]> gcc.gnu.org Git - gcc.git/blob - gcc/local-alloc.c
flow.c (make_edge): Early out, if no flags to set.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 \f
77 /* Next quantity number available for allocation. */
78
79 static int next_qty;
80
81 /* Information we maitain about each quantity. */
82 struct qty
83 {
84 /* The number of refs to quantity Q. */
85
86 int n_refs;
87
88 /* Insn number (counting from head of basic block)
89 where quantity Q was born. -1 if birth has not been recorded. */
90
91 int birth;
92
93 /* Insn number (counting from head of basic block)
94 where given quantity died. Due to the way tying is done,
95 and the fact that we consider in this pass only regs that die but once,
96 a quantity can die only once. Each quantity's life span
97 is a set of consecutive insns. -1 if death has not been recorded. */
98
99 int death;
100
101 /* Number of words needed to hold the data in given quantity.
102 This depends on its machine mode. It is used for these purposes:
103 1. It is used in computing the relative importances of qtys,
104 which determines the order in which we look for regs for them.
105 2. It is used in rules that prevent tying several registers of
106 different sizes in a way that is geometrically impossible
107 (see combine_regs). */
108
109 int size;
110
111 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
112
113 int n_calls_crossed;
114
115 /* The register number of one pseudo register whose reg_qty value is Q.
116 This register should be the head of the chain
117 maintained in reg_next_in_qty. */
118
119 int first_reg;
120
121 /* Reg class contained in (smaller than) the preferred classes of all
122 the pseudo regs that are tied in given quantity.
123 This is the preferred class for allocating that quantity. */
124
125 enum reg_class min_class;
126
127 /* Register class within which we allocate given qty if we can't get
128 its preferred class. */
129
130 enum reg_class alternate_class;
131
132 /* This holds the mode of the registers that are tied to given qty,
133 or VOIDmode if registers with differing modes are tied together. */
134
135 enum machine_mode mode;
136
137 /* the hard reg number chosen for given quantity,
138 or -1 if none was found. */
139
140 short phys_reg;
141
142 /* Nonzero if this quantity has been used in a SUBREG in some
143 way that is illegal. */
144
145 char changes_mode;
146
147 };
148
149 static struct qty *qty;
150
151 /* These fields are kept separately to speedup their clearing. */
152
153 /* We maintain two hard register sets that indicate suggested hard registers
154 for each quantity. The first, phys_copy_sugg, contains hard registers
155 that are tied to the quantity by a simple copy. The second contains all
156 hard registers that are tied to the quantity via an arithmetic operation.
157
158 The former register set is given priority for allocation. This tends to
159 eliminate copy insns. */
160
161 /* Element Q is a set of hard registers that are suggested for quantity Q by
162 copy insns. */
163
164 static HARD_REG_SET *qty_phys_copy_sugg;
165
166 /* Element Q is a set of hard registers that are suggested for quantity Q by
167 arithmetic insns. */
168
169 static HARD_REG_SET *qty_phys_sugg;
170
171 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
172
173 static short *qty_phys_num_copy_sugg;
174
175 /* Element Q is the number of suggested registers in qty_phys_sugg. */
176
177 static short *qty_phys_num_sugg;
178
179 /* If (REG N) has been assigned a quantity number, is a register number
180 of another register assigned the same quantity number, or -1 for the
181 end of the chain. qty->first_reg point to the head of this chain. */
182
183 static int *reg_next_in_qty;
184
185 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
186 if it is >= 0,
187 of -1 if this register cannot be allocated by local-alloc,
188 or -2 if not known yet.
189
190 Note that if we see a use or death of pseudo register N with
191 reg_qty[N] == -2, register N must be local to the current block. If
192 it were used in more than one block, we would have reg_qty[N] == -1.
193 This relies on the fact that if reg_basic_block[N] is >= 0, register N
194 will not appear in any other block. We save a considerable number of
195 tests by exploiting this.
196
197 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
198 be referenced. */
199
200 static int *reg_qty;
201
202 /* The offset (in words) of register N within its quantity.
203 This can be nonzero if register N is SImode, and has been tied
204 to a subreg of a DImode register. */
205
206 static char *reg_offset;
207
208 /* Vector of substitutions of register numbers,
209 used to map pseudo regs into hardware regs.
210 This is set up as a result of register allocation.
211 Element N is the hard reg assigned to pseudo reg N,
212 or is -1 if no hard reg was assigned.
213 If N is a hard reg number, element N is N. */
214
215 short *reg_renumber;
216
217 /* Set of hard registers live at the current point in the scan
218 of the instructions in a basic block. */
219
220 static HARD_REG_SET regs_live;
221
222 /* Each set of hard registers indicates registers live at a particular
223 point in the basic block. For N even, regs_live_at[N] says which
224 hard registers are needed *after* insn N/2 (i.e., they may not
225 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
226
227 If an object is to conflict with the inputs of insn J but not the
228 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
229 if it is to conflict with the outputs of insn J but not the inputs of
230 insn J + 1, it is said to die at index J*2 + 1. */
231
232 static HARD_REG_SET *regs_live_at;
233
234 /* Communicate local vars `insn_number' and `insn'
235 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
236 static int this_insn_number;
237 static rtx this_insn;
238
239 struct equivalence
240 {
241 /* Set when an attempt should be made to replace a register
242 with the associated src entry. */
243
244 char replace;
245
246 /* Set when a REG_EQUIV note is found or created. Use to
247 keep track of what memory accesses might be created later,
248 e.g. by reload. */
249
250 rtx replacement;
251
252 rtx src;
253
254 /* Loop depth is used to recognize equivalences which appear
255 to be present within the same loop (or in an inner loop). */
256
257 int loop_depth;
258
259 /* The list of each instruction which initializes this register. */
260
261 rtx init_insns;
262 };
263
264 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
265 structure for that register. */
266
267 static struct equivalence *reg_equiv;
268
269 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
270 static int recorded_label_ref;
271
272 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
273 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
274 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
275 static int equiv_init_varies_p PARAMS ((rtx));
276 static int equiv_init_movable_p PARAMS ((rtx, int));
277 static int contains_replace_regs PARAMS ((rtx));
278 static int memref_referenced_p PARAMS ((rtx, rtx));
279 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
280 static void update_equiv_regs PARAMS ((void));
281 static void no_equiv PARAMS ((rtx, rtx, void *));
282 static void block_alloc PARAMS ((int));
283 static int qty_sugg_compare PARAMS ((int, int));
284 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
285 static int qty_compare PARAMS ((int, int));
286 static int qty_compare_1 PARAMS ((const PTR, const PTR));
287 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
288 static int reg_meets_class_p PARAMS ((int, enum reg_class));
289 static void update_qty_class PARAMS ((int, int));
290 static void reg_is_set PARAMS ((rtx, rtx, void *));
291 static void reg_is_born PARAMS ((rtx, int));
292 static void wipe_dead_reg PARAMS ((rtx, int));
293 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
294 int, int, int, int, int));
295 static void mark_life PARAMS ((int, enum machine_mode, int));
296 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
297 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
298 static int requires_inout PARAMS ((const char *));
299 \f
300 /* Allocate a new quantity (new within current basic block)
301 for register number REGNO which is born at index BIRTH
302 within the block. MODE and SIZE are info on reg REGNO. */
303
304 static void
305 alloc_qty (regno, mode, size, birth)
306 int regno;
307 enum machine_mode mode;
308 int size, birth;
309 {
310 register int qtyno = next_qty++;
311
312 reg_qty[regno] = qtyno;
313 reg_offset[regno] = 0;
314 reg_next_in_qty[regno] = -1;
315
316 qty[qtyno].first_reg = regno;
317 qty[qtyno].size = size;
318 qty[qtyno].mode = mode;
319 qty[qtyno].birth = birth;
320 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
321 qty[qtyno].min_class = reg_preferred_class (regno);
322 qty[qtyno].alternate_class = reg_alternate_class (regno);
323 qty[qtyno].n_refs = REG_N_REFS (regno);
324 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
325 }
326 \f
327 /* Main entry point of this file. */
328
329 int
330 local_alloc ()
331 {
332 register int b, i;
333 int max_qty;
334
335 /* We need to keep track of whether or not we recorded a LABEL_REF so
336 that we know if the jump optimizer needs to be rerun. */
337 recorded_label_ref = 0;
338
339 /* Leaf functions and non-leaf functions have different needs.
340 If defined, let the machine say what kind of ordering we
341 should use. */
342 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
343 ORDER_REGS_FOR_LOCAL_ALLOC;
344 #endif
345
346 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
347 registers. */
348 update_equiv_regs ();
349
350 /* This sets the maximum number of quantities we can have. Quantity
351 numbers start at zero and we can have one for each pseudo. */
352 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
353
354 /* Allocate vectors of temporary data.
355 See the declarations of these variables, above,
356 for what they mean. */
357
358 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
359 qty_phys_copy_sugg
360 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
361 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
362 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
363 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
364
365 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
366 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
367 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
368
369 /* Allocate the reg_renumber array. */
370 allocate_reg_info (max_regno, FALSE, TRUE);
371
372 /* Determine which pseudo-registers can be allocated by local-alloc.
373 In general, these are the registers used only in a single block and
374 which only die once.
375
376 We need not be concerned with which block actually uses the register
377 since we will never see it outside that block. */
378
379 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
380 {
381 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
382 reg_qty[i] = -2;
383 else
384 reg_qty[i] = -1;
385 }
386
387 /* Force loop below to initialize entire quantity array. */
388 next_qty = max_qty;
389
390 /* Allocate each block's local registers, block by block. */
391
392 for (b = 0; b < n_basic_blocks; b++)
393 {
394 /* NEXT_QTY indicates which elements of the `qty_...'
395 vectors might need to be initialized because they were used
396 for the previous block; it is set to the entire array before
397 block 0. Initialize those, with explicit loop if there are few,
398 else with bzero and bcopy. Do not initialize vectors that are
399 explicit set by `alloc_qty'. */
400
401 if (next_qty < 6)
402 {
403 for (i = 0; i < next_qty; i++)
404 {
405 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
406 qty_phys_num_copy_sugg[i] = 0;
407 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
408 qty_phys_num_sugg[i] = 0;
409 }
410 }
411 else
412 {
413 #define CLEAR(vector) \
414 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
415
416 CLEAR (qty_phys_copy_sugg);
417 CLEAR (qty_phys_num_copy_sugg);
418 CLEAR (qty_phys_sugg);
419 CLEAR (qty_phys_num_sugg);
420 }
421
422 next_qty = 0;
423
424 block_alloc (b);
425 }
426
427 free (qty);
428 free (qty_phys_copy_sugg);
429 free (qty_phys_num_copy_sugg);
430 free (qty_phys_sugg);
431 free (qty_phys_num_sugg);
432
433 free (reg_qty);
434 free (reg_offset);
435 free (reg_next_in_qty);
436
437 return recorded_label_ref;
438 }
439 \f
440 /* Used for communication between the following two functions: contains
441 a MEM that we wish to ensure remains unchanged. */
442 static rtx equiv_mem;
443
444 /* Set nonzero if EQUIV_MEM is modified. */
445 static int equiv_mem_modified;
446
447 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
448 Called via note_stores. */
449
450 static void
451 validate_equiv_mem_from_store (dest, set, data)
452 rtx dest;
453 rtx set ATTRIBUTE_UNUSED;
454 void *data ATTRIBUTE_UNUSED;
455 {
456 if ((GET_CODE (dest) == REG
457 && reg_overlap_mentioned_p (dest, equiv_mem))
458 || (GET_CODE (dest) == MEM
459 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
460 equiv_mem_modified = 1;
461 }
462
463 /* Verify that no store between START and the death of REG invalidates
464 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
465 by storing into an overlapping memory location, or with a non-const
466 CALL_INSN.
467
468 Return 1 if MEMREF remains valid. */
469
470 static int
471 validate_equiv_mem (start, reg, memref)
472 rtx start;
473 rtx reg;
474 rtx memref;
475 {
476 rtx insn;
477 rtx note;
478
479 equiv_mem = memref;
480 equiv_mem_modified = 0;
481
482 /* If the memory reference has side effects or is volatile, it isn't a
483 valid equivalence. */
484 if (side_effects_p (memref))
485 return 0;
486
487 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
488 {
489 if (! INSN_P (insn))
490 continue;
491
492 if (find_reg_note (insn, REG_DEAD, reg))
493 return 1;
494
495 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
496 && ! CONST_CALL_P (insn))
497 return 0;
498
499 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
500
501 /* If a register mentioned in MEMREF is modified via an
502 auto-increment, we lose the equivalence. Do the same if one
503 dies; although we could extend the life, it doesn't seem worth
504 the trouble. */
505
506 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
507 if ((REG_NOTE_KIND (note) == REG_INC
508 || REG_NOTE_KIND (note) == REG_DEAD)
509 && GET_CODE (XEXP (note, 0)) == REG
510 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
511 return 0;
512 }
513
514 return 0;
515 }
516
517 /* Returns zero if X is known to be invariant. */
518
519 static int
520 equiv_init_varies_p (x)
521 rtx x;
522 {
523 register RTX_CODE code = GET_CODE (x);
524 register int i;
525 register const char *fmt;
526
527 switch (code)
528 {
529 case MEM:
530 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
531
532 case QUEUED:
533 return 1;
534
535 case CONST:
536 case CONST_INT:
537 case CONST_DOUBLE:
538 case SYMBOL_REF:
539 case LABEL_REF:
540 return 0;
541
542 case REG:
543 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x);
544
545 case ASM_OPERANDS:
546 if (MEM_VOLATILE_P (x))
547 return 1;
548
549 /* FALLTHROUGH */
550
551 default:
552 break;
553 }
554
555 fmt = GET_RTX_FORMAT (code);
556 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
557 if (fmt[i] == 'e')
558 {
559 if (equiv_init_varies_p (XEXP (x, i)))
560 return 1;
561 }
562 else if (fmt[i] == 'E')
563 {
564 int j;
565 for (j = 0; j < XVECLEN (x, i); j++)
566 if (equiv_init_varies_p (XVECEXP (x, i, j)))
567 return 1;
568 }
569
570 return 0;
571 }
572
573 /* Returns non-zero if X (used to initialize register REGNO) is movable.
574 X is only movable if the registers it uses have equivalent initializations
575 which appear to be within the same loop (or in an inner loop) and movable
576 or if they are not candidates for local_alloc and don't vary. */
577
578 static int
579 equiv_init_movable_p (x, regno)
580 rtx x;
581 int regno;
582 {
583 int i, j;
584 const char *fmt;
585 enum rtx_code code = GET_CODE (x);
586
587 switch (code)
588 {
589 case SET:
590 return equiv_init_movable_p (SET_SRC (x), regno);
591
592 case CC0:
593 case CLOBBER:
594 return 0;
595
596 case PRE_INC:
597 case PRE_DEC:
598 case POST_INC:
599 case POST_DEC:
600 case PRE_MODIFY:
601 case POST_MODIFY:
602 return 0;
603
604 case REG:
605 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
606 && reg_equiv[REGNO (x)].replace)
607 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x));
608
609 case UNSPEC_VOLATILE:
610 return 0;
611
612 case ASM_OPERANDS:
613 if (MEM_VOLATILE_P (x))
614 return 0;
615
616 /* FALLTHROUGH */
617
618 default:
619 break;
620 }
621
622 fmt = GET_RTX_FORMAT (code);
623 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
624 switch (fmt[i])
625 {
626 case 'e':
627 if (! equiv_init_movable_p (XEXP (x, i), regno))
628 return 0;
629 break;
630 case 'E':
631 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
632 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
633 return 0;
634 break;
635 }
636
637 return 1;
638 }
639
640 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
641
642 static int
643 contains_replace_regs (x)
644 rtx x;
645 {
646 int i, j;
647 const char *fmt;
648 enum rtx_code code = GET_CODE (x);
649
650 switch (code)
651 {
652 case CONST_INT:
653 case CONST:
654 case LABEL_REF:
655 case SYMBOL_REF:
656 case CONST_DOUBLE:
657 case PC:
658 case CC0:
659 case HIGH:
660 case LO_SUM:
661 return 0;
662
663 case REG:
664 return reg_equiv[REGNO (x)].replace;
665
666 default:
667 break;
668 }
669
670 fmt = GET_RTX_FORMAT (code);
671 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
672 switch (fmt[i])
673 {
674 case 'e':
675 if (contains_replace_regs (XEXP (x, i)))
676 return 1;
677 break;
678 case 'E':
679 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
680 if (contains_replace_regs (XVECEXP (x, i, j)))
681 return 1;
682 break;
683 }
684
685 return 0;
686 }
687 \f
688 /* TRUE if X references a memory location that would be affected by a store
689 to MEMREF. */
690
691 static int
692 memref_referenced_p (memref, x)
693 rtx x;
694 rtx memref;
695 {
696 int i, j;
697 const char *fmt;
698 enum rtx_code code = GET_CODE (x);
699
700 switch (code)
701 {
702 case CONST_INT:
703 case CONST:
704 case LABEL_REF:
705 case SYMBOL_REF:
706 case CONST_DOUBLE:
707 case PC:
708 case CC0:
709 case HIGH:
710 case LO_SUM:
711 return 0;
712
713 case REG:
714 return (reg_equiv[REGNO (x)].replacement
715 && memref_referenced_p (memref,
716 reg_equiv[REGNO (x)].replacement));
717
718 case MEM:
719 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
720 return 1;
721 break;
722
723 case SET:
724 /* If we are setting a MEM, it doesn't count (its address does), but any
725 other SET_DEST that has a MEM in it is referencing the MEM. */
726 if (GET_CODE (SET_DEST (x)) == MEM)
727 {
728 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
729 return 1;
730 }
731 else if (memref_referenced_p (memref, SET_DEST (x)))
732 return 1;
733
734 return memref_referenced_p (memref, SET_SRC (x));
735
736 default:
737 break;
738 }
739
740 fmt = GET_RTX_FORMAT (code);
741 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
742 switch (fmt[i])
743 {
744 case 'e':
745 if (memref_referenced_p (memref, XEXP (x, i)))
746 return 1;
747 break;
748 case 'E':
749 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
750 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
751 return 1;
752 break;
753 }
754
755 return 0;
756 }
757
758 /* TRUE if some insn in the range (START, END] references a memory location
759 that would be affected by a store to MEMREF. */
760
761 static int
762 memref_used_between_p (memref, start, end)
763 rtx memref;
764 rtx start;
765 rtx end;
766 {
767 rtx insn;
768
769 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
770 insn = NEXT_INSN (insn))
771 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
772 return 1;
773
774 return 0;
775 }
776 \f
777 /* Return nonzero if the rtx X is invariant over the current function. */
778 int
779 function_invariant_p (x)
780 rtx x;
781 {
782 if (CONSTANT_P (x))
783 return 1;
784 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
785 return 1;
786 if (GET_CODE (x) == PLUS
787 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
788 && CONSTANT_P (XEXP (x, 1)))
789 return 1;
790 return 0;
791 }
792
793 /* Find registers that are equivalent to a single value throughout the
794 compilation (either because they can be referenced in memory or are set once
795 from a single constant). Lower their priority for a register.
796
797 If such a register is only referenced once, try substituting its value
798 into the using insn. If it succeeds, we can eliminate the register
799 completely. */
800
801 static void
802 update_equiv_regs ()
803 {
804 rtx insn;
805 int block;
806 int loop_depth;
807 regset_head cleared_regs;
808 int clear_regnos = 0;
809
810 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
811 INIT_REG_SET (&cleared_regs);
812
813 init_alias_analysis ();
814
815 /* Scan the insns and find which registers have equivalences. Do this
816 in a separate scan of the insns because (due to -fcse-follow-jumps)
817 a register can be set below its use. */
818 loop_depth = 0;
819 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
820 {
821 rtx note;
822 rtx set;
823 rtx dest, src;
824 int regno;
825
826 if (GET_CODE (insn) == NOTE)
827 {
828 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
829 ++loop_depth;
830 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
831 {
832 if (! loop_depth)
833 abort ();
834 --loop_depth;
835 }
836 }
837
838 if (! INSN_P (insn))
839 continue;
840
841 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
842 if (REG_NOTE_KIND (note) == REG_INC)
843 no_equiv (XEXP (note, 0), note, NULL);
844
845 set = single_set (insn);
846
847 /* If this insn contains more (or less) than a single SET,
848 only mark all destinations as having no known equivalence. */
849 if (set == 0)
850 {
851 note_stores (PATTERN (insn), no_equiv, NULL);
852 continue;
853 }
854 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
855 {
856 int i;
857
858 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
859 {
860 rtx part = XVECEXP (PATTERN (insn), 0, i);
861 if (part != set)
862 note_stores (part, no_equiv, NULL);
863 }
864 }
865
866 dest = SET_DEST (set);
867 src = SET_SRC (set);
868
869 /* If this sets a MEM to the contents of a REG that is only used
870 in a single basic block, see if the register is always equivalent
871 to that memory location and if moving the store from INSN to the
872 insn that set REG is safe. If so, put a REG_EQUIV note on the
873 initializing insn.
874
875 Don't add a REG_EQUIV note if the insn already has one. The existing
876 REG_EQUIV is likely more useful than the one we are adding.
877
878 If one of the regs in the address has reg_equiv[REGNO].replace set,
879 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
880 optimization may move the set of this register immediately before
881 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
882 the mention in the REG_EQUIV note would be to an uninitialized
883 pseudo. */
884 /* ????? This test isn't good enough; we might see a MEM with a use of
885 a pseudo register before we see its setting insn that will cause
886 reg_equiv[].replace for that pseudo to be set.
887 Equivalences to MEMs should be made in another pass, after the
888 reg_equiv[].replace information has been gathered. */
889
890 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
891 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
892 && REG_BASIC_BLOCK (regno) >= 0
893 && REG_N_SETS (regno) == 1
894 && reg_equiv[regno].init_insns != 0
895 && reg_equiv[regno].init_insns != const0_rtx
896 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
897 REG_EQUIV, NULL_RTX)
898 && ! contains_replace_regs (XEXP (dest, 0)))
899 {
900 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
901 if (validate_equiv_mem (init_insn, src, dest)
902 && ! memref_used_between_p (dest, init_insn, insn))
903 REG_NOTES (init_insn)
904 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
905 }
906
907 /* We only handle the case of a pseudo register being set
908 once, or always to the same value. */
909 /* ??? The mn10200 port breaks if we add equivalences for
910 values that need an ADDRESS_REGS register and set them equivalent
911 to a MEM of a pseudo. The actual problem is in the over-conservative
912 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
913 calculate_needs, but we traditionally work around this problem
914 here by rejecting equivalences when the destination is in a register
915 that's likely spilled. This is fragile, of course, since the
916 preferred class of a pseudo depends on all instructions that set
917 or use it. */
918
919 if (GET_CODE (dest) != REG
920 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
921 || reg_equiv[regno].init_insns == const0_rtx
922 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
923 && GET_CODE (src) == MEM))
924 {
925 /* This might be seting a SUBREG of a pseudo, a pseudo that is
926 also set somewhere else to a constant. */
927 note_stores (set, no_equiv, NULL);
928 continue;
929 }
930
931 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
932
933 /* cse sometimes generates function invariants, but doesn't put a
934 REG_EQUAL note on the insn. Since this note would be redundant,
935 there's no point creating it earlier than here. */
936 if (! note && ! rtx_varies_p (src))
937 REG_NOTES (insn)
938 = note = gen_rtx_EXPR_LIST (REG_EQUAL, src, REG_NOTES (insn));
939
940 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
941 since it represents a function call */
942 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
943 note = NULL_RTX;
944
945 if (REG_N_SETS (regno) != 1
946 && (! note
947 || rtx_varies_p (XEXP (note, 0))
948 || (reg_equiv[regno].replacement
949 && ! rtx_equal_p (XEXP (note, 0),
950 reg_equiv[regno].replacement))))
951 {
952 no_equiv (dest, set, NULL);
953 continue;
954 }
955 /* Record this insn as initializing this register. */
956 reg_equiv[regno].init_insns
957 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
958
959 /* If this register is known to be equal to a constant, record that
960 it is always equivalent to the constant. */
961 if (note && ! rtx_varies_p (XEXP (note, 0)))
962 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
963
964 /* If this insn introduces a "constant" register, decrease the priority
965 of that register. Record this insn if the register is only used once
966 more and the equivalence value is the same as our source.
967
968 The latter condition is checked for two reasons: First, it is an
969 indication that it may be more efficient to actually emit the insn
970 as written (if no registers are available, reload will substitute
971 the equivalence). Secondly, it avoids problems with any registers
972 dying in this insn whose death notes would be missed.
973
974 If we don't have a REG_EQUIV note, see if this insn is loading
975 a register used only in one basic block from a MEM. If so, and the
976 MEM remains unchanged for the life of the register, add a REG_EQUIV
977 note. */
978
979 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
980
981 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
982 && GET_CODE (SET_SRC (set)) == MEM
983 && validate_equiv_mem (insn, dest, SET_SRC (set)))
984 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
985 REG_NOTES (insn));
986
987 if (note)
988 {
989 int regno = REGNO (dest);
990
991 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
992 We might end up substituting the LABEL_REF for uses of the
993 pseudo here or later. That kind of transformation may turn an
994 indirect jump into a direct jump, in which case we must rerun the
995 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
996 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
997 || (GET_CODE (XEXP (note, 0)) == CONST
998 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
999 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
1000 == LABEL_REF)))
1001 recorded_label_ref = 1;
1002
1003 reg_equiv[regno].replacement = XEXP (note, 0);
1004 reg_equiv[regno].src = src;
1005 reg_equiv[regno].loop_depth = loop_depth;
1006
1007 /* Don't mess with things live during setjmp. */
1008 if (REG_LIVE_LENGTH (regno) >= 0)
1009 {
1010 /* Note that the statement below does not affect the priority
1011 in local-alloc! */
1012 REG_LIVE_LENGTH (regno) *= 2;
1013
1014
1015 /* If the register is referenced exactly twice, meaning it is
1016 set once and used once, indicate that the reference may be
1017 replaced by the equivalence we computed above. Do this
1018 even if the register is only used in one block so that
1019 dependencies can be handled where the last register is
1020 used in a different block (i.e. HIGH / LO_SUM sequences)
1021 and to reduce the number of registers alive across calls.
1022
1023 It would be nice to use "loop_depth * 2" in the compare
1024 below. Unfortunately, LOOP_DEPTH need not be constant within
1025 a basic block so this would be too complicated.
1026
1027 This case normally occurs when a parameter is read from
1028 memory and then used exactly once, not in a loop. */
1029
1030 if (REG_N_REFS (regno) == 2
1031 && (rtx_equal_p (XEXP (note, 0), src)
1032 || ! equiv_init_varies_p (src))
1033 && GET_CODE (insn) == INSN
1034 && equiv_init_movable_p (PATTERN (insn), regno))
1035 reg_equiv[regno].replace = 1;
1036 }
1037 }
1038 }
1039
1040 /* Now scan all regs killed in an insn to see if any of them are
1041 registers only used that once. If so, see if we can replace the
1042 reference with the equivalent from. If we can, delete the
1043 initializing reference and this register will go away. If we
1044 can't replace the reference, and the initialzing reference is
1045 within the same loop (or in an inner loop), then move the register
1046 initialization just before the use, so that they are in the same
1047 basic block.
1048
1049 Skip this optimization if loop_depth isn't initially zero since
1050 that indicates a mismatch between loop begin and loop end notes
1051 (i.e. gcc.dg/noncompile/920721-2.c). */
1052 block = n_basic_blocks - 1;
1053 for (insn = (loop_depth == 0) ? get_last_insn () : NULL_RTX;
1054 insn; insn = PREV_INSN (insn))
1055 {
1056 rtx link;
1057
1058 if (! INSN_P (insn))
1059 {
1060 if (GET_CODE (insn) == NOTE)
1061 {
1062 if (NOTE_INSN_BASIC_BLOCK_P (insn))
1063 block = NOTE_BASIC_BLOCK (insn)->index - 1;
1064 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1065 {
1066 if (! loop_depth)
1067 abort ();
1068 --loop_depth;
1069 }
1070 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1071 ++loop_depth;
1072 }
1073
1074 continue;
1075 }
1076
1077 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1078 {
1079 if (REG_NOTE_KIND (link) == REG_DEAD
1080 /* Make sure this insn still refers to the register. */
1081 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1082 {
1083 int regno = REGNO (XEXP (link, 0));
1084 rtx equiv_insn;
1085
1086 if (! reg_equiv[regno].replace
1087 || reg_equiv[regno].loop_depth < loop_depth)
1088 continue;
1089
1090 /* reg_equiv[REGNO].replace gets set only when
1091 REG_N_REFS[REGNO] is 2, i.e. the register is set
1092 once and used once. (If it were only set, but not used,
1093 flow would have deleted the setting insns.) Hence
1094 there can only be one insn in reg_equiv[REGNO].init_insns. */
1095 if (reg_equiv[regno].init_insns == NULL_RTX
1096 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1097 abort ();
1098 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1099
1100 if (asm_noperands (PATTERN (equiv_insn)) < 0
1101 && validate_replace_rtx (regno_reg_rtx[regno],
1102 reg_equiv[regno].src, insn))
1103 {
1104 rtx equiv_link;
1105 rtx last_link;
1106 rtx note;
1107
1108 /* Find the last note. */
1109 for (last_link = link; XEXP (last_link, 1);
1110 last_link = XEXP (last_link, 1))
1111 ;
1112
1113 /* Append the REG_DEAD notes from equiv_insn. */
1114 equiv_link = REG_NOTES (equiv_insn);
1115 while (equiv_link)
1116 {
1117 note = equiv_link;
1118 equiv_link = XEXP (equiv_link, 1);
1119 if (REG_NOTE_KIND (note) == REG_DEAD)
1120 {
1121 remove_note (equiv_insn, note);
1122 XEXP (last_link, 1) = note;
1123 XEXP (note, 1) = NULL_RTX;
1124 last_link = note;
1125 }
1126 }
1127
1128 remove_death (regno, insn);
1129 REG_N_REFS (regno) = 0;
1130 PUT_CODE (equiv_insn, NOTE);
1131 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1132 NOTE_SOURCE_FILE (equiv_insn) = 0;
1133
1134 reg_equiv[regno].init_insns =
1135 XEXP (reg_equiv[regno].init_insns, 1);
1136 }
1137 /* Move the initialization of the register to just before
1138 INSN. Update the flow information. */
1139 else if (PREV_INSN (insn) != equiv_insn)
1140 {
1141 rtx new_insn;
1142
1143 new_insn = emit_insn_before (copy_rtx (PATTERN (equiv_insn)),
1144 insn);
1145 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
1146 REG_NOTES (equiv_insn) = 0;
1147
1148 PUT_CODE (equiv_insn, NOTE);
1149 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1150 NOTE_SOURCE_FILE (equiv_insn) = 0;
1151
1152 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1153
1154 REG_BASIC_BLOCK (regno) = block >= 0 ? block : 0;
1155 REG_N_CALLS_CROSSED (regno) = 0;
1156 REG_LIVE_LENGTH (regno) = 2;
1157
1158 if (block >= 0 && insn == BLOCK_HEAD (block))
1159 BLOCK_HEAD (block) = PREV_INSN (insn);
1160
1161 /* Remember to clear REGNO from all basic block's live
1162 info. */
1163 SET_REGNO_REG_SET (&cleared_regs, regno);
1164 clear_regnos++;
1165 }
1166 }
1167 }
1168 }
1169
1170 /* Clear all dead REGNOs from all basic block's live info. */
1171 if (clear_regnos)
1172 {
1173 int j, l;
1174 if (clear_regnos > 8)
1175 {
1176 for (l = 0; l < n_basic_blocks; l++)
1177 {
1178 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
1179 &cleared_regs);
1180 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_end,
1181 &cleared_regs);
1182 }
1183 }
1184 else
1185 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1186 {
1187 for (l = 0; l < n_basic_blocks; l++)
1188 {
1189 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start, j);
1190 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_end, j);
1191 }
1192 });
1193 }
1194
1195 /* Clean up. */
1196 end_alias_analysis ();
1197 CLEAR_REG_SET (&cleared_regs);
1198 free (reg_equiv);
1199 }
1200
1201 /* Mark REG as having no known equivalence.
1202 Some instructions might have been proceessed before and furnished
1203 with REG_EQUIV notes for this register; these notes will have to be
1204 removed.
1205 STORE is the piece of RTL that does the non-constant / conflicting
1206 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1207 but needs to be there because this function is called from note_stores. */
1208 static void
1209 no_equiv (reg, store, data)
1210 rtx reg, store ATTRIBUTE_UNUSED;
1211 void *data ATTRIBUTE_UNUSED;
1212 {
1213 int regno;
1214 rtx list;
1215
1216 if (GET_CODE (reg) != REG)
1217 return;
1218 regno = REGNO (reg);
1219 list = reg_equiv[regno].init_insns;
1220 if (list == const0_rtx)
1221 return;
1222 for (; list; list = XEXP (list, 1))
1223 {
1224 rtx insn = XEXP (list, 0);
1225 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1226 }
1227 reg_equiv[regno].init_insns = const0_rtx;
1228 reg_equiv[regno].replacement = NULL_RTX;
1229 }
1230 \f
1231 /* Allocate hard regs to the pseudo regs used only within block number B.
1232 Only the pseudos that die but once can be handled. */
1233
1234 static void
1235 block_alloc (b)
1236 int b;
1237 {
1238 register int i, q;
1239 register rtx insn;
1240 rtx note;
1241 int insn_number = 0;
1242 int insn_count = 0;
1243 int max_uid = get_max_uid ();
1244 int *qty_order;
1245 int no_conflict_combined_regno = -1;
1246
1247 /* Count the instructions in the basic block. */
1248
1249 insn = BLOCK_END (b);
1250 while (1)
1251 {
1252 if (GET_CODE (insn) != NOTE)
1253 if (++insn_count > max_uid)
1254 abort ();
1255 if (insn == BLOCK_HEAD (b))
1256 break;
1257 insn = PREV_INSN (insn);
1258 }
1259
1260 /* +2 to leave room for a post_mark_life at the last insn and for
1261 the birth of a CLOBBER in the first insn. */
1262 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1263 sizeof (HARD_REG_SET));
1264
1265 /* Initialize table of hardware registers currently live. */
1266
1267 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1268
1269 /* This loop scans the instructions of the basic block
1270 and assigns quantities to registers.
1271 It computes which registers to tie. */
1272
1273 insn = BLOCK_HEAD (b);
1274 while (1)
1275 {
1276 if (GET_CODE (insn) != NOTE)
1277 insn_number++;
1278
1279 if (INSN_P (insn))
1280 {
1281 register rtx link, set;
1282 register int win = 0;
1283 register rtx r0, r1 = NULL_RTX;
1284 int combined_regno = -1;
1285 int i;
1286
1287 this_insn_number = insn_number;
1288 this_insn = insn;
1289
1290 extract_insn (insn);
1291 which_alternative = -1;
1292
1293 /* Is this insn suitable for tying two registers?
1294 If so, try doing that.
1295 Suitable insns are those with at least two operands and where
1296 operand 0 is an output that is a register that is not
1297 earlyclobber.
1298
1299 We can tie operand 0 with some operand that dies in this insn.
1300 First look for operands that are required to be in the same
1301 register as operand 0. If we find such, only try tying that
1302 operand or one that can be put into that operand if the
1303 operation is commutative. If we don't find an operand
1304 that is required to be in the same register as operand 0,
1305 we can tie with any operand.
1306
1307 Subregs in place of regs are also ok.
1308
1309 If tying is done, WIN is set nonzero. */
1310
1311 if (optimize
1312 && recog_data.n_operands > 1
1313 && recog_data.constraints[0][0] == '='
1314 && recog_data.constraints[0][1] != '&')
1315 {
1316 /* If non-negative, is an operand that must match operand 0. */
1317 int must_match_0 = -1;
1318 /* Counts number of alternatives that require a match with
1319 operand 0. */
1320 int n_matching_alts = 0;
1321
1322 for (i = 1; i < recog_data.n_operands; i++)
1323 {
1324 const char *p = recog_data.constraints[i];
1325 int this_match = (requires_inout (p));
1326
1327 n_matching_alts += this_match;
1328 if (this_match == recog_data.n_alternatives)
1329 must_match_0 = i;
1330 }
1331
1332 r0 = recog_data.operand[0];
1333 for (i = 1; i < recog_data.n_operands; i++)
1334 {
1335 /* Skip this operand if we found an operand that
1336 must match operand 0 and this operand isn't it
1337 and can't be made to be it by commutativity. */
1338
1339 if (must_match_0 >= 0 && i != must_match_0
1340 && ! (i == must_match_0 + 1
1341 && recog_data.constraints[i-1][0] == '%')
1342 && ! (i == must_match_0 - 1
1343 && recog_data.constraints[i][0] == '%'))
1344 continue;
1345
1346 /* Likewise if each alternative has some operand that
1347 must match operand zero. In that case, skip any
1348 operand that doesn't list operand 0 since we know that
1349 the operand always conflicts with operand 0. We
1350 ignore commutatity in this case to keep things simple. */
1351 if (n_matching_alts == recog_data.n_alternatives
1352 && 0 == requires_inout (recog_data.constraints[i]))
1353 continue;
1354
1355 r1 = recog_data.operand[i];
1356
1357 /* If the operand is an address, find a register in it.
1358 There may be more than one register, but we only try one
1359 of them. */
1360 if (recog_data.constraints[i][0] == 'p')
1361 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1362 r1 = XEXP (r1, 0);
1363
1364 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1365 {
1366 /* We have two priorities for hard register preferences.
1367 If we have a move insn or an insn whose first input
1368 can only be in the same register as the output, give
1369 priority to an equivalence found from that insn. */
1370 int may_save_copy
1371 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1372
1373 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1374 win = combine_regs (r1, r0, may_save_copy,
1375 insn_number, insn, 0);
1376 }
1377 if (win)
1378 break;
1379 }
1380 }
1381
1382 /* Recognize an insn sequence with an ultimate result
1383 which can safely overlap one of the inputs.
1384 The sequence begins with a CLOBBER of its result,
1385 and ends with an insn that copies the result to itself
1386 and has a REG_EQUAL note for an equivalent formula.
1387 That note indicates what the inputs are.
1388 The result and the input can overlap if each insn in
1389 the sequence either doesn't mention the input
1390 or has a REG_NO_CONFLICT note to inhibit the conflict.
1391
1392 We do the combining test at the CLOBBER so that the
1393 destination register won't have had a quantity number
1394 assigned, since that would prevent combining. */
1395
1396 if (optimize
1397 && GET_CODE (PATTERN (insn)) == CLOBBER
1398 && (r0 = XEXP (PATTERN (insn), 0),
1399 GET_CODE (r0) == REG)
1400 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1401 && XEXP (link, 0) != 0
1402 && GET_CODE (XEXP (link, 0)) == INSN
1403 && (set = single_set (XEXP (link, 0))) != 0
1404 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1405 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1406 NULL_RTX)) != 0)
1407 {
1408 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1409 /* Check that we have such a sequence. */
1410 && no_conflict_p (insn, r0, r1))
1411 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1412 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1413 && (r1 = XEXP (XEXP (note, 0), 0),
1414 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1415 && no_conflict_p (insn, r0, r1))
1416 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1417
1418 /* Here we care if the operation to be computed is
1419 commutative. */
1420 else if ((GET_CODE (XEXP (note, 0)) == EQ
1421 || GET_CODE (XEXP (note, 0)) == NE
1422 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1423 && (r1 = XEXP (XEXP (note, 0), 1),
1424 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1425 && no_conflict_p (insn, r0, r1))
1426 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1427
1428 /* If we did combine something, show the register number
1429 in question so that we know to ignore its death. */
1430 if (win)
1431 no_conflict_combined_regno = REGNO (r1);
1432 }
1433
1434 /* If registers were just tied, set COMBINED_REGNO
1435 to the number of the register used in this insn
1436 that was tied to the register set in this insn.
1437 This register's qty should not be "killed". */
1438
1439 if (win)
1440 {
1441 while (GET_CODE (r1) == SUBREG)
1442 r1 = SUBREG_REG (r1);
1443 combined_regno = REGNO (r1);
1444 }
1445
1446 /* Mark the death of everything that dies in this instruction,
1447 except for anything that was just combined. */
1448
1449 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1450 if (REG_NOTE_KIND (link) == REG_DEAD
1451 && GET_CODE (XEXP (link, 0)) == REG
1452 && combined_regno != (int) REGNO (XEXP (link, 0))
1453 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1454 || ! find_reg_note (insn, REG_NO_CONFLICT,
1455 XEXP (link, 0))))
1456 wipe_dead_reg (XEXP (link, 0), 0);
1457
1458 /* Allocate qty numbers for all registers local to this block
1459 that are born (set) in this instruction.
1460 A pseudo that already has a qty is not changed. */
1461
1462 note_stores (PATTERN (insn), reg_is_set, NULL);
1463
1464 /* If anything is set in this insn and then unused, mark it as dying
1465 after this insn, so it will conflict with our outputs. This
1466 can't match with something that combined, and it doesn't matter
1467 if it did. Do this after the calls to reg_is_set since these
1468 die after, not during, the current insn. */
1469
1470 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1471 if (REG_NOTE_KIND (link) == REG_UNUSED
1472 && GET_CODE (XEXP (link, 0)) == REG)
1473 wipe_dead_reg (XEXP (link, 0), 1);
1474
1475 /* If this is an insn that has a REG_RETVAL note pointing at a
1476 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1477 block, so clear any register number that combined within it. */
1478 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1479 && GET_CODE (XEXP (note, 0)) == INSN
1480 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1481 no_conflict_combined_regno = -1;
1482 }
1483
1484 /* Set the registers live after INSN_NUMBER. Note that we never
1485 record the registers live before the block's first insn, since no
1486 pseudos we care about are live before that insn. */
1487
1488 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1489 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1490
1491 if (insn == BLOCK_END (b))
1492 break;
1493
1494 insn = NEXT_INSN (insn);
1495 }
1496
1497 /* Now every register that is local to this basic block
1498 should have been given a quantity, or else -1 meaning ignore it.
1499 Every quantity should have a known birth and death.
1500
1501 Order the qtys so we assign them registers in order of the
1502 number of suggested registers they need so we allocate those with
1503 the most restrictive needs first. */
1504
1505 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1506 for (i = 0; i < next_qty; i++)
1507 qty_order[i] = i;
1508
1509 #define EXCHANGE(I1, I2) \
1510 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1511
1512 switch (next_qty)
1513 {
1514 case 3:
1515 /* Make qty_order[2] be the one to allocate last. */
1516 if (qty_sugg_compare (0, 1) > 0)
1517 EXCHANGE (0, 1);
1518 if (qty_sugg_compare (1, 2) > 0)
1519 EXCHANGE (2, 1);
1520
1521 /* ... Fall through ... */
1522 case 2:
1523 /* Put the best one to allocate in qty_order[0]. */
1524 if (qty_sugg_compare (0, 1) > 0)
1525 EXCHANGE (0, 1);
1526
1527 /* ... Fall through ... */
1528
1529 case 1:
1530 case 0:
1531 /* Nothing to do here. */
1532 break;
1533
1534 default:
1535 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1536 }
1537
1538 /* Try to put each quantity in a suggested physical register, if it has one.
1539 This may cause registers to be allocated that otherwise wouldn't be, but
1540 this seems acceptable in local allocation (unlike global allocation). */
1541 for (i = 0; i < next_qty; i++)
1542 {
1543 q = qty_order[i];
1544 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1545 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1546 0, 1, qty[q].birth, qty[q].death);
1547 else
1548 qty[q].phys_reg = -1;
1549 }
1550
1551 /* Order the qtys so we assign them registers in order of
1552 decreasing length of life. Normally call qsort, but if we
1553 have only a very small number of quantities, sort them ourselves. */
1554
1555 for (i = 0; i < next_qty; i++)
1556 qty_order[i] = i;
1557
1558 #define EXCHANGE(I1, I2) \
1559 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1560
1561 switch (next_qty)
1562 {
1563 case 3:
1564 /* Make qty_order[2] be the one to allocate last. */
1565 if (qty_compare (0, 1) > 0)
1566 EXCHANGE (0, 1);
1567 if (qty_compare (1, 2) > 0)
1568 EXCHANGE (2, 1);
1569
1570 /* ... Fall through ... */
1571 case 2:
1572 /* Put the best one to allocate in qty_order[0]. */
1573 if (qty_compare (0, 1) > 0)
1574 EXCHANGE (0, 1);
1575
1576 /* ... Fall through ... */
1577
1578 case 1:
1579 case 0:
1580 /* Nothing to do here. */
1581 break;
1582
1583 default:
1584 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1585 }
1586
1587 /* Now for each qty that is not a hardware register,
1588 look for a hardware register to put it in.
1589 First try the register class that is cheapest for this qty,
1590 if there is more than one class. */
1591
1592 for (i = 0; i < next_qty; i++)
1593 {
1594 q = qty_order[i];
1595 if (qty[q].phys_reg < 0)
1596 {
1597 #ifdef INSN_SCHEDULING
1598 /* These values represent the adjusted lifetime of a qty so
1599 that it conflicts with qtys which appear near the start/end
1600 of this qty's lifetime.
1601
1602 The purpose behind extending the lifetime of this qty is to
1603 discourage the register allocator from creating false
1604 dependencies.
1605
1606 The adjustment value is choosen to indicate that this qty
1607 conflicts with all the qtys in the instructions immediately
1608 before and after the lifetime of this qty.
1609
1610 Experiments have shown that higher values tend to hurt
1611 overall code performance.
1612
1613 If allocation using the extended lifetime fails we will try
1614 again with the qty's unadjusted lifetime. */
1615 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1616 int fake_death = MIN (insn_number * 2 + 1,
1617 qty[q].death + 2 - qty[q].death % 2);
1618 #endif
1619
1620 if (N_REG_CLASSES > 1)
1621 {
1622 #ifdef INSN_SCHEDULING
1623 /* We try to avoid using hard registers allocated to qtys which
1624 are born immediately after this qty or die immediately before
1625 this qty.
1626
1627 This optimization is only appropriate when we will run
1628 a scheduling pass after reload and we are not optimizing
1629 for code size. */
1630 if (flag_schedule_insns_after_reload
1631 && !optimize_size
1632 && !SMALL_REGISTER_CLASSES)
1633 {
1634 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1635 qty[q].mode, q, 0, 0,
1636 fake_birth, fake_death);
1637 if (qty[q].phys_reg >= 0)
1638 continue;
1639 }
1640 #endif
1641 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1642 qty[q].mode, q, 0, 0,
1643 qty[q].birth, qty[q].death);
1644 if (qty[q].phys_reg >= 0)
1645 continue;
1646 }
1647
1648 #ifdef INSN_SCHEDULING
1649 /* Similarly, avoid false dependencies. */
1650 if (flag_schedule_insns_after_reload
1651 && !optimize_size
1652 && !SMALL_REGISTER_CLASSES
1653 && qty[q].alternate_class != NO_REGS)
1654 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1655 qty[q].mode, q, 0, 0,
1656 fake_birth, fake_death);
1657 #endif
1658 if (qty[q].alternate_class != NO_REGS)
1659 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1660 qty[q].mode, q, 0, 0,
1661 qty[q].birth, qty[q].death);
1662 }
1663 }
1664
1665 /* Now propagate the register assignments
1666 to the pseudo regs belonging to the qtys. */
1667
1668 for (q = 0; q < next_qty; q++)
1669 if (qty[q].phys_reg >= 0)
1670 {
1671 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1672 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1673 }
1674
1675 /* Clean up. */
1676 free (regs_live_at);
1677 free (qty_order);
1678 }
1679 \f
1680 /* Compare two quantities' priority for getting real registers.
1681 We give shorter-lived quantities higher priority.
1682 Quantities with more references are also preferred, as are quantities that
1683 require multiple registers. This is the identical prioritization as
1684 done by global-alloc.
1685
1686 We used to give preference to registers with *longer* lives, but using
1687 the same algorithm in both local- and global-alloc can speed up execution
1688 of some programs by as much as a factor of three! */
1689
1690 /* Note that the quotient will never be bigger than
1691 the value of floor_log2 times the maximum number of
1692 times a register can occur in one insn (surely less than 100).
1693 Multiplying this by 10000 can't overflow.
1694 QTY_CMP_PRI is also used by qty_sugg_compare. */
1695
1696 #define QTY_CMP_PRI(q) \
1697 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].n_refs * qty[q].size) \
1698 / (qty[q].death - qty[q].birth)) * 10000))
1699
1700 static int
1701 qty_compare (q1, q2)
1702 int q1, q2;
1703 {
1704 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1705 }
1706
1707 static int
1708 qty_compare_1 (q1p, q2p)
1709 const PTR q1p;
1710 const PTR q2p;
1711 {
1712 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1713 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1714
1715 if (tem != 0)
1716 return tem;
1717
1718 /* If qtys are equally good, sort by qty number,
1719 so that the results of qsort leave nothing to chance. */
1720 return q1 - q2;
1721 }
1722 \f
1723 /* Compare two quantities' priority for getting real registers. This version
1724 is called for quantities that have suggested hard registers. First priority
1725 goes to quantities that have copy preferences, then to those that have
1726 normal preferences. Within those groups, quantities with the lower
1727 number of preferences have the highest priority. Of those, we use the same
1728 algorithm as above. */
1729
1730 #define QTY_CMP_SUGG(q) \
1731 (qty_phys_num_copy_sugg[q] \
1732 ? qty_phys_num_copy_sugg[q] \
1733 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1734
1735 static int
1736 qty_sugg_compare (q1, q2)
1737 int q1, q2;
1738 {
1739 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1740
1741 if (tem != 0)
1742 return tem;
1743
1744 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1745 }
1746
1747 static int
1748 qty_sugg_compare_1 (q1p, q2p)
1749 const PTR q1p;
1750 const PTR q2p;
1751 {
1752 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1753 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1754
1755 if (tem != 0)
1756 return tem;
1757
1758 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1759 if (tem != 0)
1760 return tem;
1761
1762 /* If qtys are equally good, sort by qty number,
1763 so that the results of qsort leave nothing to chance. */
1764 return q1 - q2;
1765 }
1766
1767 #undef QTY_CMP_SUGG
1768 #undef QTY_CMP_PRI
1769 \f
1770 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1771 Returns 1 if have done so, or 0 if cannot.
1772
1773 Combining registers means marking them as having the same quantity
1774 and adjusting the offsets within the quantity if either of
1775 them is a SUBREG).
1776
1777 We don't actually combine a hard reg with a pseudo; instead
1778 we just record the hard reg as the suggestion for the pseudo's quantity.
1779 If we really combined them, we could lose if the pseudo lives
1780 across an insn that clobbers the hard reg (eg, movstr).
1781
1782 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1783 there is no REG_DEAD note on INSN. This occurs during the processing
1784 of REG_NO_CONFLICT blocks.
1785
1786 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1787 SETREG or if the input and output must share a register.
1788 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1789
1790 There are elaborate checks for the validity of combining. */
1791
1792 static int
1793 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1794 rtx usedreg, setreg;
1795 int may_save_copy;
1796 int insn_number;
1797 rtx insn;
1798 int already_dead;
1799 {
1800 register int ureg, sreg;
1801 register int offset = 0;
1802 int usize, ssize;
1803 register int sqty;
1804
1805 /* Determine the numbers and sizes of registers being used. If a subreg
1806 is present that does not change the entire register, don't consider
1807 this a copy insn. */
1808
1809 while (GET_CODE (usedreg) == SUBREG)
1810 {
1811 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1812 may_save_copy = 0;
1813 offset += SUBREG_WORD (usedreg);
1814 usedreg = SUBREG_REG (usedreg);
1815 }
1816 if (GET_CODE (usedreg) != REG)
1817 return 0;
1818 ureg = REGNO (usedreg);
1819 usize = REG_SIZE (usedreg);
1820
1821 while (GET_CODE (setreg) == SUBREG)
1822 {
1823 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1824 may_save_copy = 0;
1825 offset -= SUBREG_WORD (setreg);
1826 setreg = SUBREG_REG (setreg);
1827 }
1828 if (GET_CODE (setreg) != REG)
1829 return 0;
1830 sreg = REGNO (setreg);
1831 ssize = REG_SIZE (setreg);
1832
1833 /* If UREG is a pseudo-register that hasn't already been assigned a
1834 quantity number, it means that it is not local to this block or dies
1835 more than once. In either event, we can't do anything with it. */
1836 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1837 /* Do not combine registers unless one fits within the other. */
1838 || (offset > 0 && usize + offset > ssize)
1839 || (offset < 0 && usize + offset < ssize)
1840 /* Do not combine with a smaller already-assigned object
1841 if that smaller object is already combined with something bigger. */
1842 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1843 && usize < qty[reg_qty[ureg]].size)
1844 /* Can't combine if SREG is not a register we can allocate. */
1845 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1846 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1847 These have already been taken care of. This probably wouldn't
1848 combine anyway, but don't take any chances. */
1849 || (ureg >= FIRST_PSEUDO_REGISTER
1850 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1851 /* Don't tie something to itself. In most cases it would make no
1852 difference, but it would screw up if the reg being tied to itself
1853 also dies in this insn. */
1854 || ureg == sreg
1855 /* Don't try to connect two different hardware registers. */
1856 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1857 /* Don't connect two different machine modes if they have different
1858 implications as to which registers may be used. */
1859 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1860 return 0;
1861
1862 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1863 qty_phys_sugg for the pseudo instead of tying them.
1864
1865 Return "failure" so that the lifespan of UREG is terminated here;
1866 that way the two lifespans will be disjoint and nothing will prevent
1867 the pseudo reg from being given this hard reg. */
1868
1869 if (ureg < FIRST_PSEUDO_REGISTER)
1870 {
1871 /* Allocate a quantity number so we have a place to put our
1872 suggestions. */
1873 if (reg_qty[sreg] == -2)
1874 reg_is_born (setreg, 2 * insn_number);
1875
1876 if (reg_qty[sreg] >= 0)
1877 {
1878 if (may_save_copy
1879 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1880 {
1881 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1882 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1883 }
1884 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1885 {
1886 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1887 qty_phys_num_sugg[reg_qty[sreg]]++;
1888 }
1889 }
1890 return 0;
1891 }
1892
1893 /* Similarly for SREG a hard register and UREG a pseudo register. */
1894
1895 if (sreg < FIRST_PSEUDO_REGISTER)
1896 {
1897 if (may_save_copy
1898 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1899 {
1900 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1901 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1902 }
1903 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1904 {
1905 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1906 qty_phys_num_sugg[reg_qty[ureg]]++;
1907 }
1908 return 0;
1909 }
1910
1911 /* At this point we know that SREG and UREG are both pseudos.
1912 Do nothing if SREG already has a quantity or is a register that we
1913 don't allocate. */
1914 if (reg_qty[sreg] >= -1
1915 /* If we are not going to let any regs live across calls,
1916 don't tie a call-crossing reg to a non-call-crossing reg. */
1917 || (current_function_has_nonlocal_label
1918 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1919 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1920 return 0;
1921
1922 /* We don't already know about SREG, so tie it to UREG
1923 if this is the last use of UREG, provided the classes they want
1924 are compatible. */
1925
1926 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1927 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1928 {
1929 /* Add SREG to UREG's quantity. */
1930 sqty = reg_qty[ureg];
1931 reg_qty[sreg] = sqty;
1932 reg_offset[sreg] = reg_offset[ureg] + offset;
1933 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1934 qty[sqty].first_reg = sreg;
1935
1936 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1937 update_qty_class (sqty, sreg);
1938
1939 /* Update info about quantity SQTY. */
1940 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1941 qty[sqty].n_refs += REG_N_REFS (sreg);
1942 if (usize < ssize)
1943 {
1944 register int i;
1945
1946 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1947 reg_offset[i] -= offset;
1948
1949 qty[sqty].size = ssize;
1950 qty[sqty].mode = GET_MODE (setreg);
1951 }
1952 }
1953 else
1954 return 0;
1955
1956 return 1;
1957 }
1958 \f
1959 /* Return 1 if the preferred class of REG allows it to be tied
1960 to a quantity or register whose class is CLASS.
1961 True if REG's reg class either contains or is contained in CLASS. */
1962
1963 static int
1964 reg_meets_class_p (reg, class)
1965 int reg;
1966 enum reg_class class;
1967 {
1968 register enum reg_class rclass = reg_preferred_class (reg);
1969 return (reg_class_subset_p (rclass, class)
1970 || reg_class_subset_p (class, rclass));
1971 }
1972
1973 /* Update the class of QTYNO assuming that REG is being tied to it. */
1974
1975 static void
1976 update_qty_class (qtyno, reg)
1977 int qtyno;
1978 int reg;
1979 {
1980 enum reg_class rclass = reg_preferred_class (reg);
1981 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1982 qty[qtyno].min_class = rclass;
1983
1984 rclass = reg_alternate_class (reg);
1985 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1986 qty[qtyno].alternate_class = rclass;
1987
1988 if (REG_CHANGES_MODE (reg))
1989 qty[qtyno].changes_mode = 1;
1990 }
1991 \f
1992 /* Handle something which alters the value of an rtx REG.
1993
1994 REG is whatever is set or clobbered. SETTER is the rtx that
1995 is modifying the register.
1996
1997 If it is not really a register, we do nothing.
1998 The file-global variables `this_insn' and `this_insn_number'
1999 carry info from `block_alloc'. */
2000
2001 static void
2002 reg_is_set (reg, setter, data)
2003 rtx reg;
2004 rtx setter;
2005 void *data ATTRIBUTE_UNUSED;
2006 {
2007 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2008 a hard register. These may actually not exist any more. */
2009
2010 if (GET_CODE (reg) != SUBREG
2011 && GET_CODE (reg) != REG)
2012 return;
2013
2014 /* Mark this register as being born. If it is used in a CLOBBER, mark
2015 it as being born halfway between the previous insn and this insn so that
2016 it conflicts with our inputs but not the outputs of the previous insn. */
2017
2018 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2019 }
2020 \f
2021 /* Handle beginning of the life of register REG.
2022 BIRTH is the index at which this is happening. */
2023
2024 static void
2025 reg_is_born (reg, birth)
2026 rtx reg;
2027 int birth;
2028 {
2029 register int regno;
2030
2031 if (GET_CODE (reg) == SUBREG)
2032 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
2033 else
2034 regno = REGNO (reg);
2035
2036 if (regno < FIRST_PSEUDO_REGISTER)
2037 {
2038 mark_life (regno, GET_MODE (reg), 1);
2039
2040 /* If the register was to have been born earlier that the present
2041 insn, mark it as live where it is actually born. */
2042 if (birth < 2 * this_insn_number)
2043 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2044 }
2045 else
2046 {
2047 if (reg_qty[regno] == -2)
2048 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2049
2050 /* If this register has a quantity number, show that it isn't dead. */
2051 if (reg_qty[regno] >= 0)
2052 qty[reg_qty[regno]].death = -1;
2053 }
2054 }
2055
2056 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2057 REG is an output that is dying (i.e., it is never used), otherwise it
2058 is an input (the normal case).
2059 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2060
2061 static void
2062 wipe_dead_reg (reg, output_p)
2063 register rtx reg;
2064 int output_p;
2065 {
2066 register int regno = REGNO (reg);
2067
2068 /* If this insn has multiple results,
2069 and the dead reg is used in one of the results,
2070 extend its life to after this insn,
2071 so it won't get allocated together with any other result of this insn.
2072
2073 It is unsafe to use !single_set here since it will ignore an unused
2074 output. Just because an output is unused does not mean the compiler
2075 can assume the side effect will not occur. Consider if REG appears
2076 in the address of an output and we reload the output. If we allocate
2077 REG to the same hard register as an unused output we could set the hard
2078 register before the output reload insn. */
2079 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2080 && multiple_sets (this_insn))
2081 {
2082 int i;
2083 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2084 {
2085 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2086 if (GET_CODE (set) == SET
2087 && GET_CODE (SET_DEST (set)) != REG
2088 && !rtx_equal_p (reg, SET_DEST (set))
2089 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2090 output_p = 1;
2091 }
2092 }
2093
2094 /* If this register is used in an auto-increment address, then extend its
2095 life to after this insn, so that it won't get allocated together with
2096 the result of this insn. */
2097 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2098 output_p = 1;
2099
2100 if (regno < FIRST_PSEUDO_REGISTER)
2101 {
2102 mark_life (regno, GET_MODE (reg), 0);
2103
2104 /* If a hard register is dying as an output, mark it as in use at
2105 the beginning of this insn (the above statement would cause this
2106 not to happen). */
2107 if (output_p)
2108 post_mark_life (regno, GET_MODE (reg), 1,
2109 2 * this_insn_number, 2 * this_insn_number + 1);
2110 }
2111
2112 else if (reg_qty[regno] >= 0)
2113 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2114 }
2115 \f
2116 /* Find a block of SIZE words of hard regs in reg_class CLASS
2117 that can hold something of machine-mode MODE
2118 (but actually we test only the first of the block for holding MODE)
2119 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2120 and return the number of the first of them.
2121 Return -1 if such a block cannot be found.
2122 If QTYNO crosses calls, insist on a register preserved by calls,
2123 unless ACCEPT_CALL_CLOBBERED is nonzero.
2124
2125 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2126 register is available. If not, return -1. */
2127
2128 static int
2129 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2130 born_index, dead_index)
2131 enum reg_class class;
2132 enum machine_mode mode;
2133 int qtyno;
2134 int accept_call_clobbered;
2135 int just_try_suggested;
2136 int born_index, dead_index;
2137 {
2138 register int i, ins;
2139 #ifdef HARD_REG_SET
2140 /* Declare it register if it's a scalar. */
2141 register
2142 #endif
2143 HARD_REG_SET used, first_used;
2144 #ifdef ELIMINABLE_REGS
2145 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2146 #endif
2147
2148 /* Validate our parameters. */
2149 if (born_index < 0 || born_index > dead_index)
2150 abort ();
2151
2152 /* Don't let a pseudo live in a reg across a function call
2153 if we might get a nonlocal goto. */
2154 if (current_function_has_nonlocal_label
2155 && qty[qtyno].n_calls_crossed > 0)
2156 return -1;
2157
2158 if (accept_call_clobbered)
2159 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2160 else if (qty[qtyno].n_calls_crossed == 0)
2161 COPY_HARD_REG_SET (used, fixed_reg_set);
2162 else
2163 COPY_HARD_REG_SET (used, call_used_reg_set);
2164
2165 if (accept_call_clobbered)
2166 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2167
2168 for (ins = born_index; ins < dead_index; ins++)
2169 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2170
2171 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2172
2173 /* Don't use the frame pointer reg in local-alloc even if
2174 we may omit the frame pointer, because if we do that and then we
2175 need a frame pointer, reload won't know how to move the pseudo
2176 to another hard reg. It can move only regs made by global-alloc.
2177
2178 This is true of any register that can be eliminated. */
2179 #ifdef ELIMINABLE_REGS
2180 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2181 SET_HARD_REG_BIT (used, eliminables[i].from);
2182 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2183 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2184 that it might be eliminated into. */
2185 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2186 #endif
2187 #else
2188 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2189 #endif
2190
2191 #ifdef CLASS_CANNOT_CHANGE_MODE
2192 if (qty[qtyno].changes_mode)
2193 IOR_HARD_REG_SET (used,
2194 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2195 #endif
2196
2197 /* Normally, the registers that can be used for the first register in
2198 a multi-register quantity are the same as those that can be used for
2199 subsequent registers. However, if just trying suggested registers,
2200 restrict our consideration to them. If there are copy-suggested
2201 register, try them. Otherwise, try the arithmetic-suggested
2202 registers. */
2203 COPY_HARD_REG_SET (first_used, used);
2204
2205 if (just_try_suggested)
2206 {
2207 if (qty_phys_num_copy_sugg[qtyno] != 0)
2208 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2209 else
2210 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2211 }
2212
2213 /* If all registers are excluded, we can't do anything. */
2214 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2215
2216 /* If at least one would be suitable, test each hard reg. */
2217
2218 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2219 {
2220 #ifdef REG_ALLOC_ORDER
2221 int regno = reg_alloc_order[i];
2222 #else
2223 int regno = i;
2224 #endif
2225 if (! TEST_HARD_REG_BIT (first_used, regno)
2226 && HARD_REGNO_MODE_OK (regno, mode)
2227 && (qty[qtyno].n_calls_crossed == 0
2228 || accept_call_clobbered
2229 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2230 {
2231 register int j;
2232 register int size1 = HARD_REGNO_NREGS (regno, mode);
2233 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2234 if (j == size1)
2235 {
2236 /* Mark that this register is in use between its birth and death
2237 insns. */
2238 post_mark_life (regno, mode, 1, born_index, dead_index);
2239 return regno;
2240 }
2241 #ifndef REG_ALLOC_ORDER
2242 /* Skip starting points we know will lose. */
2243 i += j;
2244 #endif
2245 }
2246 }
2247
2248 fail:
2249 /* If we are just trying suggested register, we have just tried copy-
2250 suggested registers, and there are arithmetic-suggested registers,
2251 try them. */
2252
2253 /* If it would be profitable to allocate a call-clobbered register
2254 and save and restore it around calls, do that. */
2255 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2256 && qty_phys_num_sugg[qtyno] != 0)
2257 {
2258 /* Don't try the copy-suggested regs again. */
2259 qty_phys_num_copy_sugg[qtyno] = 0;
2260 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2261 born_index, dead_index);
2262 }
2263
2264 /* We need not check to see if the current function has nonlocal
2265 labels because we don't put any pseudos that are live over calls in
2266 registers in that case. */
2267
2268 if (! accept_call_clobbered
2269 && flag_caller_saves
2270 && ! just_try_suggested
2271 && qty[qtyno].n_calls_crossed != 0
2272 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2273 qty[qtyno].n_calls_crossed))
2274 {
2275 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2276 if (i >= 0)
2277 caller_save_needed = 1;
2278 return i;
2279 }
2280 return -1;
2281 }
2282 \f
2283 /* Mark that REGNO with machine-mode MODE is live starting from the current
2284 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2285 is zero). */
2286
2287 static void
2288 mark_life (regno, mode, life)
2289 register int regno;
2290 enum machine_mode mode;
2291 int life;
2292 {
2293 register int j = HARD_REGNO_NREGS (regno, mode);
2294 if (life)
2295 while (--j >= 0)
2296 SET_HARD_REG_BIT (regs_live, regno + j);
2297 else
2298 while (--j >= 0)
2299 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2300 }
2301
2302 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2303 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2304 to insn number DEATH (exclusive). */
2305
2306 static void
2307 post_mark_life (regno, mode, life, birth, death)
2308 int regno;
2309 enum machine_mode mode;
2310 int life, birth, death;
2311 {
2312 register int j = HARD_REGNO_NREGS (regno, mode);
2313 #ifdef HARD_REG_SET
2314 /* Declare it register if it's a scalar. */
2315 register
2316 #endif
2317 HARD_REG_SET this_reg;
2318
2319 CLEAR_HARD_REG_SET (this_reg);
2320 while (--j >= 0)
2321 SET_HARD_REG_BIT (this_reg, regno + j);
2322
2323 if (life)
2324 while (birth < death)
2325 {
2326 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2327 birth++;
2328 }
2329 else
2330 while (birth < death)
2331 {
2332 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2333 birth++;
2334 }
2335 }
2336 \f
2337 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2338 is the register being clobbered, and R1 is a register being used in
2339 the equivalent expression.
2340
2341 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2342 in which it is used, return 1.
2343
2344 Otherwise, return 0. */
2345
2346 static int
2347 no_conflict_p (insn, r0, r1)
2348 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2349 {
2350 int ok = 0;
2351 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2352 rtx p, last;
2353
2354 /* If R1 is a hard register, return 0 since we handle this case
2355 when we scan the insns that actually use it. */
2356
2357 if (note == 0
2358 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2359 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2360 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2361 return 0;
2362
2363 last = XEXP (note, 0);
2364
2365 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2366 if (INSN_P (p))
2367 {
2368 if (find_reg_note (p, REG_DEAD, r1))
2369 ok = 1;
2370
2371 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2372 some earlier optimization pass has inserted instructions into
2373 the sequence, and it is not safe to perform this optimization.
2374 Note that emit_no_conflict_block always ensures that this is
2375 true when these sequences are created. */
2376 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2377 return 0;
2378 }
2379
2380 return ok;
2381 }
2382 \f
2383 /* Return the number of alternatives for which the constraint string P
2384 indicates that the operand must be equal to operand 0 and that no register
2385 is acceptable. */
2386
2387 static int
2388 requires_inout (p)
2389 const char *p;
2390 {
2391 char c;
2392 int found_zero = 0;
2393 int reg_allowed = 0;
2394 int num_matching_alts = 0;
2395
2396 while ((c = *p++))
2397 switch (c)
2398 {
2399 case '=': case '+': case '?':
2400 case '#': case '&': case '!':
2401 case '*': case '%':
2402 case '1': case '2': case '3': case '4': case '5':
2403 case '6': case '7': case '8': case '9':
2404 case 'm': case '<': case '>': case 'V': case 'o':
2405 case 'E': case 'F': case 'G': case 'H':
2406 case 's': case 'i': case 'n':
2407 case 'I': case 'J': case 'K': case 'L':
2408 case 'M': case 'N': case 'O': case 'P':
2409 case 'X':
2410 /* These don't say anything we care about. */
2411 break;
2412
2413 case ',':
2414 if (found_zero && ! reg_allowed)
2415 num_matching_alts++;
2416
2417 found_zero = reg_allowed = 0;
2418 break;
2419
2420 case '0':
2421 found_zero = 1;
2422 break;
2423
2424 default:
2425 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2426 break;
2427 /* FALLTHRU */
2428 case 'p':
2429 case 'g': case 'r':
2430 reg_allowed = 1;
2431 break;
2432 }
2433
2434 if (found_zero && ! reg_allowed)
2435 num_matching_alts++;
2436
2437 return num_matching_alts;
2438 }
2439 \f
2440 void
2441 dump_local_alloc (file)
2442 FILE *file;
2443 {
2444 register int i;
2445 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2446 if (reg_renumber[i] != -1)
2447 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2448 }
This page took 0.151891 seconds and 6 git commands to generate.