qty_alternate_class = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
425 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
426
427 reg_qty = (int *) alloca (max_regno * sizeof (int));
428 reg_offset = (char *) alloca (max_regno * sizeof (char));
429 reg_next_in_qty = (int *) alloca (max_regno * sizeof (int));
430
431 reg_renumber = (short *) oballoc (max_regno * sizeof (short));
432 for (i = 0; i < max_regno; i++)
433 reg_renumber[i] = -1;
434
435 /* Determine which pseudo-registers can be allocated by local-alloc.
436 In general, these are the registers used only in a single block and
437 which only die once. However, if a register's preferred class has only
438 a few entries, don't allocate this register here unless it is preferred
439 or nothing since retry_global_alloc won't be able to move it to
440 GENERAL_REGS if a reload register of this class is needed.
441
442 We need not be concerned with which block actually uses the register
443 since we will never see it outside that block. */
444
445 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
446 {
447 if (reg_basic_block[i] >= 0 && reg_n_deaths[i] == 1
448 && (reg_alternate_class (i) == NO_REGS
449 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
450 reg_qty[i] = -2;
451 else
452 reg_qty[i] = -1;
453 }
454
455 /* Force loop below to initialize entire quantity array. */
456 next_qty = max_qty;
457
458 /* Allocate each block's local registers, block by block. */
459
460 for (b = 0; b < n_basic_blocks; b++)
461 {
462 /* NEXT_QTY indicates which elements of the `qty_...'
463 vectors might need to be initialized because they were used
464 for the previous block; it is set to the entire array before
465 block 0. Initialize those, with explicit loop if there are few,
466 else with bzero and bcopy. Do not initialize vectors that are
467 explicit set by `alloc_qty'. */
468
469 if (next_qty < 6)
470 {
471 for (i = 0; i < next_qty; i++)
472 {
473 qty_scratch_rtx[i] = 0;
474 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
475 qty_phys_has_copy_sugg[i] = 0;
476 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
477 qty_phys_has_sugg[i] = 0;
478 }
479 }
480 else
481 {
482 #define CLEAR(vector) \
483 bzero ((vector), (sizeof (*(vector))) * next_qty);
484
485 CLEAR (qty_scratch_rtx);
486 CLEAR (qty_phys_copy_sugg);
487 CLEAR (qty_phys_has_copy_sugg);
488 CLEAR (qty_phys_sugg);
489 CLEAR (qty_phys_has_sugg);
490 }
491
492 next_qty = 0;
493
494 block_alloc (b);
495 #ifdef USE_C_ALLOCA
496 alloca (0);
497 #endif
498 }
499 }
500 \f
501 /* Depth of loops we are in while in update_equiv_regs. */
502 static int loop_depth;
503
504 /* Used for communication between the following two functions: contains
505 a MEM that we wish to ensure remains unchanged. */
506 static rtx equiv_mem;
507
508 /* Set nonzero if EQUIV_MEM is modified. */
509 static int equiv_mem_modified;
510
511 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
512 Called via note_stores. */
513
514 static void
515 validate_equiv_mem_from_store (dest, set)
516 rtx dest;
517 rtx set;
518 {
519 if ((GET_CODE (dest) == REG
520 && reg_overlap_mentioned_p (dest, equiv_mem))
521 || (GET_CODE (dest) == MEM
522 && true_dependence (dest, equiv_mem)))
523 equiv_mem_modified = 1;
524 }
525
526 /* Verify that no store between START and the death of REG invalidates
527 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
528 by storing into an overlapping memory location, or with a non-const
529 CALL_INSN.
530
531 Return 1 if MEMREF remains valid. */
532
533 static int
534 validate_equiv_mem (start, reg, memref)
535 rtx start;
536 rtx reg;
537 rtx memref;
538 {
539 rtx insn;
540 rtx note;
541
542 equiv_mem = memref;
543 equiv_mem_modified = 0;
544
545 /* If the memory reference has side effects or is volatile, it isn't a
546 valid equivalence. */
547 if (side_effects_p (memref))
548 return 0;
549
550 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
551 {
552 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
553 continue;
554
555 if (find_reg_note (insn, REG_DEAD, reg))
556 return 1;
557
558 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
559 && ! CONST_CALL_P (insn))
560 return 0;
561
562 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
563
564 /* If a register mentioned in MEMREF is modified via an
565 auto-increment, we lose the equivalence. Do the same if one
566 dies; although we could extend the life, it doesn't seem worth
567 the trouble. */
568
569 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
570 if ((REG_NOTE_KIND (note) == REG_INC
571 || REG_NOTE_KIND (note) == REG_DEAD)
572 && GET_CODE (XEXP (note, 0)) == REG
573 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
574 return 0;
575 }
576
577 return 0;
578 }
579 \f
580 /* TRUE if X references a memory location that would be affected by a store
581 to MEMREF. */
582
583 static int
584 memref_referenced_p (memref, x)
585 rtx x;
586 rtx memref;
587 {
588 int i, j;
589 char *fmt;
590 enum rtx_code code = GET_CODE (x);
591
592 switch (code)
593 {
594 case REG:
595 case CONST_INT:
596 case CONST:
597 case LABEL_REF:
598 case SYMBOL_REF:
599 case CONST_DOUBLE:
600 case PC:
601 case CC0:
602 case HIGH:
603 case LO_SUM:
604 return 0;
605
606 case MEM:
607 if (true_dependence (memref, x))
608 return 1;
609 break;
610
611 case SET:
612 /* If we are setting a MEM, it doesn't count (its address does), but any
613 other SET_DEST that has a MEM in it is referencing the MEM. */
614 if (GET_CODE (SET_DEST (x)) == MEM)
615 {
616 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
617 return 1;
618 }
619 else if (memref_referenced_p (memref, SET_DEST (x)))
620 return 1;
621
622 return memref_referenced_p (memref, SET_SRC (x));
623 }
624
625 fmt = GET_RTX_FORMAT (code);
626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
627 switch (fmt[i])
628 {
629 case 'e':
630 if (memref_referenced_p (memref, XEXP (x, i)))
631 return 1;
632 break;
633 case 'E':
634 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
635 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
636 return 1;
637 break;
638 }
639
640 return 0;
641 }
642
643 /* TRUE if some insn in the range (START, END] references a memory location
644 that would be affected by a store to MEMREF. */
645
646 static int
647 memref_used_between_p (memref, start, end)
648 rtx memref;
649 rtx start;
650 rtx end;
651 {
652 rtx insn;
653
654 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
655 insn = NEXT_INSN (insn))
656 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
657 && memref_referenced_p (memref, PATTERN (insn)))
658 return 1;
659
660 return 0;
661 }
662 \f
663 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
664 in INSN.
665
666 Search forward to see if SRC dies before either it or DEST is modified,
667 but don't scan past the end of a basic block. If so, we can replace SRC
668 with DEST and let SRC die in INSN.
669
670 This will reduce the number of registers live in that range and may enable
671 DEST to be tied to SRC, thus often saving one register in addition to a
672 register-register copy. */
673
674 static void
675 optimize_reg_copy_1 (insn, dest, src)
676 rtx insn;
677 rtx dest;
678 rtx src;
679 {
680 rtx p, q;
681 rtx note;
682 rtx dest_death = 0;
683 int sregno = REGNO (src);
684 int dregno = REGNO (dest);
685
686 if (sregno == dregno
687 #ifdef SMALL_REGISTER_CLASSES
688 /* We don't want to mess with hard regs if register classes are small. */
689 || sregno < FIRST_PSEUDO_REGISTER || dregno < FIRST_PSEUDO_REGISTER
690 #endif
691 /* We don't see all updates to SP if they are in an auto-inc memory
692 reference, so we must disallow this optimization on them. */
693 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
694 return;
695
696 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
697 {
698 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
699 || (GET_CODE (p) == NOTE
700 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
701 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
702 break;
703
704 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
705 continue;
706
707 if (reg_set_p (src, p) || reg_set_p (dest, p)
708 /* Don't change a USE of a register. */
709 || (GET_CODE (PATTERN (p)) == USE
710 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
711 break;
712
713 /* See if all of SRC dies in P. This test is slightly more
714 conservative than it needs to be. */
715 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
716 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
717 {
718 int failed = 0;
719 int length = 0;
720 int d_length = 0;
721 int n_calls = 0;
722 int d_n_calls = 0;
723
724 /* We can do the optimization. Scan forward from INSN again,
725 replacing regs as we go. Set FAILED if a replacement can't
726 be done. In that case, we can't move the death note for SRC.
727 This should be rare. */
728
729 /* Set to stop at next insn. */
730 for (q = next_real_insn (insn);
731 q != next_real_insn (p);
732 q = next_real_insn (q))
733 {
734 if (reg_overlap_mentioned_p (src, PATTERN (q)))
735 {
736 /* If SRC is a hard register, we might miss some
737 overlapping registers with validate_replace_rtx,
738 so we would have to undo it. We can't if DEST is
739 present in the insn, so fail in that combination
740 of cases. */
741 if (sregno < FIRST_PSEUDO_REGISTER
742 && reg_mentioned_p (dest, PATTERN (q)))
743 failed = 1;
744
745 /* Replace all uses and make sure that the register
746 isn't still present. */
747 else if (validate_replace_rtx (src, dest, q)
748 && (sregno >= FIRST_PSEUDO_REGISTER
749 || ! reg_overlap_mentioned_p (src,
750 PATTERN (q))))
751 {
752 /* We assume that a register is used exactly once per
753 insn in the updates below. If this is not correct,
754 no great harm is done. */
755 if (sregno >= FIRST_PSEUDO_REGISTER)
756 reg_n_refs[sregno] -= loop_depth;
757 if (dregno >= FIRST_PSEUDO_REGISTER)
758 reg_n_refs[dregno] += loop_depth;
759 }
760 else
761 {
762 validate_replace_rtx (dest, src, q);
763 failed = 1;
764 }
765 }
766
767 /* Count the insns and CALL_INSNs passed. If we passed the
768 death note of DEST, show increased live length. */
769 length++;
770 if (dest_death)
771 d_length++;
772
773 /* If the insn in which SRC dies is a CALL_INSN, don't count it
774 as a call that has been crossed. Otherwise, count it. */
775 if (q != p && GET_CODE (q) == CALL_INSN)
776 {
777 n_calls++;
778 if (dest_death)
779 d_n_calls++;
780 }
781
782 /* If DEST dies here, remove the death note and save it for
783 later. Make sure ALL of DEST dies here; again, this is
784 overly conservative. */
785 if (dest_death == 0
786 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0
787 && GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
788 remove_note (q, dest_death);
789 }
790
791 if (! failed)
792 {
793 if (sregno >= FIRST_PSEUDO_REGISTER)
794 {
795 reg_live_length[sregno] -= length;
796 /* reg_live_length is only an approximation after combine
797 if sched is not run, so make sure that we still have
798 a reasonable value. */
799 if (reg_live_length[sregno] < 2)
800 reg_live_length[sregno] = 2;
801 reg_n_calls_crossed[sregno] -= n_calls;
802 }
803
804 if (dregno >= FIRST_PSEUDO_REGISTER)
805 {
806 reg_live_length[dregno] += d_length;
807 reg_n_calls_crossed[dregno] += d_n_calls;
808 }
809
810 /* Move death note of SRC from P to INSN. */
811 remove_note (p, note);
812 XEXP (note, 1) = REG_NOTES (insn);
813 REG_NOTES (insn) = note;
814 }
815
816 /* Put death note of DEST on P if we saw it die. */
817 if (dest_death)
818 {
819 XEXP (dest_death, 1) = REG_NOTES (p);
820 REG_NOTES (p) = dest_death;
821 }
822
823 return;
824 }
825
826 /* If SRC is a hard register which is set or killed in some other
827 way, we can't do this optimization. */
828 else if (sregno < FIRST_PSEUDO_REGISTER
829 && dead_or_set_p (p, src))
830 break;
831 }
832 }
833 \f
834 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
835 a sequence of insns that modify DEST followed by an insn that sets
836 SRC to DEST in which DEST dies, with no prior modification of DEST.
837 (There is no need to check if the insns in between actually modify
838 DEST. We should not have cases where DEST is not modified, but
839 the optimization is safe if no such modification is detected.)
840 In that case, we can replace all uses of DEST, starting with INSN and
841 ending with the set of SRC to DEST, with SRC. We do not do this
842 optimization if a CALL_INSN is crossed unless SRC already crosses a
843 call.
844
845 It is assumed that DEST and SRC are pseudos; it is too complicated to do
846 this for hard registers since the substitutions we may make might fail. */
847
848 static void
849 optimize_reg_copy_2 (insn, dest, src)
850 rtx insn;
851 rtx dest;
852 rtx src;
853 {
854 rtx p, q;
855 rtx set;
856 int sregno = REGNO (src);
857 int dregno = REGNO (dest);
858
859 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
860 {
861 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
862 || (GET_CODE (p) == NOTE
863 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
864 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
865 break;
866
867 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
868 continue;
869
870 set = single_set (p);
871 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
872 && find_reg_note (p, REG_DEAD, dest))
873 {
874 /* We can do the optimization. Scan forward from INSN again,
875 replacing regs as we go. */
876
877 /* Set to stop at next insn. */
878 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
879 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
880 {
881 if (reg_mentioned_p (dest, PATTERN (q)))
882 {
883 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
884
885 /* We assume that a register is used exactly once per
886 insn in the updates below. If this is not correct,
887 no great harm is done. */
888 reg_n_refs[dregno] -= loop_depth;
889 reg_n_refs[sregno] += loop_depth;
890 }
891
892
893 if (GET_CODE (q) == CALL_INSN)
894 {
895 reg_n_calls_crossed[dregno]--;
896 reg_n_calls_crossed[sregno]++;
897 }
898 }
899
900 remove_note (p, find_reg_note (p, REG_DEAD, dest));
901 reg_n_deaths[dregno]--;
902 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
903 reg_n_deaths[sregno]--;
904 return;
905 }
906
907 if (reg_set_p (src, p)
908 || (GET_CODE (p) == CALL_INSN && reg_n_calls_crossed[sregno] == 0))
909 break;
910 }
911 }
912 \f
913 /* Find registers that are equivalent to a single value throughout the
914 compilation (either because they can be referenced in memory or are set once
915 from a single constant). Lower their priority for a register.
916
917 If such a register is only referenced once, try substituting its value
918 into the using insn. If it succeeds, we can eliminate the register
919 completely. */
920
921 static void
922 update_equiv_regs ()
923 {
924 rtx *reg_equiv_init_insn = (rtx *) alloca (max_regno * sizeof (rtx *));
925 rtx *reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx *));
926 rtx insn;
927
928 bzero (reg_equiv_init_insn, max_regno * sizeof (rtx *));
929 bzero (reg_equiv_replacement, max_regno * sizeof (rtx *));
930
931 init_alias_analysis ();
932
933 loop_depth = 1;
934
935 /* Scan the insns and find which registers have equivalences. Do this
936 in a separate scan of the insns because (due to -fcse-follow-jumps)
937 a register can be set below its use. */
938 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
939 {
940 rtx note;
941 rtx set = single_set (insn);
942 rtx dest;
943 int regno;
944
945 if (GET_CODE (insn) == NOTE)
946 {
947 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
948 loop_depth++;
949 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
950 loop_depth--;
951 }
952
953 /* If this insn contains more (or less) than a single SET, ignore it. */
954 if (set == 0)
955 continue;
956
957 dest = SET_DEST (set);
958
959 /* If this sets a MEM to the contents of a REG that is only used
960 in a single basic block, see if the register is always equivalent
961 to that memory location and if moving the store from INSN to the
962 insn that set REG is safe. If so, put a REG_EQUIV note on the
963 initializing insn. */
964
965 if (GET_CODE (dest) == MEM && GET_CODE (SET_SRC (set)) == REG
966 && (regno = REGNO (SET_SRC (set))) >= FIRST_PSEUDO_REGISTER
967 && reg_basic_block[regno] >= 0
968 && reg_equiv_init_insn[regno] != 0
969 && validate_equiv_mem (reg_equiv_init_insn[regno], SET_SRC (set),
970 dest)
971 && ! memref_used_between_p (SET_DEST (set),
972 reg_equiv_init_insn[regno], insn))
973 REG_NOTES (reg_equiv_init_insn[regno])
974 = gen_rtx (EXPR_LIST, REG_EQUIV, dest,
975 REG_NOTES (reg_equiv_init_insn[regno]));
976
977 /* If this is a register-register copy where SRC is not dead, see if we
978 can optimize it. */
979 if (flag_expensive_optimizations && GET_CODE (dest) == REG
980 && GET_CODE (SET_SRC (set)) == REG
981 && ! find_reg_note (insn, REG_DEAD, SET_SRC (set)))
982 optimize_reg_copy_1 (insn, dest, SET_SRC (set));
983
984 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
985 else if (flag_expensive_optimizations && GET_CODE (dest) == REG
986 && REGNO (dest) >= FIRST_PSEUDO_REGISTER
987 && GET_CODE (SET_SRC (set)) == REG
988 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
989 && find_reg_note (insn, REG_DEAD, SET_SRC (set)))
990 optimize_reg_copy_2 (insn, dest, SET_SRC (set));
991
992 /* Otherwise, we only handle the case of a pseudo register being set
993 once. */
994 if (GET_CODE (dest) != REG
995 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
996 || reg_n_sets[regno] != 1)
997 continue;
998
999 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1000
1001 /* Record this insn as initializing this register. */
1002 reg_equiv_init_insn[regno] = insn;
1003
1004 /* If this register is known to be equal to a constant, record that
1005 it is always equivalent to the constant. */
1006 if (note && CONSTANT_P (XEXP (note, 0)))
1007 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
1008
1009 /* If this insn introduces a "constant" register, decrease the priority
1010 of that register. Record this insn if the register is only used once
1011 more and the equivalence value is the same as our source.
1012
1013 The latter condition is checked for two reasons: First, it is an
1014 indication that it may be more efficient to actually emit the insn
1015 as written (if no registers are available, reload will substitute
1016 the equivalence). Secondly, it avoids problems with any registers
1017 dying in this insn whose death notes would be missed.
1018
1019 If we don't have a REG_EQUIV note, see if this insn is loading
1020 a register used only in one basic block from a MEM. If so, and the
1021 MEM remains unchanged for the life of the register, add a REG_EQUIV
1022 note. */
1023
1024 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1025
1026 if (note == 0 && reg_basic_block[regno] >= 0
1027 && GET_CODE (SET_SRC (set)) == MEM
1028 && validate_equiv_mem (insn, dest, SET_SRC (set)))
1029 REG_NOTES (insn) = note = gen_rtx (EXPR_LIST, REG_EQUIV, SET_SRC (set),
1030 REG_NOTES (insn));
1031
1032 /* Don't mess with things live during setjmp. */
1033 if (note && reg_live_length[regno] >= 0)
1034 {
1035 int regno = REGNO (dest);
1036
1037 /* Note that the statement below does not affect the priority
1038 in local-alloc! */
1039 reg_live_length[regno] *= 2;
1040
1041 /* If the register is referenced exactly twice, meaning it is set
1042 once and used once, indicate that the reference may be replaced
1043 by the equivalence we computed above. If the register is only
1044 used in one basic block, this can't succeed or combine would
1045 have done it.
1046
1047 It would be nice to use "loop_depth * 2" in the compare
1048 below. Unfortunately, LOOP_DEPTH need not be constant within
1049 a basic block so this would be too complicated.
1050
1051 This case normally occurs when a parameter is read from memory
1052 and then used exactly once, not in a loop. */
1053
1054 if (reg_n_refs[regno] == 2
1055 && reg_basic_block[regno] < 0
1056 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
1057 reg_equiv_replacement[regno] = SET_SRC (set);
1058 }
1059 }
1060
1061 /* Now scan all regs killed in an insn to see if any of them are registers
1062 only used that once. If so, see if we can replace the reference with
1063 the equivalent from. If we can, delete the initializing reference
1064 and this register will go away. */
1065 for (insn = next_active_insn (get_insns ());
1066 insn;
1067 insn = next_active_insn (insn))
1068 {
1069 rtx link;
1070
1071 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1072 if (REG_NOTE_KIND (link) == REG_DEAD
1073 /* Make sure this insn still refers to the register. */
1074 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1075 {
1076 int regno = REGNO (XEXP (link, 0));
1077
1078 if (reg_equiv_replacement[regno]
1079 && validate_replace_rtx (regno_reg_rtx[regno],
1080 reg_equiv_replacement[regno], insn))
1081 {
1082 rtx equiv_insn = reg_equiv_init_insn[regno];
1083
1084 remove_death (regno, insn);
1085 reg_n_refs[regno] = 0;
1086 PUT_CODE (equiv_insn, NOTE);
1087 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1088 NOTE_SOURCE_FILE (equiv_insn) = 0;
1089 }
1090 }
1091 }
1092 }
1093 \f
1094 /* Allocate hard regs to the pseudo regs used only within block number B.
1095 Only the pseudos that die but once can be handled. */
1096
1097 static void
1098 block_alloc (b)
1099 int b;
1100 {
1101 register int i, q;
1102 register rtx insn;
1103 rtx note;
1104 int insn_number = 0;
1105 int insn_count = 0;
1106 int max_uid = get_max_uid ();
1107 int *qty_order;
1108 int no_conflict_combined_regno = -1;
1109 /* Counter to prevent allocating more SCRATCHes than can be stored
1110 in SCRATCH_LIST. */
1111 int scratches_allocated = scratch_index;
1112
1113 /* Count the instructions in the basic block. */
1114
1115 insn = basic_block_end[b];
1116 while (1)
1117 {
1118 if (GET_CODE (insn) != NOTE)
1119 if (++insn_count > max_uid)
1120 abort ();
1121 if (insn == basic_block_head[b])
1122 break;
1123 insn = PREV_INSN (insn);
1124 }
1125
1126 /* +2 to leave room for a post_mark_life at the last insn and for
1127 the birth of a CLOBBER in the first insn. */
1128 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1129 * sizeof (HARD_REG_SET));
1130 bzero (regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1131
1132 /* Initialize table of hardware registers currently live. */
1133
1134 #ifdef HARD_REG_SET
1135 regs_live = *basic_block_live_at_start[b];
1136 #else
1137 COPY_HARD_REG_SET (regs_live, basic_block_live_at_start[b]);
1138 #endif
1139
1140 /* This loop scans the instructions of the basic block
1141 and assigns quantities to registers.
1142 It computes which registers to tie. */
1143
1144 insn = basic_block_head[b];
1145 while (1)
1146 {
1147 register rtx body = PATTERN (insn);
1148
1149 if (GET_CODE (insn) != NOTE)
1150 insn_number++;
1151
1152 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1153 {
1154 register rtx link, set;
1155 register int win = 0;
1156 register rtx r0, r1;
1157 int combined_regno = -1;
1158 int i;
1159 int insn_code_number = recog_memoized (insn);
1160
1161 this_insn_number = insn_number;
1162 this_insn = insn;
1163
1164 if (insn_code_number >= 0)
1165 insn_extract (insn);
1166 which_alternative = -1;
1167
1168 /* Is this insn suitable for tying two registers?
1169 If so, try doing that.
1170 Suitable insns are those with at least two operands and where
1171 operand 0 is an output that is a register that is not
1172 earlyclobber.
1173
1174 We can tie operand 0 with some operand that dies in this insn.
1175 First look for operands that are required to be in the same
1176 register as operand 0. If we find such, only try tying that
1177 operand or one that can be put into that operand if the
1178 operation is commutative. If we don't find an operand
1179 that is required to be in the same register as operand 0,
1180 we can tie with any operand.
1181
1182 Subregs in place of regs are also ok.
1183
1184 If tying is done, WIN is set nonzero. */
1185
1186 if (insn_code_number >= 0
1187 #ifdef REGISTER_CONSTRAINTS
1188 && insn_n_operands[insn_code_number] > 1
1189 && insn_operand_constraint[insn_code_number][0][0] == '='
1190 && insn_operand_constraint[insn_code_number][0][1] != '&'
1191 #else
1192 && GET_CODE (PATTERN (insn)) == SET
1193 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1194 #endif
1195 )
1196 {
1197 #ifdef REGISTER_CONSTRAINTS
1198 int must_match_0 = -1;
1199
1200
1201 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1202 if (requires_inout_p
1203 (insn_operand_constraint[insn_code_number][i]))
1204 must_match_0 = i;
1205 #endif
1206
1207 r0 = recog_operand[0];
1208 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1209 {
1210 #ifdef REGISTER_CONSTRAINTS
1211 /* Skip this operand if we found an operand that
1212 must match operand 0 and this operand isn't it
1213 and can't be made to be it by commutativity. */
1214
1215 if (must_match_0 >= 0 && i != must_match_0
1216 && ! (i == must_match_0 + 1
1217 && insn_operand_constraint[insn_code_number][i-1][0] == '%')
1218 && ! (i == must_match_0 - 1
1219 && insn_operand_constraint[insn_code_number][i][0] == '%'))
1220 continue;
1221 #endif
1222
1223 r1 = recog_operand[i];
1224
1225 /* If the operand is an address, find a register in it.
1226 There may be more than one register, but we only try one
1227 of them. */
1228 if (
1229 #ifdef REGISTER_CONSTRAINTS
1230 insn_operand_constraint[insn_code_number][i][0] == 'p'
1231 #else
1232 insn_operand_address_p[insn_code_number][i]
1233 #endif
1234 )
1235 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1236 r1 = XEXP (r1, 0);
1237
1238 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1239 {
1240 /* We have two priorities for hard register preferences.
1241 If we have a move insn or an insn whose first input
1242 can only be in the same register as the output, give
1243 priority to an equivalence found from that insn. */
1244 int may_save_copy
1245 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1246 #ifdef REGISTER_CONSTRAINTS
1247 || (r1 == recog_operand[i] && must_match_0 >= 0)
1248 #endif
1249 );
1250
1251 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1252 win = combine_regs (r1, r0, may_save_copy,
1253 insn_number, insn, 0);
1254 }
1255 }
1256 }
1257
1258 /* Recognize an insn sequence with an ultimate result
1259 which can safely overlap one of the inputs.
1260 The sequence begins with a CLOBBER of its result,
1261 and ends with an insn that copies the result to itself
1262 and has a REG_EQUAL note for an equivalent formula.
1263 That note indicates what the inputs are.
1264 The result and the input can overlap if each insn in
1265 the sequence either doesn't mention the input
1266 or has a REG_NO_CONFLICT note to inhibit the conflict.
1267
1268 We do the combining test at the CLOBBER so that the
1269 destination register won't have had a quantity number
1270 assigned, since that would prevent combining. */
1271
1272 if (GET_CODE (PATTERN (insn)) == CLOBBER
1273 && (r0 = XEXP (PATTERN (insn), 0),
1274 GET_CODE (r0) == REG)
1275 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1276 && XEXP (link, 0) != 0
1277 && GET_CODE (XEXP (link, 0)) == INSN
1278 && (set = single_set (XEXP (link, 0))) != 0
1279 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1280 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1281 NULL_RTX)) != 0)
1282 {
1283 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1284 /* Check that we have such a sequence. */
1285 && no_conflict_p (insn, r0, r1))
1286 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1287 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1288 && (r1 = XEXP (XEXP (note, 0), 0),
1289 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1290 && no_conflict_p (insn, r0, r1))
1291 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1292
1293 /* Here we care if the operation to be computed is
1294 commutative. */
1295 else if ((GET_CODE (XEXP (note, 0)) == EQ
1296 || GET_CODE (XEXP (note, 0)) == NE
1297 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1298 && (r1 = XEXP (XEXP (note, 0), 1),
1299 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1300 && no_conflict_p (insn, r0, r1))
1301 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1302
1303 /* If we did combine something, show the register number
1304 in question so that we know to ignore its death. */
1305 if (win)
1306 no_conflict_combined_regno = REGNO (r1);
1307 }
1308
1309 /* If registers were just tied, set COMBINED_REGNO
1310 to the number of the register used in this insn
1311 that was tied to the register set in this insn.
1312 This register's qty should not be "killed". */
1313
1314 if (win)
1315 {
1316 while (GET_CODE (r1) == SUBREG)
1317 r1 = SUBREG_REG (r1);
1318 combined_regno = REGNO (r1);
1319 }
1320
1321 /* Mark the death of everything that dies in this instruction,
1322 except for anything that was just combined. */
1323
1324 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1325 if (REG_NOTE_KIND (link) == REG_DEAD
1326 && GET_CODE (XEXP (link, 0)) == REG
1327 && combined_regno != REGNO (XEXP (link, 0))
1328 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1329 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1330 wipe_dead_reg (XEXP (link, 0), 0);
1331
1332 /* Allocate qty numbers for all registers local to this block
1333 that are born (set) in this instruction.
1334 A pseudo that already has a qty is not changed. */
1335
1336 note_stores (PATTERN (insn), reg_is_set);
1337
1338 /* If anything is set in this insn and then unused, mark it as dying
1339 after this insn, so it will conflict with our outputs. This
1340 can't match with something that combined, and it doesn't matter
1341 if it did. Do this after the calls to reg_is_set since these
1342 die after, not during, the current insn. */
1343
1344 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1345 if (REG_NOTE_KIND (link) == REG_UNUSED
1346 && GET_CODE (XEXP (link, 0)) == REG)
1347 wipe_dead_reg (XEXP (link, 0), 1);
1348
1349 /* Allocate quantities for any SCRATCH operands of this insn. */
1350
1351 if (insn_code_number >= 0)
1352 for (i = 0; i < insn_n_operands[insn_code_number]; i++)
1353 if (GET_CODE (recog_operand[i]) == SCRATCH
1354 && scratches_allocated++ < scratch_list_length)
1355 alloc_qty_for_scratch (recog_operand[i], i, insn,
1356 insn_code_number, insn_number);
1357
1358 /* If this is an insn that has a REG_RETVAL note pointing at a
1359 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1360 block, so clear any register number that combined within it. */
1361 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1362 && GET_CODE (XEXP (note, 0)) == INSN
1363 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1364 no_conflict_combined_regno = -1;
1365 }
1366
1367 /* Set the registers live after INSN_NUMBER. Note that we never
1368 record the registers live before the block's first insn, since no
1369 pseudos we care about are live before that insn. */
1370
1371 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1372 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1373
1374 if (insn == basic_block_end[b])
1375 break;
1376
1377 insn = NEXT_INSN (insn);
1378 }
1379
1380 /* Now every register that is local to this basic block
1381 should have been given a quantity, or else -1 meaning ignore it.
1382 Every quantity should have a known birth and death.
1383
1384 Order the qtys so we assign them registers in order of
1385 decreasing length of life. Normally call qsort, but if we
1386 have only a very small number of quantities, sort them ourselves. */
1387
1388 qty_order = (int *) alloca (next_qty * sizeof (int));
1389 for (i = 0; i < next_qty; i++)
1390 qty_order[i] = i;
1391
1392 #define EXCHANGE(I1, I2) \
1393 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1394
1395 switch (next_qty)
1396 {
1397 case 3:
1398 /* Make qty_order[2] be the one to allocate last. */
1399 if (qty_compare (0, 1) > 0)
1400 EXCHANGE (0, 1);
1401 if (qty_compare (1, 2) > 0)
1402 EXCHANGE (2, 1);
1403
1404 /* ... Fall through ... */
1405 case 2:
1406 /* Put the best one to allocate in qty_order[0]. */
1407 if (qty_compare (0, 1) > 0)
1408 EXCHANGE (0, 1);
1409
1410 /* ... Fall through ... */
1411
1412 case 1:
1413 case 0:
1414 /* Nothing to do here. */
1415 break;
1416
1417 default:
1418 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1419 }
1420
1421 /* Try to put each quantity in a suggested physical register, if it has one.
1422 This may cause registers to be allocated that otherwise wouldn't be, but
1423 this seems acceptable in local allocation (unlike global allocation). */
1424 for (i = 0; i < next_qty; i++)
1425 {
1426 q = qty_order[i];
1427 if (qty_phys_has_sugg[q] || qty_phys_has_copy_sugg[q])
1428 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1429 0, 1, qty_birth[q], qty_death[q]);
1430 else
1431 qty_phys_reg[q] = -1;
1432 }
1433
1434 /* Now for each qty that is not a hardware register,
1435 look for a hardware register to put it in.
1436 First try the register class that is cheapest for this qty,
1437 if there is more than one class. */
1438
1439 for (i = 0; i < next_qty; i++)
1440 {
1441 q = qty_order[i];
1442 if (qty_phys_reg[q] < 0)
1443 {
1444 if (N_REG_CLASSES > 1)
1445 {
1446 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1447 qty_mode[q], q, 0, 0,
1448 qty_birth[q], qty_death[q]);
1449 if (qty_phys_reg[q] >= 0)
1450 continue;
1451 }
1452
1453 if (qty_alternate_class[q] != NO_REGS)
1454 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1455 qty_mode[q], q, 0, 0,
1456 qty_birth[q], qty_death[q]);
1457 }
1458 }
1459
1460 /* Now propagate the register assignments
1461 to the pseudo regs belonging to the qtys. */
1462
1463 for (q = 0; q < next_qty; q++)
1464 if (qty_phys_reg[q] >= 0)
1465 {
1466 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1467 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1468 if (qty_scratch_rtx[q])
1469 {
1470 if (GET_CODE (qty_scratch_rtx[q]) == REG)
1471 abort ();
1472 PUT_CODE (qty_scratch_rtx[q], REG);
1473 REGNO (qty_scratch_rtx[q]) = qty_phys_reg[q];
1474
1475 scratch_block[scratch_index] = b;
1476 scratch_list[scratch_index++] = qty_scratch_rtx[q];
1477
1478 /* Must clear the USED field, because it will have been set by
1479 copy_rtx_if_shared, but the leaf_register code expects that
1480 it is zero in all REG rtx. copy_rtx_if_shared does not set the
1481 used bit for REGs, but does for SCRATCHes. */
1482 qty_scratch_rtx[q]->used = 0;
1483 }
1484 }
1485 }
1486 \f
1487 /* Compare two quantities' priority for getting real registers.
1488 We give shorter-lived quantities higher priority.
1489 Quantities with more references are also preferred, as are quantities that
1490 require multiple registers. This is the identical prioritization as
1491 done by global-alloc.
1492
1493 We used to give preference to registers with *longer* lives, but using
1494 the same algorithm in both local- and global-alloc can speed up execution
1495 of some programs by as much as a factor of three! */
1496
1497 static int
1498 qty_compare (q1, q2)
1499 int q1, q2;
1500 {
1501 /* Note that the quotient will never be bigger than
1502 the value of floor_log2 times the maximum number of
1503 times a register can occur in one insn (surely less than 100).
1504 Multiplying this by 10000 can't overflow. */
1505 register int pri1
1506 = (((double) (floor_log2 (qty_n_refs[q1]) * qty_n_refs[q1] * qty_size[q1])
1507 / (qty_death[q1] - qty_birth[q1]))
1508 * 10000);
1509 register int pri2
1510 = (((double) (floor_log2 (qty_n_refs[q2]) * qty_n_refs[q2] * qty_size[q2])
1511 / (qty_death[q2] - qty_birth[q2]))
1512 * 10000);
1513 return pri2 - pri1;
1514 }
1515
1516 static int
1517 qty_compare_1 (q1, q2)
1518 int *q1, *q2;
1519 {
1520 register int tem;
1521
1522 /* Note that the quotient will never be bigger than
1523 the value of floor_log2 times the maximum number of
1524 times a register can occur in one insn (surely less than 100).
1525 Multiplying this by 10000 can't overflow. */
1526 register int pri1
1527 = (((double) (floor_log2 (qty_n_refs[*q1]) * qty_n_refs[*q1]
1528 * qty_size[*q1])
1529 / (qty_death[*q1] - qty_birth[*q1]))
1530 * 10000);
1531 register int pri2
1532 = (((double) (floor_log2 (qty_n_refs[*q2]) * qty_n_refs[*q2]
1533 * qty_size[*q2])
1534 / (qty_death[*q2] - qty_birth[*q2]))
1535 * 10000);
1536
1537 tem = pri2 - pri1;
1538 if (tem != 0) return tem;
1539 /* If qtys are equally good, sort by qty number,
1540 so that the results of qsort leave nothing to chance. */
1541 return *q1 - *q2;
1542 }
1543 \f
1544 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1545 Returns 1 if have done so, or 0 if cannot.
1546
1547 Combining registers means marking them as having the same quantity
1548 and adjusting the offsets within the quantity if either of
1549 them is a SUBREG).
1550
1551 We don't actually combine a hard reg with a pseudo; instead
1552 we just record the hard reg as the suggestion for the pseudo's quantity.
1553 If we really combined them, we could lose if the pseudo lives
1554 across an insn that clobbers the hard reg (eg, movstr).
1555
1556 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1557 there is no REG_DEAD note on INSN. This occurs during the processing
1558 of REG_NO_CONFLICT blocks.
1559
1560 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1561 SETREG or if the input and output must share a register.
1562 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1563
1564 There are elaborate checks for the validity of combining. */
1565
1566
1567 static int
1568 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1569 rtx usedreg, setreg;
1570 int may_save_copy;
1571 int insn_number;
1572 rtx insn;
1573 int already_dead;
1574 {
1575 register int ureg, sreg;
1576 register int offset = 0;
1577 int usize, ssize;
1578 register int sqty;
1579
1580 /* Determine the numbers and sizes of registers being used. If a subreg
1581 is present that does not change the entire register, don't consider
1582 this a copy insn. */
1583
1584 while (GET_CODE (usedreg) == SUBREG)
1585 {
1586 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1587 may_save_copy = 0;
1588 offset += SUBREG_WORD (usedreg);
1589 usedreg = SUBREG_REG (usedreg);
1590 }
1591 if (GET_CODE (usedreg) != REG)
1592 return 0;
1593 ureg = REGNO (usedreg);
1594 usize = REG_SIZE (usedreg);
1595
1596 while (GET_CODE (setreg) == SUBREG)
1597 {
1598 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1599 may_save_copy = 0;
1600 offset -= SUBREG_WORD (setreg);
1601 setreg = SUBREG_REG (setreg);
1602 }
1603 if (GET_CODE (setreg) != REG)
1604 return 0;
1605 sreg = REGNO (setreg);
1606 ssize = REG_SIZE (setreg);
1607
1608 /* If UREG is a pseudo-register that hasn't already been assigned a
1609 quantity number, it means that it is not local to this block or dies
1610 more than once. In either event, we can't do anything with it. */
1611 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1612 /* Do not combine registers unless one fits within the other. */
1613 || (offset > 0 && usize + offset > ssize)
1614 || (offset < 0 && usize + offset < ssize)
1615 /* Do not combine with a smaller already-assigned object
1616 if that smaller object is already combined with something bigger. */
1617 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1618 && usize < qty_size[reg_qty[ureg]])
1619 /* Can't combine if SREG is not a register we can allocate. */
1620 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1621 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1622 These have already been taken care of. This probably wouldn't
1623 combine anyway, but don't take any chances. */
1624 || (ureg >= FIRST_PSEUDO_REGISTER
1625 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1626 /* Don't tie something to itself. In most cases it would make no
1627 difference, but it would screw up if the reg being tied to itself
1628 also dies in this insn. */
1629 || ureg == sreg
1630 /* Don't try to connect two different hardware registers. */
1631 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1632 /* Don't connect two different machine modes if they have different
1633 implications as to which registers may be used. */
1634 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1635 return 0;
1636
1637 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1638 qty_phys_sugg for the pseudo instead of tying them.
1639
1640 Return "failure" so that the lifespan of UREG is terminated here;
1641 that way the two lifespans will be disjoint and nothing will prevent
1642 the pseudo reg from being given this hard reg. */
1643
1644 if (ureg < FIRST_PSEUDO_REGISTER)
1645 {
1646 /* Allocate a quantity number so we have a place to put our
1647 suggestions. */
1648 if (reg_qty[sreg] == -2)
1649 reg_is_born (setreg, 2 * insn_number);
1650
1651 if (reg_qty[sreg] >= 0)
1652 {
1653 if (may_save_copy)
1654 {
1655 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1656 qty_phys_has_copy_sugg[reg_qty[sreg]] = 1;
1657 }
1658 else
1659 {
1660 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1661 qty_phys_has_sugg[reg_qty[sreg]] = 1;
1662 }
1663 }
1664 return 0;
1665 }
1666
1667 /* Similarly for SREG a hard register and UREG a pseudo register. */
1668
1669 if (sreg < FIRST_PSEUDO_REGISTER)
1670 {
1671 if (may_save_copy)
1672 {
1673 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1674 qty_phys_has_copy_sugg[reg_qty[ureg]] = 1;
1675 }
1676 else
1677 {
1678 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1679 qty_phys_has_sugg[reg_qty[ureg]] = 1;
1680 }
1681 return 0;
1682 }
1683
1684 /* At this point we know that SREG and UREG are both pseudos.
1685 Do nothing if SREG already has a quantity or is a register that we
1686 don't allocate. */
1687 if (reg_qty[sreg] >= -1
1688 /* If we are not going to let any regs live across calls,
1689 don't tie a call-crossing reg to a non-call-crossing reg. */
1690 || (current_function_has_nonlocal_label
1691 && ((reg_n_calls_crossed[ureg] > 0)
1692 != (reg_n_calls_crossed[sreg] > 0))))
1693 return 0;
1694
1695 /* We don't already know about SREG, so tie it to UREG
1696 if this is the last use of UREG, provided the classes they want
1697 are compatible. */
1698
1699 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1700 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1701 {
1702 /* Add SREG to UREG's quantity. */
1703 sqty = reg_qty[ureg];
1704 reg_qty[sreg] = sqty;
1705 reg_offset[sreg] = reg_offset[ureg] + offset;
1706 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1707 qty_first_reg[sqty] = sreg;
1708
1709 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1710 update_qty_class (sqty, sreg);
1711
1712 /* Update info about quantity SQTY. */
1713 qty_n_calls_crossed[sqty] += reg_n_calls_crossed[sreg];
1714 qty_n_refs[sqty] += reg_n_refs[sreg];
1715 if (usize < ssize)
1716 {
1717 register int i;
1718
1719 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1720 reg_offset[i] -= offset;
1721
1722 qty_size[sqty] = ssize;
1723 qty_mode[sqty] = GET_MODE (setreg);
1724 }
1725 }
1726 else
1727 return 0;
1728
1729 return 1;
1730 }
1731 \f
1732 /* Return 1 if the preferred class of REG allows it to be tied
1733 to a quantity or register whose class is CLASS.
1734 True if REG's reg class either contains or is contained in CLASS. */
1735
1736 static int
1737 reg_meets_class_p (reg, class)
1738 int reg;
1739 enum reg_class class;
1740 {
1741 register enum reg_class rclass = reg_preferred_class (reg);
1742 return (reg_class_subset_p (rclass, class)
1743 || reg_class_subset_p (class, rclass));
1744 }
1745
1746 /* Return 1 if the two specified classes have registers in common.
1747 If CALL_SAVED, then consider only call-saved registers. */
1748
1749 static int
1750 reg_classes_overlap_p (c1, c2, call_saved)
1751 register enum reg_class c1;
1752 register enum reg_class c2;
1753 int call_saved;
1754 {
1755 HARD_REG_SET c;
1756 int i;
1757
1758 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
1759 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
1760
1761 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1762 if (TEST_HARD_REG_BIT (c, i)
1763 && (! call_saved || ! call_used_regs[i]))
1764 return 1;
1765
1766 return 0;
1767 }
1768
1769 /* Update the class of QTY assuming that REG is being tied to it. */
1770
1771 static void
1772 update_qty_class (qty, reg)
1773 int qty;
1774 int reg;
1775 {
1776 enum reg_class rclass = reg_preferred_class (reg);
1777 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1778 qty_min_class[qty] = rclass;
1779
1780 rclass = reg_alternate_class (reg);
1781 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1782 qty_alternate_class[qty] = rclass;
1783 }
1784 \f
1785 /* Handle something which alters the value of an rtx REG.
1786
1787 REG is whatever is set or clobbered. SETTER is the rtx that
1788 is modifying the register.
1789
1790 If it is not really a register, we do nothing.
1791 The file-global variables `this_insn' and `this_insn_number'
1792 carry info from `block_alloc'. */
1793
1794 static void
1795 reg_is_set (reg, setter)
1796 rtx reg;
1797 rtx setter;
1798 {
1799 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1800 a hard register. These may actually not exist any more. */
1801
1802 if (GET_CODE (reg) != SUBREG
1803 && GET_CODE (reg) != REG)
1804 return;
1805
1806 /* Mark this register as being born. If it is used in a CLOBBER, mark
1807 it as being born halfway between the previous insn and this insn so that
1808 it conflicts with our inputs but not the outputs of the previous insn. */
1809
1810 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1811 }
1812 \f
1813 /* Handle beginning of the life of register REG.
1814 BIRTH is the index at which this is happening. */
1815
1816 static void
1817 reg_is_born (reg, birth)
1818 rtx reg;
1819 int birth;
1820 {
1821 register int regno;
1822
1823 if (GET_CODE (reg) == SUBREG)
1824 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1825 else
1826 regno = REGNO (reg);
1827
1828 if (regno < FIRST_PSEUDO_REGISTER)
1829 {
1830 mark_life (regno, GET_MODE (reg), 1);
1831
1832 /* If the register was to have been born earlier that the present
1833 insn, mark it as live where it is actually born. */
1834 if (birth < 2 * this_insn_number)
1835 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1836 }
1837 else
1838 {
1839 if (reg_qty[regno] == -2)
1840 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1841
1842 /* If this register has a quantity number, show that it isn't dead. */
1843 if (reg_qty[regno] >= 0)
1844 qty_death[reg_qty[regno]] = -1;
1845 }
1846 }
1847
1848 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1849 REG is an output that is dying (i.e., it is never used), otherwise it
1850 is an input (the normal case).
1851 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1852
1853 static void
1854 wipe_dead_reg (reg, output_p)
1855 register rtx reg;
1856 int output_p;
1857 {
1858 register int regno = REGNO (reg);
1859
1860 /* If this insn has multiple results,
1861 and the dead reg is used in one of the results,
1862 extend its life to after this insn,
1863 so it won't get allocated together with any other result of this insn. */
1864 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1865 && !single_set (this_insn))
1866 {
1867 int i;
1868 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1869 {
1870 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1871 if (GET_CODE (set) == SET
1872 && GET_CODE (SET_DEST (set)) != REG
1873 && !rtx_equal_p (reg, SET_DEST (set))
1874 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1875 output_p = 1;
1876 }
1877 }
1878
1879 if (regno < FIRST_PSEUDO_REGISTER)
1880 {
1881 mark_life (regno, GET_MODE (reg), 0);
1882
1883 /* If a hard register is dying as an output, mark it as in use at
1884 the beginning of this insn (the above statement would cause this
1885 not to happen). */
1886 if (output_p)
1887 post_mark_life (regno, GET_MODE (reg), 1,
1888 2 * this_insn_number, 2 * this_insn_number+ 1);
1889 }
1890
1891 else if (reg_qty[regno] >= 0)
1892 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1893 }
1894 \f
1895 /* Find a block of SIZE words of hard regs in reg_class CLASS
1896 that can hold something of machine-mode MODE
1897 (but actually we test only the first of the block for holding MODE)
1898 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1899 and return the number of the first of them.
1900 Return -1 if such a block cannot be found.
1901 If QTY crosses calls, insist on a register preserved by calls,
1902 unless ACCEPT_CALL_CLOBBERED is nonzero.
1903
1904 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1905 register is available. If not, return -1. */
1906
1907 static int
1908 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1909 born_index, dead_index)
1910 enum reg_class class;
1911 enum machine_mode mode;
1912 int accept_call_clobbered;
1913 int just_try_suggested;
1914 int qty;
1915 int born_index, dead_index;
1916 {
1917 register int i, ins;
1918 #ifdef HARD_REG_SET
1919 register /* Declare it register if it's a scalar. */
1920 #endif
1921 HARD_REG_SET used, first_used;
1922 #ifdef ELIMINABLE_REGS
1923 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1924 #endif
1925
1926 /* Validate our parameters. */
1927 if (born_index < 0 || born_index > dead_index)
1928 abort ();
1929
1930 /* Don't let a pseudo live in a reg across a function call
1931 if we might get a nonlocal goto. */
1932 if (current_function_has_nonlocal_label
1933 && qty_n_calls_crossed[qty] > 0)
1934 return -1;
1935
1936 if (accept_call_clobbered)
1937 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1938 else if (qty_n_calls_crossed[qty] == 0)
1939 COPY_HARD_REG_SET (used, fixed_reg_set);
1940 else
1941 COPY_HARD_REG_SET (used, call_used_reg_set);
1942
1943 for (ins = born_index; ins < dead_index; ins++)
1944 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1945
1946 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1947
1948 /* Don't use the frame pointer reg in local-alloc even if
1949 we may omit the frame pointer, because if we do that and then we
1950 need a frame pointer, reload won't know how to move the pseudo
1951 to another hard reg. It can move only regs made by global-alloc.
1952
1953 This is true of any register that can be eliminated. */
1954 #ifdef ELIMINABLE_REGS
1955 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
1956 SET_HARD_REG_BIT (used, eliminables[i].from);
1957 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1958 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
1959 that it might be eliminated into. */
1960 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
1961 #endif
1962 #else
1963 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1964 #endif
1965
1966 /* Normally, the registers that can be used for the first register in
1967 a multi-register quantity are the same as those that can be used for
1968 subsequent registers. However, if just trying suggested registers,
1969 restrict our consideration to them. If there are copy-suggested
1970 register, try them. Otherwise, try the arithmetic-suggested
1971 registers. */
1972 COPY_HARD_REG_SET (first_used, used);
1973
1974 if (just_try_suggested)
1975 {
1976 if (qty_phys_has_copy_sugg[qty])
1977 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
1978 else
1979 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
1980 }
1981
1982 /* If all registers are excluded, we can't do anything. */
1983 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
1984
1985 /* If at least one would be suitable, test each hard reg. */
1986
1987 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1988 {
1989 #ifdef REG_ALLOC_ORDER
1990 int regno = reg_alloc_order[i];
1991 #else
1992 int regno = i;
1993 #endif
1994 if (! TEST_HARD_REG_BIT (first_used, regno)
1995 && HARD_REGNO_MODE_OK (regno, mode))
1996 {
1997 register int j;
1998 register int size1 = HARD_REGNO_NREGS (regno, mode);
1999 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2000 if (j == size1)
2001 {
2002 /* Mark that this register is in use between its birth and death
2003 insns. */
2004 post_mark_life (regno, mode, 1, born_index, dead_index);
2005 return regno;
2006 }
2007 #ifndef REG_ALLOC_ORDER
2008 i += j; /* Skip starting points we know will lose */
2009 #endif
2010 }
2011 }
2012
2013 fail:
2014
2015 /* If we are just trying suggested register, we have just tried copy-
2016 suggested registers, and there are arithmetic-suggested registers,
2017 try them. */
2018
2019 /* If it would be profitable to allocate a call-clobbered register
2020 and save and restore it around calls, do that. */
2021 if (just_try_suggested && qty_phys_has_copy_sugg[qty]
2022 && qty_phys_has_sugg[qty])
2023 {
2024 /* Don't try the copy-suggested regs again. */
2025 qty_phys_has_copy_sugg[qty] = 0;
2026 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2027 born_index, dead_index);
2028 }
2029
2030 /* We need not check to see if the current function has nonlocal
2031 labels because we don't put any pseudos that are live over calls in
2032 registers in that case. */
2033
2034 if (! accept_call_clobbered
2035 && flag_caller_saves
2036 && ! just_try_suggested
2037 && qty_n_calls_crossed[qty] != 0
2038 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2039 {
2040 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2041 if (i >= 0)
2042 caller_save_needed = 1;
2043 return i;
2044 }
2045 return -1;
2046 }
2047 \f
2048 /* Mark that REGNO with machine-mode MODE is live starting from the current
2049 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2050 is zero). */
2051
2052 static void
2053 mark_life (regno, mode, life)
2054 register int regno;
2055 enum machine_mode mode;
2056 int life;
2057 {
2058 register int j = HARD_REGNO_NREGS (regno, mode);
2059 if (life)
2060 while (--j >= 0)
2061 SET_HARD_REG_BIT (regs_live, regno + j);
2062 else
2063 while (--j >= 0)
2064 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2065 }
2066
2067 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2068 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2069 to insn number DEATH (exclusive). */
2070
2071 static void
2072 post_mark_life (regno, mode, life, birth, death)
2073 register int regno, life, birth;
2074 enum machine_mode mode;
2075 int death;
2076 {
2077 register int j = HARD_REGNO_NREGS (regno, mode);
2078 #ifdef HARD_REG_SET
2079 register /* Declare it register if it's a scalar. */
2080 #endif
2081 HARD_REG_SET this_reg;
2082
2083 CLEAR_HARD_REG_SET (this_reg);
2084 while (--j >= 0)
2085 SET_HARD_REG_BIT (this_reg, regno + j);
2086
2087 if (life)
2088 while (birth < death)
2089 {
2090 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2091 birth++;
2092 }
2093 else
2094 while (birth < death)
2095 {
2096 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2097 birth++;
2098 }
2099 }
2100 \f
2101 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2102 is the register being clobbered, and R1 is a register being used in
2103 the equivalent expression.
2104
2105 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2106 in which it is used, return 1.
2107
2108 Otherwise, return 0. */
2109
2110 static int
2111 no_conflict_p (insn, r0, r1)
2112 rtx insn, r0, r1;
2113 {
2114 int ok = 0;
2115 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2116 rtx p, last;
2117
2118 /* If R1 is a hard register, return 0 since we handle this case
2119 when we scan the insns that actually use it. */
2120
2121 if (note == 0
2122 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2123 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2124 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2125 return 0;
2126
2127 last = XEXP (note, 0);
2128
2129 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2130 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2131 {
2132 if (find_reg_note (p, REG_DEAD, r1))
2133 ok = 1;
2134
2135 if (reg_mentioned_p (r1, PATTERN (p))
2136 && ! find_reg_note (p, REG_NO_CONFLICT, r1))
2137 return 0;
2138 }
2139
2140 return ok;
2141 }
2142 \f
2143 #ifdef REGISTER_CONSTRAINTS
2144
2145 /* Return 1 if the constraint string P indicates that the a the operand
2146 must be equal to operand 0 and that no register is acceptable. */
2147
2148 static int
2149 requires_inout_p (p)
2150 char *p;
2151 {
2152 char c;
2153 int found_zero = 0;
2154
2155 while (c = *p++)
2156 switch (c)
2157 {
2158 case '0':
2159 found_zero = 1;
2160 break;
2161
2162 case '=': case '+': case '?':
2163 case '#': case '&': case '!':
2164 case '*': case '%': case ',':
2165 case '1': case '2': case '3': case '4':
2166 case 'm': case '<': case '>': case 'V': case 'o':
2167 case 'E': case 'F': case 'G': case 'H':
2168 case 's': case 'i': case 'n':
2169 case 'I': case 'J': case 'K': case 'L':
2170 case 'M': case 'N': case 'O': case 'P':
2171 #ifdef EXTRA_CONSTRAINT
2172 case 'Q': case 'R': case 'S': case 'T': case 'U':
2173 #endif
2174 case 'X':
2175 /* These don't say anything we care about. */
2176 break;
2177
2178 case 'p':
2179 case 'g': case 'r':
2180 default:
2181 /* These mean a register is allowed. Fail if so. */
2182 return 0;
2183 }
2184
2185 return found_zero;
2186 }
2187 #endif /* REGISTER_CONSTRAINTS */
2188 \f
2189 void
2190 dump_local_alloc (file)
2191 FILE *file;
2192 {
2193 register int i;
2194 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2195 if (reg_renumber[i] != -1)
2196 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2197 }
This page took 0.14715 seconds and 6 git commands to generate.