]> gcc.gnu.org Git - gcc.git/blob - gcc/local-alloc.c
integrate.c (allocate_initial_values): New function.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 #include "except.h"
77 \f
78 /* Next quantity number available for allocation. */
79
80 static int next_qty;
81
82 /* Information we maitain about each quantity. */
83 struct qty
84 {
85 /* The number of refs to quantity Q. */
86
87 int n_refs;
88
89 /* The frequency of uses of quantity Q. */
90
91 int freq;
92
93 /* Insn number (counting from head of basic block)
94 where quantity Q was born. -1 if birth has not been recorded. */
95
96 int birth;
97
98 /* Insn number (counting from head of basic block)
99 where given quantity died. Due to the way tying is done,
100 and the fact that we consider in this pass only regs that die but once,
101 a quantity can die only once. Each quantity's life span
102 is a set of consecutive insns. -1 if death has not been recorded. */
103
104 int death;
105
106 /* Number of words needed to hold the data in given quantity.
107 This depends on its machine mode. It is used for these purposes:
108 1. It is used in computing the relative importances of qtys,
109 which determines the order in which we look for regs for them.
110 2. It is used in rules that prevent tying several registers of
111 different sizes in a way that is geometrically impossible
112 (see combine_regs). */
113
114 int size;
115
116 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
117
118 int n_calls_crossed;
119
120 /* The register number of one pseudo register whose reg_qty value is Q.
121 This register should be the head of the chain
122 maintained in reg_next_in_qty. */
123
124 int first_reg;
125
126 /* Reg class contained in (smaller than) the preferred classes of all
127 the pseudo regs that are tied in given quantity.
128 This is the preferred class for allocating that quantity. */
129
130 enum reg_class min_class;
131
132 /* Register class within which we allocate given qty if we can't get
133 its preferred class. */
134
135 enum reg_class alternate_class;
136
137 /* This holds the mode of the registers that are tied to given qty,
138 or VOIDmode if registers with differing modes are tied together. */
139
140 enum machine_mode mode;
141
142 /* the hard reg number chosen for given quantity,
143 or -1 if none was found. */
144
145 short phys_reg;
146
147 /* Nonzero if this quantity has been used in a SUBREG in some
148 way that is illegal. */
149
150 char changes_mode;
151
152 };
153
154 static struct qty *qty;
155
156 /* These fields are kept separately to speedup their clearing. */
157
158 /* We maintain two hard register sets that indicate suggested hard registers
159 for each quantity. The first, phys_copy_sugg, contains hard registers
160 that are tied to the quantity by a simple copy. The second contains all
161 hard registers that are tied to the quantity via an arithmetic operation.
162
163 The former register set is given priority for allocation. This tends to
164 eliminate copy insns. */
165
166 /* Element Q is a set of hard registers that are suggested for quantity Q by
167 copy insns. */
168
169 static HARD_REG_SET *qty_phys_copy_sugg;
170
171 /* Element Q is a set of hard registers that are suggested for quantity Q by
172 arithmetic insns. */
173
174 static HARD_REG_SET *qty_phys_sugg;
175
176 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
177
178 static short *qty_phys_num_copy_sugg;
179
180 /* Element Q is the number of suggested registers in qty_phys_sugg. */
181
182 static short *qty_phys_num_sugg;
183
184 /* If (REG N) has been assigned a quantity number, is a register number
185 of another register assigned the same quantity number, or -1 for the
186 end of the chain. qty->first_reg point to the head of this chain. */
187
188 static int *reg_next_in_qty;
189
190 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
191 if it is >= 0,
192 of -1 if this register cannot be allocated by local-alloc,
193 or -2 if not known yet.
194
195 Note that if we see a use or death of pseudo register N with
196 reg_qty[N] == -2, register N must be local to the current block. If
197 it were used in more than one block, we would have reg_qty[N] == -1.
198 This relies on the fact that if reg_basic_block[N] is >= 0, register N
199 will not appear in any other block. We save a considerable number of
200 tests by exploiting this.
201
202 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
203 be referenced. */
204
205 static int *reg_qty;
206
207 /* The offset (in words) of register N within its quantity.
208 This can be nonzero if register N is SImode, and has been tied
209 to a subreg of a DImode register. */
210
211 static char *reg_offset;
212
213 /* Vector of substitutions of register numbers,
214 used to map pseudo regs into hardware regs.
215 This is set up as a result of register allocation.
216 Element N is the hard reg assigned to pseudo reg N,
217 or is -1 if no hard reg was assigned.
218 If N is a hard reg number, element N is N. */
219
220 short *reg_renumber;
221
222 /* Set of hard registers live at the current point in the scan
223 of the instructions in a basic block. */
224
225 static HARD_REG_SET regs_live;
226
227 /* Each set of hard registers indicates registers live at a particular
228 point in the basic block. For N even, regs_live_at[N] says which
229 hard registers are needed *after* insn N/2 (i.e., they may not
230 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
231
232 If an object is to conflict with the inputs of insn J but not the
233 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
234 if it is to conflict with the outputs of insn J but not the inputs of
235 insn J + 1, it is said to die at index J*2 + 1. */
236
237 static HARD_REG_SET *regs_live_at;
238
239 /* Communicate local vars `insn_number' and `insn'
240 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
241 static int this_insn_number;
242 static rtx this_insn;
243
244 struct equivalence
245 {
246 /* Set when an attempt should be made to replace a register
247 with the associated src entry. */
248
249 char replace;
250
251 /* Set when a REG_EQUIV note is found or created. Use to
252 keep track of what memory accesses might be created later,
253 e.g. by reload. */
254
255 rtx replacement;
256
257 rtx src;
258
259 /* Loop depth is used to recognize equivalences which appear
260 to be present within the same loop (or in an inner loop). */
261
262 int loop_depth;
263
264 /* The list of each instruction which initializes this register. */
265
266 rtx init_insns;
267 };
268
269 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
270 structure for that register. */
271
272 static struct equivalence *reg_equiv;
273
274 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
275 static int recorded_label_ref;
276
277 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
278 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
279 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
280 static int equiv_init_varies_p PARAMS ((rtx));
281 static int equiv_init_movable_p PARAMS ((rtx, int));
282 static int contains_replace_regs PARAMS ((rtx));
283 static int memref_referenced_p PARAMS ((rtx, rtx));
284 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
285 static void update_equiv_regs PARAMS ((void));
286 static void no_equiv PARAMS ((rtx, rtx, void *));
287 static void block_alloc PARAMS ((int));
288 static int qty_sugg_compare PARAMS ((int, int));
289 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
290 static int qty_compare PARAMS ((int, int));
291 static int qty_compare_1 PARAMS ((const PTR, const PTR));
292 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
293 static int reg_meets_class_p PARAMS ((int, enum reg_class));
294 static void update_qty_class PARAMS ((int, int));
295 static void reg_is_set PARAMS ((rtx, rtx, void *));
296 static void reg_is_born PARAMS ((rtx, int));
297 static void wipe_dead_reg PARAMS ((rtx, int));
298 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
299 int, int, int, int, int));
300 static void mark_life PARAMS ((int, enum machine_mode, int));
301 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
302 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
303 static int requires_inout PARAMS ((const char *));
304 \f
305 /* Allocate a new quantity (new within current basic block)
306 for register number REGNO which is born at index BIRTH
307 within the block. MODE and SIZE are info on reg REGNO. */
308
309 static void
310 alloc_qty (regno, mode, size, birth)
311 int regno;
312 enum machine_mode mode;
313 int size, birth;
314 {
315 register int qtyno = next_qty++;
316
317 reg_qty[regno] = qtyno;
318 reg_offset[regno] = 0;
319 reg_next_in_qty[regno] = -1;
320
321 qty[qtyno].first_reg = regno;
322 qty[qtyno].size = size;
323 qty[qtyno].mode = mode;
324 qty[qtyno].birth = birth;
325 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
326 qty[qtyno].min_class = reg_preferred_class (regno);
327 qty[qtyno].alternate_class = reg_alternate_class (regno);
328 qty[qtyno].n_refs = REG_N_REFS (regno);
329 qty[qtyno].freq = REG_FREQ (regno);
330 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
331 }
332 \f
333 /* Main entry point of this file. */
334
335 int
336 local_alloc ()
337 {
338 register int b, i;
339 int max_qty;
340
341 /* We need to keep track of whether or not we recorded a LABEL_REF so
342 that we know if the jump optimizer needs to be rerun. */
343 recorded_label_ref = 0;
344
345 /* Leaf functions and non-leaf functions have different needs.
346 If defined, let the machine say what kind of ordering we
347 should use. */
348 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
349 ORDER_REGS_FOR_LOCAL_ALLOC;
350 #endif
351
352 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
353 registers. */
354 update_equiv_regs ();
355
356 /* This sets the maximum number of quantities we can have. Quantity
357 numbers start at zero and we can have one for each pseudo. */
358 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
359
360 /* Allocate vectors of temporary data.
361 See the declarations of these variables, above,
362 for what they mean. */
363
364 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
365 qty_phys_copy_sugg
366 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
367 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
368 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
369 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
370
371 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
372 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
373 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
374
375 /* Determine which pseudo-registers can be allocated by local-alloc.
376 In general, these are the registers used only in a single block and
377 which only die once.
378
379 We need not be concerned with which block actually uses the register
380 since we will never see it outside that block. */
381
382 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
383 {
384 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
385 reg_qty[i] = -2;
386 else
387 reg_qty[i] = -1;
388 }
389
390 /* Force loop below to initialize entire quantity array. */
391 next_qty = max_qty;
392
393 /* Allocate each block's local registers, block by block. */
394
395 for (b = 0; b < n_basic_blocks; b++)
396 {
397 /* NEXT_QTY indicates which elements of the `qty_...'
398 vectors might need to be initialized because they were used
399 for the previous block; it is set to the entire array before
400 block 0. Initialize those, with explicit loop if there are few,
401 else with bzero and bcopy. Do not initialize vectors that are
402 explicit set by `alloc_qty'. */
403
404 if (next_qty < 6)
405 {
406 for (i = 0; i < next_qty; i++)
407 {
408 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
409 qty_phys_num_copy_sugg[i] = 0;
410 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
411 qty_phys_num_sugg[i] = 0;
412 }
413 }
414 else
415 {
416 #define CLEAR(vector) \
417 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
418
419 CLEAR (qty_phys_copy_sugg);
420 CLEAR (qty_phys_num_copy_sugg);
421 CLEAR (qty_phys_sugg);
422 CLEAR (qty_phys_num_sugg);
423 }
424
425 next_qty = 0;
426
427 block_alloc (b);
428 }
429
430 free (qty);
431 free (qty_phys_copy_sugg);
432 free (qty_phys_num_copy_sugg);
433 free (qty_phys_sugg);
434 free (qty_phys_num_sugg);
435
436 free (reg_qty);
437 free (reg_offset);
438 free (reg_next_in_qty);
439
440 return recorded_label_ref;
441 }
442 \f
443 /* Used for communication between the following two functions: contains
444 a MEM that we wish to ensure remains unchanged. */
445 static rtx equiv_mem;
446
447 /* Set nonzero if EQUIV_MEM is modified. */
448 static int equiv_mem_modified;
449
450 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
451 Called via note_stores. */
452
453 static void
454 validate_equiv_mem_from_store (dest, set, data)
455 rtx dest;
456 rtx set ATTRIBUTE_UNUSED;
457 void *data ATTRIBUTE_UNUSED;
458 {
459 if ((GET_CODE (dest) == REG
460 && reg_overlap_mentioned_p (dest, equiv_mem))
461 || (GET_CODE (dest) == MEM
462 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
463 equiv_mem_modified = 1;
464 }
465
466 /* Verify that no store between START and the death of REG invalidates
467 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
468 by storing into an overlapping memory location, or with a non-const
469 CALL_INSN.
470
471 Return 1 if MEMREF remains valid. */
472
473 static int
474 validate_equiv_mem (start, reg, memref)
475 rtx start;
476 rtx reg;
477 rtx memref;
478 {
479 rtx insn;
480 rtx note;
481
482 equiv_mem = memref;
483 equiv_mem_modified = 0;
484
485 /* If the memory reference has side effects or is volatile, it isn't a
486 valid equivalence. */
487 if (side_effects_p (memref))
488 return 0;
489
490 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
491 {
492 if (! INSN_P (insn))
493 continue;
494
495 if (find_reg_note (insn, REG_DEAD, reg))
496 return 1;
497
498 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
499 && ! CONST_OR_PURE_CALL_P (insn))
500 return 0;
501
502 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
503
504 /* If a register mentioned in MEMREF is modified via an
505 auto-increment, we lose the equivalence. Do the same if one
506 dies; although we could extend the life, it doesn't seem worth
507 the trouble. */
508
509 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
510 if ((REG_NOTE_KIND (note) == REG_INC
511 || REG_NOTE_KIND (note) == REG_DEAD)
512 && GET_CODE (XEXP (note, 0)) == REG
513 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
514 return 0;
515 }
516
517 return 0;
518 }
519
520 /* Returns zero if X is known to be invariant. */
521
522 static int
523 equiv_init_varies_p (x)
524 rtx x;
525 {
526 register RTX_CODE code = GET_CODE (x);
527 register int i;
528 register const char *fmt;
529
530 switch (code)
531 {
532 case MEM:
533 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
534
535 case QUEUED:
536 return 1;
537
538 case CONST:
539 case CONST_INT:
540 case CONST_DOUBLE:
541 case SYMBOL_REF:
542 case LABEL_REF:
543 return 0;
544
545 case REG:
546 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
547
548 case ASM_OPERANDS:
549 if (MEM_VOLATILE_P (x))
550 return 1;
551
552 /* FALLTHROUGH */
553
554 default:
555 break;
556 }
557
558 fmt = GET_RTX_FORMAT (code);
559 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
560 if (fmt[i] == 'e')
561 {
562 if (equiv_init_varies_p (XEXP (x, i)))
563 return 1;
564 }
565 else if (fmt[i] == 'E')
566 {
567 int j;
568 for (j = 0; j < XVECLEN (x, i); j++)
569 if (equiv_init_varies_p (XVECEXP (x, i, j)))
570 return 1;
571 }
572
573 return 0;
574 }
575
576 /* Returns non-zero if X (used to initialize register REGNO) is movable.
577 X is only movable if the registers it uses have equivalent initializations
578 which appear to be within the same loop (or in an inner loop) and movable
579 or if they are not candidates for local_alloc and don't vary. */
580
581 static int
582 equiv_init_movable_p (x, regno)
583 rtx x;
584 int regno;
585 {
586 int i, j;
587 const char *fmt;
588 enum rtx_code code = GET_CODE (x);
589
590 switch (code)
591 {
592 case SET:
593 return equiv_init_movable_p (SET_SRC (x), regno);
594
595 case CC0:
596 case CLOBBER:
597 return 0;
598
599 case PRE_INC:
600 case PRE_DEC:
601 case POST_INC:
602 case POST_DEC:
603 case PRE_MODIFY:
604 case POST_MODIFY:
605 return 0;
606
607 case REG:
608 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
609 && reg_equiv[REGNO (x)].replace)
610 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
611
612 case UNSPEC_VOLATILE:
613 return 0;
614
615 case ASM_OPERANDS:
616 if (MEM_VOLATILE_P (x))
617 return 0;
618
619 /* FALLTHROUGH */
620
621 default:
622 break;
623 }
624
625 fmt = GET_RTX_FORMAT (code);
626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
627 switch (fmt[i])
628 {
629 case 'e':
630 if (! equiv_init_movable_p (XEXP (x, i), regno))
631 return 0;
632 break;
633 case 'E':
634 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
635 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
636 return 0;
637 break;
638 }
639
640 return 1;
641 }
642
643 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
644
645 static int
646 contains_replace_regs (x)
647 rtx x;
648 {
649 int i, j;
650 const char *fmt;
651 enum rtx_code code = GET_CODE (x);
652
653 switch (code)
654 {
655 case CONST_INT:
656 case CONST:
657 case LABEL_REF:
658 case SYMBOL_REF:
659 case CONST_DOUBLE:
660 case PC:
661 case CC0:
662 case HIGH:
663 case LO_SUM:
664 return 0;
665
666 case REG:
667 return reg_equiv[REGNO (x)].replace;
668
669 default:
670 break;
671 }
672
673 fmt = GET_RTX_FORMAT (code);
674 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
675 switch (fmt[i])
676 {
677 case 'e':
678 if (contains_replace_regs (XEXP (x, i)))
679 return 1;
680 break;
681 case 'E':
682 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
683 if (contains_replace_regs (XVECEXP (x, i, j)))
684 return 1;
685 break;
686 }
687
688 return 0;
689 }
690 \f
691 /* TRUE if X references a memory location that would be affected by a store
692 to MEMREF. */
693
694 static int
695 memref_referenced_p (memref, x)
696 rtx x;
697 rtx memref;
698 {
699 int i, j;
700 const char *fmt;
701 enum rtx_code code = GET_CODE (x);
702
703 switch (code)
704 {
705 case CONST_INT:
706 case CONST:
707 case LABEL_REF:
708 case SYMBOL_REF:
709 case CONST_DOUBLE:
710 case PC:
711 case CC0:
712 case HIGH:
713 case LO_SUM:
714 return 0;
715
716 case REG:
717 return (reg_equiv[REGNO (x)].replacement
718 && memref_referenced_p (memref,
719 reg_equiv[REGNO (x)].replacement));
720
721 case MEM:
722 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
723 return 1;
724 break;
725
726 case SET:
727 /* If we are setting a MEM, it doesn't count (its address does), but any
728 other SET_DEST that has a MEM in it is referencing the MEM. */
729 if (GET_CODE (SET_DEST (x)) == MEM)
730 {
731 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
732 return 1;
733 }
734 else if (memref_referenced_p (memref, SET_DEST (x)))
735 return 1;
736
737 return memref_referenced_p (memref, SET_SRC (x));
738
739 default:
740 break;
741 }
742
743 fmt = GET_RTX_FORMAT (code);
744 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
745 switch (fmt[i])
746 {
747 case 'e':
748 if (memref_referenced_p (memref, XEXP (x, i)))
749 return 1;
750 break;
751 case 'E':
752 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
753 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
754 return 1;
755 break;
756 }
757
758 return 0;
759 }
760
761 /* TRUE if some insn in the range (START, END] references a memory location
762 that would be affected by a store to MEMREF. */
763
764 static int
765 memref_used_between_p (memref, start, end)
766 rtx memref;
767 rtx start;
768 rtx end;
769 {
770 rtx insn;
771
772 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
773 insn = NEXT_INSN (insn))
774 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
775 return 1;
776
777 return 0;
778 }
779 \f
780 /* Return nonzero if the rtx X is invariant over the current function. */
781 int
782 function_invariant_p (x)
783 rtx x;
784 {
785 if (CONSTANT_P (x))
786 return 1;
787 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
788 return 1;
789 if (GET_CODE (x) == PLUS
790 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
791 && CONSTANT_P (XEXP (x, 1)))
792 return 1;
793 return 0;
794 }
795
796 /* Find registers that are equivalent to a single value throughout the
797 compilation (either because they can be referenced in memory or are set once
798 from a single constant). Lower their priority for a register.
799
800 If such a register is only referenced once, try substituting its value
801 into the using insn. If it succeeds, we can eliminate the register
802 completely. */
803
804 static void
805 update_equiv_regs ()
806 {
807 rtx insn;
808 int block;
809 int loop_depth;
810 regset_head cleared_regs;
811 int clear_regnos = 0;
812
813 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
814 INIT_REG_SET (&cleared_regs);
815
816 init_alias_analysis ();
817
818 /* Scan the insns and find which registers have equivalences. Do this
819 in a separate scan of the insns because (due to -fcse-follow-jumps)
820 a register can be set below its use. */
821 for (block = 0; block < n_basic_blocks; block++)
822 {
823 basic_block bb = BASIC_BLOCK (block);
824 loop_depth = bb->loop_depth;
825
826 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = NEXT_INSN (insn))
827 {
828 rtx note;
829 rtx set;
830 rtx dest, src;
831 int regno;
832
833 if (! INSN_P (insn))
834 continue;
835
836 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
837 if (REG_NOTE_KIND (note) == REG_INC)
838 no_equiv (XEXP (note, 0), note, NULL);
839
840 set = single_set (insn);
841
842 /* If this insn contains more (or less) than a single SET,
843 only mark all destinations as having no known equivalence. */
844 if (set == 0)
845 {
846 note_stores (PATTERN (insn), no_equiv, NULL);
847 continue;
848 }
849 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
850 {
851 int i;
852
853 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
854 {
855 rtx part = XVECEXP (PATTERN (insn), 0, i);
856 if (part != set)
857 note_stores (part, no_equiv, NULL);
858 }
859 }
860
861 dest = SET_DEST (set);
862 src = SET_SRC (set);
863
864 /* If this sets a MEM to the contents of a REG that is only used
865 in a single basic block, see if the register is always equivalent
866 to that memory location and if moving the store from INSN to the
867 insn that set REG is safe. If so, put a REG_EQUIV note on the
868 initializing insn.
869
870 Don't add a REG_EQUIV note if the insn already has one. The existing
871 REG_EQUIV is likely more useful than the one we are adding.
872
873 If one of the regs in the address has reg_equiv[REGNO].replace set,
874 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
875 optimization may move the set of this register immediately before
876 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
877 the mention in the REG_EQUIV note would be to an uninitialized
878 pseudo. */
879 /* ????? This test isn't good enough; we might see a MEM with a use of
880 a pseudo register before we see its setting insn that will cause
881 reg_equiv[].replace for that pseudo to be set.
882 Equivalences to MEMs should be made in another pass, after the
883 reg_equiv[].replace information has been gathered. */
884
885 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
886 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
887 && REG_BASIC_BLOCK (regno) >= 0
888 && REG_N_SETS (regno) == 1
889 && reg_equiv[regno].init_insns != 0
890 && reg_equiv[regno].init_insns != const0_rtx
891 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
892 REG_EQUIV, NULL_RTX)
893 && ! contains_replace_regs (XEXP (dest, 0)))
894 {
895 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
896 if (validate_equiv_mem (init_insn, src, dest)
897 && ! memref_used_between_p (dest, init_insn, insn))
898 REG_NOTES (init_insn)
899 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
900 }
901
902 /* We only handle the case of a pseudo register being set
903 once, or always to the same value. */
904 /* ??? The mn10200 port breaks if we add equivalences for
905 values that need an ADDRESS_REGS register and set them equivalent
906 to a MEM of a pseudo. The actual problem is in the over-conservative
907 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
908 calculate_needs, but we traditionally work around this problem
909 here by rejecting equivalences when the destination is in a register
910 that's likely spilled. This is fragile, of course, since the
911 preferred class of a pseudo depends on all instructions that set
912 or use it. */
913
914 if (GET_CODE (dest) != REG
915 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
916 || reg_equiv[regno].init_insns == const0_rtx
917 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
918 && GET_CODE (src) == MEM))
919 {
920 /* This might be seting a SUBREG of a pseudo, a pseudo that is
921 also set somewhere else to a constant. */
922 note_stores (set, no_equiv, NULL);
923 continue;
924 }
925
926 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
927
928 /* cse sometimes generates function invariants, but doesn't put a
929 REG_EQUAL note on the insn. Since this note would be redundant,
930 there's no point creating it earlier than here. */
931 if (! note && ! rtx_varies_p (src, 0))
932 REG_NOTES (insn)
933 = note = gen_rtx_EXPR_LIST (REG_EQUAL, src, REG_NOTES (insn));
934
935 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
936 since it represents a function call */
937 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
938 note = NULL_RTX;
939
940 if (REG_N_SETS (regno) != 1
941 && (! note
942 || rtx_varies_p (XEXP (note, 0), 0)
943 || (reg_equiv[regno].replacement
944 && ! rtx_equal_p (XEXP (note, 0),
945 reg_equiv[regno].replacement))))
946 {
947 no_equiv (dest, set, NULL);
948 continue;
949 }
950 /* Record this insn as initializing this register. */
951 reg_equiv[regno].init_insns
952 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
953
954 /* If this register is known to be equal to a constant, record that
955 it is always equivalent to the constant. */
956 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
957 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
958
959 /* If this insn introduces a "constant" register, decrease the priority
960 of that register. Record this insn if the register is only used once
961 more and the equivalence value is the same as our source.
962
963 The latter condition is checked for two reasons: First, it is an
964 indication that it may be more efficient to actually emit the insn
965 as written (if no registers are available, reload will substitute
966 the equivalence). Secondly, it avoids problems with any registers
967 dying in this insn whose death notes would be missed.
968
969 If we don't have a REG_EQUIV note, see if this insn is loading
970 a register used only in one basic block from a MEM. If so, and the
971 MEM remains unchanged for the life of the register, add a REG_EQUIV
972 note. */
973
974 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
975
976 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
977 && GET_CODE (SET_SRC (set)) == MEM
978 && validate_equiv_mem (insn, dest, SET_SRC (set)))
979 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
980 REG_NOTES (insn));
981
982 if (note)
983 {
984 int regno = REGNO (dest);
985
986 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
987 We might end up substituting the LABEL_REF for uses of the
988 pseudo here or later. That kind of transformation may turn an
989 indirect jump into a direct jump, in which case we must rerun the
990 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
991 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
992 || (GET_CODE (XEXP (note, 0)) == CONST
993 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
994 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
995 == LABEL_REF)))
996 recorded_label_ref = 1;
997
998 reg_equiv[regno].replacement = XEXP (note, 0);
999 reg_equiv[regno].src = src;
1000 reg_equiv[regno].loop_depth = loop_depth;
1001
1002 /* Don't mess with things live during setjmp. */
1003 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
1004 {
1005 /* Note that the statement below does not affect the priority
1006 in local-alloc! */
1007 REG_LIVE_LENGTH (regno) *= 2;
1008
1009
1010 /* If the register is referenced exactly twice, meaning it is
1011 set once and used once, indicate that the reference may be
1012 replaced by the equivalence we computed above. Do this
1013 even if the register is only used in one block so that
1014 dependencies can be handled where the last register is
1015 used in a different block (i.e. HIGH / LO_SUM sequences)
1016 and to reduce the number of registers alive across
1017 calls. */
1018
1019 if (REG_N_REFS (regno) == 2
1020 && (rtx_equal_p (XEXP (note, 0), src)
1021 || ! equiv_init_varies_p (src))
1022 && GET_CODE (insn) == INSN
1023 && equiv_init_movable_p (PATTERN (insn), regno))
1024 reg_equiv[regno].replace = 1;
1025 }
1026 }
1027 }
1028 }
1029
1030 /* Now scan all regs killed in an insn to see if any of them are
1031 registers only used that once. If so, see if we can replace the
1032 reference with the equivalent from. If we can, delete the
1033 initializing reference and this register will go away. If we
1034 can't replace the reference, and the initialzing reference is
1035 within the same loop (or in an inner loop), then move the register
1036 initialization just before the use, so that they are in the same
1037 basic block. */
1038 for (block = n_basic_blocks - 1; block >= 0; block--)
1039 {
1040 basic_block bb = BASIC_BLOCK (block);
1041
1042 loop_depth = bb->loop_depth;
1043 for (insn = bb->end; insn != PREV_INSN (bb->head); insn = PREV_INSN (insn))
1044 {
1045 rtx link;
1046
1047 if (! INSN_P (insn))
1048 continue;
1049
1050 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1051 {
1052 if (REG_NOTE_KIND (link) == REG_DEAD
1053 /* Make sure this insn still refers to the register. */
1054 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1055 {
1056 int regno = REGNO (XEXP (link, 0));
1057 rtx equiv_insn;
1058
1059 if (! reg_equiv[regno].replace
1060 || reg_equiv[regno].loop_depth < loop_depth)
1061 continue;
1062
1063 /* reg_equiv[REGNO].replace gets set only when
1064 REG_N_REFS[REGNO] is 2, i.e. the register is set
1065 once and used once. (If it were only set, but not used,
1066 flow would have deleted the setting insns.) Hence
1067 there can only be one insn in reg_equiv[REGNO].init_insns. */
1068 if (reg_equiv[regno].init_insns == NULL_RTX
1069 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1070 abort ();
1071 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1072
1073 /* We may not move instructions that can throw, since
1074 that changes basic block boundaries and we are not
1075 prepared to adjust the CFG to match. */
1076 if (can_throw_internal (equiv_insn))
1077 continue;
1078
1079 if (asm_noperands (PATTERN (equiv_insn)) < 0
1080 && validate_replace_rtx (regno_reg_rtx[regno],
1081 reg_equiv[regno].src, insn))
1082 {
1083 rtx equiv_link;
1084 rtx last_link;
1085 rtx note;
1086
1087 /* Find the last note. */
1088 for (last_link = link; XEXP (last_link, 1);
1089 last_link = XEXP (last_link, 1))
1090 ;
1091
1092 /* Append the REG_DEAD notes from equiv_insn. */
1093 equiv_link = REG_NOTES (equiv_insn);
1094 while (equiv_link)
1095 {
1096 note = equiv_link;
1097 equiv_link = XEXP (equiv_link, 1);
1098 if (REG_NOTE_KIND (note) == REG_DEAD)
1099 {
1100 remove_note (equiv_insn, note);
1101 XEXP (last_link, 1) = note;
1102 XEXP (note, 1) = NULL_RTX;
1103 last_link = note;
1104 }
1105 }
1106
1107 remove_death (regno, insn);
1108 REG_N_REFS (regno) = 0;
1109 REG_FREQ (regno) = 0;
1110 PUT_CODE (equiv_insn, NOTE);
1111 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1112 NOTE_SOURCE_FILE (equiv_insn) = 0;
1113
1114 reg_equiv[regno].init_insns
1115 = XEXP (reg_equiv[regno].init_insns, 1);
1116 }
1117 /* Move the initialization of the register to just before
1118 INSN. Update the flow information. */
1119 else if (PREV_INSN (insn) != equiv_insn)
1120 {
1121 rtx new_insn;
1122
1123 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1124 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1125 REG_NOTES (equiv_insn) = 0;
1126
1127 /* Make sure this insn is recognized before reload begins,
1128 otherwise eliminate_regs_in_insn will abort. */
1129 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1130
1131 PUT_CODE (equiv_insn, NOTE);
1132 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1133 NOTE_SOURCE_FILE (equiv_insn) = 0;
1134
1135 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1136
1137 REG_BASIC_BLOCK (regno) = block >= 0 ? block : 0;
1138 REG_N_CALLS_CROSSED (regno) = 0;
1139 REG_LIVE_LENGTH (regno) = 2;
1140
1141 if (block >= 0 && insn == BLOCK_HEAD (block))
1142 BLOCK_HEAD (block) = PREV_INSN (insn);
1143
1144 /* Remember to clear REGNO from all basic block's live
1145 info. */
1146 SET_REGNO_REG_SET (&cleared_regs, regno);
1147 clear_regnos++;
1148 }
1149 }
1150 }
1151 }
1152 }
1153
1154 /* Clear all dead REGNOs from all basic block's live info. */
1155 if (clear_regnos)
1156 {
1157 int j, l;
1158 if (clear_regnos > 8)
1159 {
1160 for (l = 0; l < n_basic_blocks; l++)
1161 {
1162 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
1163 &cleared_regs);
1164 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_end,
1165 &cleared_regs);
1166 }
1167 }
1168 else
1169 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1170 {
1171 for (l = 0; l < n_basic_blocks; l++)
1172 {
1173 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start, j);
1174 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_end, j);
1175 }
1176 });
1177 }
1178
1179 /* Clean up. */
1180 end_alias_analysis ();
1181 CLEAR_REG_SET (&cleared_regs);
1182 free (reg_equiv);
1183 }
1184
1185 /* Mark REG as having no known equivalence.
1186 Some instructions might have been proceessed before and furnished
1187 with REG_EQUIV notes for this register; these notes will have to be
1188 removed.
1189 STORE is the piece of RTL that does the non-constant / conflicting
1190 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1191 but needs to be there because this function is called from note_stores. */
1192 static void
1193 no_equiv (reg, store, data)
1194 rtx reg, store ATTRIBUTE_UNUSED;
1195 void *data ATTRIBUTE_UNUSED;
1196 {
1197 int regno;
1198 rtx list;
1199
1200 if (GET_CODE (reg) != REG)
1201 return;
1202 regno = REGNO (reg);
1203 list = reg_equiv[regno].init_insns;
1204 if (list == const0_rtx)
1205 return;
1206 for (; list; list = XEXP (list, 1))
1207 {
1208 rtx insn = XEXP (list, 0);
1209 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1210 }
1211 reg_equiv[regno].init_insns = const0_rtx;
1212 reg_equiv[regno].replacement = NULL_RTX;
1213 }
1214 \f
1215 /* Allocate hard regs to the pseudo regs used only within block number B.
1216 Only the pseudos that die but once can be handled. */
1217
1218 static void
1219 block_alloc (b)
1220 int b;
1221 {
1222 register int i, q;
1223 register rtx insn;
1224 rtx note;
1225 int insn_number = 0;
1226 int insn_count = 0;
1227 int max_uid = get_max_uid ();
1228 int *qty_order;
1229 int no_conflict_combined_regno = -1;
1230
1231 /* Count the instructions in the basic block. */
1232
1233 insn = BLOCK_END (b);
1234 while (1)
1235 {
1236 if (GET_CODE (insn) != NOTE)
1237 if (++insn_count > max_uid)
1238 abort ();
1239 if (insn == BLOCK_HEAD (b))
1240 break;
1241 insn = PREV_INSN (insn);
1242 }
1243
1244 /* +2 to leave room for a post_mark_life at the last insn and for
1245 the birth of a CLOBBER in the first insn. */
1246 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1247 sizeof (HARD_REG_SET));
1248
1249 /* Initialize table of hardware registers currently live. */
1250
1251 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1252
1253 /* This loop scans the instructions of the basic block
1254 and assigns quantities to registers.
1255 It computes which registers to tie. */
1256
1257 insn = BLOCK_HEAD (b);
1258 while (1)
1259 {
1260 if (GET_CODE (insn) != NOTE)
1261 insn_number++;
1262
1263 if (INSN_P (insn))
1264 {
1265 register rtx link, set;
1266 register int win = 0;
1267 register rtx r0, r1 = NULL_RTX;
1268 int combined_regno = -1;
1269 int i;
1270
1271 this_insn_number = insn_number;
1272 this_insn = insn;
1273
1274 extract_insn (insn);
1275 which_alternative = -1;
1276
1277 /* Is this insn suitable for tying two registers?
1278 If so, try doing that.
1279 Suitable insns are those with at least two operands and where
1280 operand 0 is an output that is a register that is not
1281 earlyclobber.
1282
1283 We can tie operand 0 with some operand that dies in this insn.
1284 First look for operands that are required to be in the same
1285 register as operand 0. If we find such, only try tying that
1286 operand or one that can be put into that operand if the
1287 operation is commutative. If we don't find an operand
1288 that is required to be in the same register as operand 0,
1289 we can tie with any operand.
1290
1291 Subregs in place of regs are also ok.
1292
1293 If tying is done, WIN is set nonzero. */
1294
1295 if (optimize
1296 && recog_data.n_operands > 1
1297 && recog_data.constraints[0][0] == '='
1298 && recog_data.constraints[0][1] != '&')
1299 {
1300 /* If non-negative, is an operand that must match operand 0. */
1301 int must_match_0 = -1;
1302 /* Counts number of alternatives that require a match with
1303 operand 0. */
1304 int n_matching_alts = 0;
1305
1306 for (i = 1; i < recog_data.n_operands; i++)
1307 {
1308 const char *p = recog_data.constraints[i];
1309 int this_match = (requires_inout (p));
1310
1311 n_matching_alts += this_match;
1312 if (this_match == recog_data.n_alternatives)
1313 must_match_0 = i;
1314 }
1315
1316 r0 = recog_data.operand[0];
1317 for (i = 1; i < recog_data.n_operands; i++)
1318 {
1319 /* Skip this operand if we found an operand that
1320 must match operand 0 and this operand isn't it
1321 and can't be made to be it by commutativity. */
1322
1323 if (must_match_0 >= 0 && i != must_match_0
1324 && ! (i == must_match_0 + 1
1325 && recog_data.constraints[i-1][0] == '%')
1326 && ! (i == must_match_0 - 1
1327 && recog_data.constraints[i][0] == '%'))
1328 continue;
1329
1330 /* Likewise if each alternative has some operand that
1331 must match operand zero. In that case, skip any
1332 operand that doesn't list operand 0 since we know that
1333 the operand always conflicts with operand 0. We
1334 ignore commutatity in this case to keep things simple. */
1335 if (n_matching_alts == recog_data.n_alternatives
1336 && 0 == requires_inout (recog_data.constraints[i]))
1337 continue;
1338
1339 r1 = recog_data.operand[i];
1340
1341 /* If the operand is an address, find a register in it.
1342 There may be more than one register, but we only try one
1343 of them. */
1344 if (recog_data.constraints[i][0] == 'p')
1345 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1346 r1 = XEXP (r1, 0);
1347
1348 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1349 {
1350 /* We have two priorities for hard register preferences.
1351 If we have a move insn or an insn whose first input
1352 can only be in the same register as the output, give
1353 priority to an equivalence found from that insn. */
1354 int may_save_copy
1355 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1356
1357 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1358 win = combine_regs (r1, r0, may_save_copy,
1359 insn_number, insn, 0);
1360 }
1361 if (win)
1362 break;
1363 }
1364 }
1365
1366 /* Recognize an insn sequence with an ultimate result
1367 which can safely overlap one of the inputs.
1368 The sequence begins with a CLOBBER of its result,
1369 and ends with an insn that copies the result to itself
1370 and has a REG_EQUAL note for an equivalent formula.
1371 That note indicates what the inputs are.
1372 The result and the input can overlap if each insn in
1373 the sequence either doesn't mention the input
1374 or has a REG_NO_CONFLICT note to inhibit the conflict.
1375
1376 We do the combining test at the CLOBBER so that the
1377 destination register won't have had a quantity number
1378 assigned, since that would prevent combining. */
1379
1380 if (optimize
1381 && GET_CODE (PATTERN (insn)) == CLOBBER
1382 && (r0 = XEXP (PATTERN (insn), 0),
1383 GET_CODE (r0) == REG)
1384 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1385 && XEXP (link, 0) != 0
1386 && GET_CODE (XEXP (link, 0)) == INSN
1387 && (set = single_set (XEXP (link, 0))) != 0
1388 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1389 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1390 NULL_RTX)) != 0)
1391 {
1392 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1393 /* Check that we have such a sequence. */
1394 && no_conflict_p (insn, r0, r1))
1395 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1396 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1397 && (r1 = XEXP (XEXP (note, 0), 0),
1398 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1399 && no_conflict_p (insn, r0, r1))
1400 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1401
1402 /* Here we care if the operation to be computed is
1403 commutative. */
1404 else if ((GET_CODE (XEXP (note, 0)) == EQ
1405 || GET_CODE (XEXP (note, 0)) == NE
1406 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1407 && (r1 = XEXP (XEXP (note, 0), 1),
1408 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1409 && no_conflict_p (insn, r0, r1))
1410 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1411
1412 /* If we did combine something, show the register number
1413 in question so that we know to ignore its death. */
1414 if (win)
1415 no_conflict_combined_regno = REGNO (r1);
1416 }
1417
1418 /* If registers were just tied, set COMBINED_REGNO
1419 to the number of the register used in this insn
1420 that was tied to the register set in this insn.
1421 This register's qty should not be "killed". */
1422
1423 if (win)
1424 {
1425 while (GET_CODE (r1) == SUBREG)
1426 r1 = SUBREG_REG (r1);
1427 combined_regno = REGNO (r1);
1428 }
1429
1430 /* Mark the death of everything that dies in this instruction,
1431 except for anything that was just combined. */
1432
1433 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1434 if (REG_NOTE_KIND (link) == REG_DEAD
1435 && GET_CODE (XEXP (link, 0)) == REG
1436 && combined_regno != (int) REGNO (XEXP (link, 0))
1437 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1438 || ! find_reg_note (insn, REG_NO_CONFLICT,
1439 XEXP (link, 0))))
1440 wipe_dead_reg (XEXP (link, 0), 0);
1441
1442 /* Allocate qty numbers for all registers local to this block
1443 that are born (set) in this instruction.
1444 A pseudo that already has a qty is not changed. */
1445
1446 note_stores (PATTERN (insn), reg_is_set, NULL);
1447
1448 /* If anything is set in this insn and then unused, mark it as dying
1449 after this insn, so it will conflict with our outputs. This
1450 can't match with something that combined, and it doesn't matter
1451 if it did. Do this after the calls to reg_is_set since these
1452 die after, not during, the current insn. */
1453
1454 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1455 if (REG_NOTE_KIND (link) == REG_UNUSED
1456 && GET_CODE (XEXP (link, 0)) == REG)
1457 wipe_dead_reg (XEXP (link, 0), 1);
1458
1459 /* If this is an insn that has a REG_RETVAL note pointing at a
1460 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1461 block, so clear any register number that combined within it. */
1462 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1463 && GET_CODE (XEXP (note, 0)) == INSN
1464 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1465 no_conflict_combined_regno = -1;
1466 }
1467
1468 /* Set the registers live after INSN_NUMBER. Note that we never
1469 record the registers live before the block's first insn, since no
1470 pseudos we care about are live before that insn. */
1471
1472 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1473 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1474
1475 if (insn == BLOCK_END (b))
1476 break;
1477
1478 insn = NEXT_INSN (insn);
1479 }
1480
1481 /* Now every register that is local to this basic block
1482 should have been given a quantity, or else -1 meaning ignore it.
1483 Every quantity should have a known birth and death.
1484
1485 Order the qtys so we assign them registers in order of the
1486 number of suggested registers they need so we allocate those with
1487 the most restrictive needs first. */
1488
1489 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1490 for (i = 0; i < next_qty; i++)
1491 qty_order[i] = i;
1492
1493 #define EXCHANGE(I1, I2) \
1494 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1495
1496 switch (next_qty)
1497 {
1498 case 3:
1499 /* Make qty_order[2] be the one to allocate last. */
1500 if (qty_sugg_compare (0, 1) > 0)
1501 EXCHANGE (0, 1);
1502 if (qty_sugg_compare (1, 2) > 0)
1503 EXCHANGE (2, 1);
1504
1505 /* ... Fall through ... */
1506 case 2:
1507 /* Put the best one to allocate in qty_order[0]. */
1508 if (qty_sugg_compare (0, 1) > 0)
1509 EXCHANGE (0, 1);
1510
1511 /* ... Fall through ... */
1512
1513 case 1:
1514 case 0:
1515 /* Nothing to do here. */
1516 break;
1517
1518 default:
1519 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1520 }
1521
1522 /* Try to put each quantity in a suggested physical register, if it has one.
1523 This may cause registers to be allocated that otherwise wouldn't be, but
1524 this seems acceptable in local allocation (unlike global allocation). */
1525 for (i = 0; i < next_qty; i++)
1526 {
1527 q = qty_order[i];
1528 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1529 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1530 0, 1, qty[q].birth, qty[q].death);
1531 else
1532 qty[q].phys_reg = -1;
1533 }
1534
1535 /* Order the qtys so we assign them registers in order of
1536 decreasing length of life. Normally call qsort, but if we
1537 have only a very small number of quantities, sort them ourselves. */
1538
1539 for (i = 0; i < next_qty; i++)
1540 qty_order[i] = i;
1541
1542 #define EXCHANGE(I1, I2) \
1543 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1544
1545 switch (next_qty)
1546 {
1547 case 3:
1548 /* Make qty_order[2] be the one to allocate last. */
1549 if (qty_compare (0, 1) > 0)
1550 EXCHANGE (0, 1);
1551 if (qty_compare (1, 2) > 0)
1552 EXCHANGE (2, 1);
1553
1554 /* ... Fall through ... */
1555 case 2:
1556 /* Put the best one to allocate in qty_order[0]. */
1557 if (qty_compare (0, 1) > 0)
1558 EXCHANGE (0, 1);
1559
1560 /* ... Fall through ... */
1561
1562 case 1:
1563 case 0:
1564 /* Nothing to do here. */
1565 break;
1566
1567 default:
1568 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1569 }
1570
1571 /* Now for each qty that is not a hardware register,
1572 look for a hardware register to put it in.
1573 First try the register class that is cheapest for this qty,
1574 if there is more than one class. */
1575
1576 for (i = 0; i < next_qty; i++)
1577 {
1578 q = qty_order[i];
1579 if (qty[q].phys_reg < 0)
1580 {
1581 #ifdef INSN_SCHEDULING
1582 /* These values represent the adjusted lifetime of a qty so
1583 that it conflicts with qtys which appear near the start/end
1584 of this qty's lifetime.
1585
1586 The purpose behind extending the lifetime of this qty is to
1587 discourage the register allocator from creating false
1588 dependencies.
1589
1590 The adjustment value is choosen to indicate that this qty
1591 conflicts with all the qtys in the instructions immediately
1592 before and after the lifetime of this qty.
1593
1594 Experiments have shown that higher values tend to hurt
1595 overall code performance.
1596
1597 If allocation using the extended lifetime fails we will try
1598 again with the qty's unadjusted lifetime. */
1599 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1600 int fake_death = MIN (insn_number * 2 + 1,
1601 qty[q].death + 2 - qty[q].death % 2);
1602 #endif
1603
1604 if (N_REG_CLASSES > 1)
1605 {
1606 #ifdef INSN_SCHEDULING
1607 /* We try to avoid using hard registers allocated to qtys which
1608 are born immediately after this qty or die immediately before
1609 this qty.
1610
1611 This optimization is only appropriate when we will run
1612 a scheduling pass after reload and we are not optimizing
1613 for code size. */
1614 if (flag_schedule_insns_after_reload
1615 && !optimize_size
1616 && !SMALL_REGISTER_CLASSES)
1617 {
1618 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1619 qty[q].mode, q, 0, 0,
1620 fake_birth, fake_death);
1621 if (qty[q].phys_reg >= 0)
1622 continue;
1623 }
1624 #endif
1625 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1626 qty[q].mode, q, 0, 0,
1627 qty[q].birth, qty[q].death);
1628 if (qty[q].phys_reg >= 0)
1629 continue;
1630 }
1631
1632 #ifdef INSN_SCHEDULING
1633 /* Similarly, avoid false dependencies. */
1634 if (flag_schedule_insns_after_reload
1635 && !optimize_size
1636 && !SMALL_REGISTER_CLASSES
1637 && qty[q].alternate_class != NO_REGS)
1638 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1639 qty[q].mode, q, 0, 0,
1640 fake_birth, fake_death);
1641 #endif
1642 if (qty[q].alternate_class != NO_REGS)
1643 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1644 qty[q].mode, q, 0, 0,
1645 qty[q].birth, qty[q].death);
1646 }
1647 }
1648
1649 /* Now propagate the register assignments
1650 to the pseudo regs belonging to the qtys. */
1651
1652 for (q = 0; q < next_qty; q++)
1653 if (qty[q].phys_reg >= 0)
1654 {
1655 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1656 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1657 }
1658
1659 /* Clean up. */
1660 free (regs_live_at);
1661 free (qty_order);
1662 }
1663 \f
1664 /* Compare two quantities' priority for getting real registers.
1665 We give shorter-lived quantities higher priority.
1666 Quantities with more references are also preferred, as are quantities that
1667 require multiple registers. This is the identical prioritization as
1668 done by global-alloc.
1669
1670 We used to give preference to registers with *longer* lives, but using
1671 the same algorithm in both local- and global-alloc can speed up execution
1672 of some programs by as much as a factor of three! */
1673
1674 /* Note that the quotient will never be bigger than
1675 the value of floor_log2 times the maximum number of
1676 times a register can occur in one insn (surely less than 100)
1677 weighted by frequency (max REG_FREQ_MAX).
1678 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1679 QTY_CMP_PRI is also used by qty_sugg_compare. */
1680
1681 #define QTY_CMP_PRI(q) \
1682 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1683 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1684
1685 static int
1686 qty_compare (q1, q2)
1687 int q1, q2;
1688 {
1689 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1690 }
1691
1692 static int
1693 qty_compare_1 (q1p, q2p)
1694 const PTR q1p;
1695 const PTR q2p;
1696 {
1697 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1698 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1699
1700 if (tem != 0)
1701 return tem;
1702
1703 /* If qtys are equally good, sort by qty number,
1704 so that the results of qsort leave nothing to chance. */
1705 return q1 - q2;
1706 }
1707 \f
1708 /* Compare two quantities' priority for getting real registers. This version
1709 is called for quantities that have suggested hard registers. First priority
1710 goes to quantities that have copy preferences, then to those that have
1711 normal preferences. Within those groups, quantities with the lower
1712 number of preferences have the highest priority. Of those, we use the same
1713 algorithm as above. */
1714
1715 #define QTY_CMP_SUGG(q) \
1716 (qty_phys_num_copy_sugg[q] \
1717 ? qty_phys_num_copy_sugg[q] \
1718 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1719
1720 static int
1721 qty_sugg_compare (q1, q2)
1722 int q1, q2;
1723 {
1724 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1725
1726 if (tem != 0)
1727 return tem;
1728
1729 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1730 }
1731
1732 static int
1733 qty_sugg_compare_1 (q1p, q2p)
1734 const PTR q1p;
1735 const PTR q2p;
1736 {
1737 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1738 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1739
1740 if (tem != 0)
1741 return tem;
1742
1743 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1744 if (tem != 0)
1745 return tem;
1746
1747 /* If qtys are equally good, sort by qty number,
1748 so that the results of qsort leave nothing to chance. */
1749 return q1 - q2;
1750 }
1751
1752 #undef QTY_CMP_SUGG
1753 #undef QTY_CMP_PRI
1754 \f
1755 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1756 Returns 1 if have done so, or 0 if cannot.
1757
1758 Combining registers means marking them as having the same quantity
1759 and adjusting the offsets within the quantity if either of
1760 them is a SUBREG).
1761
1762 We don't actually combine a hard reg with a pseudo; instead
1763 we just record the hard reg as the suggestion for the pseudo's quantity.
1764 If we really combined them, we could lose if the pseudo lives
1765 across an insn that clobbers the hard reg (eg, movstr).
1766
1767 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1768 there is no REG_DEAD note on INSN. This occurs during the processing
1769 of REG_NO_CONFLICT blocks.
1770
1771 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1772 SETREG or if the input and output must share a register.
1773 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1774
1775 There are elaborate checks for the validity of combining. */
1776
1777 static int
1778 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1779 rtx usedreg, setreg;
1780 int may_save_copy;
1781 int insn_number;
1782 rtx insn;
1783 int already_dead;
1784 {
1785 register int ureg, sreg;
1786 register int offset = 0;
1787 int usize, ssize;
1788 register int sqty;
1789
1790 /* Determine the numbers and sizes of registers being used. If a subreg
1791 is present that does not change the entire register, don't consider
1792 this a copy insn. */
1793
1794 while (GET_CODE (usedreg) == SUBREG)
1795 {
1796 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1797 may_save_copy = 0;
1798 if (REGNO (SUBREG_REG (usedreg)) < FIRST_PSEUDO_REGISTER)
1799 offset += subreg_regno_offset (REGNO (SUBREG_REG (usedreg)),
1800 GET_MODE (SUBREG_REG (usedreg)),
1801 SUBREG_BYTE (usedreg),
1802 GET_MODE (usedreg));
1803 else
1804 offset += (SUBREG_BYTE (usedreg)
1805 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1806 usedreg = SUBREG_REG (usedreg);
1807 }
1808 if (GET_CODE (usedreg) != REG)
1809 return 0;
1810 ureg = REGNO (usedreg);
1811 if (ureg < FIRST_PSEUDO_REGISTER)
1812 usize = HARD_REGNO_NREGS (ureg, GET_MODE (usedreg));
1813 else
1814 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1815 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1816 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1817
1818 while (GET_CODE (setreg) == SUBREG)
1819 {
1820 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1821 may_save_copy = 0;
1822 if (REGNO (SUBREG_REG (setreg)) < FIRST_PSEUDO_REGISTER)
1823 offset -= subreg_regno_offset (REGNO (SUBREG_REG (setreg)),
1824 GET_MODE (SUBREG_REG (setreg)),
1825 SUBREG_BYTE (setreg),
1826 GET_MODE (setreg));
1827 else
1828 offset -= (SUBREG_BYTE (setreg)
1829 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1830 setreg = SUBREG_REG (setreg);
1831 }
1832 if (GET_CODE (setreg) != REG)
1833 return 0;
1834 sreg = REGNO (setreg);
1835 if (sreg < FIRST_PSEUDO_REGISTER)
1836 ssize = HARD_REGNO_NREGS (sreg, GET_MODE (setreg));
1837 else
1838 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1839 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1840 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1841
1842 /* If UREG is a pseudo-register that hasn't already been assigned a
1843 quantity number, it means that it is not local to this block or dies
1844 more than once. In either event, we can't do anything with it. */
1845 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1846 /* Do not combine registers unless one fits within the other. */
1847 || (offset > 0 && usize + offset > ssize)
1848 || (offset < 0 && usize + offset < ssize)
1849 /* Do not combine with a smaller already-assigned object
1850 if that smaller object is already combined with something bigger. */
1851 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1852 && usize < qty[reg_qty[ureg]].size)
1853 /* Can't combine if SREG is not a register we can allocate. */
1854 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1855 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1856 These have already been taken care of. This probably wouldn't
1857 combine anyway, but don't take any chances. */
1858 || (ureg >= FIRST_PSEUDO_REGISTER
1859 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1860 /* Don't tie something to itself. In most cases it would make no
1861 difference, but it would screw up if the reg being tied to itself
1862 also dies in this insn. */
1863 || ureg == sreg
1864 /* Don't try to connect two different hardware registers. */
1865 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1866 /* Don't connect two different machine modes if they have different
1867 implications as to which registers may be used. */
1868 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1869 return 0;
1870
1871 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1872 qty_phys_sugg for the pseudo instead of tying them.
1873
1874 Return "failure" so that the lifespan of UREG is terminated here;
1875 that way the two lifespans will be disjoint and nothing will prevent
1876 the pseudo reg from being given this hard reg. */
1877
1878 if (ureg < FIRST_PSEUDO_REGISTER)
1879 {
1880 /* Allocate a quantity number so we have a place to put our
1881 suggestions. */
1882 if (reg_qty[sreg] == -2)
1883 reg_is_born (setreg, 2 * insn_number);
1884
1885 if (reg_qty[sreg] >= 0)
1886 {
1887 if (may_save_copy
1888 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1889 {
1890 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1891 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1892 }
1893 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1894 {
1895 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1896 qty_phys_num_sugg[reg_qty[sreg]]++;
1897 }
1898 }
1899 return 0;
1900 }
1901
1902 /* Similarly for SREG a hard register and UREG a pseudo register. */
1903
1904 if (sreg < FIRST_PSEUDO_REGISTER)
1905 {
1906 if (may_save_copy
1907 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1908 {
1909 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1910 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1911 }
1912 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1913 {
1914 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1915 qty_phys_num_sugg[reg_qty[ureg]]++;
1916 }
1917 return 0;
1918 }
1919
1920 /* At this point we know that SREG and UREG are both pseudos.
1921 Do nothing if SREG already has a quantity or is a register that we
1922 don't allocate. */
1923 if (reg_qty[sreg] >= -1
1924 /* If we are not going to let any regs live across calls,
1925 don't tie a call-crossing reg to a non-call-crossing reg. */
1926 || (current_function_has_nonlocal_label
1927 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1928 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1929 return 0;
1930
1931 /* We don't already know about SREG, so tie it to UREG
1932 if this is the last use of UREG, provided the classes they want
1933 are compatible. */
1934
1935 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1936 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1937 {
1938 /* Add SREG to UREG's quantity. */
1939 sqty = reg_qty[ureg];
1940 reg_qty[sreg] = sqty;
1941 reg_offset[sreg] = reg_offset[ureg] + offset;
1942 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1943 qty[sqty].first_reg = sreg;
1944
1945 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1946 update_qty_class (sqty, sreg);
1947
1948 /* Update info about quantity SQTY. */
1949 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1950 qty[sqty].n_refs += REG_N_REFS (sreg);
1951 qty[sqty].freq += REG_FREQ (sreg);
1952 if (usize < ssize)
1953 {
1954 register int i;
1955
1956 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1957 reg_offset[i] -= offset;
1958
1959 qty[sqty].size = ssize;
1960 qty[sqty].mode = GET_MODE (setreg);
1961 }
1962 }
1963 else
1964 return 0;
1965
1966 return 1;
1967 }
1968 \f
1969 /* Return 1 if the preferred class of REG allows it to be tied
1970 to a quantity or register whose class is CLASS.
1971 True if REG's reg class either contains or is contained in CLASS. */
1972
1973 static int
1974 reg_meets_class_p (reg, class)
1975 int reg;
1976 enum reg_class class;
1977 {
1978 register enum reg_class rclass = reg_preferred_class (reg);
1979 return (reg_class_subset_p (rclass, class)
1980 || reg_class_subset_p (class, rclass));
1981 }
1982
1983 /* Update the class of QTYNO assuming that REG is being tied to it. */
1984
1985 static void
1986 update_qty_class (qtyno, reg)
1987 int qtyno;
1988 int reg;
1989 {
1990 enum reg_class rclass = reg_preferred_class (reg);
1991 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1992 qty[qtyno].min_class = rclass;
1993
1994 rclass = reg_alternate_class (reg);
1995 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1996 qty[qtyno].alternate_class = rclass;
1997
1998 if (REG_CHANGES_MODE (reg))
1999 qty[qtyno].changes_mode = 1;
2000 }
2001 \f
2002 /* Handle something which alters the value of an rtx REG.
2003
2004 REG is whatever is set or clobbered. SETTER is the rtx that
2005 is modifying the register.
2006
2007 If it is not really a register, we do nothing.
2008 The file-global variables `this_insn' and `this_insn_number'
2009 carry info from `block_alloc'. */
2010
2011 static void
2012 reg_is_set (reg, setter, data)
2013 rtx reg;
2014 rtx setter;
2015 void *data ATTRIBUTE_UNUSED;
2016 {
2017 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2018 a hard register. These may actually not exist any more. */
2019
2020 if (GET_CODE (reg) != SUBREG
2021 && GET_CODE (reg) != REG)
2022 return;
2023
2024 /* Mark this register as being born. If it is used in a CLOBBER, mark
2025 it as being born halfway between the previous insn and this insn so that
2026 it conflicts with our inputs but not the outputs of the previous insn. */
2027
2028 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2029 }
2030 \f
2031 /* Handle beginning of the life of register REG.
2032 BIRTH is the index at which this is happening. */
2033
2034 static void
2035 reg_is_born (reg, birth)
2036 rtx reg;
2037 int birth;
2038 {
2039 register int regno;
2040
2041 if (GET_CODE (reg) == SUBREG)
2042 {
2043 regno = REGNO (SUBREG_REG (reg));
2044 if (regno < FIRST_PSEUDO_REGISTER)
2045 regno = subreg_hard_regno (reg, 1);
2046 }
2047 else
2048 regno = REGNO (reg);
2049
2050 if (regno < FIRST_PSEUDO_REGISTER)
2051 {
2052 mark_life (regno, GET_MODE (reg), 1);
2053
2054 /* If the register was to have been born earlier that the present
2055 insn, mark it as live where it is actually born. */
2056 if (birth < 2 * this_insn_number)
2057 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2058 }
2059 else
2060 {
2061 if (reg_qty[regno] == -2)
2062 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2063
2064 /* If this register has a quantity number, show that it isn't dead. */
2065 if (reg_qty[regno] >= 0)
2066 qty[reg_qty[regno]].death = -1;
2067 }
2068 }
2069
2070 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2071 REG is an output that is dying (i.e., it is never used), otherwise it
2072 is an input (the normal case).
2073 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2074
2075 static void
2076 wipe_dead_reg (reg, output_p)
2077 register rtx reg;
2078 int output_p;
2079 {
2080 register int regno = REGNO (reg);
2081
2082 /* If this insn has multiple results,
2083 and the dead reg is used in one of the results,
2084 extend its life to after this insn,
2085 so it won't get allocated together with any other result of this insn.
2086
2087 It is unsafe to use !single_set here since it will ignore an unused
2088 output. Just because an output is unused does not mean the compiler
2089 can assume the side effect will not occur. Consider if REG appears
2090 in the address of an output and we reload the output. If we allocate
2091 REG to the same hard register as an unused output we could set the hard
2092 register before the output reload insn. */
2093 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2094 && multiple_sets (this_insn))
2095 {
2096 int i;
2097 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2098 {
2099 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2100 if (GET_CODE (set) == SET
2101 && GET_CODE (SET_DEST (set)) != REG
2102 && !rtx_equal_p (reg, SET_DEST (set))
2103 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2104 output_p = 1;
2105 }
2106 }
2107
2108 /* If this register is used in an auto-increment address, then extend its
2109 life to after this insn, so that it won't get allocated together with
2110 the result of this insn. */
2111 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2112 output_p = 1;
2113
2114 if (regno < FIRST_PSEUDO_REGISTER)
2115 {
2116 mark_life (regno, GET_MODE (reg), 0);
2117
2118 /* If a hard register is dying as an output, mark it as in use at
2119 the beginning of this insn (the above statement would cause this
2120 not to happen). */
2121 if (output_p)
2122 post_mark_life (regno, GET_MODE (reg), 1,
2123 2 * this_insn_number, 2 * this_insn_number + 1);
2124 }
2125
2126 else if (reg_qty[regno] >= 0)
2127 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2128 }
2129 \f
2130 /* Find a block of SIZE words of hard regs in reg_class CLASS
2131 that can hold something of machine-mode MODE
2132 (but actually we test only the first of the block for holding MODE)
2133 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2134 and return the number of the first of them.
2135 Return -1 if such a block cannot be found.
2136 If QTYNO crosses calls, insist on a register preserved by calls,
2137 unless ACCEPT_CALL_CLOBBERED is nonzero.
2138
2139 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2140 register is available. If not, return -1. */
2141
2142 static int
2143 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2144 born_index, dead_index)
2145 enum reg_class class;
2146 enum machine_mode mode;
2147 int qtyno;
2148 int accept_call_clobbered;
2149 int just_try_suggested;
2150 int born_index, dead_index;
2151 {
2152 register int i, ins;
2153 #ifdef HARD_REG_SET
2154 /* Declare it register if it's a scalar. */
2155 register
2156 #endif
2157 HARD_REG_SET used, first_used;
2158 #ifdef ELIMINABLE_REGS
2159 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2160 #endif
2161
2162 /* Validate our parameters. */
2163 if (born_index < 0 || born_index > dead_index)
2164 abort ();
2165
2166 /* Don't let a pseudo live in a reg across a function call
2167 if we might get a nonlocal goto. */
2168 if (current_function_has_nonlocal_label
2169 && qty[qtyno].n_calls_crossed > 0)
2170 return -1;
2171
2172 if (accept_call_clobbered)
2173 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2174 else if (qty[qtyno].n_calls_crossed == 0)
2175 COPY_HARD_REG_SET (used, fixed_reg_set);
2176 else
2177 COPY_HARD_REG_SET (used, call_used_reg_set);
2178
2179 if (accept_call_clobbered)
2180 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2181
2182 for (ins = born_index; ins < dead_index; ins++)
2183 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2184
2185 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2186
2187 /* Don't use the frame pointer reg in local-alloc even if
2188 we may omit the frame pointer, because if we do that and then we
2189 need a frame pointer, reload won't know how to move the pseudo
2190 to another hard reg. It can move only regs made by global-alloc.
2191
2192 This is true of any register that can be eliminated. */
2193 #ifdef ELIMINABLE_REGS
2194 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2195 SET_HARD_REG_BIT (used, eliminables[i].from);
2196 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2197 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2198 that it might be eliminated into. */
2199 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2200 #endif
2201 #else
2202 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2203 #endif
2204
2205 #ifdef CLASS_CANNOT_CHANGE_MODE
2206 if (qty[qtyno].changes_mode)
2207 IOR_HARD_REG_SET (used,
2208 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2209 #endif
2210
2211 /* Normally, the registers that can be used for the first register in
2212 a multi-register quantity are the same as those that can be used for
2213 subsequent registers. However, if just trying suggested registers,
2214 restrict our consideration to them. If there are copy-suggested
2215 register, try them. Otherwise, try the arithmetic-suggested
2216 registers. */
2217 COPY_HARD_REG_SET (first_used, used);
2218
2219 if (just_try_suggested)
2220 {
2221 if (qty_phys_num_copy_sugg[qtyno] != 0)
2222 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2223 else
2224 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2225 }
2226
2227 /* If all registers are excluded, we can't do anything. */
2228 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2229
2230 /* If at least one would be suitable, test each hard reg. */
2231
2232 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2233 {
2234 #ifdef REG_ALLOC_ORDER
2235 int regno = reg_alloc_order[i];
2236 #else
2237 int regno = i;
2238 #endif
2239 if (! TEST_HARD_REG_BIT (first_used, regno)
2240 && HARD_REGNO_MODE_OK (regno, mode)
2241 && (qty[qtyno].n_calls_crossed == 0
2242 || accept_call_clobbered
2243 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2244 {
2245 register int j;
2246 register int size1 = HARD_REGNO_NREGS (regno, mode);
2247 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2248 if (j == size1)
2249 {
2250 /* Mark that this register is in use between its birth and death
2251 insns. */
2252 post_mark_life (regno, mode, 1, born_index, dead_index);
2253 return regno;
2254 }
2255 #ifndef REG_ALLOC_ORDER
2256 /* Skip starting points we know will lose. */
2257 i += j;
2258 #endif
2259 }
2260 }
2261
2262 fail:
2263 /* If we are just trying suggested register, we have just tried copy-
2264 suggested registers, and there are arithmetic-suggested registers,
2265 try them. */
2266
2267 /* If it would be profitable to allocate a call-clobbered register
2268 and save and restore it around calls, do that. */
2269 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2270 && qty_phys_num_sugg[qtyno] != 0)
2271 {
2272 /* Don't try the copy-suggested regs again. */
2273 qty_phys_num_copy_sugg[qtyno] = 0;
2274 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2275 born_index, dead_index);
2276 }
2277
2278 /* We need not check to see if the current function has nonlocal
2279 labels because we don't put any pseudos that are live over calls in
2280 registers in that case. */
2281
2282 if (! accept_call_clobbered
2283 && flag_caller_saves
2284 && ! just_try_suggested
2285 && qty[qtyno].n_calls_crossed != 0
2286 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2287 qty[qtyno].n_calls_crossed))
2288 {
2289 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2290 if (i >= 0)
2291 caller_save_needed = 1;
2292 return i;
2293 }
2294 return -1;
2295 }
2296 \f
2297 /* Mark that REGNO with machine-mode MODE is live starting from the current
2298 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2299 is zero). */
2300
2301 static void
2302 mark_life (regno, mode, life)
2303 register int regno;
2304 enum machine_mode mode;
2305 int life;
2306 {
2307 register int j = HARD_REGNO_NREGS (regno, mode);
2308 if (life)
2309 while (--j >= 0)
2310 SET_HARD_REG_BIT (regs_live, regno + j);
2311 else
2312 while (--j >= 0)
2313 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2314 }
2315
2316 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2317 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2318 to insn number DEATH (exclusive). */
2319
2320 static void
2321 post_mark_life (regno, mode, life, birth, death)
2322 int regno;
2323 enum machine_mode mode;
2324 int life, birth, death;
2325 {
2326 register int j = HARD_REGNO_NREGS (regno, mode);
2327 #ifdef HARD_REG_SET
2328 /* Declare it register if it's a scalar. */
2329 register
2330 #endif
2331 HARD_REG_SET this_reg;
2332
2333 CLEAR_HARD_REG_SET (this_reg);
2334 while (--j >= 0)
2335 SET_HARD_REG_BIT (this_reg, regno + j);
2336
2337 if (life)
2338 while (birth < death)
2339 {
2340 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2341 birth++;
2342 }
2343 else
2344 while (birth < death)
2345 {
2346 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2347 birth++;
2348 }
2349 }
2350 \f
2351 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2352 is the register being clobbered, and R1 is a register being used in
2353 the equivalent expression.
2354
2355 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2356 in which it is used, return 1.
2357
2358 Otherwise, return 0. */
2359
2360 static int
2361 no_conflict_p (insn, r0, r1)
2362 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2363 {
2364 int ok = 0;
2365 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2366 rtx p, last;
2367
2368 /* If R1 is a hard register, return 0 since we handle this case
2369 when we scan the insns that actually use it. */
2370
2371 if (note == 0
2372 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2373 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2374 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2375 return 0;
2376
2377 last = XEXP (note, 0);
2378
2379 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2380 if (INSN_P (p))
2381 {
2382 if (find_reg_note (p, REG_DEAD, r1))
2383 ok = 1;
2384
2385 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2386 some earlier optimization pass has inserted instructions into
2387 the sequence, and it is not safe to perform this optimization.
2388 Note that emit_no_conflict_block always ensures that this is
2389 true when these sequences are created. */
2390 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2391 return 0;
2392 }
2393
2394 return ok;
2395 }
2396 \f
2397 /* Return the number of alternatives for which the constraint string P
2398 indicates that the operand must be equal to operand 0 and that no register
2399 is acceptable. */
2400
2401 static int
2402 requires_inout (p)
2403 const char *p;
2404 {
2405 char c;
2406 int found_zero = 0;
2407 int reg_allowed = 0;
2408 int num_matching_alts = 0;
2409
2410 while ((c = *p++))
2411 switch (c)
2412 {
2413 case '=': case '+': case '?':
2414 case '#': case '&': case '!':
2415 case '*': case '%':
2416 case '1': case '2': case '3': case '4': case '5':
2417 case '6': case '7': case '8': case '9':
2418 case 'm': case '<': case '>': case 'V': case 'o':
2419 case 'E': case 'F': case 'G': case 'H':
2420 case 's': case 'i': case 'n':
2421 case 'I': case 'J': case 'K': case 'L':
2422 case 'M': case 'N': case 'O': case 'P':
2423 case 'X':
2424 /* These don't say anything we care about. */
2425 break;
2426
2427 case ',':
2428 if (found_zero && ! reg_allowed)
2429 num_matching_alts++;
2430
2431 found_zero = reg_allowed = 0;
2432 break;
2433
2434 case '0':
2435 found_zero = 1;
2436 break;
2437
2438 default:
2439 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2440 break;
2441 /* FALLTHRU */
2442 case 'p':
2443 case 'g': case 'r':
2444 reg_allowed = 1;
2445 break;
2446 }
2447
2448 if (found_zero && ! reg_allowed)
2449 num_matching_alts++;
2450
2451 return num_matching_alts;
2452 }
2453 \f
2454 void
2455 dump_local_alloc (file)
2456 FILE *file;
2457 {
2458 register int i;
2459 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2460 if (reg_renumber[i] != -1)
2461 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2462 }
This page took 0.1518 seconds and 6 git commands to generate.